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Abstract

Memristive Spiking Neural Network for Neuromorphic Computing

by

Peng Zhou

This dissertation is dedicated to using Memristive Spiking Neural Net-

works (MSNNs) for deep learning tasks such as image classification, visual associa-

tive memory tasks such as pattern recognition, and auditory cortex processing tasks

such as sound localization (SL). The image classification model consists entirely

of memristive neurons and memristive synapses utilizing deep learning plausible

supervised learning rules. The pattern recognition fully MSNNs consists of memris-

tive neurons and memristive synapses harnessing biologically plausible unsupervised

learning rules. SL MSNNs emulate biological brain functionality with volatile mem-

ristive synapses.

By developing a minimal circuit element memristive neuron – Memristive

Integrate-and-Fire (MIF) neuron – with commercially accessible memristors, we are

able to demonstrate large-scale fully MSNNs and apply the supervised Backpropaga-

tion Through Time (BPTT) algorithm to train networks, achieving state-of-the-art

accuracy for several datasets. In addition, using a memristive unsupervised learning

rule based on a continuously evolving alpha function membrane potential, we are

also able to train large-scale fully MSNNs with Spiking-Time-Dependent Plasticity

(STDP) and achieve high accuracies. Moreover, a volatile memristor is used for

mimicking Short-Term Depression (STD) synapses such that we can simulate SL

xi



networks and pinpoint the direction of the sound coming from.

The major contributions reported in this proposal include:

• Development of the MIF neuron SPICE-level model;

• Validation of the SPICE-level MIF neuron model to a Python-based simulation

of large-scale MSNNs;

• Simulation of a small-scale neuron network consisting of a presynaptic, a mem-

ristive synapse, and a postsynaptic MIF neuron to generate the STDP learning

window;

• Abstraction of memristive STDP with alpha functions;

• Simulation of a large-scale, fully MSNN consisting of MIF neurons and mem-

ristive synapses for unsupervised learning in Python;

• Development of the MIF neuron numerical integration model;

• Validation of the numerical integration model in a behavioral simulation of

large-scale MSNNs;

• Verification of the forward Euler numerical integration method to simplify the

training process when compared to more complicated numerical methods;

• Training fully MSNNs by directly applying the gradient descent learning al-

gorithm to the MIF neuron numerical integration model;

• Modeling a volatile memristor that exhibits Short-Term Plasticity (STP) based

on real synapses;

xii



• Mimicking a real brain auditory cortex Spiking Neural Network (SNN) with

the proposed memristor model.
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Chapter 1

Introduction

1.1 Neuromorphic Computing

Neuromorphic computing is guided by neural dynamics, and takes advan-

tage of the brain’s parallel computing, sparse encoding, and power efficiency. It

encompasses the broad span of brain-inspired materials, devices, analog, digital,

mixed-mode analog/digital VLSI, computer architectures and systems, software,

and algorithms to mimic neural networks in the nervous system. The origin of neu-

romorphic computing can be traced back to the 1980s when Carver Mead developed

bio-inspired microelectronics [103, 104]. He noticed the similarity between the dy-

namics of biological neurons and the transistors in the sub-threshold regime, which

can use analog circuits to emulate biological neural networks, and notably led to

the design of the first silicon retina [100]. Taking inspiration from biological neural

networks ushered in a new computing paradigm where computing and memory are

merged together.

The brain is widely considered to be the most complex 1.4 kg mass in the
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universe, consisting of 1011 neurons and 1015 synapses with extremely complex con-

nections and layers. The neuron is regarded as the basic unit of computing in the

brain, where large numbers of neurons are interconnected via synapses. Information

is transferred between neurons as action potentials, or spikes, which communicate

voltage pulses from a presynaptic neuron to postsynaptic neurons. The strength of

the spike is weighted by the strength of the synapse. While the brain and conven-

tional computers both serve as processing systems in a very general way, it is clear

that their core architecture and operation are different, which encourages a large

group of multidisciplinary researchers to explore the idea of brain-inspired comput-

ing, also known as neuromorphic computing. While neuroscientists still do not fully

understand all the details of the brain’s structure, operation, and dynamics, a va-

riety of abstract neuron and synapse models have been proposed and validated to

support the pursuit of neuromorphic computing.

Neuromorphic computing also attracts much attention as Moore’s law is

pushed to the limit. Creating new computer architectures to overcome the von Neu-

mann bottleneck is a promising approach to improving computation capabilities. In-

spiration is derived from the human brain since neurons and synapses both exhibit

storage and computation functionality, whereas conventional computing paradigms

separate memory and processing into two disparate parts. This von Neumann ar-

chitecture also brings another bottleneck known as the memory wall. The rate of

improvement of processing in central processing units (CPUs) has exceeded that

of memory accesses, such that much time is spent in retrieving data from memory

which limits the performance of the system. Additionally, the brain is extremely
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energy efficient for the same number of calculations when compared to conventional

computers. The main architecture of neural networks in the brain consists of neu-

rons and synapses where neuron spiking and synaptic plasticity are among the most

important dynamics in the network. Drawing the benefits from spikes and synapses

and moving them into modern computer architectures provides an opportunity to

improve hardware scale in terms of compactness and power consumption.

The promise of neuromorphic computing has been recognized across both

industry and academia, and has grown in importance with the increasing importance

of deep neural networks (DNNs) over the past decade. It has been investigated by

several companies and research teams that try to make neuromorphic computing

units through various approaches, including Loihi [44], SpiNNaker [63], NeuroGrid

[28], TrueNorth [106], BrainScaleS [128], DYNAPs [109], and so on [33, 62]. It is a

multidisciplinary approach, and many seemingly disparate fields have been involved

including physics and material science, electrical engineering, software engineering,

algorithm, biology, neuroscience, cognitive science, and so on.

1.2 Memristor

The memristor device, considered the fourth fundamental element in elec-

trical engineering, was introduced 50 years ago. This history is relatively brief when

compared to the centuries-old resistor, capacitor, and inductor. Memristor was first

postulated by Chua in 1971 [37], and generalized by Chua and Kang in 1976 [39]. A

few decades later, the research and development of memristor circuits and systems

were catapulted following the fabrication of a nanoscale memristor array by HP lab
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that was reported in Nature in 2008 [138]. Since then, a variety of materials and

devices based on different physical and chemical characteristics have been proposed

and fabricated as memristors such as electrochemical metallization, valence change,

thermochemical memory cells, and phase change. Recently, they have become com-

mercially available as resistive random-access memories (RRAM) [1, 3]. The appli-

cations of memristors are promising for bio-inspired neuromorphic computing due to

their similarity to plastic synapses of low-power consumption, 3D integration with

silicon, and high density. It is the most popular and ubiquitous device-level element

in neuromorphic systems [130]. Although many neuromorphic systems are fabri-

cated based on conventional complementary metal–oxide–semiconductor (CMOS)

technology, CMOS technology faces several bottlenecks when applied to novel neu-

romorphic systems. As each neuron has up to 104 synaptic interconnects, it requires

a large amount of circuit, memory, and energy for CMOS to emulate the various

synaptic plasticity which plays a key role in learning in this massive system. It

encourages physics, materials, and device researchers to explore new technology

beyond CMOS, especially nanoscale devices resembling biological synapses.

1.3 Spiking Neural Network

Spiking Neural Networks (SNNs), the third generation of the neural net-

work following the first generation and the second Artificial Neural Networks (ANNs),

aim to bridge the gap between the biological brain and computational unit in the

neural network architecture level [33]. The first generation ANNs is relatively sim-

ple, consist of only two fully connected layers, and provide a binary output. The
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second generation of neural networks replaced the output with a continuous analog

value and can be trained using the gradient backpropagation algorithm. This archi-

tecture has both feedforward and backpropagation paths and can be utilized in a

multi-layered neural network, which also refers to Deep Neural Networks (DNNs).

Among the most famous types of DNNs are Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs). Generally speaking, CNNs are deployed

for computer vision tasks, and RNNs are used for sequential or temporal data, such

as in audio processing which relies on the memory of temporal events. DNNs are

state-of-the-art in various areas, and many Python packages have been developed

including Keras [2], TensorFlow [12], and PyTorch [7]. However, compared with a

biological brain, the performance of DNNs in the terms of required data, speed, and

power consumption is unsatisfactory, which results in the interest of biological plau-

sibility and drawing more inspiration from the brain. Therefore, SNNs emulate the

neuronal dynamics observed by neuroscientists and carefully mimic the neuron and

synapse models. SNNs leverage spiking activity, which is one of the most significant

features captured in neuronal dynamics in the brain. Many SNN Python simula-

tion packages have been developed including Brian2 [136], Nest [65], Nengo [26],

PyNN [45], NEURON [74].

Currently, neuroscience and machine learning have vastly different ap-

proaches to learning. Additionally, with the support of Graphic Processing Units

(GPUs) and Compute Unified Device Architecture (CUDA), DNNs have achieved

impressive results for a large number of applications. Therefore, some efforts have

been devoted to linking the brain and accelerated computing by integrating modern
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DNN approaches with SNNs [102]. By transferring the biologically plausible neuron

model to an RNN-like computational graph and surrogate gradient descent meth-

ods [111], SNNs can take advantage of feedforward and Backpropagation Through

Time (BPTT) [161]. Some Python packages developed to harness autodifferenti-

ation in SNNs include snnTorch [11], Rockpool [8], sinabs [9], norse [6], and so

on. Additionally, another approach was taken by converting the ANN to SNN af-

ter training by rate coding [127], which is often achieved with the SNN conversion

toolbox (SNN-TB) [10] or temporal coding [137].
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Chapter 2

Background Description of Memristor

In 1971, Chua noticed that there is a missing fundamental circuit element

based on arguments of symmetry [37]. The resistor formed a relationship between

voltage and current. The inductor formed the link between magnetic flux and cur-

rent. And the capacitor connected charge and voltage. There should be a relation

to link between the charge and flux, and Chua hypothesized that the memristor

could fill the void as shown in Figure 2.1 [4]. As its name reveals, a resistor having

memory - memory resistor - memristor, is a device where flux can alter charge and

vice versa.

2.1 Memristor

A memristor has the following criteria: [59]

• passivity

• two-terminal device
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Figure 2.1: Resistor, capacitor, inductor, and memristor relations.

• pinched hysteresis loop in the V-I plane under bipolar periodic input

• crossing at the origin.

Memristor can be defined as charge-dependent:

M(q) =
dϕ

dq
(2.1)

or flux-dependent:

M(ϕ) =
dq

dϕ
(2.2)

Charge is the time integral of an electric current, and magnetic flux is the

time integral of an electric voltage. Substituting the flux as the time integral of the

voltage, and charge as the time integral of current, the Equation 2.1 and 2.2 can be

derived as:

M(q(t)) =
dϕ/dt

dq/dt
=

V (t)

I(t)
(2.3)
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Figure 2.2: A typical memristor IV curve.

M(ϕ(t)) =
dq/dt

dϕ/dt
=

I(t)

V (t)
(2.4)

In Equation 2.3, memristor works as a resistor and in Equation 2.4, mem-

ristor works as a conductor. A typical V-I curve of memristor is shown in Figure

2.2.

2.2 Memristive Device and System

In 1976, the concept has been generalized to the ‘memristive device and

system’ [39]. The generalized definition of memristor is:

ẋ = f(x, u, t) (2.5a)

y = g(x, u, t)u (2.5b)

where x is the nth order state variable, and ẋ is its time-derivative.
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For a current-controlled memristive device:

ẋ = f(x, i, t) (2.6a)

v = g(x, i, t) · i (2.6b)

For a voltage-controlled memristive device:

ẋ = f(x, v, t) (2.7a)

i = g(x, v, t) · v (2.7b)

In 2008, Hewlett-Packard lab finally linked the memristive device to a tita-

nium dioxide (TiO2) solid-state circuit element, which attracted significant attention

from multiple research fields. It is worth to note although they named the device

memristor, it is actually a memristive device, which later makes the two concepts

exchangeable. This discovery has encouraged device researchers to overcome the

limitation of CMOS technology by using resistive memory; the circuit researcher to

use it as a logic, analog computing element, or memory storage such as resistive

random-access memory (RRAM); neuromorphic computing researchers to deploy it

as a ‘synapse’ and ‘neuron’, and algorithm researchers to model its dynamics and

utilize it in SNNs.

Although multiple models and devices have been proposed, a memristor

should meet three requirements: (i) nonlinearity, (ii) continuous temporal dynamics,

and (iii) a strictly monotonically increasing flux-charge relation [59].
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Chapter 3

Memristive Synapse

The brain can compute a tremendous number of tasks, and the core units

of the brain are generally viewed to be neurons and synapses. In the nervous sys-

tem, a synapse is a structure that can pass an electrical or chemical signal from a

presynaptic neuron to a postsynaptic neuron. For a chemical synapse, when there

is a spike in the presynaptic neuron, this signal will stimulate the release of a chem-

ical called neurotransmitter. After some time, the neurotransmitter will migrate

to bind with the receptors in the membrane of the postsynaptic neuron. Differ-

ent neurotransmitters have different effects such as excitatory or inhibitory effects

on the postsynaptic neurons. Many receptors contain different ion channels, which

can permit ions to flow between the inside and outside of the membrane, and it

can cause the Excitatory Postsynaptic Current (EPSC) or Inhibitory Postsynaptic

Current (IPSC).

Synapses have plasticity. In neuronal systems, the strength of synapses

increases or decreases according to spiking in presynaptic or postsynaptic neurons,
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referred to as synaptic plasticity. In fact, memory is represented by the intercon-

nection of a large neural network. That is to say, the synapse weight is the key to

learning and memory. Different types of synaptic plasticity include Long-Term Plas-

ticity (LTP) [25] and Short-Term Plasticity (STP) [179]. Synapses may strengthen

or weaken and exhibit memory retention over a relatively long time, called Long-

Term Facilitation (LTF) or Long-Term depression (LTD), respectively. If the change

is within a relatively short time, then it is referred to as Short-Term Facilitation

(STF) or Short-Term Depression (STD).

3.1 Non-Volatile Memristor for Long-Term Plasticity

Synaptic LTP has already inspired the training process in DNN, which

concatenates all synapse weights as a large multi-dimensional matrix and finds the

optimal weight matrix through error backpropagation. However, the mechanism and

learning rules in neuroscience are not the same. One of the most famous learning

rules in neuroscience is called Hebbian rule [73]. The shortest summary of this rule

is: neurons which ‘fire together, wire together’ [133]. Hebbian rule can be interpreted

as a rate model defined by the neuron spiking rate. It is a local rule, and it requires

neurons to be simultaneously active. The general model for this local rule can be

defined as [64]:

dwij

dt
= F (wij ,M, vprej , vposti ) (3.1)

where wij is the synaptic weight, M is the effect of neuromodulator, vprej is the

presynaptic neuron firing rate, and vposti is the postsynaptic neuron firing rate.
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These variables are all locally available at the site of a synapse.

A Taylor expansion of Equation 3.1 with respect to the rates is:

dwij

dt
= a0(wij ,M)+a1(wij ,M)prevprej +a1(wij ,M)postvposti +a2(wij ,M)corrvprej vposti +...

(3.2)

where a0 is the effect when no spike occurs at both pre- and postsynaptic neurons.

apre1 is the expansion coefficient when spikes occur only at presynaptic neurons. apost1

is the expansion coefficient when spikes occur only at postsynaptic neurons. acorr2

is the expansion coefficient of the joint activity when spikes occur at both pre- and

postsynaptic neurons. There are more terms of higher orders vprej and vposti which

are represented by ‘...’. The coefficients are all dependent on parameters wij and

M . According to different parameters and conditions, Hebbian rule can be LTF or

LTD. It is worth noting that, Hebbian rule is a set of learning rules rather than a

specific fixed rule.

Another popular learning rule is called Spike-timing-dependent plasticity

(STDP). With the STDP process, the synaptic weight will increase or decrease based

on the time difference between the pre- and postsynaptic spikes. The total weight

change from neuron j to neuron i wij is defined as:

∆wij =
∑
n

∑
f

W (tni − tfj ) (3.3)

where tni denotes the spike times of postsynaptic neuron i and tfj indicates the spike

time of presynaptic neuron j. n and f counts the pre- and postsynaptic spikes.

W (x) is the ‘learning window’ of the STDP function.

Many variations of STDP exist, and one of the most common types is
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pair-based, and is defined as:

W+(x) = A+(w)e
−|∆t|/τ+ at tpost for tpre < tpost (3.4a)

W−(x) = A−(w)e
−|∆t|/τ− at tpre for tpost < tpre (3.4b)

where |∆t| =
∣∣tpost − tpre

∣∣, tpost is the time of the postsynaptic spike and tpre is the

time of the presynaptic spike. Usually, A+(w) is positive, A−(w) is negative, and

they may depend on the current synaptic weight. W+(x) is for LTF and W−(x) is

for LTD.

Let us introduce Sj =
∑

f δ(t − tfj ) and Si =
∑

n δ(t − tni ) representing

the spike trains of pre- and postsynaptic neurons. The pair-based STDP rule of

Equation 3.4 can be implemented by:

dxj

dt
= −

xj

τ+
+
∑
f

δ(t− tfj ) (3.5a)

dyi

dt
= −

yi

τ−
+
∑
n

δ(t− tni ) (3.5b)

where tfj indicates the spike time of the presynaptic neuron and tni denotes the spike

times of the postsynaptic neuron. xj and yi can be interpreted as a trace that each

pre- and postsynaptic spike leaves, respectively. The trace xj and yi corresponds to

the e−|∆t|/τ+ and e−|∆t|/τ− in the Equation 3.4

Thus, we can update the Equation 3.4 as:

dwij

dt
= A+(wij)xi(t)

∑
n

δ(t− tni ) +A−(wij)yi(t)
∑
f

δ(t− tfj ) (3.6)

where the first term on the right side denotes the pre-before-post effect and the

second term indicates the post-before-pre effect.
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Interestingly, for independent Poisson inputs, STDP models are related to

rate models [64], and it can be defined as one of the rate models as:

dwij

dt
=

∫ +∞

0
W (−s)ϵ(s)ds · vprej +

∫ +∞

−∞
W (s)ds · vprej vposti (3.7)

where the
∫ +∞
0 W (−s)ϵ(s)ds in the first term of the right side is the integral over the

‘causal’ part of the learning window, also known as the ‘pre-before-post’ relation.

ϵ(s) for s > 0 describes the time course of a Postsynaptic Potential (PSP).

Comparing Equation 3.7 with Equation 3.2, we find that we have two terms

defining the coefficient a1(wij ,M)pre and a2(wij ,M)corr while other terms are all

zero.

