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An increased interest in the investigation of the inner workings of the brain, together with recent 

technological advancements have been great catalysts for the development of neural stimulation 

and signal recording systems. These neural interfaces have enabled a better understanding of 

underlying neurological diseases, and provide promising therapeutic interventions for various 

neurological disorders.  

 As discoveries and technological advancements continue, new challenges and opportunities 

emerge. One of the major challenges is the development of small, portable, and power-efficient 

closed-loop neuromodulation systems. The ability to simultaneously stimulate and record is a key 

capability required in enabling such systems. 

 A closed-loop neuromodulation system is comprised of mainly four elements: (a) Stimulator: 

an energy-efficient and flexible stimulation engine, (b) Sensing: Low-power, high dynamic-range 

analog front-ends, (c) Digital Signal Processing (DSP): energy-/area-efficient digital signal 

processing units, and (d) Wireless transfer: an energy-efficient wireless power and data transfer 
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unit. In summary, efficient and concurrent stimulation, sensing, processing, and transfer of neural 

signals are required. Design efforts are in full effect to realize leading edge stimulation, sensing, 

and wireless transfer technologies; however, one common difficulty in realizing concurrent 

stimulation and recording of neural signals is the presence of stimulation artifacts observed at the 

sensing end. Existing solutions (e.g., blanking the recording channel during stimulation or self-

cancelling stimulation electrodes) have not answered all the challenges and lack the ability of 

continuous signal recording during the stimulation phase, thus rendering a critical portion of the 

data unusable.  

 In this work we propose an energy-efficient, implantable, real-time Adaptive Stimulation 

Artifact Rejection (ASAR) engine, capable of adaptively removing stimulation artifact for varying 

stimulation characteristics at multiple sites. Additionally, a blind artifact template detection 

technique is introduced, which in combination with the proposed ASAR algorithm, eliminates the 

need for any prior knowledge of the temporal and structural characteristics of the stimulation pulse; 

this technique also enables us to effectively battle the non-linear mapping of brain tissue, and non-

idealities of electrode interfaces, with linear filtering.  

 Two engines, implemented in 40nm CMOS, achieve convergence of <42μs for Spike ASAR 

and <167μs for LFP ASAR, and can attenuate artifacts up to 100mVp-p by 49.2dB, without any 

prior knowledge of the stimulation pulse. The LFP and Spike ASAR designs occupy an area of 

0.197mm2 and 0.209mm2, and consume 1.73μW and 3.02μW, respectively at 0.644V. 

 The LFP ASAR is integrated in a 64-channel sensing chip used in a state-of-the-art 

implantable, closed-loop neuromodulation unit (NM). 

 

  



 

iv 

 

The dissertation of Sina Basir-Kazeruni is approved. 

 

Danijela Cabrić 

 

Gregory J. Pottie 

 

Nanthia A. Suthana 

 

Dejan Marković, Committee Chair 

 

 

 

University of California, Los Angeles 

2017  



 

v 

 

 

 

 

 

 

 

“Between stimulus and response there is a space. 

In that space is our power to choose our response. 

In our response lies our growth and our freedom.” 

– Victor E. Frankl 
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1.1. Neuropsychiatric Disorders 

Neuropsychiatric disorders are the leading category of diseases in the United States [1] (Figure 

1.1). In fact, millions of patients worldwide battle various mental, behavioral, and neurological 

disorders, which include depression, Alzheimer’s, Parkinson’s, Obsessive Compulsive Disorder 

(OCD), epilepsy, paralysis, and many more. 

 

 
Figure 1.1: U.S. Leading Categories of Diseases/Disorders [1] 

 

 Traditionally therapeutic options include pharmacological and surgical approaches. While 

effective in many cases, these approaches are very limited, as they often only alleviate the worst 

effects of illness, are imprecise, and are not universally effective. In addition, patients can develop 

resistance to medications, and surgical solutions over time.  



 

3 

 

 The limitations of traditional therapeutic options for neurological disorders, along with 

technological and scientific advancements, have been a catalyst for scientists and engineers alike 

to look for better alternatives. Various neural interface solutions have been developed as a result. 

 

1.2. Neural Interfaces  

Development of neural interfaces that help us study the brain, has been in progress in recent years. 

An ever-existing curiosity in the inner workings of the brain, together with technological 

advancements, have further intensified development of neural stimulation and signal recording 

systems. These systems, in return have helped greatly – mainly by looking at the electrical activity 

of neurons – in decoding of the human brain functions [2], [3]. As a result, a better understanding 

of underlying neurological diseases exists that can provide promising therapeutic interventions for 

various neurological disorders, such as epileptic seizures, and creation of brain-machine interfaces 

and for neuro-prosthetic technologies to aid paralyzed patients [4], [5]. 

 

1.2.1. Deep Brain Stimulation (DBS) 

Deep Brian Stimulation, commonly referred to as DBS, was introduces deceases ago; 

Approximately 100,000 people around the globe live with a DBS implant [6]. In DBS systems, a 

neural stimulator is used to stimulate a particular region of the brain with the aim of providing 

therapy and relief for various neurological disorders. 

 Since their introduction in the late 1980s, systems similar to the Medtronic Activa DBS system 

(shown in Figure 1.2), have proven immensely helpful in providing therapy for patients with some 

specific neurological disorders. For disorders like Parkinson’s, and Dystonia, DBS systems have 

proven to be an alternative treatment method, working where traditional approaches failed. 
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Figure 1.2: Deep Brain Stimulation (DBS) System. (Medtronic Activa SC System) 

 

Although successful, DBS is not without shortcomings: 

 The probes used on these systems only provide a few (~4-8), large stimulation sites. 

This results in low resolution, and low specificity. 

 These systems provide continuous stimulus to patients, and over time the physiological 

response can be diminished, resulting in habituation. 

 It may take weeks to observe the effectiveness of stimulation parameters, for some 

conditions such as dystonia. 
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 Continuous stimulation over long periods of time can lead to various undesirable side-

effects (e.g., depression, behavioral disorders, etc.). 

 Additionally, DBS’ effectiveness has only been shown in Parkinson’s and other movement 

disorders where its open-loop stimulation can target anatomically focal regions. It is, however, 

insufficient for all other neurological disorders; to provide therapy for most neurological disorders, 

precise localization, over a distributed neural network is required.  

 Therefore, new solutions are required that can provide closed-loop neural stimulation and 

recording. 

 

1.2.2. Neuromodulation Devices 
 

More recently, neural recording and stimulation systems have been able to provide treatments for 

epilepsy and spinal cord injuries through closed-loop control of neural stimulation [7]. It is safe to 

say that, engineers and scientists, are trying to “close the loop” with the brain, and create much 

more capable systems, that can help with study and treatment of many disorders.  

 Human memory is an excellent example: The medial temporal structures, including the 

hippocampus and the entorhinal cortex, are critical for the ability to transform daily experience 

into lasting memories; and it has been shown that stimulation of the entorhinal region, enhances 

memory of spatial information when applied during learning [8].  

 There is abundance of therapeutic opportunities, current neuromodulation devices (e.g. 

NeuroPace RNS-300 system shown in Figure 1.3), however, are lagging behind. These systems 

do not provide the required resolution, and are very bulky requiring large components to be 

surgically implanted in the wires. As a result, these devices are hard to implant, not comfortable 
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for the patients, and do not provide high resolution recording and stimulation over various regions 

of the brain. 

 

 

Figure 1.3: Current Neuromodulation (NM) Devices. (NeuroPace RNS-300 System) [9] 

 

 Most importantly, all neuromodulation devices released to date, lack a critical component to 

enable a true closed-loop solution: ability to record neural activity in the presence of stimulation 

artifacts [10], or simultaneous recording and stimulation.  

 For a system with full promise of therapy for multiple neurological disorders, that patients can 

take advantage of comfortably in their daily lives, we need a wireless, implantable, closed-loop 

neuromodulation system that enables simultaneous stimulation and recording. 
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1.2.3. Closed-loop Neural Recoding and Stimulation 
 

A closed-loop neuromodulation system is comprised of mainly four elements: (a) Stimulator: an 

energy-efficient and flexible stimulation engine, (b) Sensing: Low-power, high dynamic-range 

analog front-ends, (c) Digital Signal Processing (DSP): energy-/area-efficient digital signal 

processing and feature extraction units, and (d) Wireless transfer: an energy-efficient wireless 

power and data transfer unit. In summary, efficient and concurrent stimulation, sensing, 

processing, and transfer of neural signals are required. 

 

 

Figure 1.4: Closed-loop Neuromodulation System 

 

 

 One common difficulty in realizing concurrent stimulation and recording of neural signals is 

the presence of stimulation artifacts (<100mV) observed at the sensing end alongside neural 

signals of interest (<1mV) (see Figure 1.4). Existing solutions have not answered all the challenges 
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and lack the ability of continuous signal recording during the stimulation phase, thus rendering a 

critical portion of the data unusable.  

 Therefore, a DSP solution that can adaptively remove the stimulation artifacts in real-time is 

an essential component of any modern neuromodulation system with aspirations for simultaneous 

neural recording and stimulation. 

 

1.3. Dissertation Outline 

The remainder of this dissertation is organized in the following manner: 

 Chapter 2: Background, provides background information on signal of interest in the 

neuromodulation system and design of stimulation artifact solution. The importance of 

stimulation artifact rejection is summarized, and key challenges and requirements for 

a successful implantable, real-time stimulation artifact rejection solution is reviewed. 

At the end, a review of prior art is provided. 

 Chapter 3: Proposed Adaptive Stimulation Artifact Rejection (ASAR) Algorithm, 

provides the motivation and mathematical foundation for the proposed Adaptive 

Stimulation Artifact Rejection (ASR) algorithm. In this chapter, algorithmic decisions 

rising from the need for better performance are discussed. Template detection method 

is introduces, and the algorithm is formulated and organized in two phases. Simulation 

results verifying the operation and validity of ASAR are presented. 

