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Executive Summary

California has long recognized the potential for applying electronic and other

transportation systems technologies to address the significant mobility and economic challenges

in the state, and the rest of the nation. Through an aggressive Advanced Transportation Systems

Program, Intelligent Transportation Systems (ITS) are being researched, built, and tested for

deployment. These ITS will address today s transportation needs and those of the twenty-first

century. An important element of this program is the California Advanced Transportation

Management Systems Testbed (California ATMS Testbed) located in Orange County,

California1.

The Testbed is an integrated approach to the development and deployment of advanced

technologies in the management of urban transportation. Its operation is based on real-time,

computer assisted traffic management and communication. Management responsibility for the

development and implementation of the Testbed is vested in the University of California at Irvine

(Institute of Transportation Studies), being the microscopic traffic simulator, Paramics, the

primary simulator tool for the Testbed development environment.

 Paramics is a shell  or framework  for a comprehensive and extensive transportation

simulation laboratory. Paramics offers important and unprecedented features, such as high

performance and scalability, to handle realistic real world traffic networks under ITS.

Nevertheless, Paramics has its own limitations, particularly relating to the model s ability to

interface with dynamic O-D estimation. This Work addresses the continuing effort to expand the

Paramics capabilities, particularly with the dynamic O-D estimation problem, making it a more

complete tool to evaluate the expected net benefits of ATMS applications.



Introduction

The problem of dynamic estimation and prediction of freeway origin-and-destination (O-

D) matrices has received increasing attention lately because of its applicability to on-line traffic

management systems. Time-dependent O-D matrices are essential input for advanced traffic

management and information systems.  Applying the information contained in time-varying O-D

matrices, it is possible to project traffic demands up to selected time horizon and predetermine

optimal control and routing policies that achieve some desirable system objectives. Therefore, a

capability for effectively estimating time-varying O-D demands can significantly improve the

operational efficiency of on-line traffic management systems. This capability can be implemented

and studied applying traffic simulators.

The prime objective of using traffic simulators within an ITS context is to serve as tools

for dynamic transportation management. Simulators can play two distinct roles: (a) as an off-line

evaluation/design tool, and (b) as an on-line control/guidance tool.  Both roles cover numerous

ATMS applications such as: provision of traveler information and route guidance, freeway

adaptive control (adaptive signal control, adaptive ramp metering, etc.), incident detection and

management, automated toll collection, and assessment and management of environmental

impact of transportation design.  The off-line role is fairly easier, as real-time operation is not as

pressing a need as it is the case for the on-line role. However, being a simulator fast enough, it

can be used for both functions (off-line and on-line). Since those functions are inherent objectives

of any Traffic Management Center, and of the ATMS Testbed in our particular case, the

efficiency and scalability of the simulator is regarded as a key factor to analyze the transportation

network in study.

Transportation networks are dynamic systems that exhibit continuous changes in both the

supply and the demand conceptual sides.  Unexpected events inevitably occur, changing the

supply side of the network.  Any intervention by the Traffic Management Center can change the

supply side, motivating drivers to change their behavior in several ways, including en-route and

pre-trip route re-choice (within the day or from day to day). Similar dynamics take place

regarding drivers  choice of departure times in response to the dynamically changing supply

conditions.  The collective user behavior and response in this fashion give rise to dynamic

                                                                                                                                                                    
1 The Testbed encompasses two contiguous sub-areas in Orange County, including virtually all of the major
decision points for freeway travelers in the region.



demand profiles.  Therefore, for any simulator to prove useful for dynamic transport

management, it should be capable of:

 (i) capturing the dynamics of supply, in terms of the detailed configuration of the

transportation network, and its performance in response to the Traffic Management Center

intervention;

(ii) capturing the dynamics of demand, in terms of dynamic user behavior in response to

observed supply, either directly or via traveler information systems;

(iii) capturing the complex dynamic interaction between supply and demand;

(iv) performing an analysis faster than real-time to allow for proactive (based on

predicted conditions) rather reactive (based on observed conditions) dynamic transport

management.