Non-volatile memristors can operate as LTP synapses as the memristance

will not change after each update. In a fully connected neural network, the number

of synapses between two layers is m · n where m is the number of neurons in the

previous layer, and n is the number of neurons in the next layer as the Figure 3.1

presents. Therefore, non-volatile memristors have been used in crossbar arrays for

vector-matrix multiplication utilizing Kirchhoff’s current law as Figure 6.2 shows.

Gradient backpropagation and STDP are entirely different mechanisms for

learning. Generally, the former is well-adopted in the DNN area while the latter

is popular in the SNN area. Both of them can be implemented with memristors.

For backpropagation, memristive crossbar arrays can be utilized for neural network

training [71] or just inference alone [14]. The training requires an external control

unit which adds more overhead than Figure 6.2 shows. The STDP rule described
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Figure 3.1: Two layers of neural network

Figure 3.2: A memristive crossbar representing the weight matrix.
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Figure 3.3: Memristor between pre- and postsynaptic neurons.

above can also be achieved by using memristors [101], and can be verified using

SPICE models [167]. As Figure 3.3 shows, a memristor is interposed between two

neurons, where the presynaptic and postsynaptic spikes will generate the voltage

difference across the memristor and then cause the memristance update. Moreover,

the time difference between presynaptic and postsynaptic spikes will cause different

changes in memristance.

3.2 Volatile Memristor for Short-Term Plasticity

The majority of plastic synapse emulation relies on non-volatile memristors

for LTP, while few researchers focus on volatile memristors to mimic STP synapses.

The volatile memristors are also significant since the STP synapses play profound

roles in neural information processing such as motion detection, speech recognition,

and working memory [66]. Different from LTP, STP only relies on the spiking ac-

tivity of the presynaptic neuron. Assume fraction Prel denotes the neurotransmitter

released by the presynaptic neuron. Then the synaptic weight is directly related to

Prel, and both STF and STD can be modeled with the dynamics of Prel. STF can

be defined as:
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dPrel

dt
=

Prel − P0

τF
+ fF (1− Prel)

∑
f

δ(t− tf ) (3.8)

where tf is the time for each presynaptic spike. P0 is the resting value of Prel. τF is a

time constant governing the recovery process. fF controls the degree of facilitation.

Analogously, STD can be defined as:

dPrel

dt
=

Prel − P0

τD
+ fD(1− Prel)

∑
f

δ(t− tf ) (3.9)

where tf is the time for each presynaptic spike. P0 is the resting value of Prel. τD is a

time constant governing the recovery process. fD controls the degree of depression.

Volatile memristors can emulate the STF or STD as the memristance

change only retains a short time in volatile memristors. Usually, STF and STD are

measured by Paired-Pulse Facilitation (PPF) and Paired-Pulse Depression (PPD).

The PPF and PPD index, as a parameter to evaluate the strength of PPF or PPD,

is defined as A2
A1

, where A1 and A2 are the absolute amplitudes of the EPSC or

the IPSC by two successive presynaptic spikes. In 2018, a kind of volatile memris-

tor was proposed and the PPF and PPD indexes were measured [139]. This is a

two-terminal single-layered molybdenum disulfide (MoS2) device whose conductance

change is realized by Joule heating.
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3.3 Application of Volatile Memristive Synapse in Sound

Localization

3.3.1 Introduction

Among the SNN with STP synapses in the brain, the sound localization

(SL) system with STD synapses that can extract Interaural Time Difference (ITD) is

a well-established mechanism. We demonstrated an SNN that can detect the sound

source direction and achieved human-level SL accuracy using the volatile memristor

model [139].

SL [129] is the ability to identify the direction of a sound source requiring

the most precise temporal processing in the brain, which is an essential survival

feature for predators and prey. The brain locates the sound with several cues,

including ‘monaural spectral cues’ and ‘binaural cues’. Interaural Time Difference

(ITD) works as ‘binaural cues’ in an auditory cortex identifying the sound source

along the azimuth [68]. For an off-centered sound source, there is a timing difference

between the sound waves arriving at both ears, which defines the amount of ITD.

The Jeffress model [80] describes an ITD-based cortical mechanism for locating a

sound source direction. Short-Term Depression (STD), which temporally weakens

synaptic connectivity by decreasing the Excitatory Postsynaptic Current (EPSC),

plays an important role in SL in the auditory cortex [15, 41, 78, 89]. Recently, 2D

materials have been found to be efficient for mimicking the behavior of synapses

with STD, and have shown feasibility for implementing a primitive form of SL [139].

We presented a biologically plausible SNN based on the 2D material achiev-
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ing human-level SL accuracy. A two-terminal single-layered MoS2 device whose

conductance change is realized by Joule heating is used for efficiently implementing

a plastic synapse with STD. The Jeffress model is adapted to mimic the auditory

cortex performing SL. Alpha synaptic current and Leaky Integrate-and-Fire (LIF)

neuron models are adopted to make our neuronal behavior as realistic as possible.

Lateral inhibition, one of the basic functions of biological neurons, is used for clearer

SL with improved energy efficiency. Combining all of the above, our biomimetic SNN

achieves human-level SL accuracy of 1-degree resolution when multiple input spikes

with random variation in spike timing are received.

3.3.2 Models

3.3.2.1 Memristor Model

Memristors can imitate the PPD [139]. PPD is measured as the ratio of

the magnitudes of the two EPSC in two successive presynaptic spikes. Let A1, A2

be the amplitude of the first EPSC and the second EPSC. Then the ratio A2
A1

defines

PPD, and the value of PPD varies with the separation time of these two successive

presynaptic spikes. The value of PPD is always smaller than 1, that is, A2
A1

< 1.

In SL SNN, synapses have STD plasticity, and we use PPD to model STD. The

value of PPD approaches 1 as the separation time increases. The PPD function is

described by:

PPD(t) = 1−
(
1− U · PPD(t−0 )

)
· e−

t−t0
τ

for t ≥ t0 ≥ 0

(3.10)

where PPD(t) denotes the depression effect. The first spike arrives at time t0,
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and t is the separation time of the second spike. t−0 is the time just before the

spike. U · PPD(t−0 ) refers to the value of the remaining PPD value after reduction.

PPD(t) starts at 1. Thus, for the first spike, PPD(t−0 ) = 1. τ is the time constant

determining how fast the PPD approaches 1. Note that in Brian2, neuronal and

synaptic models need to be illustrated by mathematical equations in ODE format,

on which our simulation is based. The PPD behavior of the memristor can be

modeled by ODE format in Brian2 as:

τ · dPPD(t)

dt
= 1− PPD(t) (3.11a)

PPD(t+)← U · PPD(t−) upon spiking at t = t0 (3.11b)

for t ≥ t0 ≥ 0

where t− is the time just before t, and t+ is the time just after t.

The PPD data [139] used for emulation is shown in Table 3.1. The PPD

value increases as the separation time increases. When the separation time is large

enough, PPD approaches 1. In Equation 3.10 and 3.11, we need to calculate U and

τ using the PPD data in Table 3.1. After curve fitting, U is identified to be 0.6668

and τ 183.8 (ms). Thus, Equation 3.10 can be rewritten as:

PPD(t) = 1−
(
1− 0.6668 · PPD(t−0 )

)
· e−

t−t0
183.8

for t ≥ t0 ≥ 0

(3.12)
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Table 3.1: Measured PPD data from a memristor having STD.

Separation time between Paired-pulse depression

two spikes (ms) (PPD)

10 0.651

25 0.770

50 0.783

100 0.844

250 0.892

500 0.949

1000 0.953

2000 0.971
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Figure 3.4: Short-Term Depression (STD) recovery curve based on PPD data. Black dots

are the measured PPD data, and the blue curve denotes the curve fitting result. t0 = 0.

And Equation 3.11 can be updated as:

183.8 · dPPD(t)

dt
= 1− PPD(t) (3.13a)

PPD(t+)← 0.6668 · PPD(t−) upon spiking at t = t0 (3.13b)

for t ≥ t0 ≥ 0

The weight recovering curve after the first spike based on PPD data is

shown in Figure 3.4.

3.3.2.2 Neuron and Synapse Model

The LIF model [64,88] is most widely used for analyzing neuronal dynam-

ics. The equivalent circuit model for a generalized LIF neuron is shown in Figure

3.5. In this model, a resistor R in series with a DC source Vrest/Vreset is connected in

parallel with a capacitor C. A postsynaptic neuron receives a synaptic current I(t)

generated by presynaptic spikes. A portion of current I(t) flowing into C makes the

membrane potential V (t) increase. The charge leakage is through resistor R. When

V (t) increases to reach a threshold, the neuron generates a spike. After spiking,
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Figure 3.5: Schematic diagram of the LIF electrical model.

V (t) is reset to Vreset. If I(t) is absent, the voltage across C is settled eventually

at Vrest representing the cell’s resting potential. During the refractory period tre, a

neuron is incapable of spiking. The membrane potential dynamics is described by

Equation 3.14:

τm
dV (t)

dt
= −

(
V (t)− Vrest

)
+RI(t) (3.14)

where V (t) is the membrane potential τm = RC is the membrane time constant.

Vrest is the resting potential and the initial value of V (t) when I(t) = 0.

The model of the synaptic current used here is an alpha function [160]. It

describes a presynaptic spiking effect, each of which has two phases short rise and

long decay. The synaptic current following a synaptic spike is described by Equation

3.15 [124]:

I(t) = I0 · u(t− t0) · (
t− t0
τα

) · e1−
t−t0
τα

for t ≥ t0 ≥ 0

(3.15)

where I(t) describes the synaptic current following a synaptic spike at t0. τa is
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Figure 3.6: Alpha function (τα = 0.1 s, I0 = 1, t0 = 0).

the time constant governing the exponential behavior of the current waveform. An

example of current-based excitatory alpha synapse behavior evoked by a spike’s

arrival is shown in Figure 3.6.

Equation 3.15 can be found as the solution of a second-order ODE system

below:

τα ·
dx(t)

dt
= −x(t) (3.16a)

τα ·
dI(t)

dt
= x(t)− I(t) (3.16b)

x(t+)← x(t−) + I0 · e upon spiking at t = t0 (3.16c)

for t ≥ t0 ≥ 0

Here x(t) is an intermediate variable. After each presynaptic spike, x(t) of a non-

plastic synapse increases by I0 · e and affects the synaptic current I(t). After a

presynaptic spike, I(t) increases to reach the maximum value I0 at time t− t0 = τα.

When there are multiple presynaptic spikes, the synaptic current is given by:
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I(t) = I0 · Σku(t− tk) · (
t− tk
τα

) · e1−
t−tk
τα

where k = 0, 1, 2, 3, ..., (n− 1)

for t ≥ 0, tn−1 > tn−2 > ... > t0 ≥ 0

(3.17)

where tk is the time of (k+1)th synaptic spike. The step function in Equation 3.17

is to model a causal behavior in which each term related to the spike at tk must be

valid for t ≥ tk. Equation 3.17 is the solution of the second-order ODE below:

τα ·
dx(t)

dt
= −x(t) (3.18a)

τα ·
dI(t)

dt
= x(t)− I(t) (3.18b)

x(t+)← x(t−) + I0 · e upon spiking at t = tk

(3.18c)

where k = 0, 1, 2, 3, ..., (n− 1)

for t ≥ 0, tn−1 > tn−2 > ... > t0 ≥ 0

Let us now consider the case in which synapses have STD. When two

consecutive spikes arrive within a short period, the amount of synaptic current

generated by the second spike is less than that of the first. The degree of reduction

generated by two consecutive spikes is set by PPD, as described by Equation 3.10

and 3.11. Thus, upon the arrival of the second spike, I0 is multiplied by the value

of PPD. The spiking neuron and STD synapse dynamics are described in the

following evolution: the first spike occurs at t0. When the first presynaptic spike

arrives at the time t0, PPD(t−0 ) = 1. I0 · e · PPD(t−0 ) needs to be added to x(t),
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which affects the synaptic current I(t). As the postsynaptic neuron’s input, I(t)

affects the postsynaptic neuron’s membrane potential V (t). After the first spike,

PPD(t) immediately sets to U and tends to recover to 1. When the second spike

arrives at t1, I0 · e · PPD(t−1 ) is added to x(t). The full recovery time of PPD(t) is

relatively short, which is an important characteristic of STP. The depression happens

as PPD(t) < 1. Therefore, the STD synapse dynamics modeled by PPD(t) and

I(t) evoked by two spikes at t0 and t1 is given by:

PPD(t) =



1 t ∈ [0, t0]

1− (1− U · PPD(t−0 )) · e−
t−t0
τ t ∈ [t0, t1]

1− (1− U · PPD(t−1 )) · e−
t−t1
τ t ∈ [t1,∞)

(3.19)

Note that PPD(t−0 ) = 1.

I(t) =



0 t ∈ [0, t0]

I0 · PPD(t−0 )(
t−t0
τα

) · e1−
t−t0
τα t ∈ [t0, t1]

I0 · PPD(t−0 )(
t−t0
τα

) · e1−
t−t0
τα + I1 · PPD(t−1 )(

t−t1
τα

) · e1−
t−t1
τα t ∈ [t1,∞]

(3.20)

Equation 3.19 is the solution of ODE below:

τ · dPPD(t)

dt
= 1− PPD(t) (3.21a)

PPD(t+)←U · PPD(t−) upon spiking at t = t0, t1 (3.21b)

for t ≥ 0, t1 ≥ t0 ≥ 0

27



And Equation 3.20 is the solution of the ODE below:

τα ·
dx(t)

dt
= −x(t) (3.22a)

τα ·
dI(t)

dt
= x(t)− I(t) (3.22b)

x(t+)←x(t−) + I0 · e · PPD(t−) upon spiking at at t = t0, t1

(3.22c)

for t ≥ 0, t1 ≥ t0 ≥ 0

When there are n spikes, the STD synaptic current is described by:

PPD(t) = 1− Σk

(
u(t− tk)− u(t− tk+1)

)
·
(
1− U · PPD(t−k )

)
· e−

t−tk
τ (3.23a)

I(t) = I0 · Σku(t− tk) · PPD(t−k ) · (
t− tk
τα

) · e1−
t−tk
τα (3.23b)

where k = 0, 1, 2, 3, ..., (n− 1)

for t ≥ 0, tn−1 > tn−2 > ... > t0 ≥ 0

where tk is the time of the (k + 1)th spike and PPD(t−0 ) = 1. The step function

term
(
u(t− tk)− u(t− tk+1)

)
in Equation 3.23 is a window function to set the valid

range of each PPD term. Equation 3.23 is the solution of a set of ODEs below:
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τ · dPPD(t)

dt
= 1− PPD(t) (3.24a)

τα ·
dx(t)

dt
= −x(t) (3.24b)

τα ·
dI(t)

dt
= x(t)− I(t) (3.24c)

x(t+)← x(t−)+I0 · e · PPD(t−) upon spiking at t = tk

(3.24d)

PPD(t+)←U · PPD(t−) upon spiking at t = tk (3.24e)

where k = 0, 1, 2, 3, . . . , (n− 1)

for t ≥ 0, tn−1 > tn−2 > ... > t0 ≥ 0

Figure 3.7 shows the difference in postsynaptic neuron membrane potential

between non-plastic and STD synapses. Figure 3.7(a)(c)(e) shows the case of non-

plastic synaptic x(t), I(t), and postsynaptic neuron V (t). Figure 3.7(b)(d)(f) shows

the STD synaptic x(t), I(t), and postsynaptic neuron V (t). The behavior shown in

these two cases, both evoked by three consecutive presynaptic spikes at t0, t1, t2. In

Figure 3.7(a) and (c), the increase of x(t) and I(t), generated by three spikes, are

the same. In Figure 3.7(b) and (d), the second and third increase is less than the

first one due to PPD. Since the time difference of t2−t1 is large, the third increase of

x(t) approaches back to the original value because the synaptic weight is recovering,

but it is still smaller than the first increase as PPD(t) is yet to fully settle. The

synaptic current generated by the second spike in Figure 3.7(d) is less than that in

Figure 3.7(c). Therefore, in Figure 3.7(e), a spike occurs, but there is no spike in

Figure 3.7(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: (a)(c)(e): The x(t) and I(t) of a non-plastic synapse evoked by three con-

secutive presynaptic spikes, and the V (t) of the postsynaptic neuron. (b)(d)(f): The x(t)

and I(t) of the synapse with STD evoked by three consecutive presynaptic spikes, and the

postsynaptic V (t).

30



Figure 3.8: Axon delay model.

3.3.2.3 Axon Delay Model

The axon delay line model accounts for the propagation delay of electrical

signals in axons shown in Figure 3.8. Point A is a point after the axon hillock where

action potential originates, and point B is a point before an axon terminal. The

propagation time delay between the A and B is the distance d between these two

points divided by the speed s of the spiking signal [24], i.e., tdelay = d
s .

3.3.3 Sound Localization Neural Network

3.3.3.1 Neural Network Architecture

In the Jeffress model [80], the mechanism of SL is described with delay

lines and coincidence-detecting neurons in the nucleus laminaris (NL) of a bird.

