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Abstract

Polygenic scores (PGS) have emerged as the tool of choice for genomic prediction in a wide 

range of fields. We show that PGS performance varies broadly across contexts and biobanks. 

Contexts such as age, sex and income can impact PGS accuracy with similar magnitudes as 

genetic ancestry. Here we introduce an approach (CalPred) that models all contexts jointly to 

produce prediction intervals that vary across contexts to achieve calibration (include the trait with 
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90% probability), whereas existing methods are miscalibrated. In analyses of 72 traits across large 

and diverse biobanks (All of Us and UK Biobank), we find that prediction intervals required 

adjustment by up to 80% for quantitative traits. For disease traits, PGS-based predictions were 

miscalibrated across socioeconomic contexts such as annual household income levels, further 

highlighting the need of accounting for context information in PGS-based prediction across 

diverse populations.

Accurate prediction of complex diseases or traits integrating genetic and nongenetic factors 

is essential for multiple fields from agriculture to personalized genomic medicine. The 

genetic contribution is typically predicted using polygenic scores (PGS) that summarize 

the joint contribution of many genetic factors1–4. A critical barrier in PGS use4–6 is their 

context-specific accuracy—their performance (and/or bias) varies across various contexts 

such as genetic ancestry5,7–10, age, sex, socioeconomic status and other factors11–13.

PGS use large-scale genome-wide association studies (GWAS) to train linear prediction 

models of traits based on genetic variants; PGS are then employed in new data that often 

have different context characteristics from training (for example, different distributions 

of genetic ancestry, age, sex and social determinants of health)1,2,14. Even when testing 

is similar to training, genetic effects themselves can vary by contexts (for example, due 

to genotype–environment interaction, across age15, sex16 and genetic ancestry17–20), thus 

leading to context-specific PGS performance/bias. As genetic effects are unknown, allele 

frequency, linkage disequilibrium and differential tagging of true latent genetic factors can 

also lead to context-specific accuracy/bias in PGS-based predictions11,15,21.

To account for PGS accuracy variability, we use ‘trait prediction intervals’ that are allowed 

to vary across contexts. Trait prediction intervals denote the range containing the true trait 

value at prespecified confidence (for example, 90%) and provide a natural approach to 

model variability in PGS accuracy—narrower prediction intervals correspond to contexts 

where PGS attains higher accuracy11,22,23. Consider the case of two individuals with the 

same PGS-based predictions for low-density lipoprotein cholesterol (LDL) of 180 mg dl−1. 

If the two individuals have different contexts (for example, sex) that are known to impact 

PGS accuracy (for example, R2 = 0.1 in men versus 0.2 in women), their prediction intervals 

will also vary (for example, 180 ± 40 mg dl−1 versus 180 ± 10 mg dl−1) with the second 

individual more likely to meet a decision criterion of LDL >160 mg dl−1 for hypothetical 

clinical intervention.

In this Article, we introduce CalPred, a statistical framework that jointly models the effects 

of all contexts on PGS accuracy with parameters learned in a calibration dataset. The key 

assumption is that the calibration data have a similar context distribution as new target 

individuals for whom PGS-based predictions will be employed. The motivation comes 

from precision health efforts that created electronic health record (EHR)-linked biobanks of 

patients from the same medical system in which PGS-based predictions will be implemented 

in the future24–27; in this context, the assumption is that the biobank is representative of 

future patients entering the same medical system.
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We analyze data from two large-scale biobanks (UK Biobank28 and All of Us29) to find 

pervasive impact of context on PGS accuracy across a wide range of traits. All considered 

traits (N = 72) have at least one context impacting their accuracy11,13. Socioeconomic 

contexts have similar magnitudes of impact as genetic ancestry; for example, PGS accuracy 

varies by up to ~50% across ‘education years’ averaged across all considered traits in All of 

Us.

Next, we establish that CalPred provides calibrated predictions across individuals of diverse 

contexts in extensive simulations and real data analyses. For example, for LDL prediction, 

prediction intervals need adjustment by up to ~40% across contexts to achieve calibration. 

Context specificity of PGS prediction varies across traits and the studied population; for 

example, prediction intervals for ‘education years’ need adjustment by 94% in All of Us 

versus 10% in UK Biobank, reflecting the more diverse distribution of ‘education years’ and 

other social determinants of health in All of Us. For disease traits, incorporating context 

information is critical for calibrated predicted probability. In All of Us, PGS-based type 

2 diabetes (T2D) predictions ignoring ‘annual household income’ are miscalibrated across 

income groups, while incorporating income in the model leads to calibrated predictions. 

Overall, our approaches provide a path forward to accounting for contexts in implementing 

PGS-based predictions for complex traits and diseases.

Results

Overview

We incorporate context-specific accuracy using prediction intervals that vary across contexts 

to maintain calibration: the true phenotype is contained within the prediction interval at 

a prespecified probability (for example, 90%; Fig. 1a). Naturally, as accuracy varies by 

context, the interval width needs to vary adaptively to maintain calibration (Fig. 1b). We 

distinguish among three types of prediction intervals (Fig. 1c). First, standard errors of 

PGS weights can be used to estimate prediction intervals that do not vary across contexts 

and/or individuals; these types of intervals are calibrated only when target perfectly matches 

training, which is impractical. Second, prediction intervals can be estimated empirically 

using a calibration dataset while ignoring context1,30–34; these types of intervals are robust 

to mismatches between training and testing, but are miscalibrated in particular contexts due 

to the variability of PGS accuracy. Third, prediction intervals that vary across contexts 

can be estimated using a calibration dataset by empirically quantifying the impact of 

each context on prediction accuracy; context-specific prediction intervals are adaptive and 

robust across contexts albeit at the expense of a more complex statistical model and larger 

calibration data that span all contexts.

Next, we distinguish three categories of data. Training, used to perform GWAS and PGS 

weights estimation, often involves meta-analysis of multiple datasets where additional 

context adjustment is impractical due to data access limitations or unmeasured context 

variables. Calibration, used to calibrate PGS with respect to trait-relevant contexts, such as 

EHR-linked biobanks within medical systems, reflects the makeup of the patient population. 

Testing, with new individuals for whom prediction models will be employed (for example, 

patients within medical systems not currently involved in EHR-linked biobanks). Motivated 
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by clinical implementation of PGS-based predictions in medical systems where EHR-linked 

biobanks already exist, we focus on the problem of using calibration data to provide multi-

context calibration. We assume that the EHR-linked biobanks are reflective of future patients 

within the same medical system.

Context-specific prediction intervals are implemented with two components: (1) context-

specific mean yiˆ = E yi ∣ ci  as a function of context ci for each individual i; we also include 

PGS–context interaction terms (PGS×C) to model varying PGS slope across contexts; (2) 

context-specific variance E yi − yiˆ 2 ∣ ci = exp ci
⊤βσ , where ci denotes contexts including age, 

sex, socioeconomic factors and genetic ancestry, and βσ quantifies the unique impact of 

each context on variation of the prediction interval accounting for other contexts (Methods). 

Denoting prediction standard deviation (s.d.) as σ̂i = exp(ci
⊤β̂σ), 90% prediction intervals 

can be derived as yiˆ − 1.645 × σiˆ , yiˆ + 1.645 × σiˆ . Our approach builds upon existing models 

for heteroscedasticity in probabilistic forecasting35–39. Existing works incorporate variable 

residual variances across different subsets of data (that is, contexts in our case) in addition 

to modeling prediction mean in standard regression analysis. Within genetics literature, such 

models have been used to detect genotypes associated with phenotype variability40–42. We 

build on such methods toward modeling PGS variable accuracy across contexts.

Widespread context-specific PGS accuracy across populations

Although PGS accuracy has been shown to vary across selected traits and contexts5,11–13, 

its pervasiveness remains unclear. We analyzed two large-scale biobanks in the United 

Kingdom and the United States (UK Biobank and All of Us) comprising >600,000 

individuals spanning a wide range of contexts. We trained PGS for 72 traits in individuals 

previously annotated as ‘white British’28 (WB) from UK Biobank and evaluated these PGS 

in independent testing data from UK Biobank and All of Us. We focused on 11 contexts that 

span age, sex, socioeconomic factors such as educational attainment and genetic ancestry 

(we used top two genetic principal components (PCs) to represent major axes of genetic 

variation; see ‘Population descriptor usage’ section in Methods). We used relative ΔR2 to 

quantify the impact of context to PGS accuracy, defined as Rtop quintile
2 − Rbottom quintile

2

Rall
2 , where R[subset]

2

denotes R2 between PGS and residual phenotype computed in a given range of the context 

variable (top/bottom quintile as subsets for continuous contexts; binary subgroups as subsets 

for binary contexts). We found widespread context-specific PGS accuracy across all traits 

and contexts studied (Methods, Fig. 2, Supplementary Figs. 1 and 2 and Supplementary 

Tables 1 and 2).

Context-specific accuracy in UK Biobank

All 72 traits had at least one context impacting their accuracy in UK Biobank data; 264 (out 

of 792) PGS–context pairs had significant variable accuracy (P < 0.05/(72 × 11); Methods). 