This Work implements a dynamic O-D estimation algorithm for the Paramics microscopic

simulator. The next sections give not only a complete description of the O-D estimation problem

but also a review of previous research related to the dynamic O-D estimation issue. Finally, a

description of the chosen algorithm is described.



Modeling Dynamic OD Demand Estimation

Overview of the Dynamic OD Estimation Problem

For many network problems it is important to know not only the link flows but also the

origins and the destinations of the trips flowing in the system. Examples of small networks where

some of the Origin-Destination table (O-D table) could be useful are: traffic circles (or

roundabouts), weaving sections of freeways which can be viewed as networks with five links, two

origins and two destinations, and ordinary street intersections which can also be modeled as small

networks. In order to devise effective designs and control strategies for these systems, O-D

information is necessary because the systems  traffic performance depends heavily on the

distribution of the vehicle paths across O-D s, e.g., on the turning percentages for an intersection.

If traffic conditions were time-independent then the relevant information could be

summarized by means of an O-D trip table of stationary flows. However, for time-dependent O-D

tables, the information required from field data is increased manifold, and the demand estimates

obtained for this case can be unlikely of being very accurate, unless a dynamic O-D profile is

applied (Daganzo (1997)). Specifically, with the information contained in the time-varying O-D

matrices, it is possible to project network users  travel demands up to a time horizon of interest

and pre-determine optimal control and routing policies that achieve some desirable system-wide

objectives.

Time-dependent O-D distributions are the outcomes of motorists  trip plans, given network

traffic conditions and users  specific characteristics. For on-line traffic management these O-D

matrices can be obtained by using information contained existing O-D data and link traffic counts

measured at each time interval. Those O-D data are estimates of travel demands during previous

time intervals and, therefore, are associated with random errors in a dynamic system. Link traffic

counts, on the other hand, suffer from measurements errors, and so forth. A dynamic O-D

estimation and prediction model that predicts time-varying O-D demands from these two sources

of information should recognize the uncertainty inherent in the dynamic traffic system and

provide the flexibility to accommodate different degrees of error.



The problem is to estimate time-dependent O-D matrices given discrete time series of on-

ramp, off-ramp, and mainline traffic counts for a network system. Two basic features characterize

the problem:

(a) the dynamic O-D estimation is in general an undetermined problem, because at each

time interval the number of system equations that formulate the relationship between the

time-varying O-D flows and observed link traffic counts is usually far less than the number of

O-D pairs. All static models in the literature make use of some previous matrices or presumed

distribution to obtain a unique solution. In contrast, most dynamic methods employ time

series of traffic counts to set up more constraints so that the system equations become

overdetermined. A unique O-D matrix can thus be obtained with recursive or nonrecursive

system identification techniques (Nihan and Davis (1989)).

(b) The link traffic counts measured at each time interval not only are composed of

associated O-D flows but also should take the time-lag effect into consideration. In other

words, the traffic count measured at exit j during time interval t  is the summation of O-D

flows originated from all origins (entrances) upstream of j during time intervals t, t-1, , that

arrived at exit j during time interval t. Therefore, a set of system equations is needed to

describe the spatial and temporal relationships between a vector of time-varying O-D flows

and the observed link traffic counts.

Therefore, time-dependent O-D matrices represent network users  trip demands given network

traffic conditions. For a freeway system, for instance, the demand for a given O-D pair represents

the number of vehicles entering the freeway segment from an upstream entrance and destined to a

downstream exit. For a general network, time-varying link traffic counts (e.g., entrance, exit, and

mainline section counts) are available for some links from traffic surveillance systems. The

problem is to determine time-independent O-D matrices given discrete time series of entrance,

exit, and mainline traffic counts for a network system.

Previous Models Applied for the Dynamic O-D Estimation Problem

In the literature, various approaches have already been applied for estimation and predictions of

dynamic O-D matrices. They can be categorized into two families: statistical inference

approaches and state space models. A large number of statistical inference methods in this field

have been proposed. Maher (1983) presented a Bayesian statistical approach to estimate time-

varying O-D flows for both intersections and small networks. The basic assumption of this



method is the multivariate normality of both existing information and observations and accurate

knowledge of the assignment matrix based on a proportional assignment algorithm.