The axon delay line models the propagation delay of spikes traveling through the

axonal pathway. The spiking of coincidence-detecting neurons provides information

on the directions of the sound source. Due to different traveling distances in dif-
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ferent neurons, the spike train will arrive at neurons at different times. When two

spike trains from the cochleae on both sides reach a specific output neuron simul-

taneously, the neuron generates the maximal number of spikes. The index of this

neuron indicates the angle of the sound source. In this work, we call it the ‘winner’

neuron. This process is called coincidence detection, and the output neurons are

coincidence-detecting neurons. The spiking rate of the input to ITD SL SNN will

change when the sound intensity varies. STD is adjusted so that the number of

spikes in output neurons is independent of the input spiking rate [41]. Based on

this method, we propose an SL MSNN shown in Figure 3.9 to mimic the ITD SL

in the auditory cortex. It is designed to cover the circular range of 180◦ with 1◦

resolution. The MSNN has three types of neurons: 2 input neurons, 181 output neu-

rons, and 181 inhibitory neurons, and four types of synapses: excitatory synapses

with no plasticity from input spike trains, excitatory synapses with STD from input

neurons, excitatory synapses with no plasticity from output neuron, and inhibitory

synapses from the inhibitory neuron. The first set of excitatory synapses is used to

send input spike trains to input neurons. We have 2 such synapses. The second set

of excitatory synapses with STD is used to send spike trains from input neurons to

output neurons. We have 362 of such synapses. The third set of excitatory synapses

sends spike trains from output neurons to corresponding inhibitory neurons. We

have 181 of such synapses. The fourth set of inhibition synapses sends spike trains

from the inhibitory neurons to neighborhood output neurons. The inhibitory neu-

rons are used for lateral inhibition, an ability of firing neurons to inhibit neighboring

neurons’ activity [132, 168]. Each inhibitory neuron receives a spiking signal from

32



the corresponding output neuron, and can inhibit up to eight neighboring neurons,

including four neurons to the left, and four neurons to the right. We define the

neuron index starting with the one closest to the left input neuron. For example,

inhibitory neuron 4 receives spike trains from output neuron 4, and inhibits output

neurons 0, 1, 2, 3, and 5, 6, 7, 8. The corner neurons, such as inhibitory neurons

0 and 180 can only inhibit four neurons, inhibitory neurons 1 and 179 can only

inhibit five neurons, inhibitory neurons 2 and 178 can only inhibit six neurons, and

inhibitory neurons 3 and 177 can only inhibit seven neurons. The SL MSNN dynam-

ics is as follows. Firstly, we provide the input neurons’ spike trains with different

spiking rates to input neurons. Two input neurons then generate their own spike

trains that travel through their own axons and reach 181 output neurons from both

ends of the network. If the timing of the spike trains from input neurons is such that

it causes a set of spikes at some output neurons, the spike trains generated by the

output neurons are transmitted to their corresponding inhibitory neurons. Finally,

the inhibitory neurons suppress neighboring output neurons to which the output

neurons are connected. We represent the propagation delay tdelay between the clos-

est output neuron pair along the axonal pathway by the unit axon delay ∆. In

our MSNN, lateral inhibition is significant for highlighting the winner neuron. The

winner neuron will spike the highest number of times and inhibit the neighbors from

increasing their numbers of spikes. Due to the ‘cone of confusion’ [123], we locate

the sound source within 180 degrees, where a total of 181 output neurons work as

coincidence detectors to achieve 1-degree resolution from 0◦ to 180◦. Following the

signal transmission sequence in the SL MSNN, we name the synapses relaying the
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Figure 3.9: Sound localization neural network.

input spike trains to input neurons Synapse-I, the synapses from input neurons to

output neurons Synapse-II, the synapses from output neurons to inhibitory neurons

Synapse-III, the synapses from inhibitory neurons to output neurons Synapses-IV,

V, VI, VII, where Synapse-IV is for the 1-degree neighbors, Synapse-V for 2-degree,

Synapse-VI for 3-degree, and Synapse-VII for 4-degree.

3.3.3.2 Sound Localization Memristive Spiking Neural Network Opera-

tion

Figure 3.10 shows how the input neuron in Figure 3.9 functions. Figure

3.10(a) shows a spike train to the input neuron. The mean input spiking rate is 50

spikes/s, and there are some random variations. Figure 3.10(b) shows the synaptic

current into the input neuron generated by the input spike train. As we discussed

earlier, the shape of the input synaptic current is modeled by the alpha function

waveform. In Figure 3.10(c), the blue waveform shows the Excitatory Postsynaptic
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Potential (EPSP). When it reaches the threshold, it will generate a spike which

is indicated by the orange dotted line. The activities of rest, integrate, fire, and

reset are shown in Figure 3.10(c), where the membrane voltage rests at -70 mV,

and integrates with the rising input synaptic current. When the input current rises,

and the membrane potential reaches its threshold voltage at -50 mV, the neuron

generates a spike. The membrane potential resets to -75 mV immediately after the

spike and gradually returns to the resting potential.

(a)

(b)

(c)

Figure 3.10: Spiking behavior of the input neuron. (a) Input spike train. (b) Synaptic

current. (c) Membrane potential.
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Figure 3.11 is an illustration of how the winner neuron in our SL MSNN

works. The spike trains from the left and right input neurons propagate to all output

neurons through their individual axon tracks. Figure 3.11(a) and (b) show the

spike trains from the left and right input neurons propagated to the winner neuron,

which is the output neuron 120 in this simulation. And Figure 3.11(c) presents

the synaptic current to the output neuron 120, and Figure 3.11(d) illustrates the

membrane potential of the output neuron 120, which has eleven spikes. The output

neuron 120 receives the spike trains from the left input neuron and the right input

neuron simultaneously, making it spike many times. The amplitude of the synaptic

current is depressed. Therefore the EPSP is also decreased after the first EPSP

due to STD in synapses. The output neuron 120 is inhibited due to a decrease in

the synaptic current when its neighborhood neurons spike. However, this inhibition

level is much weaker compared to the inhibition it provides to its neighborhood

neurons.

Figure 3.12 presents the membrane potentials of output neurons whose in-

dices are 0, 45, 90, 120, and 150. The simulation is the same as Figure 3.11 so that

the output neuron 120 shown in Figure 3.12(d) has the same performance as shown

in Figure 3.11(d). The blue curve shows the membrane potential, and each orange-

dotted line indicates a spike. From Figure 3.12(a) to (e), we see that two membrane

potential waveforms invoked by two input spike trains approach each other, overlap,

and separate from each other as the output neuron index increases. The two spike

trains do not reach all neurons at the same time due to different delays. They arrive

simultaneously only at the winner neuron, where two spike trains have the maxi-
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(a)

(b)

(c)

(d)

Figure 3.11: (a) The spike train propagated to output neuron 120 from the left input

neuron. (b) The spike train propagated to output neuron 120 from the right input neuron.

(c) The synaptic current to output neuron 120. (d) The membrane potential of the output

neuron 120. Two spike trains reach output neuron 120 at the same time, producing 10

spikes.
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mum overlap. The farther a neuron is away from the winner neuron, the greater

the time difference is between the two spike trains. The greater the time difference

between the two spike trains transmitted to a neuron, the less the probability that

the neuron can integrate charge to reach the threshold. The membrane activity is

near-symmetric when two neurons’ indices have the same absolute difference from

the winner neuron. They are not precisely symmetric due to the randomness in

input spike trains. In the simulation shown in Figure 3.12, two spike trains arrive

simultaneously at neuron 120, generating ten spikes. Other output neurons cannot

integrate membrane potential large enough to generate as many spikes as the win-

ner neuron does. As shown in Figure 3.12(a), the maximum arrival time difference

of the two spike trains is 4800 ms at neuron 0, which is given by ITD of 1200 ms

and the propagation time of 180 × 20 ms from the opposite side. At neuron 0, the

membrane potential waveform gets excited twice due to two spike trains, one from

the left side and the other from the right side, which arrive with a large time sep-

aration. At neuron 45 (Figure 3.12(b)), the two potential waveforms are separated

by a shorter time. At neuron 90 (Figure 3.12(c)), the two potential waveforms over-

lapped. Furthermore, at neuron 120 (Figure 3.12(d)), the two potential waveforms

are fully overlapped, generating a set of spikes. At neuron 150 (Figure 3.12(e)),

the two potential waveforms separate and have only a small overlap. As shown in

Figure 3.12(c) and (e), output neurons 90 and 150 have a near-symmetric membrane

potential. We can see and infer from the 5 figures that the two voltage waveforms

would meet and separate gradually as the index increases. In SL MSNN, the winner

neuron index is determined by
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Index = 90± ITD

2∆
(3.25)

When the left input neuron first receives an input, ITD is positive; when

the right input neuron first receives an input, ITD is negative. The factor of 2 in

the denominator comes from the one-degree shift which corresponds to twice ∆,

where ∆ means the unit axon delay. In Figure 3.12, we set the left input neuron to

receive its input 300 ms ahead of the right input neuron with ∆ of 20 ms. Then, by

Equation 3.25, the index of the winner neuron is 90 + 1200/(2 × 20) = 120. This

verifies that the SL MSNN works correctly.

To achieve low power consumption, the system implementation needs to

minimize the total number of spikes while still achieving coincidence detection.

Thus, our design goal was set to a small number of spikes while having accurate

and precise ITD SL neural network dynamics. Based on the experimental results,

we chose the parameters listed in Table 3.2.

Table 3.2: Sound localization neural network simulation parameters.

Parameter Value

Resting potential -70 mV

Reset potential -75 mV

Threshold -50 mV

Input neuron membrane resistance 1 M

Input neuron membrane capacitor 1 nF

Continued on next page
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Table 3.2 – continued from previous page

Parameter Value

Output neuron membrane resistance 4 M

Output neuron membrane capacitor 10 nF

Inhibitory neuron membrane resistance 1 M

Inhibitory neuron membrane capacitor 1 nF

Unit time delay 20 ms

Refractory period 2 ms

U 0.6668

τ 183.8 ms

Synapses-I I0 110 nA

Synapses-II I0 70 nA

Synapses-III I0 110 nA

Synapses-IV I0 40 nA

Synapses-V I0 30 nA

Synapses-VI I0 20 nA

Synapses-VII I0 10 nA

Synapses-I τ 0.1 ms

Synapses-II τ 1 ms

Synapses-III τ 0.1 ms

Synapses-IV τ 1 ms

Synapses-V τ 1 ms

Continued on next page
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Table 3.2 – continued from previous page

Parameter Value

Synapses-VI τ 1 ms

Synapses-VII τ 1 ms

3.3.3.3 Sound Localization Memristive Spiking Neural Network Evalu-

ation

In order to demonstrate the functionality of our SL system and to compare

the contribution of different configurations, we configured four different settings

for the system: (a) with neither STD nor lateral inhibition, (b) with only lateral

inhibition, (c) with only STD, and (d) with both STD and lateral inhibition.

Figure 3.13 shows the number of spikes of output neurons for receiving the

sound from 90 degrees apart from the left ear with three types of system settings. In

this case, the winner neuron should be 90 degree, and it should have the maximum

number of spikes. Each result contains nine sets of simulations using different input

spiking rates ranging from 10 to 50 spikes/s and having the same length of 1500

ms. The input spike train has some variance due to its random behavior, and thus

the interval is not exactly uniform. In Figure 3.13(a), we implemented neither STD

nor lateral inhibition. With this setting, the SL MSNN cannot recognize the sound

source for most of the input spiking rate, failing to achieve a 1-degree resolution.

The numbers of spikes are large, ranging from 15 to 75. Additionally, the number
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(a) (b)

(c) (d)

(e)

Figure 3.12: Membrane potential and spiking behavior of the output neurons with (a)

index 0, (b) index 45, (c) index 90, (d) index 120, and (e) index 150. Indexes start with

neurons closing to the left input.
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of spikes depends on the input spiking rate. For each neuron index, a larger input

spiking rate will generate a larger number of spikes, and a smaller input spiking

rate will evoke a smaller number of spikes. In comparison. Figure 3.13(b) shows

the result with only lateral inhibition. With this setting, the resolution is not

increasing as the output neurons near the left and right input neurons are wrongly

highlighted. The number of spikes among all output neurons decreases because

of inhibitory connections. Figure 3.13(c) presents the result with only STD and it

shows that only the winner neuron spikes the maximum number of spikes. Therefore,

we can locate the sound direction within a 1-degree resolution by finding the winner

neuron. Moreover, the number of spikes for the winner neuron sharply decreases to

15-18 spikes, and the number of spikes is no longer dependent on the input spiking

rates. (i.e., the numbers of spikes are within a small range for the same neuron

index with different input spiking rates). However, the numbers of spikes of the

output neurons are still relatively large. Additionally, the number of spikes for the

winner neuron is not much larger than those of other neurons, which may cause

some problems as input spike trains to SL MSNN have random behavior. Figure

3.13(d) shows the results with both STD and lateral inhibition. In this case, we can

also find only the winner neuron spikes the maximum number of spikes, so that we

can locate the sound direction within 1-degree resolution according to the spiking

neuron index. Besides, the winner neuron generates a much larger number of spikes

compared with other neurons. With only STD, the winner neuron’s number of

spikes ranges from 15-18, and neuron 91’s number of spikes ranges from 3-17. With

both STD and lateral inhibition, the winner neuron’s number of spikes ranges from
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8-12, and neuron 91 number of spikes ranges from 0-4. That is to say, the winner

neuron is highlighted, and other neurons are inhibited. It also helps reduce power

consumption when compared to the previous cases. Comparing Figure 3.13(a) with

(c), we can see the effect of the depression achieved by STD. STD can help locate

the winner neuron, and it can drastically reduce the number of spikes so that the

power consumption is decreased. Additionally, for different input spiking rates, the

effect of STD makes neurons generate spikes in a small range of numbers. We can

infer the same observation by comparing Figure 3.13(b) with (d). By comparing

Figures 3.13(c) and (d), we can observe the effect of lateral inhibition on the spiking

performance. With lateral inhibition, as the winner neuron has a larger number

of spikes, the inhibition by the winner neuron is stronger than other neurons, and

thus the winner neuron is highlighted. We cannot infer the same observation by

comparing Figure 3.13(a) with (b) so that we know lateral inhibition is not working

without STD. Therefore, after the inter-comparison of Figure 3.13, we can make the

following conclusions:

• Without STD and lateral inhibition, we cannot identify the direction. The

number of spikes is large, and it depends on the input spiking rates.

• With only lateral inhibition, we cannot identify the direction. The number of

spikes is still relatively large, and it depends on the input spiking rates.

• With only STD, we can locate the neuron and achieve the 1-degree resolution

with the maximum number of spikes. Additionally, the number of spikes is

sharply decreased and is no longer dependent on the input spiking rates.
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• With both STD and lateral inhibition, we can locate the winner neuron and

achieve the 1-degree resolution with the maximum number of spikes. The

numbers of spikes in output neurons are not dependent on the input spiking

rates, and output neurons spike with a relatively smaller number. Moreover,

the winner neuron is highlighted compared with other neurons.

To evaluate the accuracy of the whole system, we investigated the sound

signal from various degrees. We chose the 90, 120, 150, and 180 degrees as the

representative cases to simplify the simulation process. For sounds from 120, 150,

and 180 degrees as shown in Figures 3.14, 3.15, 3.16, we used three types of MSNN

settings with input spiking rates ranging from 10 to 50 spikes/s, and the same length

of 1500 ms. The input spike trains have different randomness for different sound

sources. As shown in Figures 3.13(d)-3.16(d), our SL MSNN achieved the 1-degree

resolution for all four sound source degrees. The system level configurations used

in this simulation are the same for all different sound source degrees, including the

neuron model, synapse model, ∆ value, and other relative parameters. Although

we chose 90, 120, 150, and 180 degrees as the representative input, the verification

of these cases can be extended to other inputs.

3.4 Chapter Summary

In this chapter, we illustrated that non-volatile memristors can emulate

synapses with long-term plasticity, and volatile memristors can emulate synapses

with short-term plasticity. We showed the application of a non-volatile memristor

to an SL MSNN which can locate the sound source with a 1-degree resolution.
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(a)

(b)

(c)

(d)

Figure 3.13: Spiking performance of output neurons with different settings receiving the

sound from 90 degree. Input spike rates are 10-50 spikes/s. (a) Implementing neither STD

nor lateral inhibition. (b) Implementing only lateral inhibition. (c)Implementing only STD.

The winner neuron’s number of spikes ranges from 15-18. Neuron 89’s number of spikes

ranges from 4-17 and neuron 91’s number of spikes ranges from 3-17. (d) Implementing

both STD and lateral inhibition. Winner neuron 90 number of spikes ranges from 8-12.

Neuron 89’s number of spikes ranges from 0-5 and neuron 91’s number of spikes ranges from

0-4.
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(a)

(b)

(c)

(d)

Figure 3.14: Spiking performance of output neurons with different settings receiving the

sound from 120 degree. Input spike rates are 10 50 spikes/s. (a) Implementing neither

STD nor lateral inhibition. (b) Implementing only lateral inhibition. (c) Implementing only

STD. (d) Implementing both STD and lateral inhibition.
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(a)

(b)

(c)

(d)

Figure 3.15: Spiking performance of output neurons with different settings receiving the

sound from 150 degree. Input spike rates are 10 50 spikes/s. (a) Implementing neither

STD nor lateral inhibition. (b) Implementing only lateral inhibition. (c) Implementing only

STD. (d) Implementing both STD and lateral inhibition.
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(a)

(b)

(c)

(d)

Figure 3.16: Spiking performance of output neurons with different settings receiving the

sound from 180 degree. Input spike rates are 10 50 spikes/s. (a) Implementing neither

STD nor lateral inhibition. (b) Implementing only lateral inhibition. (c) Implementing only

STD. (d) Implementing both STD and lateral inhibition.
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The STD synapses in the MSNN are simulated by volatile memristors. In order to

minimize power consumption while achieving correct functionality, the number of

spikes in the system is kept low. Currently, the volatile memristor modeled in this

work has a relatively long recovery time so it may not be suitably used for a very

accurate ITD SNN. Fortunately, there are more and more volatile memristors being

proposed [152]. Therefore, a higher time resolution SNN may be implemented by

quicker recovery volatile memristors in the future, and a practical application such

as self-navigation may be possible.
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Chapter 4

Memristive Neuron

4.1 Hodgkin–Huxley Model

There are multiple neuron models that describe the complicated dynamics

of biological neurons, among which the Hodgkin–Huxley (HH) model [76] is one of

the most pervasive models with a set of nonlinear differential equations for accurately

approximating the electrical signals of neurons. The HH neural model is shown in

Figure 4.1(a) where what they called time-varying nonlinear conductor RNa(GNa)

and RK (GK) model the sodium and potassium channels, linear conductor RL(GL)

simulates leak channels, and C models the membrane of a neuron. The equations

of the HH model are shown as follows:

c
dVm

dt
= IC(t) +

∑
k

Ik(t) (4.1)

where Vm is the membrane potential.
∑

k Ik(t) is the sum of the ionic currents flow

into the neuron, which can be formulated by three ion currents as:
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∑
k

Ik = Cm
dVm

dt
+GKn4(Vm − VK) +GNam

3(Vm − VNa) +GL(Vm − VL) (4.2a)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (4.2b)

dm

dt
= αm(Vm)(1−m)− βm(Vm)m (4.2c)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h (4.2d)

where three parameters VK , VNa, and VL are the reversal potentials. αi and βi are

rate constants for the i-th ion channel, depending on membrane potential. ḠK , ḠNa,

and ḠL are the maximal value of the conductance. n, m, and h are dimensionless

quantities between 0 and 1 associated with three ion channels.

The HH model is reduced by setting the leakage channel conductance to

GL = 0 for providing the best fit for human cardiac action potentials [112]. Chua

and Kang proved that GNa and GK are memristors [39] and Chua et al. showed

the memristive circuit [38] for that.

(a) (b) (c)

Figure 4.1: Hodgkin-Huxley neuron model (Hodgkin and Huxley, 1952). (a) An equivalent

circuit for the HH models [76]. (b) An equivalent circuit for the memristive HH model [38].

(c) An action potential waveform showing rest-, threshold- and reset- potentials.
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4.2 Leaky Integrate-and-Fire Model

The LIF [93,135] is one of the most broadly used simplified neuron models.

The simple equivalent model is shown in Figure 4.2(a). In this model, a resistor R

in series with a DC source Vrest/Vreset is connected in parallel with a capacitor C.

A postsynaptic neuron receives a synaptic current I(t) generated by presynaptic

spikes. A portion of current I(t) flowing into C makes the membrane potential V (t)

increase. The charge leakage is through resistor R. When V (t) increases to reach a

threshold value, the neuron generates a spike. After spiking, V (t) is reset to Vreset.

