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Abstract

BACKGROUND: Treatment-resistant depression (TRD) refers to patients with major depressive 

disorder who do not remit after 2 or more antidepressant trials. TRD is common and highly 

debilitating, but its neurobiological basis remains poorly understood. Recent neuroimaging studies 

have revealed cortical connectivity gradients that dissociate primary sensorimotor areas from 

higher-order associative cortices. This fundamental topography determines cortical information 

flow and is affected by psychiatric disorders. We examined how TRD impacts gradient-based 

hierarchical cortical organization.
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METHODS: In this secondary study, we analyzed resting-state functional magnetic resonance 

imaging data from a mindfulness-based intervention enrolling 56 patients with TRD and 28 

healthy control subjects. Using gradient extraction tools, baseline measures of cortical gradient 

dispersion within and between functional brain networks were derived, compared across groups, 

and associated with graph theoretical measures of network topology. In patients, correlation 

analyses were used to associate measures of cortical gradient dispersion with clinical measures of 

anxiety, depression, and mindfulness at baseline and following the intervention.

RESULTS: Cortical gradient dispersion was reduced within major intrinsic brain networks in 

patients with TRD. Reduced cortical gradient dispersion correlated with increased network degree 

assessed through graph theory–based measures of network topology. Lower dispersion among 

default mode, control, and limbic network nodes related to baseline levels of trait anxiety, 

depression, and mindfulness. Patients’ baseline limbic network dispersion predicted trait anxiety 

scores 24 weeks after the intervention.

CONCLUSIONS: Our findings provide preliminary support for widespread alterations in cortical 

gradient architecture in TRD, implicating a significant role for transmodal and limbic networks in 

mediating depression, anxiety, and lower mindfulness in patients with TRD.

Major depressive disorder (MDD) is a common, debilitating disorder and is among 

the leading causes of disability worldwide (1). Although several treatment options are 

available for depression, a significant number of patients do not improve despite adequate 

antidepressant trials (2). Patients who, after repeated treatments, do not reach acceptable 

levels of functioning and well-being eventually present with treatment-resistant depression 

(TRD), a condition associated with a significant social and economic burden (2,3). TRD is 

often defined as the failure to remit after at least 2 antidepressant trials of adequate dose and 

duration (2,3). A consensus characterization of TRD, however, has yet to be achieved, partly 

due to a poor understanding of its neurobiological basis and a lack of reliable diagnostic 

biomarkers (4,5).

Resting-state functional magnetic resonance imaging (rs-fMRI) is a neuroimaging modality 

commonly used to measure functional connectivity of brain networks in terms of correlated 

spontaneous activity among distant brain regions (6,7). This method has proven useful in 

revealing altered functional connectivity within and between large-scale brain networks in 

depression (5,8–12). Crucially, brain network dysfunctions in MDD primarily affect limbic 

and higher-order associative systems including the default mode network (DMN) (10,13,14), 

control network (CoN) (5,8–12), and limbic network (LiN) (5,8–12), with imbalances 

in these systems being linked to emotional dysregulation and maladaptive self-referential 

processes, such as rumination (9,15,16).

Fundamental principles in behavioral neurology and recent neuroimaging studies provide 

convergent support for a hierarchical cortical organization that separates primary 

sensorimotor systems from transmodal associative areas (17–19). Cortical microstructure, 

connectivity, and gene expression findings point to dominant sensorimotor-to-transmodal 

gradients organizing the propagation of sensory inputs from primary areas into transmodal 

regions along multiple cortical relays (17,18,20). This large-scale brain system organization 

anchors the DMN at one end of the hierarchy with respect to primary sensorimotor 
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areas, capturing a functional topography that enables the transition from perception to 

more abstract cognitive functions (9,15,16). Several neuropsychiatric disorders, including 

MDD (21), cognitive vulnerability to depression (22), and autism (20), profoundly impact 

connectivity-based cortical gradient organization. MDD also disrupts global topography by 

producing focal alterations of cortical gradients among primary sensory and transmodal 

regions involved in high-order cognitive processing (21).

Accordingly, we hypothesized that TRD would impact hierarchical brain network 

organization and that functional deficits affecting the DMN, CoN, and LiN would 

predict baseline and future symptoms of depression following group treatment with either 

mindfulness-based cognitive therapy (MBCT) or a health enhancement program (HEP). 

