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ABSTRACT 

We describe our procedures for deducing adsorbate geometry from 

angle-resolved core-level photoemission measurements as they are applied 

to ~~2x2)S/Ni(001). Extracting the energy-dependent, oscillating part 

of the sulfur (1s) photoemission partial cross section gives the Angle­

Resolved Photoemission Extended Fine Structure (ARPEFS): Fourier 

transformation of the ARPEFS yields peaks at distances characteristic of 

the local site geometry and in most cases closely related to geometrical 

path-length differences. Multiple-scattering, curved-wave calculations 

are fitted to Fourier filtered data for quantitative geometry 

determination; the Fourier filtering reduces the size of the scattering 

cluster and the number of free parameters in the fit. Possible sources 

of error in this first .ARPEFS measurement are discussed as a guide for 

future work. We find a S-Ni bond length of 2.19 A (dl = 1. 31 A), a S-Ni 

second layer bond length of 3.14 A corresponding to a 4% expansion of 

the top Ni layer, and some evidence that those Ni atoms in the second Ni 

layer lying beneath sulfur atoms are pulled closer to the sulfur, 

leading·to a buckled second layer. 

.. 
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I. INTRODUCTION 

Recently, we reported 1 a new approach to determining surface 

geometries using high-kinetic-energy, long-energy-range photoelectron 

diffraction measurements. Experimentally we measure a series of angle­

resolved core-level photoemission spectra. Thus we begin with the 

surface sensitivity and chemical specificity of photoemission;_ the angle 

resolution adds geometrical selectivity. As we increase the 

photoelectron kinetic energy, we observe intensity oscillations about an 

average atomic-like cross section. For electron energies from 

50-500 eV, the origin of-these partial cross-section oscillations-­

interference between direct and scattered photoelectron waves--directly 

relates to the total cross-section oscillations, the Extended X-ray 

Absorption Fine Structure (EXAFS). 2 ' 3 Like EXAFS, this type of 

photoelectron diffraction measurement can be expressed as interference 

oscillations whose frequency is dominated by geometrical path-length 

differences and these oscillations can be frequency analyzed to display 

the structure information directly. To suggest these close connections 

and to distinguish our new approach from other techniques which use 

photoelectron diffraction, we refer to the modulations in photoemission 

partial cross section above 50 eV as Angle-Resolved Photoemission 

Extended Fine Structure (ARPEFS). 

In this paper we discuss the analysis of S(1s) ARPEFS measured 

along the [011] and [001] crystallographic directions from a c(2x2) 

sulfur overlayer on a Ni(001) crystal surface. The nominal geometrical 

structure of this overlayer is well known. 4- 6 Our purpose in this paper 

is to report, in detail, procedures we have developed to extract the 

geometry of Son Ni, including the distance between the Sand the second 



4 

Ni layer atoms, from angle-~esolved photoemission intensity 

measurements. We hope to demonstrate that these same procedures provide 

a bas~s for determining the structures of more complicated adsorbate 

syst~nis. Furthermore, we discuss sources of systematic and random error 

whfch could lead to incorrect or inaccurate structures. 

A simple elastic scattering theory for ARPEFS 1 predicts that angle-

resolved photoemission intensity, I, oscillates about the atomic partial 

cross section, I
0

, according to 

x<k) = L A.(k) cos[k(r.-r.cos eJ.) + cpj] 
j J J J 

( 1 ) 

where A.(k) contains the elastic scattering amplitude, inelastic 
J 

damping, aperture integration, and thermal averaging, rj is the bond 

length, e. is the scattering angle, cp. is the scattering phase function, 
J J 

and the sum is over all scattering atoms j with significant amplitude. 

Our task then is to measure I, the photoemission intensity, convert it 

to x(k), and extract the path-length difference (r.-r. cos e.). These 
J J J 

three steps correspond to the three main sections of this paper. We 

describe the photoemission measurements in Section II. the extraction of 

the oscillating signal from the raw data in Section III, and the 

frequency analysis and geometry determination in Section IV. Throughout 

our discussion we shall point out potential sources of inaccuracy and 

imprecision as a guide to those seeking surface crystallographic 

structures with chemically significant accuracy. 

,,; 

... 

io' 
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II. ANGLE-RESOLVED PHOTOEMISSION FROM c(2x2)S/Ni(001) 

The various experimental aspects of these ARPEFS studies are 

discussed separately in the subsections below. 

II.A. Sample 

The c(2x2) overlayer of Son Ni(001) has become one of the 

prototype surface structure problems both because of its importance and 

because of easy preparation. The bonding of sulfur to Ni crystals is of 

technological importance primarily because sulfur degrades Ni based 

catalysts. 7 The c(2x2) overlayer is easy to prepare either8 by 

segregation of bulk sulfur impurity or by decomposition of H2s or (S 2-) 

on the Ni surface. Thus the geometry of this surface system has been 

studied by LEED, 4 surface EXAFs, 6 Normal Photoelectron Diffraction, 5 and 

Azimuthal Photoelectron Diffraction. 9 Our primary concerns in selecting 

a system for the first ARPEFS measurements were a well known structure 

and a_wide accessible energy range above a 1s absorption threshold. The 

c(2x2)S/Ni(001) is ideally suited for these reasons. 

The Ni crystal was cut on a diamond saw from a 1/4" diameter boule, 

oriented, and polished to< 1/2° from the perfect (001) face. The final 

polish with 0.05~ mesh Al 2o
3 

powder in ethanol was followed by a 10 

1 0 second etch. The Ni crystal was strapped to a resistively heated Ta 

sample block by .005" Ta strips spot-welded to the sample block; the 

sample block was suspended on a 3 axis manipulator. Argon ion 

sputtering was effective in removing surface sulfur contamination, but 

each annealing cycle segregated sulfur to the surface. Thus repeated 

cycles of annealing to 800°C and sputtering were used. When the sulfur 
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was depleted, the crystal was exposed to .5L o2 and annealed to 
. I 

approximately 750°C. Experience showed that this step removes surface 

carbon but leaves no oxide behind. Prior to H2s exposure the final 

clean crystal was not examined by Auger or LEED to avoid electron beam 

induced deposition of carbon. 

The Ni crystal was exposed to - 2L H2s gas from a 5~ aperture in 

front of the sample. Mass spectra of the chamber background gas during 

dosing showed an increase in H2 gas at the beginning of the gas 

exposure. Heating the Ni crystal to -200°C produced a sharp c(2x2) 

overlayer LEED pattern. 

