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Abstract

Background: Within the Multiethnic Cohort (MEC), we examined the association between air 

pollution and mortality among African American, European American, Japanese American, and 

Latina American women diagnosed with breast cancer.

Methods: We used a land use regression (LUR) model and kriging interpolation to estimate 

nitrogen oxides (NOx, NO2) and particulate matter (PM2.5, PM10) exposures for 3,089 breast 

cancer cases in the MEC, who were diagnosed from 1993 through 2013 and resided largely 

in Los Angeles County, California. Cox proportional hazards models were used to examine the 

association of time-varying air pollutants with all-cause, breast cancer, cardiovascular disease 

(CVD), and non-breast cancer/non-CVD mortality, accounting for key covariates.

Results: We identified 1,125 deaths from all causes (474 breast cancer, 272 CVD, 379 non-breast 

cancer/non-CVD deaths) among the 3,089 breast cancer cases with 8.1 years of average follow-up. 

LUR and kriged NOX (per 50 ppb) and NO2 (per 20 ppb), PM2.5 (per 10 μg/m3), and PM10 (per 10 

μg/m3) were positively associated with risks of all-cause (Hazard Ratio (HR) range = 1.13–1.25), 

breast cancer (HR range = 1.19–1.45), and CVD mortality (HR range = 1.37–1.60). Associations 

were statistically significant for LUR NOX and CVD mortality (HR = 1.60; 95% CI: 1.08–2.37) 

and kriged NO2 and breast cancer mortality (HR = 1.45; 95% CI 1.02–2.07). Gaseous and PM 

pollutants were positively associated with breast cancer mortality across racial/ethnic group.

Conclusion: In this study, air pollutants have a harmful impact on breast cancer survival. 

Additional studies should evaluate potential confounding by socioeconomic factors. These data 

support maintaining clean air laws to improve survival for women with breast cancer.

1. Introduction

Breast cancer is the most commonly diagnosed non-skin cancer among U.S. women. >3.8 

million breast cancer survivors were estimated in the U.S. in 2019 and this number of 

survivors is projected to increase to 4.9 million by 2030 (Miller et al., 2019). Prognostic 

factors for survival following breast cancer diagnosis include stage and other tumor 

characteristics, treatment factors, co-morbidities, sociodemographic factors, as well as 

modifiable lifestyle factors such as smoking, obesity, and physical inactivity (Hellmann 

et al., 2010; Lu et al., 20152015; Kwan et al., 2014). It is a public health priority to identify 

modifiable factors that improve outcome among this large and growing number of breast 

cancer survivors.

Air pollutants have been well documented to impact adversely numerous health outcomes, 

including mortality, particularly from cardiorespiratory diseases (Kelly and Fussell, 2015; 

Hoek et al., 2013). In a large US study, exposure to particulate matter (PM) <2.5 μm in 

diameter was estimated to be responsible for over 15,000 female deaths from 1999 through 

2015, and having greatest effect of loss in life expectancy in some southern states and Los 

Angeles, California (Bennett et al., 2019). It has been estimated that >40% of people in 

the US live in counties with unhealthy air quality, placing them at risk for adverse health 

outcomes, particularly vulnerable groups such as those with chronic conditions (American 

Lung Association Association, 2019).
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To date, two U.S. studies have examined the association between air pollution and survival 

following breast cancer diagnosis (DuPré et al., 2019; Hu et al., 2013). In a report of 

255,128 breast cancer cases based on data from the Surveillance Epidemiology End Results 

(SEER) program, estimates of particulate matter<10 μm in diameter (PM10) and PM2.5 were 

significantly associated with increased breast cancer mortality with stronger associations 

seen for localized disease (Hu et al., 2013). In the Nurses’ Health Study (NHS) with 

8,936 breast cancer cases, estimates of PM10 and PM2.5 based on 2-year averages were 

not associated with breast cancer mortality, although a statistically significant association 

was observed with PM2.5 among cases with stage I disease (DuPré et al., 2019). An 

