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ABSTRACT Rezafungin is a long-acting, intravenously administered echinocandin for 
the treatment of candidemia and invasive candidiasis (IC). Non-inferiority of rezafungin 
vs caspofungin for the treatment of adults with candidemia and/or IC was demonstrated 
in the Phase 3 ReSTORE study based on the primary endpoints of day 14 global cure 
and 30-day all-cause mortality. Here, an analysis of ReSTORE data evaluating efficacy 
outcomes by baseline Candida species is described. Susceptibility testing was performed 
for Candida species using the Clinical and Laboratory Standards Institute reference broth 
microdilution method. There were 93 patients in the modified intent-to-treat population 
who received rezafungin; 94 received caspofungin. Baseline Candida species distribution 
was similar in the two treatment groups; C. albicans (occurring in 41.9% and 42.6% of 
patients in the rezafungin and caspofungin groups, respectively), C. glabrata (25.8% and 
26.6%), and C. tropicalis (21.5% and 18.1%) were the most common pathogens. Rates 
of global cure and mycological eradication at day 14 and day 30 all-cause mortality by 
Candida species were comparable in the rezafungin and caspofungin treatment groups 
and did not appear to be impacted by minimal inhibitory concentration (MIC) values for 
either rezafungin or caspofungin. Two patients had baseline isolates with non-suscepti­
ble MIC values (both in the rezafungin group: one non-susceptible to rezafungin and one 
to caspofungin, classified as intermediate); both were candidemia-only patients in whom 
rezafungin treatment was successful based on the day 30 all-cause mortality endpoint. 
This analysis of ReSTORE demonstrated the efficacy of rezafungin for candidemia and IC 
in patients infected with a variety of Candida species.

KEYWORDS candidemia, echinocandin, invasive candidiasis, Candida species, 
antifungal therapy

C ommensal Candida species (spp.) are present on the skin and mucosa of 50%–70% 
of healthy individuals, but invasive candidiasis (IC), encompassing candidemia and 

infection of deep tissues, can occur as an opportunistic infection in immunocompro­
mised or immunosuppressed individuals (1, 2). In healthcare settings, IC and candidemia 
are among the most frequently seen fungal diseases and bloodstream infections, 
respectively, and are associated with substantial morbidity and mortality (1–3). Five spp. 
account for most cases—C. albicans, Nakaseomyces glabratus (the previous classification 
as C. glabrata is retained in this report), Pichia kudriavzevii (termed C. krusei herein), 
C. tropicalis, and C. parapsilosis—although C. auris has also demonstrated high potential 
for nosocomial transmission since its emergence (1, 2).

IC is treated with systemic antifungals comprising azoles, amphotericin B, and 
echinocandins, with guidelines recommending echinocandin therapy for first-line use 
(4, 5). Echinocandins target 1,3-β-D-glucan synthase, resulting in destabilization of the 
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fungal cell wall; however, mutations within FKS gene “hotspot” (HS) regions give rise 
to resistance (6). There has also been a rise in IC cases caused by non-albicans Candida 
spp., such as C. glabrata and C. auris, which have a higher intrinsic resistance potential 
(7). Increased rates of fluconazole resistance have also been reported, with intrinsic 
resistance seen in C. krusei (8, 9). As such, there is an urgent need for novel, effective 
antifungal agents.

Rezafungin received US Food and Drug Administration (FDA) approval in March 2023 
for the treatment of candidemia and IC in patients aged ≥18 years with limited or no 
alternative treatment options (10) and was approved in the European Union for the 
treatment of IC in adults in December 2023 (11). This next-generation echinocandin is 
also in development for the prevention of invasive fungal diseases caused by Candida, 
Aspergillus, and Pneumocystis spp. in patients undergoing allogeneic blood and marrow 
transplantation (12). Compared with other echinocandins, rezafungin has an increased 
molecular stability, which results in a longer half-life that translates to higher, front-
loaded exposure and allows weekly, rather than daily, administration (6, 13). The front-
loaded exposure enhances antifungal activity early in treatment, potentially reducing the 
opportunity for FKS resistance-conferring mutations to arise (6, 13). Rezafungin has 
shown activity against a broad range of isolates, including azole-resistant Candida spp., 
and requires lower pharmacokinetic/pharmacodynamic (PK/PD) target exposures than 
other echinocandins (14, 15), which could enable treatment of some isolates with 
elevated MICs (13, 14). A study using 2021 provisional Clinical and Laboratory Standards 
Institute (CLSI) clinical susceptible-only breakpoints showed that a global 2019–2020 
panel of Candida spp. had high susceptibility to rezafungin based on MICs (16). The 
inclusion of a CLSI MIC susceptibility breakpoint for rezafungin against C. auris 
(≤0.5 µg/mL) in the most recent CLSI Performance Standards for Antifungal Susceptibility 
Testing of Yeasts document (the provisional CLSI breakpoints were approved as of 20 
January 2024, unpublished data) also highlights the promise of rezafungin, given this is 
the first C. auris susceptibility breakpoint defined for an antifungal agent (17).