If I(t) is absent, the voltage across C is settled eventually at Vrest representing the

cell’s resting potential. During the refractory period t0, a neuron is incapable of

spiking. Figure 4.2(c-d) illustrates the LIF neuron dynamics for the case of a DC

input current and a zero rest and reset potential (Ereset=Erest=0) [140].

The membrane potential dynamics before reaching the threshold is de-

scribed by Equation 4.3.

τm
dV (t)

dt
= −(V (t)− Vrest) +RI(t) (4.3)

where V (t) is the membrane potential τm = RC is the membrane time constant

called ‘leaky integrator’. Vrest is the resting potential and the initial value of V (t)

when I(t) = 0.

The input synaptic current I(t) can be described by a time-varying al-

pha function, although different functions such as ‘Instantaneous Rise and Single-

Exponential Decay’, ‘Biexponential functions’, ‘saw tooth’, and ‘pulse function’ can
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(a) (b)

(c) (d) (e)

Figure 4.2: The LIF neuron model. (a) Schematic diagram of the LIF electrical model.

(b) Input current in the form of an alpha function (τalpha=0.1, I0=1) (c) Controlled spiking

in the LIF model with a comparison of membrane potential and threshold at each time

step. When a spike is triggered, a voltage-controlled switch discharges C for a duration of

the refractory period t0. Reproduced with permission from Tal and Schwartz, 1997 [140].

(d) A simulation of constant firing frequency for DC current input in Figure 4.2(c) in which

t0 is hidden. DC input current and output spikes are both shown. (e) A generalized LIF

model with threshold control. Figure from Teeter et al. (2018) reproduced under a CC BY

4.0 license [144].
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be used as alternatives. The alpha synaptic current is modeled by Equation 4.4,

and the plot is shown in Figure 4.2(b).

I(t) = I0e((t− t0)/τα)e
− t

τα for t > 0 (4.4)

where τα is the time constant governing the exponential behavior of the current and

t0 is when the spike happens. After a presynaptic spike, I(t) increases to reach the

maximum value I0 in time t− t0 = τα.

However, in Figure 4.2(a), there is no circuit for reset behavior when reach-

ing the threshold. The inequality V≥Vthreshold must be evaluated using an active

circuit such as a comparator. Each time the threshold is reached, the membrane

potential must be reset as in Figure 4.2(d). Thus, the LIF model’s generalized ver-

sion requires additional overhead, as depicted in Figure 4.2(e). In the generalized

LIF model, reset behavior requires external control to pull down the membrane po-

tential below the resting potential. This external control requires complex, active

circuits consisting of MOS transistors, resistors, and even a Silicon-Controlled Rec-

tifier (SCR), which is a drawback as it consumes much more power and area in a

neuromorphic system.

4.3 Memristive Integrate-and-Fire Model

In order to overcome the drawback in conventional neuron models, memris-

tor technologies can be harnessed to emulate biological neurons with the motivation

of low energy consumption and high packing density. The HH model has been

emulated by utilizing two memristors in parallel with two capacitors respectively
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mimicking two channels, which are coupled to each other with a resistor. There is

also an input resistor and an output impedance consisting of a resistor and a capaci-

tor [117]. The LIF neuron has been reported by using a diffusive/volatile memristor

in parallel with a capacitor, and the neuron was used in a fully memristive neural

network [158].

Although some memristor-based neuron models have been proposed, there

is a high barrier to accessing experimental data and hardware for prototyping mem-

ristive circuits. Many state-of-the-art experimental demonstrations have relied on

specialized fabrication processes that cannot be reproduced by using off-the-shelf

memristors. This is compounded by the limited choice of commercially available,

low-cost, discretely packaged memristors known to be highly sensitive and stochastic

in behavior. The challenge in developing hardware prototypes has made it difficult

to perform experimental validation.

Beyond neural network acceleration, the design of a solid-state brain that

can harness the neural code has received increasing attention as a way to handle huge

sensory input data without being thwarted by the von Neumann bottleneck. The

solid-state brain mimics the structure of the cerebral cortex by connecting neurons

with a large fan-out of variable synapses. It is conjectured the neurons and synapses

can be realized with memristors integrated with a CMOS process. However, the

design of a large-scale solid-state brain remains elusive in neuromorphic computing

due to the enormous overhead associated with mimicking the surface area of neural

tissue, constrained power consumption, routing, and massive parallelism of synaptic

connections.
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We attempt to overcome several of these barriers by introducing the MIF

model circuit for neurons. Firstly, we demonstrate the generation of spiking neuronal

signals using our MIF and MIF2 models. The broad span of literature on memristive

neuron circuits and neuristors is typically limited by either being simulation-only

idealized studies, or otherwise relying on device-dependent characteristics not read-

ily accessible to those in the broader research community. With similar neuron

circuits presented in the past, we demonstrate the operation of the MIF and MIF2

circuits without the need for specialized fabrication processes that make our results

reproducible by an amateur in hardware prototyping on a tight budget. We de-

velop a circuit-theoretic foundation of our models that mimic the passive membrane

model [93], and by extension, the model circuits demonstrate minimal complexity

and integration area. An energy analysis is conducted based on our own experi-

ments, showing that a scaled-up system with the same order of neurons as in the

human brain would consume an approximately equivalent amount of power. We

present our results with the hope that it fosters more experimental demonstrations

of memristive circuits and systems.

4.3.1 MIF: Version 1

In place of the resistor R in the LIF model shown in Figure 4.2, the first

version of the MIF model in Figure 4.3 uses a single memristor. This model does

not require external adaptive control, to discharge the capacitor when the action

potential reaches Vthreshold. The MIF model is device-agnostic; as long as the en-

ergy supplied is sufficient for bipolar resistance switching, the circuit will be capable
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of action potential generation. This is a significant improvement in view of the in-

tegration complexity and packing density, since the implementation of an adaptive

control circuitry requires the CMOS substrate to be connected via holes to higher-

layer memristors. Prior implementations of similar neuristor circuits are typically

dependent upon restrictive volatile characteristics, with relaxation times far smaller

than any RC delay present in the neuron [51, 117]. The MIF neuron model gen-

eralizes previous volatile memristor-based designs to reproduce the dynamics of

biological neurons more closely.

Practical considerations of cycle-to-cycle variation and the ratio of pre- and

post-switching resistances will serve to alter the spike shape. For a MIF circuit with a

volatile memristor, a DC Erest-source is sufficient to generate spikes under a sufficient

input current. For instance, under DC current input of an appropriate magnitude, a

MIF circuit, particularly with locally active memristors [17], can generate oscillation

of spiking signals. If a non-volatile memristor with a negative reset voltage is present

in MIF, then a suitable voltage pulse must be added to the DC Erest-battery to reset

the memristor back to its initial off state after emitting a spike. We can formulate a

state equation for the MIF model in Figure 4.3(a) in terms of the voltage V (t) across

the capacitor C (equivalently, the membrane potential), the memristor resistance

(or memristance) RM, the voltage source Erest, and the input current I(t):

C
V (t)

dt
= −V (t)− Erest

RM(x, V (t))
+ I(t) (4.5)

Here, RM(x,V (t)) is a voltage-controlled memristance, where x represents the inter-

nal state of the device. Equation 4.6 describes a digital resistive switch (see Figure
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(a) (b)

(c)

(d)

Figure 4.3: The MIF neuron model: version 1. (a) The MIF model replaces the R of

the LIF model with one memristor. (b) I-V curve of a simple memristor with resistance

switching. (c) The measured I-V curve of the memristor selector that is volatile and used

to obtain the MIF simulation results in (d). In Figure 4.3(d), I(t) is the current described

by Equation 4.4.
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4.3(b) for an example of a simple I-V characteristic chosen for simple analysis). Note

that, due to the difference between the device set and reset thresholds, we denote

the memristor set voltage as Vth1, and the memristor reset voltage as Vth2 in Fig-

ure 4.3(b). Furthermore, VM is the potential across the memristor and Vthreshold

is the membrane threshold voltage, which is distinct from both the memristor set

and reset thresholds. The voltage across the memristor is the difference between the

membrane potential and DC potential VM = V (t)-Erest. And as such, we can state

that for the memristor with a simple resistance-switching I-V characteristic shown

in Figure 4.3(b),

RM = Roff for Vth2 < VM < Vth1 as VM increases,

RM = Ron for Vth2 < VM < Vth1 as VM decreases.

(4.6)

Assuming an initial membrane potential V (0) = Vrest, V (t) may increase due to

an incoming current spike. Accordingly, VM will increase as long as the memristor

state does not switch. Therefore, while Vrest ≤ V (t) ≤ Vthreshold, for the case of

Figure 4.3(b), Equation 4.5 can be recast as

C
V (t)

dt
= −V (t)− Erest

Roff
+ I(t). (4.7)

Equation 4.7 is valid in the case where the memristor features linear I-V

characteristics for both on and off states. For nonlinear analog memristors, we use

computer simulation for accurate circuit analysis. We used the Cadence/SPECTRE

simulator for a detailed analysis of the MIF circuit with nonlinear I-V characteristics

of a volatile selector shown in Figure 4.3(c) [61].
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Figure 4.3(d) shows that as the capacitor voltage V (t) rises and reaches

Vthreshold, the voltage across the memristor VM reaches the set-voltage Vth1. When

the memristor enters the set-state, RM switches from Roff to Ron. Following this

change, the voltage across the capacitor starts to fall toward Vrest, initially with a

time constant RonC, and later RoffC since Vth2 is non-negative and small in this

volatile selector device. As the voltage across the memristor VM falls towards Vth2

close to zero, RM switches back from Ron to Roff . After I(t) decreases to zero, the

membrane potential settles at Vrest. If a non-volatile memristor is used, then the

DC Erest-source must be supplemented by simply adding a reset voltage pulse.

4.3.1.1 Minimality of the MIF Model

The MIF model is universally minimal in terms of the number of circuit

elements and the integration area because no other model simpler than the MIF model

composed of two passive circuit elements, C and memristor, and a DC voltage source

Erest, can reproduce a spiking waveform featuring the two voltage levels of Vrest and

Vthreshold. The MIF circuit can also generate oscillatory spiking signals for a locally

active memristor with S-shape I-V characteristics under a DC input current of an

appropriate magnitude.

The MIF model with a locally active memristor can be driven to switch on

and off continually due to the membrane potential, thus generating oscillations under

a DC current stimulus. In the MIF circuit, even with a strictly passive memristor, a

spiking voltage is generated by the memristor’s resistance (RM )-switching controlled

by the charge build-up on the capacitor, which raises the memristor voltage VM
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to the set-voltage Vth1, and switches RM to Ron for discharging with a fast time

constant. If the memristor is volatile, it is autonomously reset after its recovery

time and reaches its lowest level Vrest, reducing the memristor voltage VM to Vrest

- Erest allowing the cycle to repeat, with the next voltage spike generated by the

MIF circuit when a subsequent input current pulse turns the memristor on again.

Even when the input current is DC, the MIF circuit with a locally active memristor

can autonomously generate an oscillatory spiking output voltage waveform, which

is comparable to Figure 4.2(d) in the generalized LIF model with additional control

circuitry depicted in Figure 4.2(e). It should be noted that the MIF circuit does not

require any additional control circuit. For instance, in the MIF circuit topology, the

use of a locally active memristor with S-shaped I-V characteristics, i.e., a neuristor,

has been used for the generation of oscillatory spikes under DC input current [117].

When a non-volatile memristor is used, as explained earlier, the DC Erest-

source must be supplemented by an additive narrow voltage pulse at an appropriate

time with an amplitude larger than Vth2, where Vth2 is the negative reset-voltage of

the non-volatile memristor. No simpler circuit can produce a such action potential.

Prior works require circuits with much more complex circuitry. Furthermore, the

use of memristors consumes minimal layout area compared to the use of a large

resistor.

4.3.2 MIF2: Version 2

In the typical waveform of the action potential from Figure 4.1(c), the ac-

tion potential V (t) starts at Vrest, rises to Vthreshold, then resets to Vreset < Vrest,
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(a) (b)

(c) (d)

(e)

Figure 4.4: The MIF neuron model: version 2. (a) MIF2 model with two memristors

and two DC voltage sources. (b) An illustration of MIF2 in which resistance switching of

two memristors are controlled by V. (c) SPECTRE simulation results. (d) MIF2 simulation

with the tuning of the model parameters. (e) Memristive HH model that is a reduced HH

model with a symbolic representation of two conductive channels as memristors. In other

words, in this memristive HH model the conductance equations remain the same as those

in the HH model.
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slowly increases and settles at Vrest. It thus traverses three critical voltage lev-

els. The need for a sub-rest voltage level stems from the refractory period during

neuronal information transmission. hyperpolarization suppresses the impact of an

incoming stimulus on the neuron during the refractory period, and by driving the

neuron to a voltage below the rest potential, it effectively raises the relative thresh-

old, which the membrane capacitance voltage needs to attain for the generation

of an action potential. While this may seem counterproductive, it prevents any

stimulus already sent through the axon from triggering a backpropagating action

potential in the neuron body. Therefore, hyperpolarization assures unidirectional

signal transmission.

The MIF model in Figure 4.3(a) cannot simulate all three transitions be-

tween Vrest, Vthreshold and Vreset. Another voltage source Ereset is required. There-

fore, we propose the MIF2 model shown in Figure 4.4(a). The use of a second mem-

ristor in series with a DC voltage source Ereset is derived from a circuit-theoretic

view and the fabrication and area density considerations. The MIF2 circuit is exper-

imentally verified in the following sections, which demonstrate the generality of the

new memristor-based neuron design, including the frequency-dependent memristor

signature.

Topologically, the model is identical to the reduced HH model in Figure

4.1(b) with GL = 0 S [112]. The two DC voltage sources, Erest and Ereset, correspond

to the EK and ENa voltage sources in the HH model. The current paths through

the two memristors correspond to the GK and GNa channels in the HH model. In

this regard, the MIF2 circuit can be considered a macro-model of the reduced HH
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model. This observation is consistent with the sequential opening of voltage-gated

Na+ and K+ channels during action potential generation, which is described in

detail by Kandel et al. [82]. To summarize, the MIF2 circuit is devised so as to

accurately reproduce the analog waveform of an action potential, and to capture

the main mechanisms behind the generation of a biological neuronal spike. While

the MIF2 model draws inspiration from the HH model, it is not equivalent.

The following equation describes the MIF2 model, where RM1 and RM2

denote the resistances of the memristors connected to Erest and Ereset, respectively:

C
V (t)

dt
= − V (t)− Erest

RM1(x1, V (t))
− V (t)− Ereset

RM2(x2, V (t))
+ I(t). (4.8)

Equation 4.8 is valid for three different phases of the action potential wave-

form. As V (t) goes through different stages, the state xj,j=1,2 of one of the two

memristors may change accordingly. The key transitions in the capacitor voltage

are:

1. Vrest − Vthreshold

2. Vthreshold − Vreset

3. Vreset − Vrest

In each phase of the waveform V (t) shown in Figure 4.4(c) and (d), mem-

ristor M1 (M2) may switch between the off-resistance state and the on-resistance

state, depending upon the bias voltage across it, i.e., the difference between V (t)

and the DC voltage level Erest (Ereset). Table 4.1 summarizes the state changes of

the two memristors.
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Table 4.1: States of the two memristors over the three phases of the membrane potential

Waveform Transition M1 M2 Switching

Phase (Erest) (Ereset) State

Vrest - Vthreshold off off S0

Vthreshold - Vreset off on S1

Vreset - Vrest on off S2

For correct operation, MIF2 must satisfy the following requirements: after

the peak potential at Vthreshold the membrane potential hyperpolarizes down to

Vreset. At reset, the membrane potential Vreset is constrained by the DC reset

potential Ereset and the potential across the memristor VM2:

V (t) = Vreset = Ereset + VM2 (4.9)

For the memristor M2 to reset, the voltage across it must be less than Vth2.

Thus, the following constraint is imposed:

Vth2 > Vreset − Ereset (4.10)

In the next phase, the membrane potential rises toward Vrest from Vreset.

The memristor M2, connected to the Ereset-source, must be off (RM2 = Roff) to

avoid blocking the pull-up effort by M1 toward the Erest level.

This autonomous spiking behavior can be achieved using volatile mem-

ristors appropriately biased via DC voltage sources and choosing a proper value

for the membrane capacitance. The simulation results are shown in Figure 4.4(c).
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V (t) rises to the peak value, dips to Vreset, and then rises to Vrest, which is behav-

iorally correct. As qualitatively described earlier, in its dynamical evolution V (t)

goes through three distinct voltage levels, namely Vthreshold, Vreset, and Vrest, as

governed by the resistance switching phenomena occurring in the two memristors,

as marked by S0, S1, S2 switching state in Figure 4.4(c).

Some circuit parameters can be tuned to ease the abrupt changes in the

capacitor voltage V (t), as shown in Figure 4.4(d), which displays a spiking voltage

waveform strikingly similar to that in Figure 4.1(c). In this case, the memristor

M1 remained in its off state. For the case with non-volatile memristors, a narrow

voltage pulse need to be added to the Ereset-voltage source. Figure 4.4(d) shows

simulation results of the MIF2 circuit for the case where M1 and M2 are identical

volatile memristors, but not required to be so. The two DC voltage sources can

be tuned to mimic the action potential waveform closely. With Ereset and Erest

values respectively set to -80mV and -65mV, the membrane potential displayed a

rest potential of -72.5 mV, and a reset potential of -80 mV. For Vthreshold = -52 mV,

the memristor M1, connected serially to the Erest-battery, remains in the off state.

4.3.2.1 Minimality of the MIF2 Model

The MIF2 model consisting of one capacitor, and two memristors M1 and

M2, connected to DC voltage sources Erest and Ereset, respectively, is minimal in

terms of the number of circuit elements and the integration area in generating

the spiking neuronal signal waveform with three voltage levels, specifically Vrest,

Vthreshold, and Vreset. The MIF2 circuit can generate oscillatory spiking signals for
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locally active memristors under a DC input current of an appropriate magnitude.

The MIF2 model, with two memristors, resembles the memristive HH

model with battery-driven sodium and potassium channels. The MIF2 can be

deemed a macro-model of the memristive HH model. It is topologically identical to

the reduced memristive HH model shown in Figure4.4(e) [112].