Italian study (Tagliabue et al., 2016) reported PM2.5 based on a median of 3 years around 

diagnosis was associated with breast cancer mortality and a study in China (Huo et al., 

2015) reported suggestive findings for an annual PM estimate and all-cause mortality among 

estrogen receptor (ER) positive breast cancers. However, these latter two studies did not 

consider lifestyle factors (Huo et al., 2015; Troeschel et al., 20192019). There is a need for 

additional studies of air pollution and breast cancer survival with adjustment for relevant 

individual-level covariates. In addition, investigations are warranted to evaluate whether 

certain racial/ethnic and/or socioeconomic groups, who often reside in areas with higher 

levels of air pollution (Turner et al., 2011; Wang et al., 2020), experience different mortality 

hazards in relation to air pollutant exposure.

Thus, we conducted a prospective study of traffic-related air pollution exposures and 

mortality among California female participants of the Multiethnic Cohort Study (MEC) 

with a breast cancer diagnosis from 1993 through 2013.

2. Methods

2.1. Study subjects

The MEC is a large population-based prospective cohort of US adults (Kolonel et al., 

2000). Briefly, from 1993 through 1996, 96,810 men and 118,441 women aged 45–75 years 

largely from five self-reported racial/ethnic groups residing in Hawaii (HI) or CA (primarily 

Los Angeles County) were enrolled. Participants completed a baseline questionnaire that 

surveyed demographics, anthropometrics, reproductive history, and other lifestyle factors. 

Participants were followed for diagnosis of incident invasive breast cancer through routine 

linkage with the HI and CA cancer SEER registries, and for vital status through linkages 

to the National Death Index and state death certificate files that provide primary cause 

of death based on International Classification of Disease (ICD)-9 and ICD-10 codes. 

Clinicopathologic and treatment factors were obtained from the cancer registries. For this 

study, eligible female CA MEC participants with primary invasive breast cancer (ICD-O-3 

C500-C509) were those who completed a baseline questionnaire with valid addresses across 

the study period (n = 3,113). We excluded cases with implausible or insufficient address 

data (n = 44), leaving 3,089 breast cancer cases for analyses. This cohort was followed from 

the date of diagnosis (1993–2013) to the date of death or December 31, 2013 (study end 

date), whichever came earlier. The institutional review boards of the University of Hawaii, 

University of Southern California, and University of California, San Francisco approved the 

study protocol.
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2.2. Participant characteristics

Participant characteristics that we evaluated were age at diagnosis, race/ethnicity and 

baseline variables (median = 7.3, Q1 = 3.3; Q3 = 12.6 years between cohort entry and 

death) including marital status (married, single, divorced/widowed), body mass index 

(BMI) (under-weight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25–

29.9 kg/m2), and obese (≥30 kg/m2)), smoking status (never, former, current smoker), 

alcohol intake (non-drinker (0 g alcohol/day), drinker (>0 g alcohol/day)), diabetes (yes, 

no), cardiovascular disease (CVD) (coronary heart disease and/or stroke, hypertension 

and/or hypertension medications, none), and age at first live birth (no children, ≤20, 

21–30, >30 years). Clinicopathologic information included stage at diagnosis (localized, 

regional, distant), grade (I, II, and III & IV), histology (ductal, lobular, other, inflammatory 

breast cancer), ER/progesterone receptor (PR) status (ER + PR+, ER + PR-, ER-PR+, 

ER-PR-), and tumor size (<1cm, 1-<5cm, ≥5cm). First course of treatment included surgery 

(no, lumpectomy, mastectomy), chemotherapy (no, yes), hormone therapy (no, yes), and 

radiation (no, yes). The frequency of missing data for variables such as BMI, smoking, age 

at first live birth, and stage was low (≤2.9%).

2.3. Address history, geocoding, and neighborhood socioeconomic status

The MEC actively maintains a residential history of address locations on all participants 

based on mailings, linkages to secondary data sources, and direct communication from 

study participants. For the 3,089 CA MEC breast cancer cases, there were 4,305 residential 

addresses (74.5% non-movers, 22.4% 1–2 moves, 3.1% 3 + moves). Residential addresses 

were geocoded to latitude and longitude coordinates using address or street locators. 