Genetic ancestry had the most widespread impact on PGS accuracy: 70 of 72 traits had 

significant differences in PGS accuracy, with an average relative ΔR2 of −46% between top 

and bottom PC1 quintiles (Supplementary Fig. 3). Socioeconomic contexts also significantly 

impacted PGS accuracy; PGS accuracy significantly differed for 62 traits, with an average 
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relative ΔR2 of −23% between top and bottom deprivation index quintiles. The direction 

of context’s impact depended on the trait being studied. For example, age significantly 

impacted 20 traits; rather than consistently increasing or decreasing accuracy, an older age 

led to increased accuracy for 14 traits (for example, high-density lipoprotein cholesterol 

(HDL) and white blood cell count (WBC) in Fig. 2) and to decreased accuracy for 6 traits 

(for example, LDL).

The widespread context specificity remained when testing data were matched to training 

data by genetic ancestry (Fig. 2). A total of 21 (out of 72) PGS had at least one context 

significantly impacting their prediction accuracy; 42 PGS–context pairs had significant 

variable accuracy (P < 0.05/(72 × 11)). We replicated previously reported variable PGS 

accuracy in WB individuals for diastolic blood pressure, body mass index, and ‘education 

years’ across contexts of sex, age and deprivation index11. As an example, LDL was 

significantly impacted by six contexts in WB individuals, with age having the strongest 

impact (relative ΔR2 was more than 100% between top and bottom age quintiles).

Next, we studied the unique impact of each context on variable PGS accuracy within 

CalPred model jointly accounting for all contexts (Methods and Fig. 2c,d). Context 

contribution to variable accuracy conditional on all other contexts was quantified with βσ, 

where larger absolute βσ indicated more substantial variation in accuracy along a context 

variable (Methods). Effects of contexts to traits were largely independent. For example, 

both PC1 and deprivation index significantly impacted PGS accuracy for a range of traits 

in the joint model, indicating both had a unique contribution to variable PGS accuracy. 

We also found examples showing otherwise: the impact of the ‘wear glasses’ context 

on LDL accuracy can be explained by its correlation with age (Extended Data Fig. 1), 

while other contexts independently contributed to variable LDL accuracy. These results 

indicated the importance of jointly considering all measured contexts to correctly assess the 

unique contribution of each context. We found that contexts including sex, age, income and 

deprivation index had comparable impact on accuracy as genetic ancestry (Fig. 2e,f). The 

distribution of estimated effects of βσ suggested predominantly higher prediction accuracy 

for individuals with higher income and lower deprivation indices, partly explained by 

different context distribution in training versus testing data: WB individuals had higher 

income and lower deprivation indices compared to the rest of the UK Biobank43 (Extended 

Data Fig. 2). We noted two context–trait pairs with large differences between single-context 

and combined-context analysis results even within UK Biobank WB individuals (sex–

body mass index (BMI) and sex–waist–hip ratio (WHR)). This is because single-context 

analysis uses population-level R2 focusing on the predictive power of only PGS while 

combined-context analysis assesses the impact of context on phenotypical residual variance 

(Supplementary Note).

Context-specific accuracy in All of Us

We next turned to All of Us, a diverse biobank across the United States comprising 

more than 245,000 participants (Supplementary Fig. 3 and Extended Data Fig. 3). Due to 

challenges in phenotype matching across biobanks, we restricted the analysis to 12 PGS and 

11 contexts matching the UK Biobank analyses (Methods). All PGS had at least one context 
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impacting their accuracy (Fig. 3 and Supplementary Tables 3 and 4). A total of 89 PGS–

context pairs were significant when considering all individuals, and 61 PGS–context pairs 

were significant when restricting to individuals with self-identified race/ethnicity (SIRE) as 

‘white’ (‘white SIRE’) (P < 0.05/(12 × 11); Methods). Prediction of cholesterol and LDL 

was similarly impacted by a broad range of contexts. Prediction of ‘education years’ was 

impacted by contexts including age, BMI, employment and income, both when considering 

all individuals and considering the ‘white SIRE’ sample, consistent with the socioeconomic 

contexts influencing PGS of sociobehavioral traits such as education11,44,45.

Interestingly, socioeconomic contexts had greater impact on context specificity in All of Us 

as compared to UK Biobank. For example, ‘education years’ context significantly impacted 

9 out of 11 traits with average relative ΔR2 = 50%, as compared to 2 out of 71 traits with 

average relative ΔR2 = 0.2% in UK Biobank (averaging across traits other than ‘education 

years’ itself). This may be explained by larger variation of ‘education years’ in the United 

States and/or ‘education years’ being more correlated with social determinants of health in 

the United States compared to the United Kingdom. When restricting analysis to a subset 

of individuals with more homogeneous genetic ancestry, the impact of ‘education years’ 

and income level was attenuated but remained significant; this is consistent with variable 

PGS accuracy across socioeconomic contexts being partially accounted for through their 

correlation with genetic ancestry (Extended Data Fig. 4).

For completeness we also evaluated PGS for height46 and LDL47 derived from multi-

ancestry meta-analyses from PGS catalog48 (Fig. 3). We found that multi-ancestry PGS did 

not alleviate widespread context-specific accuracy. Higher income, ‘education years’, better 

employment or lower BMI predominately led to higher prediction accuracy across traits 

(Fig. 3e,f). Additional secondary analyses assessing the consistency of fitted βσ coefficients 

across populations, as well as factors explaining context-specificity patterns, are reported in 

Supplementary Figs. 4–6.

CalPred is calibrated across contexts in simulations

Having shown pervasive context specificity of PGS accuracy, we next turned to CalPred 

to estimate context-specific prediction intervals accounting for context- and trait-specific 

variable accuracy (Methods). We performed simulations to evaluate calibration of CalPred 

in the presence of gene-by-context interactions16,49. For quantitative traits, we simulated 

individuals in two contexts with different heritability and an imperfect genetic correlation 

(the first context is used to train PGS; Methods and Fig. 4a). Due to genetic heterogeneity, 

PGS weights derived in the first context were not portable to the second context, producing 

a biased phenotype–PGS regression slope and prediction intervals with deflated coverage. 

With CalPred, prediction mean was calibrated via PGS×C terms; prediction interval lengths 

were adjusted to reflect different prediction precision across two contexts. For disease traits, 

we simulated individuals in two contexts under a liability threshold model with different 

disease prevalence and an imperfect genetic correlation (Fig. 4b and Methods). We first 

predicted disease probability with a logistic regression model for all individuals in both 

contexts, using PGS weights derived from the first context. As expected, this model ignoring 

context information was miscalibrated overall in each context. By incorporating PGS, 
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PGS×C interaction and context variables, we determined disease risk predictions were then 

calibrated within and across contexts. We also simulated other scenarios of gene–context 

interactions for both quantitative and disease traits and verified that our framework produced 

calibrated predictions (Extended Data Figs. 5 and 6).

We next evaluated CalPred in simulations where prediction accuracy varies across contexts 

similar to real data5,7,11 (Fig. 5 and Methods). We assessed calibration of prediction 

intervals both at the overall level and within each context subgroup (Methods). First, generic 

prediction intervals without context-specific adjustment had severe over-/under-coverage 

within each context subgroup stratified by PC1, age or sex. As expected, bias of coverage 

tracked closely with accuracy across contexts. Second, CalPred context-specific prediction 

intervals were calibrated across contexts, by incorporating context-specific prediction 

accuracy in the interval estimation. We also performed simulations to find if CalPred 

performance depended on calibration sample size Ncal > 500 for accurate model fitting and 

an appropriate set of contexts in calibration (Extended Data Fig. 7). Parameter estimation 

of βσ was accurate with correctly specified model and robust with model misspecification 

(Supplementary Fig. 7). Overall, simulation results demonstrated that CalPred produces 

well-calibrated prediction intervals when contexts are measured and present in the data and 

highlighted the importance of comprehensive profiling of relevant context information.

CalPred yields calibrated context-specific predictions

We applied CalPred to produce context-specific prediction intervals for a wide range of 

quantitative traits. We first performed several analyses in All of Us to investigate best 

practices to model quantitative traits. We examined effects of PGS, context variables and 

PGS×C for trait prediction and found that PGS contributed the most in explaining trait 

variation (cross-trait average standardized effects with magnitudes of 0.23 compared to 0.22 

of sex and 0.14 of BMI, the second and third largest contributors). PGS×C had significant 

contributions but with smaller effects than those from context variable themselves (Extended 

Data Fig. 8). Notably, inclusion of PGS substantially increased inter-individual variation 

in prediction s.d., suggesting that PGS is an important source of variation in prediction 

accuracy (Extended Data Fig. 9). PGS×C and modeling variance by contexts (VbyC) 

components had additive contribution in improving model fitting, capturing independent 

aspects of traits (Supplementary Figs. 8–10).