II.B Electron Energy Analyzer 

The angle-resolved photoemission analyzer used for these 

measurements has been previously described. 11 Its important features 

for these measurements are: i) complete 2 axis motion allowing an 

unhindered selection of angles, ii) multichannel energy analysis for 

rapid measurements with synchrotron light, and iii) maximum ± 3° angular 

resolution. The angle resolution increases for kinetic energies (Ek) 

greater than the pass energy (EP = 160 eV) to - ±2° at Ek = 400 eV and 

. 12 
the transmission of the analyzer falls like (Ep/Ek). The analyzer was 

operated for maximum transmission giving an energy resolution of -1 eV. 

II.C Photon monochromator 

These S(1s) photoemission measurements were made possible by the 

Stanford Synchrotron Radiation Laboratory's ultra-high vacuum soft x-ray 

double crystal monochromator. 13 The Ge(111) monochromator crystals gave 

high flux (-5x1o 10 photons/sec) with 1.1 x 103 resolving power for the 
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2.5 keV - 2.9 keV range used for these measurements. No detectable 

scattered light entered the sample chamber. The light is highly 

polarized (>95%) in the horizontal plane. 

II.D Photoemission Measurements 

Two separate experimental geometries were used. In the first, 

which we call [011], the Ni(001) crystal was rotated about the sample 

normal to place a [01·1] axis in the plane of polarization with the [011] 

direction parallel to the polarization vector. The angle-resolved 

detector was aligned with the [011] axis; the emission and polarization 

vector directions were thus collinear. In the second experiment, on a 

different crystal, the polarization vector was pointed 30° from the 

crystal normal in a [100] direction, and the analyzer was oriented for 

normal emission. 

With a photon energy of 2504 ev, the electron emission spectrum was 

measured for 40-500 ev. This provides the electron inelastic-scattering 

profile and the electron energy analyzer transmission function shown in 

Fig. 1. For photon energies between 2535 ev and 2894 eV, sulfur (1s) 

core~level photoemission measurements were made every 3 ev by advancing 

both the photon energy with the double crystal monochromator and the 

electron energy with the energy analyzer, maintaining the relation hv 

-2474 eV = Ek for the S(1s) peak energy. A typical spectrum is shown 

inset in Fig. 1. Thus a set of 120 photoemission spectra for each of 

two directions constitutes our data for the structure analysis. 
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!I.E Possible Sources of Error 

Errors'':in the experimental measurements of angle-resolved core­

level photoemission limit the ultimate accuracy of our geometry 

determination. The most serious problem is the accurate angular 

placement of the polarization and emission direction vectors. 

The polar angle of emission with respect to the crystal normal is 

the most important angle for geometry determination. This angle is 

determined' by the electron analyzer two axis goniometer and the sample 

position. The analyzer goniometer was mechanically ruled and aligned; 11 

it should be reproducible to <0.2°, but its accuracy is limited if the 

sample is not placed at the center of the goniometer rotation. The 

sample position is determined by maximizing the photoelectron count 

rate; magnetic fields, incorrect alignment of the electron optics on the 

goniometer, and misplacement of the photon beam can lead to a sample 

position away from the chamber center. The sample polar angle is 

calibrated by laser autocollimation on the polished face of the crystal. 

The optical surface should be± 1/2° from the ideal (001) face. The 

laser autocollimation is referred to the surface of a vacuum chamber 

window; the angle between the window and the analyzer goniometer must be 

inferred from the construction of the window and the vacuum chamber. 

Once calibrated, the sample position is determined by rotation of a 

sample manipulator; errors may be introduced if the crystal does not lie 

on the axis of rotation or if liquid nitrogen cooling coils or 

electrical wires apply torque to the sample while it is reoriented. 

Combined, these errors may well be as large as ± 2°, although some 

geometries, e.g. normal incidence light, norm~l emission, or sample 

• 
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normal oriented perpendicular to the autocollimation reference window, 

can be double-checked more easily. 

The azimuth of emission and polarization is determined by visual 

alignment of Low Energy Electron Diffraction spots with respect to the 

vacuum chamber base; although fairly crude, this procedure can be rather 

precise. The LEED spots report the surface crystallography directly and 

only a strong magnetic field across the LEED apparatus axis would affect 

the azimuthal position of these spots; spots separated by -10 em can be 

aligned to within± 1 mm to give a 1° error. 

Other errors in the photoemission measurements primarily affect the 

measured ARPEFS amplitude and not the oscillation frequency. Steps on 

t~e crystal surface, impurities, or an improper dose of S atoms will 

lead to S photoemission not representative of an ordered overlayer; this 

will typically reduce the measured oscillations as they are expressed as 

a fraction of the partial cross section for photemission from any 

sulfur. 

The polarization vector position is less important for surface 

geometry. The synchrotron light is polarized in the horizontal plane. 

Since the position of our sample is referred to our vacuum chamber, we 

place the vacuum chamber along the photon beam by centering the beam at 

the entrance to the chamber and at the electron analyzer on 

phosphorescent screens. The rotation of the chamber about the beam is 

then set with a mechanical level. It is difficult to estimate the final 

error in alignment, but the most sensitive angle--the rotation about the 

beam--can be reproduced to< 1°. 

Although this catalog of errors is a rather dreary list, it is 

roughly the state-of-the-art in angle-resolved photoemission 
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measurements with synchrotron radiation. In reviewing this list one 

should recall that the apparatus used for this first ARPEFS measurements 
;. ., .. ~ . 

was not deiigned f6~;~igh precision structure determination. The more 

serious problems detailed above can be remedied easily now that their 

importance is understood. Other methods of surface crystallography must 

. . 1 d. ff . lt. 14 overcome s1m1 ar 1 1cu 1es. 



III. THE EXTENDED FINE STRUCTURE 

III.A Method 
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From the raw photoemission measurements we must derive the 

oscillations in the partial cross section. We have developed a three­

step procedure which relies only on photoemission measurements. These 

steps are: 

i) estimation of the photoemission intensity at each kinetic 

energy by non-linear least-squares fits to a simple line shape 

function, 

ii) normalization of these intensities for photon flux and 

electron analyzer transmission variations using background 

intensity measurements, and 

iii) estimation and removal of the atomic partial cross section, 

I a· 
In this section we examine each of t~ese steps in detail. 

Before proceeding, we pause to discuss the energy scales involved 

in the analysis. Our raw data consists of a series of photoemission 

spectra for increasing photon energy, hv. Each spectrum is centered on 

the sulfur 1s core-level photopeak but includes -10 eV of the electron 

emission spectrum to higher and to lower kinetic energy. The photopeak 

mean kinetic energy, E, is related by the S(1s) binding energy, E
8

, to 

the photon energy, hv: 

E hv - E B 
(2) 

Our measurements and our analysis depend only on the photopeak kinetic 

energy, E; we do not use the monochromator energy scale or the value of 
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the binding energy. We label each spectrum by the photopeak mean 

energy, E, and electron energy within each spectrum we will call Ea. 