Geocoded addresses were linked to 1990 (1993–1996 addresses), 2000 (1997–2005 

addresses), and 2010 (2006–2013 addresses) US Census block groups. An index measure of 

nSES was based on principal component analysis of seven census-based indicators of SES: 

education, median household income, percent living 200% below the poverty level, percent 

blue-collar workers, percent without a job among those older than 15 years in workforce, 

median rent, and median house value (Yost et al., 2001; Yang et al., 2014). This nSES 

index was assigned to participants’ address at diagnosis and at time of the event of death or 

censoring and was categorized into quintiles based on the nSES distribution of Los Angeles 

County block groups for each decennial census year.

2.4. Air pollution exposure assessment

We used established air pollution assessment approaches (Cheng et al., 2020) based 

on linkage of geocoded residential addresses with latitude/longitude coordinates as the 

geographic unit to estimate traffic-related air pollutant exposures. In brief, a land use 

regression (LUR) model estimated NOx and NO2 exposures from regional and local sources 

based on air monitoring data from spatially dense air monitoring campaigns (2006–2007) 

and incorporated spatial data on land use and traffic characteristics; for temporal adjustment, 

monthly scaling factors were applied based on routinely collected air monitoring data 

nearest to the participant’s residence (Jerrett et al., 2005). Empirical Bayesian kriging 

interpolation was used to estimate largely regional exposures for NOx, NO2, PM10, and 

PM2.5 (Laurent et al., 2016). Measured concentrations of NOx, NO2, PM10 (1993–2013) and 
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PM2.5 (2000–2013) were obtained from routinely collected air monitoring data from the US 

EPA. PM2.5 concentrations for 1993–1999 were estimated from a spatiotemporal model (Li 

et al., 2017). A correlation matrix of pollutants is presented in Supplemental Table 1 (r = 

0.59–0.98).

2.5. Statistical analysis

We used Cox regression with time-varying exposure variables to examine the hazards of four 

mortality endpoints: all-cause, breast cancer, CVD, and non-breast/non-CVD mortality in 

relation to air pollution exposure. The Cox regression model used age in months as the time 

variable and defined a series of risk sets based on the age of death (months) of each event 

(index death). Each risk set consisted of all breast cancer cases who died at the age of the 

index death or remained alive and uncensored at that same age. For each member of each 

risk set (including the index death), we used her residential history to compute an average air 

pollutant exposure from time of diagnosis (month/year) to time of death of the index case in 

each risk set.

The Cox regression model used age of breast cancer diagnosis as the strata variable, and 

adjusted for demographics, lifestyle factors at baseline, clinicopathologic and treatment 

factors at diagnosis, and nSES at diagnosis and at death/censoring. Supplemental Table 2 

presents the associations of covariates and all-cause mortality among breast cancer cases in 

the LUR NOx model. For Hazard ratios (HR) and 95% Confidence Intervals (CI) of cause 

specific deaths, we used a competing risk model where the at-risk denominator included 

living participants up until censoring at the time of death from other causes. HRs and 

95% CI sfor common fixed size increases in air pollutants were calculated. For NOx, we 

used 50 ppb, which was close to the interquartile range (IQRs) of the LUR (41.1 ppb) 

and kriged (42.5 ppb) estimates. For NO2, we used 20 ppb, which was close to the IQR 

for LUR (13.3 ppb) and kriged (14.1 ppb) estimates. For PM10 and PM2.5, we used 10 

μg/m3, which was between the IQR of kriged PM10 (12.5 μg/m3) and PM2.5 (6.4 μg/m3). 

We checked the proportional hazards assumption for each pollutant and found no violation. 

