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Abstract

Problems in condensed matter theory motivated by quantum computers

by

Aleksei Khindanov

Quantum computers, once their fault-tolerant versions are built, are widely believed

to revolutionize the world, bringing an exponential quantum advantage to problems in

chemistry, physics and material science. In this thesis, we explore various problems in

theoretical condensed matter physics that are in one way or another related to quantum

computers. The first part of this thesis is devoted to Majorana zero-energy modes and

topological quantum computing. We describe how Majorana modes can be synthesized

in superconductor-semiconductor heterostructures, and emphasize vulnerabilities of the

topological phase in such heterostructures to external magnetic fields. We further demon-

strate how and to what degree the addition of a magnetic insulator or spin-orbit scattering

to a heterostructure can help alleviating the negative effects of external magnetic fields.

Additionally, we analyze quantum dot-based measurements of Majorana qubits. In par-

ticular, we identify the optimal regime for such measurements, and estimate to what

degree external noise sources and coupling of the quantum dot to quasiparticle modes in

superconductors affect the fidelity of the measurements. The other part of this thesis is

devoted to the many-body physics in quantum circuits. We describe a Floquet circuit

model in which projective measurements can drive a dynamical spectral phase transition

in otherwise purely unitary dynamics of the circuit. Using random-matrix theory, we an-

alytically calculate various properties of this transition, and analyze how the transition

can be revealed in the long-time dynamics of the system.
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0 in the case of Γ2(λ) . . . . . 169

D.7 The derivation of expression (5.71) for Γ2(λ) in terms of the parameters u
and v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.8 The solution of the system (5.70) in the limit λ → 1− . . . . . . . . . . . 171
D.9 Dynamics of the purity and the Floquet trajectory probability under the

evolution of W k
1 operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177

xi



Chapter 1

Introduction

This thesis presents the results of the research on various different topics in theoretical

condensed matter physics, oftentimes quite different in the spirit and scope, but the

unifying theme for all of them is their relation to the field of quantum computing.

Quantum computing is a computing paradigm that utilizes quantum-mechanical de-

grees of freedom (as opposed to classical bits in conventional, ”classical” computers) to

perform computations [1]. Fully operational quantum computer with a sufficient number

of error-free qubits is expected to provide an exponential computational advantage for

certain problems, when compared to existing classical algorithms [2]. The most notable

application where such exponential speed-up is anticipated is the simulation of many-

body quantum systems appearing in chemistry, physics, and material science [3]. Besides

that, a few other algorithms with an exponential quantum advantage are known, such

as the Shor’s algorithm for integer factorization[4] and the algorithm for approximat-

ing Jones polynomial in knot theory[5]. Additionally, for certain problems a polynomial

quantum speed-up (again, when comparing with existing classical algorithms) is known,

for example for search problems[6] and combinatorial optimization[7].

Despite tremendous effort and significant progress in the field, it seems likely that

1



Introduction Chapter 1

it will take a long time (perhaps, decades) until a fault-tolerant quantum computer

with error corrected qubits can be built. Due to this fact, a lot of research has been

concentrated on showcasing what can be done on existing quantum hardware with dozens

or hundreds of noisy qubits. Such noisy intermediate-scale quantum (NISQ)[8] devices

have been used to demonstrate quantum advantage[9] and investigate various models in

the many-body physics.

A large part of this thesis is devoted to the field of topological quantum computing[10].

Topological quantum computing utilizes a special type of particles in two dimensions –

non-Abelian anyons – to store and manipulate quantum information with a degree of

intrinsic fault-tolerance. Due to this fact topological qubits are expected to be less

susceptible to environmental noise than qubits in other physical platforms, and thus the

aforementioned practical applications for quantum computing could be achievable with a

smaller number of topological qubits than the non-topological ones. A certain type of non-

Abelian anyons – Majorana particles – have been theorized to exist in various solid-state

systems [11], and can potentially be utilized for a qubit implementation. Unambiguous

experimental detection of such particles, not to mention further physical implementation

of a Majorana qubit, however, is a difficult task and is an ongoing research effort. In this

work I present approaches to improving hardware that can host the Majorana particles[12,

13], and further analyze optimal regimes for Majorana qubit measurements[14, 15].

Another part of this thesis is devoted to many-body physics applications for modern

noisy intermediate-scale quantum (NISQ) devices. In this thesis we consider a particular

problem of analyzing how qubit measurements can drive dynamical phase transitions in

otherwise purely unitary dynamics of quantum circuits[16].

This thesis is organized as follows. In Chapter 2, we outline how Majorana particles

can be synthesized in one-dimensional superconductor-semiconductor heterostructures

and describe susceptibilities of such heterostructures to external magnetic fields. We

2



Introduction Chapter 1

further introduce the Usadel equation formalism and describe how it can be utilized to

study superconductor-semiconductor heterostructures with disordered superconductors.

Then, we apply the Usadel formalism to study the effects of external magnetic fields,

spin-orbit and magnetic scattering on the topological phase in the heterostructure, and

further describe to what extent the coupling of a magnetic insulator or the addition of

the spin-orbit scattering can alleviate the negative effects of external magnetic fields on

the heterostructure. In Chapter 3, we analyze how quantum dots can be used to mea-

sure the state encoded by pairs and fours of Majorana zero modes. We also determine

the best regime for such measurements, and estimate how various noise sources affect

the fidelity of the measurements. In Chapter 4, we calculate how the coupling between

quasiparticle continuum modes in superconductors and a quantum dot impact the quan-

tum dot-based measurements of Majorana qubits. Furthermore, we study the physics

of the 0− π transition in topological superconductor-quantum dot-topological supercon-

ductor junctions. Finally, in Chapter 5 we switch gears from the Majorana physics to

the physics of quantum circuits. We introduce a Floquet circuit model with unitary op-

erations and projective measurements that exhibits a measurement-induced dynamical

phase transition in the spectrum of its non-unitary evolution operator. Using random-

matrix theory, we analytically calculate properties of this transition and further describe

how this transition is revealed in various physical quantities.

3



Chapter 2

Application of the Usadel equation

to study diffusive

superconductor-semiconductor

heterostructures

2.1 Permissions and Attributions

1. The content of Chapter 2 and Appendix A is the result of a collaboration with

Jason Alicea, Patrick Lee, William S. Cole, Andrey E. Antipov, G.P. Mazur, N.

van Loo, J.-Y. Wang, T. Dvir, G. Wang, S. Korneychuk, F. Borsoi, R.C. Dekker,

G. Badawy, P. Vinke, S. Gazibegovic, E.P.A.M. Bakkers, M. Quintero-Pérez, S.

Heedt, and L.P. Kouwenhoven, and has previously appeared in Physical Review

B 103, 134506 (2021)[12] and Advanced Materials 34, 2202034 (2022)[13]. It is

reproduced here with the permission of the American Physical Society (https:

//journals.aps.org/prb/) and Wiley-VCH GmbH (https://onlinelibrary.

4
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wiley.com/journal/15214095).

2.2 Introduction

A physical realization of spatially separated Majorana zero-energy modes (MZMs)

in solid-state systems can lead to a practical implementation of a topological quantum

computer – a type of quantum hardware with intrinsic degree of fault-tolerance [10,

11]. Despite numerous theoretical proposals for the realization of MZMs in a variety of

hardware platforms, such as 2D[17] and 3D[18] topological insulators, semiconducting

nanowires[19, 20], 2DEGs[21], atomic chains[22], and many others, the experimental

detection of MZMs has been a formidable task.

Recently, Ref. [23] observed experimental signatures in local and non-local transport

properties consistent[24] with the presence of MZMs. Devices used in the experiment

were based on quasi-one-dimensional semiconducting nanowires created by gating out a

2DEGs and proximitized by a superconducting layer. In its simplest form, the model for

a one-dimensional proximitized semiconducting wire has the following form:

H =

! L

0

dxΨ†(x)

"
− ∂2

x

2m∗ − µ+ iασ̂y∂x + Vxσ̂x

#
Ψ(x)+

! L

0

dx
$
∆indψ

†
↑(x)ψ

†
↓(x) + h.c.

%
,

(2.1)

where ΨT (x) = (ψ↑(x),ψ↓(x)) is a two-dimensional spinor of electronic annihilation oper-

ators, m∗ is the effective electronic mass, µ is the chemical potential inside the nanowire,

α is the Rashba spin-orbit coupling, Vx is the Zeeman field directed along the direction

of the wire, which is usually created by applying an external magnetic field, ∆ind is the

superconducting pairing potential in the nanowire induced by the proximity to a super-

conductor, L is the length of the wire, and σ̂i are the Pauli operators in the spin space.

For the purposes of the topological quantum information processing, there are two basic

5
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ingredients that are necessary: first, the ability to tune the system into the topological

phase where the MZMs would appear, and second, the gap in the topological phase has

to be sufficiently large to protect the stored quantum information from environmental

decoherence. In the simple formulation of the model (2.1), the topological superconduc-

tivity and MZMs emerge in the system for sufficiently large Zeeman fields, specifically

when

Vx ≥
&

µ2 +∆2
ind. (2.2)

In this toy model picture, the stronger are the effective spin-orbit energy Eso = m∗α2/2,

the Zeeman field Vx and the induced pairing ∆ind, the larger is the gap in the topological

phase, while sufficiently large values of the Zeeman field are also necessary to achieve the

condition (2.2).

However, the situation in realistic samples is much more complicated than the one

described by the model (2.1)-(2.2). First and foremost, disorder plays a crucial role in

the physics of experimental devices, whether it is caused by charge impurities, potential

inhomogeneities, or imperfections in the superconductor-semiconductor interface. While

the topological phase is known to survive small-to-intermediate levels of non-magnetic

disorder, strong disorder is detrimental for it and moreover can mimic the signatures

of the MZMs in local transport properties in the trivial phase [25]. Semiconductors

with high electronic mobility and clean superconductor-semiconductor interfaces are thus

necessary to engineer the topological phase. Secondly, the parameter ∆ind does not fully

encapsulate the effects of the superconductor-semiconductor proximity. The effective

coupling γ between the superconductor and the semiconductor, while governing the ratio

of the induced pairing potential ∆ind and the gap ∆0 of the parent superconductor, also

affects the degree to which the parameters of the unproximitized nanowire, primarily

the effective Rashba energy Eso and the g-factor (and hence Vx), renormalize due to the

6
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proximity to the superconductor, where these parameters are much smaller. Specifically,

larger values of γ result in the larger values of ∆ind, which leads to a better protection

against the interface disorder and a larger maximal topological gap, but it also causes

the decrease in the values of Eso and the g-factor, which is detrimental for the topological

phase and the topological gap [26, 27].

All the above considerations put significant constraints on material choices for the

superconductor-semiconductor hybrids and their fabrication techniques [28]. On the

semiconductor side, the usual materials of choice are InAs or InSb, which boast large

intrinsic values of the Rashba spin-orbit energy Eso and the g-factor, have a good sus-

ceptibility to external gate tuning, and can be fabricated to possess relatively large elec-

tronic mobility. On the superconductor side, Al has been the standard material of choice.

Even though Al possess a relatively small superconducting gap (up to ≈ 300µeV) when

compared to many other common superconductors, it can be deposited in situ on the

semiconducting nanowire without breaking the vacuum, thus preventing the oxide layer

from forming at the interface and dramatically reducing the level of the interface disorder.

Another important aspect that has to be taken into account when designing

superconductor-semiconductor heterostructures is the susceptibility of the parent su-

perconductor to detrimental effects of the external magnetic field. While the external

magnetic field is usually considered to be a necessary component to induce the Zeeman

field in the nanowire and drive it into the topological phase, see Eq. (2.2), it can also

reduce or collapse the gap in the parent superconductor if the g-factor in the nanowire

is not sufficiently large, which is often the case in practice. There are two basic mech-

anisms via which the external magnetic field affects the parent gap. First, the orbital

effect of the magnetic field, when coupled with the intrinsic non-magnetic disorder in the

superconductor, acts as an effective magnetic disorder and thus continuously reduces the

superconducting gap all the way to zero as the strength of the magnetic field increases

7
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[29]. The magnitude of the orbital effect in a thin superconducting strip parallel to the

magnetic field is proportional to the thickness of the strip (squared)[29], and thus to a

certain extent the orbital effect can be mitigated by fabricating superconducting strips

of sufficiently small thickness. However, the strips cannot be made too thin as for thick-

nesses fewer than a few nm the superconductivity is destroyed. (Another advantage of

using thin Al films is the fact that the gap of such thin films is significantly enhanced

when compared to the Al bulk gap value: the zero temperature bulk gap of the Al is

180µeV while, for example, recent experiments on the InAs-Al hybrids achieve the value

of 300µeV for the parent Al gap.) The second mechanism by which the gap in thin

superconducting strips is destroyed is the Zeeman field induced within the superconduc-

tor by the external magnetic field. Once this Zeeman field V SC
x reaches the value of

V SC
x = ∆0/

√
2, where ∆0 is the zero-temperature gap in the absence of the external

magnetic field, the superconductor suffers the first-order phase transition into a normal

metallic phase, and the superconductivity is destroyed. This limiting value of the Zeeman

field is known as the Chandrasekhar-Clogston limit[30, 31].

There are various proposed ways in which the aforementioned detrimental effects of

the external magnetic field can be alleviated. One of them is by coupling a magnetic

insulator to the superconductor-semiconductor heterostructure, which was first proposed

in Ref. [21], and later attempted experimentally in Refs. [32, 33, 34], where EuS was picked

as a magnetic insulator of choice due to the ability to create a relatively clean interface

between EuS and Al/InAs, followed by various theoretical studies [12, 35, 36, 37, 38, 39,

40]. In Ref. [32] the defect-free heterostructure between an InAs semiconductor wire and

a EuS has been prepared and studied. However, negligible direct magnetization of InAs

was reported. Nevertheless, while such direct coupling between EuS and InAs seems to

be absent, EuS is known to induce the Zeeman spin splitting in Al [41, 42, 43, 44, 45],

which by itself is not sufficient to achieve the zero-field topological superconductivity,

8
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but might help in reducing the minimum field required to induce the topological phase.

Another potential approach to reducing detrimental effects of specifically Zeeman

field in the parent superconductor is by introducing heavy-atom impurities to the su-

perconductor, which induce strong spin-orbit scattering. Spin-orbit scattering is well-

known to reduce the Zeeman splitting in superconductors [29], and thus can serve as a

powerful tool to push the Chandrasekhar-Clogston limit further from its conventional

(spin-orbit-scattering-free) value. Recently, Ref. [13] performed experiments with InSb-

Al heterostructure, where Al strip was covered by a very thin layer of Pt atoms that

are known to induce spin-orbit scattering. Ref. [13] showed that such Pt-covered het-

erostructures can sustain larger magnetic fields than their Pt-free counterparts.

In this chapter, we theoretically study the aforementioned ways to alleviate the detri-

mental effects of the magnetic field on superconductor-semiconductor hybrids and the

topological phase. It is important to note that the superconductors that have been used

in proximity heterostructure experiments, such as Al, NbTiN, Sn, and Pb are all diffusive

either due to intrinsic disorder or oxidation on the surface. On the other hand, the opti-

mal platform for Majorana nanowires should feature “clean” semiconductors with defects

minimized [46]. Therefore, one needs to put forward a theoretical framework that includes

self-consistent superconducting effects in different parts of the system, disorder scattering,

as well as proximity effects. One such approach would be a self-consistent microscopic

Bogoliubov-de Gennes treatment. However, in practice the need to include phenomena

at disparate lengthscales — ranging between angstroms to hundreds of nanometers and

governed by the Fermi wavelengths, superconducting and magnetic coherence lengths as

well as disorder scattering mean free path — makes it prohibitive for numerical real-space

calculations, thus necessitating an effective theory. Here we develop such effective theory

based on the Usadel equation, which is an established tool to study disordered super-

conductors. The Usadel equation approach allows one to self-consistently account for
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various effects in the superconductor, such as Zeeman field, orbital effect of the magnetic

field, spin-orbit scattering and magnetic scattering, and then use the obtained results for

the parent superconductor to study its effects on the nanowire.

2.3 The Usadel equation

The Usadel equation is a nonlinear second-order differential equation for the quasi-

classical Green’s function of a superconductor. Although it is a standard method for

describing superconductors [47], for completeness of the presentation we introduce it in

this section. The detailed derivation can be found in Ref. [48]. The Usadel equation

is valid in the limit λF ≪ lMFP ≪ ξ, where λF is the metallic Fermi velocity, lMFP is

the mean free path and ξ is the superconducting coherence length. For typical s-wave

superconductors used in Majorana nanowires, such as Al, this approximation holds, as

λF ≃ 1Å, lMFP ≃ 20nm [49], and ξ ≃ 300nm [50].

The starting point is the Gor’kov equation for the superconducting Green’s function

ǦSC(iωn, r1, r2) [51] describing an excitation in Nambu space between spatial coordinates

r1 and r2 at the (imaginary) frequency iωn. We will use the mixed real- and momentum-

space representation ǦSC(r,k) obtained by the Wigner transform to the center-of-mass

coordinates r ≡ (r1+r2)/2 and a Fourier transform over the relative coordinate r1−r2 →

k. Taking advantage of the short Fermi wavelength in the superconductor, one can

apply the quasiclassical approximation and integrate out the magnitude of the relative

momenta on the Fermi surface, yielding a quasiclassical Green’s function ǧ(iωn, r,kF ) =

P τ̂z
i
π

'
dξkǦSC(ωn, r,k) [52, 53], where kF denotes the direction of momenta on the

Fermi surface, ξk is the electronic dispersion relation, τ̂z is a Pauli matrix in Nambu

space, and P indicates principal-value integration. The quasiclassical Green’s function

ǧ is subject to a normalization condition ǧ(iωn, r,kF )
2 = 1̌. Disorder averaging for
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scattering off non-magnetic, magnetic and spin-orbit impurities [54, 55] is performed with

the help of the self-consistent Born approximation and results in self-energy corrections

to ǧ.