The Phase 3 ReSTORE trial in patients with candidemia and/or IC, on which FDA 
approval was based, compared weekly treatment with rezafungin vs daily treatment 
with caspofungin, an established echinocandin (12). Rezafungin was non-inferior to 
caspofungin for the efficacy endpoints of all-cause mortality at day 30 (primary endpoint 
for FDA) and global cure at day 14 (primary endpoint for European Medicines Agency), 
with a similar safety profile. Here, we report an analysis of efficacy outcomes from the 
ReSTORE study in subgroups defined by baseline pathogen and susceptibility. Isolates 
demonstrating reduced echinocandin susceptibility were characterized for the presence 
of FKS mutations, and findings were evaluated in light of CLSI breakpoints and those 
breakpoints recently granted by the FDA (18).

RESULTS

Patients

The disposition of patients in ReSTORE was reported previously (12). Briefly, 222 patients 
were screened, and 199 were randomized to receive treatment (100 to rezafungin and 
99 to caspofungin). Nine patients did not have a documented Candida infection in the 
96 hours prior to randomization (n = 5 in the rezafungin group; n = 4 in the caspofungin 
group), and three did not receive study drug (two assigned to the rezafungin group, and 
one to caspofungin). The modified intent-to-treat (mITT) population, therefore, consisted 
of 187 patients (n = 93 patients in the rezafungin arm; n = 94 patients in the caspofungin 
arm) from whom 204 isolates were submitted for identification and susceptibility testing.

Baseline Candida spp.

Distribution of Candida spp. at baseline in the rezafungin and caspofungin treatment 
groups (Fig. 1) was well balanced, with the exception of C. parapsilosis, which was 
detected in 8.6% (8/93) of patients in the rezafungin group and 18.1% (17/94) of patients 
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in the caspofungin group. MIC breakpoints for rezafungin and caspofungin by Candida 
pathogen are reported in Table 1, along with those for anidulafungin and micafungin 
for additional context. FDA MIC breakpoints for rezafungin are also listed in Table 1 (18). 
These breakpoints were defined based primarily on clinical and mycological data, with 
less emphasis on PK/PD, and are, therefore, more conservative than the CLSI values.

Fluconazole susceptibility

Although susceptibility to fluconazole was not a focus of the ReSTORE microbiological 
analyses, MIC values were generated for all isolates. The rate of fluconazole resistance at 
baseline was comparable between the rezafungin and caspofungin treatment groups. 
Pooled baseline isolate resistance rates were 0% (0/78) for C. albicans, 8.2% (4/49) for
C. glabrata, 19.4% (7/36) for C. tropicalis, and 25.0% (6/24) for C. parapsilosis.

Efficacy outcomes

Global cure and mycological eradication

Global cure and mycological eradication at day 14 and treatment-specific MIC values by 
pathogen spp. at baseline for rezafungin and caspofungin are summarized in Table 2, 
with the antimicrobial activity against baseline Candida spp. detailed in Table S1. Rates of 
global cure and mycological eradication at day 14 were generally comparable between 
the two treatment groups.