Subgroup analyses were conducted for race/ethnicity, hormone receptor-positive (ER + or 

PR + denoted as ER+/PR +) and hormone receptor-negative (ER- and PR- denoted as 

ER-PR-) breast tumors, first course of treatment, stage, nSES at diagnosis, pre-existing CVD 

(CVD status at baseline), and moving status. We assessed heterogeneity in associations 

using a global test of interaction.

To understand differences in air pollutant-mortality associations by nSES, we plotted the 

linear trends in HR for mortality across NO2 levels categorized into 20 quantiles by low 

(Q1–Q3) and high (Q4–Q5) nSES at diagnosis. The reference was the combination of 

the lowest NO2 level (first quantile) and high nSES. HRs were adjusted for all covariates 

described above.

All P values are two-sided with a statistical significance level of 0.05. Analyses were 

performed using SAS 9.2 statistical software (SAS Institute, Cary, NC).
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3. Results

The study population consisted of 3,089 breast cancer cases (38% African American, 19% 

European American, 12% Japanese American, 31% Latina American, and 0.4% Native 

Hawiian) with racial/ethnic differences in age at diagnosis, marital status, obesity, smoking, 

alcohol intake, comorbidities, and age at first birth (Table 1). Regional/distant disease was 

higher among African Americans (33.6%) than other racial/ethnic groups (range: 22.4%–

32.5%). The proportion of ER-PR- tumors was highest in African American (19.2%) and 

lowest in European American (10.8%) breast cancer cases. African American (27.0%) and 

Latina American breast cancer cases (20.3%) were more likely to live in the lowest SES 

neighborhoods at diagnosis than European American (7.7%) and Japanese American (4.3%) 

breast cancer cases. African American and Latina American breast cancer cases had higher 

average NOX exposures in comparison to Japanese American and European American breast 

cancer cases (Supplemental Table 3).

LUR and kriged NOx (per 50 ppb) and NO2 (per 20 ppb), and PM2.5 and PM10 (per 10 

μg/m3) were positively associated with all-cause (HR range = 1.13–1.25; p value range 

= 0.05–0.25) and breast cancer mortalities (HR range = 1.19–1.45; p value range = 0.04–

0.29) (Table 2). For breast cancer mortality, a statistically significant increased risk was 

observed for kriged NO2 (HR = 1.45; 95% CI: 1.02–2.07). For CVD mortality, a statistically 

significant increased risk was observed for LUR NOx (HR = 1.60; 95% CI: 1.08–2.37).

For all-cause mortality, similar patterns of increased risk were seen for all pollutants among 

African American and European American breast cancer cases; results reached formal 

statistical significance for LUR NOx and PM10 among African American breast cancer cases 

and kriged NOx and NO2 among European American breast cancer cases (Table 3). For 

breast cancer mortality, consistent patterns of increased risks were seen for all pollutants 

across race/ethnicity with a statistically significantly increased risk for kriged NOX and NO2 

among European American breast cancer cases. For CVD mortality, 1.6–3.6-fold increased 

risks of death were seen for all pollutants among African American breast cancer cases 

(p value range = 0.03 to < 0.0001). For non-breast cancer/non-CVD mortality, increased 

risk associated with air pollutants were observed among European American breast cancer 

cases (HR range = 1.29–2.69) with wide 95% CIs. Almost all LUR and kriged pollutants 

displayed relatively larger HRs among ER-PR- breast cancer in comparison to ER+/PR + 

disease for all-cause (HR range = 1.21–1.81 vs. HR range = 1.03–1.27, respectively) and 

breast cancer mortalities (HR range = 1.47–2.63 vs. HR range = 1.05–1.53, respectively) 

(Table 4). Yet, there was no formal statistical evidence of heterogeneity in associations by 

ER/PR status.

Risk of CVD mortality associated with air pollutants was higher among low than high nSES 

cases (Table 5; p heterogeneity > 05). However, LUR NO2 was associated with increased 

risk of all-cause, breast cancer, and non-breast cancer/non-CVD mortalities among high 

nSES breast cancer cases, but either inversely or not associated with these outcomes among 

low nSES cases (p heterogeneity ≤ 05). Supplemental Figure 1 shows that at low levels of 

LUR NO2, the HRs for all-cause and breast cancer mortalities were higher among low nSES 

cases. In contrast, at higher levels of LUR NO2, the HRs for these outcomes were higher 
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for high nSES cases. That is, while starting at lower risk, the slope of increase in risk was 

steeper among high nSES cases with increasing LUR NO2.

