
UC Irvine
UC Irvine Previously Published Works

Title
REAL BANACH JORDAN TRIPLES

Permalink
https://escholarship.org/uc/item/0n655821

Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 122(1)

ISSN
0002-9939

Authors
DANG, TC
RUSSO, B

Publication Date
1994

DOI
10.2307/2160852

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0n655821
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


  American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the 
American Mathematical Society.

http://www.jstor.org

Real Banach Jordan Triples 
Author(s): Truong C. Dang and Bernard Russo 
Source:  Proceedings of the American Mathematical Society, Vol. 122, No. 1 (Sep., 1994), pp. 135-

 145
Published by:  American Mathematical Society
Stable URL:  http://www.jstor.org/stable/2160852
Accessed: 21-12-2015 11:35 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 194.27.18.18 on Mon, 21 Dec 2015 11:35:03 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/publisher/ams
http://www.jstor.org/stable/2160852
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 122, Number 1, September 1994 

REAL BANACH JORDAN TRIPLES 

TRUONG C. DANG AND BERNARD RUSSO 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. A theory of real Jordan triples and real bounded symmetric domains 
in finite dimensions was developed by Loos. Upmeier has proposed a definition 
of a real JB*-triple in arbitrary dimensions. These spaces include real C*- 
algebras and JB*-triples considered as vector spaces over the reals and have 
the property that their open unit balls are real bounded symmetric domains. 
This, together with the observation that many of the more recent techniques in 
Jordan theory rely on functional analysis and algebra rather than holomorphy, 
suggests that it may be possible to develop a real theory and to explore its 
relationship with the complex theory. 

In this paper we employ a Banach algebraic approach to real Banach Jordan 
triples. Because of our recent observation on commutative JB*-triples (see 
?2), we can now propose a new definition of a real JB*-triple, which we call 
a J*B-triple. Our J*B-triples include real C*-algebras and complex JB*- 
triples. Our main theorem is a structure theorem of Gelfand-Naimark type for 
commutative J*B-triples. 

1. REAL BANACH JORDAN TRIPLES 

Definition 1.1. A Banach Jordan triple is a real or complex Banach space U 
equipped with a continuous bilinear (sesquilinear in the complex case) map 

U x U E (x, y) -*x ly E 2(U) 

such that with {xyz} := xly(z) we have 

(1) {xyz} = {zyx}, 
(2) {x,y,{uvz}}+{u,{yxv},z}={{xyu},v,z}+{u,v,{xyz}}. 

A Banach Jordan triple U over C is said to be a JB*-triple if 
(a) for any x E U the operator xox from U to U (that is, xlx(y) = 

{xxy}, y E U) is hermitian (i.e., exp itxox is an isometry for all real t) with 
nonnegative spectrum, 

(b) the following norm condition holds 

(3) lix[xil = I1xII2. 

Received by the editors December 1, 1992; the contents of this paper were presented by the first 
author at the Great Plains Operator Theory Symposium, Texas A&M University, April 1991. 

1991 Mathematics Subject Classification. Primary 46J99, 17C65. 

? 1994 American Mathematical Society 
0002-9939/94 $1.00+ S.25 per page 

135 

This content downloaded from 194.27.18.18 on Mon, 21 Dec 2015 11:35:03 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


136 T. C. DANG AND BERNARD RUSSO 

We note that equations (1) and (2) are the defining algebraic identities for a 
Jordan triple system. 

Our first result was originally stated with some extra hypothesis. The au- 
thors wish to thank Jonathan Arazy for pointing this out and for suggesting the 
following proof. 

Theorem 1.2. Let U be a complex Banach Jordan triple. Suppose that 

(1) IIIXXXIII = IIX113; 
(2) II{xyz}II < IIxII jzjj 
(3) U is positive, i.e., o?(u)(xEx) C [0, x) for each x E U. 

Then U is a JB*-triple. 
Proof. We only need to show that xlx is hermitian for each x E U. 

Since a := ixOx is a continuous derivation, a := eta is a continuous auto- 
morphism for each real t. Thus for each x E U 

Ila(x)II3 = II{a(x), a(x), a(x)}II = Ija({xxx})I ? 11ail lIIxII, 

and therefore, by iteration, 

I1a(x)II < ?1ak 1/3n lXI; 

thatis, 11aII < 1. El 

The terminology in the next definition was motivated by [1], and the spectral 
conditions were inspired by [7]. 