 Chapter 4: ASAR Hardware Implementation, explains the hardware 

implementation considerations and design choices in different design blocks. Hardware 

implementation for both phases of ASAR operation, along with their corresponding 

hardware timing diagram illustrations are provided.  
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 Chapter 5: IC Implementation and Measurement Results, presents the 

implementation of two ASAR design (LFP ASAR and Spike ASAR) in 40nm CMOS 

technology. Furthermore, detailed chip measurement results are included in this 

chapter. A new experiment devised to measure the true noise (artifact) suppression of 

the ASAR filter is introduced and its results are shared. Lastly, ASAR is compared with 

all other stimulation artifact methods, and a qualitative comparison with state-of-the-

art adaptive filtering method in this field is included. 

 Chapter 6: ASAR Integration: Sensing IC and Neuromodulation Unit (NM), 

delivers an overview of ASAR integration within our 64-channel neural sensing chip, 

its other building blocks, and real-time measurements. Miniaturized neuromodulation 

unit (NM), combining this sensing solution with a stimulator IC for a fully implantable, 

closed-loop neuromodulation solution, is shown. 

 Chapter 7: Conclusion, concludes this thesis. Research contribution and future work 

are discussed. 
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2.1. Signals of Interest 

Before reviewing design requirements, challenges, and limitations of prior-art, we need to 

introduce the signals of interest in the intended closed-loop neuromodulation system. Most 

invasive neuromodulation systems and the physicians that use these devices require and work with 

one of the following signals in the human brain: 

 Local Field Potentials (LFP) 

 Active Potentials (AP, or commonly referred to as Spikes) 

To provide a complete solution, we consider both of these signals. Figure 2.1 shows various 

types of biological signals, along with their bandwidth and amplitudes [11], [12], [13]. 

 

 

Figure 2.1: Various Biological Signals [13] 
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An immediate observation from Figure 2.1, is the overlap of the frequencies of the signals of 

interest and the stimulation artifacts; this has traditionally been a major source of difficulty in 

removal of stimulation artifacts. We can also observe that the stimulation artifacts possess a much 

higher amplitude when compared to the neural signals of interests; this is another obstacle that will 

be discussed in more detail. 

Table 2.1 shows specific bandwidth and amplitudes for the Local Field Potential (LFP), and 

Action Potential (AP). These parameters will be considered as specifications for our designs. 

 

Table 2.1: Neural Signals of Interest 

Neural Signal Bandwidth Peak Amplitude 

Local Field Potential (LFP) 1Hz – 200Hz ~1 mV 

Action Potential (AP) 200 Hz – 5 KHz ~100 µV 

 

 

2.2. Importance of Stimulation Artifact Rejection 

Closed-loop stimulation is desired to build an effective neuromodulation system. This operation 

requires concurrent stimulation and recording of neural signals (<1mV) in the presence of 

stimulation artifacts (10s of mV).  

Traditionally the neural recording front-ends could not provide a high enough dynamic range 

to avoid saturation in the presence of stimulation artifacts. As a result, conventional neural 

recording systems only view stimulation artifact rejection primarily as a method to mitigate 

saturation in neural recording front-ends. Conventional recording systems, therefore, do not allow 

for recording of signals of interest during stimulation; making the recovery of signal in these 

regions impossible. 
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The problem exists today: various neural interfaces introduced in the last few years (e.g., [14], 

[15], and [16]) still suffer from this problem and cannot offer neural recording under stimulation 

artifact. The system shown in [17], also has limited input signal range (~2-3mV) with no means to 

avoid saturation 

Recently, front-ends capable of recording neural signals with much higher dynamic range have 

been designed. For example the VCO front end in [18] and [19] are capable of recording Local 

Field Potentials (LFPs) with up to ±50mV linear-input-range, while the neural recording front-

ends in [20], [21], [22], and [23] promises recording of neural signals (both Local Field Potentials 

and Action Potentials) with ±20mV up to ±40mV linear-input-range. Most recently, [24] 

introduces an implantable neural recording front-end solution with ±100mV linear-input-range. 

These designs overcome the saturation problem in conventional systems, however, large 

stimulation artifacts remain in the digitized signal.  

In order to recover the neural signal, an effective stimulation artifact rejection method is needed 

to enable concurrent stimulation and recording while achieving the following: 

 Maximizing usable neural data 

 Minimizing time delays for closed-loop response 

 Helping reduce the design constraint of various other blocks in the system 

o After the removal of stimulation artifacts, the sampling rate and number of bit 

can be reduced, without any loss in data, resulting in more relaxed design 

constraints in following signal processing blocks and wireless transfer. 
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We propose that these new front-end designs are used followed by an Adaptive Stimulation 

Artifact Rejection (ASAR) for concurrent stimulation and recording, and more importantly, 

enabling investigation of the instantaneous neural response to stimulation. 

 Figure 2.2 illustrates observation of both stimulation artifact (a) and desired neural signal (s) 

as the recorded signal (d) at the input of the recording front-ends, as well as the difference between 

the conventional neural recording systems and one that was proposed. 

 ASAR, as a result, becomes a very important building block of the proposed recording solution, 

and subsequently a complete closed-loop neuromodulation system. 

 

 

 

Figure 2.2: Neural Recording Systems - Conventional vs. Proposed 
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2.3. Key Design Challenges and Requirements 

In this section key design challenges for adaptive stimulation artifact rejection is briefly discussed 

and these requirements are used to assess prior arts, as well as our solution and how effective they 

are for a closed-loop, implantable, neuromodulation system.  

 

2.3.1. Concurrent recording and stimulation 
 

Any sufficient stimulation artifact rejection solution, would require the ability to enable recording 

during stimulation. This may seem obvious, but as discussed earlier, some traditional solutions 

will not meet this requirement, as they only view artifact rejection as a method to mitigate the 

saturation problems in the recording front-end. 

 

2.3.2. Robustness 
 

It is imperative that a successful solution for stimulation artifact rejection is able to function under 

varying conditions.  

Varying stimulation pulse characteristics – both structural and temporal – present the greatest 

need for robustness; these variations could occur multiple times within a short period of time by 

design (e.g., algorithm choice, physician, etc.), or as a result of uncontrolled variables (e.g., non-

linear brain tissue mapping, electrode movement, etc.). 

 

2.3.2.1. Timing Assumption 

 

Assuming a fixed, or fixed-range, of timing delay between stimulation and when the 

stimulation artifact is observed on the recording side, can lead to failure.  
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Various factors that can contribute to changes in timing parameters are: 

 Varying stimulation pulse characteristics – structural and temporal. 

 Unknown brain tissue mapping, that changes from person-to-person, and over time. 

 Non-ideal electrode interfaces. 

 Varying recording and stimulation sites.  

A solution that is agnostic to these timing variations and makes minimal timing 

assumptions would be desirable. 

 

2.3.3. Performance 
 

The difficulties with measuring the true attenuation of stimulation artifacts will be discussed in 

more detail in the following chapters, however, some basic performance metrics need to be met 

for any acceptable solution. 

 

2.3.3.1. Size 

 

Any solution will require to be an implant scale; while this is not strictly defined, it does 

exclude all complex algorithmic solutions implemented on PC, FPGA or other development 

board. 

 

2.3.3.2. Convergence 

 

A closed-loop neuromodulation system would require a real-time rejection of stimulation 

artifacts, as the decision to provide therapeutic stimulation is made in real-time, based on the 

available neural recording across the various regions of the brain. This requires real-time 

convergence of the solution and excludes solution that need repeated offline tuning/training.  
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2.3.3.3. Power 

 

Any solution for an implantable closed-loop neuromodulation device, requires to be extremely 

low power, as the maximum power density of implantable devices are limited before they start 

to damage neurons [11].  

 Wireless transmission dominates the power of traditional neural implants, however, by 

introduction of various DSP blocks, this power can be significantly reduced by transmission 

of signal features at much lower rates than the raw signal (DSP helps in removing stimulation 

artifact, compressing raw data, and feature extraction, resulting in significant data-rate 

compression [25]). In implantable neural devices that employ batteries, low power operation, 

is even more essential in order to eliminate the need for frequent battery replacements. This 

has led into developments of alternative technologies, such as inductive power transfer or 

thermal energy harvesting [26] [27]. 

 Figure 2.3 shows and compares estimated system powers for various options for action 

potentials. This figure also shows, that in our approach, all the DSP components need to 

consume less than ~6µW per channel to enable realization of a fully implantable and wirelessly 

powered neuromodulation system. 
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Figure 2.3: Estimated System Power for Various Output Options for Spike Recordings [28] 

 

 The focus of this work is the development of an energy-efficient ASAR algorithm to 

adaptively remove stimulation artifact, however, other necessary DSP blocks, such as digital 

filters to separate LFP and neural Spikes have also been included (See Appendix A).  In 

addition, for various neurological disorders, and their therapeutic needs, other signal 

processing blocks may need to be considered in the future. Therefore, in order to meet our 

power requirements and provide some margin for additional feature extraction and processing 

blocks, we have constrained ourselves to ~3µW per channel for stimulation artifact rejection. 

Any solution requiring more than 6µW per channel will definitely not be suitable for 

implantable neuromodulation systems. 
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2.4. Review of Prior Art 

Several previous works have focused on the problems associated with the presence of Stimulation 

Artifacts in neural recording systems. Some of the key ideas introduced by these papers are briefly 

summarized below. In reviewing the prior art, we will try to evaluate them based on the design 

requirements and challenges that were introduced in Section 2.3. 

 

2.4.1. Blanking the recording channel during stimulation 
 

Some previous works have tried to mitigate the stimulation artifact issue by “blanking” the 

recording channel during or immediately after stimulation. These methods, do this, in order to 

reduce the burden on the analog front-ends that cannot support very high dynamic ranges necessary 

to capture the neural signal alongside stimulation artifact. For example, in [29], an overload 

recovery technique is employed (Figure 2.4). 