Cremer and Keller (1987) and Nihan and Davis (1987) have presented a number of least squares

(LS) and weighted (generalized) LS procedures for the estimation of dynamic O-D flows on small

networks or intersections. These models are based on the assumption that the time taken by

vehicles to traverse an intersection or network either is small and can be ignored or is equal to

some fixed number of time intervals (constant speed assumption), which is not a suitable

assumption for a freeway or a general network, especially one in the presence of traffic

congestion. Nihan and Davis (1989)  presented approaches  based on both prediction error (PE)

minimization and maximum likelihood (ML) to estimate the turning proportion at an intersection.

The research demonstrated that the ML algorithm produces biased but more efficient estimates,

whereas the PE minimization approach generates unbiased but less efficient estimates. Bell

(1991) considered platoon dispersion in a simple network and proposed two real-time O-D flow

estimation models based on the constrained recursive least squares method. The unknown

variables to be estimated are both O-D proportions and platoon dispersion fractions.

A Markovian freeway traffic model was presented by Davis (1993) estimating exit traffic that

assumed the exit traffic of a given freeway section depends only on its current total traffic for a

time interval. Dynamic O-D matrices are obtained by minimizing the difference between the

observed and predicted exit traffic using a nonlinear least squares method. Hellinga and Van

Aerde (1994) have presented an analytic approach for determining estimates of the mean O-D

demands and the reliability of such estimates of the mean O-D demands and the reliability of such

estimates on the basis of statistical sampling theory. The best estimate of the total number of

departures between any origin and destination (on O-D pair) is the number of probe departures

between them, scaled by the estimate of the level of market penetration. The sampling error of the

estimator is a function of the sample size and the market penetration rate of probe vehicles. This

estimator, however, may give biased and inefficient estimates because it assumes uniform

expansion of market penetration across all O-D pairs (Ben-Akiva, Ashok and  Yang (1994)).

Another category of methods for estimating dynamic O-D flows is state space models. The

objective of state estimation is to track variables that characterize some dynamic behavior, by

processing observations afflicted by errors. State estimators rely on a model to relate the state

variables to each other, to the observations and to the forcing (Norton (1986)).

The Kalman Filtering (KF) algorithm is the most typical state space model that has been

intensively investigated. Cremer and Keller (1987) have presented a KF algorithm that uses a



random walk model as a dynamic equation. They concluded that if the system is not completely

observable, the KF algorithm generates biased estimates. Simultaneously, Nihan and Davis

(1987) proposed a similar KF form. Their paper concluded that the KF estimator shows faster

convergence than the gradient method and can be more robust with respect to the choices of

initial values and other system design parameters. Okutani (1987) applied the KF algorithm to

estimate dynamic O-D flows in a small network in which the state variables are those time-

dependent O-D flows. The empirical results showed that the more link traffic counts are

observed, the more accurate the estimator results. Ashok and Ben-Akiva (1993) provided an O-D

matrix updating framework that formulates the problem as a Kalman filtering in which the state

vector consists of O-D flows deviations from previous estimates based on historical data. In the

case study, the authors assumed that the assignment matrices are time-invariant because of the

constant speed assumption, an assumption that is not realistic in view of traffic flow variations.

Chang and Wu (1994) presented an on line freeway estimation algorithm that is also based on the

KF algorithm. This model considers the effect of travel time variability and uses mainline and on-

ramp traffic information (counts) in the filtering process. The state variables to be estimated are

the fractions of O-D flows and the assignment proportions, which might violate the normality

assumption of the state variable. Furthermore, there is no guarantee that the state variable

estimates are between 0 and 1.