FIG 1 Baseline Candida spp. pathogens in the rezafungin and caspofungin treatment groups (mITT population). Data were calculated from 204 identified 

infections in 187 patients (rezafungin, n = 93; caspofungin, n = 94). All unique pathogens from the cultures collected within 96 hours prior to randomization or 

prior to the first dose of the study drug after randomization were summarized. Seventeen patients had multiple isolates at baseline: rezafungin treatment group 

(no. of patients): C. glabrata and C. tropicalis (3); C. albicans and C. glabrata (1); Candida dubliniensis and C. glabrata (1), Candida guilliermondii and C. tropicalis (1); 

C. parapsilosis and C. tropicalis (1); caspofungin treatment group: C. albicans and C. glabrata (3); C. albicans and C. tropicalis (3); C. glabrata and C. tropicalis (2); 

C. albicans and C. dubliniensis (1); C. glabrata and C. krusei (1).
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Treatment-specific MIC90 values were also comparable between the two treatment 
groups (within a twofold difference) for all baseline Candida spp. where values could be 
determined (note, for C. parapsilosis, the MIC90 for rezafungin could not be estimated 
due to the small number of isolates; Table 2). Outcomes at day 14 by pathogen spp. 
and by rezafungin and caspofungin treatment-specific MIC values are given in Table 3. 
There was no trend for increasing MICs affecting day 14 mycological outcomes for either 
rezafungin or caspofungin for any of the Candida spp.

All-cause mortality

The observed pattern of day 30 all-cause mortality by baseline pathogen spp. was 
broadly similar across the rezafungin and caspofungin treatment groups, with most 
patients who died having C. albicans, C. glabrata, C. tropicalis, or C. parapsilosis isolates 
at baseline (Table 4). Day 30 all-cause mortality and treatment-specific MIC values by 
baseline pathogen spp. for each group are presented in Table S2.

TABLE 1 Echinocandin MIC breakpoints

Candida spp. Breakpoint MIC (µg/mL)

FDAa CLSIb

Rezafungin Anidulafungin Micafungin Caspofungin

S S I R S I R S I R S I R

C. albicans ≤0.12 ≤0.25 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1
C. glabrata ≤0.12 ≤0.5 ≤0.12 0.25 ≥0.5 ≤0.06 0.12 ≥0.25 ≤0.12 0.25 ≥0.5
C. tropicalis ≤0.12 ≤0.25 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1
C. parapsilosis ≤2 ≤2 ≤2 4 ≥8 ≤2 4 ≥8 ≤2 4 ≥8
C. krusei ≤0.25 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1 ≤0.25 0.5 ≥1
C. guilliermondii ≤2 4 ≥8 ≤2 4 ≥8 ≤2 4 ≥8
C. dubliniensis ≤0.12
C. auris ≤0.5
aCurrent FDA-approved breakpoints (18).
bCLSI 2022 (17); rezafungin breakpoints are approved by CLSI as of 20 January 2024. I, intermediate; R, resistant; S, susceptible.

TABLE 2 Global cure and mycological eradication at day 14 by baseline Candida species

Candida spp. Characteristic Rezafungin (400/200 mg) Caspofungin (70/50 mg)

C. albicans Global cure at day 14, n/Na (%) 21/39 (53.8) 23/40 (57.5)
Mycological eradication at day 14, n/Na (%) 23/39 (59.0) 24/40 (60.0)
MIC90

b (MIC range), μg/mL 0.06 (0.008–0.12) 0.06 (0.008–0.12)
nc 39 39

C. glabrata Global cure at day 14, n/Na (%) 16/24 (66.7) 14/25 (56.0)
Mycological eradication at day 14, n/Na (%) 20/24 (83.3) 15/25 (60.0)
MIC90

b (MIC range), μg/mL 0.12 (0.03–0.5) 0.06 (0.03–0.12)
nc 24 25

C. tropicalis Global cure at day 14, n/Na (%) 14/20 (70.0) 10/17 (58.8)
Mycological eradication at day 14, n/Na (%) 15/20 (75.0) 10/17 (58.8)
MIC90

b (MIC range), μg/mL 0.06 (0.015–0.12) 0.06 (0.015–0.12)
nc 20 16

C. parapsilosis Global cure at day 14, n/Na (%) 6/8 (75.0) 11/17 (64.7)
Mycological eradication at day 14, n/Na (%) 6/8 (75.0) 14/17 (82.4)
MIC90

b (MIC range), μg/mL N/A (0.5–2) 0.5 (0.25–0.5)
nc 8 16

an/N is the number of patients with the listed response at day 14 per number of patients with the corresponding Candida pathogen at baseline.
bFor pathogens isolated ≥10 times in a treatment group.
cNumber of patients with baseline pathogens and susceptibility data available. MIC90, minimal inhibitory concentration required to inhibit 90% of isolates tested; N/A, not 
available.
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Clinical outcomes in patients with baseline isolates that were non-susceptible to 
rezafungin or caspofungin