 

Figure 2.4: Overload Recovery [29] 
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Here a shunt resistance is used to de-polarize the electrode, immediately after stimulation ends. 

In this example and most other cases a quick recovery from saturation is achieved, however, it is 

clear that capability to record during stimulation onset is not provided and a critical portion of 

neural recording is rendered unusable. 

Blanking the recording channel during stimulation is a very common method used in various 

sensing solution in neuromodulation systems. Some more recent examples are were blanking is 

utilized are [30], and [31]. 

 

2.4.2. Polynomial Curve Fit 
 

A local curve fitting approach is shown in [32], in order to try and suppress the stimulus artifact. 

This algorithm, called SALPA, also blanks the output of the recording during saturated regions 

during stimulation (see Figure 2.5), and require PC hardware. Although its performance is 

significantly better than low-pass Butterworth (BW-L), high-pass Butterworth (BW-H), and linear 

phase filters, it is still not satisfactory. Furthermore, the limited degree of freedom to model the 

artifact can hinder its applicability. 
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Figure 2.5: Comparison of Various Curve Fitting Methods [32] 

 

Most importantly, this solution is an offline algorithm. Meaning that a bulk of data needs to be 

acquired before any portion of it can be cleaned. This constraint renders such systems inapplicable 

to a majority of applications where (a) memory is limited, (b) computational power is limited or 

(c) the cleaned data needs to be available in real-time. 
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2.4.3. Artifact Cancellation 
 

Another interesting method was introduced in [33] were artifact templates, are created and updated 

regularly and subsequently canceled in the recording using a feedback DAC. Figure 2.6 shows a 

top-level summary of this method. 

 

 

Figure 2.6: Artifact Cancellation [33] 

 

Although intriguing, few issues remain: (a) need for an offline training/update of the 

stimulation artifact, and (b) cancelling using a feedback DAC on the sensing side of the recording 

system significantly increases noise at the input of analog front-end and cause major system level 

complexities. Lastly, in this work only biphasic stimulations were considered. 

 

2.4.4. Self-Cancelling Stimulation Electrode Configuration 
 

Self-cancelling stimulation electrode configurations have been previously proposed. In [34], 

recording electrodes are placed differentially around stimulation electrodes (Figure 2.7), and 

common-mode passive filters are utilized to attenuate the stimulation artifact. 
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Figure 2.7: Self-cancelling Stimulation Electrode Configuration [34] 

 

 Clearly, this solution is very application-specific, and unless it is produced with a set 

configuration in mind, cannot be effectively evaluated. Furthermore, electrode configuration 

requirements can limit the flexibility that is offered to the user, as far as stimulation and recording 

sites are concerned. 

 Another noteworthy observation in this work is the required off-chip components which are 

undesirable. Additionally, in this work the artifacts reside in frequency ranges that did not overlap 

the signals of interest, which is not the case in many practical situations. 

 

2.4.5. Echo-cancellation 
 

Echo-cancellation based methods to remove stimulation artifact in neural systems have been 

suggested in [35] [36], and have shown great promise in concept, however their performance is 

not nearly sufficient to be implemented in an implantable, real-time, closed-loop neuromodulation 

system. Most recently, the method in [36] (shown in Figure 2.8), as well as the method in [10], 
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claimed attenuation of 8-sample long artifacts by up to 42dB. This claim is very misleading, as it 

only relies on the insertion of an 8-bit DAC at the input of the front-end, and is not a real measure 

of filter attenuation. The best attenuation in [10] [36], seems to be 24dB from their results and 

measurements; that measurement also relies on max amplitudes of the neural signals and 

stimulation artifact amplitudes, which we believe is a not a great way to measure this filter 

performance. More detailed discussion about this is included in Section 5.3. 

Performing the cancellation of estimated artifact at the input of the amplifier, using a DAC as 

shown in Figure 2.8, introduces the same input noise issues that were previously discussed in 

Section 2.4.3.  

 

 

Figure 2.8: Echo-cancellation Based Stimulation Artifact Cancellation [10] 
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Additionally, this method, demonstrated long convergence times (~3 seconds in [36] and up to 

~12 seconds in some of the measurements in [10]), which is not practical in real life situations, 

where stimulation/recording sites along with stimulation pulse’s structural and temporal 

characteristics can change at any moment. 

The feedback nature of artifact subtraction dictates a maximum delay between stimulation 

onset and when it is seen at the sensing end. If the delay is any longer, the method could fail, unless 

stimulation is periodic. Lastly, in all the results shown in [10] and [36], since u(t) is a single bit 

parameter, only monophasic stimulation patterns are supported. This is contrary to their claim of 

supporting monophasic stimulation patterns. 

While the echo-cancellation is a promising method, major modifications are required to 

improve its attenuation, convergence, and overall performance before it can be used in a closed-

loop neuromodulation device.  

 

2.4.6. Other Methods 
 

Other methods that are not discussed in as much detail include the following: 

 Authors in [37], present a phase-space model approach, in which they model a periodic 

artifact as a noisy oscillator. They then approximate the periodic components by fitting the 

phase space model of the oscillator. Although this is a thought-provoking approach, it 

significantly suffers from its limited degree of freedom expected to model artifacts only. 

 The system presented in [38], employs a (rapid) overload recovery in their front-end. As 

we previously discussed in Section 2.4.1, this is an insufficient solution and is usually done 

in order to alleviate the front-end saturation. In the same work, in their closed-loop 

experiment, which in addition to their implantable IC, includes an FPGA and a PC, a multi-
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channel PCA denoising algorithm is implemented to remove artifacts. For PCA’s use in 

this application to be valid, an assumption needs to be made that the stimulation artifact is 

purely noise and the neural signal recorded during stimulation behaves similar to the 

segment of the data before and after stimulation. In other words, this solution ignores any 

neural response that can be caused by stimulation. Validity of this assumption is not clear; 

however, even if valid the multi-channel PCA algorithm is not implemented on chip and 

therefore is not implantable. 

 A similar artifact removal strategy is adopted in [39] with a slightly different algorithm 

(this implementation is on an ARM Cortex-M3 processor, which is part of their SoC FPGA, 

and is not in the implantable section of their system). Averaged artifacts are used to 

generate artifact flags. Upon arrival of data to the SoC FPGA, artifacts are detected based 

on the artifact flags, and a linear interpolation is used to clean those artifacts. Use of linear 

interpolation in this case, effectively is a very intricate “blanking” solution, where the 

recording during stimulation is not zero, but interpolated using the before and after data 

points. Results look visually acceptable in time-domain recordings; however, there is no 

certainty that those recording are valid responses (and hence recording) of neurons during 

stimulation. 
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Our proposed algorithm embeds the findings from echo-cancellation and other methods mentioned 

in section 2.4.5, into a comprehensive adaptive filtering framework and aims to provide a complete 

Adaptive Stimulation Artifact Rejection solution for modern low-power, closed-loop 

neuromodulation systems. The implementation of the energy-efficient ASAR algorithm aims to 

clean neural recordings in the presence of stimulation artifact, by utilizing adaptive filtering 

techniques, as motivated in Figure 3.1. 

 

 

Figure 3.1: ASAR Motivation 
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3.1. ASAR Algorithm 

We are considering a scenario where 𝐾  measurement sites are distributed spatially. At each 

particular electrode 𝑘 and time instance 𝑖, the artifact is modeled as 

𝑎𝑘 = 𝑢𝑘,𝑖𝑤𝑘 
( 1 ) 

where 𝑢𝑘,𝑖 and 𝑤𝑘 are vectors of size 𝑀. Note that this representation assumes that the artifact 

is generated as a linear transformation from 𝑢𝑘,𝑙 through 𝑤𝑘. The most straightforward approach 

would be to populate 𝑢𝑘,𝑙  from the stimulation pattern, which is commonly done in methods 

similar to [36]. This has several major drawbacks, namely that (a) the stimulation needs to be 

known, (b) the algorithm can only cancel linear transformations of the stimulation pattern, which 

is not sufficient in practice and (c) the method is highly susceptible to errors stemming from non-

idealities, asynchrony and misalignment.  

One of the main contributions of our proposed method is that we will show how to obtain  𝑢𝑘,𝑙 

directly from measured data and use this information to cancel artifacts in real-time without any 

prior knowledge about the nature of the stimulation. Furthermore, the proposed algorithm absorbs 

the non-linearity correction implicitly into the computationally inexpensive generation of 𝑢𝑘,𝑙 , 

effectively allowing us to perform non-linear artifact rejection at approximately the cost of a linear 

adaptive filter (more detail on this is provided in Section 3.1.1.3). Before we proceed to elaborate 

on the estimation of 𝑢𝑘,𝑙, we will finish the derivation of the adaptive core of the algorithm. 

In our application, neural recording, some electrodes are clustered in close spatial proximity. 

It would then be desirable to allow for the incorporation of this information into the calculation of 

the weight vector.  
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The algorithm allows for the incorporation of multiple measurements by approximately solving 

for the weight vector 𝑤𝑘 as: 

𝑤𝑁𝑘
𝑜 = argmin𝑤 ∑ Ε‖𝒅𝒍(𝑖) − 𝒖𝒍,𝒊𝑤‖

2

𝑙𝜖𝑁𝑘

 

 ( 2 ) 

where we denote by 𝑁𝑘 the set of electrodes in close proximity to electrode 𝑘. The assumption 

here is that 𝑤𝑘≈𝑤𝑙  for 𝑘 in 𝑁𝑘 . Note that the algorithm allows, but does not require multiple 

measurements to be utilized. In practice, electrode geometry and computational restrictions can 

determine whether one or multiple measurements should be utilized. Although very powerful, 

hardware cost considerations call for the lowest number of recording channels to be used at any 

given time, as any additional recording channel not only adds hardware cost in this algorithm’s 

implementation, but also increases the overhead on the overall system (i.e., recording front-end, 

data transfer, control circuitry). 