Definition 1.3. A J*B-triple is a real Banach space A equipped with a structure 
of a real Jordan triple system which satisfies 

(1) Il{xxx}ll = IIxII3; 
(2) jj{xyz}jj < jjxjj Ilyll IjIzjj; 
(3) w(A)(XOX) C [0, Xo) for x E A; 
(4) ?v(A)(xoy - yOx) c iR for x, y E A. 

The following proposition shows that over the complex field JB*-triples are 
the same as J*B-triples. 

Proposition 1.4. Let U be a complex Banach Jordan triple. 

(a) If U is a JB*-triple, then U is a J*B-triple. 
(b) Suppose that U, considered a real Banach Jordan triple, is a J*B-triple. 

Then U is a JB*-triple. 

Proof. (a) A JB*-triple satisfies (2) by [3, Corollary 3]. This, together with 
IIx[xII = iix112, implies (1). Thus it suffices to prove the two spectral condi- 
tions. Let T denote either xlx or xly - yOx. Since U is a JB*-triple, 
the spectrum of T with respect to Y( U) consists entirely of boundary points. 
Moreover, denoting by AR(U) the Banach algebra of real linear bounded oper- 
ators on U, we trivially have _F(U) c AR(U), so (Y(U))c c (AR(U))C, and 
therefore, by [4, 9D] 

(T)C c(5!y(u))c (T) = c122(u) (T) = O?( u) (T) U aS(u) (T). 
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REAL BANACH JORDAN TRIPLES 137 

(b) In order to apply Theorem 1.2 we only need to show that qy(u))(u~u) > 0 
for each u E U. With T= uOu, we havel 

c.5/(U)(T) C o(yu (T) U o,,(u) (T) = o(Ts(u))c(T) = (AR(u))c(T) c [0, o.). 

This completes the proof. El 

Recall that a closed subtriple of a JB*-triple is a JB*-triple. Using the 
following fact we can give another natural example of a J*B-triple. 

Remark 1.5. A closed subtriple B of a J*B-triple A is a J*B-triple. In par- 
ticular, a closed real subtriple of a JB*-triple is a J*B-triple. 

Proof. The norm conditions are automatically satisfied, so it suffices to prove 
the spectral conditions. 

As above, let T denote either x Ox or x Oy - y Ox for some x, y E B. We 
know that 

US'(A) (x x) c [0, x) and (A)(xy - yox) c iR, 

and we must prove 

a(B)(xOx) C [0 ) and I(B)(XOY - yOx) c iR. 

Let S be the restriction of T to B. Now the complexification of the restriction 
map is a unital complex algebra homomorphism from the algebra (T, I) gen- 
erated by T and I into the algebra (S, I) generated by S and I. Therefore, 

c159(B)(S) C (TI)(S) C (T(T,I)(T) = 7_(A)(T). 

This completes the proof. Ol 

A real C*-algebra is a closed subalgebra of its complexification, which is a 
complex C*-algebra in some norm. Thus, a real C*-algebra with the triple 
product 

{XYZ}= (xy* z+zy*x) 

is a closed real subtriple of a JB*-triple. By the preceding remark, a real C*- 
algebra is a J*B-triple. 

Two important problems left open in this paper are 

Problem 1. Is the complexification of a J*B-triple a JB*-triple in some norm 
extending the original norm? (This is solved for commutative J*B-triples in 
Theorem 3.1 1.) 

Problem 2. Is the bidual of a J*B-triple a J*B-triple with a separately weak*- 
continuous triple product? 

2. COMMUTATIVE COMPLEX TRIPLES 

In this short section we are going to use Theorem 1.2 to modify the treatment 
in [5, ? 1] by not requiring that x Ox be hermitian. Theorem 2.2 will be used 
to prove the main result of this paper, namely Theorem 3.1 1, which leads to a 
Gelfand-Naimark Theorem for commutative real J*B-triples. 

'Note that the second spectral condition is not used. 
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138 T. C. DANG AND BERNARD RUSSO 

Definition 2.1. A Banach Jordan triple is commutative if 

(4) {{xyz}uv} = {xy{zuv}} = {x{yzu}v}. 