To estimate the photoemission intensity, we decompose each 

photoemission spectrum into peak, tail, and background contributions. 

Fig. 1 demonstrates the decomposition for E = 264 eV. Notice that the 

least-squares fit also provides the value of E. We employ simple 

functions for our fits. The Gaussian function for the photopeak, 

centered at E, 

G(E) 
e 

2 2 -(E -E) /4a a (3) 

1/2 has an area G(E) and a full-width at half maximum equal to 2a(2~n2) • 

To mimic the increase in secondary emission caused by inelastic 

scattering of photoelectrons, the tail was chosen to be a Gaussian 

broadened step function: 

1 Ea - E 
T(E)[~- 2 erf( 20 )] (4) 

whose mean is at E and whose width is forced to be the same as the 

photopeak. The background is a scaled experimental electron emission 

spectrum, M, taken with E = 30 eV: 

B(E,E ) , a B(E) * M(E (5) 

From each least-squares fit we derive three numbers, the Gaussian area, 

G(E), the photopeak position, E, and--for reasons we now discuss--the 

• 

•. 
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background scale factor B(E). The Gaussian peak width was allowed to 

vary to accommodate changes in monochromator resolution, but the width 

is not required for the analysis. 

The Gaussian areas derived from our least-squares fits are 

proportional to the partial cross section we seek, but they also depend 

on the photon flux and electron analyzer transmission function. Calling 

the partial cross section I(E), the photon flux F(E), and the 

transmission function A(E), we have the Gaussian areas 

G(E) = F(E) * A(E) * I(E) (6) 

Note that the photon flux, F(E), is written as a function of 

photoelectron energy, E. We mean for this function to represent all the 

instrumental intensity variations which influence the strength of the 

photoemission spectrum measured at kinetic energy, E. Thus F(E) 

contains the photon monochromator transmission, storage ring current, 

slit widths, effective sample-photon-analyzer interaction region, and 

the spectrum integration time. 

To remove the "photon flux" contribution we model the photoemission 

background as the product of photon flux, analyzer transmission, and an 

intrinsic background function, N(E,Ea): 

( 7) 

We then assume that the intrinsic background does not depend on photon 

energy from 50 to 500 eV above the absorption edge. Thus a measurement 

of the electron emission spectrum for E = 50-500 eV--when the photopeak a 

is at E = 30 eV--is proportional to the intrinsic background: 
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M(E (8) 

When this spectrum is used as the photoemission background in the least-

squares ·r'its, a scale factor B(E) is introduced (eqn. 5). Since we 

assume that the intrinsic background, N(E ), does not depend on the a 

position of the photopeak, the scale factor must be the ratio of the 

flux and transmission during the ARPEFS measurement to the flux and 

transmission during the background scan: 

B(E) 
F(E) * A(Ea) 

F(30) * A(Ea) 
F(E)/F(30) ( 9) 

Therefore the ratio of the photopeak area to the scale factor for the 

background function is proportional to the product of partial cross 

section and analyzer transmission: 

G(E)/B(E) = I(E) * A(E)*F(30) (10) 

Only the analyzer function remains. Based on the discussion in 

Section II, we take A(E) = 1/E, to give the partial cross section as: 

I(E) = c G(E) * E/B(E) 

with c - E /F(30) an arbitrary, unknown constant. p 

( 11) 

Fig. 2 demonstrates the I(E) curves we obtained from applying 

these ideas to the S(1s) ARPEFS data. Notice that while description of 

our processing is complicated, the actual analysis is quite simple. The 

least-squares fits have three linear parameters (Gaussian area, tail 

area, and background scale) and two non-linear parameters (Gaussian 

width and mean energy). Our least-squares fit computer program records 

these.parameters on disk; when all the photoemission data have been 

• 

• 
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analyzed, the parameters are read back in and the array algebra of 

equation (2) is performed. 

Now we extract the oscillating part of the partial cross section 

according to 

x<E) ( 12) 

In principle the atomic partial cross section, I 0 , could be approximated 

by the sulfur cross section calculated from some wavefunction for free 

atomic sulfur or a model for the S on Ni problem. From free atom cross-
--

section calculations 15 we can see that the sulfur I 0 contains only very 

low frequency information: We will make little error at the 

structurally important frequencies if we approximate-I 0 as the smooth 

part of I. Furthermore, as we discuss below, systematic. errors in the 

measurement of I and the estimation of low frequencies in the Fourier 

transform invalidate any distinctions between the "correct" I 0 and our 

simple estimate. 

Fig. 2 shows our fit of I 0(E) to a quadratic function of energy: 

2 aE + bE + c ( 1 3) 

for the [011] experiment and a smooth spline for the [001] experiment. 

The resulting x(E) from eqn. (12) is shown in Fig. 3. 

This curve, x(E), is the Angle-Resolved Photoemission Extended Fine 

Structure. It represents the proportional change in partial cross 

section due to interference between direct and scattered photoemission. 

Our measured oscillations are very large, ± 50% of the average value; 
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the signal seems to be dominated by a few mid-range frequencies. In the 

next section we demonstrate that these oscillations can be analyzed to 

determine surface structures. 

III.B Possible Sources of Error 

The procedure we selected to derive the extended fine structure 

from the photoemission measurements suffers from several systematic and 

random errors. In deriving the partial cross-section curve I(E) from 

the photoemission measurements we must avoid five important limits to 

structural accuracy. 

i) Cross-section variations. As the photon energy is scanned, the 

inelastic electron spectrum,.N(Ea)' may change as the photoabsorption 

cross section for the levels which contribute to it change. Far from 

threshold these changes will be smooth decreases in secondary electron 

flux. Crossing a threshold will cause a sudden jump in flux. For S on 

Ni there are no absorption thresholds in the 500 ev photon energy range 

above the S(1s) edge, and, since we measured N(E ) at a photon energy a 

near threshold where the cross-section is large, we expect that our 

background will be systematically too high at higher photon energies. 