Further simplification is possible in the dirty limit when the mean free path associated

with the scattering off non-magnetic impurities is much smaller than the superconducting

coherence length (but still much larger than the Fermi wavelength). In this case one can

expand ǧ(iωn, r,kF ) up to a linear order in kF and arrive to the Usadel equation for

the isotropic (independent of kF ) part of the quasiclassical Green’s function ǧ(iωn, r).

Throughout the chapter we make use of the Usadel equations in the form utilized in

Refs. [47, 56]:

D∂ · (ǧ∂ǧ)− [ωnτ̂z + iV SC
Z · σ̂τ̂z +∆τ̂+ +∆∗τ̂− + Σ̌, ǧ] = 0, (2.3)

where the covariant derivative is ∂X̌ = ∇− i[Aτ̂z, X̌], A is the vector potential, D is a

diffusion constant associated with the electronic scattering off non-magnetic impurities

and it is given byD = vFlMFP/3, where vF is the Fermi velocity in the superconductor and

lMFP is the mean-free path, V SC
Z is the Zeeman field which may arise due to an external

magnetic field or a proximity to a magnetic material, ∆ is the pairing potential, σ̂(τ̂ ) is

a set of Pauli matrices in spin (Nambu) space and τ̂± = (τ̂x ± iτ̂y)/2. Equation (2.3) is

written in the Nambu spinor basis (ψ↑,ψ↓,−ψ†
↓,ψ

†
↑)

T .

The self-energy Σ̌ = Σ̌so + Σ̌sf incorporates elastic spin relaxation mechanisms that

we consider throughout this work: spin-orbit scattering Σ̌so = σ̂ǧσ̂/(8τso) off heavy ions

which preserves time-reversal symmetry and spin-flip scattering Σ̌sf = σ̂τ̂zǧτ̂zσ̂/(8τsf ) off

magnetic impurities which breaks time-reversal symmetry. For convenience, we introduce

energy scales Γso/sf = 3/(2τso/sf ) associated with these two types of scattering.

In general, the Usadel equation (2.3) has to be supplemented with boundary condi-
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tions, and the corresponding boundary problem has to be solved. In the context of a SC-

SM heterostructure in a parallel magnetic field, vacuum boundary conditions, ∂ǧ = 0, can

be assumed at all boundaries, including the boundary between the SC and the SM. This

is justified by the small effective transparency of the interface for quasiparticles traveling

from the superconductor into the semiconductor: quasiparticles in the superconductor

have a much larger Fermi momentum than in the semiconductor. Only quasiparticles

moving with a small momentum parallel to the interface can tunnel from the supercon-

ductor to the semiconductor, but strong disorder in the superconductor randomizes the

momentum direction, resulting in a low-probability of tunneling [57]. Note that electrons

from the semiconductor have a high probability of tunneling into the superconductor and

reflecting back as a hole, providing Andreev scattering. Additional corrections in the very

strong tunneling regime involving coherent tunneling and disorder scattering in the su-

perconductor can generate additional subgap states at finite magnetic fields [58]; we do

not consider this regime.

Given the vacuum boundary conditions and assuming the uniformity of the spin relax-

ation and Zeeman effects in the SC, it has been shown that for very thin superconductors

(with thickness dSC ≪ ξ,λLondon, where λLondon is the London penetration depth) in a

parallel magnetic field the spatial dependencies of the Green’s function and the order

parameter can be neglected [59], ǧ(ωn, r) → ǧ(ωn), and the order parameter can be cho-

sen real, ∆ ∈ R. In that case, the Usadel equation (2.3) becomes a non-linear algebraic

equation 1:
(
ωnτ̂z + iV SC

Z · σ̂τ̂z +∆τ̂x + Σ̌, ǧ
)
= 0, (2.4)

where orbital effects of the magnetic field lead to an additional contribution to the self-

1SC-MI bilayers with superconductors of thickness comparable or greater than the coherence length
have been recently studied in Ref. [45]
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energy:

Σ̌ = Σ̌so + Σ̌sf + Σ̌orb, (2.5)

Σ̌orb = Γorb
τ̂zǧτ̂z
4

, (2.6)

and the orbital depairing energy is given by

Γorb =
De2B2d2SC

3!c2
. (2.7)

Equation (2.7) is a familiar result for thin superconducting films subjected to a parallel

magnetic field [60, 29].

Equation (2.4) can be solved by the following Green’s function parametrization in

terms of functions θ(ωn, r) and φ(ωn, r)[47, 56]:

ǧ(ωn, r) = τ̂z cos θ(coshφ+ iσ̂x tan θ sinhφ) + τ̂x sin θ(coshφ− iσ̂x cot θ sinhφ). (2.8)

Note that the parametrization (2.8) automatically satisfies the normalization condition

ǧ2 = 1̌. The matrix Eq. (2.4) hence becomes a set of nonlinear equations

coshφ(∆ cos θ − ωn sin θ)− V SC
Z sinhφ cos θ−

− sin 2θ

*
Γsf

12
(2 cosh2 φ+ 1) +

Γorb

4
(2 cosh2 φ− 1)

+
= 0,

(2.9a)

sinhφ(∆ sin θ + ωn cos θ)− V SC
Z coshφ sin θ+

+ coshφ sinhφ

*
Γso

3
+

"
Γsf

6
+

Γorb

6

#
cos 2θ

+
= 0.

(2.9b)
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Once the quasiclassical Green’s function ǧ is computed via Eqs. (2.8)-(2.9b), one can

evaluate various physical properties of the superconductor, such as the pairing potential,

free energy and the density of states. Reference [56] derives expressions for these physical

quantities in terms of functions θ(ωn, r), φ(ωn, r), and here we present those expressions

for the reader’s convenience.

First, the pairing potential can be calculated by the means of the “gap equation”

∆ log(
T

Tc0

) = 2πT
,

ωn>0

"
1

4
Tr(τ̂xǧ)−

∆

ωn

#
= 2πT

,

ωn>0

"
coshφ sin θ − ∆

ωn

#
, (2.10)

with T being temperature and Tc0 denoting critical temperature of the superconductor

when no Zeeman field or spin relaxation processes are present. Importantly, Eq. (2.10) has

to be paired with Eqs. (2.9a)-(2.9b) in order to achieve self-consistency of the calculations.

Second, the free energy density difference between the superconducting and the normal

state can be obtained as [56]

fsn = πTν0
,

ωn>0

-
4ωn − 2 coshφ(2ωn cos θ +∆ sin θ) + 4V SC

Z sinhφ sin θ+

+
1

2
(Γso + Γsf + Γorb)−

1

2
(Γso + (Γsf + Γorb) cos 2θ) cosh

2 φ−

− 1

2

"
1

3
Γso −

"
1

3
Γsf − Γorb

#
cos 2θ

#
sinh2 φ

.
, (2.11)

where ν0 denotes the normal density of sates at the Fermi level. The condition fsn < 0

is necessary to ensure thermodynamic stability of the superconducting phase. Third, the

total density of states can be evaluated using quasiclassical Green’s function:

ν(E) =
1

8
ν0ℜ[Tr(τ̂zǧ|ωn→−iE+)] =

1

2
ν0ℜ[cos θ coshφ|ωn→−iE+ ]. (2.12)

Experimentally, SIN junctions oftentimes used to measure the density of states. The
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differential conductance in the SIN junction is related to the density of states through

convolution [61],

dI

dV
(V ) ∝

! ∞

−∞
ν(E)K(E + eV )dE, (2.13)

where V is a voltage bias and the convolution kernel is given by

K(x) =
βeβx

(1 + eβx)2
(2.14)

with the inverse temperature β = 1/kBT .

Equations (2.9a)-(2.13) provide a sufficient apparatus to self-consistently calculate

the quasiclassical Green’s function of the parent SC and study the combined effect of

Zeeman field, magnetic and spin-orbit scattering on the superconducting properties.

2.4 Properties of Al and Al/Pt thin films

In this section we apply the Usadel equation apparatus developed in the previ-

ous section to study properties of thin superconducting films within superconductor-

semiconductor heterostructures. As discussed in the introduction to this chapter, Al has

emerged as a superconductor of choice in the search for topological superconductivity in

one-dimensional hybrids primarily due to the ability to create clean interfaces between

thin Al shells and various semiconductors of choice, such as InAs and InSb. However, Al

as a superconductor suffers from a relatively small gap (up to ≈ 300µeV for thin films),

which is further reduced by the presence of the magnetic field required to induce topo-

logical superconductivity, while potential topological quantum computing applications

require large gap to protect quantum information from decoherence.

One way to mitigate the detrimental effects of the external magnetic field on the gap is

by adding atoms of heavy elements (such as platinum) to the Al shells, which introduces
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Figure 2.1: Properties of Al/Pt thin films. Four-point measurements of resistance
R normalized to its value in the normal state RN as a function of temperature (A) and
magnetic field (B). Measurements have been performed for 6 nm thick aluminum films
with varying amount of platinum dPt. (C) Critical magnetic field and temperature
as a function of Pt thickness, together with the predicted critical field from theory
calculations. (D) Annular bright field scanning-tunneling electron micrograph and
energy-dispersive X-ray images of the Al film with 1.89 Å of Pt. Scale bars are 5 nm.
Figure is from Ref. [13].

spin-orbit scattering into the system. Reference [13] measured critical temperatures and

critical fields of Al thin films (thickness 6 nm) with added Pt layer as a function of Pt layer

thickness. The results of these measurements are presented in Fig. 2.1, which depicts the

superconducting transitions of Al/Pt films as a function of temperature (Fig. 2.1A) and

parallel magnetic field (Fig. 2.1B). Importantly, the addition of Pt does not affect the

shape and sharpness of the superconducting transitions, which indicates that the films

do not become strongly disordered or inhomogeneous [62]. The bare aluminum film has

a critical temperature Tc = 1.79K and a critical field Bc = 2.6T. Upon the addition

16



Application of the Usadel equation to study diffusive superconductor-semiconductor
heterostructures Chapter 2

Independent parameters Extracted Parameters
T (mK) dSC (nm) gel vF (m/s) ∆0 (meV) lmfp (nm) ΓSO (meV)

20 6 2 2× 106 0.27 0.9 see Fig. 2.2a

Table 2.1: Values of parameters used in critical field simulations of Al and Al/Pt films,
see Fig. 2.1. Extracted parameters were obtained by fitting experimental data.

of platinum, the critical field is increased above the bare aluminum’s Chandrasekhar-

Clogston limit already for platinum layer thickness dPt ≈ 1 Å, while leaving Tc unaffected.

Fig. 2.1D presents the cross-section of an Al/Pt film with dPt ≈ 1.9 Å, which reveals the

poly-crystalline structure of the Al.

In agreement with other studies on Al/Pt bilayers [63], the critical field starts to

saturate for dPt ≈ 2 Å and increases only by an additional 300mT for dPt ≈ 5.1 Å (see

Fig. 2.1C). At these thicknesses, however, Tc starts to decrease as a result of the inverse

proximity effect, as shown for Au/Be bilayers [64].

We use the Usadel equation, see Eqs. (2.4)-(2.10), to calculate the values of the

pair potential and to simulate the critical fields of the Al and Al/Pt films considered in

Fig. 2.1. We take the critical temperature to be Tc0 = 1.79 K for all simulated samples.

Using the critical field of the bare Al film (which we assume has a negligible amount of

spin-orbit impurities) measured in the experiment, Bc ≈ 2.6 T, we extract the value of

the mean free path in the film by solving the Usadel equation (2.4)-(2.10) with ΓSO = 0

and obtain lMFP ≈ 0.9 nm. We further use this value to simulate the critical fields of the

Pt-covered samples (see red dashed curve in Fig. 2.1 of the main text) and extract the

respective values of the spin-orbit scattering rate (see Fig. 2.2a). Our theorety captures

the increase of Bc as a direct result of including spin-orbit scattering (Fig. 2.1c). Values

of the parameters used in these simulations, both independent and extracted by fitting

experimental data, are given in Table 2.1.

Similarly to initial studies of the Al/Pt system, our theoretical model yields a linear
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a b

dc

Figure 2.2: a. Spin-orbit scattering energy ΓSO as a function of platinum thickness
fitted to experimental film data presented in the main text. b. Experimentally ex-
tracted energy difference between Zeeman-split quasiparticle peaks (blue dots), and
the corresponding Zeeman energy with g = 2. c. Calculated DOS (blue) and ther-
mally broadened conductance (orange) for the Al tunnel junction. Green and red
curves correspond to positive and negative bias respectively. d. Same curves for the
Al/Pt tunnel junction.

dependence of ΓSO on dPt, see Fig. 2.2(a). We note however that even for dPt = 5.1 Å,

the extracted value of ΓSO is smaller than ΓSO = 7.5meV, which was extracted from the

tunneling measurements [13]. Initial studies of Al/Pt revealed unphysically large spin-

orbit scattering rates [63]. In the case of the above mentioned experiment, the extracted

spin-orbit scattering rate was higher than the momentum scattering rate, which indicated

that the increase of critical field was not fully understood. It was pointed out later [65]

that, due to Fermi liquid effects, the g-factor of such a thin Al films is being reduced [61].
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Independent parameters Extracted Parameters
T (mK) dSC (nm) gel vF (m/s) ∆0 (meV) lmfp (nm) ΓSO (meV)

Al 110 4.5 2 2× 106 0.31 0.68 0.0
Al/Pt 30 4.5 2 2× 106 0.306 0.68 7.5

Table 2.2: Values of parameters used in conductance spectroscopy simulations of Al
and Al/Pt tunnel junctions (see Fig. 2 of the main text). Extracted parameters were
obtained by fitting experimental data.

We plot the energy difference between the spin-up and spin-down quasiparticle peaks in

a 4.5-nm Al film as a function of magnetic field in Fig. 2.2(b). The analysis is made for

fields larger then 1T. In our case, we do not observe a clear deviation from a g-factor of 2

(indicated by the orange curve). The slight discrepancy observed near the transition can

be a result of the peak broadening, rather than Fermi-liquid effects. We note, however,

that the Fermi-liquid correction becomes more relevant at higher magnetic field values,

and we cannot fully exclude the presence of these effects in Al/Pt devices.

Furthermore, Ref. [13] experimentally investigated the impact of Pt atoms on the

Al quasiparticle density of states through normal-metal/insulator/superconductor (NIS)

tunneling measurements. A schematic illustration and the used measurement circuit for

these experiments are shown in Figure 2.3(c). Further details on the fabrication and

measurement details can be found in the supplementary materials of Ref. [13]. Here we

again utilize the Usadel equation approach, see Eqs. (2.9a)-(2.13) to theoretically simulate

the measured conductance spectroscopy on the Al and Al/Pt films. Table 2.2 summarizes

values of the parameters, both independent and extracted by fitting experimental data,

used in the conductance simulations.

For the aluminum film, the experiments showed the presence of the Zeeman splitting

of the quasiparticle coherence peaks (Fig. 2.3a). Furthermore, at a magnetic field of B

= 3.45T, the film underwnet a first-order phase transition to the normal state. Our

theoretical model reproduces these two key features (Fig. 2.3d, see also Fig. 2.2c showing
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Figure 2.3: Conductance spectroscopy on Al and Al/Pt NIS tunnel junc-
tions. (A) Experimental tunneling conductance of a ∼ 4.5 nm Al tunnel junction.
(B) Experimental tunneling conductance of a ∼ 4.5 nm Al + 1.9 Å Pt tunnel junc-
tion. (C) False-color scanning-electron micrograph of a typical Al/AlOx/Ag tunnel
junction. Scale bars are 1µm. (D) Tunneling conductance from theory calculations
of the Al tunnel junction. (E) Tunneling conductance from theory calculations of the
Al/Pt tunnel junction. The dashed orange lines present the energy gap Eg. The order
parameter ∆ which is extracted from theory is presented by dashed red lines. Dashed
yellow lines show the magnetic field Bc1 for which the energy gap is closed, and the
dashed pink lines indicate the magnetic field Bc2 for which the order parameter is
calculated to vanish. (F) Overview of the extracted energy gap from experiments, the
predicted energy gap from theory and the corresponding order parameter of the films.
Figure is from Ref. [13].

the density of states and the conductance at B = 0), where the first-order transition is

reflected in an abrupt collapse of the order parameter. The critical field extracted from

the model is 200mT smaller than the experimentally measured value. This discrepancy

between theory and experiment can be explained by the hysteretic behavior of the order

parameter near the transition [66]. A metastable superconducting state can persist for

magnetic fields slightly above the calculated critical value.
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For the Al/Pt film with dPt = 1.9 Å, Zeeman splitting was not observed in the ex-

periment. Instead, the film undergoes a second-order phase transition at B = 6.34T

induced primarily by orbital effects (Fig. 2.3b). Importantly, the energy gap in the film

remains free of quasiparticle states. Theoretical modelling of the film reveals a small

magnetic field range with gapless superconductivity close to the transition (Fig. 2.3e, see

also Fig. 2.2d showing the density of states and the conductance at B = 0), which is an

expected feature when the transition from the superconducting into the normal state is

of second order [29]. For both Al and Al/Pt films, the model yields diffusion constants

which correspond to a mean free path of lMFP ≈ 7 Å.

This value is consistent with reports on Al films grown under similar conditions [67,

61]. Since the addition of Pt does not seem to affect the mean free path, the increase

in critical magnetic field cannot be attributed to increased disorder. The suppression

of Zeeman splitting instead demonstrates that spin mixing is the dominant mechanism.

From the model, the increased spin-orbit scattering energy of the Al/Pt film is extracted

to be ΓSO = 7.5meV, corresponding to a spin-orbit scattering time of τSO = 1.3 · 10−13 s.