We focused on LDL, an important risk factor of cardiovascular disease47. Calibration by 

context is particularly important because LDL prediction accuracy was impacted by many 

contexts, with the largest impact made from age (Figs. 2 and 3). We modeled prediction 

mean using PGS together with age, sex and genetic ancestry, and modeled context-specific 

prediction intervals using the set of contexts in Figs. 2 and 3 (Methods). LDL prediction 

accuracy decreased with age (R2 = 18% in youngest quintile versus R2 = 11% in oldest 

quintile; Fig. 6a). Generic prediction intervals were miscalibrated with coverage of 93% 

and 86% for youngest and oldest quintiles instead of the nominal level of 90%. In contrast, 

context-specific prediction intervals had the expected 90% coverage across all considered 

contexts. This resulted from varying prediction interval length by context, with a wider 

interval compensating for lower prediction accuracy. For example, as CalPred estimated 
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a positive impact of age to prediction uncertainty (βσ = 0.15; P < 10−30), individuals in 

youngest/oldest age quintiles had average prediction s.d. of 27.4 versus 34.3 mg dl−1 (25% 

difference; Supplementary Fig. 11 and Methods). These findings were replicated in All of 

Us and in other traits (Supplementary Figs. 12 and 13), where R2 varied across contexts 

and context-specific prediction intervals achieved well calibration across contexts providing 

per-individual accuracy metrics (Supplementary Fig. 14). Next, we sought to examine the 

joint contribution of all considered contexts to variable prediction s.d. (instead of separately 

considering age, PC1 or sex; Fig. 6b). Context-specific accuracy was more pronounced 

by ranking individuals by prediction s.d. accounting for impact of all contexts (prediction 

s.d. ranged approximately from 20 mg dl−1 to 45 mg dl−1; Fig. 6b): we detected a 44% 

difference comparing individuals in bottom and top deciles of prediction s.d. (25.2 mg 

dl−1 versus 36.5 mg dl−1; Fig. 6c and Supplementary Figs. 15 and 16). This implied that 

individuals in top prediction s.d. decile (characterized by contexts of male, increased PC1 

and age; Fig. 2c) need to have prediction interval widths increased by 44% compared to 

those in bottom decile.

Extending analysis accounting for all contexts to all traits in UK Biobank and All of Us, 

we determined a widespread large variation of context-specific prediction intervals across 

traits (Fig. 7 and Supplementary Fig. 17). Average differences between top and bottom 

prediction s.d. deciles across traits were 30% and 47%, respectively, for UK Biobank and 

All of Us. Comparing across two datasets, BMI, LDL and cholesterol were more heavily 

influenced by context than average, while diastolic blood pressure and HDL were less 

impacted, suggesting trait-specific susceptibility to context-specific accuracy. There were 

cases where context specificity of the same trait was drastically different across datasets. For 

example, prediction s.d. differences for predicting ‘education years’ were 94% in All of Us 

versus 10% in UK Biobank. This disparity probably reflected the more diverse distribution 

of ‘education years’ and other social determinants of health in the US population sampled in 

All of Us (Figs. 2 and 3). Such differences between datasets highlight that context specificity 

can be population specific and the need to consider characteristics of different populations in 

calibration.

We next investigated disease risk prediction for four well-powered heritable diseases: 

T2D50, coronary artery disease51, prostate cancer52 and breast cancer53 (Extended Data 

Fig. 10). We first considered a baseline model using logistic regression to predict disease 

probability with PGS, age, sex, BMI and top ten PCs as predictors (Methods). We 

evaluated calibration of predicted disease risk—whether predicted probability aligned with 

the observed disease rate. While baseline model predictions were calibrated at an aggregate 

level, they were miscalibrated within specific contexts (Fig. 8a). For example, among 

individuals with a predicted T2D risk of approximately 30% (25–35%, N = 4,662), the 

observed proportion with T2D was 30.9% (standard error (s.e.), 0.7%). However, this 

proportion varied significantly with individual’s ‘annual household income’: 32.7% (s.e., 

2.0%) in the lowest income bracket (N = 562) had T2D, compared to only 18.1% (s.e., 

2.3%) in the highest income bracket (N = 271); T2D risk was consistently underestimated 

for individuals of lower income and overestimated for individuals with higher income. 

The discrepancy suggests that a baseline model ignoring disease-relevant contexts produces 
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severely miscalibrated probability estimates. We then used a logistic model to incorporate 

contexts, including ‘annual household income’ together with their interaction with PGS, 

to find that predicted disease risk was calibrated at the overall level and also within each 

income group; modeling variance by context for disease liability achieved similar calibration 

(Fig. 8b and Supplementary Figs. 18 and 19) and we discussed reasons explaining 

their similar performances (Methods). Overall, our results emphasize the importance of 

incorporating contexts into probability risk calibration to achieve calibrated predictions 

across all considered contexts.

Discussion

Our work adds to the literature of PGS-based prediction. We show that context-specific 

accuracy of PGS is highly pervasive across traits and biobanks with socioeconomic 

contexts often having larger impact than genetic ancestry5,11,13,23,54. We introduce CalPred 

to estimate context-specific prediction intervals. Compared to other PGS calibration 

approaches, CalPred incorporates context information leveraging a calibration dataset 

(Supplementary Note). For quantitative traits, CalPred provides a framework to quantify 

individualized context-specific generalizability/portability of a given PGS. Prediction 

intervals can be interpreted as a reference range accounting for each individual’s contexts 

providing individual-level uncertainty metrics. For example, they can be used to identify 

individuals having PGS-based predictions with exceedingly high uncertainty and inform 

cases when it is not appropriate to report polygenic scoring results because of the high 

instability. For disease traits, we found models that overlooked context information resulting 

in miscalibrated disease probability predictions in the presence of gene–context interactions. 

Such miscalibrations are problematic if they lead to over-/under-diagnosis for individuals 

across socioeconomic context groups. To address this, we incorporated context variables and 

PGS×C interactions in PGS-based predictions, which led to calibrated predictions across 

contexts.

We note several limitations of our work. First, we motivated our approach for clinical 

implementation using continuous biomarkers and focused on LDL as an example continuous 

lab value with clinical application. Other biomarkers to consider could be prostate-specific 

antigen currently employed for patient stratification for biopsies and prostate cancer 

diagnosis. Recent work has highlighted incorporating genetically predicted prostate-specific 

antigen levels improves clinical utility by reducing unnecessary biopsies and improving 

detection of aggressive form of prostate cancer55. Therefore, lab values form a useful system 

for prediction method development that may have clinical implications; actual clinical 

utility requires thorough implementation considering clinical decision processes. Second, 

CalPred requires calibration data that match in distribution with the target data, including 

both distribution of contexts and their impact to traits. Otherwise, there may be bias in 

target samples underrepresented in calibration data. Meanwhile, PGS weights do not need 

to be trained from the same population as the testing population. Third, comprehensive 

profiling of context information is fundamental in calibration and interpreting results. In our 

simulation studies, missing contexts prevent proper calibration of PGS. In our T2D analysis, 

‘annual household income’ is probably a proxy of contexts such as diet and physical 

exercise that are more directly relevant to T2D. Therefore, we advocate standardized and 
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comprehensive profiling of contexts across biobanks to quantify the role of contexts to 

PGS accuracy. Relatedly, GWAS data collection needs to prioritize diversity not only in 

genetic ancestry, but also across socioeconomic contexts. Fourth, context-specific accuracy 

can arise due to biological genetic effects differences across contexts such as gene-by-age 

and gene-by-sex interactions, or because of statistical differences of minor allele frequency/

linkage disequilibrium patterns contributing to a substantial proportion of PGS performance 

differences across genetic ancestry. Disentangling various aspects driving context-specific 

accuracy is an ongoing research direction11,16,49. Fifth, this work has primarily focused 

on the impact of PGS on the variability of prediction intervals across contexts. However, 

it is important to note that variable accuracy of other predictors and variable phenotypic 

variance also contribute to our findings. The results presented here regarding variable 

prediction accuracy should be attributed to the collective impact of all predictors, rather than 

solely to PGS. While we have determined the substantial contribution of PGS to variable 

accuracy, further quantifying the relative contributions of each predictor is an important 

future direction.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-024-01792-w.

Methods

Ethical approval

This research complies with all relevant ethical regulations. Ethics committee/institutional 

research board of UK Biobank gave ethical approval for collection of the UK Biobank 

data (https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). Approval 

to use UK Biobank at an individual level in this work was obtained under application 

33297 at http://www.ukbiobank.ac.uk. Ethics committee/institutional research board of All 

of Us gave ethical approval for collection of All of Us data (https://allofus.nih.gov/about/

who-we-are/institutional-review-board-irb-of-all-of-us-research-program). Approval to use 

All of Us controlled tier data in this work was obtained through application at https://

www.researchallofus.org.

Constructing calibrated and context-specific prediction intervals

We first provide an overview of CalPred framework. CalPred takes as input pretrained 

PGS weights, genotype, phenotype and contexts to train a calibration model producing 

calibrated and context-specific prediction intervals for target individuals. We consider 

a calibration dataset with Ncal individuals. For each individual i = 1, …, Ncal, we have 

a genotype vector gi ∈ {0, 1, 2}M with multiple (M) single-nucleotide polymorphisms 

(SNPs) and phenotype yi. Using pretrained PGS weights for a given trait βg ∈ ℝM, we 

calculate PGS in calibration data with gi
⊤βg. PGS and other contexts including age, sex, 
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genetic ancestry and socioeconomic factors compose each individual i’s contexts ci (all ‘1’ 

intercepts are also included). Phenotypes are modeled as

yi = N μ ci , σ2 ci , i = 1, …, Ncal

μ ci = ci
⊤βμ, σ2 ci = exp ci

⊤βσ .