This low frequency error should be eliminated when x(E) is formed. The 

EXAFS oscillations will also be superimposed upon the S(1s) 

photoabsorption cross section, but these oscillations are more than an 

order of magnitude smaller than the ARPEFS oscillations. 1 

ii) Auger peak cross-section variation. The inelastic electron 

spectrum measured with the photopeak at low kinetic energy should 

overestimate the size of the adsorbate Auger features. For example, the 

S LMM Auger region near 150 eV containing structure from cascade decay 
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of the S(1s) hole was measured with a photon energy of 2504 eV, but was 

then used to fit photoemission spectra with photon energies near 2624 

ev. The drop in the absorption cross section over this energy range 

will lead to a smaller least~squares fit coefficient, B(E), for the 

background in the Auger region than we would have obtained if we had 

measured the higher region with a photon energy closer to 2640 ev. Thus 

we will overestimate I(E) near adsorbate Auger features. This problem 

is localized to energies nea~ the Auger peaks and hence will have little 

influence on medium frequency oscillations. 

iii) Storage ring current loss. The inelastic scattering curve was 

estimated by a single long energy range scan of the background: The 

storage ring current will drop by -5% during this scan, leading to a 

slight underestimation of M(E,E ) at high E • a a 

iv) Photon beam movement. One further problem with the background 

fit method stems from the use of the double crystal JUMBO monochromator 

at the Stanford Synchrotron Radiation Laboratory (SSRL). Heat from the 

synchrotron beam on the first crystal expands it, changing the 

spectrometer equations of motion. 13 While a static heat load can be 

compensated, synchrotron beam decay, beam loss or re-injection changes 

the heat load. While the -3 eV energy shifts which accompany a doubling 

of beam current on injection do not affect our spectroscopy--we measure 

the kinetic energy--the beam movement on the sample can change the shape 

of the background, and the changing heat load will influence the 

monochromator resolution and thus the Guassian photopeak width. 

v) Photopeak lineshape function. The choice of Gaussian photopeak 

plus Gaussian tail to represent the photoemission intensity is certainly 

ove~simplified. Although the instrumental resolution is -2.5 eV, our 
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measured photopeak had a width of -3.0 eV, indicating additional (e.g. 

lifetime) broadening. The tail contains electrons scattered 

inelastically in the sample and in the analyzer as well as the metallic 

response tail of Doniach and Sunjic. 16 The processes would have to be 

investigated as functions of photoelectron kinetic energy to accurately 

characterize the photoemission lineshape. Our much simpler function 

slightly underestimates the true line shape, giving a systematically low 

value for the photoemission intensity. 

The conversion of photoelectron intensities to fine structure leads 

to two further systematic errors~ First, the electron analyzer 

transmission is only approximately 12 proportional to E /(electron 
p 

kinetic energy). Second, our method of determining 10 empirically from 

our measurements will mix the true atomic partial cross section with 

very low frequency-interference oscillations and systematic errors of 

the types we have been discussing. 

None of these systematic errors is expected to contribute to the 

mid-range frequencies important for structure analysis. Except for the 

Auger intensity problem and the EXAFS modulation, these errors should 

lead to mild trends in the data which will be removed in the calculation 

of x(k). The Auger problem will be concentrated at the kinetic energies 

of the Auger peak: The Fourier spectrum of this disturbance will be 

broad and will not peak at structure frequencies. As noted above the 

EXAFS is too small to be observed. 

Our random errors come from the statistical accuracy of our 

photoemission measurement. Assuming no errors in the lineshapes of the 

least-squares fits and assuming a normal distribution of noise, the 

standard error of the partial cross section, o
1

, divided by the partial 
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cross section, I, i.e. the inverse of the signal-to-noise ratio, will be 

given by 

where cr., j = G,E,B are the standard errors of each parameter in the 
J 

formula for I. Each standard error will be proportional to the residual 

variance which--given our assumptions--will be proportional to the total 

number of counts in the spectrum. Numerical calculations of the 

standard errors show that the random errors will contribute an 

approximately flat background to the Fourier spectrum of our signal. 

For very low signal-to-noise power ratios, spurious peaks in this 

background could be misinterpreted or contribute erroneously to correct 

sriattering peaks. Our spectrum has sufficient precision to avoid this 

problem. 
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IV. EXTRACTING GEOMETRY INFORMATION 

In the previous section the extended fine structure, x(E), was 

derived from a series of angle-resolved photoemission measurements. In 

this section we analyze the fine structure to extract the geometry. We 

divide the entire procedure in two parts, Fourier analysis and multiple 

scattering analysis. We will discuss errors after we have described the 

entire procedure. 

IV.A Fourier Transformation 

There are three steps in the Fourier transform procedure: 

conversion from energy to momentum scales, tapering or autoregressive 

linear prediction, and Fourier transformation. 

Conversion of the fine structure curve from a kinetic energy scale 

to a momentum scale uses the de Broglie relation, 

to relate the electron energy to its wave vector magnitude. For the 

electron energy we use the peak position, E, derived from the least-

squares fit to eliminate any energy errors in the photon monochromator. 

As discussed in ref 17 the measured electron energy can be related to 

the energy of the electron during the scattering Es ,by E = Es - E0 , 

where E
0 

is the solid's inner potential. Thus the wavenumber, k, for a 

kinetic energy Ek is given by 

k 2m (E+~o) 112. 
~2 
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With this conversion we obtain x(k) as a table of numbers (k, x(k)) 

whose spacing in k depends on the energy spacing of the photoemission 

measurements and on E
0

• Unfortunately none of the subsequent analyses 

can process data with unequal increments in the abscissa. Therefore we 

fit x(k) locally to a numerical spline function and evaluate the spline 

on an equally spaced mesh of 128 points. Fig. 4 shows the interpolated 

x(k) for E0 = 10.5 ev. 

The second step in Fourier analysis is required to reconcile the 

concept of frequency analysis with the finite range of our experimental 

measurements. Our goal is the isolation of the path-length difference, 

r. - r. cos e., from the experimental x(k) which we believe is 
J J J . 

represented by a cosine series, eqn. (1), suggesting a Fourier analysis 

procedure. As discussed in ref. 18, direct Fourier series 

transformation of x(k) would not be adequate: Fourier analysis assumes 

an infinitely long measurement range. Finite range data must be tapered 

smoothly to zero by a weighting function before Fourier analysis, or 

else some procedure such as the autoregressive linear prediction (ARLP) 

described in ref 18 must be applied to estimate the frequencies of 

oscillation from a finite measurement range. The Fourier spectrum of 

the weighted data will be a smoothed version of the "real" spectrum of 

scattering amplitude versus path-length difference while the 

autoregressive linear prediction Fourier transform has higher resolution 

but is more sensitive to k dependence in the envelope which multiplies 

individual cosine oscillations. Therefore we will present results from 

both procedures, using the ARLP spectra as a qualitative guide to the 

frequency spectrum. Since we will ultimately refine the geometry by 

direct comparison to the experimental oscillations, the choice between 
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conventional and ARLP methods to solve the finite data range problem in 

the Fourier transform is not important. 