The pair of voltage sources, Erest and Ereset, in MIF2 reflect the rest- and

reset potentials and correspond to EK and ENa of the HH model. Previously, it

was shown that for the generation of a membrane potential waveform that does

not dip to Vreset, the proposed MIF circuit was minimal in view of the number of

circuit elements and the integration area. To include hyperpolarization dipping, the

inclusion of one additional memristor is necessary. Otherwise, the drop to the Vreset

level cannot be replicated without complex external control, as described in Tal and

Schwartz [140]. Although a resistor may be chosen in lieu of a memristor to generate

a new voltage level, such a choice cannot achieve the minimal integration area, nor

replicate the spike-rate dependency of memristor I-V characteristics, the signature

of memristors. This justifies that MIF2 is minimal in terms of the number of circuit

elements and the integration area density. The two memristors in the MIF2 model

can be volatile or non-volatile. The Erest and Ereset sources can be purely DC for

the case of volatile memristors. If a non-volatile memristor is used as M2, a reset

pulse must be added to Ereset.
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4.3.3 Discussion and Analysis

The pursuit for VLSI implementation of SNNs dates back to Mead’s early

work [104] and has been expanded since then [146]. A highly compact physical im-

plementation of the LIF model was introduced by using a multitude of MOSFETs,

resistors, and SCRs [125]. This section shows the most compact physical realiza-

tion of the MIF circuit model from Figure 4.3(a). As discussed earlier, the use of

nanoscale memristors provides the highest packing density as opposed to the use

of resistors and other complex switching circuitry. It also should be noted that the

pulse-rate (frequency) dependency of memristors in MIF models cannot be mimicked

by using resistors.

Interestingly, our parameter sweep analysis shows that resistive variation

(which is typically the most dominant variation) does not have a significant effect

on cycle-to-cycle variations. On the other hand, the reset and rest times are highly

sensitive to the threshold voltage Vth1. This provides insight to device researchers

that reducing the threshold voltage Vth1 variation will prove to be more important

for memristive neurons.

4.3.3.1 VLSI Implementation of Memristive Solid-State Brain

An idealization of the neuron is shown in Figure 4.5(a), as part of a general

network representation (for example, in Sherman, 2004 [134]). A layout of the MIF2

neuron with a fan-out of three synapses is shown in Figure 4.5(b). The vertical metal

line has a finite bit-line capacitance Cbit. This vertical line also sources the input

current I1.
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(a) (b)

(c)

(d) (e)
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Figure 4.5 (previous page): Neural network implementation using the MIF model and

synaptic memristors (represented by Rsyn1−2,2−3). (a) A simple neuronal schematic with a

fan-in and fan-out of three each. (b) The layout of the neuronal schematic in (a). Vc1 is the

voltage across the membrane capacitance in the MIF2 circuit excited by I1. I2−4 are the

fan-out currents of the neuron circuit. (c) Circuit topology of MIF2-based neuronal network

with a high fan-out of 30 using a voltage follower interposed between neurons and synapses.

(d) Simulation result of (c) without buffering shows that loading from subsequent stages

attenuates the spike amplitude. V[1], V[2], and V[3] reflect the output voltage for each

subsequent stage, i.e., the 1st, 2nd, and 3rd neural layer, respectively. (e) Simulation results

of (c) with buffering shows that high fan-outs are possible owing to the high input/low

output impedance of the voltage follower.
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The resulting Vc1 is the membrane voltage. Mrest1 is the memristor in

series with Erest, and M1j , j=2,3,4, is the synaptic memristor between the axon

terminal connected to neuron 1 and the jth fan-out neuron. Memristors are formed

vertically at the cross-points. This layout shows that the entire neuronal network in

Figure 4.5(a) can be laid out in a single column, thus taking up a small area which

translates into a high on-chip packing density. More complex neural networks can

be implemented in a vertically stacked 3D structure as in the brain. For the layout

of the MIF2 circuit, a thin horizontal line for Ereset is inserted next to the Erest-line,

or vertically on top of it. In the following sub-sections, a simple analysis in terms

of surface area and power consumption of a solid-state brain composed of our MIF

neurons will be presented.

The high fan-out of biological neurons has been a long-standing challenge

to emulate in silicon. The large capacitive loading reduces the slew rate of the

neuronal signals, although not an issue where slower, biological timescales are used.

Rather, the bigger issue is signal attenuation. With respect to neuronal circuits

with high fan-outs, we have simulated a MIF2 circuit with three layers of neurons

connected via synapses. The circuit topology is shown in Figure 4.5(c), where RI =

0.1KΩ and Rsyn = 1KΩ for all synapses. Here, for simplicity, we use linear resistors

for synapses. The second layer is set to drive 30 neurons connected via synapses,

where a voltage follower is used to buffer spike from the presynaptic MIF2 neuron.

The follower is effectively used as a voltage-controlled voltage source (VCVS), which

mimics the chemically driven replication of an action potential along the axon [82].

SPICE simulations of a MIF2 fully-connected network without buffering
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are shown in Figure 4.5(d). Signal attenuation in a deeper layer is drastic, which

motivates the decoupling of layers using a buffer. In many SNNs, spike timing rather

than the spike waveform is the mechanism for neural encoding. In such cases, a

simple digital spike read-out circuit would be appropriate, which would typically

be implemented by a current-mode sense amplifier (or alternative arrangement of

cross-coupled inverters) [20]. Obtaining a high fan-out of analog signals requires

an analog buffer, with simulation results shown in Figure 4.5(e). Signal integrity is

maintained through 3 layers of MIF2 neurons, even without buffering between the

first and second layers.

Additionally, if we consider the design of a sparsely connected SNN, a typ-

ical neuron has a similar number of input and output synaptic connections which

creates balanced fan-in and fan-out characteristics. Taking into account the rel-

atively low-frequency spiking nature of SNNs, the necessary buffer circuitry has

relaxed design considerations to ensure signal integrity through a deep network.

4.3.3.2 Surface Area Comparison

To benchmark area consumption, we consider the total surface area of a

solid-state brain composed of MIF2 neurons, synapses, and interconnects. We can

consider the following known facts about the human brain [147].

• Number of neurons = 1011

• Number of synapses = 1014 – 1015

• Surface area (median) = 2,400cm2
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• Volume occupied (median) = 1,050 cm3

Figure 4.5(b) indicates that both the neuron and the synapse can be laid

out using the same area of 4F2, where F represents the minimum feature size for the

width of horizontal and vertical lines used in the crossbar array. For instance, at

the 5 nm technology F = 5 nm, the minimum pitch of vertical lines and horizontal

lines would be 2F, thus requiring an area of 4F2 for a neuron or a synapse with

vertical stacking. Based on state-of-the-art reports on VLSI implementations of

neuromorphic circuits, it can be conservatively assumed that, due to overhead such

as interconnects, sensing and peripheral circuitry, and other requirements, 4F2 is

multiplied by a factor of 5 [84,151]. Thus, each instance of a neuron or a synapse has

an area of 20F2 allocated on-chip as a conservative estimate. In a simple estimation,

the total area required to realize all neurons, synapses, DC voltage source lines, and

ground lines is:

• Area = 20F2× (1011 + 1015)

• For F = 5nm, the area required would be:

• Area = 20 × (5×10−9)2× (1011+1015) = 5,000 cm2

By comparison, physiologically, the median surface area of the brain is

2,400 cm2, which is smaller by a factor of 2.1. On the other hand, with F = 3.5 nm,

the area becomes approximately the same. Thus, memristor technology integrated

with an aggressively scaled fabrication process node can potentially enable the circuit

realization of a solid-state brain within a surface area equal to that of a human brain.

If the need for more complex circuitry demanded the availability of additional chip
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area, multiple stacked layers could be used so as to prevent any further enlargement

of the surface area. Since the biological brain has a 3D structure, the memristive

solid-state brain can also be constructed vertically across a dozen stacked layers,

with over approximately 0.3 cm thickness, which is comparable to the physiological

thickness of the median human brain, where 1,050 cm3 / 2,400 cm2 = 0.44 cm.

4.3.3.3 Power Analysis

Equally important is the power consumption of the entire brain network.

For this analysis, we need to evaluate the power of each neuron, of each synapse,

and of each wire connecting array inputs to array outputs via neurons and synapses.

Considering MIF neurons for simplicity, the average power consumption per neuron

can be estimated by considering how the membrane potential builds up from Vrest

to Vthreshold over the charge-up period tclamp:

Pclamp =
1

tclamp

∫ tclamp

0
I(t)V (t)dt (4.11)

It is estimated that the human brain consumes 12-20 W for an assembly of

about 1011 neurons and 1015 synapses. where n represents the number of synapses

per neuron, an order of magnitude estimate can be derived as follows [47]:

Pbrain = Nneurons × n× Vspikes × Ispike × Tduration × fspike

= 1011neurons× 104syn/neuron× 10−1V × 10−10A× 10−3sec× 1Hz

= 10W

(4.12)
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More precisely, calculations based on caloric intake place the upper ceiling

estimate at 23.3 W [70] and 12.6 W as the floor estimate [118] which leads to the

often cited 20 W value. A simple calculation of the power consumption per spike

per neuron or synapse gives Pn = 10fW. To achieve low power consumption on the

order of fW, a small I0 in the pA range is needed. I0 can be increased significantly

if the brain power is assumed to depend mainly on the neuron power consumption.

Then, the power budget per neuron can be increased by a few orders of magnitude.

As an illustrative example, we consider a case with Roff = 50 GΩ, C = 0.1

pF, Erest = -70 mV, Vrest = -60 mV, Vthreshold = 30mV, I0 = 2.5 pA. We find τ =

RoffC = 5 ms and tclamp = 7.63 ms. Therefore:

For simple analysis, with V (t) approximated by using a triangular function,

Pclamp can be estimated to be

Pclamp = I0
Vthreshold − Vrest

2
(4.13)

Pclamp is calculated to be Pclamp = 2.5 pA × 0.5(30+60) mV = 112.5 fW. The

average power in the discharge period Pdischarge would be smaller by at least one

order of magnitude since the memristor resistance is Ron, lower than Roff by at least

one order of magnitude. Thus, the average power consumption Pn of MIF neuron

over one period is

Pn = Pclamp(1 +Ron/Roff)tclamp/Tperiod (4.14)

For the above example, if the total duration of one cycle of spiking and

subsequent rest is Tperiod = 20 ms, and Ron/Roff = 0.01, then by Equation 4.14, Pn
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= 112.5 fW × (1+0.01) × (7.63 ms / 20 ms) = 47.2 fW.

If a few parameters are changed, specifically to Roff = 50 MΩ, C = 10

pF, Erest = -70 mV, Vrest = - 60 mV, Vthreshold = 30 mV, I0 = 2.5 nA, then τ =

0.5 ms and tclamp = 0.763 ms, thus Pclamp = 112.5 pW from (22), and Pn = 112.5

pW × 0.763 ms / 20 ms = 4.29 pW, which is higher by two orders of magnitude

with respect to its value in the previous case, where I0 was lower by three orders of

magnitude. However, if neurons are assumed to dominate the power consumption,

then an nA-range current would be considered reasonable.

It can be stated that:

Pn = f(I0, C,Ron, Roff , Erest, Ereset, Vrest, Vthreshold). (4.15)

To reduce the power consumption, the voltage swing Vthreshold – Vrest

should be kept small. Then RoffI0 can be lowered accordingly, which allows a smaller

I0. This observation is useful for the design of MSNNs, especially to specify mem-

ristor parameters such as Ron, Roff , Vth1.

If all neurons are assumed to spike within the same temporal window, the

total power consumption for neurons and synapses per spiking period, Pn&s, can be

estimated as:

Pn&s = 47.2× 10−15(1011 + 1015)W ≈ 47.2W, (4.16)

and therefore, the total energy En&s <47.2 W × 20ms = 944 mJ.

The power consumed by neurons and synapses is estimated to be about

2/3 of the total brain power and about half of Pn&s is consumed by interconnects.
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Thus, when all neurons and synapses are assumed to spike within a single cycle, it

is reasonable to estimate that the brain power consumption PBrain, with an average

probability of spiking (generally estimated to be 30%), is

PBrain = 0.3× 1.5Pn&s = 21.2W. (4.17)

This is in the ballpark of 20 W.

4.4 Chapter Summary

In this chapter, the introduction of MIF and MIF2 models is poised to

enable MSNNs to be the most compact and least power consuming, comparable to

the human brain with a median total surface area of 2,400 cm2 and approximately

20 W power consumption. Both versions of the MIF models are based on passive

memristors, but can generate oscillatory spiking signals with particular memristors.

The MIF2 model and the reduced memristive HH model [112] are topologically

identical, with parameters that are physiologically comparable. Our circuit-theoretic

models are general, thus allowing a broader class of memristors to be implemented

as MIF and MIF2 neurons.

The operating mechanisms of both MIF and MIF2 models are critically de-

pendent on the resistance-switching nature of the memristors, for both their volatile

and non-volatile realizations. Thus, any memristor with stable off- and on- resis-

tances and attainable set and reset voltages can be used in the model circuits. For

the generation of a spike train, we have shown how to excite the MIF and MIF2

neurons with an input train of current pulses of sufficient amplitude. With a locally
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active memristor, MIF and MIF2 circuits can generate a train of spiking signals

under a constant DC current stimulus of an appropriate magnitude.

As shown in a crossbar layout for both neurons and synapses, on-chip

neural networks can be laid out compactly. It is estimated that by using a 3.5

nm technology, the entire solid-state brain could be laid out within a surface area

comparable to that of the human brain. The estimate for the surface area was made

for a single layer implementation and additionally for a multi-layered architecture

with a total thickness lower than the thickness of the median human brain. The MIF

model enables a systematic estimation of the spiking power. With some simplifying

assumptions, the estimated total power consumption based on the MIF model is

in the 20 W ballpark, as frequently cited in the literature. The realization of a

memristive solid-state brain would become a tantalizing possibility with further

advancements in nanoscale fabrication technologies for memristive systems.
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Chapter 5

Memristive Spiking Neural Network

with Unsupervised Learning

5.1 Background

Neuromorphic computing is guided by the rich neural dynamics present

in the brain, the highly parallelized nature of neural computation, and the sparse

encoding of data as spikes, in pursuit of optimizing memory and computation for en-

ergy efficiency. The pervasive von Neumann architecture disaggregates memory and

computation which leaves much room for improvement for threads with a determin-

istic set of instructions. This deficiency has spurred the development of a variety of

neuromorphic computing systems [28,33,44,62,63,106,109,113,128], which integrate

spiking neurons and simplified synaptic models onto a silicon substrate. In almost

all instances, synaptic weights are stored in random access memory (RAM), thus

moving memory closer to a processor. But memory access and computation remain

as two separate steps, which does not address the cost of data communication and
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memory access, which impose the most overhead in both neuromorphic and general

purpose computing systems.

The memristor has been presented as an option for merging the compu-

tation and memory substrates [37, 39, 138]. What was once a theoretical postulate

proposed by Chua in 1971 [37] and generalized by Chua and Kang in 1976 [39] has be-

come a commercially available technology that can be integrated in the back-end-of-

the-line (BEOL) of modern CMOS processes [1, 3]. Their non-volatile retention ca-

pacity is often likened to synapses [32,56,81,119,131], and their threshold-switching

characteristics are occasionally exploited as a spiking neuron model [58,117,170,171].

For example, the modulation of device resistance has been correlated to synap-

tic plasticity, where achieving short-term plasticity (STP) and long-term plasticity

(LTP) using memristors is as simple as applying programming pulse trains [153].

The benefits of memristive neurons and synapses arise from CMOS-compatibility,

high-density, nanoscale vertical integration, and their ability to directly imple-

ment biological features, as opposed to requiring several arithmetic steps as with

transistor-only circuits [43]. The use of SNNs as opposed to modern deep learning

paradigms has shown significant energy and latency benefits as a result of activa-

tion sparsity, spike-based representations of data, and event-based data process-

ing [19, 55, 57, 172, 174], and can be harnessed using the growing infrastructure to

support SNN simulations [26,45,65,74,136].

Much of the prior work on MSNNs is constrained to using either memris-

tive synapses or memristive neurons. The work in [158] demonstrated a fully inte-

grated memristive system that emulated both synapses and spiking neuron models
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to achieve simple pattern recognition tasks. The result is demonstrated using an in-

house fabricated diffusive memristor, which is not readily accessible to the broader

research community. In contrast to that, we wonder if it is possible to design a

system with a fully memristive approach that shows the capacity to learn pattern

recognition tasks using memristive neurons and synapses. Especially, We would like

to achieve this by using models of commercially available, low-cost memristors [107].

Therefore, we integrate the memristive synapse with the STDP learning capability

described in Chapter 3 and MIF/MIF2 neuron model illustrated in Chapter 4, such

that we can simulate an MSNN with the unsupervised learning rule.

5.2 Methods

5.2.1 Memristive Integrate-and-Fire Model

The proposed MIF circuit is shown in Figure 5.1. It is characterized by

the differential equations below:

dv

dt
=

I −G1(v − Erest)−G2(v − Ereset)

C
(5.1a)

dx1
dt

=
1

τ1
(

1− x1

1 + e
von1−(v−Erest)

kth

− x1

1 + e
(v−Erest)−voff1

kth

) (5.1b)

dx2
dt

=
1

τ2
(

1− x2

1 + e
von2−(v−Erest)

kth

− x2

1 + e
(v−Erest)−voff2

kth

) (5.1c)

G1 =
x1

Ron1
+

1− x1
Roff1

(5.1d)

G2 =
x1

Ron2
+

1− x2
Roff2

(5.1e)
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Figure 5.1: Presynaptic and postsynaptic memristive neurons with a trainable memristive

synapse interposed between the two. The neuron model is a MIF neuron circuit, consisting

of two memristors M1 and M2, connected to DC voltage sources Erest and Ereset, in parallel

with a capacitor C. Voltage spikes generated by the MIF neuron propagate through the

synapse, and trigger an input current to the postsynaptic MIF neuron, which in turn will

generate spikes.

where G1 and G2 are the memductances, x1 and x2 are a pair of internal states,

τ1 and τ2 are time constants governing the rate of change in internal states, kth is

the effective thermal voltage. They are the characteristic variables of M1 and M2,

respectively. This system of equations mirrors several prominent SPICE memristor

models, and has been used to emulate the commercially available Knowm memristor

[107].

To show the dynamics of the above system, we apply an alpha input cur-

rent, with the resultant memristor internal states and voltage waveforms shown

below in Figure 5.2:
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Figure 5.2: Simulation result of MIF receiving an alpha input current.

(a) Internal states x1, x2. (b) Voltage response v.

The alpha current is modeled by the Equation 5.2:

τsyn
dI

dt
= a− I (5.2a)

τsyn
da

dt
= −a+Wj ·

∑
f

δ(t− tfj ) (5.2b)

where Wj is a weighted synaptic current generated between presynaptic neuron j

and associated postsynaptic neuron.
∑

f δ(t− tfj ) indicates the total number of

spikes emitted by presynaptic neuron j, and I is the input current.