Largely similar patterns of associations were observed for localized and advanced disease 

(Table 6). For breast cancer cases with no pre-existing CVD, statistically significant 

increased risks for all-cause mortality were seen with LUR NOX (HR = 1.38; 95% CI: 1.04–

1.82), kriged NOX (HR = 1.38; 95% CI: 1.03–1.85) and NO2 (HR = 1.52; 95% CI: 1.06–

2.18) (Supplemental Table 4). While for cases with pre-existing CVD, kriged pollutants 

and LUR NO2 displayed larger HRs for CVD mortality than cases with no CVD. Analyses 

by breast cancer treatment showed that PM2.5 and PM10 were consistently associated with 

increased risk of all-cause, breast cancer, and CVD mortalities among cases who did not 

receive either chemotherapy or radiation (Supplemental Table 5). Results by moving status 

showed positive associations with all-cause, breast cancer, and CVD mortalities for all 

pollutants among non-movers while patterns were less consistent patterns among movers 

(Supplemental Table 6).

4. Discussion

In this prospective study of female breast cancer cases in the MEC, NOX, NO2, PM2.5, 

and PM10 were positively associated with increased risks of all-cause, breast, and CVD 

mortalities. Consistently positive associations were observed across race/ethnicity for breast 

cancer mortality. In addition, almost all kriged and LUR pollutants displayed larger HRs for 

breast cancer mortality among ER-PR- breast cancer than ER+/PR + disease. Heterogeneity 

in LUR NO2 associations with all-cause and breast cancer mortalities by nSES were 

observed. Positive associations with all-cause, breast cancer and CVD mortalities were 

consistently observed among breast cancer cases who were non-movers. Overall, our 

findings provide new evidence that long-term air pollutant exposures adversely impact 

mortality outcomes for breast cancer survivors after adjustment for key covariates.

The positive associations observed for PM2.5 and PM10 (per 10 μg/m3; HR = 1.17 and 1.13, 

respectively) with all-cause mortality in the MEC support prior findings of the NHS based 

on time-varying spatiotemporal models (per 10 μg/m3 PM2.5 and PM10: HR = 1.12 and 1.09, 

respectively) (DuPré et al., 2019). In a California SEER-based study, county-level PM2.5 

and PM10 were associated with increased risks of overall and breast cancer mortality for 

all breast cancer cases and those with localized disease (Hu et al., 2013). We also observed 

increased risks for breast cancer mortality with PM exposures but the 95% CIs included the 

null. The large SEER-based study (Hu et al., 2013) used county-level PM estimates based 

on a single address at diagnosis with limited individual-level covariates, while the MEC and 

NHS (DuPré et al., 2019) had fewer cases but used time-varying exposure estimates based 

on detailed residential histories and included individual-level covariate data.

The increased risks for CVD mortality associated with all air pollutants support the 

well-documented adverse health effects of air pollution on CVD (Brook et al., 2010). 

These overall CVD mortality associations were driven by associations observed among 

African American breast cancer cases, suggesting a particularly high risk for CVD mortality 

following their breast cancer diagnosis due to air pollutant exposures. Both chemotherapy 
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and radiation treatment for breast cancer may increase the risk of CVD. In particular, 

anthracycline has known cardiotoxic effects while radiotherapy may increase CVD risk 

through injury to the cardiac muscle or the surrounding vasculature (Doyle et al., 2005; 

Accordino et al., 2014). Thus, it is surprising that the HRs for PM2.5 and PM10 with 

all-cause, breast cancer, and CVD mortalities were somewhat larger for women who did not 

receive chemotherapy and radiation than those who received chemotherapy and/or radiation, 

but the 95% CIs displayed large overlap between treatment strata.