We retrospectively applied recently developed gradient decomposition techniques (23) to 

baseline rs-fMRI data from 56 patients with TRD subsequently randomized to MBCT 

or HEP and from 28 healthy control (HC) subjects. This approach was leveraged to test 

the hypothesis that TRD, relative to HC subjects, involves perturbation of hierarchical 

gradients among canonical large-scale brain networks (24). To aid with interpreting 

gradient-based deficits in network topography, we further contextualize the results by using 

a complementary measure of nodal dysfunction based on network topology, specifically the 

nodal degree (25).

METHODS AND MATERIALS

Subjects

All participants or their surrogates provided written informed consent prior to participation 

in accordance with the Declaration of Helsinki. The University of California, San Francisco, 

Committee on Human Research approved the study.

An initial cohort of 59 patients with TRD were enrolled in a randomized controlled 

behavioral intervention study that included baseline and posttreatment fMRI sessions, and 

30 HC subjects were recruited to provide normative baseline fMRI data. Participants were 

recruited from outpatient psychiatry and general medicine clinics at the University of 

California, San Francisco, the outpatient psychiatry clinic at Kaiser Permanente in San 

Francisco, and through advertisements and clinical referrals (26,27). Eligibility screening 

for TRD was completed in person. Eligible patients met Structured Clinical Interview for 

DSM-IV-TR Axis I (28) criteria for MDD and had a 17-item Hamilton Depression Rating 

Scale (HDRS-17) score of 14 or greater. Furthermore, to qualify as having TRD, patients 

had to be taking antidepressant medication with evidence of 2 or more adequate trials 

prescribed during the current episode as assessed with the Antidepressant Treatment History 

Form (29). Patients were excluded for the following: lifetime history of bipolar disorder, 

schizophrenia, or any psychotic disorder; substance abuse or dependence within 3 months 

of study onset; being currently suicidal, dangerous to others, or self-injurious; undergoing 

psychotherapy during the 8-week treatment portion of the study; or a score of <25 on the 

Mini-Mental State Examination (30).

The HC group was matched to the TRD group on age, gender, and handedness and had 

no history of a major Axis I psychiatric disorder, neurological illness, or current use of 
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psychotropic medication. Participants were required to be at least 18 years of age, be fluent 

in English, have no MRI contraindications, and have normal or corrected-to-normal vision.

For each participant, we additionally assessed depressive symptoms through the Quick 

Inventory of Depression Symptomatology, 16-Item Self-Report (31) and Nolen-Hoeksema’s 

Response Styles Questionnaire (RSQ22) (32); levels of mindfulness with the Five Facet 

Mindfulness Questionnaire (FFMQ) (33); and levels of state and trait anxiety through the 

State-Trait Anxiety Inventory (STAI) (trait and state) (34). Study participants self-reported 

race and ethnicity, gender, handedness, and years of education.

From the initially recruited sample, 2 HC subjects and 3 patients with TRD had to 

be excluded based on excessive head movement in the scanner (see details below in 

Neuroimaging Data Acquisition and Preprocessing), resulting in the final analyzed sample 

of 56 patients with TRD and 28 HC subjects (Table 1).

Protocol

Patients with TRD were part of a randomized controlled trial comparing MBCT with 

an HEP as adjunctive treatments to ongoing antidepressant medication (26,27). Briefly, 

MBCT involved guided meditations (35); the HEP involved activities to promote health 

(36). Patients were assessed with rs-fMRI at baseline and following the intervention, while 

HC subjects were assessed at baseline and did not undergo treatment (26,27). Of the 56 

patients with TRD included in our study, 27 went through the MBCT intervention and 29 

went through the HEP intervention. Additional details are available in the Supplement and 

in previously published work. Only rs-fMRI data at baseline were analyzed in the present 

study.