We note, however, that this extracted value of the spin-orbit scattering rate could be

overestimated due to the presence of Fermi-liquid effects [65]. In Fig. 2.3(f), the measured

energy gap is shown together with the energy gap extracted from theory, as well as the

corresponding order parameter. We observe good quantitative agreement between the

model and our experiment.
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Figure 2.4: (a) Semiconductor (SM) nanowire proximitized by a superconductor–
magnetic insulator (SC-MI) bilayer. (b) Effects of the magnetic insulator on the
superconductor can be described by an appropriate boundary condition marked with
green.

2.5 Topological superconductivity in nanowires prox-

imate to a diffusive superconductor-magnetic in-

sulator bilayer

As discussed in the introduction to this chapter, another potential way to mitigate

detrimental effects of the external magnetic field on the parent superconductor is by in-

troducing a magnetic insulators to the superconductor-semiconductor heterostructure. A

typical setup of a combined heterostructure consists of semiconducting (SM), supercon-

ducting (SC) and magnetic insulator (MI) parts connected together as shown schemat-

ically in Fig. 3.1(a). Here the magnetic insulator such as EuS, induces a Zeeman spin

splitting by virtual tunneling.

In this section we focus on the physics of MI/SC/SM stack. Instead of directly mod-

eling the geometry shown in Fig. 3.1(a), we consider a variety of scattering mechanisms

at the interface between the MI and the SC, as shown in Fig. 3.1(b). We assume that

the effect of the interface between the MI and the SM, shown on the right side of Fig.

3.1(a), can be modeled by an effective bulk Zeeman field in the SM. To this end we de-
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velop a two-step approach. First, utilizing the short mean free paths in superconductors,

we calculate the properties of the MI-SC bilayer using the Usadel equation approach

described in Section 2.3, and, second, we use this result as a boundary condition for the

nanowire model. We apply the Usadel equation to compute the pair potential, critical

temperature, and the density of states in the superconductor. Various physical processes

such as applied magnetic field, exchange field from the magnetic insulator and scattering

off magnetic and/or spin-orbit impurities in the SC are incorporated. Note that the mag-

netic and spin-orbit scattering is introduced phenomenologically to our model. Magnetic

scattering can be either due to intrinsic magnetic impurities in the superconductor, or

due to electron scattering off the magnetic insulator surface. Similarly, spin-orbit scat-

tering can either be intrinsic to the superconductor, for example, as it happens in Pb,

or result from scattering off heavy ions. The superconducting proximity effect is then

readily described by the solution of the Usadel equation.

We will be focused on the experimentally relevant regime of a thin superconductor

compared to its coherence length (see Fig. 3.1b). Furthermore, in this section we are

interested in the regimes of small applied external magnetic fields, thus from now on we

ignore the orbital contribution of the applied field, A = 0.

To utilize the Usadel equation, the boundary between the superconductor and the

magnetic insulator has to be supplemented with an appropriate boundary condition.

General spin-dependent boundary conditions for the isotropic superconductor Green’s

function have been derived in Ref. [68]. In the case of a boundary between magnetic in-

sulator and thin superconductor (with thickness much smaller than the coherence length

dSC ≪ ξ), the authors of Ref. [68] showed that effects of the magnetic insulator on the

superconductor can be described by a uniform effective Zeeman field V Z
eff ∝ d−1

SC and

magnetic scattering induced in the superconductor.

It is worth mentioning here the crucial difference between clean and dirty supercon-
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ductors. In the case of a clean SC, Ref. [69] showed that effects of the MI on the SC are

distinct from those generated by the external Zeeman field. In particular, the transition

of the clean SC adjacent to the MI into a normal state can be second order, as opposed

to the strictly first order transition in the presence of the Zeeman field. However, an

experiment from Ref. [42] demonstrated inadequacy of assuming clean Al when describ-

ing EuS-Al bilayers and indicated that dirty Al should be considered instead. Later on,

Ref. [68] showed microscopically that, in the dirty limit, the impact of the MI on the SC

is in fact equivalent to that of a Zeeman field and magnetic scattering.

2.5.1 Superconductor-semiconductor proximity effect

Once the quasiclassical Green’s function of the parent SC is calculated using the

Usadel equation, see Section 2.3, one can analyze the SC-SM proximity effect and inves-

tigate emergence of the topological phase in the heterostructure. The proximity effect

arises due to electron tunneling between the superconductor and the semiconductor. Ig-

noring irreducible contributions in electron tunneling which can be shown to be much

smaller than reducible ones [26, 70, 71], the proximity effect can be described by the

disorder-averaged SC Green’s function, and superconducting degrees of freedom in the

system can be integrated out. As a result, effects of the parent SC on the SM can be fully

incorporated into the interface self-energy Σ̌(ω)[26]. Assuming spin-independent SC-SM

electron tunneling 2, the interface self-energy reads

Σ̌(ω) = |t|2ν0
!

dξkǦSC(ξk,ω) (2.15)

with |t| being the tunneling amplitude. Note that Σ̌(ω) in Eq. (2.15) does not depend

on the Fermi momentum direction. Recalling the definition of the isotropic quasiclassical

2Spin-dependent tunneling between the SC and SM has been recently considered in Ref. [38]
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Green’s function, one can write

Σ̌(ω) = −iγτ̂zǧ(ωn)|ωn→−iω, (2.16)

where the SC-SM coupling γ = π|t|2ν0 has been introduced.

The Green’s function of the quasi-1D SM nanowire can be written as [26]

Ǧ−1(k,ω) = ω − V SM
Z σ̂x − [ξk + αRkσ̂y]τ̂z − Σ̌(ω). (2.17)

Here V SM
Z is the Zeeman field induced along the direction of the nanowire, for example

due to magnetic proximity from the adjacent magnetic insulator and/or external magnetic

field, ξk = k2/2m∗ −µ with m∗ and µ being the SM effective electron mass and chemical

potential, respectively, αR is Rashba spin-orbit coupling, and Σ̌(ω) is given by Eq. (2.16).

Writing ǧ(ωn) as in Eq. (2.8) gives

Ǧ−1(k,ω) = ω + iγ coshφ cos θ − (V SM
Z + γ sinhφ sin θ)σ̂x − (ξk + αRkσ̂y)τ̂z−

−γ coshφ sin θτ̂y + iγ sinhφ cos θτ̂yσ̂x, (2.18)

where φ(ω), θ(ω) are analytically continued into the real time domain via ωn → −iω.

Equation (2.18) shows that proximity to the SC induces four extra terms in the nanowire

Green’s function: frequency shift ∝ coshφ cos θ, Zeeman energy ∝ sinhφ cos θ, spin-

singlet even-frequency pairing ∝ coshφ sin θ and spin-triplet odd-frequency pairing ∝

sinhφ cos θ. In the absence of spin-orbit and magnetic scattering in the SC, these

proximity-induced terms can be calculated analytically. Appendix A.1 presents the cor-

responding expressions.

The low-energy spectrum of the system can be determined by computing poles of the
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Green’s function (2.18) from

det[Ǧ−1(k,ω)] = 0. (2.19)

To this end, one first calculates the self-consistent pair potential and determines the

Clogston limit using Eqs. (2.9a)-(2.11). Next, the Usadel equations (2.9a)-(2.9b) are

solved once again, this time in the real time domain using the self-consistent value

of the pair potential. Then, the obtained real time quasiclassical Green’s function

parametrized through φ(ω), θ(ω) is plugged into Eq. (2.18), which produces expres-

sions for the proximity-induced terms in the Green’s function. Finally, the low energy

spectrum of the system is inferred by solving Eq. (2.19).

The spectrum can be used to directly identify topological phase transitions (critical

points are signified by gap closure and reopening) and the topological gap.

2.5.2 Results

In the following we first review the results of calculations for the parent SC in isola-

tion. In particular, we analyze the dependence of the superconducting density of states,

pair potential and critical temperature on Zeeman field and spin-orbit and magnetic scat-

tering. Then we consider the SC-SM proximity effect and calculate the dependence of the

topological phase transition on these parameters. Finally, the dependence of the topo-

logical gap on external magnetic field for various values of Zeeman field and/or spin-orbit

and magnetic scattering in the SC is demonstrated.

Properties of the parent superconductor

We begin with an analysis of how Zeeman energy and spin-orbit scattering affect the

SC. Although the results in this section are established [72, 73, 74, 75], we reproduce them

here both as a validation of our methodology and to make the presentation self-contained.
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Figure 2.5: Dependence of density of states (left column), pairing potential (middle
column) and critical temperature (right column) of the SC on Zeeman field V SC

Z for
various values of spin-orbit (upper row, Γso) and magnetic (lower row, Γsf ) scattering
energy. Magnetic scattering in (a)-(c) and spin-orbit scattering in (d)-(f) is set to
zero. For (a)-(b) and (d)-(e), temperature is fixed to T/Tc0 = 0.01. Solid (dashed)
lines in (c) and (f) indicate second (first) order transition. All energies in (a)-(f) are
measured in units of the bare superconducting gap ∆00.

Figure 2.5(a) depicts the SC density of states of Eq. (2.12) plotted for a fixed value of

Zeeman field and various values of spin-orbit scattering energies. Throughout energy is

measured in units of the bare gap ∆00 of the SC when no Zeeman field or spin relaxation

processes are present. Figure 2.5(a) demonstrates that the Zeeman energy splits the

density of states in the superconductor into two spin bands. Spin-orbit scattering reduces

the spin splitting in the SC formed by the Zeeman field and eventually merges the two

spin-resolved peaks in the density of states into one; in the limit of infinite spin-orbit

scattering a single-peak BCS density of states is recovered [73]. The pairing potential is

likewise affected by spin-orbit scattering, as illustrated in Fig. 2.5(b) where we plot it as a

function of Zeeman field for several values of Γso. In the absence of spin-orbit scattering,

the pairing potential is constant as a function of V SC
Z up to a value of V SC

Z = 1/
√
2

where it vanishes and the system undergoes a first order transition into the normal state.
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This critical value of Zeeman field is the Clogston limit [30, 31, 72] representing the

maximum paramagnetic spin splitting that the SC can withstand. Adding spin-orbit

scattering to the system pushes the Clogston limit to higher critical values of V SC
Z ; see

Fig. 2.5(b). The pair potential in turn decreases as a function of V SC
Z when Γso ∕= 0 and

for values of Γso ≳ 15 the transition to the normal state becomes second order. Lastly, we

consider how the critical temperature Tc is impacted by both Zeeman field and spin-orbit

scattering in Fig. 2.5(c). At finite Zeeman splitting spin-orbit scattering increases the

critical temperature; just as in Fig. 2.5(b), spin-orbit scattering increases the Clogston

limit, while values of spin-orbit scattering larger than a certain threshold result in the

transition switching from first to second order.

Now we consider the combined effect of Zeeman energy and magnetic scattering on

the SC in Fig. 2.5(d)-2.5(f). We present the density of states, plotted for a fixed value of

Zeeman field and several values of magnetic scattering energies, in Fig. 2.5(d). Magnetic

scattering smears out the density of states peaks and reduces the excitation gap. For

sufficiently large values of Γsf , the SC becomes gapless [29]. Moving on to the analysis

of the pairing potential, Fig. 2.5(e) depicts its dependence on Zeeman field and magnetic

scattering. We observe that the presence of magnetic scattering in the SC reduces the

pairing potential and, unlike spin-orbit scattering, decreases the Clogston limit. At the

same time, similar to spin-orbit scattering, adding a sufficiently large Γsf switches the

order of the transition from first to second. Figure 2.5(f), which presents the dependence

of the critical temperature on Zeeman field and magnetic scattering, supports the above

conclusions. The opposite behavior compared to spin-orbit scattering is observed, i.e.,

increasing the magnitude of magnetic scattering that breaks time-reversal symmetry

reduces the critical temperature at all values of induced Zeeman splitting.
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Topological phase transition

Having calculated self-consistent values of the pair potential in the parent SC, we

now analyze the emergence of the topological phase in the proximitized nanowire. Im-

portantly, the frequency dependence of the Green’s function in Eq. (2.18) is irrelevant

to the topological phase transition: at the critical point the energy gap at k = 0 closes,

which enables one to identify the transition by setting ωn = 0 in Eqs. (2.9a)-(2.9b) and

k = ω = 0 in Eq. (2.18) as long as the correct self-consistent value of the pair potential

∆ = ∆(V SC
Z ,Γso,Γsf ) is given. In this case, Eq. (2.9a) gives θ = π/2 while Eq. (2.9b)

reads

∆ sinhφ− V SC
Z coshφ+

1

3

"
Γso −

Γsf

2

#
coshφ sinhφ = 0. (2.20)

At the same time, the Green’s function (2.18) becomes

Ǧ−1(k = 0,ω = 0) = −(V SM
Z + γ sinhφ)σ̂x − γ coshφτ̂y, (2.21)

where for simplicity we set chemical potential in the nanowire to zero, µ = 0. Note that

the induced Zeeman energy (spin-singlet pairing) in the nanowire is equal to γ sinhφ

(γ coshφ) while odd-frequency spin-triplet pairing vanishes. From Eq. (2.21) we identify

the minimum Zeeman field in the SM necessary to create the topological phase, V SM
Z,c , as

V SM
Z,c = γ(coshφ− sinhφ). (2.22)

Rewriting Eq. (2.20) in terms of this quantity gives

/
∆− V SC

Z

0 /
V SM
Z,c /γ

0
−

/
∆+ V SC

Z

0 /
V SM
Z,c /γ

03
+

Γ

6

1
1−

/
V SM
Z,c /γ

042
= 0, (2.23)
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where we denoted Γ ≡ Γso − Γsf/2. Note that Γ in general does not fully incorporate

effects of spin relaxation processes on the topological critical point because the value of

the self-consistent pair potential ∆ = ∆(V SC
Z ,Γso,Γsf ) depends on these processes as

well. Although an analytic solution to the quartic equation (2.23) exists, in general it is

cumbersome and we do not present it here. Instead, we build intuition by considering

limiting behavior of Eq. (2.23). First, in the limit of Γ = 0, which corresponds either to

the absence of spin relaxation processes Γso = Γsf = 0 or to the case when Γso = Γsf/2,

we find that a minimum Zeeman field of

V SM
Z,c

γ
=

3
∆− V SC

Z

∆+ V SC
Z

(2.24)

is required in the SM in order to induce topological superconductivity. For small but

non-zero values of Γ, |Γ| ≪
$
∆2 −

/
V SC
Z

02%3/2

/
/
V SC
Z ∆

0
, perturbative corrections to

V SM
Z,c of Eq. (2.24) can be calculated. Up to first order in Γ we obtain

V SM
Z,c

γ
=

3
∆− V SC

Z

∆+ V SC
Z

+
∆V SC

Z

3(∆− V SC
Z )(∆+ V SC

Z )2
Γ+O(Γ2). (2.25)

In the absence of spin-orbit and magnetic scattering, Eq. (2.24) demonstrates that it is

impossible to close the gap without an additional Zeeman field in the SM: in this case the

topological phase requires V SC
Z > ∆ which is prohibited by the Clogston limit. Adding

a small spin-orbit scattering, which leads to a small positive Γ, does not improve the

situation. On the contrary, the corresponding correction in Eq. (2.25) increases value of

the critical Zeeman field. This behavior is a manifestation of the fact that spin-orbit scat-

tering quenches spin splitting in the SC; see Fig. 2.5(a) and the corresponding discussion

in Section 2.5.2. Due to this fact, the effective Zeeman energy transferred from the SC to

the SM is decreased by the presence of spin-orbit scattering in the superconductor. On
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the other hand, adding purely magnetic scattering, which leads to negative Γ, reduces

the critical SM Zeeman field for a fixed value of V SC
Z . However, magnetic scattering also

suppresses the Clogston limit as has been discussed in Section 2.5.2, so that the maxi-

mum V SC
Z that the parent SC can sustain is smaller. For this reason, adding magnetic

scattering does not assist in reducing V SM
Z,c . We show this below when we solve Eq. (2.23)

numerically for self-consistent ∆ and general values of V SC
Z ,Γso,Γsf .

Next, we consider the opposite limit of infinite spin-orbit scattering, Γso ≈ Γ → ∞,

or no Zeeman splitting in the SC, V SC
Z = 0. In both of these limits, Eq. (2.23) yields

V SM
Z,c = γ regardless of the values of other parameters. Note that V SM

Z,c = γ is a familiar

result for the topological criterion at zero chemical potential [26]. Expanding the solution

of Eq. (2.23) near V SM
Z,c = γ, we can find corrections for finite but large Γso or nonzero

V SC
Z :

V SM
Z,c

γ
= 1− 3V SC

Z

3∆+ 6V SC
Z + Γso

+ · · · , (2.26)

which is valid as long as 3V SC
Z ≪ 3∆+6V SC

Z +Γso. Further expanding Eq. (2.26) in the

limit of large spin-orbit scattering Γso ≫ V SC
Z ,∆ leads to

V SM
Z,c

γ
= 1− 3V SC

Z

Γso

+O

"
1

Γ2
so

#
. (2.27)

Equation (2.27) shows once again that spin-orbit scattering suppresses Zeeman splitting

in the SC. On the other hand, expanding Eq. (2.26) in the limit of small SC Zeeman

energy V SC
Z ≪ Γso,∆ gives

V SM
Z,c

γ
= 1− 3V SC

Z

3∆+ Γso

+O
$/

V SC
Z

02%
. (2.28)

Figure 2.6 presents the solution of Eq. (2.23) for general values of V SC
Z and Γso, Γsf .