There are two main components:

• μ ci = ci
⊤βμ models the baseline prediction mean using predictors of PGS, 

contexts, as well as PGS×C.

• σ2 ci = exp ci
⊤βσ  models context-specific variance of y around prediction mean. 

Differential prediction accuracy across contexts lead to variable variance around 

prediction mean across contexts. The use of exp (·) is to ensure that the variance 

term ≥0. PGS×C terms are not included for ease of interpretation.

We estimate βμ, βσ leveraging calibration data using restricted maximum likelihood for linear 

model with heteroskedasticity56 (statmod v1.5.0 (ref. 57)). Individual-specific predictive 

distribution N(μ̂(ci) = ci
⊤β̂μ, σ̂2(ci) = exp(ci

⊤β̂σ)) can be generated for any target individual ci

using the fitted β̂μ, β̂σ. The corresponding α-level prediction interval (for example, α = 90%

for 90% prediction interval) is μ̂ ci − Φ−1 1 − α
2 σ̂ ci , μ̂ ci + Φ−1 1 − α

2 σ̂ ci , where Φ−1 is 

the inverse cumulative distribution function of a standard normal distribution (for example, 

Φ−1 1 − α
2 = 1.645 for 90% prediction interval). With moderate sample size for calibration 

data (for example, Ncal > 500 as validated in our simulation studies), such models can be 

estimated with high precision.

Quantile normalization for nonnormal phenotype distribution.—In the above, we 

have assumed that prediction intervals can be modeled as a Gaussian distribution, which 

may not be valid for every phenotype. For robust implementation in real data, we apply 

a transformation function Q ⋅  to y with rank-based inverse normal transformation such 

that Q y  follows a normal distribution; Q y  can then be modeled using methods described 

above. Fitted prediction intervals can then be transformed back into the original y space 

using Q−1 y .

Model for disease trait within the liability threshold model.—CalPred model 

can be extended for disease traits. We first use CalPred to model continuous disease 

liability yliab = N μ c , σ2 c , and then integrate out scenarios where disease liability is 

above the threshold P (y = 1) = Φ yliab > 0 = Φ μ(c)
σ(c) , where Φ( ⋅ ) is a link function used 

in logistic or probit regression. Intuitively, this maps the continuous liability into disease 

risk while accounting for liability uncertainty. Disease trait probability can be alternatively 

modeled using a logistic regression model P (y = 1) = Φ c⊤βlogistic . In real data analysis (Fig. 
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8 and Supplementary Fig. 19), we did not observe substantial improvement of CalPred 

model over logistic linear model. To explain this, comparing logistic regression model 

P (y = 1) = Φ μ(c)
σ(c) , we note that c⊤βlogistic can be seen as first-order terms in Taylor expansion 

approximating μ(c)
σ(c) . Therefore, our observation is explained by the fact that linear logistic 

regression model is a good approximation of CalPred disease model.

Quantifying context-specific R2 of PGS

We quantify context-specific prediction accuracy (R2) of PGS, that is, to what extent PGS 

have variable prediction accuracy across contexts (including age, sex, genetic ancestry, 

socioeconomic factors that can influence traits58). Identification of contexts contributing to 

variable prediction accuracy is important in constructing calibration model. For each pair 

of context and trait in a population, we calculated prediction accuracy R2 between PGS ŷi

and covariate-regressed phenotypes yi (phenotypes for each trait were regressed out of age, 

sex, age × sex and top ten PCs; this adjustment is to better separate the contribution of 

PGS) across each subgroup of individuals defined by contexts. We summarized results using 

relative differences of R2 across context groups to baseline R2 calculated across all evaluated 

individuals (differences between two classes for binary contexts; differences between top 

and bottom quintiles for continuous contexts). We calculated Spearman’s R2 between point 

predictions and covariate-regressed phenotypes R2(ŷ, y) within each context subgroup. We 

also calculated the baseline Spearman’s R2 denoted as Rall
2  across all individuals regardless 

of contexts. We summarized the results for each pair of trait and context using the ‘relative 

ΔR2’ defined as Rgroup1
2 − Rgroup2

2

Rall
2 . We assessed statistical significance of ΔR2 across context 

subgroups by testing the null hypothesis H0:ΔR2 = 0 using 1,000 bootstrap samples of ΔR2

(in each bootstrap sample, the whole dataset was resampled with replacement and ΔR2 were 

then re-evaluated). Statistical significance was assessed using two-sided P values comparing 

the observed ΔR2 to the bootstrap samples of ΔR2.

Relationship between CalPred model and R2.

Population-level metrics such as R2 can be derived from the model as a function of βσ and 

distribution of ci. Suppose y = ŷ + e, e N 0, exp c⊤βσ , where y, ŷ, e denote phenotypes, point 

predictions and residual noises. We have

R2(y, ŷ) = R2(ŷ + e, ŷ) = Var ŷ
Var ŷ + Var e

Holding Var ŷ  as fixed, R2(y, ŷ) is a function of Var e , which is determined by the 

distribution of c and values of βσ. This indicates a correspondence between βσ and R2(y, ŷ). 
Therefore, estimated βσ can also be used as a metric to quantify context-specific accuracy 

(as used in Figs. 2 and 3). While relative ΔR2 is easier to interpret, it assesses the marginal 

contribution of each context separately and require discretization of continuous contexts. 
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Meanwhile, βσ in CalPred model jointly account for all contexts in parametric regression, 

and therefore can quantify the unique distribution of each context to variable accuracy. On 

the other hand, even with constant prediction interval length (constant Var e ), variable R2

can result from variable Var ŷ  across context groups. While CalPred focuses on modeling 

Var e  as a function of contexts to represent variable R2, Var ŷ  can change across contexts. 

For example, Var ŷ  can vary with contexts if ŷ = PGS × βslope and the slope βslope varies as a 

function of context. Such variable slope term can be modeled with variable slope terms in 

prediction mean ŷ (Supplementary Note).

Real data analysis

We analyzed a diverse set of contexts and traits in UK Biobank and All of Us (1) to quantify 

the extent of context-specific prediction accuracy, (2) to evaluate context-specific prediction 

intervals via CalPred for quantitative traits and (3) to evaluate probability prediction for 

disease traits.

PGS weights.—PGS were trained on 370,000 individuals in UK Biobank that were 

assigned to ‘WB’ cluster and 1.1 million HapMap3 (ref. 59) SNPs. For each trait, we 

performed GWAS using PLINK2 (v2.0a3) plink2-glm with age, sex and the top 16 PCs as 

covariates. We estimated PGS weights using snp_ldpred2_auto in LDpred2 (ref. 60) (bigsnpr 

v1.8.1) with GWAS summary statistics and in-sample linkage disequilibrium matrix. These 

PGS weights were applied to target individuals in both UK Biobank and All of Us to obtain 

individual-level PGS. To train PGS weights for All of Us individuals, we overlapped 1.2 

million SNPs in All of Us quality-controlled microarray data to 12 million SNPs in UK 

Biobank imputed data to obtain a set of 0.8 million SNPs present in both datasets. Then 

we trained and applied PGS weights using these shared SNPs in UK Biobank to All of Us 

individuals. This procedure improves PGS accuracy in All of Us by ensuring all SNPs with 

nonzero weights to present in the data.

UK Biobank dataset.—We analyzed 490,000 genotyped individuals (including both 

training and target individuals). We used 1.1 million HapMap3 (ref. 59) SNPs in all 

analyses. All UK Biobank individuals are clustered into subcontinental ancestry clusters 

based on the top 16 precomputed PCs (data field 22009 in ref. 28, as in ref. 7). This 

procedure assigned 410,000 individuals into the ‘WB’ cluster. A random subset of 370,000 

‘WB’ individuals was used to perform GWAS and estimate PGS weights (see above); 

we trained PGS weights starting with individual-level data to avoid overlap of sample 

between training and target data. For evaluation, we used the rest of the 120,000 individuals 

with genotypes, phenotypes and contexts (including individuals from both ~40,000 ‘WB’ 

individuals and ~80,000 other individuals). We focused on analyzing 72 traits with 

R2 > 0.05 in 40,000 WB target individuals and/or biological importance). We followed 

https://github.com/privefl/UKBB-PGS/blob/main/code/prepare-pheno-fields.R and ref. 7 to 

preprocess trait values (for example, log transformation and clipping of extreme values). 

For each trait, we quantile-normalized phenotype values; when performing calibration, 

phenotype quantiles were calculated on the basis of calibration data and then used to 

normalize target data. We analyzed 11 contexts representing a broad set of socioeconomic 
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and genetic ancestry contexts, including binary contexts (sex, ever smoked, wear glasses and 

drinking alcohol) and continuous contexts (top two PCs, age, BMI, income, deprivation 

index and ‘education years’). We note that income and ‘education years’ have been 

processed into five quintiles in the original data of UK Biobank.

All of Us dataset.—We analyzed 245,000 genotyped individuals with diverse genetic 

ancestry contexts (short read whole genome sequencing data in release v7). We retained 

1.2 million SNPs from microarray data after quality control using PLINK2 (v2.0a3) 

with plink2 --geno 0.05 --chr 1–22 --max-alleles 2 --rm-dup exclude-all --maf 0.001. We 

used microarray data because it contains more individuals and can be analyzed with low 

computational cost. All individuals with microarray data were used in the evaluation. 