Neuroimaging Data Acquisition and Preprocessing

Neuroimaging data were acquired on a Siemens 3T TIM Trio scanner located at the 

University of California, San Francisco, Neuroimaging Center. A high-resolution anatomical 

scan was acquired using a 3-dimensional magnetization-prepared rapid acquisition gradient-

echo sequence, with a scan time of 5 minutes and 17 seconds, flip angle of 9°, field of 

view of 220 mm2, 160 slices per slab, 1.2-mm thickness, no gap, repetition time of 2.30 

seconds, and echo time of 2.94 ms. Functional scans were acquired using a blood oxygen 

level–dependent echo planar imaging sequence, with a repetition time of 2 seconds, echo 

time of 30 ms, field of view of 220 mm2, flip angle of 77°, bandwidth of 2298 Hx/pixel, 64 

× 64 matrix, and 30 slices (3-mm thick, 1-mm gap). Scans were acquired in an axial-oblique 

plane, parallel to the anterior commissure-posterior commissure line. Participants were 

instructed to rest with their eyes open during the 5-minute, 24-second blood oxygen level–

dependent echo planar imaging functional sequence.

fMRIPrep software (https://fmriprep.org/en/stable/) (37) was used for data preprocessing. 

Anatomical magnetization-prepared rapid acquisition gradient-echo images were corrected 

for intensity nonuniformity, skull-stripped, and segmented for cerebrospinal fluid, white 

matter, and gray matter. Volume-based spatial normalization to Montreal Neurological 

Institute (MNI) standard space was performed through nonlinear registration of the 

magnetization-prepared rapid acquisition gradient-echo with the T1-weighted MNI template 
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brain (ICBM152). The first 5 functional volumes were removed to allow for scanner 

equilibration, resulting in a total number of 157 volumes for the analyses. A mean reference 

volume and its skull-stripped version were generated and then coregistered to the structural 

reference using affine registration. Head motion parameters (transformation matrices and the 

6 corresponding rotation and translation parameters) were estimated and used to compute 

framewise head displacement time series. Functional images were slice-time corrected, 

realigned, and normalized to MNI standard space by applying the structural transformation 

matrix to the coregistered functional data. The resulting volumes with 2-mm3 isotropic 

resolution were spatially smoothed with a 6-mm radius Gaussian kernel and bandpass 

filtered in the 0.008 to 0.15 Hz frequency range. Nuisance parameters in the preprocessed 

data were estimated for the cerebrospinal fluid and white matter. Additional nuisance 

parameters included the 3 translational and 3 rotational motion parameters, the temporal 

derivatives of the previous 8 terms (white matter, cerebrospinal fluid, 6 motion time series), 

and the squares of the previous 16 terms (38,39). Nuisance parameters were filtered for 

the same frequency range as rs-fMRI data and regressed out from the filtered rs-fMRI data 

(38,39). The denoised data were used in subsequent analyses. Subjects were included only 

if their mean framewise head displacement in the scanner (38,39) was below the threshold 

of 0.55 mm recommended in previous work (40). Global signal regressed rs-fMRI data were 

also generated using the time series extracted from a whole-brain mask and used for control 

analyses.

Functional Connectivity Gradients

The Schaefer Atlas (41) was used to derive rs-fMRI activity time series for 400 cortical 

regions (Figure 1A, B). The Pearson correlation was applied to the regional activity time 

series to derive individual functional connectivity matrices (Figure 1C) and group mean 

functional connectivity matrices for HC subjects and patients with TRD (Figure S1).

The diffusion embedding approach (17,18), as implemented by the BrainSpace 

toolbox (https://brainspace.readthedocs.io/en/latest/pages/getting_started.html) (23), was 

then applied to the HC group mean functional connectivity matrix to estimate connectivity 

gradients. Briefly, the top 10% strongest functional connections were retained for each 

parcel, referred to hereafter as a node, and cosine similarity was calculated between 

each pair of nodes to generate a dissimilarity matrix (Figure 1C) (42,43). Diffusion 

map embedding was then applied to decompose the functional connectome into primary 

components, referred to as gradients, with each gradient explaining varying levels of 

variance in connectivity (Figure 1C). These gradients discriminate across levels of the 

cortical hierarchy (i.e., sensory processing vs. higher-order cognition), whereas node-

specific gradient values reflect the similarity in connectivity along this sensory-transmodal 

axis. An identical approach was used to derive connectivity gradients from the TRD group 

mean connectivity matrix and from the connectivity matrices of individual participants. The 

resulting gradient maps were subsequently aligned to the gradients derived at the group level 

in HC subjects using iterative Procrustes rotation, therefore enabling comparisons across 

individual embedding solutions (20,23,44). Control analyses were performed with publicly 

available cortical gradients maps (see the Supplement) (17).
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Nodal Dispersion