Self-consistent values of the pair potential ∆(V SC
Z ,Γso,Γsf ) cannot be in general obtained
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Figure 2.6: Critical Zeeman energy V SM
Z,c required to be added to the nanowire in order

to induce topological phase versus Zeeman energy in the parent superconductor V SC
Z

for various values of spin-orbit and magnetic scattering and superconductor-semicon-
ductor coupling γ. Solid lines are calculated self-consistently and terminate at the
Clogston limit, while dashed lines are calculated non-self-consistently. Chemical po-
tential in the nanowire is set to zero. All energies are measured in units of the bare
superconducting gap ∆00.

analytically, so in Fig. 2.6 we depict the curves V SM
Z,c (V SC

Z ) for two different settings:

(1) solid curves represent the situation when numerically calculated values of the self-

consistent pair potential ∆ = ∆(V SC
Z ,Γso,Γsf ) [Fig. 2.5(b),(e)] are used in Eq. (2.23),

while (2) dashed curves illustrate the case when Eq. (2.23) is solved with the non-self-

consistent pair potential∆ = ∆00. Each solid curve in Fig. 2.6 terminates at its respective

Clogston limit when the parent superconductor transitions into the normal state. Even

though spin-orbit scattering, if present in the SC, can push Clogston limit further —

see Fig. 2.5(b)-2.5(c) and discussion in Section 2.5.2 — it also quenches spin splitting in

the SC and, correspondingly, Zeeman energy transferred to the SM. At the same time,

magnetic scattering suppresses the Clogston limit as can be seen in Figs. 2.5(e)-2.5(f).

On top of that, magnetic scattering quenches the pair potential in the parent SC and

thus has a detrimental effect on the topological gap; see Section 2.5.2. For this reason,

spin-orbit and magnetic scattering do not assist in creating topological superconductivity

in the nanowire.
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Therefore, we emphasize again that the topological phase cannot be achieved in hybrid

heterostructures when the Zeeman field is only induced in the parent superconductor,

regardless of whether spin-orbit or magnetic scattering is present in the superconductor.

This conclusion has been stated in recent works by other authors as well [35, 38], although

they did not explicitly consider spin relaxation processes in the SC.

Reduction of the critical field V SM
Z,c can be achieved by weakening the SC-SM coupling

γ, see Eq. (2.22) and the grey line in Fig. 2.6. However, in the weak coupling regime a

smaller coupling leads to a smaller topological gap, see Section 2.5.2.

Dashed curves in Fig. 2.6 represent the results of non-self-consistent calculations. For

Γsf = 0 these curves closely follow the solid self-consistent lines. However, in the presence

of magnetic scattering (blue curve in Fig. 2.6) the dashed and the solid curves are posi-

tioned considerably off from each other because magnetic scattering substantially reduces

the pairing potential; see Fig. 2.5(e). This reduction cannot be captured by the non-self-

consistent pair potential. Another drawback of the non-self-consistent calculation is that

it does not enforce the Clogston limit, and therefore the dashed curves in Fig. 2.6 do

not terminate. This pathology could lead to incorrect conclusions about the topological

phase diagram. For this reason, we emphasize the importance of self-consistency in the

SC Green’s function (and subsequent topological phase diagram) calculation if Zeeman

energy and spin relaxation mechanisms are present in the superconductor.

Topological gap

Beyond the critical point, a crucial property of the topological phase is the spectral

gap. A larger gap enhances the protection of the topological phase against quasiparticle

poisoning and disorder. In this subsection, we calculate the gap in the nanowire and

analyze its dependence on Zeeman splitting and spin-orbit and magnetic scattering in

the parent SC. In general, because of the nontrivial frequency dependence of the Green’s

33



Application of the Usadel equation to study diffusive superconductor-semiconductor
heterostructures Chapter 2

function (2.18), the energy spectrum of the nanowire has to be computed numerically.

Moreover, in case of spin relaxation processes present in the SC, the Usadel equations

(2.9a)-(2.9b) are solved numerically as well. For this reason, we perform a numerical

analysis of Eqs. (2.9a)-(2.9b), (2.18). Throughout the calculations we set the Rashba

coupling in the nanowire to α = 0.2 eV·Å and the effective electron mass tom∗ = 0.02m0,

where m0 is the electron rest mass. We continue using the bare gap of the parent SC

∆00 = 0.23 meV as a unit of energy.

As discussed in Section 2.5.2, a certain Zeeman field V SM
Z,c has to be introduced directly

to the semiconductor to achieve the topological phase. Here we consider the case when

V SM
Z,c is created by applying an external Zeeman field V ext

Z to the entire system. As stated

in Section ??, we ignore orbital effects of the magnetic field. We assume that there is no

coupling between the SM and the MI, although this assertion can be easily adjusted in

our framework by using a different parametrization of V ext
Z . The total Zeeman energies of

the SC and the SM are V SC
Z = gSCV

ext
Z + V SC

Z,0 and V SM
Z = gSMV ext

Z , respectively, where

V SC
Z,0 is the MI-induced Zeeman splitting in the SC and we take gSC = 2 and gSM = −15.

Figure 2.7 shows the computed spectral gap as a function of the chemical potential µ

in the nanowire and the external Zeeman field V ext
Z for V SC

Z,0 = 0.55 in the absence of the

magnetic and spin-orbit scattering in the SC. The topological part of the phase diagram

is marked red, solid black lines represent its boundary. If the MI does not couple to the

SC — i.e., V SC
Z,0 = 0, — the phase boundary is depicted by dashed black lines. In this

case the orientation of the external field does not play any role which is exhibited by the

symmetry of the two dashed curves with respect to the V ext
Z = 0 line. However, if the MI

induces Zeeman splitting in the SC, the relative orientation of the two fields — V ext
Z and

V SC
Z,0 — is important. In the antiparallel configuration, which corresponds to the case

of V ext
Z < 0 in Fig. 2.7, the Zeeman splittings created by the MI and the applied field

have opposite signs in the SC and the same sign in the SM. As a result, the topological
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Figure 2.7: Spectral gap Eg (color) multiplied by the topological invariant Q = ±1 as
a function of the chemical potential µ in the semiconductor and the external Zeeman
field V ext

Z for Γso = Γsf = 0, V SC
Z,0 = 0.55. The phase boundary is marked by solid

black lines. Dashed black lines represent the phase boundary when V SC
Z,0 = 0. The

hatched region depicts the part of the phase diagram beyond the Clogston limit when
superconductivity in the parent SC is destroyed. All energies are measured in units
of the parent superconductor’s bare gap ∆00.

phase is achieved at smaller values of |V ext
Z | compared to the case when V SC

Z,0 = 0. On

the other hand, when the direction of V ext
Z is parallel to the magnetization of the MI

— V ext
Z > 0 in Fig. 2.7 — the Zeeman splittings have the same sign in the SC but the

opposite signs in the SM. This is an unfavorable configuration for the topological phase:

the Clogston limit in this case is reached at smaller values of the applied field, while the

phase transition to the p-wave superconductivity requires a larger applied field compared

to the case with no MI.

We now proceed to studying individual effects of the Zeeman splitting, spin-orbit and

magnetic scattering on the topological gap. To this end, we fix the chemical potential

in the nanowire to zero and plot the dependence of the gap on V ext
Z in Fig. 2.8 for

the antiparallel configuration of the applied field and the MI magnetization, which is
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Figure 2.8: Energy gap in the proximitized nanowire as a function of external magnetic
field V ext

Z = −µBB/2 for various values of SC-SM coupling γ, MI-induced Zeeman
energy in the superconductor V SC

Z,0 , spin-orbit scattering Γso and magnetic scattering
Γsf . Γso = 0 in (a),(c), Γsf = 0 in (a),(b) and γ = 0.2 in (b,c),(c). All curves are
plotted for zero chemical potential in the nanowire. All energies are measured in units
of the parent superconductor’s bare gap ∆00.

advantageous for the topological phase. First, we consider impact of V SC
Z,0 in Fig. 2.8(a)

in the absence of the spin-orbit and magnetic scattering. The black dotted curve in

Fig. 2.8(a) shows the typical behavior of the energy gap as the system undergoes the

topological transition between the s-wave (small |V ext
Z |) and the p-wave (large |V ext

Z |)

superconductivity in the weak coupling regime (γ = 0.2) in the absence of any zero-field

Zeeman splitting in the SC. The kink exhibited by the curve at −V ext
Z ≈ 0.027 appears

where the minimum gap as a function of momentum jumps from k = 0 to k ∼ kF .

Inducing finite Zeeman splitting in the SC results in the decrease of the critical Zeeman

field as illustrated by the dashed line. Analogous reduction of the critical field can be
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achieved by lowering the coupling between the SM and the SC (grey dotted line), but that

also results in the reduction of the topological gap, whereas addition of the Zeeman energy

to the SC keeps the gap approximately the same as long as V SC
Z,0 is below the Clogston

limit. Adding Zeeman energy larger than the Clogston limit leads to an interesting

behavior; see solid line in Fig. 2.8(a). In this case at zero field the superconductivity in

the parent SC is broken due to the proximitizing MI, but application of the external field

restores it back. As a result, the system undergoes the first order transition from the

normal phase directly into the p-wave superconducting phase with the topological gap

close to the one of the MI-free system.

As we have previously pointed out while discussing Fig. 2.6, spin-orbit scattering can

quench the Zeeman effect in the superconductor, enhancing its Clogston limit, but also

reducing the Zeeman energy effectively transferred to the nanowire. This is illustrated in

Fig. 2.8(b) where we plot the gap as a function of the external field for different values of

Γso. We consider the case when Zeeman energy above the Clogston limit is induced in the

superconductor [solid line, same as in Fig. 2.8(a)]. Increasing the spin-orbit scattering in

the parent SC restores its superconductivity, and a regular transition between the s- and

p-wave phase is observed at finite Γso. Further increase of Γso leads to the enhancement

of the critical field due to the suppression of the Zeeman splitting in the superconductor.

Effects of the magnetic impurity scattering on the topological gap are illustrated in

Fig. 2.8(c). As has been discussed in Section 2.5.2, magnetic scattering reduces the

pairing potential in the parent SC. This leads to a minute reduction of the critical field

in Fig. 2.8(c) and a visible suppression of the topological gap. Overall, we conclude that

the presence of the magnetic scattering in the parent SC is not desirable for creating the

topological phase in the nanowire.
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2.6 Conclusion

In this chapter we have presented a theoretical approach to calculate properties of

disordered superconductors affected by various physical mechanisms, such as Zeeman

splitting, orbital magnetic field, magnetic and spin-orbit scattering, and furthermore

topological properties of nanowires proximitized by such superconductors. We have used

the Usadel equation to calculate how these mechanisms affect the intrinsic properties of

the superconductors, and further calculated how the superconductor changes the topolog-

ical properties of a proximate semiconducting wire. Using this approach, we have studied

how heavy atoms such as Pt and the spin-orbit scattering they introduce can reduce the

spin-splitting effect in the parent superconductor and thus push the critical Zeeman field

further from the conventional (spin-orbit-scattering-free) value. Using these results, we

have estimated the degree of the spin-orbit scattering in the Pt-Al-InSb heterostructure

experiments depending on the thickness of the Pt layer, and obtained the correct scaling

of the spin-orbit scattering energy with the Pt layer thickness.

Furthermore, we have applied the developed Usadel formalism to study nanowires

proximitized by superconductor-magnetic insulator bilayers and calculated how the pres-

ence of the magnetic insulator in the bilayer affects the need for the external magnetic

field to induce the topological phase in the nanowire. In particular, similar to other

recent theoretical results [35, 36, 37, 39, 40] we report that a finite Zeeman energy in

the semiconductor, either induced by coupling to a magnetic insulator or by an applied

magnetic field, is required to enter the topological phase – a bound we estimate analyt-

ically. When introducing this Zeeman energy as a result of the applied magnetic field,

we observe that the critical field and the topological gap depend on the relative orien-

tation of the applied field and the MI-induced Zeeman splitting in the superconductor:

only in the configuration when they are antiparallel one finds reduced critical field and
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larger stability with respect to the absolute magnitude of the applied field. Introduc-

ing magnetic and spin-orbit scattering to the superconductor, we find that the former

in general is detrimental to the topological phase – it reduces the Clogston limit in the

superconductor and leads to a smaller topological gap. At the same time, spin-orbit

scattering quenches the magnetic response of the superconductor, allowing it to sustain

larger Zeeman fields, but also increases the critical field required to reach the topological

phase.
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Chapter 3

Visibility of noisy quantum

dot-based measurements of

Majorana qubits

3.1 Permissions and Attributions

1. The content of Chapter 3 and Appendix B is the result of a collaboration with

Torsten Karzig and Dmitry I. Pikulin, and has previously appeared in the SciPost

Physics 10, 127 (2021)[14]. It is reproduced here with the permission of SciPost

Foundation: https://scipost.org.

3.2 Introduction

Majorana Zero Modes (MZMs) are explored as a promising platform for topological

quantum computation [76, 10, 11, 77, 28]. As a direct consequence of their nonlocal na-

ture, Majorana-based qubits are, in principle, less susceptible to decoherence and can pro-
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Figure 3.1: Schematic of the measurement setup of multi-MZM qubit islands. Only
the measured MZMs of the qubit are labeled. (a) 2-MZM (single qubit) measurement
setup. (b) 4-MZM (two qubit) measurement setup.

vide better protected gates when compared to conventional qubits. Throughout the past

decade a lot of experimental progress has been made on detecting signatures of the MZMs

via observing robust zero-bias conductance peaks [78, 79, 80, 81, 82, 83, 84], a 4π-periodic

Josephson effect [85, 86, 87], signatures of exponential length-dependence of energy split-

tings [88, 89], and coherent single electron charge transfer between superconductors [90].

Though promising, these signatures have been proved inconclusive to make a definitive

judgment on the presence of the MZMs in the system [91, 92, 93, 94, 95, 96, 97, 98]. For

this reason a measurement of a topological Majorana qubit draws significant attention

from both experimental and theoretical standpoints. A successful implementation of such

a readout of a topological qubit would mark the transition from studying properties of

the topological phase to topologically protected quantum information processing. More-

over, as physically moving MZMs [99] currently appears to be practically challenging,

measurement-based schemes [100, 101] come to the forefront as the most likely means of

operating a Majorana-based topological quantum computer.

Various theoretical proposals for Majorana qubits and their readout procedure have
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been put forward [102, 103, 104, 105, 106, 107, 108, 109] Here we concentrate on the

design for the qubit that features a superconducting island in the Coulomb blockaded

regime [105, 106] consisting of two or more one-dimensional topological superconductors

– realized for example in proximitized semiconductor nanowires [19, 20] – connected by a

trivial superconductor. Each topological superconductor carries two MZMs at the ends.

The qubit state is encoded by the parity of pairs of MZMs, e.g., σz = iγiγj, where σz

is Pauli operator in the computational space of the qubit and γi/j are the corresponding

Majorana operators. The total parity of a qubit island is conserved, which fixes the parity

of the other two MZMs in 4-MZM islands. Measurements of the qubits are performed by

coupling two (for single qubit measurements, see Fig. 3.1(a)) or four (for two-qubit mea-

surements, see Fig. 3.1(b)) MZMs to quantum dots (QDs) while using parity-dependent

shifts of the QD charge or capacitance as the readout signal. Such QD-based measure-

ments are particularly promising since they can be embedded in scalable designs for the

operation of topological qubits [106]. Motivated by this prospect, experimental studies

of QD measurements in materials suitable for topological qubits are emerging [110, 111].

Despite the topological protection of Majorana qubits, quantum information storage

and measurements are never perfect in practice due to sources of noise intrinsic and ex-

trinsic to the qubit system. Quantifying the effect of noise is thus essential to understand

the prospective performance of topological qubits. The effect of noise within the topo-

logical superconductors has been considered as the cause of the slow decoherence of idle

qubits [112, 113] or as a possible reduction of the visibility of 2-MZM measurements [114].

Crucially, coupling the Majorana qubit to the QDs of the readout apparatus introduces

new sources of noise. The desired effect of this noise is to collapse the qubit state into

the outcome of the measurement [115, 116]. However, noise coupling to the QDs can

also have negative effects on the visibility of the measurement and with the known sus-

ceptibility of QD to charge noise one might wonder whether QDs are a suitable platform
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for high-fidelity measurements. In this chapter we study the effect of such noise on the

measurement visibility and show that typical strengths of QD noise allow for high-fidelity

qubit measurements.

To study the optimal operation point of measurements we will pay particular attention

to the regime where the QD and the qubit island are tuned close to resonance (i.e. energy

detuning between the two is much smaller than the MZM-QD coupling) in contrast to the

widely applied far-detuned regime where the MZM-QD coupling is much smaller than the

energy detuning and can be considered perturbatively [106, 105]. Such careful tuning to

resonance can be particularly beneficial for 4-MZM measurements which were previously

not discussed in this regime.

The rest of the chapter is organized as follows. First, we review the single qubit mea-

surements paying particular attention to the regime of the resonantly coupled island-QD

system. We then extend this analysis to two-qubit measurements. Next, focusing on

the single qubit measurement case, we analyze how noise in island-QD detuning affects

the measurement visibility by calculating the signal-to-noise ratio (SNR) of the measure-

ments. The Appendix presents details of calculations and treatment of the subleading

noise sources – flux and coupling noise.

3.3 QD-based measurements

We start by reviewing how coupling a single QD to a pair of MZMs leads to a measur-

able change in the properties of the coupled MZM-QD system that depend on the parity

of the MZMs before generalizing to measurements of four MZMs. As we show below,

the regime of maximal measurement visibility is typically achieved when the QD and the

qubit island are tuned so that the energy configurations of an electron occupying the QD

or the qubit island are close-to degeneracy. We therefore pay particular attention to this
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regime, which we refer to as resonant regime, and discuss how careful tuning enhances the

visibility of 4-MZM measurements to be of similar order as the 2-MZM measurements.

3.3.1 2-MZM measurement

A typical setup for a 2-MZM single qubit measurement is depicted in Fig. 3.1(a). The

effective low-energy Hamiltonian of the qubit-QD system is given by

Ĥ = ĤC + ĤQD + ĤQD-MZM. (3.1)

Here ĤC is the charging energy Hamiltonian of the superconducting island, ĤQD is a

Hamiltonian of the QD and ĤQD-MZM is a term describing tunneling between the island

and the QD through MZMs.