The parameters used in this model are listed in Table 5.3:

5.2.2 Memristive Synapse with STDP

The Spike-timing-dependent plasticity (STDP) learning rule modulates

synaptic weights based on the time difference of pre- and postsynaptic spike ar-

rivals [29]. This type of learning rule can be achieved by using memristors [101,131],

and can be verified using SPICE-level models [167]. As Figure 5.1 shows, a synap-
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Table 5.1: MIF circuit parameters

Parameter Value Parameter Value

Erest 0 mV Ereset 50 mV

C 100 pF kth 15 mV

voff1 , voff2 0 mV von1 , von2 100 mV

Roff1 , Roff2 0.1 MΩ Ron1 , Ron2 1 kΩ

τ1, τ2 1 µs

tic memristor is interposed between two neurons, where the pre- and postsynaptic

spikes will generate a voltage across the memristor that causes the memristance to

be updated. Moreover, the time difference between pre- and postsynaptic spikes

will modulate the changes in the memristance of the synapse.

In the memristive synapse with the STDP learning mechanism, the weight

change will increase rapidly and then decrease slowly when the time difference of a

pre- and postsynaptic spike increases from zero. The weight change of a memristive

synapse is determined by the voltage across the memristor. The largest voltage

will result in the largest weight change, and occurs when one of the pre- or post-

synaptic neurons reaches the threshold level, while the other is at the reset voltage

level. Therefore, the learning window of memristive STDP will rise with a fast time

constant, followed by a slow decay. Thus, it is reasonable to model the memristive

synapse behavior with an alpha learning window as:

To model the memristive synapse, we proposed the following model:
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Wpre(x) = Upre ·
|∆t|
τpre
· e−

|∆t|
τpre (5.3a)

at tpost for tpre < tpost

Wpost(x) = Upost ·
|∆t|
τpost

· e−
|∆t|
τpost (5.3b)

at tpre for tpost < tpre

where Upre, Upost, τpre, τpost are fitted constants, and ∆t=tpost-tpre. Generally, the

curve in the learning window will take an alpha shape in both the positive and

negative planes of the x-axis.

This type of STDP can be modeled with a system of differential equations

defined in Equation 5.4:

τpre
dApre

dt
= Tpre −Apre (5.4a)

τpre
dTpre

dt
= Tpre + Upre ·

∑
f

δ(t− tfj ) (5.4b)

τpost
dApost

dt
= Tpost −Apost (5.4c)

τpost
dTpost

dt
= −Tpost + Upost ·

∑
n

δ(t− tni ) (5.4d)

Wj ←Wj +Apost upon presynaptic spike (5.4e)

Wj ←Wj +Apre upon postsynaptic spike (5.4f)

where f indicates the total number of spikes emitted by the presynaptic neuron j,

and n defines the total number of spikes emitted by the postsynaptic neuron i. Upre

is typically positive, while Upost is usually negative. Wj is the weighted synaptic
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current. Upon the arrival of a presynaptic spike, Wj immediately increases by the

amount of Apost. Tpre induces a rise by the amount of Upre, which then evolves

according to Equation 5.4(b). This in turn modulates Apre in 5.4(a). Upon the

arrival of a postsynaptic spike, Wj immediately increases by the amount of Apre.

Tpost increases by the amount of Upost, and then affects Apost in a similar manner

to the impact from a presynaptic spike.

Figure 5.3: An example of the proposed memristive STDP with τpre = τpost=3 µs, Upre=1

µA, Upost=-1 µA. (a) Tpre and Tpost in Equation 5.4 are determined by a pre- and a post-

synaptic spike, respectively. (b) Apre and Apost in Equation 5.4 are determined by a pre-

and a post- synaptic spike, respectively. (c) The weight is updated according to Equation

5.4.

When there are multiple pre- and postsynaptic spikes, the weight should

be updated according to Equation 5.5.

dwij

dt
= UpreApre

∑
n

δ(t− tni ) + UpostApost

∑
f

δ(t− tfj ) (5.5)

where the first term on the right side denotes the pre-before-post effect and the

second term indicates the post-before-pre effect. Usually, Upre is positive and Upost

is negative. An example of a weight update due to multiple pre- and postsynaptic

neuron spikes is shown in Figure 5.4.
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Figure 5.4: An example of weight update with multiple pre- and postsynaptic spikes.

5.2.3 Models Evaluation

We modeled a simple recurrent neural network as described in [49] to eval-

uate the functionality of the model. The network has 9 input neurons and 9 MIF

neurons. There are 1-to-1 connections between the input and MIF layer. Within the

MIF layer, neurons are fully connected with each other. Thus, there are 72 synapses

as Figure 5.5 shows. For this neural network, we only used positive synapses.

We have two input patterns, one is 0, 4, 8 with high intensity while the

other inputs have low intensity. The other pattern applies a high intensity to inputs

2, 4, 6, while the other inputs have low intensity. These two input patterns are

transferred to input spike trains by rate coding. Generally, a higher intensity will

be transferred to a Poisson input spike train with a higher spiking rate. By feeding
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Figure 5.5: The architecture network.

two patterns successively to the neural network, the weight matrix is able to update

according to the input patterns. A general view of the connections between 9 neurons

after training is shown in Figure 5.6, which shows the connections between neurons

0, 4, 8, and 2, 4, 6 are enhanced.

Figure 5.6: A general view of the connections inside the MIF neural layer after training.

Figure 5.7(a) and (b) also present the connection of this SNN. The results

after training are shown in Figure 5.7(c), which is similar to the results in [49].
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Therefore, the use of the MIF model in an SNN is validated.

Figure 5.7: The results after training.

The parameters used in this network are listed in Table 5.2:

Table 5.2: Parameters in the MIF SNN for model evaluation.

Parameter Value Parameter Value

wPE 2 · e mA Imax 4 · e uA

wEI 2 · e uA Erest -50 mV

wIE 2 · e uA Ereset -100 mV

wEE 0.1 · e uA vrest -75 mV

voff 5 mV kth 0.6 * 25 mV

von 110 mV thMIF -50 mV

Ron 1 k reMIF 4 ms

Roff 0.1 M τalpha 0.5 ms

CMIF 100 pF τ 1 ms

Upre 0.1 A τpre 5 ms

Continued on next page
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Table 5.2 – continued from previous page

Parameter Value Parameter Value

Upost -0.05 A τpost 5 ms

NumP 9 single train time 1000 ms

NumE 9 rest train time 10 ms

defaultclock.dt 0.1 ms

5.2.4 Type-1 MSNN for Memory Retrieval

Now we can implement a more complicated fully MSNN. The neural net-

work architecture we implement with the fully memristive neuron and synapse mod-

els consists of three layers [49]. The input layer applies a Poisson spike train which

encodes the input patterns via rate encoding. The second layer is a MIF excitatory

layer. The third layer is an inhibitory layer and includes feedback connections to

the excitatory layer. The architecture is shown in Figure 5.8. The input to the

excitatory layer consists of excitatory synapses with fixed weights between the in-

put layer and the MIF excitatory layer, with one-to-one connections. The output

of the excitatory layer includes trainable (via STDP) excitatory recurrent synap-

tic connections, in addition to fixed-weight excitatory synapses between the MIF

excitatory layer and the inhibitory layer, also with one-to-one connections. The

inhibitory layer includes inhibitory feedback synapses with fixed weights between

the inhibitory layer and the MIF excitatory layer with one-to-(all-1) connections
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(not including the single MIF neuron connected to the inhibitory neuron). In this

neural network, the numbers of neurons in all three layers are identical, and STDP

is enabled within the MIF excitatory layer. The input patterns consist of 32×32

pixels, such that the total number of neurons in each layer is 1024. Each pattern

generates a Poisson spike train of 35 µs duration, followed by a 15 µs refractory

period without any input such that each input pattern does not affect the network

dynamics upon arrival of the next input pattern. Each input spike will generate an

alpha current where τsyn = 10ns. The threshold of each MIF neuron is set to 25

mV . As in the MIF neuron, there is no extra control circuit to force reset, and we

set a refractory of 3 µs to prevent duplicating spikes during the simulation. We find

the weight increase has a more significant effect when compared with the weight de-

crease, and it also enables the network to learn faster. Therefore, we set Upre = 10µA

and Upost = −0.1µA. Note that Upre,post refers to an internal state variable that

is modulated by the current-based neuron model, and is in dimensions of amperes.

The recurrent connections are initialized with randomly weighted synaptic currents

between 0 to 0.2 µA. The exact weight values between the excitatory layer and the

inhibition layer do not have a large effect, which enables the inhibitory neurons to

trigger a spike following output from excitatory neurons. On the other hand, the

weights between input-to-excitatory layers and the inhibitory feedback mechanism

both need to be carefully tuned to be neither too weak, nor too strong, to prevent

complete suppression of downstream spikes, or excessive reinforcement of firing. We

chose the fixed input to the excitatory weight to be 50 µA, and the fixed inhibitory

layer feedback weight to be 20 µA.
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Figure 5.8: The MSNN architecture, which consists of the input layer, MIF excitatory

layer, and the inhibitory layer. The blue arrows denote the excitatory synaptic forward

connections, the orange arrow indicates excitatory synaptic recurrent connections, and the

green arrow shows the inhibitory synaptic forward connection.

5.2.5 Type-2 MSNN for Pattern Recognition

In this section, we will introduce another MIF SNN architecture. Inspired

by [50], the sequence of the MSNN for pattern recognition is identical to the mem-

ory retrieval network, in that we use a Poisson input layer, an excitatory layer, and

an inhibitory layer. To improve unsupervised learning, we modify the nature of

the synaptic connections. STDP-based learning is enabled between the input layer

and the excitatory MIF layer with all-to-all connections. As before, each excitatory

neuron connects to one inhibitory neuron and the inhibitory layer uses inhibitory

synapses with fixed weights connected to the excitatory layer. In this network, no

recurrent connections are present due to the lack of temporal dependencies in the

pattern recognition task. The number of neurons between the excitatory and in-

hibitory layers must be identical, though they no longer need to match the input
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layer. The architecture is shown in Figure 5.9. We use 1024 neurons in the input

layer, and 320 neurons each in the excitatory and inhibitory layers, where STDP

takes place between the input and the excitatory layers. We set Upre = 10nA,

Upost = −0.1nA, and the fixed inhibitory layer feedback weight to 200 µA. The

weighted synaptic current between the input and excitatory layers is randomly ini-

tialization between 0 and 12 µA based on the empirical evaluation. Additionally, a

random 0-2 µs delay between the input layer and the excitatory layer is assigned to

avoid excessive simultaneous spiking, thus mitigating the exploding weights prob-

lem. All other neurons and input parameters are identical to the memory retrieval

tasks.

Figure 5.9: The second MSNN architecture.

5.3 Results

5.3.1 Type-1 MSNN for Memory Retrieval Result

We provided four different patterns to the MSNN successively for each

iteration, and simulated across multiple epochs. This is to coarsely emulate how
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biological systems experience real-world data in a batch size of ‘1’ in online learning

systems. The Poisson input layer converts each pixel intensity of the input pat-

tern into a spiking probability of each neuron. We used four different patterns, as

shown in the top row of Figure 5.10. The weight matrix is updated with the STDP

rule. The training phase consists of 20 epochs for all patterns, corresponding to 80

iterations.

Figure 5.10: Top row: the four input spiking patterns (1:Square, 2: Cross, 3: Diamond,

4: Triangle) applied to the input of the MSNN. Bottom row: the number of spikes in the

excitatory layer during the test stage, upon receiving these four input patterns.

After training, the same four patterns are successively applied to the MIF.

The MSNN is expected to ‘recall’ the patterns as the connections have ideally made

associations in the form of synaptic memory. When one of the patterns is applied to

the MSNN again, other patterns are also recalled with less intensity, which is related

to ‘memory retrieval’, illustrated in the bottom row of Figure 5.10. In order to

evaluate memory retrieval performance, we calculate the percentage of overlapping
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spike count with incorrect patterns, with the results shown in Figure 5.11. We find

that when an input pattern is provided to the network, its resemblance to the spiking

behavior with the target behavior is at a maximum. This is depicted in Figure 5.11,

where the values along the diagonal are the largest. As shown in the bottom row of

Figure 5.10, for each input pattern, the network continues to recall features of the

other three patterns, which is a result of low-resistance pathways that cause overlap

with other patterns, but with less resemblance to the target pattern.

Figure 5.11: The resultant heatmap shows the memory retrieval resemblance for four

patterns, which are 1:Square, 2: Cross, 3: Diamond, 4: Triangle.

The parameters used in this network are listed in Table 5.3:

96



Table 5.3: Parameters in the type-1 MSNN.

Parameter Value Parameter Value

wPE 50 A τ1 1 s

wEE 0.2 A thMIF 25 mV

wEI 3 mA reMIF 3 us

wIE 20 A Upre 10 A

Imax 100 A Upost 1 nA

Erest 0 mV τ2 1 s

Ereset 50 mV τe 0.01 s

vrest 0 mV τi 0.02 s

kth 0.6 * 25 mV CMIF 100 pF

von1 100 mV von2 100 mV

voff1 0 mV voff2 0 mV

Ron1 1 k Ron1 1 k

Roff1 0.1 M Roff1 0.1 M

CM 1 pF τpre 2 us

RM 10 τpost 2 us

NumP 1024 Inhth 25 mV

NumE 1024 Inhτ 0.01 us

single train time 35 us Inhreset 0 mV

rest train time 15 us Inhrest 0 mV

Continued on next page
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Table 5.3 – continued from previous page

Parameter Value Parameter Value

defaultclock.dt 0.01 us Inhre 3 us

5.3.2 Type-2 MSNN for Pattern Recognition Result

During training, we applied the four different patterns (Figure 5.10) to the

MSNN successively, then accumulated and recorded the number of spikes in each

output MIF neuron for each pattern. During the training process, each MIF neuron

is randomly assigned a pattern and updated after every 5 epochs. This allows each

MIF neuron to be associated with a pattern such that it may be used to encode one

of four patterns during the test stage. After assignments are updated, we use the

current weights to test the accuracy of the network. During the test stage, the four

patterns are passed to the network for 40 epochs, and the total numbers of spikes

are counted for each pattern for all output excitatory neurons. The neuron with

the highest spike count is deemed as the winner neuron for this input pattern. The

accuracy evolution during training is shown in Figure 5.12, where a total accuracy

of 97.5% is attained at the 70th iteration, shown by the dashed orange line. Early

stopping is applied here, as further training causes excessive reinforcement of high-

conductance pathways.

The parameters used in this network are listed in Table 5.4:
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Figure 5.12: Accuracy across multiple iterations.

Table 5.4: Parameters in the second MIF SNN.

Parameter Value Parameter Value

wEE 0.2 A thMIF 25 mV

wEI 3 mA reMIF 3 us

wIE 200 A Upre 10 A

Imax 30 A Upost -0.1 nA

CMIF 100 pF τ1 1 s

Erest 0 mV τ2 1 s

Ereset 50 mV τe 0.01 s

vrest 0 mV τi 0.02 s

kth 0.6 * 25 mV

von1 100 mV von2 100 mV

voff1 0 mV voff2 0 mV

Ron1 1 k Ron1 1 k

Roff1 0.1 M Roff1 0.1 M

Continued on next page
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Table 5.4 – continued from previous page

Parameter Value Parameter Value

CM 1 pF τpre 2 us

RM 10 τpost 2 us

PEminDelay 0 ms PEmaxDelay 2 us

NumP 1024 Inhth 25 mV

NumE 320 Inhτ 0.01 us

single train time 35 us Inhreset 0 mV

rest train time 15 us Inhrest 0 mV

defaultclock.dt 0.01 us Inhre 3 us

5.4 Chapter Summary

In this chapter, we proposed two different types of fully MSNNs for unsu-

pervised learning, based on a MIF neuron model together with memristive synapses.

The synapses and neuron models are designed using SPICE-level memristor models

to relate circuit-level plausibility with the biological plausibility of spiking neurons.

We demonstrated memory retrieval and pattern recognition across the four input

patterns with the type-1 MSNN, and validated the potential of our fully-memristive

approach across both tasks with the type-2 MSNN. Although we presented the

results for four input patterns, they present an early validation that encourages

future development. It is the first step towards designing fully MSNNs, with the
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long-term aim of building a large-scale memristive brain. Future work will address

more challenging tasks, such as testing memory retrieval for incomplete patterns,

and increasing dataset complexity for the multi-pattern classification problems. Ex-

plorations of new learning paradigms that rely on error propagation may need to

be integrated together with the STDP update rule to enable the success of more

complex tasks. The proposed framework will render circuit-level implementations

using a broad class of memristors to perform neuromorphic computing.
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Chapter 6

Memristive Spiking Neural Network

with Supervised Learning

6.1 Background

SNNs impose neuroscience-inspired constraints on modern deep learning

algorithms, and have accordingly demonstrated significant improvements in run-

time efficiency. By moving from full precision and fixed precision activations of

artificial neuron models over to temporally-encoded data representations captured

by spiking neurons, neuromorphic hardware has shown significant savings in energy

consumption and latency [19,143,154,164,172,173].

The broad success of error backpropagation to train deep learning models

has ushered in a plethora of related training algorithms adapted for SNNs, most of

which are guided by surrogate gradient descent to overcome the non-differentiability

of discrete spikes [111,161]. This proliferation of SNN usage is complemented by the

development of modular deep learning programming packages that have optimized
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autodifferentiation for CUDA acceleration [8, 9, 11,72,115].

In parallel to these advances in training SNNs, the past decade has seen

huge strides in brain-inspired devices, circuits, and architectures that integrate neu-

ronal dynamics to improve the hardware integration of SNNs and its constituent

parts. Memristors and resistive RAM (RRAM) make up an immense part of such

exploratory research in SNN implementation as they are a natural bridge between

SNN algorithms and accelerators [37,39]. They have been widely employed as both

synapses and as spiking neurons.

At the ionic level, memristive synapses have been integrated into systems

that naturally implement the spike-timing-dependent-plasticity (STDP) update rule

using higher-order device dynamics [81,98,131]. An alternative use of ion-driven dy-

namics is when implementing the memristor as a neuron, where nonlinear conduc-

tance evolution gives rise to abrupt switching that can be used to emit sudden volt-

age spikes. This approach is typically coupled with capacitive integration, and has

been referred to as a ‘neuristor’ [21,46,97,117], and a ‘Memristive Integrate-and-Fire’

(MIF) neuron [69,83,173]. Similarly, membrane leakage in biological neurons can be

implemented using resistive dissipation as in neuristors, or via volatile ionic drifting

dynamics observed in single devices [178] and also in nanowire networks [75,99,175].

Moving up to the architectural level, RRAM has been shown as a promising

candidate for Compute-In-Memory (CIM) architectures due to their ability to paral-

lelize matrix-vector multiplication independently of time complexity when integrated

as large-scale, modular arrays [32, 53, 54, 96, 171]. Rather than neurons, memristive

synapses map neural network weights to device conductances. In general, RRAM
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CIM architectures are intended to be trained offline with weights mapped on-chip

for inference and deployment. As such, RRAM synapses should be stationary and

only used for weight read-out. Higher-order dynamical behaviors of memristors are

abstracted away, and treated as non-idealities.