Baseline isolates identified in ReSTORE were largely wild-type (WT) and susceptible to 
rezafungin and caspofungin (based on CLSI interpretation). Breakpoint data are available 
from two patients (in the rezafungin treatment group) who had baseline isolates with 
echinocandin non-susceptible MIC values in ReSTORE. One had a C. dubliniensis isolate 
that was non-susceptible to rezafungin, and the other had a C. glabrata isolate that was 
classed as intermediate for caspofungin but was susceptible to rezafungin. Clinical 
outcomes for these two patients are presented in Table 5. Both were candidemia-only 
patients, achieved mycological eradication at day 14, and were treatment successes 
based on the 30-day all-cause mortality endpoint. The patient with C. dubliniensis had an 
indeterminate global cure response at day 14, and the patient with C. glabrata failed to 
achieve a global cure response at day 14. The patient with C. glabrata had an FKS mutant 
isolate harboring the F659V Fks2 HS1 alteration, while the isolate from the patient with
C. dubliniensis had no identified mutations in FKS HSs.

Clinical outcomes in patients with post-baseline isolates demonstrating reduced 
susceptibility to rezafungin or caspofungin

Isolates were recovered from two patients (both from blood cultures) who showed 
greater than equal to fourfold increases in rezafungin or caspofungin MIC values from 

TABLE 3 Outcomes at day 14 by baseline Candida spp. and rezafungin and caspofungin CLSI MIC values

Candida spp.
Treatment (isolatesb)

n/N (%) by treatment-specific MIC value, µg/mLa

0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2

C. albicans
Rezafungin [39]
  Global cure 4/7 (57.1) 11/20 (55.0) 4/6 (66.7) 1/4 (25.0) 1/2 (50.0)
  Mycological eradication 5/7 (71.4) 11/20 (55.0) 5/6 (83.3) 1/4 (25.0) 1/2 (50.0)
Caspofungin [39]
  Global cure 1/2 (50.0) 5/9 (55.6) 11/21 (52.4) 5/6 (83.3) 0/1 (0)
  Mycological eradication 1/2 (50.0) 5/9 (55.6) 12/21 (57.1) 5/6 (83.3) 0/1 (0)
C. glabrata
Rezafungin [24]
  Global cure 6/8 (75.0) 4/6 (66.7) 6/9 (66.7) 0/1 (0)
  Mycological eradication 7/8 (87.5) 6/6 (100) 6/9 (66.7) 1/1 (100)
Caspofungin [25]
  Global cure 2/5 (40.0) 11/19 (57.9) 1/1 (100)
  Mycological eradication 2/5 (40.0) 12/19 (63.2) 1/1 (100)
C. tropicalis
Rezafungin [20]
  Global cure 3/3 (100) 5/8 (62.5) 5/7 (71.4) 1/2 (50.0)
  Mycological eradication 3/3 (100) 5/8 (62.5) 5/7 (71.4) 2/2 (100)
Caspofungin [16]
  Global cure 1/1 (100) 3/7 (42.9) 4/7 (57.1) 1/1 (100)
  Mycological eradication 0/1 (0) 4/7 (57.1) 4/7 (57.1) 1/1 (100)
C. parapsilosis
Rezafungin [8]
  Global cure 1/1 (100) 2/4 (50.0) 3/3 (100)
  Mycological eradication 1/1 (100) 2/4 (50.0) 3/3 (100)
Caspofungin [16]
  Global cure 5/8 (62.5) 6/8 (75.0)
  Mycological eradication 5/8 (62.5) 8/8 (100)
an/N is the number of patients with the listed response at day 14 per number of patients with the corresponding Candida pathogen and MIC value at baseline; not all isolates 
had MIC data.
bNumber of isolates.
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baseline. One patient in the rezafungin treatment group had a C. glabrata isolate with a 
rezafungin MIC of 0.06 µg/mL at baseline. Treatment successes for day 5 and 
day 14 mycological response, day 14 global response, and day 30 all-cause mortality 
were achieved in this patient. However, at an unscheduled visit on day 35, the C. glabrata 
isolated from this patient had a rezafungin MIC value of 0.5 µg/mL and harbored a 
mutation in FKS2 (S663P, Fks2 HS1). The caspofungin MIC value for the isolate at 
day 35 was also elevated relative to baseline (0.25 vs 0.06 µg/mL, respectively). Based on 
multilocus sequencing type analysis of whole genome sequence data, both isolates were 
determined to be type 10, although it is unknown whether this day 35 isolate was 
isogenic to the FKS WT baseline C. glabrata or represented infection with a new strain. 
One patient in the caspofungin treatment group had a C. albicans isolate with a rezafun­
gin MIC value of 0.03 µg/mL at baseline, rising to 0.12 µg/mL at day 5, with a concomi­
tant increase in caspofungin MIC values from 0.008 µg/mL (baseline) to 0.06 µg/mL 
(day 5). Sequencing revealed that both the baseline and day 5 isolate were FKS1 WT. This 
patient died and had failed treatment outcomes based on all endpoints: 
day 5 and day 14 mycological response, day 14 Global Response, and day 30 ACM (i.e., 
deceased by day 30).