Following the guidelines in ref 18 we multiply the interpolated 

x(k) curve by a Gaussian centered at 7.5 A- 1 and having a full width at 

half maximum of ,4 A- 1 for the conventional taper weighting method. For 

the ARLP metho-Ci, 64 autoregressive coefficients were fit to the data 

based on 14 singular values for the [001] experiment and 17 singular 

values for the [011] experiment; the ARLP was applied to extrapolate 128 

points forward and backward, and the resulting oscillations were tapered 

with a Gaussian function centered at 7.5 A- 1 and having a full width at 

-1 
half maximum of 12.3 A • This prepares the oscillations for Fourier 

transformation. 

In the third and final step we apply the Fourier transform via the 

Fast Fourier Transform algorithm. 19 Prior to transformation we add 

zeroes to give 2048 points; this increase interpolates the Fourier 

spectrum to give smooth peaks. 18 

The magnitude of the complex Fourier coefficients is displayed in 

Fig-. 5 for the [011] experiment, and Fig. 6 for the [001] experiment. 

Since our unit for k is rad-A- 1, the independent axis of our Fourier 

transform gives the path-length difference directly in A. Each of the 

peaks in Figs. 5 and 6 represent one or more scattering interferences. 

The peak position will be near the geometrical path-length difference, 

r.-r. cos e., plus the linear part of the scattering phase shift~ .• 
J J J J 

When comparing_our results to plots of surface EXAFS Fourier transforms, 

recall that the EXAFS scale is usually chosen to display half of the 

geometrical path length since the only geometrical path-length 

difference in EXAFS is 2r .. 
J 

.. 
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Our assignment of the peaks in the Fourier transforms to particular 

scattering path lengths is based on the empirical observation1 that 

nearest neighbors and backscattering atoms dominate the spectrum. 

Recent theoretical studies of medium energy electron scattering provide 

a basis for this idea that nearest neighbors and backscattering atoms 

tend to dominate the ARPEFS. The essential physical arguments leading 

to the simplified picture for medium energy electrons are: 

i) backscattering sj - 180° dominates 20 over other angles 

8 < 30°, j -

ii) when the soft x-ray polarization vector is nearly parallel to 

the emission direction, side scattering is not excited, 1 

iii) multiple scattering is primarily forward focusing, 21 having no 

effect on the geometrical path-length difference, 17 

iv) curved wave-front corrections are required only for 

quantitative analysis of the ARPEFS curves, 22 

v) correlated vibrational motion favors scattering from nearest 

neighbors, 23 and 

vi) aperture integration favors backscattering. 17 

Thus, Fourier transform peaks arise primarily from a few identifiable 

atoms. Of course allowance must be made for possible interference due 

to near-lying path-length differences and the Ramsauer-Townsend 

splitting discussed in ref. 24. 

A cross-sectional view through the four-fold hollow adsorption site 

is shown in Figure 7. Two peaks in the [011] spectrum (Figure 5) are 

primarily due to three Ni nearest neighbors. The largest peak--at 4.4 

A--corresponds to scattering from the nearest neighbor Ni directly 

behind the sulfur atom from the detector (atom 2 in Figure 7). With a 
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bond length of r. = 2.2 A and a scattering angle e. = 171 6 , the path-
J J 

length difference is 4.37 A. All of the amplitude factors favor this 

scattering atom. It lies along the peak in the angular distribution of 

the photoemitted p~wave; 17 it lies close to the emission center; and it 

backscatters into the detector. 

The second largest peak--at 3.2 A--corresponds to electron 

scattering from two nearest-neighbor Ni atoms (atom 1 in Figure 7.). 

These atoms are symmetrically located on either side of the plane 

containing the surface normal (the [001] direction) and the emission 

vector (the [011] direction). The scattering angle is 116°, giving a 

path-length difference of 3.12 A. Despite the combined scattering power 

of two atoms, this peak is smaller than the 4.4 A peak simply because 

both the photoemission final state angular.distribution and the 

scattering angular distribution are less favorable for 116° scattering. 

The fourth nearest-neighbor atom should have a scattering angle of 

83° and thus would appear at a path-length difference of 1 .96 A. 

However we expect its amplitude to be small because the atom is near the 

node of the photoemitted wave: cos 83° = 0.12. Therefore this atom 

does not produce a reliable peak in the Fourier transform. For example, 

1 it is small in Fig 5, while it was somewhat larger in earlier analyses 

using a slightly different transform weighting. 

The peaks at 7.5 A and 9.5 A seem to correspond to backscattering 

atoms further away from S along the [011] axis. If we consider the 

4.4 A peak to be a member of a (011) plane perpendicular to the emission 

direction, then the 7.5 A peak would correspond to 4 atoms in the next 

(011) plane away from S (atoms 3 and 3' in Figure 7) and the 9.5 A peak 

• 
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would correspond to the atoms in the succeeding plane which lies 

directly behind the 4.4 ANi scatterer (e.g. atom 4 in Figure 7). 

Two peaks in the normal emission [001] experiment Fourier spectrum 

(Figure 6) can be assigned in the same fashion as the [011] assignment . 

The 6.2 A peak must be predominately backscattering from the second 

layer Ni atom directly below S since this atom is 180° from the detector 

in the [001] emission geometry. The peak near 10 A should have a large 

contribution from atoms in the third Ni layer below S for the same 

reason. Atoms in the second Ni layer not directly in backscattering 

contribute the majority of the signal "to the Fourier spectrum between 

6.2A and 9 A, but we cannot give more specific assignments without 

detailed calculation. 

The most interesting features of the [001] Fourier transform are 

the two peaks below 5 A which seem to defy a scattering path-length 

explanation. Both of these peaks can be attributed to scattering from 

the four nearest-neighbor Ni atoms in the first Ni layer below S even 

though the geometrical path-length difference for all four neighbors is 

near 3.5 A where no Fourier peak is observed. The physical explanation 

for this Fourier peak splitting is a generalized Ramsauer-Townsend (GRT) 

resonance in the Ni scattering amplitude which simulates a beat envelope 

-1 
ask increases through 7.5 A • We have discussed these peaks and their 

use in the measurement of the S-Ni bond length elsewhere; the results 

obtained by evaluation of the GRT resonance are in full agreement with 

the geometric parameters derived in this paper. 24 
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IV.B Multiple Scattering Analysis 

With the raw photoemission spectra reduced to ARPEFS oscillations 

and the Fourier spectra at hand we can proceed to determine the 
.•' 

structure~. Previously, we have attempted to analyze the 4.4 A 
' ....... 

backscattering peak in the [011] experiment by applying the Fourier 

backtransformation methods of EXAFS. 1 This analysis was based on the 

apparent success of single-scattering calculations to simulate the 
' 

general features of the ARPEFS curve, but we now recognize17 that 

forward focusing is a fundamental feature of the photoelectron 

scattering. While the forward focusing does not change the oscillation 

frequency, it does change the oscillation amplitude and phase. Since 

the EXAFS-like analysis requires the phase to be known, 3 we will not 

pursue that approach here. 