For example, any commutative C*-algebra Co(Q) is a commutative Banach 
Jordan triple with fLlg(h) = fgh. 

From (1) and (4) we have 

(5) {xyz}Ju = xf{yzu} = (xfy)(zLu). 

By the continuity assumption, there is a constant N such that 

(6) Ij{xyz}Ij < Njjxjj Ilyj ljjzjj. 
Throughout this section U will denote a commutative complex Banach Jor- 

dan triple. 
Let B = B(U) := the closed span of UEIU in Y(U). Then B is a com- 

mutative Banach subalgebra of Y(U). Denote the Gelfand Transform of B 
by 

B(U) Sco(X)S 

where X = XB is the maximal ideal space of B. Let A = A(U) := the set of 
all nonzero triple homomorphisms A: U -+ C. Precisely, 

A = {A: U -+ C: 0 :A1 linear, A)({abc}) = A(a)Z(b)Z(c)} . 

According to [5, Lemma 1.6], A c 2(U, C) and IAIl < vN, where N 
is defined in (6). Thus A is a weak*-locally compact space and a "principle 
T-bundle" (T = unit circle) under the action 

T xA E (t, A) |- t t* A E A, 

where (t * A))(x) = tA (x) . Moreover, there is a bijection 

A/T -+ {Iideal C U: U/I - C as triples}. 

Define a norm closed subtriple of Co(A) 

Chom(A) := {f E CO(A) : f(t . A) = tf(Z) V(t, )A) E T x A} 

and a Gelfand transform U 3 x 4 x = Fu(x) E Chom(A) by Fu(x)(A) = (x) . 
Thus 

U 4 Chom(A) 

is a continuous triple homomorphism. 
According to [5, Lemma 1.8], U is dense in Chom(A). 

Theorem 2.2. Let U be a commutative complex Banach Jordan triple. Suppose 
that 

(1) II {xxx}j = fjXIIf; 
(2) It{xyz}t < ?jxt Ilytl jjzjf; 
(3) U is positive, i.e., o?(U)(xClx) C [0, ox) for each x E U. 
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REAL BANACH JORDAN TRIPLES 139 

Then the Gelfand representation U + Chom(A) is an isometric surjective triple 
isomorphism. 

Proof. By Theorem 1.2, U is a JB*-triple, so the result follows from [5]. E 

For a generalization of this theorem see [2]. 

3. COMMUTATIVE REAL TRIPLES 

In this section A will be a commutative real Banach Jordan triple, that is, a 
real Banach space A, together with a trilinear map 

A x A x A E (x, y, z) - {xyz} E A 

which satisfies 

(7) {xyz} = {zyx}, 
(8) {{xyz}uv} = {Xy{ZUV}} = {X{yZU}V}. 

We shall define a natural Gelfand transform and prove a representation the- 
orem of Gelfand-Naimark type. 

By analogy with the complex case, let B(A) be the Banach subalgebra of 
2?(A) generated by ADA. Then B(A) is a commutative real Banach algebra 
(not necessarily unital, cf. [4, p. 63]). Let XB(A) denote the space of complexi- 
fied characters (cf. [4, p. 82]); that is, 

XB(A) = {T: B(A) -+ C, 0 5 T real-linear, T(ST)= T(S)T(T)=. 

By analogy we define AC to be the collection of all nonzero real-linear triple 
homomorphisms of A into C; precisely, 

AA = {i: A -* C: A real linear, A $A 0, A({abc}) = A(a)4(b)>(c)}. 

By the proof of [5, Lemma 1.6], each such A is automatically continuous and 
AA is contained in a bounded subset of YR(A, C). Note that eiOAc = AC A ~ ~ a, .A A' 
that AA is closed under complex conjugation, and that AA is locally compact 
in the topology of pointwise convergence on A. 

Of course, we shall occasionally make use of the box operators xly: a 
{xya} . 

In order to obtain the analogue of Theorem 2.2 we need to consider the 
complexification of A. 