For each participant, we then derived a measure of within-network nodal dispersion. We 

plotted the first 3 connectivity gradients—because these explained most of the underlying 

variance (see elbow plot in Figure 1C)—against each other to derive a 3-dimensional 

manifold in which we calculated the Euclidean distance between nodes belonging to the 

same intrinsic brain network (Figure 1D) (44). Nodal dispersion was derived for each node 

belonging to a specific intrinsic brain network and averaged across nodes within intrinsic 

brain networks, yielding a final estimate of within-network nodal dispersion for each 

participant. We performed several control analyses to assess the impact of methodological 

parameters on our analyses (see Supplement). Further, we derived a measure of between-

network nodal dispersion calculated as the Euclidean distance between network centroids 

(i.e., the arithmetic mean in gradient space of all nodes belonging to the same network).

Nodal Degree

In parallel with the connectivity gradient approach, we also derived a traditional measure 

of within-network nodal degree for all participants (25) by using the publicly available 

Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/). Nodal degree is a widely 

used measure of network topology commonly derived using graph-theoretical approaches 

(25). Briefly, individual connectivity matrices were thresholded for correlation values below 

0.35 (retaining a median of 26% of connections) and binarized (Figure 1D). To control for 

threshold choice, measures of nodal degree were derived also for connectivity thresholds 

of 0.45 and 0.25 (retaining 16% and 38% of connections, respectively). At any threshold, 

patients with TRD and HC subjects did not significantly differ in respect to the density 

of retained connections. Weighted connectivity matrices were used to count the number of 

surviving edges between a specific node within a network and all other nodes within the 

same network (Figure 1D). The sum of surviving edges for a node was then divided by the 

total amount of edges within the network. Nodal degree measures were derived for each 

single node in a network and averaged across nodes in the same network. This procedure 

resulted in a measure of within-network nodal degree reflecting the level of integration 

between nodes belonging to the same network.

Statistical Analyses

In-house MATLAB R2021a (The MathWorks, Inc.) and R 4.1.1 (R Foundation for Statistical 

Computing) scripts were used to perform the statistical analyses. See the Supplemental 

Methods for more details.

RESULTS

Cortical Connectivity Gradients in HC Subjects and Patients With TRD

We applied a diffusion gradient approach separately on rs-fMRI–based connectivity data 

from HC subjects and patients with TRD to derive cortical connectivity gradients reflecting 

processing hierarchies spanning sensory and transmodal areas (Figure 2; Figure S2A). The 

first 3 principal gradients derived from rs-fMRI data of HC subjects explained 34.9% of 

the variance in functional connectivity (elbow plot in Figure 1C). Gradient 1 anchored 
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sensorimotor areas at its positive extreme, while regions belonging to the DMN were located 

at the opposite, negative extreme (Figure 2A, B). Sensorimotor and DMN areas occupied 

the negative extreme on gradient 2, while visual-sensory areas populated the positive end 

of this gradient (Figure 2A, B). Notably, these first 2 connectivity gradients overlap with 

previously reported gradients in functional connectivity, structural connectivity, myelin 

density, and genetic expression (17,18), which consistently separate sensory processing 

regions from transmodal areas of the DMN. Gradient 3 showed a more complex pattern, 

segregating regions of the dorsal attention network from regions belonging to the salience 

network, potentially reflecting a higher-order, attention-related gradient separating regions 

attending to externally presented cues (45) from regions devoted to processing visceral 

and interoceptive information (46,47). The normative gradients identified in our HC 

subject sample showed strong to moderate correspondence to gradients described in prior 

foundational work (Figure 2C) (17). Similar fundamental properties of hierarchical brain 

organization were found in patients with TRD after aligning the principal connectivity 

gradients of patients to those of HC subjects (Figure 2D, E), in support of the notion that 

cortical gradients reflect fundamental properties of brain topography in both health and 

disease (17,18,20,21). Gradients 4 to 6 explained a lower amount of variance and showed 

less discernible patterns of regional variation (Figure S2).