We analyzed ten traits, including height, BMI, WHR, diastolic blood pressure, systolic 

blood pressure, ‘education years’, LDL, cholesterol, HDL and triglycerides; they are 

straightforward to phenotype and have large sample sizes. Physical measurement phenotypes 

were extracted from participant-provided information. Lipid phenotypes (including LDL, 

HDL, cholesterol and triglycerides) were extracted following https://github.com/all-of-

us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses, including 

procedures of extracting most recent measurements per person, and correcting for 

statin usage. For each trait, we quantile-normalized phenotype values; when performing 

calibration, phenotype quantiles were calculated on the basis of calibration data and were 

then used to normalize target data. We included age, sex, age × sex and the top ten in-sample 

PCs as covariates in the model. We also quantile-normalized each covariate and used the 

average of each covariate to impute missing values in covariates. We analyzed 11 contexts, 

including binary contexts (sex) and continuous contexts (top two PCs, age, BMI, smoking, 

alcohol, employment, ‘education years’, income and number of years living in current 

address).

Population descriptor usage.—We explain our usage choices of population descriptor, 

including the use of the top two PCs to capture genetic ancestry/similarity and the use of 

‘WB’ in analyses of UK Biobank and ‘white SIRE’ in analyses of All of Us. We use the 

top two PCs computed across all individuals in UK Biobank or in All of Us, respectively, 

to capture the continuous genetic ancestry variation in each dataset. While these two PCs 

provide major axes of genetic variation (Supplementary Fig. 3), we acknowledge that top 

two PCs alone are not sufficient to fully capture all variation in the entire population. 

We used discretized PC1 and PC2 subgroups to calculate population-level statistics such 

as R2, while we acknowledge that the underlying genetic variation is continuous. In UK 

Biobank, we intended to analyze a set of individuals with relatively similar genetic ancestry 

to perform GWAS and derive PGS. We used a set of individuals previously annotated 

with ‘WB’ that were identified using a combination of self-reported ethnic background 

and genetic information having very similar ancestral backgrounds based on PC analysis 

results28. In All of Us, we selected a set of individuals, with SIRE being ‘white’, to study 

how PGS have different accuracy across environmental contexts in such a sample defined 

by SIRE. Noting that SIRE is not equivalent to genetic ancestry, the contrast of results from 

UK Biobank and All of Us helps understand how genetic and nongenetic factors impact PGS 

accuracy in a group of individuals defined by SIRE or genetic ancestry.
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Evaluating context-specific prediction intervals.—For quantitative traits, noting 

that prediction mean and standard deviation are μ̂(c), σ̂(c) for a target individual with 

contexts c, we evaluate prediction intervals with regard to phenotypes y using metrics of 

(1) prediction accuracy: R2(μ̂(c), y); and (2) coverage of prediction intervals: evaluating 

Pr y ∈ μ̂ ci − Φ−1 1 − α
2 σ̂ ci , μ̂ ci + Φ−1 1 − α

2 σ̂ ci ≈ α, that is, whether prediction 

intervals cover true phenotypes with prespecified probability of α. Both metrics are 

evaluated both across all individuals, and within each context subgroup. We generated and 

evaluated context-specific intervals in both UK Biobank and All of Us. The prediction mean 

includes predictors of PGS, age, age × sex, age2, the top ten PCs and the contexts in Figs. 

2 and 3. Prediction variance includes predictors of age, sex, PC1, PC2 and the contexts in 

Figs. 2 and 3. For each trait, we performed evaluation by repeatedly randomly sampling 

5,000 individuals as calibration data and 5,000 individuals as target data (as described in 

‘constructing calibrated and context-specific intervals’).

Evaluating disease probability predictions.—For disease traits, denoting binary 

disease status as y and predicted probability as p̂(c), we evaluate calibration of disease 

probability. For each predicted probability bin plow, phigh , we examine whether the observed 

disease prevalence P y = 1 ∣ p̂(c) ∈ plow, phigh  is approximately equal to 
plow + phigh

2 . Calibration 

is evaluated for all individuals, and for each context subgroup.

We analyzed four well-powered disease trait GWAS in All of Us: T2D50,61, coronary artery 

disease51, prostate cancer52 and breast cancer53. We predicted disease probability using 

four models by incrementally adding complexity: (1) ‘Baseline’ used logistic regression 

using PGS, age, age2, sex, age × sex, top ten PCs, BMI and BMI2 as predictors; (2) 

‘Baseline+C’ had additional context predictors of smoking, alcohol, employment, ‘education 

years’, income and number of years living in current address; (3) ‘Baseline+C+PGS×C’ 

had additional PGS×C terms; and (4) ‘Baseline+C+PGS×C (VbyC)’ had additional context-

specific variance as a function of contexts.

Simulation studies of context-specific calibration

We performed simulations for both quantitative and disease traits with gene–context 

interactions.

Simulations of quantitative traits with gene–context interactions.—For 

quantitative traits, we evaluated CalPred under three common scenarios of gene–context 

interactions in two contexts. Denoting genetic and environmental components in two 

contexts as G1, G2, E1, E2, these three scenarios include (1) imperfect genetic correlation: 

Cor G1, G2 < 1, Var G1 = Var G2  and Var E1 = Var E2 ; (2) varyinggenetic variance: 

Cor G1, G2 = 1, Var G1 ≠ Var G2  and Var E1 = Var E2 ; and (3) proportional amplification of 

genetic and environmental components: Cor G1, G2 = 1, Var G1 ≠ Var G2 , Var E1 ≠ Var E2 , 

while ratios between G and E are the same across contexts: Var G1
Var E1

= Var G2
Var E2

. Across three 

scenarios, PGS weights derived in the first context were applied in both contexts. We 

evaluated the bias in prediction mean and coverage of prediction intervals.
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Simulations of disease traits with gene–context interactions.—For disease traits, 

we performed simulations with gene–context interactions in two contexts under a liability 

threshold model. These three scenarios include: (1) imperfect genetic correlation, (2) 

varying genetic variance, and (3) varying disease prevalence where G1, E1 and G2, E2 are 

simulated using the same model but the disease prevalence is different across contexts. PGS 

weights derived in the first context were applied to individuals in both contexts. We fit four 

regression models using different sets of predictors across all individuals: (1) y PGS; (2) 

y PGS + context; (3) y PGS + PGS × C; (4) y PGS + PGS × C + context. We note that logistic 

and probit regression models produced similar results.

Simulations of quantitative traits with multiple contexts.—We simulated PGS 

point predictions ŷ and phenotype values y to simulate traits with variable prediction 

accuracy across genetic ancestry, age and sex. We started with real contexts from UK 

Biobank individuals not used for PGS training (see ‘Real data analyses’ section). We 

quantile-normalized each context so they had mean 0 and variance 1. Such simulations 

preserved the correlation between contexts. Given these processed contexts, we simulated 

point predictions ŷ using a normal distribution ŷ N(0, 1), and we simulated phenotypes y
with:

y N ŷ, exp βσ, 0 +
c

βσ, c × c ,

where βσ, 0 denoted the baseline variance of y, and βσ, c was the effect of context c to the 

variance of y. ‘∑c ‘ enumerated over PC1, age and sex.

This procedure simulated different variance of y around ŷ for individuals with different 

contexts, as observed in real data. We first selected βσ, 0 such that R2(y, ŷ) = 30% for 

individuals with average contexts (∑cβσ, c × c = 0). We simulated data with variable variances 

and we set βσ, age = 0.25, βσ, sex = 0.2, βσ, PC1 = 0.15. These parameters were manually chosen 

to match observed variable R2 in real data. In each simulation, we randomly sampled 

Ncal = 100,500,2, 500 and 5,000 individuals used for estimating the calibration model and 

Ntest = 5000 individuals for evaluation. New point predictions and phenotypes ŷ, y were 

simulated in each simulation. And we quantified prediction accuracy and coverage of 

prediction intervals in each simulation replicate.

Statistics and reproducibility

We analyzed two publicly available datasets of UK Biobank and All of Us, and sample 

sizes were determined in these studies. We did not use randomization or blinding. No data 

were excluded from the analyses. We replicated our findings across these two independent 

datasets.
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Extended Data

Extended Data Fig. 1 |. Pearson’s correlation between context variables in UK Biobank and All 
of Us datasets.
Pearson correlations were calculated separately within individuals annotated with “white 

British’ in UK Biobank and within individuals with SIRE “white’ in All of Us (a,c) and 

across all individuals (b,d).
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Extended Data Fig. 2 |. Distribution of context variables in UK Biobank.
We show context distribution separately for “white British’ individuals and rest of 

individuals in UK Biobank.
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Extended Data Fig. 3 |. Distribution of context variables in All of Us.
We show context distribution separately for “white SIRE’ individuals and rest of individuals 

in All of Us.