Let U := AC = q$(A)+iq(A) be the complexification of A, and let 0: A -- U 
be the natural embedding. The space U becomes a complex commutative 
Jordan triple system in the natural way, and 0 is a real-linear triple isomor- 
phism into. Explicitly, U = A x A becomes a complex linear space under 
(a +ifl)(x, y) = (axx- fly, a&y+fi~x), a, JB E R, x, y E A, and b(a) = (a, 0) 
for a E A. Also, if x,y, z E U and we write x = xi + ix2 for (xI, x2) and 
so on, then 

{XYZ}u = {X1Y1Z1}A + {X1Y2Z2}A + {X2Y2Z1}A - {X2Y1Z2}A 

+ i({X2Ylz1}A - {X1Y2Z1}A + {X1Y1Z2}A + {X2Y2Z2}A). 

We will use the given norm on A to define a norm on U so that we can 
impose further assumptions on the spectrum of certain operators. We give U 
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140 T. C. DANG AND BERNARD RUSSO 

a preliminary norm as defined in [4, (9.1)] 

IJUI12 := 
I 

SUp111iAIIl: A E TI, 

where if u = (x, y) = +(x) + i+(y) E U, 

IIUIII = IIXII + IIYII- 

Recall that (U, 11 Iii) is a real Banach space, (U, 11 112) is a complex Banach 
space, q is an isometry in each norm, and (1/XV)II ? III < X 1112 < || X ||1. For 
T E 5(U) = 5(U, 11 * 112) let 11 TIly(u) denote the operator norm 

IITIly(u) = sup (II TuII2/IIuII2). 
u#O, ueU 

Lemma 3.1. UOU c Y(U) and IIXEyILy(U) < 23/211X11211y12 for x, y E U. 
Thus U is a commutative complex Banach Jordan triple. 
Proof. If a, b eA and z = ZI +iz2 E U, then 

II(aEb)z12 < II(a~b)zIII = II{abzl}IIA + II{abZ2}1IIA < IIaIIAIIbIIAIIZIIl 

< I|aIIA ||bIIA~f2IZII2, 

so Ila~bIly(u) < \/lIIaIIAIIbIIA 
In general, (xI + ix2)0(yI + iy2) = xIElyI - x20y2 + i(x20yI) - i(xEl y2) now 

implies that II(xi + ix2)E(yI + iY2)II < V'1I|xi + ix2I1iI1yI + iy2I1i < 

23/2I1xi + iX2II2IIyI + iy212 1 1? 

As in ?2, let B(U) be the closed complex subalgebra of Y(U) generated by 
UOU and define B(q(A)) to be closed real subalgebra of 5(U) generated by 
Ob(A)EOb(A). 

Lemma 3.2. B(q(A)) is a real Banach algebra which is isometrically isomorphic 
to B(A). 
Proof. The map a: SPRAEA SPR4(A)EO(A) defined by Ex1Ey 
Z 0(xj)E0(yj) is an isomorphism which is isometric, so it extends to the de- 
sired isomorphism. To see this, let X = E XEIyj and u = q(a) + iq(b) E U. 
Then a(X)u = b(Xa) + ib(Xb), so IIa(X)uIII < IIXIIL(A)IIuII1. Since a(X) is 
complex linear, 

IIa(X)u112 = ,sup IIAx(X)uIIi = sup I1a(X)(u) III 

- sup lX II|AUII 1 = I|X|I 11UI12. 

Hence IIa(X)IL(u) < IIXII(A) 4 

Pick a E A of norm 1 such that the norm of Xa is close to the norm of X. 
Then u q(a) satisfies lIull2 = 1 and IIa(X)u12 = IIXaIIA, showing that a is 
isometric and hence well defined. It is trivial that a is a homomorphism. o 

Lemma 3.3. For T. SE B(q(A)) we have 

1J TJlJ(u) < V11 T+ iS1l1(u). 
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REAL BANACH JORDAN TRIPLES 141 

Proof. For x E A both T(b(x)) and S(b(x)) belong to +(A), so 

II(T + iS)(q(x))Ijj = IIT(b(x)) + iS(q(x))|jj = IIT(b(x))II2 + IjS(q(x))1j2. 