The case where only measurements from electrode 𝑘  are used to clean said electrode is 

admissible as a special case. In this case, the above sum collapses to a single element. This special 

case is the one that we used for the hardware implementation of our proposed solution. The 

performance lost due to using a single measurement is heavily outweighed by the introduction of 

our template detection (Section 3.2.2) method, which is a novel method of obtaining  𝑢𝑘,𝑙 directly 

from measured data (one additional electrode measurement 𝑘′). 

 

3.1.1. Adaptive Filtering 
 

The evaluation of the expression in equation ( 2 ) is infeasible in hardware; instead the estimated 

weight vector 𝑤𝑁𝑘
𝑜  is iteratively calculated, which can be implemented in hardware using adaptive 

filtering. This estimated weight is:  
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𝒘𝑘,𝑖 = 𝒘𝑘,𝑖−1 +
𝜇

‖𝒖𝑖‖
2 + 𝜖

𝒖𝑖
𝑇 [𝒅𝑘(𝑖) − 𝒖𝑖𝒘𝑘,𝑖−1⏟          

e

] 

( 3 ) 

and the cleaned neural signal is then estimated by the following: 

𝒔�̂�(𝑖) = 𝒅𝑘(𝑖) − 𝒖𝑖𝑤𝑘,𝑖  
( 4 ) 

Where, 𝑖 is the time index, 𝑘 is the electrode index (channel), 𝑤 represents filter coefficients, 

𝑢 is a signal correlated with the artifact, 𝑑 is the measured signal, and �̂� is the cleaned neural 

signal. 

A simple representation of an adaptive filter [40] is shown in Figure 3.2, which is used as the 

basis for our implementation. 

 

 

Figure 3.2: Adaptive Filter 

 

The design and implementation of this algorithm has been done with full consideration of 

hardware and application requirements. It is therefore important to note some the significant 

components and modifications that were implemented to enable this solution to achieve the fastest 
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convergence reported for an adaptive stimulation artifact rejection solution while enabling it to 

work with arbitrary stimulation pulses without a need for prior knowledge of stimulation pulse 

characteristics or stimulation/recording timing information. 

 

3.1.1.1. Normalized Least Mean Square (NLMS) 

 

In prior implementations of LMS adaptive filtering solutions for stimulation artifact rejection 

in neuromodulation applications, a fixed step-size (𝜇′) is used for calculation of error signals 

and the filter coefficients (w). This, we found, to be one of the reasons that the method in [36], 

and others, suffer from very long convergence times or low accuracy. First major difference is 

that we calculate an appropriate step-size each time a new sample is received (using norm 

calculations), and avoid dealing with accuracy vs convergence time trade-off. This results in 

faster convergence times while maintaining the accuracy of the results. 

Additionally, the ASAR is implemented, as will be shown in the following sections and 

chapter, in a fully digital feed-forward manner, which avoids injecting noise at the input of the 

front-end and does not limit the filter’s attenuation as no feedback DAC is required.  

 

3.1.1.2. Posteriori Error 

 

In an adaptive filter implementation of ( 3 ), the priori error (denoted by 𝑒), can be and is 

commonly used as the estimate of the neural signal. While for really small step sizes, the priori 

error and posteriori error are roughly equal in steady-state, the choice between them becomes 

an important one for us since our step size is not fixed and is chosen aggressively to improve 

the convergence rate in comparison to the state-of-the-art. It has, indeed, been shown that using 
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posteriori error as oppose to the priori error can lead into better performance of the algorithm, 

as it is less sensitive to varying step size values [41].  

The feed-forward nature of ASAR, is another reason we chose to use the posteriori error. 

As a result we obtain the estimate of the neural signal,  𝑠�̂�(𝑖) , using the more recent 

coefficients, 𝑤𝑘,𝑖, as shown in ( 4 ). 

The choices to go with the normalized full least mean square and use the posteriori errors, 

each would require an additional M adder and multipliers (where M is the order of the 

implemented filter); however, they result in faster convergence times and better performance. 

 

3.1.1.3. The choice of template 𝒖𝒊 

 

The choice of the template 𝑢𝑖 is critical. The stimulation pulse itself, as employed in [10], [36], 

is not suitable for this purpose, because: (a) the mapping from stimulator through stimulation 

electrode, brain tissue and sensing electrode is highly non-linear, resulting in the need for 

complex filters and long convergence times, and (b) prior knowledge about the structural and 

temporal shape of the stimulation pulse is required. To remedy both drawbacks, the blind 

template detection method was developed, which operates without information on the 

stimulation waveform. By obtaining a template from an adjacent electrode and learning only 

the mapping between adjacent recordings, a linear NLMS filter with 16 taps turns out to be 

sufficient. The difference between the conventional choices for template versus our choice for 

the template has been visualized in Figure 3.3. 

This method enables us to assume no characteristics for stimulation and sets no limits for 

delays between stimulation pulses that are observed at various recording sites, close or far. 

Most importantly, this enables our implementation to work with any arbitrary stimulation 
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pulse. We believe this is the main reason why our linear LMS adaptive filter, can so effectively, 

estimate and resolve a non-linear mapping (of the brain tissue); hence enabling us to offer an 

innovative solution at a much lower computational complexity/cost. 

 

 

Figure 3.3: The Choice of Template 𝑢𝑖 

 

 

3.2. Proposed Blind Adaptive Stimulation Artifact Rejection Solution 

Figure 3.4 shows the block diagram for our proposed blind Adaptive Stimulation Artifact 

Rejection (ASAR) solution. ASAR operates in two phases: (I) statistics calculation (training), and 

(II) template detection and adaptive filtering. 
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Figure 3.4: Blind Adaptive Stimulation Artifact Rejection (ASAR) Block Diagram 

 

 

3.2.1. Statistics Calculation 
 

Statistics of the neural signal, from an adjacent recording channel, are calculated in the absence of 

artifacts during the first 𝑁 samples, and an appropriate threshold value is set. This is done by 

recursively updating the values: 

𝑺(𝑖) = 𝑺(𝑖 − 1) + 𝑥(𝑖) 
( 5 ) 

and, 

𝑻(𝑖) = 𝑻(𝑖 − 1) + 𝑥2(𝑖) 
( 6 ) 

 

where 𝑥(𝑖) is the input sample at time 𝑖. Mean (𝑎𝑣𝑔) and standard deviation (𝑠𝑡𝑑) at time 𝑖 =

𝑁 are then calculated as (for 𝑁 large enough): 

𝑎𝑣𝑔 =
𝑺(𝑁)

𝑁
 

( 7 ) 
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𝑠𝑡𝑑 ≈ √
1

𝑁 − 1
(𝑻(𝑁) − 𝑁. 𝑎𝑣𝑔2) 

( 8 ) 

  

The number of samples 𝑁 is chosen as 𝑁 = 2𝑛 for some 𝑛 in order to reduce multiply/divide 

into shift operations, resulting in a more efficient hardware implementation. 

 

3.2.2. Template Detection and Adaptive Filtering 
 

To clean the measurement 𝒅𝑘(𝑖) at electrode 𝑘, we choose a nearby electrode 𝑘′ and determine a 

template  𝒖𝑖 ∈ ℝ
1×16 . Based on the threshold obtained in the previous phase,  𝒖𝑖(𝑙) , the 𝑙 -th 

element of 𝒖𝑖 is estimated from 𝒅𝑘′(𝑖) through blanking within 𝛼 ∙ 𝑠𝑡𝑑 of the mean: 

 

𝒖𝑖(𝑙) = {
𝒅𝑘′(𝑖 − 𝑙),    if |𝒅𝑘′(𝑖 − 𝑙) − avg| ≥ 𝛼 ∙ 𝑠𝑡𝑑

             0,        otherwise                            
 

( 9 ) 

 

 An example of template detection is shown in Figure 3.5, where 𝒅𝑘(𝑖), is the input to the 

template detection block. On the left, after the statistics calculation phase in completed, template 

detection is enabled, and based on the appropriate threshold set based on those statistics (shown in 

red), a template, 𝒖𝑖, is extracted on the right. 
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Figure 3.5: Template Detection Example 

 

 After an appropriate template, 𝒖𝑖, is extracted, it is them applied to a Normalized Least Mean 

Square (NLMS) 16-tap adaptive filter. The clean neural signal 𝒔�̂�(𝑖)  is then obtained by 

subtracting the estimated artifact 𝒖𝑖𝒘𝑘,𝑖 from 𝒅𝑘(𝑖) as shown in equations ( 3 ) and ( 4 ). 

 In the remainder of this chapter, we review some simulations that were performed to evaluate 

the effectiveness of this proposed algorithm. The hardware implementation details, as well as the 

fabricated integrated circuit along with further measurement results are presented in the next 

chapter. 

 

3.3. Simulation Results 

We planned to implement two ASAR solutions: (a) for LFP signals based on the analog front-end 

presented in [18] (called LFP front-end in this thesis), and (b) for the analog front-end presented 

in [20] that also covers Spikes (called Spike front-end for the remainder of this thesis). This is 
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because, with the availability of the mentioned front-ends, we will have the opportunity to integrate 

our method to achieve the proposed sensing solution presented in Figure 2.2, and a complete 

neuromodulation system. Therefore our simulations and testing should match those conditions.  

The LFP and Spike front-ends operate at 6kHz, and 24~30kHz, respectively. Simulations were 

ran for both cases to make sure the algorithm can handle artifact rejection in all conditions. 

For testing of the algorithm, our colleagues and collaborates in UCLA’s neurosurgery 

department, provided real human data, with various stimulation pulse characteristics, which we 

ran through the algorithm for verification. The range for these tests have been summarized in Table 

3.1. 

  

Table 3.1: Testing Coverage of Stimulation Characteristic 

Stimulation 

type 

Current 

amplitude 
Pulse width 

Pulse 

frequency 

Stimulation 

pattern 

Sampling 

frequency 

Micro & 

Macro 
150µA - 2mA 200µs - 300µs 50Hz - 300Hz 

Theta burst, 

pulse train 

6 kHz & 

30 kHz 

  

In the next few figures, simulations for some of the test cases covered in the data shown in 

Table 3.1 are shared. 