Extended Data Fig. 4 |. R2
 between covariate-adjusted height and PGS across education and 

income levels in All of Us.
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R2 were calculated across all individuals, and within individuals of European and African 

genetic ancestry (with estimated admixture proportion of the corresponding ancestry > 

90%), across education levels (a) and income levels (b). Error bars denote mean values +/− 

standard deviation of R2 across 30 bootstrap samples.

Extended Data Fig. 5 |. Quantitative trait simulations with gene-context interactions.
We simulated three scenarios of gene-context interactions for quantitative traits and 

evaluated calibration of prediction intervals. These scenarios include (a) imperfect genetic 

correlation: Var[G] = 0.5, Var[E] = 0.5 in both contexts; genetic correlation=0.5 across 

contexts. (b) varying heritability: Var[G] = 0.5, Var[E] = 0.5 in context 1 and Var[G] = 

0.1, Var[E] = 0.9 in context 2; genetic correlation=1. (c) joint amplified G and E: Var[G] 

= 0.25, Var[E] = 0.75 in context 1 and Var[G] = 0.25*1.5, Var[E] = 0.75*1.5; genetic 

correlation=1. Across three scenarios, PGS weights derived in the first context were applied 
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to individuals in both contexts. We show results for individuals in context 2 using four 

modeling approaches. “PGS’: PGS and prediction variance calculated with individuals 

from context 1 were applied to individuals in context 2; “PGS; VbyC’: fit y ~ N(PGS, 

VbyC); “PGS+PGSxC’: fit y ~ N(PGS + PGSxC, prediction variance derived in context 

1); “PGS+PGSxC; VbyC’: fit y ~ N(PGS + PGSxC, VbyC). Blue dashed line denotes 

the best fit to data; red dashed line denotes model predictions; red error bar denotes the 

prediction interval for an individual at top 5% quantile of PGS. Prediction interval coverage 

was evaluated within data in top PGS decile. We note these three simulation scenarios did 

not cover all possible modes of gene-context interactions: these models assume gene-context 

interactions act similarly across all causal variants, and they model gene-context interactions 

using PGSxC and VbyC.

Extended Data Fig. 6 |. Disease trait simulations with gene-context interactions.
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We simulated three scenarios of gene-context interactions for disease traits using a liability 

threshold model and evaluated calibration of probability prediction. These scenarios include: 

(a) imperfect genetic correlation: Var[G] = 0.5, Var[E] = 0.5, disease prevalence = 10% in 

both contexts; genetic correlation=0.5 across two contexts. (b) varying heritability: Var[G] 

= 0.5, Var[E] = 0.5 in context 1 and Var[G] = 0.1, Var[E] = 0.9 in context 2, disease 

prevalence=10% in both contexts; genetic correlation=1 across two contexts. (c) varying 

disease prevalence: Var[G] = 0.5, Var[E] = 0.5 in both contexts; disease prevalence = 

10%/20% in context 1/2. Across three scenarios, PGS weights derived in the first context 

were applied to individuals in both contexts. We fit four models using different sets of 

predictors in logistic regression across individuals in two contexts (probit regression led to 

similar results): “PGS’: fit y ~ PGS; “PGS + C’: fit y ~ PGS + Context; “PGS+PGSxC’: 

fit y ~ PGS + PGSxContext; “PGS+PGSxC+C’: fit y ~ PGS + PGSxContext + Context. 

Error bars denote observed disease proportions and their 95% confidence intervals for each 

predicted probability bin (n = 2000 individuals for each error bar).
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Extended Data Fig. 7 |. Simulations with varying number of individuals, unmeasured contexts, 
excessive dummy contexts.
We performed simulations to investigate factors that influence coverage of prediction 

intervals. We compared coverage in these alternative scenarios with default scenario (marked 

by ‘Default’ in the figure) where we performed calibration using age, PC1, and sex and 

5000 individuals as calibration data (same as Fig. 5). (a) Coverage of prediction intervals 

with varying number of individuals used in calibration (Ncal = 100, 500, 2500, 5000). We 

evaluated the coverage both at the overall level and within each group (groups are denoted 
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by colors) using 5,000 testing individuals. Different box plots with the same color denotes 

different strata for each context (quintile for age and PC1; male/female for sex). We 

determined coverages had more downward bias and higher variance when less individuals 

are used in the calibration. (b) Coverage of prediction intervals when certain context 

variables were not measured. To simulate unmeasured covariate, we performed calibration 

using PC1 and sex only (excluding age). And we determined prediction intervals were 

mis-calibrated along the unmeasured context of age in this scenario. (c) Coverage of 

prediction intervals when including excessive dummy contexts in calibration. We simulated 

dummy variables with no effects to phenotype variance (number of dummy covariates 

Ndummy = 5, 25, 50; drawn from N(0,1)) and included them in calibration to investigate the 

effect of including excessive covariates to prediction coverage. We determined coverages 

had more downward bias and higher variance when more dummy variables were used in 

the calibration. For (a-c), each box plot contains results across 100 simulations (each box 

contains n = 100 points). For box plots, the center corresponds to the median; the box 

represents the first and third quartiles of the points; the whiskers represent the minimum and 

maximum points located within 1.5× interquartile ranges from the first and third quartiles, 

respectively.

Extended Data Fig. 8 |. Standardized effects of PGS, contexts, and PGSxC interaction terms in 
quantitative trait prediction in All of Us.
We display standardized effects of all predictors where they are standardized with mean 0 

and variance 1 in regression analysis. We note that the left figure containing effects of PGS 

and contexts has a different color scale than the right figure containing PGSxC interaction 

terms.
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Extended Data Fig. 9 |. Contribution of PGS to inter-individual variation of prediction SDs in All 
of Us.
We compared inter-individual variation of prediction SDs in two models: (1) prediction 

mean as a function of all contexts without PGS; (2) include PGS as part of prediction mean 

in the baseline model. Prediction SD is modeled as a function of all contexts in both models. 

By comparing prediction SDs in these two models, we found including PGS substantially 

impacted inter-individual variation in prediction SD.

Extended Data Fig. 10 |. Standardized effects of PGS, contexts, and PGSxC interaction terms in 
disease trait prediction in All of Us.
We show standardized effects where all predictor variables are standardized with mean 0 

and variance 1 in regression analysis within all individuals. Left figure containing PGS and 

contexts has different color scale from the right figure containing PGSxC interaction terms.

Hou et al. Page 25

Nat Genet. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank M. Przeworski, H. Zhang, T. Chen, Y. Wang, A. Martin and J. Hirbo for helpful suggestions. 
This research was funded in part by the National Institutes of Health under awards R01HG009120 (B.P.), 
R01MH115676 (B.P.), U01HG011715 (B.P.) and R35GM151108 (A.H.). This research was conducted using the 
UK Biobank Resource under application 33127. We thank the participants of UK Biobank for making this work 
possible. The All of Us Research Program is supported by the National Institutes of Health, Office of the Director: 
Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 
OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; 
IAA #: AOD 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research Center: 5 
U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology 
Systems Center: 1 U24 OD023163; Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and 
Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; and 1 OT2 OD025276. In addition, 
the All of Us Research Program would not be possible without the partnership of its participants.

Data availability

UK Biobank individual-level genotype and phenotype data are available through application 

at http://www.ukbiobank.ac.uk. All of Us individual-level genotype and phenotype are 

available through application at https://www.researchallofus.org.

References

1. Chatterjee N, Shi J & García-Closas M Developing and evaluating polygenic risk prediction models 
for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016). [PubMed: 27140283] 

2. Torkamani A, Wineinger NE & Topol EJ The personal and clinical utility of polygenic risk scores. 
Nat. Rev. Genet. 19, 581–590 (2018). [PubMed: 29789686] 

3. Li R, Chen Y, Ritchie MD & Moore JH Electronic health records and polygenic risk scores for 
predicting disease risk. Nat. Rev. Genet. 21, 493–502 (2020). [PubMed: 32235907] 

4. Kullo IJ et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022). 
[PubMed: 35354965] 

5. Martin AR et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. 
Genet. 51, 584–591 (2019). [PubMed: 30926966] 

6. Ding Y et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk 
stratification. Nat. Genet. 54, 30–39 (2022). [PubMed: 34931067] 

7. Privé F et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied 
to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 12–23 (2022). [PubMed: 
34995502] 

8. Weissbrod O et al. Leveraging fine-mapping and multipopulation training data to improve cross-
population polygenic risk scores. Nat. Genet. 54, 450–458 (2022). [PubMed: 35393596] 

9. Ruan Y et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 
573–580 (2022). [PubMed: 35513724] 

10. Bitarello BD & Mathieson I Polygenic scores for height in admixed populations. G3 10, 4027–
4036 (2020). [PubMed: 32878958] 

11. Mostafavi H et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 
9, e48376 (2020). [PubMed: 31999256] 

12. Jiang X, Holmes C & McVean G The impact of age on genetic risk for common diseases. PLoS 
Genet. 17, e1009723 (2021). [PubMed: 34437535] 

Hou et al. Page 26

Nat Genet. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ukbiobank.ac.uk/
https://www.researchallofus.org/


13. Hui D et al. Quantifying factors that affect polygenic risk score performance across diverse 
ancestries and age groups for body mass index. Pac. Symp. Biocomput. 28, 437–448 (2023). 
[PubMed: 36540998] 

14. Wray NR et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 
(2013). [PubMed: 23774735] 

15. Ge T, Chen C-Y, Neale BM, Sabuncu MR & Smoller JW Phenome-wide heritability analysis of the 
UK Biobank. PLoS Genet. 13, e1006711 (2017). [PubMed: 28388634] 

16. Zhu C et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits. 
Cell Genom. 3, 100297 (2023). [PubMed: 37228747] 

17. Brown BC, Ye CJ, Price AL & Zaitlen N Transethnic genetic-correlation estimates from summary 
statistics. Am. J. Hum. Genet. 99, 76–88 (2016). [PubMed: 27321947] 

18. Shi H et al. Population-specific causal disease effect sizes in functionally important regions 
impacted by selection. Nat. Commun. 12, 1098 (2021). [PubMed: 33597505] 

19. Patel RA et al. Genetic interactions drive heterogeneity in causal variant effect sizes for gene 
expression and complex traits. Am. J. Hum. Genet. 109, 1286–1297 (2022). [PubMed: 35716666] 

20. Weine E, Smith SP, Knowlton RK & Harpak A Tradeoffs in modeling context dependency in 
complex trait genetics. Preprint at bioRxiv 10.1101/2023.06.21.545998 (2023).