Thus IIT(0(x))II2 < II(T + iS)(0(x))Iji < V2-II(T + iS)O(x)II2. Hence 

IITI (u) = ll-1 (T)II.(A) = IITbO(A)II59(q(A),U) < v'21IT+ iSIly(u). O 

Proposition 3.4. Let A be a commutative real Banach Jordan triple. The com- 
plexsubalgebras B(U) and B(q(A))+iB(q(A)) of Sf(U) coincide. Thus B(U) 
is the complexification B(q(A))C of B(q(A)). Less precisely, B(AC) = (B(A))C. 
Proof. It is clear that spc UO U c B(q$(A)) + iB(q(A)) c B(U) . To complete the 
proof is suffices to show that B(0b(A)) + iB(0b(A)) is a closed subset of 2 (U), 
but this follows immediately from Lemma 3.3. ol 

The following lemma is based on some ideas from [8]. 

Lemma 3.5. Let A be a commutative real Banach Jordan triple. 
(a) Suppose that {xxx} = 0 implies x = 0. Then (En XiEy,)* := Ej,1 x, 

defines an involution on the linear span of ADA (i.e., a linear automorphism of 
order 2). 

(b) Supposefurther that II{XXX}II = liXI13 and 

(9) II{XYZ}II < IIXII IIYI IIZII 
Then the map * defined in (a) extends to an involution on B(A) which makes 
B(A) into a real Banach *-algebra satisfying all the axioms of a real C*-algebra 
except possibly for the invertibility of I + T* T in the unital extension. 
Proof. (a) We first show, as in [8], that * is well defined. For this, suppose that 

En xEDy, = 0 and let T = E 
yDx. To show that T = 0, let z E A and 

Uj = {yjxjz}. Then Tz = E{yjxjz}, and 

{Tz, Tz, Tz} = Z {{yAxiz}, {yjXjZ}, {YkXkZ}} 
i, j, k 

= Z {{ZXiyi}UjUk} = {Z{XiyiUj1}Uk 
i,j,k i,j,k 

= E Z. E{xiyiu}, Uk} =Z{z O. Uk} = O- 
j, k i j,k 

Then by assumption Tz = 0, so T = 0 and * is well defined. Clearly, 
* is linear and of order 2. To prove that (TS)* = T*S*, it suffices by ad- 
ditivity to assume that T, S E ADA. With T = xly and S = zlw we 
have (TS)* = ((xly)(zlw))* = (xO{yzw})* = {yzw}Ox = {wzy}Ox and 
S*T* = (wOz)(ylx) = {wzy}Ox, by (5). 

(b) We again argue as in [8]. Let S = En xijEyi and z E A. Then 

JISZ113 = J{SZ, SZ, Sz}JJ 

E{Sz, Sz, {xjyjz}} - {Sz, {Sz, xi, yi}, Z} 
i If l 

=JJ{Sz, S*Sz, z}JJ ? JJSzJJ JJS*SzJJ liz II. 
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142 T. C. DANG AND BERNARD RUSSO 

Therefore, 11S112 < 115*511, which implies that * is isometric and extends to a 
C*-involution on B. El 

In order to proceed further, we shall need to make some spectral assumptions. 

Lemma 3.6. Let A be a commutative real Banach Jordan triple. Suppose that 
{xxx} = 0 implies x = 0, and assume the two spectral conditions 

(10) (A) (XDX) C [0, I) for x E A, 

(11) a'(A)(XOy - YOX) c iR for x, y, E A. 

For each T E XB(A) there is A E AA such that z(xly) = A(x)A(y) for x, y E 
A. This correspondence establishes a bijection 

XB(A) (' AT 

Proof. If A E AA, there exist t E R and a E A such that eit)A(a) = 1. Define 
T: B(A) -+ C by T(T) = eitA(Ta). Then 

T(xDy) = (eitA)({xya}) = A(x)A(y). 

Note that T does not depend on the choices of t and a. 
We next prove that T(TS) = T(T)T(S) for all T, S E B(A). By continuity 

and linearity, it suffices to prove this for T, S E ADA. With T = xly and 
S = zOw we have TS = xE{yzw} and 

z(TS) = A(x)A({yzw}) = A(x)A(y)A(z)A(w) = T(T)T(S). 

Thus T E XB(A), and it is clear that eiO and A give rise to the same T. This 
gives a map A * T from Ac/T to XB(A). 

Now let T E XB(A) . By the nonunital version of [4, 10.4], 

T(XDX) E UB(A)(XEX) = UB(A)C(XEX) D QY(A)c(XEX) = U(A)(XDX). 