Our alternative is a Fourier-filtering, least-squares fitting 

procedure which uses the Fourier spectrum to reduce the multiple 

parameter space of geometry variables without relying on the Fourier 

transform for the final structure analysis. The key element in this 

approach is the filtering of the ARPEFS to remove scattering path-length 

differences corresponding to all layers except the S overlayer and the 

first Ni layer. This filtered ARPEFS curve then depends upon a single 

geometrical parameter, the S-Ni bond length, or equivalently the S-Ni 

interlayer spacing (dl). Furthermore, the filtered curve contains only 

a restricted set of path-length differences and numerical simulation of 

the filtered curve even including multiple-scattering, and curved-wave 

corrections is very economical. Once the S-Ni layer spacing is set, the 

spacing to the second layer can be optimized by selecting a new filter 

width which includes atoms scattering from the second layer. 
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For the [001] experiment, it is appropriate to filter the Fourier 

spectrum at 5 A, isolating the two peaks split by the Ni scattering 

resonance. As this analysis involves a discussion of the resonance, we 

24 have reported it separately finding a S-Ni bond length of 2.20 ± .02 A 

(dl = 1.32 ± .03 A)~ 

·For the [011] experiment, 5 A was also chosen for the filter 

cutoff. This location is a minimum in the Fourier amplitude spectrum 

just above the 4.4 A main backscattering peak. To obtain the filtered 

ARPEFS spectrum we have simply zeroed the Fourier coefficients for 

frequencies above 5 A and applied the Fast Fourier inverse transform. 

We recognize that the [011] experimental geometry is more difficult 

to align with our present apparatus than the normal emission [001] case, 

and we have noticed that our numerical simulations are very sensitive to 

the polar angle of emission~ Thus we have performed a two dimensional 

search in S-Ni interlayer spacing and emission polar angle to minimize 
,,. 

the possibility that misalignment determines our result. Figure 8 gives 

the least-squares error surface for these variables. The numerical 

simulations were performed as described in ref. 17 using the vibrational 

averaging, mean-free path, aperture damping, and scattering phase shift 

parameters given there. Moderate changes in the non-structural 

parameters will change the size of the least-squares error but not the 

position of the minimum; conversely, we cannot reliably estimate the 

non-structural parameters by least-squares fits of this kind. A clear 

minimum is evident in the surface at 43° emission angle and a S-Ni 

interlayer spacing (dl) slightly above 1.30 A, in good agreement with 

the results of the [001] experiment. 
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With the emission angle for the [011] experiment fixed at 43° and 

the S-Ni interlayer spacing fixed at 1.30 A, we can return to the 

Fourier spectrum and filter for the second Ni layer. An appropriate 

filter location for the [011] experiment is 10.5 A, but the [001] 

spectrum should be cut somewhat lower to avoid path lengths near 10 A 

due to scattering from third layer Ni atoms. However we have used 

10.5 A for both experiments for convenience in the numerical simulation. 

The interlayer spacing between the second and third Ni layers is anyway 

equal to the bulk interlayer spacing (1.76 A) to within our ability to 

measure it at this time. 

In refining our geometry we must recognize that the c(2x2) symmetry 

observed in LEED does not constrain the Ni atoms in the second layer to 

be coplanar. Half the Ni atoms in this layer lie directly below S atoms 

(we call these atopped atoms) and half of these atoms lie below open 

spaces in the half monolayer coverage (we call these open atoms). The 

stability of the c(2x2) overlayer suggests that the local electronic 

environment of atopped and open Ni atoms could be different leading to 

the possibility that they would seek different equilibrium distances 

from the first Ni layer. Therefore we have refined the positions of the 

atopped and open atoms separately, giving, for the [001] geometry, the 

two dimensional least-squares error surface in Figure 9. The dashed 

line running diagonally indicates the cut through this surface on which 

atopped and open atoms are coplanar. Along this line a clear minimum is 

found near 1.82 A for the first and second Ni layer spacing. To be more 

precise our measurement gives the distance between S and the second Ni 

layer of 3.12 A which we combine with the spacing of the S and first Ni 

layers to give 1.82 A for the Ni-Ni spacing. Relaxing the coplanar 

• 

.. 
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constraint, we see a broad minimum where the atopped Ni atoms stay near 

1.82 A below the first layer while the open Ni atoms move further down 

with a minimum near 1.87 A. 

The surface for the [011] experiment is similar (Figure 10) along 

the coplanar constraint line having a minimum near 1 .84A, but once the 

open atoms are allowed to vary independently, no minimum is found for 

spacings less than 1 .94 A. We discount the significance of this result 

because the [011] experimental geometry is not sensitive to the 

frequency change which accompanies the displacement of the open atoms-­

they move away at an oblique angle--but it is very sensitive to the 

amplitude of the scattering from these atoms. In fact, of all the 

scattering events which contribute to the two ARPEFS curves discussed 

here, calculations of scattering from open atoms in the [011] experiment 

have the poorest agreement with experiment. 

These comparisons of scattering calculations and Fourier filtered 

experimental data rely on an accurate value for the inner potential used 

to construct the experimental momentum scale. We can estimate the 

maximum possible geometry error by calculating the least-squares error 

after optimizing the fit between experiment and theory with an 

adjustable inner potential. Since most of the ARPEFS signal is already 

contained in the 10.0 A simulations, we recalculated the least-square 

error surface for the [001] experiment comparing these simulations 

directly to the. experimental oscillations on the experimental energy 

scale, allowing both the theoretical inner potential and overall scale 

factor to vary. The resulting surface is shown in Figure 11. Since the 

minimum in the surface with fixed inner potential does not improve when 

the inner potential is varied, the minimum shifts, and, with the added 
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flexibility of the scaling and shifting optimization, the minimum will 

be much broader. We find a broad minimum centered near 1 .85A for 

atopped Ni atoms and 1 .87A for open Ni atoms, a slightly greater 

expansion than that found with fixed inner potential. 

The optimal inner potential varies monotonically with the spacing 

between the sulfur layer and the atopped Ni layer; when this spacing is, 

for example 1.86 A, the optimal inner potential is -7.8 eV and larger 

expansions give lower inner potentials. Thus as long as we believe that 

the inner potential should be near 10 eV, the error surface with 

variable inner potential represents our maximum error: any restraint on 

the inner potential to bring it back toward 10 eV will bring the optimal 

geometry back toward 1 .87 A. We have also varied the inner potential in 

the analysis of the ARPEFS curves filtered at 5 A by placing the 

filtered experimental data on an energy scale using the inverse of the 

original conversion of energy to momentum. Both the [001] and [011] 

experiments give unchanged optimal S-Ni spacing and optimal inner 

potentials between 10 and 11 ev. Thus we believe the variable inner 

potential surface result represents an upper bound to the interplanar 

spacing of 1.86 A. 