An additional challenge with RRAM-based CIM is the cost of communi-

cating analog current signals along lengthy bit-lines and conversion into the digital

domain. These issues have spurred the use of binary activations in the form of

spike-based CIM accelerators which have been shown to alleviate the burdens of

mixed-signal computation, by removing the need for large Analog-to-Digital Con-

vertor (ADC) data conversion [56].

The majority of deep learning acceleration using memristors can be classi-

fied into one of the above cases: memristive neurons, memristive synapses that learn

via associative learning, and CIM accelerators. A small set of designs have combined

memristive neurons and memristive synapses together [142,158]. Doing so is a com-

mendable feat, as the natural switching dynamics of memristive systems are relied

on to achieve data-driven tasks. The cost of allowing hardware to behave naturally

is that a designer can no longer rely on synchronous, clock-driven processing, and is

subject to fault injections that are a result of nonlinear ionic dynamics. Letting the

natural dynamics of memristive hardware ‘teach itself’ exacerbates the challenges of

training MSNNs. This challenge has limited the demonstration of fully MSNNs to

unsupervised learning tasks that have been shown to solve simple, low-dimensional

pattern recognition via local learning rules (typically STDP) and associative learn-

ing. These include the classification of several characters and numbers (such as a
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subset of the MNIST dataset).

We have shown that a fully MSNN based on the MIF2 model can emulate

unsupervised learning (STDP) in Chapter 5. It would be very intriguing to think

if the MIF2 model can also be used in supervised learning. And it is valuable

to validate if the MIF/MIF2 model can be used in SNNs with a deep learning

framework.

There is an incredibly broad span of work that integrates memristors with

brain-inspired architectures, from low-level analog action potential emulation [83],

to discrete spiking dynamics [56], up to non-spiking CIM processors [32]. We focus

our background on prior work that uses nonlinear dynamics in memristive neurons

together with memristive synapses, with an associated demonstration of synaptic

optimization to achieve a data-driven outcome.

6.1.1 Fully MSNNs

Fully MSNNs refer to arrays that utilize nonlinear switching dynamics of

memristors to trigger action potentials, and are coupled with memristive weights

that are used as neural network parameters. The 8×8 crossbar array presented

in [158] successfully integrates a fully MSNN, including memristive synapses and

neurons. The synaptic array is trained using unsupervised STDP to classify four

letters in a 24-pixel grid. While the task achieved is considerably simple, the fully

memristive experimental demonstration sets the stage to build up new training

methods.

The work in [85] uses half-wave rectification interposed between crossbar
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arrays to process the ReLU activation in the analog domain. While not fully mem-

ristive, nor a ‘spiking’ network, it demonstrates a pivotal example of successively

passing analog activations between RRAM crossbars without intermediate data con-

version, in a manner akin to how our analog action potentials are transmitted be-

tween layers. This training process relies on gradient-based optimization where

device non-idealities are injected during the forward pass. In doing so, a test set

accuracy of 93.63% is obtained on the MNIST dataset.

In Refs. [150] and [162], convolutional SNNs with memristors are used,

where both used pretrained non-spiking networks that are mapped or converted into

the spiking domain. Both networks obtained competitive accuracy on the MNIST

dataset, though did not demonstrate performance on more complex, real-world data.

This may be due to the large differences between the networks that were trained

and the MSNN that was implemented. In Ref. [51], a dense MSNN is adopted

using a similar approach to what is used here, and as such, has minimal hardware

requirements at run-time. The training process translates the switching dynamics of

the memristive neuron into a firing rate, and may be the reason why a relatively low

accuracy of 83.2% was achieved on the MNIST dataset. A more detailed comparison

is illustrated in Section V, subsection B.

Almost all of these works offer compelling demonstrations using in-house

fabricated arrays, either with standalone crossbars or back-end-of-the-line (BEOL)

integrated arrays with foundry-made chips. In contrast, we have aimed to make

our work as device-agnostic as presently possible by using commercially available

Knowm memristors and their corresponding model [107].
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Although Knowm memristors are not known for their reliability, their

metastable switching dynamics are accounted for within the gradient calculation

step, as it forms part of the computational graph. In contrast, Kiani et al. use

the memristors in the forward-pass only, as their devices are not intended to be

reprogrammed during inference, and thus their method does not require switching

to generate spiking dynamics. Gradients can therefore be deterministically calcu-

lated partially off-chip [85], whereas our approach harnesses memristive dynamics

in the forward-pass computation in our network. As such, our MSNN approach can

leverage the benefits of spike-based processing, such as sparse processing and lower

data collision rates.

6.1.2 Memristive Learning Frameworks

To ease and emulate the training process of memristive networks, a variety

of valuable frameworks have been developed each addressing various niches. These

include MemTorch [92], NeuroSim [35], and the IBM Analog Hardware Acceleration

Kit [121], which implement non-spiking networks that adopt mixed-signal bit-line

charge/current accumulation/summation processing. In these simulators, memris-

tive dynamics are accounted for during weight updates, and are otherwise fixed

during inference. To complement these tools, NeuroPack [77] specifically targets

the simulation of spiking networks, where memristive dynamics are also factored in

during the weight update process, and fixed during inference. Spiking dynamics are

triggered by pulse-based input voltages.

The closest relation to our proposed work comes from Demirag et al. who
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offer a software implementation of a real-time recurrent learning variant [27, 163]

using phase change device models to train an MSNN [48].

Much like these simulators, our approach MEMprop integrates SPICE-

level memristor models into the training process. But distinct from these simulators

and training methods, we utilize arrays of MIF neuristors that trigger self-induced

action potentials during the forward-pass computation. To emit spikes, the state of a

memristor must evolve and ultimately switch to provide sudden discharge pathways

which triggers spikes. Therefore, the dynamical characteristics of a memristor will

alter the gradient itself, whereas all prior approaches account for dynamics in the

weight update step when reprogramming memristive synapses.

Our approach applies the backpropagation algorithm directly to SPICE-

level neuristor models that emit analog action potentials as a result of charge ac-

cumulation and metastable threshold switching. That is to say, the memristive

dynamics in SPICE models are not fixed during the forward-pass, but rather, they

are dynamically extracted during the forward-pass to fire neuristor-induced spikes.

The BPTT algorithm is applied directly to SPICE models, thus integrating mem-

ristive neurons as part of the gradient calculation step, rather than isolating their

dynamics to synaptic weight updates as in prior implementations. This offers a dy-

namical and totally new way to train fully memristive networks that uses state-based

dynamics as part of the gradient calculation step.

In terms of hardware implementation, the conventional use of RRAM in cir-

cuits often requires significant overhead to convert analog currents into digital volt-

ages and consumes a large amount of power [32]. In many instances, the power/area
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demands of the ADCs and Digital-to-Analog Converter (DAC) far exceed the over-

head brought on by RRAM, offsetting the advantages of memristors. In contrast,

our spike-based approach eliminates the need for ADCs and DACs such that the

cost of peripheral circuits is substantially reduced.

6.1.3 Error Backpropagation Through SPICE models

Our proposed approach enables us to scale up the complexity of learnable

tasks in fully MSNNs by directly applying gradient descent to the nonlinear state

evolution of memristive neurons and synapses. Both neurons and synapses in bi-

ological neural networks are modeled using memristors. The MIF neuron model

is designed to achieve distinct depolarization, hyperpolarization, and repolarization

voltage phases with a minimal set of circuit elements. Memristive synapses act as

interconnects between layers of neurons.

To train the fully memristive network, we propose MEMprop, an appli-

cation of error backpropagation to large-scale networks derived from SPICE circuit

models. This enables dynamical, time-varying memristive neurons to learn and thus

achieve much higher accuracy on data-driven tasks than has been previously re-

ported with MSNNs. By relying on the analog spiking characteristics that naturally

occur in the MIF neuron model, the non-differentiability of spike-based activations

is completely avoided. This means MEMprop does not rely on surrogate gradient

techniques that are commonly used to train SNNs, which calculates biased gradient

estimators to circumvent the dead neuron problem [111]. To promote the broad ac-

cessibility of our methods, we use SPICE models of commercially available, low-cost
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memristors and demonstrate the efficacy of MEMprop in a supervised deep learning

framework.

6.2 Methods

6.2.1 Memristive Integrate-and-Fire Model

The neuron model adopted in our MSNN is the MIF neuron model depicted

in Chapter 4 Figure 4.4a. For easy referral, we include the Figure 6.1 of the MIF

circuit in this chapter as well. Qualitatively, given a positive current injection I(t),

the membrane potential v(t) will rise up from the neuron’s resting potential Erest.

Once a sufficiently large electric field builds up across the memristor M2, it switches

on, effectively shorting the output to Ereset which charges back up to equilibrium,

Erest.

Figure 6.1: (a) A MIF neuron consists of two memristors M1 and M2, connected to

DC voltage sources Erest and Ereset, in parallel with a capacitor C. The MIF neuron is

provably minimal in generating a membrane potential traversing from a rest voltage level to

a threshold voltage level, then to a reset voltage level, and then back to the rest potential

when a current pulse is applied.

The memristor model used is based on the generalized metastable switch
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(MSS) model [107], which has been used to accurately describe a large range of

possible devices. In this model, an MSS is an idealized element that switches with

a given probability between two states as a function of its voltage and temperature.

A memristor is modeled by a collection of MSSs, which determines the state-time

dynamics that lead to non-volatile characteristics. x characterizes the internal state

as a variable normalized between 0 and 1, as determined by the switching states of

all MSSs.

Formally, the governing dynamics of the MIF neuron are characterized

by the system of differential equations in Table 6.1. The membrane potential v

is dependent on G1 and G2, the device conductances of M1 and M2, the MIF

capacitance C, and Erest and Ereset, which are voltage biases in the MIF circuit.

G1 and G2 are dependent on x1 and x2, a pair of variables governing the

internal state of each device, where Ron and Roff are the on/off resistances.

The rates of change of x1 and x2 are dependent on the state evolution time

constants τ1 and τ2, the thermal voltage Vth at room temperature, and the volatility

constant kv ∈ [0, 1] in the range of 0 to 1. As k → 0, the more retentive the device

is.

6.2.2 Neural Network Layout

When accounting for the hardware implementation of a fully MSNN, the

voltage response of the MIF neuron must drive the memristive synapses, and is

correspondingly weighted by the synaptic conductances. This can be fully integrated

into a crossbar according to Equation (6.1) below:
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I = G×V (6.1)
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where I is the output current vector, V is the input voltage vector, and G is the

conductance matrix of the crossbar. The output current vector is generated via bit-

line current summation as shown in Equation (6.2), and directly drives the input of

the next MIF neuron layer. Resistive loading may attenuate the output current in

subsequent stages, but this can be accounted for using a scaling factor, or otherwise

buffered [83,155,156].

Figure 6.2 shows a small-scale schematic of a fully MSNN with five MIF

neurons and a 3×2 memristive crossbar, which receives five fan-in input currents Iin0

- Iin2 and generates three fan-out output currents. Erest and Ereset are the voltage

sources in the MIF circuit. CBL is the bit-line parasitic capacitance generated by

the metal line, or otherwise by the drain-bulk capacitance of select transistors, and

is used as the membrane capacitance in the MIF circuit.
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Figure 6.2: Schematic of a fully MSNN. The blue-shaded segment depicts memristive

neurons, and the orange-shaded segment includes memristive synapses
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6.2.3 Forward-mode Solution of MIF Model

In order to train a network of MIF neurons and synapses using gradient

descent, the differential equations representing the MIF circuit dynamics (middle

column, Table 6.1) are recast into discrete-time form (left column, Table 6.1). In

doing so, the memristive dynamics can be captured in a computational graph that

evolves over time, much like a recurrent neural network (RNN).

In practice, SPICE-kind simulators use a variety of differential equation

solvers, such as the backward Euler method, and the 4th-order Runge-Kutta method

(RK4). For compatibility with the BPTT algorithm, we solve the differential equa-

tions using the forward Euler method, which provides an explicit representation of

the next time step using present-time dynamics. The rich dynamics of the MIF

neuronal network are now accounted for in the MSNN, unrolled in time such that

gradient descent can be used to optimize the memristive synapses as a function of

the MIF evolution.

Many neural coding studies represent spike trains as a summation of time-

shifted Dirac delta pulses
∑

n δ(t− tnj ). As such a model of spikes is an idealization.

We use the spike train to modulate a time-continuous, alpha input current I mod-

eled by the equation in Table 6.2 to be compatible with real, physical systems. In

this series of equations, a is an internal state variable, τsyn is a time constant that

determines the shape of the alpha current,Wi is the synaptic weight between a presy-

naptic neuron i and its associated postsynaptic neuron. It is commonly regarded

that such alpha waveforms correspond to the response from biological neurons in

the sensory periphery that respond with graded potentials [52].
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Table 6.1: MIF model differential equations vs numerical integration.
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Table 6.2: Alpha current differential equations vs numerical integration.

Variable Continuous Time Derivative Discrete Time Solution

I τsyn
dI
dt = a− I It+1 = at−It

τsyn
+ It

a τsyn
da
dt = −a+Wi ·

∑
n δ(t− tni ) at+1 = −at+Wi·

∑
n δ(t−tni )

τsyn
+ at

6.2.4 MIF Single Neuron Simulation

To verify the accuracy of the forward Euler method, we conduct a single

neuron simulation using Python shown in Figure 6.3 across 1,000 time steps, which

provides ample time for the membrane potential v to traverse from spiking Vth, to

the reset potential Ereset, back to the resting potential Erest. Each time step is of

duration 0.01 ms over a total duration of 10 ms.

The parameters used in the simulation are listed in Table 6.3. The resting

potential, charge integration, thresholding, and reset dynamics are closely repro-

duced in a SPICE simulator that uses the RK4 solver, which verifies the solution

generated by adopting the forward Euler method. Deep learning is known to be

tolerant to fault injections [91,116], and so the tradeoff between the numerical inte-

gration accuracy and the training complexity should be considered. We adopted the

forward Euler method which is able to balance the two. Technically, our training

method is expected to generalize to other numerical integration methods as well,

but with added computational complexity.
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(a)

(b)

(c)

Figure 6.3: Simulation results of MIF neuron solved using forward Euler numerical inte-

gration. The results match the quantitative dynamics solved by a SPICE simulator. The

difference between the two methods is marked by grey area. (a) Alpha synaptic current

dynamics. (b) Internal states x1, x2. (c) Voltage response v.
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Table 6.3: MIF circuit parameters

Parameter Value Parameter Value

voff1 , voff2 5 mV von1 , von2 110 mV

Roff1 , Roff2 0.1 MΩ Ron1 , Ron2 1 kΩ

τ1, τ2 1 ms τsyn 0.64 ms

Erest 0 mV Ereset 50 mV

Vth 25 mV kv 0.6

C 100 pF

6.2.5 BPTT in MSNNs

The discrete-time solution in Table 6.1 is illustrated as a directed, acyclic

graph in Figure 6.4, where time flows from left to right. The MIF circuit parameters

are color-coded to show how each electrical characteristic impacts the others at the

next time step.

To train a network, a loss function is calculated using the membrane po-

tential v of the output layer at each step. Note that the adjoint method in [36] is

not adopted here, as an intermediate state is required to calculate loss and guide

training for each time step. We are concerned with the spiking output at all time

steps, and not just the final state of the system which makes BPTT a more optimal

choice. In our example network shown in Figure 6.4 with 10 output neurons, the

predicted MIF neuron is expected to spike most frequently by aiming to increase

the membrane potential across time steps, while the incorrect target should be sup-

118



pressed. As the membrane dynamics are continuous, a fully analog MSNN can be

trained without surrogate gradients, as has become ubiquitous in deep SNNs trained

via error backpropagation [57,111].

The BPTT algorithm iteratively applies the chain rule from the output

back to the leaf nodes, w, to determine the update direction to optimize the network.

Prior demonstrations treat w as the device conductance. In our case, we also do

this, but additionally generate spiking behaviors using naturally occurring MIF

dynamics rather than applying a hard threshold to the membrane potential. Not

only is this a more biorealistic representation, but it can be fully integrated using

RRAM crossbars.

6.2.6 Method Evaluation

To validate the idea of using MIF neurons in a deep learning framework,

we used a 4-layer neural network. In the input layer, there are 28× 28 = 784 input

units. The first hidden layer consists of 100 neurons followed by a ReLU activation,

and the second hidden layer contains 10 neurons followed by a ReLU activation.

Finally, the output layer consists of 10 MIF neurons. Fully connected (all-to-all)

weights are used between each layer.

The forward Euler solution of each MIF neuron was defined in PyTorch

v1.10.1 in Python 3.8, where the autodifferentiation framework was used to keep

track of gradients of all forward-mode computations on-the-fly. For training and

testing, we used the MNIST dataset [94] which consists of 70,000 samples of hand-

written digits. During the training process, 1,000 time steps are simulated for each
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input image sample. Over the 1,000 steps, the input pixel intensity is fed to the

network only at steps 0, 400, and 800 to promote sparse network activity. The neg-

ative log-likelihood loss is applied to the membrane potential, i.e., v(t) in the MIF

circuit in Figure 6.1, at each time step. In other words, the goal of the network is to

maximize the voltage across the MSNN circuit of the correct class. The total loss is

summed prior to backpropagating the error through the SPICE memristor model.

The Adam optimizer is utilized as it performs well on both recurrent networks and

stochastic problems [87]. For the Adam optimizer, the learning rate is set to 10−4,

and the initial decay rates for first and second order moments are set to β1 = 0.9,

β2 = 0.999. The learnable weights of dense layers are initialized by sampling from

a uniform distribution U(−
√
k,
√
k), where k = 1

Ni
and Ni is the number of input

features to layer i. The MSNN is trained for 40 epochs using a batch size of 200 sam-

ples. Accuracy is evaluated at every 10 training iterations. For the MNIST dataset,

the training and testing accuracies across multiple epochs are shown in Figure 6.5.

97.58% accuracy is achieved for the total MNIST test set. For a more challenging

task using real-world data, we also train our MSNN on the Fashion-MNIST dataset,

where we obtain 75.26% testing accuracy. The Fashion-MNIST dataset is rarely

demonstrated using analog MSNNs, which highlights the potential for MSNNs to

be capable of moving beyond simple MNIST classification.

We have validated this idea by training a neural network with the last layer

as MIF neurons. It is intriguing to show if we can train a neural network in which

hidden layers consist of MIF neurons as well.