However, by (10), equality holds, and therefore, for all x E A, T(XDX) > 0. 
We claim that there exists an a E A such that z(aEa) = 1, for otherwise 

we would have T (x Ox) = 0 for all x E A and thus T ((x + y)O(x + y)) = 0, 
implying 

(12) z(xDy+yOx) =0 forallx,y EA. 

From Lemma 3.5 and (12) it follows that T (T*) = -T(T) for all T E B(A) and 
hence that T(T2) = (T(T))2 = (T(T*))2 = T((T2)*) = -T(T2). Thus T(T) = 0 
identically on B(A), a contradiction. Thus such an a exists. 

Now define a linear functional A by A(x) = T(x~a) for x E A. We shall 
show that A E AC and A (Ta) = -(T) for all T E B(A), thereby demonstrating 
the surjectivity of the map A T . 

The second statement follows from (5); with T = x~y, we have 

A(Ta) = z(Taola) = T(xlyala= T(T)). 

To prove the first statement we first prove 

(13) T(xnly) = z(ylx) for x, y E A, 
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REAL BANACH JORDAN TRIPLES 143 

forthenif a,b,c,EA, 

A4abc} = T({abc}ca) = T((arb)(crca)) 
= T((arb)(ar-la(crca)) = T((ana)(acb)(c~a)) 
= z(aca)T((b~a)*)T(c~a) =A(a)A(b)(c), 

i.e., A E A. 
It remains to prove (13). Since x Oy + y Ox = (x + y)El(x + y) - x lx - y Oy, 

we have z(xOy) + z(yOx) is real. Since (xly)(yrlx) = (xrlx)(yrly), we have 
z(xrly)T(yrlx) > 0. From these two relations, (13) follows in case z(xOy) is 
not a real number. On the other hand, if z(xOy) is a real number, then so is 
z(yOx) and the difference z(xOy) - z(yOx) is both real and purely imaginary 
by (11). This proves (13). rJ 

In Proposition 3.7, under additional assumptions, B(A) will be shown to be 
a real C*-algebra. 

Proposition 3.7. Suppose that A is a commutative J*B-triple. Then B(A), 
with the norm of 5(A), is a commutative real C*-algebra with involution de- 
termined by (xny)* = yEx. Consequently, B(U) is a C*-algebra in some 
norm extending the norm on B(A) (by [4, 12.4]). 
Proof. By Lemma 3.5 all the properties of a real C*-algebra are satisfied except 
possibly the invertibility of elements of the form 1 + T* T in the unital extension 
B(A) +RIdA of B(A) . For T = S+ ldA it suffices to show that %B(A)(T* T) > 

0, which in turn will follow from the fact that z(T* T) > 0 for all T E XB(A) . 

By Lemma 3.6, z(S*) = T(S) for all S E B(A), and the same holds for T E 
B(A) + RIdA . Thus z(T* T) = I z(T) 2>O. 0 

The following lemma will be used in the proof of Theorem 3.11 only. 

Lemma 3.8. Denote the norm in the C*-algebra B(U) by 11 Ic*. For any 
selfadjoint G in B(U) we have 

JIGIly(u) 
-- 

4v21I1lc* - 

Proof. Let G = T + iS with T. S E B(A). By [4, 12.2(a)], 

11 TIh < 11 T* T + S*SII 1/2 
and similarly for 11511. Thus IIGIly'(u) < IITIIB(A)+IISIIB(A) ? 2IIT*T+S*SII 4(U)- 

On the other hand, G2 = G*G = (T* T + S*S) + i(T*S - S* T) implies (by 
Lemma 3.3) IIT*T+S*SIll(u) < v-II G*GILJ(u). Thus IIGII2 (U) < 4v' IIG*Gll 
= 4vlsIIG2II. With ,B = 4s/2, induction shows that IIGII(u) < ,B2n-l IG2 II. 
Finally, IIGIlI(u) = (IIGII2n)11/2 < (f2n-1)1/2 IIG2II11/2n , and therefore uIGIh < 
fi lim JIG2n 11 1/2n - f=G11GII 0 

Let A(U) be defined as in ?2. 