21. Wang Y et al. Theoretical and empirical quantification of the accuracy of polygenic scores in 
ancestry divergent populations. Nat. Commun. 11, 3865 (2020). [PubMed: 32737319] 

22. Lambert SA, Abraham G & Inouye M Towards clinical utility of polygenic risk scores. Hum. Mol. 
Genet. 28, R133–R142 (2019). [PubMed: 31363735] 

23. Ding Y et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 
774–781 (2023). [PubMed: 37198491] 

24. Johnson R et al. Leveraging genomic diversity for discovery in an electronic health record 
linked biobank: the UCLA ATLAS Community Health Initiative. Genome Med. 14, 104 (2022). 
[PubMed: 36085083] 

25. Wiley LK et al. Building a vertically integrated genomic learning health system: the biobank at 
the Colorado Center for Personalized Medicine. Am. J. Hum. Genet. 111, 11–23 (2024). [PubMed: 
38181729] 

26. Belbin GM et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–
2083.e11 (2021). [PubMed: 33861964] 

27. Abul-Husn NS & Kenny EE Personalized medicine and the power of electronic health records. Cell 
177, 58–69 (2019). [PubMed: 30901549] 

28. Bycroft C et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 
203–209 (2018). [PubMed: 30305743] 

29. The All of Us Research Program Genomics Investigators et al. Genomic data in the All of Us 
Research Program. Nature 627, 340–346 (2024). [PubMed: 38374255] 

30. Wand H et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 
591, 211–219 (2021). [PubMed: 33692554] 

31. Wei J et al. Calibration of polygenic risk scores is required prior to clinical implementation: results 
of three common cancers in UKB. J. Med. Genet. 59, 243–247 (2022). [PubMed: 33443076] 

32. van Houwelingen HC Validation, calibration, revision and combination of prognostic survival 
models. Stat. Med. 19, 3401–3415 (2000). [PubMed: 11122504] 

33. Van Calster B et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 17, 230 
(2019). [PubMed: 31842878] 

34. Sun J et al. Translating polygenic risk scores for clinical use by estimating the confidence bounds 
of risk prediction. Nat. Commun. 12, 5276 (2021). [PubMed: 34489429] 

35. Smyth GK Generalized linear models with varying dispersion. J. R. Stat. Soc 51, 47–60 (1989).

36. Koenker R Quantile Regression (Cambridge Univ. Press, 2005).

37. Rigby RA & Stasinopoulos DM Generalized additive models for location, scale and shape. J. R. 
Stat. Soc. Ser. C 54, 507–554 (2005).

38. Romano Y, Patterson E & Candès EJ Conformalized quantile regression. Advances in Neural 
Information Processing Systems 32 (2019).

Hou et al. Page 27

Nat Genet. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Gneiting T & Katzfuss M Probabilistic forecasting. Annu. Rev. Stat. Appl. 1, 125–151 (2014).

40. Yang J et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 
490, 267–272 (2012). [PubMed: 22982992] 

41. Young AI, Wauthier FL & Donnelly P Identifying loci affecting trait variability and detecting 
interactions in genome-wide association studies. Nat. Genet. 50, 1608–1614 (2018). [PubMed: 
30323177] 

42. Miao J et al. A quantile integral linear model to quantify genetic effects on phenotypic variability. 
Proc. Natl Acad. Sci. USA 119, e2212959119 (2022). [PubMed: 36122202] 

43. Schoeler T et al. Participation bias in the UK Biobank distorts genetic associations and downstream 
analyses. Nat. Hum. Behav. 10.1038/s41562-023-01579-9 (2023).

44. Selzam S et al. Comparing within- and between-family polygenic score prediction. Am. J. Hum. 
Genet. 105, 351–363 (2019). [PubMed: 31303263] 

45. Okbay A et al. Polygenic prediction of educational attainment within and between families from 
genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022). 
[PubMed: 35361970] 

46. Yengo L et al. A saturated map of common genetic variants associated with human height. Nature 
610, 704–712 (2022). [PubMed: 36224396] 

47. Graham SE et al. The power of genetic diversity in genome-wide association studies of lipids. 
Nature 600, 675–679 (2021). [PubMed: 34887591] 

48. Lambert SA et al. The polygenic score catalog as an open database for reproducibility and 
systematic evaluation. Nat. Genet. 53, 420–425 (2021). [PubMed: 33692568] 

49. Durvasula A & Price AL Distinct explanations underlie gene–environment interactions in the UK 
Biobank. Preprint at medRxiv 10.1101/2023.09.22.23295969 (2023).

50. Mahajan A et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density 
imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018). [PubMed: 
30297969] 

51. Patel AP et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery 
disease. Nat. Med. 29, 1793–1803 (2023). [PubMed: 37414900] 

52. Schumacher FR et al. Association analyses of more than 140,000 men identify 63 new prostate 
cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018). [PubMed: 29892016] 

53. Zhang H et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci 
from overall and subtype-specific analyses. Nat. Genet. 52, 572–581 (2020). [PubMed: 32424353] 

54. Martin AR et al. Human demographic history impacts genetic risk prediction across diverse 
populations. Am. J. Hum. Genet. 107, 788–789 (2020). [PubMed: 33007199] 

55. Kachuri L et al. Genetically adjusted PSA levels for prostate cancer screening. Nat. Med. 29, 
1412–1423 (2023). [PubMed: 37264206] 

56. Smyth GK An efficient algorithm for REML in heteroscedastic regression. J. Comput. Graph. Stat. 
11, 836–847 (2002).

57. Giner G & Smyth GK statmod: probability calculations for the inverse Gaussian distribution. The 
R Journal 8, 339–351 (2016).

58. Yousefi PD et al. DNA methylation-based predictors of health: applications and statistical 
considerations. Nat. Rev. Genet. 23, 369–383 (2022). [PubMed: 35304597] 

59. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse 
human populations. Nature 467, 52–58 (2010). [PubMed: 20811451] 

60. Privé F, Arbel J & Vilhjálmsson BJ LDpred2: better, faster, stronger. Bioinformatics 36, 5424–
5431 (2020).

61. Szczerbinski L et al. Algorithms for the identification of prevalent diabetes in the All of Us 
Research Program validated using polygenic scores—a new resource for diabetes precision 
medicine. Preprint at bioRxiv 10.1101/2023.09.05.23295061 (2023).

62. Hou K KangchengHou/calpred. Zenodo 10.5281/zenodo.10962189 (2024)

63. Hou K KangchengHou/calpred-manuscript. Zenodo 10.5281/zenodo.11094535 (2024)

Hou et al. Page 28

Nat Genet. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Calibrated and context-specific prediction intervals via CalPred.
a, Calibration of prediction intervals. We consider a set of individuals with the same point 

prediction (shaded area, left; dashed horizontal line, right). Each dot denotes an individual’s 

phenotype value. Intervals with proper coverage cover the true phenotype at prespecified 

probability of 90%; intervals with over-coverage are incorrectly wide; intervals with under-

coverage are incorrectly narrow. b, Context-specific calibration of prediction intervals. We 

consider two subpopulations in different contexts. Context 1 has lower prediction accuracy 

and therefore wider variation around the mean, while context 2 has higher prediction 

accuracy and therefore narrower variation around the mean. Context-specific intervals vary 

by context, providing intervals with proper coverage in each context. c, Different approaches 

for prediction intervals of PGS-based models. All approaches start with a set of predefined 

PGS weights derived from existing GWAS. ‘No calibration’: prediction intervals can be 

calculated using analytical formula without calibration data. However, these intervals are 

not guaranteed to be well calibrated. ‘Generic calibration’: these methods do not consider 

context information; they produce generic prediction intervals that are constant across 

individuals. ‘Context-specific calibration’: these methods leverage a set of calibration data 

to estimate the impact of each context to trait prediction accuracy; the estimated impact 

can then be used to generate prediction intervals for any target individuals matching in 

distribution with calibration data.
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Fig. 2 |. Widespread context-specific PGS prediction accuracy in UK Biobank.
a,b, Heatmaps for context-specific PGS accuracy for all individuals (a) and WB individuals 