Within-Network Nodal Dispersion

Node-level gradient comparisons (p < .05, uncorrected) revealed increased gradient scores 

in patients with TRD in sensory and early transmodal regions, such as the ventromedial 

occipital and posterior inferior temporal cortices, together with decreased gradient scores in 

transmodal areas including the precuneus and the medial prefrontal and cingulate cortices 

(Figure 3A). We then derived a measure of within-network nodal dispersion (Figure 1D), 

reflecting the level of connectedness of nodes belonging to the same intrinsic brain network 

(44). A 2-way analysis of variance revealed a main effect of network (F6,567 = 15.2, p 
< .0005) and a main effect of group (F2,567 = 18.0, p < .0005). Pairwise comparisons 

revealed that all networks, except for the salience and sensorimotor networks, showed 

reduced within-network nodal dispersion in patients with TRD compared with HC subjects 

(p < .05, false discovery rate corrected for multiple comparisons) (Figure 3B), suggesting 

overall higher within-network connectedness. We performed control analyses to assess 

the impact of head movement on within-network dispersion and assessed the impact of 

methodological parameters including 1) global signal regression, 2) atlas parcellation, 3) 

gradient decomposition through Laplacian embedding, 4) angular normalization to generate 

the dissimilarity matrices, 5) adding gradients 4 to 6 when computing within-network nodal 

dispersion, or 6) using publicly available gradient maps to derive individual gradients (see 

Supplemental Results, Figures S2–S4, and Tables S1 and S2).

We analyzed whether TRD also affected cortical hierarchies between networks in addition 

to within-network gradient organization. We derived a measure of between-network nodal 

dispersion that revealed reduced nodal dispersion in patients with TRD between the 

sensorimotor network and DMN, between the salience network and DMN, and between 

the CoN and dorsal attention network, although none of these findings survived correction 

for multiple comparisons (p < .05, uncorrected) (Figure 4).
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Within-Network Nodal Degree

Comprehensively, the previous findings suggest that in TRD, nodes belonging to the 

same network are more integrated to each other. To confirm this hypothesis, we derived 

a complementary measure of nodal integration based on graph theoretical approaches, 

namely within-network nodal degree. A 2-way analysis of variance revealed a main effect 

of network (F6,567 = 187.9, p < .0005) and a weaker main effect of group (F2,567 = 3.1, 

p < .05). Pairwise comparisons revealed that there were no significant between-group 

differences in within-network degree that survived multiple comparisons. However, the 

DMN and sensorimotor network nodal degree was significantly lower in patients with TRD 

compared with HC subjects (p < .05, uncorrected) (Figure 3C).

When relating within-network nodal dispersion to within-network nodal degree, we 

consistently found a significant negative association between both measures, particularly 

in patients with TRD and to a lesser extent in HC subjects (p < .05, false discovery 

rate corrected for multiple comparisons if not reported otherwise, Pearson correlation 

coefficients and associated Fisher r-to-z tests for independent samples comparing the 

strength of correlations across groups reported in the plots) (Figure 3D). Notably, these 

findings were robust across distinct thresholds applied to generate the weighted connectivity 

matrices used to estimate nodal degree (Figure S3). In summary, these findings support 

the notion that decreased within-nodal dispersion, at least in patients with TRD, reflects 

within-network hyperconnectedness. This negative association between nodal measures was 

prominent in patients with TRD but not as prominent in HC subjects, suggesting a more 

complex relationship between cortical topology and topography in the healthy human brain.

Within-Network Nodal Dispersion and Baseline Symptoms of Depression

Given the recurrent association of the DMN, CoN, and LiN with clinical symptoms 

of depression (9,15,16), we first investigated the association of within-network nodal 

dispersion and degree in these systems with clinical depression severity in patients as 

assessed with the HDRS-17. Within-network nodal dispersion of any network did not 

significantly correlate with HDRS-17, although within-network nodal degree of the CoN 

and LiN positively correlated with HDRS scores (Table S3). Subsequently, we assessed 

the relationship between within-network nodal dispersion of the DMN, CoN, and LiN 

and clinical measures of increased anxiety, depressed mood, and reduced mindfulness 