Lemma 3.9. With the above notation, 
(i) For each A E A(U) there is A' E AA such that A(q(x) + iq(y)) = 

Y'(x) + iA'(y) for x, y E A. This correspondence establishes a bijection 
A(U)4-* AA 
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(ii) For each T E XB(U) there is T' E XB(A) such that T(T + iS) = T'(T) + 
it's) for T, S E B(A). This correspondence establishes a bijection 
XBM U) XB (A) 

Proof. The second part is precisely the statement of the nonunital version of 
[4, (10.6)], and the first part is proved in exactly the same way. EJ 

Lemma 3.10. For each T E XB(u) there is A E A(U) such that z(uOv) = 

A(u)A(v) for u, v E U. This correspondence establishes a bijection XB(U) +-) 
A(U)/T. 
Proof. Lemmas 3.9 and 3.6. 0 

We can now state and prove the main result of this paper. 

Theorem 3.11. Let A be a commutative J*B-triple. There is a norm on the 
complexification U of A extending the norm on A andfor which U is a JB*- 
triple. 
Proof. First we note that the norm condition ll{xxx}ll = ixIlX3 and (9) imply 
that, for x E A, llx112 = llxlx Ij. By Proposition 3.7 and Lemma 3.6, 

11X|12 = SUp{lT(XEX)l: T E XB(A)l= SUp{lIA(X)12; A E AA}. 

Define a function 11 113 on U by lIU113 = SUp{lA(u)l: A E A(U)}. Note 
that Ilull2 - s = XB(u) T(UOU) = llunullc* . By Lemma 3.9(i), ll0(a)ll3 = I1allA 
if a E A. It is obvious that 11 - 113 is a seminorm satisfying properties (1) 
and (2) of Theorem 2.2. Suppose that Ilull3 = 0. Then z(uOu) = 0 for all 
T E XB(U), SO UEU = 0. Writing u = x + iy with x, y E 4(A), we have 
0 = xlx + yly + i(ylx - xly), which implies xlx + yly = 0, and hence 
x = y = 0 (since B(A) is a real C*-algebra). Thus we have a norm, and we 
next prove that (3) of Theorem 2.2 is satisfied. For this it suffices to show that 
qB(U)(unu) > 0. Since B(U) is a C*-algebra, JB(U)(UOU) = {T(UOU): T E 
XB(U)}, and by Lemma 3.10 this is > 0. 

It remains to show that U is complete in the norm 11 * 113. This will follow 
from the following: if u = x + iy with x, y E A, then llx 113 < 2V2llull3 . 
To prove this, write ulu = (xlx + yly) + i(ylx - xly), which implies 
(by Lemmas 3.3 and 3.8) ljxrlx + yrlylly(u) < V'lluErulll(u) < 81lunullc* . 
Since xlx and yly belong to the real C*-algebra B(A), jjxrx11B(A) < 
|lXlX + Yr YIIB(A) < 8||uru||c* . Thus 

11x1123 - 11x||A = llX:XlB(A) < 81luEullcu = 8llull3 

completing the proof. 0 

We conclude by describing the Gelfand transform and proving a Gelfand- 
Naimark type theorem for commutative J*B-triples. 

As noted earlier, the space AA is a locally compact Hausdorff space in the 
topology of pointwise convergence on A. The bijection in Lemma 3.9(i) is a 
homeomorphism. Now let 

Ch*om(AA) = {f E CO(Ac): f(eiO'A) = ei9f(2') and f(1V) = f(I)l 
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and define a Gelfand transform [R: A -> Ch*om(AAc) by FAR(x)(l) = A'(x) . Let 
p: Au -* AA be the restriction map used in Lemma 3.9, and let p*: Ch*om(AC) 
Chom(Au) be its transpose. 

Note that p-()1)(q$(x) + iq(y)) = A(x) + ia(y), and therefore IF maps A 
into Chom (AA)- 

Since 
FC O =p* o R 

FA is an isometry. 
Finally, if f E Ch*om(Ac) and x, y E A are such that 

p*f = Fu(q(x) + iqW(y)), 

the fact that f(AV) = f()/) implies that y = 0; hence FA(A) = Ch*om(AA) . This 
proves 

Theorem 3.12. Let A be a commutative J*B-triple. Then the Gelfand transform 
is an isometric triple isomorphism of A onto Ch*om(AA). 
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