DISCUSSION

In this analysis of the Phase 3 ReSTORE study, rezafungin demonstrated efficacy based 
on rates of global cure and mycological eradication at day 14 and the day 30 all-cause 
mortality rate, regardless of baseline Candida spp. Efficacy outcomes did not appear to 
be impacted by MIC values across Candida spp. for either rezafungin or caspofungin. 
Although the distribution of Candida isolates in ReSTORE was largely WT and susceptible 
to rezafungin based on CLSI interpretation, rezafungin treatment was also successful in 
the limited number of patients from ReSTORE who had non-susceptible baseline Candida 
isolates and FKS mutant isolates.

The MIC data from this study were consistent with the worldwide reported antimicro­
bial activity (2019–2020) of rezafungin and caspofungin against Candida spp. (16). The 
rates of all-cause mortality at day 30 by pathogen spp. at baseline and treatment-specific 

TABLE 4 Day 30 all-cause mortality by baseline Candida species (mITT population)

Candida spp. Rezafungin (400/200 mg; N = 93) Caspofungin (70/50 mg; N = 94)

n/N1a Day 30 ACM, % n/N1a Day 30 ACM, %

C. albicans 11/39 28.2 9/40 22.5
C. glabrata 4/24 16.7 2/25 8.0
C. tropicalis 5/20 25.0 4/17 23.5
C. parapsilosis 1/8 12.5 6/17 35.3
C. krusei 1/2 50.0 0/2 0
C. guilliermondii 0/2 0 0/0 0
C. dubliniensis 0/3 0 0/1 0
C. lusitaniae 0/1 0 0/1 0
C. metapsilosis 0/1 0 0/0 0
C. nivariensis 0/0 0 0/1 0
an/N1 is the number of patients with the corresponding Candida pathogen who died on or before day 30, or 
with unknown survival status/the number of patients with the corresponding Candida pathogen at baseline. ACM, 
all-cause mortality.

TABLE 5 Outcomes of patients in ReSTORE with baseline Candida isolates that were non-susceptible to rezafungin or caspofungin

Patient (treatment 

group) Species

Mycological 

response day 14

Investigator 

response day 14

Global response 

day 14

ACM 

day 30

MIC, µg/mL/CLSI interpretationa
Fks 

sequenceRezafungin Caspofungin

1 (rezafungin) C. dubliniensis Eradication Indeterminate Indeterminate Alive 0.25/NS 0.12/N/A WT

2 (rezafungin) C. glabrata Eradication Failure Failure Alive 0.5/S 0.25/I F659V

(Fks2 HS1)
aCLSI 2022 (17). ACM, all-cause mortality; HS1, hotspot 1; I, intermediate; N/A, not available; NS, non-susceptible; S, susceptible.
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MIC value were comparable between the two treatment groups. There were some 
numerical differences in global cure and mycological eradication between the treat­
ments for certain species; however, the small sample sizes prohibited drawing broad 
conclusions on comparative efficacy by Candida pathogen. In other studies, correla­
tions between MIC values and patient outcomes have not consistently been seen. For 
example, higher caspofungin MICs correlated with poor treatment outcomes among 
patients with C. glabrata, IC, and prior echinocandin exposure in a retrospective study 
(19), whereas an analysis of caspofungin clinical trial data found no such correlation (20). 
In addition, a correlation between high MIC and poor treatment outcomes was found in 
an analysis of 32 clinical isolates from candidemia patients treated with fluconazole (21) 
but was not observed in a larger population-based cohort (22). These findings suggest 
a multifactorial relationship between MIC values and treatment outcomes and the need 
for additional factors to be considered (23). Catheter placement is one such clinical risk 
factor affecting treatment outcomes that should be taken into account (24, 25).