(16,26,27). To assess whether associations between nodal dispersion and clinical measures 

were specific to higher-order cognitive and emotional systems, we also report correlations 

between clinical measures and nodal dispersion of the visual network. In line with previous 

work, our patient sample showed increased levels of trait anxiety as measured through 

the STAI questionnaire (p < .0005) (Figure 5A), increased levels of depressive symptoms 

using the RSQ22 (p < .0005) (Figure 5B), and decreased levels of mindfulness (26,27) as 

measured through the FFMQ (p < .0005) (Figure 5C). Within-network nodal dispersion 

of the DMN, CoN, and LiN negatively correlated with trait anxiety and depression, while 

it positively correlated with mindfulness in patients with TRD but not in HC subjects 

(Figure 5D, E). Dispersion of the visual network did not significantly correlate with any 

clinical measure. Consistent with the previously described negative relationship between 

nodal dispersion and nodal degree, within-network nodal degree of the DMN, CoN, and LiN 
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positively correlated with trait anxiety and depression, while it negatively correlated with 

mindfulness in patients with TRD but not in HC subjects (Figure 5G, I).

Within-Network Nodal Dispersion and Change Scores in Clinical Symptoms

In line with our previous studies (26,27), patients with TRD on the MBCT arm showed 

greater HDRS-17 reductions relative to the control intervention, although in our study the 

effect was not significant (F1,107 = 3.07, p = .08) (Figure S5) (26,27), likely due to the 

smaller patient subset in this sample following head movement control. We then assessed 

whether within-network nodal dispersion at baseline could predict STAI trait, FFMQ, 

and RSQ22 change scores, as these clinical questionnaires correlated with baseline nodal 

dispersion. A repeated measurement analysis of variance revealed a main effect of time (but 

no effect of group), with improved STAI trait, FFMQ, and RSQ22 scores after 8 and 24 

weeks in both the HEP and MBCT arms (Figure S6 and Table S4). Multiple regression 

analyses revealed that LiN nodal dispersion at baseline predicted STAI trait change scores 

24 weeks after the intervention (β1,46 = 0.63, p = .01) (Figure 6).

DISCUSSION

Functional connectivity of the human cortex can be decomposed into primary gradients 

that anchor on one end primary sensory and motor areas, and on the other end transmodal 

regions overlapping with the DMN. This study explored how TRD impacts this fundamental 

topography of hierarchical cortical organization. We capitalized on rs-fMRI data acquired 

in patients with TRD and HC subjects and applied recently developed gradient extraction 

tools to assess gradient imbalances within major intrinsic brain networks. Although the 

global hierarchical architecture was similar across the 2 groups, we found that brain regions 

belonging to the same network were located more closely to each other in topographical 

gradient space in patients with TRD relative to HC subjects. Reduced within-network 

nodal dispersion correlated with higher levels of nodal degree derived through graph theory–

based topology measures, overall suggesting higher within-network functional integration in 

TRD. In the patient group, decreased nodal dispersion of higher-order cognitive and limbic 

networks correlated with depression, anxiety, and reduced mindfulness at baseline. Change 

in anxiety scores following a mindfulness-based intervention were predicted by limbic nodal 

dispersion. Overall, these findings suggest deleterious cortical network topography and 

topology in TRD and underscore the role of higher-order and limbic networks in mediating 

core symptoms of depression.

Increased Within-Network Integration in TRD

The pervasive correlation between nodal degree and nodal dispersion in our patient sample 

suggests that TRD impacts cortical hierarchies by driving hyperintegration within several 

brain networks (48). Other neuropsychiatric conditions have been shown to impact cortical 

connectivity gradients. Autism spectrum disorder has been shown to alter brain topography 

by showing atypical connectivity transitions between sensory and higher-order DMN regions 

(20). Our findings align with previous reports of altered cortical gradient organization 

in individuals with cognitive vulnerability to depression (22) and in a larger sample of 

patients with MDD (21). Individuals with cognitive vulnerability to depression have been 
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shown to display reduced gradient scores in the left insula, which correlated with lower 

attentional scores in patients, suggesting that gradient reorganization may precede the onset 

of depression (22). A recent study involving a large sample of patients showed that MDD 

exhibits abnormal global topography of the principal sensory-to-transmodal gradient (21). 

These focal alterations of gradient scores mostly affected transmodal areas implicated in 

higher-order cognition overlapping with the DMN (21).

Brain Network Hyperintegration Mediates Symptoms of Depression

Despite numerous efforts to map brain network dysfunctions in depression, important 

inconsistencies exist regarding the location and directionality of connectivity changes, with 

both hyperconnectivity (15) and hypoconnectivity (49) findings reported in the literature. 