Finally, we have selected a fixed spacing of the sulfur and second 

Ni layers at 3.135 A with atopped and open atoms coplanar and 

reoptimized the S-Ni interlayer spacing calculating all path lengths up 

to 10.5 A and using the same two error criteria as discussed above. The 

error curves in Figure 12 all have their minima slightly above 1.30 A 

(dl) (2.19 A S-Ni bond length) with the [011] curve to the spacing being 

more sensitive. 
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We have based our quantitative analysis on the least-squares error 

criterion, but visual comparison of the curves confirms the conclusions 

of the numerical analysis. We can verify that dl = 1 .30 A fits the 

filtered ARPEFS better than dl = 1.35 A as in Figure 13; by comparing 

Figures 14 and 15 we can certainly exclude aS to second layer spacing 

of 3.06A in favor of one closer to 3.14 A. 

IV.C Possible Sources of Error 

The paramount sources of error in our structure analysis are the 

value of the inner potential and the scattering phase shifts used in the 

multiple-scattering calculations. Substantially less important are the 

values chosen for the non-structural parameters in the theory, which 

control the oscillation amplitude but not its phase or frequency. 

We strongly emphasize that the precision of ARPEFS analysis relies 

on the energy width of the measurement. Over the course of a single 

oscillation, a constant phase error, due to inner potential or 

scattering phase shifts, will lead to significant apparent geometry 

changes. Only by comparing the oscillations over several cycles can 

this source of error be reduced. Furthermore, estimation of the atomic-

like background, r 0, severely distorts oscillations with a single cycle 

over the energy range, and the Fourier processing requires a maximum 

.energy range for resolution of the Fourier peaks. Whenever several 

ARPEFS oscillations are covered in the measured range, the precision of 

the structure analysis should exceed 0.02 A in interplanar spacings. 

Quatitative bounds for the structural accuracy are more difficult 

to estimate. As we have discussed in the previous section, the inner 

potential is directly connected to the structure determination, and we 
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find that a 2 eV error leads to a 0.02 A error in geometry. The errors 

caused by the scattering phase shifts are more difficult to assess 

particularly since there does not seem to be published phase shifts in 

this energy range to which we may compare. As we are primarily 

sensitive to backscattering and forward scattering, we can conclude that 

the frequency shift :caused by errors in the scattering phase shifts are 

likely to be negli gi bte: we can see from published 25 EXAFS 

backscattering phase functions that change from Ni to Cu potentials 

would introduce a linear phase shift less than 0.02 A, and since the 

linear part of the forward scattering phase function is less than 0.05 A 

even a 50% error may be ignored. Exactly the opposite must be concluded 

about errors due to the constant part of these phase functions: The 

published backscattering phase functions have large changes in phase 

with atomic number, and the forward scattering constant phase shift is 

large. 

Moreover there is a close connection between inner potential errors 

and errors in the constant part of the scat~ering phase function. This 

connection is exploited in the analysis of EXAFS data 26 by allowing the 

inner potential to vary. The procedure we followed in the previous 

section to vary the inner potential is analogous to the EXAFS analysis 

in that we might hope to cancel some errors in the constant phase with a 

variable inner potential, but we note several differences. First, the 

EXAFS inner potential is a complex weighted sum of absorption edge 

energies even when the scattering potential is exactly known: for all 

practical purposes the EXAFS inner potential is neither calculable nor 

measurable. The ARPEFS inner potential may be more accessible if only 

because it is not connected to the photoabsorption process. Second, the 
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EXAFS inner potential usually must also account for errors in phase 

shift functions caused by curved wave corrections, while our simulation 

curves include curved wave effects. And third, the EXAFS analysis 

usually concentrates on a single baekscattering oscillation so that the 

floating inner potential need not work to correct amplitude errors while 

our floating inner potential may compromise between correcting phase 

errors and errors due to incorrect relative scattering amplitudes. Thus 

the simpler analysis of the 5 A filtered data lead to consistent, 

physically reasonable inner potentials near 10.5 eV while the more 

complex comparison in Figure 11 leads to more unusual values. 

Until a thorough investigation of the scattering potentials in the 

intermediate energy range is complete, the errors caused by thermal 

averaging, aperture integration, and inelastic mean free path may be 

ignored. It is obvious from the comparison of the numerical simulation 

in Figure 12 that these values are not too far wrong: the overall 

magnitude of the oscillations is correct at high and low energy. 

Furthermore, the non-structural parameters may be more properly 

investigated by studying them directly, i.e. through temperature and 

aperture variations. 
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V. DISCUSSION AND CONCLUSION 

Although we are not yet in a position to quantify our accuracy, our 

·results should be of comparable quality to other surface structure 

methods. The c(2x2)S/Ni(001) structure has been studied by LEED, Normal 

Photoelectron Diffraction (NPD), and Surface EXAFS~ The c(2x2)S/Ni(001) 

system served as one of the prototype surface systems for LEED so that 

it is inappropriate to quote much of the earlier work. The most recent 

4 27 28 results ' ' agree on a S-Ni interlayer spacing of dl 1.3 ± 0.1 A, 

corresponding to a S-Ni bond length of 2.19 ± 0.06 A. The NPD 

experiment5 using the S(2p) core level gave a S-Ni interlayer spacing of 

dl = 1.30 ± .04 A (S-Ni bond length of 2.19 ± 0.03 A). The Surface 

EXAFS analysis 6 gave a S-Ni bond length of 2.23 A ± 0.02 A equivalent to 

a dl = 1.37 ± .03 A. 

interlayer spacing. 

None of these measurements addressed the Ni-Ni 

We conclude from our analysis of the two ARPEFS curves that dl = 

1.31 ± .03 A (S-Ni bond 2.19 ± 0.02 A). This is in excellent agreement 

with the LEED and NPD results, but--if we may trust the error bars--in 

only-fair agreement with the EXAFS analysis. Given the uncertainty we 

have about the scattering potential, we cannot propose to select our 

result over the EXAFS one, but our agreement with the NPD results is 

gratifying because the measurements are similar to our [001] experiment 

while the theoretical analysis was based on multiple-scattering 

calculation using a quite different approach than we have applied here, 

including different scattering phase shifts. 