An improved KF method for estimating dynamic freeway O-D probabilities was proposed by

Zijpp and Hamerlag (1994). This model provides a way to approximate the noise variance in the

KF algorithm by using a trip generation model. The simulated and empirical results indicated that

the improved KF method combined with a historical data base performs better than other

approaches. Wu and Chang (1995) presented a recursive-based framework to estimate dynamic

O-D flows in a small network. This model considers travel-time variability and incorporates the

measurements from dynamic screenline flows to enrich the information used to determine the

time-varying O-D flows. The simulation results demonstrate the same findings that Okutani

(1987) reported earlier.

As this literature review demonstrates, state-of-the-art methods for the estimation and prediction

of dynamic O-D flows from link traffic counts lack the capability of predicting the effects of

demand diversion O-D flow distributions. Moreover, some of the reviewed methods apply the O-

D proportion instead of the O-D flows as state variables. Unfortunately, there is no guarantee that

the natural constrains can be satisfied when this is done.



A KF based dynamic algorithm freeway O-D estimation algorithm with route switching and time-

varying traffic characteristics considerations is presented in Hu et al. (2000). Their model extends

the previous research in the field (Ashok and Ben-Akiva (1993)) by incorporating dynamic traffic

characteristics and a behavioral component within the KF algorithm. The effects of traffic

congestion or traffic information provided to motorists are explicitly captured by incorporating a

route-switching model. Because of the difficulty in acquiring real-world O-D data that consist of

demand diversion behavior, the proposed methodology is evaluated through simulation

experiments. Preliminary test results demonstrated the capability of the proposed algorithm in

predicting dynamic freeway O-D demands. Those results also illustrated the importance of using

time-varying parameters and accounting for the effect of traffic information in the estimation and

prediction of dynamic O-D demands.

The work developed for task order TO 4121 implements the algorithm by Hu et al. (2000) to

predict and forecast the right O-D demands in a network. The next section of this report describes

in detail the algorithm proposed by Hu et al. (2000).

Description of the Algorithm Implemented

The dynamic traffic system studied by Hu et al. (2000) is represented by a linear, finite

dimensional stochastic system as depicted in Figure 1.

 Figure 1 - Freeway section studied by Hu et al. (2000).



The system can be described by the following state space equations:

Xk+1=•k
r=k-p+1 fk

r Xr + wk (1)

 Zk = =•k
r=k-u ak

r Xr + vk (2)

where:  - xk+1 is an n-vector of O-D flows at time k+1;

              -zk is an m-vector of link traffic counts measured at time k (m†n);

    - fk
r is the (nXn) transition matrix which describes the effects of previous O-D flows x r

on current O-D flows xk+1;

   - a k
r is the (mXn) assignment matrix whose entries specify the contributions of O-D

flows xr and zk;

    - w k and v k are the n-vector input (random) and m-vector output (measurement) noise

processes, respectively.

The noise processes (wk and vk) are assumed to be individually white noise and Gaussian

processes with zero means and known covariance matrices, i.e. Qk and Rk.

In their work, Hu et al. (2000) termed Eq. (1) as the transition equation and it was formulated as

an autoregressive model of order p. et al. (2000) also termed Eq. (2) as the measurement equation,

describing the temporal relationships between the dynamic O-D flows and the observed link

traffic counts.

Given the above described system, the goal of the Kalman filtering algorithm is to obtain an

estimate of xk (the n-vector of O-D flows) using measurements z0, z1, , zk  (the m-vector of link

traffic counts). Mathematically, Hu et al. (2000) seeked to recursively estimate the following

system of state variables:

Xk|k-1=E[xk|z0,z1, ,zk-1 ]=E[xk|Zk-1] (3)

Xk|k= E[xk|z0,z1, ,zk ]=E[xk|Zk] (4)



and their corresponding error covariance matrices can be described as:

•k|k-1 = E[(xk-xk|k-1)( xk-xk|k-1)
T] (5)

•k|k-1 = E[(xk-xk|k)( xk-xk|k)
T] (6)

where: -  xk|k-1 is the state estimate given observations up to time k-1 being termed the one-step

ahead  prediction and,

 - x k|k is the state estimate given observations up to time k being termed the filtered

estimate (see Anderson and Moore (1979)).