Continuous stimulation pulse train are a common modality used in various stimulation 

paradigms. Figure 3.6 shows a human patient recording with a continuous stimulation pulse of 

1.2mA. To mimic the conditions for the LFP and Spike front-ends, as explained earlier, this 

recording is cleaned using ASAR at 6kS/s and 30kS/s, respectively. These cleaned signals are 

shown in Figure 3.6 (b) and (c). 
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Figure 3.6: ASAR Simulation: Continues Stimulation Pulse (1.2mA), (a) Recorded Signal, 

(b) Cleaned Signal at 30kHz, (c) Cleaned Signal at 6kHz 

 

 Another stimulation modality is the use of burst stimulation pulses, theta-burst in our case. 

Figure 3.7 shows a human patient recording with a theta-burst stimulation pulse of 150μA. To 

mimic the conditions for the LFP and Spike front-ends, this recording is cleaned using ASAR at 

6kS/s and 30kS/s, respectively. These cleaned signals are shown in Figure 3.7 (b) and (c). 
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 A theta-burst stimulation protocol has been shown to be optimal for inducing Long-Term 

Potentiation (LTP) [42], and its use as a stimulation protocol in the human entorhinal area has been 

shown to improve memory specificity [43]. 

  

 

Figure 3.7: ASAR Simulation: Theta-burst Stimulation (150μA), (a) Recorded Signal, (b) 

Cleaned Signal at 30kHz, (c) Cleaned Signal at 6kHz 
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A different human patient recording with a theta-burst stimulation pulse, with a much higher 

stimulation current of 2mA, is provided in Figure 3.8. ASAR’s cleaned output corresponding for 

the Spike and LFP front-ends, are shown in Figure 3.8 (b) and (c), respectively. 

 

 

Figure 3.8: ASAR Simulation: Theta-burst Stimulation (2mA), (a) Recorded Signal, (b) 

Cleaned Signal at 30kHz, (c) Cleaned Signal at 6kHz 
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Although not commonly done, we obtained a data set with varying (increasing) stimulation 

pulse amplitude to observe the results in the simulation. Figure 3.9 shows this simulation result, 

where the blue signal is the recorded signal containing neural signal and artifact, and the red signal 

is the ASAR output, cleaned signal. 

 

 

Figure 3.9: ASAR Performance with Varying Stimulation Levels 

 

 

3.3.1. Difficulties in measuring true attenuation of the filter 
 

One cannot simply measure the attenuation of this adaptive filter for stimulation artifact rejection, 

and in fact no one has sufficiently addressed this in the literature. This is mainly due to the fact, 

that neural signals are not a “known signal” and we cannot model them as easily as some signals 

in the communication field for example.  
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Some previous work observe the max amplitudes of the artifact and compare that to the 

amplitude of the cleaned neural signal to report attenuation numbers. This is not a true measure of 

the filter attenuation, because there is no distinction between the desired neural signal and the 

residual artifact present in the cleaned signal that may have not been removed. We try to address 

this in our chip measurements, and believe that the method presented in Section 5.3 comes very 

close to providing the best attenuation measure for these types of filters. 

Another method, would be to look at the spectrum of the cleaned signal and compare it to the 

signal of interest. Here the main difficulty is the overlap of the artifact frequency components with 

the signals of interest. Therefore, this cannot be done for neural signals with clinical recordings. 

However, as my colleagues have been designing stimulator and sensing front-end solutions, which 

our ASAR solution will be integrated with, we had access to custom in-vitro measurements.  

 An in-vitro, concurrent stimulation and sensing, experiment was done where a continuous 

stimulation pulse of 3mA, with 2ms inter-pulse duration was recorded in conjunction with a 

±3.5mV, 7Hz signal tone (mimicking a neural signal); this recording is shown in Figure 3.10(a). 

To test capability of our proposed ASAR algorithm, we cleaned this measurement signal and 

produced a spectrogram; an attenuation of up to 114dB in the dominant tone was achieved, as 

shown in Figure 3.10(b) (more details are available in [44]). Given the ideal nature of this test, we 

will never assume to get such great results in our hardware implementation and with human neural 

recordings, but this helps verify our algorithm. 
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Figure 3.10: (a) Time-domain Waveform for Concurrent Stimulation and Sensing, (b) In-

band Artifact Suppression Using ASAR Algorithm 
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In this chapter, the hardware implementation details and considerations are presented. Two designs 

were implemented, named the Spike ASAR and LFP ASAR for simplicity. Before going over 

implementation details, it is worthwhile to summarize the design specifications for the two ASAR 

designs (Table 4.1). These specifications are in line with all the requirements that have been 

previously mentioned and in line with the output specifications of the analog front-ends in [18], 

and [20], as mentioned previously. This would allow for integration of these ASAR designs with 

the mentioned analog front-ends to provide a complete sensing solution.  

 

Table 4.1: Design Specification for Two ASAR Implementations 

Design Specifications LFP ASAR Spike ASAR 

Signal(s) of interest LFP Spike + LFP 

Bandwidth (Hz) 1-200 1-5K 

Sampling Rate (KS/s) 6 24 

Input Resolution 16bits 12bits 

Artifact amplitude (mVp-p) <100 <40 

 

As discussed in Section 3.2, and shown in Figure 3.4, ASAR operates in two phases: (I) 

statistics calculation (training), and (II) template detection and adaptive filtering.  
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4.1. Phase I: Statistics Calculation 

The training phase during which the statistics of the neural signal is calculated using equations       

( 7 ) and ( 8 ) in the absence of stimulation is straightforward. They were some hardware 

implementation considerations, however, that are summarized below. 

 

4.1.1. The choice of 𝑵 
 

𝑁 is the number of samples during which statistics calculation is performed at the initiation of 

ASAR operation, in the absence of stimulation. There are multiple division and multiplication 

operations involving 𝑁 in the statistics calculation. As a result, number of samples 𝑁 is chosen as 

𝑁 = 2𝑛 for some 𝑛 in order to reduce multiply/divide into shift operations, resulting in a more 

efficient hardware implementation. 

The larger the 𝑁, the better understanding of the statistical values we will have; however, a 

larger 𝑁 value, also implies a longer training phase at the initiation of ASAR, during which no 

stimulation can be applied.  

During extended testing of all the available data sets, we found 𝑛 = 13 (𝑁 = 2𝑛 = 213) to be 

a great compromise, applicable to both our designs. With this choice, we were able to reduce 

multiply/divide operations in statistics calculation into shift operations. 

 

4.1.2. Implementation of Square Root Operator 
 

Neural signals are very small in value, especially when compared to the stimulation artifacts and 

the full dynamic range available in the system to accommodate large artifacts. Additionally, the 

standard deviation calculated for neural signals is used to set a threshold value in the template 

detection method. It is therefore, imperative, that precise standard deviation values are obtained 
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for very small neural signals to avoid false positive template detection. As it can be seen in ( 8 ), 

these directly translates into the ability for improved precision of small input values for the square 

root operation. 

This led to implementation of the square root operation as a look-up table. Here is a brief 

description of this implementation: 

 Look –up table of 798 entries: [√256, … , √1026].  

 Incoming inputs to the square root operation are normalized by even shifts (2𝑁) left or 

right: 𝑥 = 22𝑁 × 𝑥𝑛. 

o Here, 256 ≤ 𝑥𝑛 ≤ 1024 

 Square root can then be calculated: √𝑥 = 2𝑁 × table entry [𝑖𝑛𝑡(𝑥𝑛) − 256]. 

With this implementation, improved precision for smaller numbers are achieved while 

maintaining an upper bound on percentage error. 

 

4.2. Phase II: Template Detection and Adaptive Filtering 

 

4.2.1. Template detection 
 

The template detection method, along with its benefits, have been discussed in Section 3.2.2. The 

implementation of this block is shown in Figure 4.1. Although, simple in implementation, the 

addition of this novel idea, allows us to employ a linear NLMS filter with only 16 taps, to resolve 

a very non-linear “channel” of electrode interfaces and brain tissue, by obtaining a template from 

an adjacent electrode and learning only the mapping between adjacent recordings. Template 

detection, in addition, enables our implementation to work with any arbitrary stimulation pulse. 
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Figure 4.1: Template Detection 

 

4.2.2. Adaptive Filtering 
 

The hardware implementation of the adaptive filter encompasses all the components that were 

discussed in Section 3.1.1. As a result, a 16-tap NLMS filter was implemented, which uses the 

posteriori error to obtain the estimated (clean) neural signal. This filter adaptively adjusts the filter 

step size based on the norm calculations to obtain the best convergence speed and accuracy 

balance.  

Figure 4.2 shows the implementation of the adaptive filter, governed by equations ( 3 ), and     

( 4 ). The weight update block is highlighted in red, and the filtering region in blue. Paths for 

calculation of both the error signal (𝑒(𝑖)) and the cleaned neural signal (�̂�(𝑖)) are show in this 
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figure. To avoid congestion, full details on calculation of u is not shown in the figure, but should 

easily follow from ( 3 ). 

The number of bits used to implement this 16-tap filter is also indicated in the figure. Places 

where multiple numbers are shown (e.g., 12, 16) indicate the number of bits that are used for the 

implementation of Spike ASAR, and LFP ASAR, respectively. 

 As shown in the implementation the posteriori error is used to calculate the estimated neural 

signal ( �̂�(𝑖)), while the priori error is used the weight update, as it is done in conventional 

implementation of adaptive filters. 

 

 

Figure 4.2: Adaptive Filter 
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4.3. ASAR Timing Diagram 

The ASAR algorithm and the hardware implementation for various blocks have been explained. 

Next, the operation and execution of this algorithm in hardware is reviewed by utilizing timing 

diagrams for different phases of operation. For simplicity, these timing diagrams only show some 

of the critical signals to express the operation of the system. 