A relationship between echinocandin exposure (area under the curve), MIC, and 
efficacy has been found for micafungin (26), underlining the importance of considering 
PK/PD parameters when evaluating breakpoints in the context of candidemia and IC. 
PK/PD simulations of the older echinocandins found that caspofungin and micafungin 
were likely to achieve therapeutic drug exposures in the majority of simulated patients 
relative to C. glabrata MIC90 values, whereas anidulafungin was not likely to achieve 
therapeutic drug exposures (27). Similar PK/PD simulations with a once-weekly 400 mg 
rezafungin regimen found a 100% probability of PK/PD target attainment across weeks 
1–6 for the C. glabrata MIC90 of 0.12 µg/mL (28).

A clinical “susceptible” breakpoint for C. glabrata of ≤0.5 µg/mL was approved by 
the CLSI Subcommittee on Antifungal Susceptibility Tests on 20 January 2024; this 
breakpoint is higher than those established for anidulafungin (≤0.12 µg/mL), caspofun­
gin (≤0.12 µg/mL), and micafungin (≤0.06 µg/mL) (17). As a drug that provides high 
plasma drug concentrations early in therapy, rezafungin may be better positioned to 
treat infections caused by isolates with higher MICs, as the epidemiology of C. glabrata 
moves toward reduced susceptibility to treatment with echinocandins. In the rezafungin 
clinical program, there were three patients (one in the ReSTORE study and two in the 
expanded access program) who had infections caused by FKS mutant C. glabrata isolates 
exhibiting reduced in vitro susceptibility to the approved echinocandins and rezafungin; 
however, all had positive treatment outcomes with rezafungin (29, 30). Of note, the 
ReSTORE trial FKS mutant C. glabrata isolate that was a mycological eradication success 
possessed the same Fks alteration (Fks2 HS1 F659V) as an isolate used in a neutropenic 
mouse model where rezafungin was also efficacious (11).

Despite a limited sample size, the prevalence of fluconazole-resistant isolates in the 
ReSTORE trial is reflective of increasing rates observed clinically over time for C. glabrata, 
C. tropicalis (particularly in the Asia-Pacific region), and C. parapsilosis (8, 9). Notably, 
all fluconazole-resistant isolates in the trial were susceptible to rezafungin and compara­
tor echinocandins (data not shown), further supporting the role of echinocandins as 
first-line therapy for candidemia and IC.

As with the primary analysis of the ReSTORE trial (12), potential limitations of this 
analysis are that the study excluded those with specific forms of IC typically requiring 
long courses of antifungal treatment or occurring at sites where echinocandin penetra­
tion is poor, such as the urinary tract and the central nervous system. The study also 
excluded pediatric patients. These exclusion criteria limit the generalizability of the 
results of this analysis to these specific patient subgroups. The relatively small sample 
size in some of the baseline Candida pathogen groups is a further limitation specific to 
this analysis, as is the small number of samples with elevated and non-WT MICs, and the 
lack of echinocandin-resistant pathogens and C. auris isolates.
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Conclusions

Overall, these data further support the efficacy of rezafungin in candidemia and IC. We 
found that rezafungin demonstrated efficacy for a global cure, mycological eradication, 
and day 30 all-cause mortality regardless of baseline Candida spp. Efficacy outcomes 
across Candida spp. did not appear to be impacted by MIC values for either rezafungin or 
caspofungin; assessment of other clinical factors may be warranted.

MATERIALS AND METHODS

Study design

ReSTORE (NCT03667690) (12) was a global, double-blind, double-dummy, randomized, 
Phase 3, non-inferiority trial of rezafungin vs caspofungin. Patients (≥18 years old) with 
candidemia or IC were randomly assigned (1:1) to receive either rezafungin 400/200 mg 
intravenously (IV) once weekly or caspofungin 70/50 mg IV once daily for ≥14 days (up 
to 4 weeks). Patients who met relevant criteria could be switched to oral step-down 
therapy after ≥3 days of IV therapy (placebo for the rezafungin group and fluconazole 
for the caspofungin group). The study was performed at 66 tertiary care centers across 
15 countries between October 2018 and October 2021. The study was performed in 
compliance with the International Conference on Harmonisation Good Clinical Practice 
and the Declaration of Helsinki. All patients provided written informed consent. For full 
study details, please refer to the primary publication (12).