Disease duration, perseverance of symptoms, and heterogeneous subtypes of depression 

(8,9) may account for important sources of variability, as do head movement in the scanner 

and differing data acquisition protocols and preprocessing pipelines (38–40). Although 

our findings contrast with reports of decreased connectivity in attentional networks (10), 

they align well with previous reports of DMN hyperconnectivity found in patients with 

depression (9,15). Hyperconnectivity among DMN regions in depression is consistent with 

our interpretation of reduced nodal dispersion reflecting within-network hyperintegration. 

Prior studies in both HC subjects and patients with depression have associated DMN 

hypersynchrony with self-referential processes affected in depression, including reduced 

mindfulness and social-emotional dysfunctions (15,16,50), suggesting a deleterious nature 

of DMN hyperintegration in TRD.

Limitations and Future Directions

Three limitations need to be considered when interpreting our findings as potential evidence 

of within-network hyperintegration in TRD. First, methods used to extract connectivity 

gradients may need further refinements when addressing gradient changes at the individual 

level and across clinical populations. Although findings of reduced within-network nodal 

dispersion were consistently found when using global signal regression or medium- 

to high-parcellated atlases, the method chosen to derive cortical connectivity gradients 

greatly influenced the analyses. Second, nodal dispersion in patients with TRD neither 

correlated with the HDRS-17 nor predicted clinical improvement following either MBCT 

or HEP (except for the LiN). Gradient approaches have been mostly applied to study 

fundamental aspects of brain functioning by leveraging large samples. Our analyses may 

have experienced sample size issues affecting both patients and control subjects. Given 

the recent discovery of distinct biotypes in MDD (8,9), longitudinal studies involving 

larger patient samples are needed to validate our findings. Future studies should confirm 

whether decreased nodal dispersion is a generalizable marker of network hyperintegration 

in TRD and whether nodal dispersion can be normalized following tailored behavioral and 

pharmacological interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analytic pipeline. (A) 400 nodes from the Schaefer Atlas, each overlapping with (B) a 

specific intrinsic brain network (IBN), were used to derive functional connectivity matrices 

using resting-state functional magnetic resonance imaging data of healthy control subjects 

and patients with treatment-resistant depression. (Ca) Individual connectivity matrices (Si) 

went through two distinct processing pipelines. To derive cortical connectivity gradients 

(upper stream), individual connectivity matrices were transformed to (Cb) affinity matrices 

using cosine similarity and (Cc) Laplacian decomposition, which was used to derive three 

primary connectivity gradients. Combined, these gradients explained 34.9% of the variance 

in functional connectivity (red dashed line). (Cd) The position of an individual node 

belonging to a specific intrinsic brain network (e.g., Network x) was used to derive a 

topographical measure of nodal dispersion, reflecting the average Euclidean distance (D) 

in gradient space between a node and all other nodes belonging to the same network. 

Individual connectivity matrices were also leveraged to derive topological measures of 

nodal degree (lower stream). (Ce) Connectivity matrices were weighted by binarizing at 

a connectivity threshold of 0.35. (Cf) For each node within a network, we assessed the 
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level of degree by counting the edges (E) of this node to all other nodes within a network 

and dividing by the total amount of edges. CoN, control network; DAN, dorsal attention 

network; DMN, default mode network; LiN, limbic network; SaN, salience network; SMN, 

sensorimotor network; ViN, visual network.
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Figure 2. 
Cortical connectivity gradients. (A) Cortical connectivity gradients of healthy control (HC) 

subjects projected into cortical surface. The 3-dimensional scatterplot below shows how 

individual nodes distributed along the first 3 gradients. Colors reflect the loadings of 

nodes on individual gradients. For example, the sensorimotor cortex appears purple and 

regions overlapping with the default mode network (DMN) appear blue, reflecting that 

these systems respectively anchor the extremes of gradient 1. (B) Scatterplots reflecting 

how nodes belonging to distinct intrinsic brain networks align along cortical gradients in 
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HC subjects. (C) Spatial correlation between maps of gradients 1–3 in HC subjects and 

maps of gradients 1–3 using publicly available maps of canonical cortical gradients. (D) 
Cortical connectivity gradients of patients with treatment-resistant depression (TRD) aligned 