Both ĤC and ĤQD contain charging energy contributions due to capacitance to the

ground and between the subsystems. Additionally, ĤQD contains the energy of the single-

particle level on the QD. Due to charge conservation these contributions can be combined

into:

ĤC+QD = εC(n̂− ng)
2. (3.2)

with n̂ being the charge occupation of the QD while εC and ng denote the effective charg-

ing energy and effective dimensionless gate voltage of the island-QD system. Expressions

for the effective parameters in terms of original parameters of ĤC and ĤQD are given in

Appendix B.1. Here we assumed a single-level QD without spin degeneracy, which is a

valid assumption in high external magnetic field for small enough QD when the energy

difference between the two lowest levels of the dot is larger than the MZM-QD coupling.
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The tunneling Hamiltonian reads:

ĤQD-MZM = e−iφ̂(t1f
†γ1 + t2f

†γ2) + h.c. (3.3)

where tα, α = 1, 2 are coupling matrix elements of the MZMs to the fermionic mode on

the QD described by creation operator f †. Note that since the Majorana operators are

chargeless charge conservation is ensured by the operator eiφ̂ that raises charge of the

island by one electron charge. The couplings can be written as

tα = |tα|eiφα ; α = 1, 2; (3.4)

where the gauge invariant phase difference φ1 − φ2 depends on microscopic details of the

matrix elements but can be tuned by varying the magnetic flux penetrating the enclosed

area of the interference loop (see Fig. 3.1).

We now focus on the regime close to the QD-Majorana-island resonance, where ng =

1/2 +∆/2εC and the detuning ∆ between the island and the QD level is ∆ ≪ εC. The

low energy Hamiltonian is then spanned by four states |n, p〉 where n = 0, 1 and p = ±1

are eigenvalues of the QD occupation and combined parity p = p12(−1)n with p12 = iγ1γ2

being MZM parity. In contrast to the case of large detuning where the charge of the qubit

island is fixed except for virtual tunneling events [105, 106] it is important to note that

in the presence of the QD p12 is no longer conserved. A non-demolition measurement

therefore cannot directly determine p12. Instead, the measurement outcome depends

on the parity of the combined MZM-QD system p which is a constant of motion in

the absence of exponentially weak qubit dynamics [102, 116, 115]. Within the model

discussed here, this manifests in a block-diagonal form of the Hamiltonian. Using the

basis |n, p〉 with |1, p〉 = e−iφ̂f †γ1|0, p〉 the elements of the Hamiltonian blocks of given
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p can be directly read off from Eqs.(4.2) and (3.3) with the parity dependence entering

via 〈1, p|t2e−iφ̂f †γ2|0, p〉 = −ipt2 such that

Ĥp =

4

56
∆/2 t̄∗p

t̄p −∆/2

7

89 . (3.5)

Here we introduced the effective MZM-QD coupling t̄p = t1− ipt2. Equation (3.5) allows

for a straight forward interpretation of the effect of p on the MZM-QD system. Due to

the interference of the two different paths that couple the QD and the qubit island, p will

control the strength of the effective coupling |t̄p| =
:

|t1|2 + |t2|2 + 2p|t1t2| sinφ where

φ = φ2 − φ1.

The parity-dependence of the coupling has measurable consequences for several ob-

servables and is used to diagnose the parity of the MZMs. The energy spectrum of the

system takes the form

εp,± = ±1

2

&
∆2 + 4|t̄p|2. (3.6)

Figure 3.2(a) illustrates the energy spectrum in the case of φ = π/2 and |t1| = 1.5|t2|.

Even though optimal visibility is achieved when |t1| = |t2| where t̄p is either maximal or

zero depending on the parity p, here we present plots away from this fine tuned point

since a certain degree of the coupling asymmetry is expected in the QD-based readout

experiments. Using the ground state of (3.6) the corresponding charge expectation value

of the QD in the ∆ ≪ εC limit can be obtained as

〈nQD,p〉 = ng −
1

2εC

∂εp,−
∂ng

=
1

2
+

∆

2
:

∆2 + 4|t̄p|2
. (3.7)
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Figure 3.2: (a) MZM parity dependent part of the energies of the two low-
est QD-MZM levels (3.6) as a function of island-QD detuning ∆ in units of the
MZM-QD hopping t. (b) Average QD charge difference between the two parity states
δ〈nQD〉 = 〈nQD,p=+1〉 − 〈nQD,p=−1〉 as a function of detuning. (c) Differential capac-
itance difference between the two parity states δCdiff = Cdiff,+ − Cdiff,- as a function
detuning. We set |t1| = t, |t2| = 1.5t for (a)-(c) and Cg/CΣ,D = 2, εC = 5t for (c).

The differential capacitance in the same limit takes the form

Cdiff,p

C2
g/CΣ,D

=
1

2εC

∂2εp,−
∂n2

g

= − 4εC|t̄p|2
(∆2 + 4|t̄p|2)3/2

(3.8)

where Cg is the capacitance between the gate and the QD and CΣ,D ≡ e2/2εC is the total

capacitance of the QD.

These two observables (3.7)-(3.8) can be measured in charge sensing, or quantum

capacitance measurements respectively. Here we do not consider the details of the corre-

sponding measurements but instead use the observables as a proxy for the measurement

outcomes.
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Fig. 3.2(b)-(c) depict the ∆-dependence for various values of the phase φ of the charge

expectation and differential capacitance for the ground state of the system at different

parities p. In the absence of noise the parity dependence of the observables is strongest

at φ = π/2 and at or close to zero detuning.

In the most favorable regime close to zero detuning it becomes particularly important

that p is measured while we are ultimately interested in p12 of the island decoupled from

the QD. Failure to correctly infer p12 from the measured value of p would result in a

measurement error and ultimately decrease readout and (in case of measurement-based

topological quantum computing) gate fidelity. Connecting the measurement of p to p12

requires a well-defined initialization and finalization procedure of the measurement where

the QD charge before and after the measurement is known. Charge conservation then

allows to infer p12 of the decoupled system from the measured p. A possible procedure is

given by adiabatic tuning where the QD starts out and ends up far-detuned from reso-

nance before and after the measurement to ensure a fixed charge state. The measurement

is then initiated by first turning the MZM-QD coupling on and then tuning the system

to resonance while the decoupling proceeds in opposite order. An alternative to this

adiabatic tuning procedure would be to explicitly check the QD charge before and after

the measurement by a separate charge measurement. Indeed, even if a close to adiabatic

tuning is attempted such additional measurement might be required when one is aiming

at very high measurement fidelities.

3.3.2 4-MZM measurement

The setup for a 4-MZM measurement is shown in Fig. 3.1(b). 4-MZM measurements

can be done utilizing only one QD. Here we consider two QDs since they provide greater

tunability and are likely the generic case in scalable designs [106]. Similarly to 2-MZM
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situation, the effective low-energy Hamiltonian of this system has the form of (3.1). ĤC

and ĤQD contributions are given in Appendix B.1 while the tunneling Hamiltonian reads:

ĤQD-MZM =e−iφ̂1(t1f
†
1γ1 + t2f

†
2γ2) + e−iφ̂2(t3f

†
1γ3 + t4f

†
2γ4) + h.c. (3.9)

where tα are couplings of the QDs described by fermionic operators f †
β to the respective

MZMs and eiφ̂β is the raising operator of the charge of the island β.

For concreteness we consider the case where the system is tuned such that the lowest

energy states are given by the 4 configurations of a single excess electron located on one

of the QDs or islands. We denote the corresponding energies in the absence of tunnel

coupling as εα with α ∈ {i1, i2, d1, d2} denoting the position of the electron. These

energies are determined by the individual and mutual charging energies of the islands

and QDs, and by the single-electron levels on the QDs. As in the 2-MZM case we will be

particularly interested in the resonant regime where the energies εα become small. This

requires tuning three parameters in general and can be done by tuning gate voltages on

the two QDs and one of the islands.

Given that couplings of the low-energy subspace to MZMs other than γ1 . . . γ4 are

exponentially small, the total parity p = p12p34(−1)n1+n2 , where nβ = f †
βfβ, is conserved.

We thus denote the low energy states as |α, p〉:

|i1, p〉 = e−iφ1eiφ̂1γ1f1 |d1, p〉 (3.10)

|i2, p〉 = e−iφ3eiφ̂2γ3f1 |d1, p〉 (3.11)

|d2, p〉 = eiφ2e−iφ̂1f †
2γ2 |i1, p〉 (3.12)

where we included the phases of the tunnel matrix elements tα = |tα|eiφα for convenience.
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In the above basis the Hamiltonian takes the form

H =

4

55555556

εd1 |t1| |t3| 0

|t1| εi1 0 |t2|

|t3| 0 εi2 −p|t4|eiφ

0 |t2| −p|t4|e−iφ εd2

7

88888889

, (3.13)

where φ = φ1 − φ2 − φ3 + φ4.

From the form of the Hamiltonian (3.13) it becomes clear that the energies of the

system are independent on the individual 2-MZM parities and instead will depend via φ

on the flux passing through the loop of the 4 tunneling junctions and on the overall parity

p which acts as a π phase shift of φ. Since the goal of the measurement is to ultimately

determine 4-MZM parity p12p34 a similar tuning procedure as for 2-MZM measurements

is required to fix the QD occupation. In fact, while the relation between p and p12p34 sug-

gests that the tuning procedure only needs to ensure that the joint QD parity (−1)n1+n2

is the same before and after the measurement the charge occupation of all islands and

QD need to remain unchanged by the measurement. The reason is that the measure-

ment should determine p12p34 while not otherwise disturbing the quantum state of the

qubits. Any net transfer of electrons between the islands or between the QDs relative to

their state before the measurement would result in applying the corresponding operators

involved in the electron transfer γiγj to the qubit states. Without a tuning procedure

that ensures the occupation of the final configuration or an additional measurement to

determine the configuration, the application of unknown pairs of Majorana operators

would lead to dephasing. A possible tuning procedure from the resonant measurement

configuration would work in a circular way: first detune the QD 1 to favor an occupation

n1 = 1, then tune island 1 to favor the empty state, followed by tuning QD 2 and island

2 to the empty state as well. Tuning all the couplings to zero then ensures a well defined
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Figure 3.3: Eigenenergies of the Hamiltonian (3.13) for different parities p and as a
function of QD-QD detuning ∆dd for various values of QD-island detuning ∆di. Here
we set |t1| = |t2| = 1.5t, |t3| = |t4| = t. Panel (a) is given by the analytical expressions
of Eq. (3.16). Legends are the same as in Fig. B.1.

charge configuration. The initialization procedure would be done in opposite order.

Exact diagonalization of (3.13) for arbitrary parameters involves cumbersome ex-

pressions. To gain intuition about the behavior of the energy levels we keep εi1 = εi2

while introducing the QD detuning ∆dd = εd1 − εd2 and the average detuning ∆di =

(εd1 + εd2)/2− εi1 between the QDs and islands. For now, we will also set ∆di = 0. The

energy eigenvalues ε are then given by the equation

ε4 − ε2
"
1

4
∆2

dd + t2Σ

#
− 1

2
ε∆ddt

2
δ + t̄(4)p (φ)4 = 0 (3.14)
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in terms of t2Σ =
;4

α=1 |tα|2, t2δ = |t1|2 + |t3|2 − |t2|2 − |t4|2 and the interference term

t̄(4)p (φ)4 = |t1t4|2 + |t2t3|2 + 2p|t1t2t3t4| cosφ . (3.15)

The qualitative behavior is already captured by the case tδ = 0 which can be solved

analytically yielding

ε(4)p (φ) = ± 1√
2

<==>∆2
dd

4
+ t2Σ ±

3"
∆2

dd

4
+ t2Σ

#2

− 4t̄
(4)
p (φ)4. (3.16)

The case of tδ ∕= 0 is considered in Appendix B.3.

Going beyond ∆di = 0, Fig. 3.3 shows plots of the energy eigenvalues of (3.13) as

functions of ∆dd for φ = 0, tδ = 0 and various values of island-QD detuning ∆di. For

large negative ∆di/t we recover the perturbative regime obtained in [106] where the

parity dependent energy shift is of order t2/∆di. Figure 3.3 demonstrates that the energy

differences between the ground states of different parity is maximal when the MZM-

QD couplings are symmetric |tα| = t and the system is on resonance ∆dd = ∆di = 0.

By appropriately tuning the 4-MZM measurement system close to these parameters it

becomes possible to reach a similarly strong parity dependence as in the case of 2-MZM

measurements. Specifically, in the case of φ = 0, |tα| = t, and ∆dd = ∆di = 0 one finds

ε
(4)
+,gs − ε

(4)
−,gs = (

√
2 − 2)t which is of similar order as for the 2-MZM case. For a more

explicit comparison of the capacitive response see App. B.2.

For the purpose of the following sections we note that the low energy part of the

4-MZM system spectrum in Fig. 3.3 (energies ε1 and ε2) qualitatively resembles the one

of the 2-MZM system, see Fig. 3.2(a). Since all measurement visibility properties we

consider in the next section are derived from the low energy part of the spectrum, we

conclude that 4-MZM and 2-MZM cases are qualitatively similar in this regard and thus
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concentrate on the simpler 2-MZM case 1.

3.4 Noise and its effects on measurement visibility

We now describe the noise that will broaden the distribution of the observables.

Here, we pay particular attention to intrinsic noise sources and their dependence on the

system parameters. External noise sources, like amplifier noise, do not depend on the

system parameters and are uncorrelated with the system noise – therefore they can be

added straight-forwardly. The leading internal noise source in the measurement setup

of Fig. 3.1 would likely be the charge noise which affects the on-site energy and thus

detuning of the QDs. In our study we assume the 1/f power spectrum of the charge noise

which has been reported in other QD-based devices, most notably semiconductor charge

qubits [117, 118, 119]. We discuss noise in the strength of the tunnel couplings and flux

noise which affects the phase φ in Appendices B.7 and B.8. Using noise estimates from

related experimental setups we conclude that these noise sources likely play a subleading

role on the visibility of the measurement compared to the charge noise considered in the

main text.

We first formulate the general framework of how we treat noise. Consider an ob-

servable ŷ(x(t)) that depends on the parameter x(t) = x + δx(t), where x is the fixed

setting of the parameter x and δx(t) is the time-dependent noise. We describe the noise

perturbatively by considering the second order expansion in the parameter of noise:

ŷ(x(t)) = ŷ0(x) + ŷ1(x)δx(t) +
1

2
ŷ2(x)δx(t)

2 , (3.17)

1Technically, the 4-MZM measurement is performed by measuring charge/capacitance of one of the
dots and in order to compare it to the 2-MZM case, one needs to plot the spectra of Fig. 3.3 as functions
of variables εd1, εd2 rather than ∆dd,∆di. However, the two variable sets are related to each other by
simple linear transformation and thus the spectra as a function of, for example, εd1 looks rotated with
respect to the ones in Fig. 3.3 such that the ground state part still qualitatively resembles the one in
Fig. 3.2(a)
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where ŷ0 is the unperturbed observable and ŷ1, ŷ2 are first and second derivatives of ŷ0

with respect to x. Since measurements are recorded over a finite measurement time τm

we are ultimately interested in the time averaged quantities Ŷ = 1
τm

' τm
0

dtŷ(x(t)). We

use the expectation value Y = 〈Ŷ 〉 and variance σ2
Y = 〈Ŷ 2〉 − 〈Ŷ 〉2 to determine the

measurable signal and internal noise.

The above expectation value 〈. . . 〉 is taken with respect to the environment for the

noisy parameter. There are two opposing limits how to incorporate a finite temperature

in the expectation values of the system operators. (1) The operator Ŷ is temperature

independent and the expectation value is taken with respect to the full density matrix of

the system which includes both finite-temperature and noise effects; (2) the operator Ŷ is

already the temperature-averaged observable (i.e. the expectation value with respect to

the unperturbed finite-temperature density matrix has been already taken) in which case

taking the expectation value 〈. . . 〉 amounts to only performing noise-averaging. Method

(1) would give a finite variance even in the absence of noise due to temperature fluctu-

ations while (2) only includes fluctuations due to noise. These differences only become

important for temperatures that allow excitations above the ground state. In the case

when there is a significant occupation of the excited state, the timescales involved in the

temperature fluctuations determine which of the two methods are more appropriate in

capturing the variance of the measurement outcomes. If during the measurement time

the system transitions frequently between the ground and excited state, the measure-

ment will probe temperature averaged quantities (2), while for transitions slower than

the measurement time the distribution of measurement outcomes would be broadened

by temperature (1). To focus on the effect of the noise we take the limit (2) of long

measurement times.

We assume that the expectation values of the fluctuations are fully described by the

spectral function Sx(ω) of the noise via 〈δx(0)δx(t)〉 =
'
dωeiωtSx(ω). For the 1/f noise
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which we assume below Sx(ω) = αx/|ω| we find up to second order in the noise

Y = y0 + y2αx

/
1− γ − log(ωminτc/2)

0
(3.18)

σ2
Y = y21αxc+

y22
2
α2
x

/
5 + c2

0
(3.19)

where γ ≈ 0.577 is Euler’s constant and c = 3−2γ−2 log(ωminτm), see Appendix B.4 for

details. Note that the nature of 1/f noise requires to introduce low and high frequency

cutoffs of the noise in addition to the finite measurement time. The cutoffs can be

physically motivated. The high frequency cutoff arises due to finite correlation time of

the noise. For short times t ≪ τc one expects 〈δx(0)δx(t)〉 to approach a constant. The

specific value of this time scale is not important due to the weak logarithmic dependence.

We associate τ−1
c with the highest frequency that the measurement apparatus can possibly

resolve. Noise at higher frequencies simply averages out and cannot be detected during

measurement. The measurements are performed by coupling resonators to the quantum

dot and observing shifts in the resonance frequency. This frequency thus provides a

natural cutoff for the time scale the detector can resolve. Typical resonator frequencies

are ∼ 1 GHz and thus we set τ−1
c = 1 GHz. The low frequency cutoff ωmin is given by

the inverse timescale at which the system is recalibrated since very slow components of

the noise act as drift which can be removed by calibration.