An overview of this approach is shown in Figure 6.4.
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Figure 6.4: An overview of our MEMprop approach. The MSNN architecture and the

resulting computational graph consist of memristive dynamics. In this approach, both

neurons and synapses in biological neural networks are modeled using memristors. We

emulate neurons using a MIF circuit that utilizes SPICE models of commercially available,

low-cost memristors. Memristive synapses act as interconnects between layers of neurons.

Errors are backpropagated directly through SPICE circuit models of memristive neurons

such that higher-order device dynamics are fully utilized in the learning process. Memristive

dynamics are broken down into a series of composable, differentiable functions and used

during gradient descent. We used a lightweight 3-layer dense SNN with 100 hidden MIF

neurons and benchmarked it on several datasets.

6.3 Experimental Results

6.3.1 Network Architecture

To validate the use of MIF neurons in both hidden layers and output

layers of a deep learning framework, we used a lightweight 3-layer dense SNN with
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(a)

(b)

Figure 6.5: Accuracy across epochs for training and testing processes for (a) MNIST

dataset (b) Fashion-MNIST dataset.
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100 hidden MIF neurons (bottom-left of Figure 6.4). Each MSNN is simulated for

a duration of 10 ms over a span of 1,000 discrete time steps.

The input layer consists of a number of input features (784 for the static

datasets; 2,048 for a downsampled neuromorphic dataset). An alpha current gener-

ator with an amplitude weighted by the input pixel intensity (Table 6.2), weighted

by memristive synapses, inducing 100 MIF neurons to fire into another set of mem-

ristive synapses, terminated by the output layer of MIF neurons. To account for

circuit loading effects, the current injected into each MIF layer is attenuated by a

scaling factor defined in the hyperparameters.

6.3.2 Datasets

Three datasets of increasing difficulty are used to assess the MSNN: MNIST,

FashionMNIST, and the DVS128 Gesture datasets. Despite being considered a

‘solved’ problem for quite some time now, it was often the case that the MNIST

dataset was the most challenging problem that could be solved by previously re-

ported MSNNs. In most cases, a subset or simplified alternative would be used

to demonstrate pattern recognition. Here, we demonstrate for the first time that

RRAM arrays that rely on internal dynamics are still capable of processing more

challenging problems and real-world datasets, namely, FashionMNIST and neuro-

morphic data.

The MNIST [94] and the slightly more challenging FashionMNIST datasets [165]

are used to test the performance of the MSNN on temporally static data. Both

datasets consist of 60,000 28×28 greyscale images in the training set, and 10,000
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images in the test set, with 10 output classes of handwritten digits (MNIST) and

clothing items/accessories (FashionMNIST/FMNIST). During the training process,

the alpha current inject is applied at every 100 steps to promote sparse network

activity.

For a more challenging test case, the DVS128 Gesture dataset [13] is used

as a neuromorphic baseline to test the MSNN’s performance on event-driven data

filmed with an event-based camera [114]. Each sample only processes sufficient

changes in luminance, and consists of 11 different output classes of hand gestures,

such as clapping, arm rotation, and air guitar. Each sample is downsampled to a

resolution of 32×32×2, where the channel depth of 2 accounts for on and off spikes

(positive and negative luminescence changes). The training data is integrated to fit

within 100 discrete time steps, and the testing data is integrated within 360 time

steps, to account for GPU memory constraints.

6.3.3 Training Process

The loss used is the negative log-likelihood of the membrane potential v(t)

(Figure 6.4) of the output layer. The network objective is to increase the voltage

across the MIF neuron associated with the correct class. The total loss across time

steps is summed prior to backpropagating the error through the SPICE memristor

model using the Adam optimizer [87]. The MSNNs are each trained for 50 epochs.
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6.3.4 Results

The final test set accuracy is measured across 50 epochs over 5 trials for

each dataset with early stopping applied, and the average result is shown in Fig-

ure 6.6 with error bars.

The average accuracy on the MNIST dataset reaches 93.08%, which is very

high among fully MSNN considering that almost no required peripheral circuitry

for hardware implementation and far exceeds other MSNN baselines that have been

previously reported. Although it remains somewhat below non-memristive baselines

which can obtain greater than 97% on the MNIST dataset using a similar architec-

ture, such models are typically computed using fixed- and full-precision arithmetic

rather than depending on naturally arising memristive dynamics.

Where our approach tends to shine is on real-world data that goes be-

yond the simplicity of handwritten digit recognition. Our fully MSNN performance

holds for the FashionMNIST dataset, where we obtained an average of 84.77%, and

also for the DVS128 Gesture dataset, with 82.63%. This provides the first success-

ful demonstration of training an MSNN on a neuromorphic dataset by relying on

naturally occurring device dynamics for spike emission.

6.4 Discussion and Conclusion

6.4.1 Area, Power, and Latency

With our fully MSNN approach, one of the main advantages is that we

avoid the need for ADCs, and subsequently, we do not need to multiplex or serialize
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Figure 6.6: Test set accuracies with error bars over 5 trials. The mean accuracy and stan-

dard deviation for each dataset are (1) MNIST: x̄ =93.08, σ =0.07 (2) FMNIST: x̄ =84.77,

σ =0.13 (3) DVS128: x̄ =82.63, σ =0.95.

data. To quantify the potential improvement in terms of power, area, and latency, we

assume a dense 3-layer architecture of 784-100-10 neurons. Such a network requires

110 MIF neurons and 79.4k memristive synapses. For each synaptic weight, a pair

of devices are required to implement current subtraction to represent both positive

and negative weights. Given the array structure in Figure 6.2, a total of 0.16M

RRAM cells are required, which needs 10 RRAM tiles of 128×128 in size.

To provide an area estimation at a 65-nm technology node, the size of each

RRAM tile with 1T1R cells is 2.77×10−3 mm2, and a complete array will occupy

2.77×10−2 mm2 [151]. If a bit-line current summation approach was adopted for a

dense ANN with 8-bit networks, a current-mode SAR ADC each occupies 3×10−3

mm2, where 4 ADCs are shared across the column wires for each crossbar. In such a

case, the improvement of our approach without converting and serializing activations

by adopting a spike-based approach is a factor of 5.33×.

Estimating the power consumption of asynchronous, spike-based workloads

requires profiling the spiking activity in the network for a given dataset. Using the
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MNIST dataset, we found that an average of 2% of neurons are spiking at any

given time in the network. This may be modulated to promote varying degrees of

excitation in the network, for example, by applying a spike-dependent regularization

term to the objective function. The average resistance in our network is close to

the midpoint between the on/off resistances: Roff = 100 kΩ, Ron = 1000 Ω, average

Rave = 50.5 kΩ. The voltage across each device when emitting a spike follows a

sharp peak of von = 110 mV, a refractory period where the potential drops down to

voff = 5 mV, and the average value assuming the spike is linearized for the window

of interest is vave = 57.5 mV can give an estimate of the average power

Pave =
v2ave
Rave

×Ncells × 2%, (6.3)

which is then numerically evaluated for a single 128×128 tile to be 21.45 µW, and

0.21 mW when accounting for all 10 tiles. When accounting for data conversion

overhead where each 8-bit ADC consumes 2×10−4 W, the total power consumption

increases to 8.21 mW. Our approach can offer an improvement of 38.30×.

We estimate latency by driving ADCs at an operating frequency of 40MHz.

With 4 ADCs converting 64 column currents (assuming 2 bit-lines per activation),

32 data-lines are grouped to share a driving DAC which generates an 8-bit serialized

input operating across 8 distinct cycles, evaluating to input data latency of 6.4µs.

At the output, 32 bit-lines each share an ADC where 16 column currents must be

converted, increasing the latency by 0.4µs. Further assuming that data conversion

dominates latency, this means that it takes 6.8µs per vector-matrix multiplication

(VMM). A 1,000 time step simulation, as used in our network, will extend this to a
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latency of 6.8 ms. Additionally, each input is fed as an alpha current signal with a

measurable latency of around 0.64 ms, giving the total latency for the conventional

approach of 7.44 ms, as opposed to MEMprop which only requires the additional

switching time of the memristors (on the order of 100s of nanoseconds added to

the alpha current latency). In our approach, currents and voltages are generated

without the need for conversion or serialization, so there is no added ADC latency.

The alpha current injection and response already account for RC delay through the

memory array.

A summary of the above-mentioned comparison is shown in Table 6.4.

Table 6.4: Power, area, and latency improvement in our MSNN

Aspect Our method Mixed-Signal Improvement

Area 2.77 mm2 14.77 mm2 5.33×

Power 0.21 mW 8.21 mW 38.30×

Latency 0.64 ms 7.44 ms 11.63x

6.4.2 Comparison

A comparative analysis against other memristive networks is provided in

Table 6.5. Where metrics are not provided in the original sources (e.g., chip area,

power consumption, and inference latency), we have made an estimate where suf-

ficient data has been provided to extrapolate these values. The closest MSNNs to

our work are briefly described below.
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In Ref. [150], a convolutional neural network with analog neurons and

digital spiking at the input layer is adopted. Each analog neuron consists of four

transmission gates, seven operational amplifiers, a comparator, and a memristor.

While this is substantially more complex than the MIF neuron, the large overhead

per neuron is offset by using time-division multiplexing access (TDMA) to treat a

single physical neuron as multiple algorithmic neurons.

Wijesinghe et al. also adopt a convolutional SNN using stochastic switch-

ing to implement probabilistic firing, which is a natural fit for devices that switch

based on random processes [162]. A non-spiking ANN is first trained and subse-

quently converted to an SNN. This approach is known to perform optimally for

static datasets on reasonably deep SNNs, but it sets an upper limit of performance

such that the SNN accuracy will not surpass the accuracy of the ANN. Furthermore,

ANN to SNN conversion is yet to show the success on neuromorphic datasets [57].

The total area of the design is reported to be 3 mm2, and the latency for a single

spike is 0.21 µs.

In Ref. [51], a 3-element neuron is constructed, consisting of a resistor, a

memristor, and a capacitor, which is closest in spirit to our own approach here. The

neuron is parameterized to fit a LIF neuron model, which relies on hard-thresholded

spike generation which is a non-differentiable function. The problem is circumvented

by utilizing surrogate gradient descent, and results in a test set accuracy of 83.2%.

This comparatively lower accuracy highlights the challenges of adopting neuristor-

like dynamics, and the difficulty of mapping conventional training methods, both

supervised (surrogate gradient descent) and unsupervised (STDP), to dynamical
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Table 6.5: Comparison among fully MSNNs
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Table 6.6: Test set accuracies for the MNIST, FashionMNIST, and DVS128 Gesture

Datasets.

Dataset Batch LR Best Avg. (n = 5) σ

MNIST 128 1e-4 93.18 93.08 0.07

FMNIST 128 1e-4 84.79 84.77 0.13

DVS-128 16 1e-4 83.21 82.63 0.95

LR: learning rate η. 2 σ: standard deviation.

RRAM arrays. We expect the lack of a direct correspondence between thresholded

LIF neurons and memristive neuron spiking is what resulted in the accuracy degra-

dation, though it sets the stage for developing new training methods that account

for dynamical, continuous-time switching into the computational graph of the net-

work. In absence of power consumption metrics, we apply the same assumptions as

in our MSNN architecture, namely, that 2% of the network is active at any given

time, and estimate the total power consumption is 0.63 W.

No surrogate gradients or associated approximations are required due to

the continuous-time nature of the spiking behavior in our experiments. The absence

of ADCs/DACs in conventional full-precision/fixed-precision bit-line current sum-

mation approaches reduces the computational overhead. This is due to the use of

MEMprop. More details of our experiments are listed in Table 6.6.
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6.4.3 Concluding Remarks

To the best of our knowledge, this is the first work that has mapped low-

level, analog SPICE dynamics directly into an acyclic computational graph that

is compatible with the backpropagation algorithm. Directly mapping the behavior

of dynamical RRAM arrays into an autodifferentiation framework has enabled us

to achieve promising performance on real-world datasets on fully MSNNs, beyond

simple pattern recognition and handwritten digit classification. By harnessing a

blend of the intrinsic behaviors of memristors and the sparse network activity of

SNNs, the power consumption and latency of our approach surpass those of all

other similar methods without compromising on accuracy.

6.5 Chapter Summary

In this chapter, we push beyond the classical limits of fully MSNNs, and

demonstrate competitive performance on real-world datasets that go beyond static

pattern recognition using an MSNN that includes both memristive synapses and

memristive neurons. We achieve this by combining higher-order memristive dynam-

ics with the gradient optimization process. While fault injections during weight

updates have been accounted for in the past, this is the first time nonlinear mem-

ristive dynamics are included within the computational graph used in the gradient

calculation process, enabling more precise fine-tuning of network parameters.

The action potentials generated by memristive neurons are a result of non-

linear ion-driven dynamics, which are functionally equivalent to a chain of nonlinear
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operations in a computational graph. As each spike is a result of naturally aris-

ing physics-driven phenomena rather than discrete switching in digitally-composed

SNNs, all functions are fully differentiable and the gradient is well-defined. There-

fore, there is no need to resort to surrogate gradient approaches that have become

ubiquitous when training SNNs. The voltage action potential is scaled by mem-

ristive synapses, and the resultant current drives downstream layers of memristive

neurons.

A summary of our contributions is provided below:

• We present a fully MSNN utilizing both memristive neurons and synapses,

and is shown to achieve state-of-the-art accuracy for lightweight dense network

architectures on real-world datasets. These datasets are more complex than

what has been demonstrated in the past on MSNNs while using naturally

arising physics-driven phenomena in RRAM;

• We propose MEMprop, the application of error backpropagation directly to

SPICE circuit models of memristive neurons such that higher-order device

dynamics are fully utilized in the learning process. Memristive dynamics are

broken down into a series of composable, differentiable functions and used

during gradient descent;

• MSNNs are shown to be trainable without the need for gradient approxima-

tions around hard thresholds, such as with surrogate gradient descent, and

• The need for ADCs is amortized by relying entirely upon analog current in-

jection at the input, and analog action potentials at the output.
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In doing so, the rich dynamics of nonlinear devices can be fully leveraged in

larger systems, in a way that moves far beyond applying fault injection and variation

into the training process. We achieve state-of-the-art accuracy for lightweight dense

network architectures on several static and neuromorphic datasets, which pushes

the fringe of what previous MSNNs have shown to be capable of.

6.6 Conclusions

This dissertation investigates Memristive Spiking Neural Network (MSNN)

-based architectures and algorithms, including memristive neurons, memristive synapses,

MSNNs that can process auditory signals, fully MSNNs that can learn with Spiking-

Time-Dependent Plasticity (STDP) and Backpropagation Through Time (BPTT).

A minimum circuit Memristive Integrate-and-Fire (MIF) model was developed in a

SPICE-level simulator and ported to Python for large-scale neural network simula-

tion.

In chapter one, neuromorphic computing, memristors, and SNNs are in-

troduced as the background of our work.

In chapter two, we dive deeper to show more general concepts behind the

memristor – i.e., memristive devices and systems.

In chapter three, we demonstrated how non-volatile memristors can be

used to mimic synapses with Long-Term Plasticity (LTP), which often occurs in

learning phenomena and volatile memristors can be used to mimic synapse with

Short-Term Plasticity (STP). We utilized a volatile memristor to implement STP

synapse and emulated a sound localization (SL) MSNN. Alpha synaptic current and
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Leaky Integrate-and-Fire (LIF) neuron models are adopted to make our neuronal

behavior as realistic as possible. Lateral inhibition, one of the basic functions of

biological neurons, is used for clearer SL with improved energy efficiency. We eval-

uated the localization accuracy by feeding the different frequencies of sound signals

to the MSNN, which achieved a 1-degree resolution.

In chapter four, the Hodgkin–Huxley (HH) model and LIF models are de-

scribed, followed by the proposal of our MIF model. The MIF1 model is used for

neuronal signaling with two voltage levels: the spike-peak, and the rest potential.

The second model, MIF2, is also presented, which promotes local adaptation by ac-

counting for a third refractory voltage level during hyperpolarization. We show both

compact models are minimal in terms of the number of circuit elements and integra-

tion area. Using the MIF and MIF2 models, we postulate the design of a memristive

solid-state brain with an estimation of its surface area and power consumption. An-

alytical projections show that a memristive solid-state brain could be realized within

(i) the surface area of the median human brain, 2,400 cm2, (ii) the same volume

of the median human brain, and (iii) a total power budget of approximately 20 W

using a 3.5 nm technology. Distinct from the past decade of memristive neuron

literature, our benchmarks are attained using generic commercially available mem-

ristors that are reproducible using off-the-shelf components. We expect this work

can promote more experimental demonstrations of memristive circuits that do not

rely on prohibitively expensive fabrication processes.

In chapter five, fully MSNNs consisting of MIF neurons and memristive

STDP synapses are elaborated. We present a fully MSNN consisting of physically-
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realizable memristive neurons and memristive synapses to implement an unsuper-

vised STDP learning rule. The system is fully memristive in that both neuronal

and synaptic dynamics can be realized by using memristors. The neuron is imple-

mented using the SPICE-level MIF model, which consists of a minimal number of

circuit elements necessary to achieve distinct depolarization, hyperpolarization, and

repolarization voltage waveforms. The proposed MSNN uniquely implements STDP

learning by using cumulative weight changes in memristive synapses from the voltage

waveform changes across the synapses, which arise from the presynaptic and post-

synaptic spiking voltage signals during the training process. Two types of MSNN

architectures are investigated: 1) a biologically plausible memory retrieval system,

and 2) a multi-class classification system. Our circuit simulation results verify the

MSNN’s unsupervised learning efficacy by replicating biological memory retrieval

mechanisms, and achieving 97.5% accuracy in a 4-pattern recognition problem in a

large-scale discriminative MSNN.

In chapter six, fully MSNNs consist of MIF neurons and memristive STDP

synapses are illustrated. We present MEMprop, the adoption of gradient-based

learning to train fully MSNNs. Our approach harnesses intrinsic device dynamics

to trigger naturally arising voltage spikes. These spikes emitted by memristive dy-

namics are analog in nature, and thus fully differentiable, which eliminates the need

for surrogate gradient methods that are prevalent in the Spiking Neural Network

(SNN) literature. Memristive neural networks typically either integrate memris-

tors as synapses that map offline-trained networks, or otherwise rely on associative

learning mechanisms to train networks of memristive neurons. We instead apply the
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BPTT training algorithm directly on analog SPICE models of memristive neurons

and synapses. Our implementation is fully memristive, in that synaptic weights and

spiking neurons are both integrated on resistive RAM (RRAM) arrays without the

need for additional circuits to implement spiking dynamics, e.g., Analog-to-Digital

Converters (ADCs) or thresholded comparators. As a result, higher-order electro-

physical effects are fully exploited to use the state-driven dynamics of memristive

neurons at run time. By moving towards non-approximate gradient-based learning,

we obtain highly competitive accuracy among previously reported lightweight dense

fully MSNNs on several benchmarks.
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