Hu et al. (2000) assumed that the initial conditions, X0 (the mean of the initial state) and P0 (the

covariance of the initial state X0) are given and then the Kalman filter can recursively estimate the

state variables by applying the following equations:

•k|k-1 = F k•k|k-1 Fk
T + Qk (7)

Kk = • k|k-1Ak
T[Ak •k|k-1 Ak

T + Rk ]
-1 (8)

•k|k-1 = • k|k-1 — KkAk •k|k-1 (9)

Xk|k-1 = Fk Xk|k-1 (10)

Xk|k =Xk|k-1 + Kk [zk-AkXk|k-1] (11)

As the transition and measurement equations are given by Eqs. (1) and (2), the dependence of the

current state and measurement vectors on previous state vectors of all prior intervals up to

s=max(p,u) is introduced. Hu et al. (2000) defined p as the order of the transition equation, which

is an autoregressive time series model and, u as the maximum number of time intervals required

to travel between any O-D pair of the entire freeway segment. Besides, Fk (nsXns) and Ak (mXns)

represent the augmented transition and assignment matrices, respectively.

By the description of the Kalman filtering algorithm described above one can see that it

requires the input and the knowledge of input data (i.e., input matrices). For instance, the matrices

zk Ak are the link traffic counts and the assignment matrices, respectively, that must be given as

inputs to the algorithm. The following section describes how Hu et al. (2000) obtained their input



data and the approach applied in this research to obtain from Paramics the necessary data as

input.

Implementation of the Kalman Filtering Algorithm

The implementation of the Kalman filtering algorithm in Hu e al. (2000) was made in

connection with DYNASMART, a mesoscopic traffic simulator (Mahmassani et al. (1993)). In

some sense, that made Hu et al. (2000) implementation easier than the one in this research, as it is

possible, for instance, to obtain the assignment matrix directly from DYNASMART.

At the start of the implementation of this project (task Order TO 4121), it was also considered

the possible application of DYNASMART in connection with Paramics. It should also be added

that such implementation had already been made in the past (in a small scale) and was called

Paradyn (Paramics and  Dynasmart). But, after having discussed the problem with some

colleagues, it was concluded that such implementation would not have been so direct and, besides

that, there would be the need to provide further training to Caltrans (the main sponsor of this

project). Therefore, a new approach was developed being decided to develop API s (Advanced

Programming Interfaces) to obtain the necessary data from Paramics as input to the algorithm

and, then return the results (the new O-D table) back to Paramics (in Paramics format).

In this project (Task Order TO 4121), the algorithm described in Hu et al. (2000) was

developed in C language. The developments of the API s to interface the implemented KF

algorithm with Paramics were also started. The full implementation of the API s and the analysis

of the results obtained for a network were developed in Task Order TO 4131. A discussion of the

development of a dynamic O-D estimation approach by Quadstone (the developer of Paramics) is

also made in Task Order 4131.



CONCLUSIONS

An important element of California s strategy in the development of a real world

transportation testbed is the California ATMS Testbed. It evaluates the potential of new

technologies and strategies in the management of advanced transportation systems. The analysis

of the California ATMS Testbed is made by Paramics, the microscopic traffic simulator.

The application of the Paramics simulator tool shows its flexibility and sensitivity to a variety

of issues regarding real-time information, and provides a useful environment for testing and

applying information supply strategies. This work extends the capabilities of Paramics, making it

a more robust protocol to analyze the day to day of the urban transportation challenges.

Implementing the dynamic O-D estimation and prediction of this project will make the Paramics

software a more realistic protocol.

This project studied a variety of previous research related to the ynamic O-D estimation

problem. This research also chose to implement a paritular Kalman filtering algorithm that uses

time-varying assignment matrices generated by applying Paramics.  To apply the described

algorithm with Paramics, the development of API s (Advanced Programming Interfaces) have

also to be done. The continuation of this project is described in Task Order 4131, where a

description of Quadstone (the developer of Paramics) own efforts to develop a O-D estimation

procedure is also discussed.
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