At the initiation of ASAR, through chip start-up or reset, phase I is activated to calculating 

statistics of neural signal (training). The timing diagram for this phase is shown in Figure 4.3. 

 

 

Figure 4.3: ASAR Timing Diagram: Phase I 

 

During this phase which lasts 𝑁 + 1 clock cycles, the statistics of neural signals are calculated 

during the first 𝑁 samples, and stored (in the following clock cycle). The train_mode_id is 

set to 1, and det_enable is set to 0 during phase I. Here, the template, u, is zero regardless of 

clk
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the value of the adjacent recording channel (ch_template). Lastly, the output signal 

(output_clean) is just the delayed version of the input recording channel (ch_clean). 

At the end of phase I, the desired threshold is obtained and system enters phase II of the 

operation (template detection and adaptive filtering). During phase II, stimulation may or may not 

exist. We first look at the timing diagram for phase II, without stimulation present in Figure 4.4. 

 

 

Figure 4.4: ASAR Timing Diagram: Phase II, No Stimulation 

 

 In phase II, training has ended (train_mode_id =  0) and template detection is enabled 

(det_enable =  1). In the absence of stimulation, however, no template is detected and 

therefore template, u, stays at zero, and the output signal (output_clean) is just the delayed 

version of the input recording channel (ch_clean). 
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 Figure 4.5 shows the timing diagram for when ASAR encounters a stimulation in phase II 

operation and a template is detected on the adjacent recording channel (ch_template). This 

adjacent recording is then used as the template, u, for adaptive filtering. Note that due to the fully 

combinational implementation of the template detection method as shown in Figure 4.1, there are 

no clock cycle delays added during this operation. Here, the adaptive filter block uses the detected 

template and estimates the cleaned neural signal (output_clean) from the input recording 

channel (ch_clean).  

 ASAR has 4 clock cycle latency at the output, however, only one shown in the timing diagrams. 

 

 

Figure 4.5: ASAR Timing Diagram: Phase II, Stimulation Present 

 

 Once the stimulation pulse subsides, the template becomes zero again. This has been shown in 

Figure 4.6.  
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Figure 4.6: ASAR Timing Diagram: Phase I and II 

 

 Additional provisions are included for the practical use of the ASAR hardware, which were 

not illustrated in the timing diagrams. One example is the addition of a calc_rst signal that can 

reset statistics calculation, or in other words re-train the algorithm. Although a single training is 

sufficient, patient movement, passage of time, or other factors can introduce various changes and 

offsets in the system; it would be beneficial to have the option to re-train the system at any given 

point. calc_rst can be utilized without the need for a global chip reset. 

 Next chapter includes the IC implementation of ASAR hardware for both the LFP and Spike 

ASAR designs in 40nm CMOS technology. Chip measurements for this implementation is also 

included in the same chapter. 
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5.1. IC Implementation 

Two ASAR designs, governed by the design specifications summarized in Table 4.1, were 

designed and fabricated in 40nm CMOS technology. Table 5.1 summarizes the input/output 

signals for these designs.  

 

Table 5.1: ASAR IC Implementation Input and Outputs (IO) 

Signal 

Type 

Signal 

Comment 

LFP ASAR Spike ASAR 

Input 

clk clock signal 

ch_clean 

<15:0> 

ch_clean 

<11:0> 

recording channel to be cleaned.  

𝒅𝑘 in ( 4 ). 

ch_template 

<15:0> 

ch_template 

<11:0> 

adjacent recording channel to be 

cleaned.  

𝒅𝑘′ in ( 4 ). 

calc_rst 
calculation reset signal (sync), used for 

re-training. 

thresh_scale 

<1:0> 
threshold scaling factor.  

𝛼 in ( 9 ). 

global_rst_n asynchronous global reset 

Output 

train_mode_id training mode indicator 

output_clean 

<15:0> 

output_clean 

<11:0> 
output, cleaned neural signal 
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It is important to note, that although, the designs allocated 16-bit and 12-bit, for recording 

inputs and output of LFP and Spike ASAR, respectively, due to limited number of PADs available 

during the tape-out, all multi-bit input and outputs were serialized and a single bit was used to 

implement them. Subsequently, this resulted in the addition of Serial-to-Parallel blocks at the input 

interface, and Parallel-to-Serial block at the output interface of the design. Additionally the 

implementations were ran at 16x and 12x higher clock frequencies that initially required to 

accommodate these changes.  

The implementations used a single supply (VDD) for their operation and were designed with 

supply scaling in mind; however, the increased clock frequency limited the supply scaling to 

644mV. 

Figure 5.1 is the chip micrograph of both ASAR designs. The LFP ASAR (shown in blue) is 

749µm by 263µm in dimension, occupying a total area 0.197mm2, while the Spike ASAR (shown 

in red) has dimension of 794µm by 263µm, resulting in total area of 0.209mm2. These area 

numbers include the Serial-to-Parallel and Parallel-to-Serial circuitries, that will not be required 

once the solution is integrated in a sensing IC solution, as all the connections will be done internal 

to the chip. 

Table 5.2 summarizes all the implementation details for both designs. 
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  Figure 5.1: ASAR Chip Micrograph 

 

Table 5.2: ASAR IC Implementation Details 

 

 

 

 

 

 

 

 

5.2. Testing Setup 

To test the ASAR chip, a ROACH (Reconfigurable Open Architecture Computing Hardware) 

FPGA board [45] was used. An ASAR test Printed Circuit Board (PCB) was designed and 

manufactured. Figure 5.2 shows the ASAR chip test setup. 

 LFP ASAR Spike ASAR 

Technology 40𝑛𝑚 LP HVT CMOS 

Supply voltage (V) 0.644 

Area 0.197𝑚𝑚2 0.209𝑚𝑚2 

Operating frequency 

(KHz) 

96 

= 16 × 6 

288 

= 12 × 24 
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Figure 5.2: ASAR Chip Test Setup 
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The ROACH board hosts a Xilinx Virtex 5 FPGA, and is connected to the ASAR test PCB, 

using a Z-DOK connector interface (marked in region 1 of Figure 5.2 ). The packaged ASAR chip 

for testing is located in the center of the test PCB. Regions marked 2 and 3 in Figure 5.2, show the 

components and interfaces for testing the Spike and LFP ASAR designs respectively. 

The ROACH FPGA testing models were designed in MATLAB/Simulink environment using 

Xilinx Blockset library. The LFP ASAR testing model is shown in Figure 5.3. 

 

 

Figure 5.3: ROACH FPGA testing model (LFP ASAR) 

 

5.3. Measurement Results 

Clinical human patient data were used to test both ASAR designs. Chip measurement with sample 

data for LFP signals, with input resolution of 16 bits, and sampling frequency of 6kHz is shown in 

Figure 5.4. Phase I and phase II operations of ASAR are clearly indicated in this figure; at the end 

of stimulation pulses, a reset test was also performed, which is shown. 
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To perform the chip measurements for LFP ASAR across various data sets, we were able to 

scale the supply voltage down to 644mV, and while operating at 96kHz (Table 5.2), an average 

power consumption of 1.73µW was achieved.  

Chip measurement with sample data for Spike ASAR, with recordings containing Spike and 

LFP signals, sampled at 24 kHz, with input resolution of 12 bits is shown in Figure 5.5. Again, 

phase I and phase II operations of ASAR are clearly indicated in this figure. 

The supply voltage for the Spike ASAR was scaled down to 644mV, as well. An average power 

consumption of 3.02µW was achieved, while operating at 288kHz (Table 5.2). 

At the time of measurement, recordings with artifacts up to 29mVp−p (LFP) and 36mVp−p 

(Spike) were available, resulting in artifact attenuation of up to 37dB and 40dB, respectively; 

however, the designs are capable of handling larger amplitudes (Table 4.1). These extremities were 

tested using synthetic data. 

For average power calculations of both ASAR designs, stimulations are assumed to be ON for 

5% of the total duration of the test, to provide a conservative measure. 
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Figure 5.4: LFP ASAR Chip Measurement  

(LFP recording, Fs=6kHz, input resolution=16 bits, stimulation artifact amplitude = 29mVp−p) 
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Figure 5.5: Spike ASAR Chip Measurement  

(Spike + LFP recording, Fs=24kHz, input resolution=12 bits, stimulation artifact amplitude = 14mVp−p) 
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Figure 5.6 shows the time-domain recordings and spectrogram of neural signal (Spike and 

LFP) with 36mVp−p stimulation artifacts with and without the ASAR activated. 

 

 

Figure 5.6: (left) Time-Domain Recordings and Spectrogram of Neural Signal (Spike + LFP) 

with 36mVp−p Stimulation Artifact. (right) Measured ASAR Output Waveform and Spectrogram. 

 

There is no unified way of reporting filter attenuation performance in stimulation artifact 

rejection applications. [36] reports attenuations of up to 42dB, primarily based on their use of 8-

bit DAC for error subtraction; clearly this is a speculative attenuation figure and not an accurate 

one. In the same work and other methods, filter attenuation performance is sometimes reported by 

comparing the amplitude of the artifact and neural signals against each other. Although we do not 

find this satisfactory, these figures were provided for both our ASAR designs earlier in this Section 
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As it was previously mentioned in Section 3.3.1, a true measurement of the filter performance 

is difficult as the cleaned signal �̂�𝑘(𝑖) includes the signal of interest combined with a small residual 

artifact, which are inseparable, making it impossible to obtain a ground truth.  

In order to provide a better measure for the filter attenuation in this application, we devised a 

method (experiment) that calculates noise (artifact) power suppression based on SNR comparison 

of added known synthetic artifacts to clinical patient data (input) and cleaned signal by ASAR 

(output). This method along with some other measurement results in this chapter were introduced 

in [46]. 

To achieve this, two different set of human patient recording were obtained, from two separate 

patients. From one patient’s data, neural signal (𝑠) was extracted, in the absence of stimulation. 