While the dependence on ωmin is weak it should be noted that Eqs. (3.18),(3.19) em-

phasize that similar to conventional qubits, the measurement apparatus of topological

qubits needs to be regularly recalibrated. For numerical estimates we use ω−1
min = 10τm

with τm = 1 µs. For longer recalibration times the noise will grow slowly as
:

log(ωminτm).

This effect becomes relevant when considering very long time-intervals between calibra-

tion that might be desirable for quantum computation. For example, for ω−1
min ∼ 1day

with τm = 1 µs the noise would be increased by a factor ∼ 3 relative to our estimates.
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Figure 3.4: Diagram explaining definition of the signal and noise given by Eqs.
(3.20),(3.21). Y is a measured quantity which depends on p, black lines indicate
respective values of Y . The red line is a level broadening due to the noise with a
standard deviation σY .

During the qubit readout the goal is to be able to differentiate between parity p = +1

and p = −1 states by measuring the observables discussed in the previous section. This

is schematically illustrated in Fig. 3.4. Thus, for the particular case of measurement

visibility analysis, we define the signal S and the noise N in variable Y as

SY = |Y (p = +1)− Y (p = −1)| (3.20)

NY = σY (p = +1) + σY (p = −1). (3.21)

3.5 Detuning noise

The dominant source of noise in the island-QD detuning ∆ is the gate voltage noise

on the QD ng which is typically dominated by 1/f charge noise

S∆(ω) = ε2C
αC

|ω| . (3.22)

Here we explicitly wrote the coupling strength of the noise to the system which is con-

trolled by the charging energy εC and the strength of the noise described by the dimen-

sionless parameter αC that depends on the environment that is causing the charge noise.

The latter depends on the experimental setup and materials.

We estimate αC by considering the strength of dephasing of charge qubits in InAs/Al
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hybrid systems that are investigated for their potential use as building blocks for Majo-

rana qubits. Reference [90] reports coherence time of the InAs/Al based superconducting

charge qubit with εC/h ∼ 10 GHz to be T ∗
2 ∼ 1 ns. A simple estimate for the dephasing

caused by charge noise is given by T ∗
2 ∼ !/(εC

√
αC) [112]. We use this relation to es-

timate the experimentally relevant
√
αC ∼ 0.01. Typical values for the charging energy

of InAs QDs are εC ∼ 100µeV [111, 110] which leads to εC
√
αC ∼ 1µeV. Note that this

gives a conservative estimate for the strength of charge noise for the topological qubit

as it assumes no optimization of noise as compared to current experimental capabili-

ties. Similar estimates for charge qubits in much more mature GaAs-based systems yield

√
α ∼ 10−4 [118, 112]. The perturbative treatment of the noise in Eq. (3.17) close to

∆ = 0 is justified for the charge noise as long as
√
αCεC ≪ |t̄p|. The above estimate of

√
αC ≪ 1 therefore justifies the perturbative treatment as long as the effective tunnel

couplings t̄p are not too small compared to εC. For our numerical estimates we take

|t1| = t, |t2| = 1.5t, t = εC/5 which guarantees validity of the perturbative treatment for

the entire parameter range of ∆ and φ. The coupling asymmetry |t2|/|t1| = 1.5 does not

correspond to the case of maximum visibility (which is reached for |t2|/|t1| = 1). How-

ever, a certain degree of the coupling asymmetry is expected in the QD-based readout

experiments as the coupling fine-tuning might pose a challenge.

Using expressions of Eq. (3.7) (Eq. (3.8)) for the average QD charge (differential

capacitance of the QD) in the 2-MZM measurement case we plot the zero-temperature

dependence of the signal Sn(SC) and noise Nn(NC) given by Eqs. (3.20) and (3.21) in

terms of the phase and detuning in Figs. 3.5 and 3.6. Temperature dependence of

detuning noise is analyzed in Appendix B.5.

The dependence on the detuning ∆ shows that the charge signal Sn takes its maximal

value for ∆ = ∆max
n with ∆max

n ∼ t. This follows from the suppression of the signal at

∆ = 0 (∆ → ∞) due to the QD charge reaching 〈nQD〉 = 1/2 (〈nQD〉 = 1) independent
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Figure 3.5: Signal (3.20) and noise (3.21) for the 2-MZM measurements of the average
QD charge 〈nQD〉 (a)-(b) and differential QD capacitance Cdiff/CΣ,D (c)-(d) as a func-
tion of detuning ∆ for different values of φ. Here we assume that the system is in its
ground state (T = 0) and set |t1| = t, |t2| = 1.5t, t = εC/5 = 0.02 meV, Cg/CΣ,D = 2,
and the noise is detuning noise of strength

√
αC = 0.01.

of parity. Neglecting noise one can find analytically ∆max
n = 2|t̄2−t̄+|1/3/

:
1 + |t̄−/t̄+|2/3.

We checked numerically that for our choice of parameters the noise-induced term in Sn

is perturbative, i.e. much smaller then the noise-free term, and thus produces small

corrections to this analytical result.

In the regime of perturbative noise and T = 0 the differential capacitance signal SC

is always maximal at ∆ = 0 while vanishing at ∆ = ∆min
C = ∆max

n . The latter marks

the point where the differential capacitance corresponding to the smaller of |t̄−| and |t̄+|,

which is generally dominating around small detuning due to a larger curvature, is equal

to the differential capacitance of the larger coupling which dominates in the regime of

large detuning.
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Note that at finite temperature and in the presence of noise ∆ = 0 might not always

be the point of maximal signal and ∆min
C might differ from ∆max

n . Consider for example

the regime of extreme fine tuning where |t̄−| ≪ T, σ∆ while |t̄+| ≫ T, σ∆. In that limit the

contribution to the differential capacitance of the p = −1 parity would vanish as Cdiff,− ∝

|t̄−|/(Tσ∆). A derivation of this expression is given in Appendix B.6. Approaching this

regime would mean that ∆min
C would shift to values smaller than ∆max

n and eventually

reach ∆min
C = 0. Further reducing |t̄−| would make SC be dominated by the p = +1

branch independent of ∆ thus restoring ∆ = 0 as the point of maximal signal. Naturally,

the limit of very small |t̄−| breaks the perturbative treatment of noise used in this chapter.

Nevertheless, as long as the noise σ∆ is weak compared to |t̄+| results for the limit |t̄−| → 0

can be obtained using our formalism by replacing SC → Cdiff,+ and Sn → 〈nQD,+〉−〈nσ〉,

where 〈nσ〉 is charge expectation value for vanishing coupling broadened by noise 2.

The noise Nn is maximal at ∆ = 0 and falls off quickly for large detuning. From the

perspective of pure charge noise the SNR would thus be largest for large detuning where

the signal is also becoming suppressed. The presence of other noise sources will limit this

behavior. For example the effect of external amplifier noise is typically minimized for the

strongest signal. At the maximal signal, i.e. ∆ = ∆max
n , we find a charge-noise-limited

SNR of ≈ 12 for φ = π/2. Thus, as long as the integration times are not sufficiently long

to extend the amplifier-limited SNR beyond 12 the point of maximal experimental SNR

will be close to ∆ = ∆max
n .

The noise NC shows a local minima at ∆ = 0 due to the absence of the first-order

contribution of charge noise. This emphasizes that for capacitive measurements ∆ = 0

is likely the optimal operation point. The only exception is the above-mentioned regime

where the smaller of the effective couplings, say |t̄−|, is accidentally of the order of

2For Gaussian noise of width σ∆ the charge of the ground (−) and excited (+) state is broadened via
nσ,± = (1 ∓ erf(∆/

√
2σ∆))/2. The expectation value 〈nσ〉 is then given by appropriately temperature

averaging the ground and excited state contribution.
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Figure 3.6: Signal (3.20) and noise (3.21) for the 2-MZM measurement of the aver-
age QD charge 〈nQD〉 (a)-(b) and differential QD capacitance Cdiff/CΣ,D (c)-(d) as a
function of phase φ for different values of ∆/t. We used the same parameters as in
Fig. 3.5.

Tσ∆/|t̄+|. For the parameters we used, we find a charge-noise-limited SNR of ≈ 20 for

φ = π/2.

Figure 3.6 shows the φ-dependence of the signal and noise. The main effect of changing

φ is to increase the difference between |t̄+| and |t̄−| as φ approaches π/2. This generally

increases the signal for all observables as long as the noise remains perturbative. Away

from ∆ = 0 changing φ has only a relatively weak effect on the noise which means

that for charge measurements φ → π/2 is always preferable. In the case of capacitance

measurements that are operated at ∆ = 0 approaching φ = π/2 not only increases the

signal but also the noise. The optimal SNR can thus be obtained away from φ = π/2.

Similar to the discussion of the effect of noise for the charge measurements at large
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detuning, external constraints will determine whether the increase in the signal or the

reduction of the noise are more important for obtaining the best experimental SNR.

3.6 Conclusion

In the present work we identified detuning charge noise as the dominant source of

intrinsic noise that affects the measurement visibility of Majorana qubits probed by QDs.

We studied the Hamiltonian for 2-MZM and 4-MZM measurements non-perturbatively

in the tunnel coupling and emphasized the similarity of their description in the regime

of small detunings which in general optimizes SNR in the presence of external noise.

4-MZM measurements require more tuning and more manipulations to bring the system

into the optimal measurement regime, but can produce signal of the same order as 2-

MZM measurements. We thus analyzed the 2-MZM measurement for SNR in detail and

claim the 4-MZM one will behave similarly.

Generally we obtain large SNRs ≳ 10 for conservative assumptions on the charge

noise of the system that is tuned to the optimal measurement regime. Since we did not

explicitly treat external noise sources like amplifiers our SNRs should be understood as

the limiting SNRs that can be obtained after long measurement times. The large obtained

SNRs indicate that charge noise will likely not be limiting the fidelity of measurements

of topological qubits.

We make concrete predictions for the visibility of the topological qubit measurement,

but our results are relevant for and can be tested in simpler setups. For example, test

devices replacing the qubit island with another QD show similar interference effects. Our

SNRs can then be understood as describing the difference between measurements where

the enclosed phases of the tunnel couplings are φ and φ+ π.
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Chapter 4

Effects of coupling between quantum

dot and quasiparticle continuum

modes in topological

superconductor-quantum

dot-topological superconductor

junctions

4.1 Permissions and Attributions

1. The content of Chapter 4 and Appendix C is the result of a collaboration with

Torsten Karzig, Roman M. Lutchyn and Dmitry I. Pikulin.
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4.2 Introduction

An unambiguous detection of Majorana zero-energy modes (MZMs) [76] and demon-

stration of their non-Abelian statistics are among central problems in the field of topo-

logical quantum computing [10, 11, 28]. The potential for long coherence times makes

Majorana-based qubits a promising alternative to other conventional qubit implementa-

tions. While various MZM implementation and detection schemes have been proposed

theoretically, experimental realizations proved to be challenging. A variety of experimen-

tal signatures reported throughout the past decade [78, 79, 80, 81, 82, 83, 120, 86, 87,

88, 89, 90, 121], while plentiful and promising, turned out to be inconclusive regarding

the presence of MZMs in the system [91, 92, 93, 94, 95, 96, 97, 98, 99, 25]. Recent exper-

iments [122] present a stronger set of data suggesting topological superconductivity in

InAs/Al heterostructures. The ultimate test for MZMs, however, remains the measure-

ment of their non-Abelian statistics, which can be done by fusing MZMs and reading out

their parity. Such a measurement would not only reveal the presence of MZMs in the

system but also pave the way to coherent quantum information processing in topological

Majorana qubits [100, 101].

Among the various ideas for MZM parity readout [102, 103, 104, 106, 105, 107, 108,

123, 124, 125, 126], a key set of proposal relies on coupling one-dimensional topological

superconductors to a quantum dot (QD) thus forming a topological superconductor-

QD-topological superconductor (T-QD-T) junction. Such junctions provide controlled

coupling of the QD to the MZMs formed at the ends of the topological superconductors.

The parity of a pair of MZMs coupled to a QD can then be read out by measuring

properties of the QD such as its charge [102, 106, 105, 107, 115, 116, 108, 127, 128, 124,

129, 125, 126].

Additional interest in T-QD-T junctions comes from the unconventional physics of
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the 0−π transition of the supercurrent: while the 0−π transition is generally present in

regular superconductor-QD-superconductor (S-QD-S) junctions in the Coulomb block-

ade regime [130, 131, 132, 133, 134, 135, 136, 137], it does not appear in T-QD-T junc-

tions [138, 139, 140, 141]. The absence of the 0−π transition has been recently observed

experimentally in full-shell InAs/Al nanowires [142]1.

Previous studies on T-QD-T junctions [106, 105, 102, 107, 115, 116, 108, 127, 128,

124, 129, 125] typically have been focusing on MZM-QD-MZM degrees of freedom in the

system, while neglecting the effect of quasiparticle continuum modes present in the su-

perconductors. These continuum modes generate additional Andreev reflection processes

between the superconductors and the dot, and thus produce conventional contributions to

the supercurrent flowing through the junction, which can be important in the study of T-

QD-T junctions as they can mask the signatures of MZMs. The impact of the continuum

modes can be especially important in the case of multi-mode topological superconduc-

tors. In this chapter, we investigate T-QD-T junctions, paying particular attention to the

continuum modes in the superconductors, and their effect on the well studied MZM-QD-

MZM part of the system. Working in the regime of weak continuum-QD coupling, we

employ perturbation theory to calculate the energy shift associated with the tunneling

between the QD and the quasiparticle continuum modes. Using these results, we analyze

effects of the continuum-QD coupling on the QD-based measurements of the Majorana

qubits and the phenomenology of the 0− π transition in the T-QD-T junctions.

The rest of the chapter is organized as follows. Section 4.3 describes the model of the

T-QD-T junction that we utilize throughout the chapter. In Section 4.4 we review results

for the MZM-QD-MZM system in the absence of the continuum-QD coupling. The effects

of the continuum-QD coupling on the system are considered in Sections 4.5 and 4.6. First,

1It has been pointed out, however, that the absence of the 0−π transition is not limited solely to the
topological junctions as the trivial Andreev zero-energy states coupled to the QD can produce similar
effect [143].
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using second order perturbation theory in the continuum-QD couplings we estimate their

impact on the QD-based measurement of the Majorana qubit in Section 4.5. Second, we

further employ fourth order perturbation theory in Section 4.6 and analyze the effects

of the continuum-QD coupling on the equilibrium supercurrent through the junction.

In particular, we investigate how the presence of a coupling between the QD and the

continuum modes alters the absence of the 0 − π transition in the T-QD-T junctions.

Section 4.7 presents concluding remarks. Details of the calculations are given in the

Appendix.

4.3 Setup and Model

A typical layout for a T-QD-T junction is illustrated in Fig. 4.1. The MZMs γL, γR

are formed at the ends of the topological superconductors (grey) and are coupled to the

QD (black) via couplings tL/R. It is assumed implicitly that there are MZMs formed at

the other ends of the topological superconductors but for simplicity we neglect them. In

addition to the MZM-QD couplings, the dot also couples to the modes in the quasiparticle

continuum of the topological superconductors (orange) via couplings sL/R. The two

topological superconductors are joined together by a superconducting backbone (blue)

to form a single island. It is not important for the backbone to be topological and in

practice it is sometimes convenient for it to be trivial [106]. Magnetic flux Φ penetrating

the ring formed by the superconductors can be used to control the phases of the MZM-QD

and continuum-QD couplings.

We describe the system with the following effective low-energy Hamiltonian:

Ĥ = ĤC + ĤQD + ĤT-MZM + ĤNW + ĤT-NW. (4.1)
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tRtL

L R
sL sR

Figure 4.1: A schematic depiction of the T-QD-T junction. The MZMs γL, γR (red)
are formed at the ends of topological superconductors (grey) and are coupled to a
QD (black) via couplings tL/R. Quasiparticle continuum modes (orange waves) are
coupled to the QD via couplings sL/R. The two topological superconductors are joined
together by a superconductor (blue) and form one island. Magnetic flux Φ is used to
control the phases of the MZM-QD and continuum-QD couplings. The MZMs forming
at the further ends of the topological superconductors are not depicted here.

Here ĤC is the Hamiltonian of the superconducting island including charging energy, ĤQD

is the Hamiltonian of the QD, and ĤT-MZM is the term describing the MZM-QD coupling

present in the topological regime. As a model for the topological superconductor we take

a semiconducting nanowire (NW) with strong Rashba spin-orbit coupling, proximitized

by an s-wave superconductor and subject to a parallel magnetic field [19, 20]. ĤNW in

Eq. (4.1) denotes the proximitized NW Hamiltonian and ĤT-NW is the term describing

coupling between the QD and the continuum modes in the nanowire.

To simplify the calculations we assume a small-size QD such that the Zeeman energy h

on the dot is much smaller than the dot’s orbital level spacing. Given this assumption we

take into account only the dot’s lowest in energy orbital level split by the Zeeman energy

into two spin-resolved levels; we denote occupation of the spin-down (spin-up) level as

n̂↓(n̂↑)
2. Given that, the first two terms in Eq. (4.1), ĤC + ĤQD, can be separated into

the Zeeman and the charging terms:

ĤC+QD = hn̂↓ + εC(n̂↓ + n̂↑ − ng)
2, (4.2)

2As long as there are only two spin-resolved QD levels under consideration, the formalism developed
in this chapter can be applied in the opposite scenario when Zeeman energy is much larger than the
orbital level spacing.
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where εC and ng are the effective charging energy and the effective dimensionless gate

voltage of the QD-island system. The charging term can be written as a single term

for both parts of the system due to the charge conservation. Throughout this work we

assume that the charging energy εC is sufficiently large such that only one excess electron

can be present on the dot at a time, i.e. εC + h ≫ ∆ind.