We observed larger HRs for LUR NO2 with all-cause and breast cancer mortalities for breast 

cancer cases living in high versus low SES neighborhoods. However, at low levels of LUR 

NO2 larger HRs for all-cause and breast cancer mortalities were observed among low versus 

high nSES breast cancer cases, while at high levels of NO2, the relationship reversed in 

direction. As Supplemental Figure 1 illustrates, our findings suggest that high nSES breast 

cancer cases start with a lower mortality risk at low air pollution levels than low nSES cases 

but experience a steeper risk increase with increasing pollution that surpass low nSES cases 

at higher levels of LUR NO2. A similar pattern of lower baseline mortality risk and steeper 

increases by levels of air pollutant among the highest SES individuals was reported by a 

nationwide Danish study (Raaschou-Nielsen et al., 2020).

Air pollution is comprised a complex mixture of correlated gaseous pollutants and PM. 

We interpret the observed associations with the various air pollutants as reflecting a traffic-

related air pollution mixture rather than any specific air pollutant. We did not conduct 

multi-pollutant modeling given the high degree of correlation between pollutants. Elevated 

effect estimates with LUR and kriging pollutants and all-cause mortality were consistently 

observed among African American and European American breast cancers with large 

numbers of deaths. Less consistent findings among Japanese American and Latina cases 

may be related to the smaller number of events overall for Japanese American cases and of 

non-breast cancer deaths among Latina American cases.

Air pollution includes various polycyclic aromatic hydrocarbons, metals, and benzene that 

are transported and metabolized throughout the body and have been linked to increased 

oxidative stress, inflammation, and epigenetic changes (Liu et al., 2019; Rider and Carlsten, 

2019; Rao et al., 2018). Although the biological mechanisms by which air pollution may 

increase mortality among breast cancer cases are unclear, oxidative stress may adversely 

affect mortality through cell proliferation, genetic instability, and mutations (Kang and 

Hamasaki, 2003). Inflammation may also trigger the release of pro-inflammatory cytokines, 

leading to tissue and organ damage and death (Tsai et al., 2019; Li et al., 2019). Epigenetic 

changes, such as DNA methylation, resulting in the activation or silencing of key genes has 

been linked to mortality (Zhang et al., 2017).

To our knowledge, this is the first US study to evaluate associations between air pollution 

and mortality, overall and from different causes, among breast cancer cases across race/

ethnicity, nSES, pre-existing CVD conditions, and first course of treatment. Study strengths 

include a diverse study population with regard to race/ethnicity and nSES. Our findings 

in Los Angeles County, an area that has experienced some of the highest air pollution 

levels in the US, provide important insights that may be particularly applicable to highly 
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polluted megacities in developing and rapidly industrializing countries. In addition, we 

captured long-term air pollution exposures using detailed residential histories, an approach 

that possibly reduces exposure misclassification in comparison to studies limited to a single 

address at diagnosis. We also accounted for a large number of individual-level covariates and 

nSES.

Our study has limitations. While we accounted for nSES, using a construct that captured the 

domains of income, poverty, employment, and housing, we were unable to account for other 

unmeasured individual-level SES factors (e.g. insurance status). Information on air pollution 

exposures at non-residential locations and indoors, and details on treatment regimens and 

dose are lacking. Due to the smaller sample size in subgroup analyses, we acknowledge 

the imprecision in some of our effect estimates and the limited statistical power to detect 

associations for some outcomes (e.g. CVD mortality among Japanese Americans and ER-

PR- breast cancers). We also acknowledge that a large number of comparisons were made 

with a possibility of false positive associations.

In conclusion, this study reports adverse effects of air pollution on mortality among breast 

cancer cases. While it remains to be determined whether breast cancer survivors are more 

susceptible to the adverse effects of air pollutants than the general population of women, 

maintaining stringent clean air laws serves as an actionable target to reduce mortality 

among the many US women with breast cancer. Future large studies of multiethnic and 

socioeconomically diverse populations are needed to corroborate and expand our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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