Second patient’s data was used to extract an artifact, called synthetic artifact (𝑎) here. By addition 

of the neural signal (𝑠) and synthetic artifact (𝑎), we obtain an input signal similar to neural 

recordings in the presence of stimulation; one major difference is that in this method, neural signal 

and artifact are each are known quantities and can be completely separated with our knowledge. 

Next step would be to use our input signal to test the ASAR. ASAR’s output, the estimated 

cleaned neural signal (�̂�), can now be directly compared to the actual neural signal (𝑠).  

Signal-to-Noise Ratio (SNR) values were calculated at the input and output points, and 

compared to provide the noise (artifact) suppression that can be achieved by ASAR. This was done 

for varying stimulation artifact amplitudes; the results are shown in Figure 5.7. It can be observed 

that the ASAR can achieve noise power reduction of up to 49.2dB. 
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Figure 5.7: Noise (Artifact) Power Suppression 

 

All the chip measurements were done in real-time and both ASAR designs achieve real-time 

convergence of <42µs for Spike ASAR and <167µs for LFP ASAR, making them suitable for 

closed-loop neuromodulation systems.  

In conclusion of this chapter, two comparisons are provided: (a) a qualitative comparison of 

various stimulation artifact rejection methods (only implantable methods were considered) in 

Table 5.3 (green is desirable), and (b) comparison of ASAR with state-of-the-art in Table 5.4. 
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Table 5.3: Comparison of Various Implantable Stimulation Artifact Rejection Methods 

 

Reference [29] [34] [10] , [36] This work 

Method Blanking Self-canceling Adaptive Filtering Adaptive Filtering 

Enable recording during stimulation No Yes Yes Yes 

Handle in-band artifacts Yes No Yes Yes 

Application specific No Yes No No 

Agnostic to recording delay Yes Yes No Yes 

Tolerate large artifact amplitudes Yes Yes No Yes 

Need prior knowledge of stimulation pulse No No Yes No 
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Blanking methods are the most commonly used methods for stimulation artifact rejection, 

however, they do not deliver neural recording during stimulation, and depending on the 

implementation, could have a long recovery time after the stimulation has ended. The self-

cancelling method presented in [34] can only handle out-of-band artifacts, while being very 

application specific and requiring large off-chip components. The adaptive filtering methods 

presented in [10] , [36] enable recording during stimulation and handle in-band artifact; however, 

they do not tolerate large artifacts, are not agnostic to recording delays, and need knowledge of the 

stimulation pulse’s characteristics. ASAR overcomes all the shortcomings of the prior methods, 

by enabling recording during stimulation and handling in-band artifacts of much larger amplitude, 

and without needing any prior knowledge of the stimulation pulse and/or recording timing 

information. 

Table 5.4 compares ASAR to the state-of-the-art. Both ASAR designs are penalized due to 

limited IO pads available, forcing them to run at much higher clock frequencies, and include Serial-

to-Parallel and Parallel-to-Serial circuits; this results in a small area and a large dynamic power 

overhead and limits our ability to scale the supply voltage below 644mV. At the same time ASAR 

achieves much higher performance in attenuation, and noise (artifact) suppression, while achieving 

a significantly faster convergence speeds (>17000x faster). ASAR tolerates much higher 

amplitudes of artifact, and with the introduction and implantation of template detection method, it 

can operate “blindly”, requiring no prior knowledge of stimulation pulse’s structural or temporal 

characteristics. 
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Table 5.4: Comparison of ASAR with State-of-the-art 

 JSSC’16 [10] 

This work 

LFP ASAR Spike ASAR 

Technology (nm) 180 40 

Area (mm2) 0.17 0.197 0.209 

Power (µW) 0.33 1.73 a,b 3.02 a,b 

BW (Hz) 1-2K 1-200 1-5K 

Signals of interest ECoG LFPs 
Spikes + 

LFPs 

S
ti

m
u

la
ti

o
n

 A
rt

if
a
ct

 R
e
je

ct
io

n
 

Architecture 
Mixed-signal 

Feedback 
Digital Feedforward 

Adaptive filter 
Signed LMS, 8-tap, 

fixed step size 
Full LMS, 16-tap, 

adaptive step size 

Sampling rate (KS/s) 4 6 24 

Attenuation (dB) 24 c up to 37 up to 40 

Noise power suppression (dB) - up to 49 d 

Operating Frequency (KHz) 4 96 (=16∙6) a 
288  

(=12∙24) a 

Tolerable amplitude (mVp-p) <10 <100 <40 

Convergence time (μs) >3,000,000 <167 <42 

Prior knowledge of stimulation Yes No 

a due to limited IO pads, Serial-to-Parallel and Parallel-to-Serial circuits were added and ASAR 

input and outputs were serialized. This resulted in operating frequencies 12x and 16x higher than 

the respective sampling frequency of each design, and higher power. 

b power calculations assume stimulations to be ON for 5% of the total duration of the test. 

c artifact attenuation of up to 42dB is based on the resolution of the 8-bit DAC and not a true 

measure of the filter attenuation (reported measured attenuation of 24dB was chosen for 

comparison). 

d emulated by adding varying synthetic artifacts to clinical human patient neural signal.  
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CHAPTER 6 

 

ASAR Integration:  

Sensing IC and Neuromodulation Unit (NM) 

 

 

6.1. Sensing Chip ....................................................................................................................... 71 

6.1.1. Test Setup and Measurements ...................................................................................... 76 
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The next natural step towards an implantable, closed-loop, neuromodulation system, is the 

integration of the ASAR engine in a sensing IC, and eventually an implantable neuromodulation 

unit (NM). As part of the DARPA SUBNETS programs, this opportunity was provided.  

In this chapter, we showcase the sensing IC integrating LFP ASAR with the state-of-the-art 

LFP front-end demonstrated in [18], [19]. This sensing IC is then integrated in our miniaturized 

neuromodulation unit (NM) along with stimulation IC, and power management units illustrated in 

[44]. Finally, we briefly review the complete systems containing multiple NM modules, a Neural 

Hub (NH) and a Control Module (CM), which add more best-in-class technology, such as wireless 

data transfer in [47], to achieve a complete, 256-channel, implantable, and closed-loop 

neuromodulation system. 

 

6.1. Sensing Chip 

A 64-channel sensing solution was created by integrating the VCO front-end technology (LFP 

front-end) in [18], [19], with ASAR. This work was done in collaboration with Wenlong Jiang, 

Vahagn Hokhikyan, and Hariprasad Chandrakumar.  

The schematic for the sensing chip is shown in Figure 6.1.  

An on-chip clock generation schemed was designed to generate the main system clock of 

12MHz using an external crystal; on-chip clock generation allows for major savings in power and 

area when compared to external crystal oscillators. 

Various analog and digital supply voltages were required to power up different blocks in this 

chip. These voltages were generated and regulated on chip from a source of 1.8V supply, suing 

multiple LDOs.  
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Figure 6.1: Sensing Chip Schematic 

 

32 VCO front-ends were implemented in the sensing core. These cores provide the capability 

for 32-channel single-ended recording or 64-channel differential recording. Due to the non-linear 

nature of the VCO front-end outputs, Non-Linearity Correction (NLC) is an integral component 

in this system. 32 (interleaved) NLC channel are included in the system at the output of the front-

end.  

At the output of the NLC, reside 4 ASAR engines that can be configured to reject artifacts on 

any of the 32-channels.  
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A custom 3-wire SPI communication scheme is also designed which can packetize recording 

and other information in one of many different forms and communicate with the Stim IC as well 

as the aggregator module (i.e., Neural Hub (NH)). More details on the implementation of this SPI 

interface can be found in [48]. 

Lastly, a system controller block is designed which controls the communication and 

interactions between various blocks.  

It is important to note that the output of ASAR blocks poses a much lower dynamic range than 

the front-end recordings, because of the removal of the stimulation artifacts, and do not require 

sampling rates higher than the Nyquist rate of the signals of interest. This is to say, that the output 

of the ASAR can easily loose a few bits and be down sampled to significantly reduce the data rate. 

This is done by addition of decimation filters in the digital control section of this chip (not shown 

in Figure 6.1). The reduced data rate can ease the constraint in wireless transfer blocks and any 

other signal processing that may be added down the stream in the future. 

 The sensing IC was designed with consideration for testability of individual blocks, multiple 

blocks together, as well as the whole system. The sensing IC block diagram shown in Figure 6.2 

illustrates this; bypass multiplexers and signals are provided at the input of NLC, ASAR, and 

decimation filter blocks. This provides the ability to skip one or multiple of this blocks during 

tests. Additionally, by bypassing earlier blocks, external data can be directly inputted into NLC, 

ASAR, and decimation blocks to test them individually.  

 A huge power penalty would be incurred if all the blocks in the sensing chip used the main 

12MHz system clock. To avoid this, sub-clocks appropriate for individual blocks were generated 

internally as shown in Figure 6.2. The ASAR cores operate at 6kHz. 
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Figure 6.2: Sensing Chip Block Diagram 

 

The sensing chip was fabricated in 40nm CMOS technology. Sensing chip’s dimensions are 

2637µm by 4459.5µm, occupying a total area of 11.76mm2.  

Figure 6.3 shows the sensing chip micrograph. In this figure the two clusters of 16 VCO front-

end cores are shown in blue, resulting in a total of 32 VCO cores. All the digital circuitry including 

the NLC, ASAR engines, decimator filters and the SPI interface are shown in red at the center and 

the right side of the image. Other circuitry, including the LDOs, Oscillator, and Power-On-Reset 

(PoR) are on the top right side of the image, shown in purple. 
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Figure 6.3: Sensing Chip Micrograph
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6.1.1. Test Setup and Measurements 
 

In order to test the sensing chip, a field programmable gate array (FPGA) board from Numato Lab 

called Saturn [49] was used. This FPGA board, hosting our custom test firmware on its Spartan 6 

FPGA, is the link between the PCB test board and the test PC terminal. Figure 6.4 shows the 

complete test setup. Temperature chamber is used for testing of the VCO front-ends. 