For simplicity, here we consider the case of a single-band nanowire and take the two

nanowires on the left and on the right side of the QD to be identical. Then, the effective

Hamiltonian of the NWs in the momentum space is given by

ĤNW =
1

2

,

l=L,R

,

k

C†
klHkCkl, (4.3)

where Ckl = (ck↑l ck↓l c†−k↑l c†−k↓l)
T is a column of electronic operators and the wire

Hamiltonian takes a familiar form:

Hk =

"
k2

2m∗ − µ

#
τ̂z + VZτ̂zσ̂x + αRkσ̂z +∆indτ̂yσ̂y. (4.4)

Here l = L,R corresponds to the left or right NW, k is the momentum, ckσl is the

annihilation operator of an electron on the lth NW with momentum k and spin σ, while

m∗, µ, αR, VZ, ∆ind are the effective electron mass, chemical potential, Rashba spin-orbit

coupling, Zeeman energy, and induced pairing potential in the nanowires, respectively.

τ̂i(σ̂i) are Pauli matrices in the Nambu(spin) space. The Bloch Hamiltonian (4.4) is real

and has the particle-hole symmetry P = τ̂xK, where K is complex conjugation operation,

and the time-reversal symmetry T+ = τ̂zσ̂xK, T 2
+ = +1, placing it in the BDI symmetry

class [144]. Presence of the BDI symmetry simplifies certain calculations that we describe

below but is not required for the validity of our results. In the limit VZ → 0, αR → 0,

the Hamiltonian (4.4) reduces to the conventional s-wave superconductor one.
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The nanowire Hamiltonian of Eqs. (4.3)-(4.4) can be straightforwardly diagonalized

via the Bogoliubov transformations

Ckl =

4

55555556

uk1↑ uk2↑ vk1↑ vk2↑

uk1↓ uk2↓ vk1↓ vk2↓

v−k1↑ v−k2↑ u−k1↑ u−k2↑

v−k1↓ v−k2↓ u−k1↓ u−k2↓

7

88888889

Akl (4.5)

yielding

ĤNW =
1

2

,

l=L,R

,

k

A†
klEkAkl. (4.6)

Here Akl = (ak1l ak2l a
†
−k1l a

†
−k2l)

T is a column of Bogoliubov quasiparticle operators,

Ek = diag{ε1(k), ε2(k),−ε1(−k),−ε2(−k)} are eigenenergies of the Hamiltonian (4.4)

and the coefficients ukjσ, vkjσ, j = 1, 2, σ =↑, ↓, are components of the eigenvectors of

the Hamiltonian (4.4). Note that since the Hamiltonian (4.4) is real and symmetric

in Nambu ⊗ spin space, the coefficients ukjσ, vkjσ can be chosen real. The particle-

hole symmetry fixes the form of the Bogoliubov transformation matrix as presented in

Eq. (4.5) and two out of four eigenenergies in Ek, while the time-reversal symmetry leads

to the following relations between the ukjσ and vkjσ amplitudes:

ukj↑ = ±u−kj↓, v−kj↑ = ∓vkj↓. (4.7)

The sign here can be chosen arbitrarily as it does not affect measurable quantities. An-

alytic expressions for the energies ε1, ε2 are presented in Appendix C.1, while analytic

expressions for the coefficients ukjσ, vkjσ are cumbersome and not illuminating and we

choose not to present them in the manuscript.
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We write the MZM-QD tunneling Hamiltonian as

ĤT-MZM = e−iφ̂/2
,

ρ=↓,↑

,

l=L,R

tρlf
†
ργl + h.c., (4.8)

where f †
ρ is the fermionic creation operator on the ρth dot level, γl is the MZM operator

at the end of the lth topological superconductor, operator e−iφ̂/2 describes charge transfer

from the island onto the dot, and tρl is the MZM-QD coupling. Similarly, the tunneling

Hamiltonian between the nanowire continuum and the QD can be written as

ĤT-NW = e−iφ̂/2
,

ρ,σ=↓,↑

,

l=L,R

,

k

sρσlf
†
ρckσl + h.c., (4.9)

where sρσl is the spin-dependent continuum-QD coupling. Using Eq. (4.5), one can

rewrite Hamiltonian (4.9) in terms of the Bogoliubov quasiparticle operators as

ĤT-NW = e−iφ̂/2
,

ρ,σ=↓,↑

,

l=L,R

,

j=1,2

,

k

sρσlf
†
ρ × (ukjσakjl + v−kjσa

†
kjl) + h.c. (4.10)

In the simplest form the MZM-QD and the continuum-QD couplings can be written as

tρl = |tρl|e−iφl/2; ρ =↓, ↑; l = L,R, (4.11)

sρσl = |sρσl|e−iφl/2; ρ =↓, ↑; σ =↑, ↓; l = L,R. (4.12)

Here we assumed for simplicity that the phases φl are the same for the two dot levels ρ =↑

, ↓ and the same for both the MZM-QD and the continuum-QD couplings. Furthermore,

we take the couplings sρσl to be independent of energy, which is a good approximation

for narrow but high tunnel barriers. Note that the phase difference φ = φL − φR can be

tuned using magnetic flux Φ, see Fig. 4.1.

The relative strength of the couplings (4.11),(4.12) can be estimated by rewriting
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them through the tunneling matrix elements, see Appendix C.2 for details. The result of

such estimate is

|tρl|
|sρσl|

≈

3
L

ξ
, (4.13)

where L is the length of the nanowire and ξ is the coherence length in the nanowire. In

the subsequent sections, we will use Eq. (4.13) when comparing the continuum and the

MZM contributions.

4.4 MZM-only diagonalization

As a first step, we consider the system without the continuum-QD couplings, sρσl = 0,

where the Hamiltonian simplifies to

Ĥ = ĤC+QD + ĤT-MZM. (4.14)

To write the low-energy part of the Hamiltonian (4.14) in a convenient basis of occupa-

tions of the QD levels, n↑ and n↓, we need to introduce a combined MZM-QD parity,

p = pLR(−1)n↑+n↓ = ±1, where pLR = iγLγR is the Majorana parity. Focussing on a

single charge transition of the QD, the relevant basis states then take the form |n↑, n↓, p〉,

with |1↑, 0↓, p〉 = e−iφ̂/2f †
↑γ1|0↑, 0↓, p〉 and |0↑, 1↓, p〉 = e−iφ̂/2f †

↓γ1|0↑, 0↓, p〉. We notice that

the Hamiltonian (4.14) has a block-diagonal form with each block being a 3 × 3 matrix

corresponding to a fixed parity p. Up to an additive constant, each block is

Ĥp =

4

55556

∆/2 t̄∗p,↓ t̄∗p,↑

t̄p,↓ h−∆/2 0

t̄p,↑ 0 −∆/2

7

88889
, (4.15)
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where ∆ = εCn
2
g − εC(1− ng)

2 is the energy detuning between the island and the lowest

dot level, and t̄p,ρ = tρL − iptρR is the effective coupling between the MZMs and the dot

level ρ. Due to the phase factors in the MZM-QD couplings, the absolute value of the

effective coupling is equal to |t̄p,ρ(φ)| =
:

|tρL|2 + |tρR|2 + 2p|tρLtρR| sin(φ/2). General

diagonalization of the Hamiltonian (4.15) leads to cumbersome expressions so here we

only present analytical results for its eigenenergies in the limit of large Zeeman splitting

h relative to the MZM-QD couplings tp,σ and the island-QD detuning ∆, i.e. h ≫ tp,σ,∆.

The expressions for the eigenenergies in this limit are:

ε
(0)
p,− = −1

2

&
∆2 + 4|t̄p,↑|2 −

|t̄p,↓|2
2h

:
∆2 + 4|t̄p,↑|2 −∆:

∆2 + 4|t̄p,↑|2
+ . . . , (4.16)

ε
(0)
p,+ =

1

2

&
∆2 + 4|t̄p,↑|2 −

|t̄p,↓|2
2h

:
∆2 + 4|t̄p,↑|2 +∆:

∆2 + 4|t̄p,↑|2
+ . . . , (4.17)

ε
(0)
p,h = h− ∆

2
+

|t̄p,↓|2
h

, (4.18)

where we denoted the three eigenstates of the Hamiltonian (4.15) as |−〉, |+〉 and |h〉.

In general, these eigenstates are certain linear combinations of the three basis states

|0↑, 0↓, p〉, |1↑, 0↓, p〉 and |0↑, 1↓, p〉. However, in the limit of large the Zeeman splitting on

the dot, h ≫ tp,↓,∆, we can neglect hybridization of the higher-in-energy QD level with

the MZMs and consider only hybridization between the MZMs and the lower-in-energy

dot level. In this limit, the eigenstates of the Hamiltonian (4.15) are given by

|−〉p = βp,0|0↑, 0↓, p〉+ βp,1|1↑, 0↓, p〉, (4.19)

|+〉p = αp,0|0↑, 0↓, p〉+ αp,1|1↑, 0↓, p〉, (4.20)

|h〉p = |0↑, 1↓, p〉, (4.21)
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and the corresponding energies read

ε
(0)
p,∓ = ∓1

2

&
∆2 + 4|t̄p(φ)|2, (4.22)

ε
(0)
p,h = h− ∆

2
, (4.23)

where for notational convenience we denoted t̄p,↑ as t̄p. Analytic expressions for the

coefficients αp,n, βp,n, n = 0, 1, are presented in Appendix C.3.

4.5 Second order perturbative correction in the

continuum-QD couplings

4.5.1 Derivation of the second order correction

Having taken into account the effect of the MZM-QD coupling non-perturbatively in

Section 4.4, in the following sections we investigate how the continuum-QD coupling of

Eq. (4.9) shifts the ground state energy (4.22) of the MZM-QD system. To this end, we

consider weak continuum-QD coupling and employ perturbation theory to calculate the

energy shift. The perturbative expansion is controlled by the parameters Γρl/∆g, where

Γρl = (νNWL)
;

σ=↓,↑ |sρσl|2 is the broadening of the QD level ρ due to the tunneling into

the continuum of the nanowire l, νNW is the normal density of states in the nanowire, and

∆g is the gap to the quasiparticle excitations in the nanowires. Throughout the study we

consider the regime of small Γρl/∆g. Furthermore, we assume that the charging energy

of the QD is sufficiently large such that only one excess electron can be present on the

dot at a time, i.e. εC + h ≫ ∆ind.

When considering the second order correction, we neglect the tunneling into the

higher-in-energy dot level ρ =↓ which is justified if the Zeeman splitting on the dot is
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much larger than the respective level broadening, h ≫ Γ↓l. Furthermore, for simplicity

we assume that the continuum-QD couplings on the left and on the right are the same,

|s↑σL| = |s↑σR| ≡ |s↑σ|, and introduce direct (spin-conserving) |sdir| ≡ |s↑↑| and spin-flip

|ssf| ≡ |s↑↓| couplings to the spin-up dot level ρ =↑. In general, the spin-flip tunneling can

be appreciable due to the presence of the spin-orbit coupling in the system. However,

here for simplicity we consider the case when ssf = 0. Given that, the second order

perturbative correction to the ground state energy in the limit ∆g ≫ ∆, |tL|, |tR| is given

by

ε
(2)
p,− = − |sdir|2

∆ind

K
(2)
1

∆:
∆2 + 4|t̄p(φ)|2

. (4.24)

The details of the derivation as well as the expression for ε
(2)
p,− in the case of the nonzero

spin-flip tunneling are presented in Appendix C.4. When deriving expression (4.24), we

have dropped the terms independent of the detuning ∆ and the phase difference φ, since

ultimately we are interested in calculating measurable quantities proportional to either

∂ε
(2)
p,−/∂∆ (the average charge on the dot), ∂2ε

(2)
p,−/∂∆

2 (the differential capacitance of

the dot) or ∂ε
(2)
p,−/∂φ (the supercurrent through the dot). The limit ∆g ≫ ∆, |tL|, |tR|

is imposed in Eq. (4.24) to separate the detuning and the phase dependence from other

parameters of the model included in the coefficient K
(2)
1 . K

(2)
1 is given by

K
(2)
1 =

L

2π

! ∞

−∞
dk

,

j=1,2

u2
kj↑ − v2−kj↑

εk,j/∆ind

, (4.25)

where L is the length of the nanowires. Physically, |sdir|2K(2)
1 /∆ind in Eq. (4.24) repre-

sents the second-order amplitude of the single-electron tunneling between the dot and

the superconductor, while factor∆/(2
:

∆2 + 4|t̄p(φ)|2) represents how the electron wave-

function in the ground state is distributed between the dot and the island, see Eq. (4.19)
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Figure 4.2: K
(2)
1 plotted as a function of the Zeeman energy VZ in the nanowire for

various values of the chemical potential µ and the Rashba spin-orbit coupling αR. The
effective electron mass, the length of the nanowire, and the induced gap are taken to
be m∗ = 0.015me, L = 5µm, and ∆ind = 0.2meV, respectively.

and Eq. (C.10). Combining Eqs. (4.22) and (4.24) yields the following expression for the

ground state energy calculated up to the second order in the continuum-QD coupling:

εp,− = −1

2

&
∆2 + 4|t̄p(φ)|2 −

|sdir|2
∆ind

K
(2)
1

∆:
∆2 + 4|t̄p(φ)|2

. (4.26)

The momentum integration in Eq. (4.25) cannot be in general performed analytically

due to the complexity of the coefficients ukjσ, vkjσ. However, in the s-wave limit, i.e.

when VZ → 0, αR → 0, the expression for K
(2)
1 can be dramatically simplified yielding

K
(2)
1,s-wave =

L

2π

?
2m∗

µ!2

! ∞

−µ/∆ind

dκ
∆ind:

κ∆ind/µ+ 1

κ

1 + κ2
. (4.27)

For general values of VZ and αR we calculate the integral in Eq. (4.25) numerically and plot

K
(2)
1 in Fig. 4.2 as a function of VZ for various values of αR and µ. Figure 4.2 demonstrates

that the value of K
(2)
1 has a sharp discontinuity and a peak at the topological phase

transition for larger values of µ, while for µ = 0 the discontinuity in K
(2)
1 smoothens out.

Note that the values of K
(2)
1 close to the critical point correspond to a closing of the gap

∆g at the phase transition where the perturbation theory becomes invalid. As for the

74



Effects of coupling between quantum dot and quasiparticle continuum modes in topological
superconductor-quantum dot-topological superconductor junctions Chapter 4

effect of the spin-orbit coupling, larger αR leads to a larger induced gap in the nanowire

and hence to a smaller value of K
(2)
1 as can be seen when comparing Figs. 4.2(a) and

4.2(b).

Realistic nanowires have multiple bands located at the different chemical potentials

µ. With raising Zeeman energy (due to, for example, an external magnetic field) the

band closest to the Fermi level (µ = 0 in Fig. 4.2) undergoes the topological phase

transition first. The rest of the bands are likely to stay trivial in the optimal range of the

magnetic fields. In principal, all bands would contribute to the continuum-QD electron

tunneling and thus to the energy shift of Eq. (4.24). However, Fig. 4.2 illustrates that

the trivial band contribution to εp,− in the second order is significantly suppressed when

compared to the one of the topological band. For this reason, we neglect effect of multiple

bands in Eq. (4.26) and consider only one (topological) band when analyzing QD-based

measurements of the Majorana qubits below.

4.5.2 Effect of the continuum-QD coupling on QD-based Ma-

jorana qubit measurements

To quantify the effect of the continuum-QD couplings on the QD-based measure-

ments of the Majorana qubits, we consider two potentially measurable quantities: the

expectation value of the QD charge

〈nQD,p〉 = ng −
1

2εC

∂εp,−
∂ng

(4.28)

and the differential capacitance

Cdiff,p

C2
g/CΣ,D

=
1

2εC

∂2εp,−
∂n2

g

, (4.29)
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where Cg is the capacitance between the gate and the dot and CΣ,D ≡ e2/2εC is the total

QD capacitance. In the absence of noise [128, 127] visibility of the QD-based measurement

can be quantified by the difference in the corresponding measurable quantity between

the two parity states p = +1 and p = −1. These differences for εp,−, 〈nQD,p〉 and Cdiff,p

are plotted in Fig. 4.3 as functions of the island-QD detuning ∆ for various values of

ξ/L, where we have utilized Eq. (4.13) to convert |sdir|/|tR| into ξ/L. As discussed in

the previous paragraph, trivial bands do not contribute significantly to the second order

energy correction and, hence, to the measurable quantities. For this reason, when plotting

Fig. 4.3, we ignored the trivial bands contribution and focused solely on the topological

band. Figure 4.2 indicates that the function K
(2)
1 in the topological phase ranges between

5 and 15 for typical values of the nanowire parameters, so, for concreteness, we take a

typical value of K
(2)
1 = 10 when plotting Fig. 4.3. Based on Fig. 4.3, we note that

the continuum-QD couplings have a noticeable effect on the visibility of the QD-based

measurements if ξ/L ≳ 0.5. In realistic devices the criterion ξ/L ≪ 1 is necessary

to ensure the stability of the topological phase and long qubit coherence times. This

likely means that for a good Majorana qubit, the continuum-QD coupling would not

considerably affect the visibility of the QD-based measurements.