Eligibility criteria

Key inclusion criteria were an established mycological diagnosis of candidemia and/or 
IC ≤96 hours before randomization (≥1 blood culture positive for yeast or Candida, 
a positive test for Candida from a rapid in vitro diagnostic test, or a positive Gram 
stain for yeast or a positive culture for Candida spp. from a specimen obtained 
from a normally sterile site) and ≥1 systemic signs attributable to candidemia or IC 
appearing from ≤12 hours prior to the qualifying positive culture through to the 
time of randomization. If the positive blood culture was drawn >12 hours prior to 
randomization, an additional set of blood cultures was obtained≤12 hours before 
randomization to confirm Candida spp. status at enrollment. Results of the blood 
cultures obtained ≤12 hours before randomization were not required for the patient 
to be enrolled in the study. Patients with prosthetic joint septic arthritis, osteomye­
litis, endocarditis, myocarditis, meningitis, endophthalmitis, central nervous system 
infection, chronic disseminated candidiasis, or urinary tract candidiasis were excluded, 
as were patients who had received systemic treatment with an antifungal agent 
for >48 hours in the 96 hours before randomization or who had an indwelling vascular 
catheter/device that could not be removed and that was likely to be the source of 
candidemia.

Assessments and outcomes

This analysis assessed outcomes among patients treated with rezafungin or caspofungin 
in the ReSTORE mITT in subgroups defined by Candida spp. and in vitro susceptibility 
at baseline. The mITT population was defined as patients who had a documented 
Candida infection based on central laboratory evaluation of culture from blood or 
another normally sterile site obtained ≤4 days (96 hours) before randomization and who 
received ≥1 dose of the study drug.

The genus and spp. of Candida pathogens were identified using mass spectrometry 
(matrix-assisted laser desorption/ionization–time of flight mass spectrometry, Bruker 
Daltonics, Bremen, Germany) by central laboratory evaluation of baseline blood and 
sterile site cultures. For susceptibility testing, CLSI (31) broth microdilution methodol­
ogy was used to determine MIC values to rezafungin, caspofungin, anidulafungin, 

Full-Length Text Antimicrobial Agents and Chemotherapy

May 2024  Volume 68  Issue 5 10.1128/aac.01584-23 8

https://doi.org/10.1128/aac.01584-23


micafungin, and fluconazole for each Candida spp. Susceptibility interpretations for 
rezafungin and caspofungin were determined using the CLSI breakpoints (17) and those 
recently granted for rezafungin by the FDA (18).

Echinocandin non-susceptible isolates were submitted for whole-genome sequenc­
ing to screen for FKS mutations. Total genomic DNA was used as the input material 
for the library, which was sequenced using a MiSeq Sequencer (Illumina, San Diego, 
CA, USA). Reads were trimmed with Sickle, version 1.33 (32), with the error corrected 
using BayesHammer (33) in SPAdes 3.11.1 (34). Each sample was assembled using a 
reference-guided assembly in SeqMan NGen, version 16.0 (DNASTAR, Madison, WI, USA). 
DNA regions encoding FKS genes were compared to sequences available in the literature 
(35).

ReSTORE included two different primary efficacy endpoints; one (global cure at 
day 14) required by the European Medicines Agency and one (all-cause mortality at 
day 30) by the FDA. Global cure (defined as achieving clinical cure, mycological 
eradication, and, for patients with IC diagnosed by radiology, radiological cure; all 
confirmed by the independent data review committee) was assessed at day 14 (±1 
day); and all-cause mortality was evaluated through day 30. Mycological response 
(eradication, failure, or indeterminate) was assessed at day 14 (±1 day) and at other 
timepoints; day 14 results are presented here unless otherwise stated. Mycological 
eradication was defined in these patients as a negative post-baseline blood culture or a 
negative post-baseline culture from another normally sterile site. If a follow-up culture 
from the normally sterile site other than blood was not accessible, the patient had to 
have achieved a successful clinical outcome, as assessed by the investigator, without a 
change of antifungal therapy for the treatment of candidemia and/or IC.

For this analysis, only descriptive data are presented, as counts and percentages.
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