to the gradients of HC subjects following Procrustes rotation. (E) Scatterplots reflecting how 

nodes belonging to distinct intrinsic brain networks align along cortical gradients in patients 

with TRD. *p < .005. CoN, control network; DAN, dorsal attention network; LiN, limbic 

network; SaN, salience network; SMN, sensorimotor network; ViN, visual network.
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Figure 3. 
Nodal dispersion and nodal degree. (A) Nodewise statistical comparisons between healthy 

control (HC) subjects and patients with treatment-resistant depression (TRD), with 

increases/decreases in the TRD group shown in cold/warm colors (p < .05 uncorrected). 

(B) Violin plots reflecting topographical differences in within-network nodal dispersion 

between patients with TRD (red) and HC subjects (blue). (C) Violin plots reflecting 

topological differences in within-network nodal degree between patients with TRD and HC 

subjects. (D) Scatterplots reflecting the association between within-network nodal degree 

and within-network nodal dispersion separately for patients with TRD and HC subjects. 

Pearson correlation coefficients are reported below the scatterplots for each group separately, 

together with associated Fisher r-to-z tests for independent samples comparing the strength 

of the correlations across groups. *p < .05, false discovery rate corrected, +p < .05, 
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uncorrected. CoN, control network; DAN, dorsal attention network; DMN, default mode 

network; LiN, limbic network; SaN, salience network; SMN, sensorimotor network; ViN, 

visual network.
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Figure 4. 
Between-network nodal dispersion. Between-network nodal distance in (A) healthy control 

(HC) subjects and (B) patients with treatment-resistant depression (TRD). (C) Significant 

reductions in between-network nodal dispersion were found in patients with TRD, affecting 

the sensorimotor network (SMN) and default mode network (DMN), the salience network 

(SaN) and DMN, and the control network (CoN) and dorsal attention network (DAN). None 

of these findings survived false discovery rate correction for multiple comparisons. *p < .05, 

uncorrected. LiN, limbic network; ViN, visual network.
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Figure 5. 
Nodal dispersion correlates with symptoms of depression. (A) Levels of trait anxiety (State-

Trait Anxiety Inventory [STAI] trait total scores) and (B) depression (Nolen-Hoeksema’s 

Response Styles Questionnaire [RSQ22]) were significantly higher in patients with 

treatment-resistant depression (TRD) (red violin plots) when compared with healthy control 

(HC) subjects (blue violin plots), while levels of (C) mindfulness (Five Facet Mindfulness 

Questionnaire [FFMQ] total scores) were significantly lower in patients with TRD when 

compared with HC subjects. (D, E) Within-network nodal dispersion of the default mode 

network (DMN), control network (CoN), and limbic network (LiN) correlated negatively 

with trait anxiety and depression and positively with mindfulness in patients with TRD 

but not in HC subjects. No significant correlations were found for dispersion of the 
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visual network (ViN), suggesting a specific association of clinical measures to higher-

order cognitive and limbic networks. The matrix in panel (F) reflects Fisher r-to-z tests 

for independent samples comparing the strength of the correlations across groups. (G, 
H) Conversely, the within-network nodal degree of the DMN, CoN, and LiN correlated 

positively with trait anxiety and depression and negatively with mindfulness in patients 

with TRD but not in HC subjects. The matrix in panel (I) reflects Fisher r-to-z tests for 

independent samples comparing the strength of the correlations across groups. +p < .1, *p < 

.05, **p < .005, ***p < .0005.

Pasquini et al. Page 22

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Baseline limbic network (LiN) nodal dispersion predicts change in State-Trait Anxiety 

Inventory (STAI) trait scores following a mindfulness-based cognitive therapy (MBCT)/

health enhancement program (HEP) intervention. (A) Parameter regression coefficients from 

multiple regression models predicting clinical score changes (difference of baseline minus 

24 weeks) from baseline within-network nodal dispersion. +p < .01, *p < .05. (B) Only 

nodal dispersion of the LiN significantly predicted STAI trait change scores. CoN, control 

network; DMN, default mode network; FFMQ, Five Facet Mindfulness Questionnaire; 

RSQ22, Nolen-Hoeksema’s Response Styles Questionnaire.
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