We have no comparison for the Ni-Ni interlayer spacing of 1 .83 ± 

.03 A~ or a 4% expansion compared to bulk Ni. This is equal to the 

expansion of the first two Ni layers on clean Ni reported by Demuth and 
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Rhodin 29 but larger than the spacing, 1.78 ± .02 A, reported by Demuth, 

Marcus and Jepsen~0 We also have some indication that Ni atoms in the 

second layer with S atoms overhead pulled out of the bulk somewhat. 

Throughout our discussion we have been especially critical in our 

search for sources of inaccuracy and imprecision in our results. While 

we have explored a number of problems with our own measurement, we 

emphasize that ARPEFS measurements is carried in medium frequency 

oscillations of large amplitude: with modest care, baseline drift and 

statistical noise will not limit the geometrical accuracy. However 

greater care is required in the experimental alignment: the ARPEFS 

oscillations are very sensitive to the surface structure and to the 

emission angle. This first ARPEFS measurement was made by adapting 

equipment and techniques not originally designed for surface structure 

determination. Once a vacuum-compatible apparatus is designed which can 

align a surface with precision comparable to crystal alignment in X-ray 

crystallography, routine precision of 0.01 A should be available for 

ARPEFS measurements. This chemically significant precision combined 

with the initial qualitative structure analysis available in Fourier 

transformation should make adsorbate structure determination by ARPEFS 

very attractive to the surface scientist. 
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FIGURE CAPTIONS 

Figure 1. Inelastic scattered electron background spectrum for hv=2504ev 

and, inset, a simple least~squares fit to a S(1s) 

photoemission peak. The small features near 174eV in the 

background spectrum are S Auger peaks. In the inset, the 

solid circles are the measured photoemission counts, the upper 

solid curve gives the fitted function values, while the lower 

solid curve is the sum of the smoothed background spectrum and 

the error function step. The photopeak area is the area 

between the solid curves. 

Figure 2 Normalized angle-resolved photoemission intensities as a 

function of photopeak energy and atomic-like I 0 curves from 

least squares fits for c(2X2)S/Ni(001). The solid curve is 

the photoemission intensities, and the dotted curve is the I 0 

estimate. (a) Emission along [011], (b) Emission along [001]. 

Figure 3 ARPEFS oscillation x(E) for c(2X2)S/Ni(001) versus electron 

kinetic energy according to eqn~ 3. (a) [011] emission (b) 

[001] emission. 

Figure 4 ARPEFS oscillations after conversion to a momentum scale using 

an inner potential of 10.5eV, and after interpolation to an 

even mesh of 128 points. (a) Emission along [011], (b) 

Emission along [001]. 
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Figure 5 Fourier transform magnitudes versus scattering path length 

difference for k times the data in figure 3a. In the lower 

panel, the conventional Fourier transform was applied, while 

the upper panel was obtained with the auto~regressive linear 

prediction method described in ref. 14. 

Figure 6 Fourier transform magnitudes versus scattering path length 

difference for k times the data in figure 3b. In the lower 

panel, the conventional Fourier transform was applied, while 

the upper panel was obtained with the auto-regressive linear 

prediction method described in ref. 14. 

Figure 7 Cross-sectional view of a fcc crystal (001) surface showing 

the experimental geometry for the [011] experiment. The 

angle-resolving detector is along the vector labeled e ([011] 

direction); the polarization vector is E. The geometrical 

path-length difference is given by the bond distance from S to 

a scattering Ni atom plus the distance from the Ni atom to the 

plane perpendicular to the·emission direction and passing 

through the S photoemitter. 

Figure 8 Contour map of the least square error for fits of numerical 

simulations to data Fourier filtered at 5.1A from the [011] 

emission experiment. The horizontal axis gives the spacing 

along the crystal normal between the sulfur photoemitter and 

the first layer of Ni atoms (dl). The vertical axis gives the 

• 
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variation of the polar angle of emission measured from the 

surface normal. Inner potential fixed at 10.5 ev. 

Figure 9 Contour map of the least square error for fits of numerical 

simulations to Fourier filtered data (path lengths less than 

10.5A) from the [001] emission experiment. The horizontal 

axis gives the spacing between the first layer of Ni atoms and 

those 2nd layer Ni atoms having S overlayer atoms on top of 

them (atopped atoms). The vertical axis gives the same 

quantity~for 2nd layer Ni atoms having no S overhead (open 

atoms). The dot-dashed line follows the constrained coplanar 

geometry. Inner potential fixed at 10.5 ev and dl at 1.30 eV. 

Figure 10 Contour map of the least square error for fits of numerical 

simulations to Fourier filtered data from the [011] emission 

experiment. The horizontal axis gives the spacing between the 

first layer of Ni atoms and those 2nd layer Ni atoms having S 

overlayer atoms on top of them (atopped atoms). The vertical 

axis gives the same quantity for 2nd layer Ni atoms having no 

S overhead (open atoms). The dot-dashed line follows the 

constrained coplanar geometry. Inner potential fixed at 

10.5eV. 

Figure 11 Contour map of the least square error for fits of numerical 

simulations to data for the [001] emission experiment. The 

horizontal axis gives the spacing between the first layer of 

Ni atoms and those 2nd layer Ni atoms having S overlayer atoms 
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on top of them (Atopped atoms). The vertical axis gives the 

same quantity for 2nd layer Ni atoms having no S overhead 

(open atoms). The dot-dashed line follows the constrained 
. . 
coplanar geometry. The inner potential and overall scale of 

. the theory was fitted to the data. 

Figure 12 Refinement of the S Ni interlayer spacing with unfiltered data 

curves and a fixed S to 2nd layer spacing of 3.135A. The upper 

curves are from the [011] experiment and the bottom pair are 

from the [001] experiment. The solid curves have a fixed 

inner potential for theory of 10.5eV, while the dashed curves 

correspond to varying the scale and inner potential of the 

theory to best fit the data. 

Figure 13 Comparision of Fourier filtered· (5.1A) ARPEFS oscillations 

from the [011] experiment (solid circles), the numerical 

simulation for dl=1.30A (solid line), and the numerical 

simulation for dl=1.35A (dashed curve). 

Figure 14 Comparision of Fourier filtered (10.5A) ARPEFS oscillations 

from the [011] experiment (solid curve) to the numerical 

simulation for dl=1 .30A and aS to first Ni layer spacing of 

1.84A (dashed curve). The atopped and open Ni atoms are 

coplanar in the theory curve. 

Figure 15 Comparision of Fourier filtered (10.5A) ARPEFS oscillations 

from the [011] experiment (solid curve) to the numerical 



.. 

43 

simulation for dl=1 .30A and a S to first Ni layer spacing of 

1.76A (dashed curve) (the bulk interlayer spacing is 1.76A). 

The atopped and open Ni atoms are coplanar in the theory 

curve • 
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