 National Instrument’s PXI platform [50] and dynamic signal generator card is a high precision 

instrument that is used to feed the input data for testing in this setup. 

 

 

Figure 6.4: Sensing Chip Test Setup 

 

The PC hosts a custom GUI, designed by Vahagn Hokhikyan, which enables us to program 

different parameters for various tests, easily. A sample screenshot of this GUI is provided in Figure 

6.5. In this screen various configuration settings for sensing chip testing are set, and the channel 

configuration can be selected. 
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Figure 6.5: Sensing Chip Test GUI – Sense Configuration 

  

ASAR along with other blocks, were individually tested using this platform, and their 

functionality was confirmed. For example, an ASAR chip measurement matching the data set used 

in Section 5.3 (LFP ASAR) is shown in Figure 6.6. 

 

 

 



 

78 

 

 

Figure 6.6: Sensing Chip Measurement – ASAR Only  

 

Many other detailed measurements of the whole sensing system and front-end are included in 

[19], and [51]; however, it is important that ASAR’s functionality is verified alongside all other 

components in the sensing chip. A final verification was done to ensure sensing chip is functioning 

as intended. The measurement shown in Figure 6.7 is an example of sensing chip operation with 

all main components (VCO front-end + NLC + ASAR) activated. This is a real-time, ~85 seconds 

measurement, with varying stimulation pulses. The stimulation current ranges between 0.3mA and 

0.9mA, corresponding into recorded artifacts with amplitudes ranging from 20mVp-p ~ 60mVp-p. 

This sensing chip provides complete 32/64-channel sensing solutions for LFP signals. Next 

section, briefly overviews the integration of the sensing chip within the miniaturized 

neuromodulation unit (NM), and neuromodulation system.
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Figure 6.7: Sensing Chip Measurement – VCO front-end + NLC + ASAR
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6.2. Neuromodulation (NM) Unit  

Figure 6.8 illustrated the SUBNETS neuromodulation system. The Systems-Based 

Neurotechnology for Emerging Therapies (SUBNETS) program was created and funded by 

DARPA, and required interdisciplinary research and collaboration of experts from psychiatry, 

neurosurgery, neural engineering, microelectronics, neuroscience, statistics and computational 

modeling [52]. Our research team was responsible for the development of the neuromodulation 

units (NM) in this system, which is presented in this section. This has been a collaborative effort 

with Dejan Rozgic, Wenlong Jiang, Vahagn Hokhikyan, Hariprasad Chandrakumar and Wenhao 

Yu.    

 

 

Figure 6.8: SUBNETS Neuromodulation System 
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In addition to the NM, this system includes support for high-precision, high-channel-count 

cortical and subcortical electrode arrays; provides a Neural Hub (NH) for aggregation of data from 

up to 4 NM modules, providing up to 256-channel recording capability, as well as battery and 

control module that hosts the wireless data transfer technology [47], amongst other components.  

The NM module, in particular, hosts our 64-channel sensing chip presented in Section 6.1 with 

the ASAR engines integrated. In addition, state-of-the-art stimulation and power management 

technologies [9] have been included, providing support for high-channel-count stimulation, 

various stimulation modalities, and different power delivery options. 

 The NM PCB was designed to house the sense and stim ICs, as well as few passive 

components to support these circuits. Figure 6.9 shows the neuromodulation unit (NM) PCB 

design. This PCB’s dimensions are 22.5mm by 4.5mm and when sealed in the implantable NM 

capsule occupies 552mm3 of volume. The inner volume of this capsule, where active electronics 

are placed is 338mm3. This unit includes stacked integrated capacitors to further downsize the 

overall NM module. SPI interface connections as well as connections for 66-contact neural 

electrodes  are provided through the bottom side of this PCB.  

 

 

Figure 6.9: Neuromodulation Unit (NM) PCB 
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 This NM unit was used to obtain the concurrent sinusoid (mimicking neural signal) and 

stimulation recording that was used earlier in Section 3.3.1, to verify ASAR algorithm’s 

functionality. There are more tests ongoing on this unit, and we hope to be able to demonstrate the 

ASAR functionality in in-vivo measurements soon. 

 In summary, when compared to state-of-the-art neural interfaces in [14], [15], [16], and [53], 

our miniaturized neuromodulation unit (NM), is a superior solution that provides the following 

capabilities: 

 Support for both cortical/sub-cortical applications 

 Fully implantable 64-channel recoding and stimulation solution, operating in real-time 

 High-dynamic range front-end with linear input range of 100mVp-p 

Most importantly, with integration of ASAR within the sensing chip, this is the only 

implantable, high-channel-count neuromodulation unit that is capable of adaptively rejecting 

stimulation artifacts, in real-time. 
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7.1. Research Contribution  

This work demonstrated an energy-efficient, implantable, real-time Adaptive Stimulation Artifact 

Rejection (ASAR) engine, capable of adaptively removing stimulation artifacts for varying 

stimulation characteristics at multiple sites, while meeting the challenges of modern implantable, 

closed-loop, neuromodulation systems. 

A blind artifact template detection technique was introduced, which in combination with the 

proposed ASAR algorithm, eliminated the need for any prior knowledge of the temporal and 

structural characteristics of the stimulation pulse. To the best of our knowledge, this is the first 

blind stimulation artifact rejection solution. 

 Two ASAR designs, LFP ASAR and Spike ASAR, have been implemented in 40nm CMOS 

technology. LFP ASAR achieves convergence of <167μs, occupies an area of 0.197mm2, and 

consumes 1.73μW at 0.644V supply. Spike ASAR, achieves convergence of <42μs while 

occupying an area of 0.209mm2 and consuming 3.02μW at 0.644V. 

A novel method for measurement of noise (artifact) power suppression was presented for 

adaptive stimulation artifact rejection applications; using this measurement, it was verified that 

ASAR can attenuate artifacts up to 100mVp-p by 49.2dB, without any prior knowledge of the 

stimulation pulse.  

 Furthermore, integration of ASAR within a 64-channel sensing chip, and an implantable 

neuromodulation unit (NM) was presented. 

Realization of ASAR is a significant contribution towards enabling concurrent neural 

stimulation and recording for state-of-the-art closed-loop neuromodulation systems, and can aid 

in maximizing usable neural data, and minimizing time delays for closed-loop response decision 

making. Most importantly, this can assist physicians and scientists in the investigation of 
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instantaneous neural response to stimulation, which could lead to new discoveries or therapeutic 

remedies. 

 

7.2. Future Work 

Areas of future work can be divided in two categories: 

 Further integration and tests using the existing technology: 

o In the future, the spike ASAR design, can be integrated into a complete sensing 

chip solution, capable of recording both LFP and neural spikes. 

o In-vivo measurements with the miniaturized 64-channel neuromodulation unit 

(NM), would be the next logical step to fully showcase the capability of the LFP 

ASAR. 

 Development of additional energy-efficient DSP blocks to enable closed-loop algorithms 

for therapy of various neurological disorders: with a complete neuromodulation platform 

in hand, focus can be shifted in DSP blocks required for extraction of biomarkers, and 

energy-efficient implementation of algorithms responsible for therapeutic decision 

makings. This is a particularly vast field and a challenging task; the opportunities, however, 

are endless. 
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In Chapter 6, integration of the LFP ASAR design within a 64-channel sensing chip and 

consequently a miniaturized neuromodulation unit was discussed. However, and additional ASAR 

design, Spike ASAR, was presented in Chapter 5. A valuable future work would be to integrate 

the Spike ASAR with a state-of-the-art front-end, capable of recording both LFP and Spike signals 

with high-dynamic range. A suitable front-end is presented in [24]. 

 However, to realize such sensing IC, additional digital filters are required to separate the LFP 

and Spike signals after the rejection of stimulation artifacts. Indeed, after consulting with and 

receiving feedback form our neurosurgery and neuroscience colleagues, requirements for these 

filters have been specified (summarized in Table A.1). 

 

Table A.1: Digital Filter Requirements 

Requirement LPF Filter Spike Filter 

Passband corner frequency 130Hz 200Hz 

Stop band frequency 400Hz 130Hz 

Stop band attenuation 40dB >80dB 

Decimation factor 4 1 

Input sampling factor 24KHz 24KHz 

Filter phase response Linear phase is required Linear phase is NOT required 

 

 The analysis, and design of filters presented in this appendix was done in collaboration with 

Zoltan Romocsa, where he completed the verilog code as part of his MS project [54].  
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A.1. Digital Filters for LFP Band 

There are post-processing algorithm in neuroscience (e.g., Phase-Amplitude Coupling (PAC) 

[55]), that require phase of the LFP signals to remain linear. This necessitates an FIR 

implementation for LFP band. Computational cost of various FIR filters for LFPs were compared 

and are shown in Figure A.1. 

 

 

Figure A.1: Computational complexity of evaluated FIR filters 

 

The optimized IFIR filter was chosen for implementation. Interpolating FIR filters, not only 

filter the input signal, but also reduce its sampling rate, which is ideal in our application after the 

removal of stimulations artifact. Although implementation details are included in [54], a block 

diagram of this optimized interpolating FIR filter is shown in Figure A.2. 
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Figure A.2: Optimized IFIR Filter Implementation Block Diagram 

 

A.2. Digital Filters for Neural Spike Band 

For the design of these filter, we explored IIR filters, as there were no requirements on signal 

phase, and these filters are less expensive in hardware. Computational cost of candidate IIR filters 

for Spikes were compared and are shown in Figure A.3. 

 

 

Figure A.3: Computational complexity of evaluated IIR filters 
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 Here, the Chebyshev Type2 IIR filter was chosen. In summary, as future work objective, the 

Spike ASAR design presented in Chapter 5 can be integrated with a suitable Spike recording front-

end, to create an state-of-art neural recording solution, capable of recording both LFP signals and 

neural spike activity, concurrently with stimulation and the ability to reject any stimulation artifact 

in real-time.
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