(b). Each row denotes a context and each column denotes a trait; the squared correlation 

between PGS and residual phenotype (R2) is shown in parentheses. Heatmap color denotes 

the PGS phenotype relative ΔR2 (defined as Rgroup1
2 − Rgroup2

2

Rall
2 ), where R[subset]

2  represents R2

computed in a given range of the context variable. For continuous contexts, relative ΔR2

denotes differences of top quintile minus bottom quintile; for binary contexts (including 

sex, smoking, wear glasses and alcohol), relative ΔR2 denotes differences of male minus 

female, smoking minus not smoking, wearing glasses minus not wearing glasses, drinking 

alcohol minus not drinking alcohol (these orders were arbitrarily chosen). Numerical values 

of relative R2 differences are displayed for PGS–context pairs with statistically significant 

differences (multiple testing correction for all 10 × 11 PGS–context pairs in this figure; 

two-sided P < 0.05/(10 × 11)). *PGS–context pairs with nominally significant differences 

(multiple testing correction for 11 contexts; two-sided P < 0.05/11). c,d, Heatmaps of effects 

to prediction accuracy in CalPred model (estimated βσ) for all individuals (c) and WB 

individuals (d). Colormaps were inversed to those of a and b to reflect that positive βσ

corresponds to lower prediction accuracy and vice versa. e, Distribution of estimated βσ in 
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the CalPred model for each context across traits. f, Number of significantly impacted traits 

by each context (two-sided P < 0.05/(72 × 11)). CRP, C-reactive protein; BP, blood pressure; 

Edu, education.
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Fig. 3 |. Widespread context-specific PGS prediction accuracy in All of Us.
a,b, Heatmaps for context-specific PGS accuracy for all individuals (a) and white SIRE 

individuals (b). Each row denotes a context and each column denotes a trait; overall R2 is 

shown in parentheses. Heatmap color denotes relative ΔR2: differences of top quintile minus 

bottom quintile for continuous contexts and difference of male minus female for binary 

context of sex. Numerical values of relative R2 differences are displayed for trait–context 

pairs with statistically significant differences (multiple testing correction for all 12 × 11 

PGS–context pairs in this figure; two-sided P < 0.05/(12 × 11)). *PGS–context pairs that are 

displayed with nominally significant differences (multiple testing correction for 11 contexts; 

two-sided P < 0.05/11). c,d, Heatmaps of estimated βσ in CalPred model for all individuals 

(c) and white SIRE individuals (d). e, Distribution of estimated βσ in CalPred model for each 

context across traits. f, The number of significantly impacted traits by each context (with 

two-sided P < 0.05/(12 × 11)). BP, blood pressure; Edu, education; TG, triglycerides.
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Fig. 4 |. Simulation studies with gene–context interactions.
a, For quantitative traits, we simulated traits for individuals in two contexts with 0.7 cross-

context genetic correlation and heritability of 0.5/0.4, respectively, in two contexts. PGS 

weights were trained in the first context and applied in the second context. We showed 

results for predictions in the second context using four combinations of approaches to 

model prediction mean (using PGS or PGS+PGS×C) and prediction variance (with or 

without VbyC). We did not simulate effects of context variables to phenotype and therefore 

results using ‘PGS + C’ and ‘PGS + C+PGS×C’ would yield same results as ‘PGS’ and 

therefore were not included. Dashed blue line denotes the best fit to data; dashed red line 

denotes model predictions; red error bar denotes the CalPred 90% prediction interval for 

individual at top 5% quantile of PGS. Prediction interval coverage was evaluated within 

data in top PGS decile. Additional details can be found in Extended Data Fig. 5 and 

Methods. b, For disease traits, we simulated diseases for individuals in two contexts under 

a liability threshold model with 0.5 heritability, 0.7 cross-context genetic correlation and 

disease prevalence of 10%/20%, respectively, in two contexts (blue and green lines). Disease 

probability was predicted using four sets of predictors: (1) PGS; (2) PGS and context 

variables (PGS + C); (3) PGS and PGS×C (PGS + PGS×C); (4) PGS, context variables 

and PGS×C (PGS + C + PGS×C). VbyC led to similar results. Error bars denote observed 

disease proportions and their 95% confidence intervals for each predicted probability bin (n 
= 2,000 individuals for each error bar). Additional details can be found in Extended Data 

Fig. 6 and Methods.
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Fig. 5 |. Simulation studies with multiple contexts.
Simulations were performed to reflect scenarios where individuals have variable prediction 

accuracy by genetic PC1, age and sex. For each simulation, we first trained a calibration 

model using a random set of 5,000 training individuals and then evaluated resulting 

prediction intervals on 5,000 target individuals (Methods). a, Prediction R2 between y and 

ŷ in simulated data both at the overall level and in each context subgroup. b, Coverage of 

generic (orange) versus context-specific (blue) 90% prediction intervals evaluated in each 

context subgroup. Generic intervals were obtained by applying CalPred without context 

information; context-specific intervals were obtained by applying CalPred together with 

context information. c, Average length of generic versus context-specific prediction s.d. in 

each context. Across a, b and c, each box plot contains R2/coverage/average length evaluated 

across 100 simulations (n = 100 points for each box); the center corresponds to the median, 

the box represents the first and third quartiles of the points, and the whiskers represent the 

minimum and maximum points located within 1.5× interquartile range from the first and 

third quartiles, respectively.
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Fig. 6 |. CalPred PGS calibration of LDL in UK Biobank.

a, Top: prediction R2 between phenotype and point predictions (incorporating PGS and 

other covariates) in each subgroup of individuals stratified by context (R2 evaluated across 

all individuals is 0.147). Middle: coverage of generic (orange) versus context-specific 

(blue) 90% prediction intervals evaluated in each context subgroup. Generic intervals were 

obtained by applying CalPred without context information; context-specific intervals were 

obtained by applying CalPred together with context information. Bottom: average length 

of generic versus context-specific 90% prediction intervals in each context. Each box plot 

contains R2, coverage or average length across 30 random samples with each sample of 

5,000 training and 5,000 target individuals (n = 30 points for each box). b, Ordered LDL 

prediction s.d. in the unit of mg dl−1. Gray lines denote prediction s.d. obtained with random 

sample of 5,000 training and applied to 5,000 target individuals. Red lines denote prediction 

s.d. obtained from all individuals. c, Box plots of results in b from individuals of LDL 

prediction s.d. quantile of 0–10%, 45–55% and 90–100% (n = 110,000 individuals in total). 

For box plots in both a and c, the center corresponds to the median, the box represents the 

first and third quartiles of the points, and the whiskers represent the minimum and maximum 

points located within 1.5× interquartile range from the first and third quartiles, respectively.
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Fig. 7 |. Variation of prediction s.d. accounting for all contexts.
a,b, Relative difference of prediction s.d. between top and bottom prediction s.d. deciles 

(90–100% versus 0–10%) for all traits in UK Biobank (a) and All of Us (b). Traits are 

ranked by prediction s.d. The difference is calculated with the median prediction s.d. within 

decile of individuals with highest prediction s.d. sd1 and decile of individuals with lowest 

prediction s.d. sd10 using sd1 − sd10
sd10

− 1 × 100%. The trait with the highest prediction s.d. 

difference was average mean spherical equivalent (avMSE), a measure of refractive error 

that was impacted the most by ‘wear glasses’ context. Individuals who wore glasses had 

a much higher PGS phenotype R2 than those who did not, probably due to the reduced 

variation in avMSE phenotypes among individuals who did not wear glasses. Red lines 

denote the average prediction s.d. difference across traits within each dataset. SHBG, sex 

hormone binding globulin; CRP, C-reactive protein; BP, blood pressure; TG, triglycerides; 

Edu years, ‘education years’.
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Fig. 8 |. Calibration of T2D risk prediction across income groups.
We compared four models for predicting T2D across all individuals in All of Us. 

‘Baseline’ is the logistic regression model with PGS, age, sex, BMI and top ten 

PCs as predictors; ‘Baseline+C’ is the logistic regression model additionally including 

smoking status, drinking, employment, income, current address years and ‘education years’; 

‘Baseline+C+PGS×C’ additionally includes PGS×C interactions; and ‘Baseline+C+PGS×C; 

VbyC’ additionally shows modeling variance by contexts within a liability threshold model. 

The dataset was evenly split into training and testing datasets. a, Observed proportion 

versus predicted probability of T2D for lowest (green) and highest (blue) income groups. 

Error bars denote the observed proportions and their 95% confidence intervals (number of 

total individuals shown in key). b, Observed proportion of individuals with T2D among 

individuals predicted with a predicted T2D risk of approximately 30% (25–35%) for 

baseline and calibrated models stratified by annual household income. Error bars denote 

the observed proportions and their 95% confidence intervals (number of individuals for 

each error bar is shown in parentheses). Numerical values of the observed proportions were 

shown in black fonts for ‘<$10,000’ and ‘>$200,000’ groups; * and ** denote statistical 

significance levels for deviations from the 30% predicted risk, with * indicating P < 0.05 and 

** denoting P < 0.01, respectively (two-sided tests); numerical P values were also displayed.
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