4.6 Fourth order perturbative correction in the

continuum-QD couplings

4.6.1 General discussion

Since the perturbative expansion in the continuum-QD couplings gives the correct

results only in the limit of small Γρl/∆g, generally the fourth order contribution to the

ground state energy is smaller than the second order contribution. However, as we shall
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Figure 4.3: (a) The ground state energy difference between the two parity states
δε = εp=+1,− − εp=−1,−, (b) the average QD charge difference between the two parity
states δ〈nQD〉 = 〈nQD,p=+1〉 − 〈nQD,p=−1〉, and (c) the differential capacitance differ-
ence between the two parity states δCdiff = Cdiff,p=+1−Cdiff,p=−1 plotted as functions
of the island-QD detuning for various values of ξ/L. The MZM-QD couplings are
set to |tL| = |tR| = 0.025∆ind, while the phase difference is φ = 7π/8. Value of the

coefficient K
(2)
1 is taken to be K

(2)
1 = 10.
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show in this section, in the limit of the large charging energy on the dot (which we

assume here) there are terms arising in the fourth order whose phase dependence does

not vanish in the limit of the large detuning, ∆ ≫ |tL|, |tR|, when the phase dependence

of both the zeroth order term (calculated in Section 4.4) and the second order term

(calculated in Section 4.5) disappears. Describing perturbation theory in terms of virtual

processes, these fourth order terms represent processes where one electron of a Cooper

pair is transferred from one topological superconductor onto the other through the QD,

at the same time creating virtual quasiparticles in both superconductors. Then, these

quasiparticles are annihilated by a similar superconductor-QD-superconductor transfer

of another electron. Such fourth order processes include the ones when both electrons

are transferred through the same QD level (single-level contribution) and the ones when

the two electrons are transferred through different QD levels (two-level contribution).

In the s-wave limit the single-level contribution vanishes due to the presence of time-

reversal symmetry, but in general it is present and we analyze it in Section 4.6.2. On

the contrary, the two-level contribution is present in the s-wave limit and it gives rise to

the conventional 0 − π transition in the S-QD-S junctions, which has been extensively

studied before [130, 131, 132, 133, 134, 135]. We calculate this term for generic nanowire

parameters and present it in Section 4.6.3. The details of the fourth order calculations

are given in Appendix C.5.

Since the visibility of QD-based measurements is maximal on- or close to the reso-

nance, i.e. near ∆ = 0, the effect of the fourth order terms on the measurement would

be significantly smaller than the effect of the second order terms analyzed in Section 4.5.

However, as mentioned in the previous paragraph, the fourth order contribution can be

important at the large detuning values, ∆ ≫ |tL|, |tR|, and thus is crucial for the under-

standing of the 0 − π transition in the T-QD-T junctions. We present analysis of the

0− π transition in Section 4.6.4.
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4.6.2 Single-level tunneling contribution

In this subsection we present the fourth order term that includes virtual tunnelings

through a single QD level. In principle, it can be either an ρ =↑ or ρ =↓ QD level.

However, for simplicity, here we ignore the tunneling through the higher in energy ρ =↓

level and focus on the tunneling through the ρ =↑ level. In the limit ∆g ≫ ∆, |tL|, |tR|

the single-level contribution is given by

ε
(4,1)
p,− = − cos(φ)

|sdir|4
∆3

ind

K
(4)
1 , (4.30)

where, similarly to Section 4.5, we have set the spin-flip couplings to zero, ssf = 0.

Coefficient K
(4)
1 in Eq. (4.30) is a function of the nanowire parameters:

K
(4)
1 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↑uk′j′↑v−k′j′↑

εkj(εkj + εk′j′)εk′j′/∆3
ind

. (4.31)

The derivation of Eqs. (4.30)-(4.31) is presented in Appendix C.5.1, along with general

expressions for the case of ssf ∕= 0. Note that the energy correction of Eq. (4.30) is

2π-periodic in phase and independent of the island-QD detuning. In the s-wave limit,

i.e. when VZ → 0, αR → 0, the coefficient (4.31) vanishes due to the presence of the

reflection symmetry, R, and the time-reversal symmetry T− = iσ̂yK, T 2
− = −1, in 1D

s-wave superconductors. Specifically, the combination of these symmetries leads to the

spin degeneracy of the quasiparticle energies, εk1 = εk2, and the following constraints on

the Bogoliubov amplitudes: uk2↑ = ±uk1↓, uk2↓ = ∓uk1↑, v−k2↑ = ±v−k1↓, v−k2↓ = ∓v−k1↑.

Together with expressions (4.7), these conditions lead to

uk2↑ = ±u−k1↑, v−k2↑ = ∓vk1↑. (4.32)
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Plugging identities (4.32) into expression (4.31) for K
(4)
1 gives

K
(4)
1,s-wave = 0. (4.33)

Hence, the fourth order single-level contribution is absent in the s-wave limit.

4.6.3 Two-level tunneling contribution

When analyzing the fourth order tunneling processes involving both QD levels, ρ =↑

, ↓, similarly to the treatment in the preceding sections we assume that the continuum-

QD couplings on the left and on the right are the same, |sρσL| = |sρσR| ≡ |sρσ|. For

further convenience, we take the couplings to the spin-up and spin-down QD levels to

be identical, i.e. |sdir| ≡ |s↑↑| = |s↓↓|, |ssf| ≡ |s↑↓| = |s↓↑|, and set the spin-flip tunneling

to zero, ssf = 0. Given these assumptions and the limit ∆g ≫ ∆, |tL|, |tR|, the two-level

contribution to the energy correction in the fourth order reads

ε
(4,2)
p,− = cos(φ)

|sdir|4
∆3

ind

×
@
K

(4)
3 − K

(4)
2

2
−

A
K

(4)
3 +

K
(4)
2

2

B
∆:

∆2 + 4|t̄p(φ)|2

C
, (4.34)

where similarly to Eqs. (4.25) and (4.31) we have introduced coefficients

K
(4)
2 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↓uk′j′↑v−k′j′↓

εkj(εkj + εk′j′ + h)εk′j′/∆3
ind

, (4.35)

K
(4)
3 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↓uk′j′↑v−k′j′↓

(εkj + h)(εkj + εk′j′)εk′j′/∆3
ind

. (4.36)

The details of the derivation as well as general expressions for the case of ssf ∕= 0 are

presented in Appendix C.5.2. In the s-wave limit, i.e. when VZ → 0, αR → 0, the
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coefficients K
(4)
2 and K

(4)
3 become

K
(4)
2,s-wave =

m∗L2∆2
ind

4π2!2

! ∞

−µ/∆ind

dκLdκR
1:

κL∆ind/µ+ 1

1:
κR∆ind/µ+ 1

×

× 1

(κ2
L + 1)(

:
κ2
L + 1 +

:
κ2
R + 1 + h/∆ind)(κ2

R + 1)
, (4.37)

K
(4)
3,s-wave =

m∗L2∆2
ind

4π2!2

! ∞

−µ/∆ind

dκLdκR
1:

κL∆ind/µ+ 1

1:
κR∆ind/µ+ 1

×

× 1

(κ2
L + 1 + h

:
κ2
L + 1/∆ind)(

:
κ2
L + 1 +

:
κ2
R + 1)(κ2

R + 1)
. (4.38)

Note that in general the phase dependence of ε
(4,1)
p,− in Eq. (4.34) comes not only from

the 2π-periodic cos(φ) factor, but also through the dependence of |t̄p|2 on φ which is

4π-periodic.

In the trivial s-wave case when no MZM-QD couplings are present in the system,

|t̄p| = 0, Eq. (4.34) simplifies to ε
(4,2)
p,− ∝ sign(∆) cosφ with a ∆-independent and φ-

independent prefactor, while Eq. (4.30) yields ε
(4,1)
p,− = 0. The supercurrent through

the junction in this case is given by Is ∝ ∂ε
(4,2)
p,− /∂φ ∝ sign(∆) sinφ and it abruptly

changes its sign at ∆ = 0. This illustrates the simplest case of the well-known 0 − π

transition in the S-QD-S junctions [130, 131, 132, 133, 134, 135] since the condition ∆ < 0

corresponds to the empty dot (even parity), while the condition ∆ > 0 corresponds to

the dot occupied by a single electron (odd parity). Further simplification is possible in

the case of degenerate QD level, i.e. when h = 0. In this case K
(4)
2 and K

(4)
3 are equal,

K
(4)
2,h=0 = K

(4)
3,h=0 ≡ K

(4)
h=0, and Eq. (4.34) becomes

ε
(4,2)
p,− = λK

(4)
h=0

|sdir|4
∆3

ind

cosφ, (4.39)

where λ = 2 if ∆ < 0 and λ = −1 if ∆ > 0. This expression for the fourth order

phase-dependent energy shift is identical to the one derived in Ref. [131].
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In the topological phase the presence of the MZM-QD couplings and the associated 4π-

periodic phase dependence would alter the simple picture of the 0−π transition discussed

in the previous paragraph. In the next subsection we analyze the 0− π transition in the

presence of the MZM-QD couplings.

4.6.4 Critical current and the 0− π transition

Combining Eqs. (4.26),(4.30),(4.34), we obtain the expression for the ground state

energy of the junction up to the fourth order in the continuum-QD coupling:

εp,− = −1

2

&
∆2 + 4|t̄p(φ)|2 −

|sdir|2
∆ind

K
(2)
1

∆:
∆2 + 4|t̄p(φ)|2

−

− cos(φ)
|sdir|4
∆3

ind

A
−K̃

(4)
1 + K̃

(4)
2

∆:
∆2 + 4|t̄p(φ)|2

B
, (4.40)

where we have introduced K̃
(4)
1 = −K

(4)
1 + K

(4)
3 − K

(4)
2 /2 and K̃

(4)
2 = K

(4)
3 + K

(4)
2 /2.

Note that the term with K̃
(4)
1 factor is a detuning-independent energy shift, while the

term with K̃
(4)
2 factor has an explicit detuning dependence. For general values of the

system parameters we calculate the integrals in Eqs. (4.25),(4.31) and (4.35)-(4.36) nu-

merically and plot the values of the phase- and detuning-independent constants K̃
(4)
1 and

K̃
(4)
2 entering Eq. (4.40) in Fig. 4.4. Similarly to the dependence of the second order

coefficient K
(2)
1 on VZ, see Fig. 4.2, the fourth order coefficients plotted against VZ un-

dergo a discontinuity at the critical point for higher values of the chemical potential.

This discontinuity is present even for the µ = 0 value of the chemical potential which is

not the case for the K
(2)
1 coefficient. Since at the topological transition the quasiparticle

gap closes and the perturbation theory breaks down, values of K̃
(4)
1 and K̃

(4)
2 near the

critical point are beyond the regime of validity, particularly the apparent singularity of

K̃
(4)
1 at the critical point, see Fig. 4.4(a). Contrary to the second order case depicted in
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Figure 4.4: (a) K̃
(4)
1 and (b) K̃

(4)
2 plotted as functions of the Zeeman energy VZ in the

nanowire for various values of the chemical potential µ and Rashba spin-orbit coupling
αR. The Zeeman splitting on the dot, the effective electron mass, the length of the
nanowire, and the induced gap are taken to be h = ∆ind, m

∗ = 0.015me, L = 5µm,
and ∆ind = 0.2meV, respectively.

Fig. 4.2, in the fourth order, trivial bands (the ones at the higher chemical potential)

have a considerable contribution to the energy. Particularly, Fig. 4.4(b) illustrates that

the coefficient K̃
(4)
2 of a trivial band can be larger than the one of the µ = 0 band in the

topological phase.

Equation (4.40) captures the ground state energy of the T-QD-T junction with single-

band nanowires calculated up to the fourth order. Calculating this energy for the junction

with realistic multi-band nanowires is not a simple task, even if the junction is assumed

to be made of the identical nanowires. To begin with, in the case of the multi-band

nanowires one needs to include different contributions to the ground state energy coming

from each band. Additionally, the fourth order processes in the multi-band T-QD-T

junction can include QD-mediated virtual tunneling between the different energy bands of

the opposite nanowires. These multi-band effects cannot be fully captured by Eq. (4.40),

so we propose the following simplified treatment of the multi-band T-QD-T junction:

we implicitly perform an averaging over multiple bands and consider the nanowires with

multiple identical ”average” bands. In this case, one can analyze the multi-band T-QD-T

junctions by simply modifying Eq. (4.40). If the total number of the average bands is
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Nbands, the ground state energy of the multi-band T-QD-T junction up to the forth order

is given by

εp,− = −1

2

&
∆2 + 4|t̄p(φ)|2 −

|sdir|2
∆ind

K
(2)
1
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ind
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−K̃

(4)
1 + K̃

(4)
2
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∆2 + 4|t̄p(φ)|2

B
. (4.41)

Here we did not multiply the second order term by Nbands since only the topological

band mainly contributes to the energy shift in the second order as we have shown in

Section 4.5. The fourth order correction is proportional to N2
bands because the fourth

order processes include virtual tunneling between the QD and both nanowires.

Using expression (4.41) for the ground state energy of the junction one can straight-

forwardly calculate the equilibrium supercurrent through the junction:
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cosφ+
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sinφ

CE
,

(4.42)

where we have introduced parameter I0 = 2e∆ind/!. The supercurrent is plotted as a

function of the island-QD detuning in Figs. 4.5-4.6. When plotting the supercurrent,

we use the values of the coefficients K
(2)
1 ,K̃

(4)
1 and K̃

(4)
2 calculated for the average band

at µ = 2∆ind and take the number of bands to be Nbands = 8. Figure 4.5 depicts the

equilibrium supercurrent in the trivial phase when the MZM-QD couplings are absent.

The abrupt sign switch of the supercurrent at ∆ = 0 corresponds to the 0−π transition in

the trivial S-QD-S junction mentioned in the previous subsection, see Eq. (4.39) and the
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Figure 4.5: The supercurrent Is of Eq. (4.42) plotted as a function of the island-QD
detuning in the trivial regime with VZ = ∆ind/4. The continuum-QD coupling is
|sdir| =

√
0.4 × 0.1∆ind, while the chemical potential, the number of bands and the

phase are µ = 2∆ind, Nbands = 8 and φ = π/2, respectively. The coefficientsK
(2)
1 , K̃

(4)
1

and K̃
(4)
2 in Eq. (4.42) are computed for h = ∆ind, αR = 0.5eV · Å, m∗ = 0.015me,

L = 5µm, and ∆ind = 0.2meV, and the aforementioned values of VZ and µ. Here
I0 = 2e∆ind/!.

corresponding discussion. Solid lines (black and red) in Fig. 4.6 illustrate the supercurrent

in the topological regime when both the MZM-QD and the continuum-QD couplings

are present, while the blue dotted lines and the dashed lines (both black and red) in

Fig. 4.6 represent the supercurrent in the absence of the MZM-QD and the continuum-

QD couplings, respectively. Red-colored lines in the left column of Fig. 4.6 are plotted for

the state with p = +1 parity, whereas black-colored lines in the right column of Fig. 4.6

correspond to the supercurrent when the junction is in the state with p = −1. Solid

lines in Figs. 4.6(a)-(b) represent the supercurrent in the case when ξ/L = 0.05, which

via Eq. (4.13) corresponds to a weak continuum-QD coupling when compared to the

MZM-QD coupling, |sdir|/|t| ≈ 0.3. The continuum-QD contribution to the supercurrent

(dotted blue line) in this case is small when compared to the MZM-QD contribution

(dashed lines). For this reason, the values of the total supercurrent (solid lines) are

close to the values of the MZM-QD contribution and the total supercurrent does not

cross zero meaning that the 0 − π transition is absent in this case. When the ratio of
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Figure 4.6: The supercurrent Is of Eq. (4.42) plotted as a function of the island-QD
detuning in the topological regime with VZ = 1.5∆ind in the case of ξ/L = 0.05
(upper row, solid lines) and ξ/L = 0.2 (lower row, solid lines). The red(black) color
in the left(right) column marks the case of the p = +1(p = −1) parity. The MZM-QD
couplings are |tL| = |tR| = ∆ind/10, while the chemical potential, the number of bands,
and the phase are µ = 2∆ind, Nbands = 8, and φ = π/2, respectively. The coefficients

K
(2)
1 , K̃

(4)
1 and K̃

(4)
2 in Eq. (4.42) are computed for h = ∆ind, αR = 0.5eV · Å,

m∗ = 0.015me, L = 5µm, and ∆ind = 0.2meV, and the aforementioned values of VZ

and µ. As a reference, we also plot the supercurrent in the absence of the MZM-QD
(blue dotted lines) and the continuum-QD (dashed lines) couplings, while keeping the
rest of the parameters entering Eq. (4.42) the same. Here I0 = 2e∆ind/!.
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the continuum-QD coupling to the MZM-QD coupling is increased such that ξ/L = 0.2,

which corresponds to |sdir|/|t| ≈ 0.6, the continuum-QD contribution to the supercurrent

becomes comparable to the MZM-QD contribution. This case is depicted in Figs. 4.6(c)-

(d) The total supercurrent in this case does change its sign as a function of the detuning.

There are, however, two crucial differences between this sign change and the conventional

0−π transition present in the absence of the MZM-QD coupling and depicted in Fig. 4.5.

First, in the topological regime the sign switch, if present, is continuous, signifying that

the 0 − π transition becomes the ”0 − π crossover” in this case. Second, the crossover

takes place at non-zero detuning. The value of the detuning at which the crossover takes

place depends on the relative ratio of the MZM-QD and the continuum-QD contributions

to the supercurrent: the larger is Majorana contribution, the further from ∆ = 0 the

crossover takes place. Hence, contrary to the conventional 0−π transition in the S-QD-S

junctions, the 0− π crossover in this case does not correspond to the change in the QD

occupation parity. This shows that the mere presence of a supercurrent sign change in

the junction when changing the island-QD detuning does not necessarily rule out the

presence of a topological phase and MZMs. In order to rule out the topological phase,

one needs to detect a sharp 0−π transition exactly at the zero detuning when the parity

of the QD occupation changes.

Figure 4.7 illustrates the supercurrent plotted as a function of both the island-QD

detuning and the phase. The relevant parameter controlling the Majorana contribution

to the current is ∆/|t|. Hence, for smaller values of ∆ the Majorana contribution is

dominant and the current is 4π-periodic in phase, while an increase in ∆ leads to the

suppression of the Majorana contribution and crossover to an approximate 2π periodicity

at learge detuning.
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Figure 4.7: The supercurrent Is of Eq. (4.42) as a function of the phase φ and the is-
land-QD detuning ∆ in the topological regime with VZ = 1.5∆ind. Here the MZM-QD
couplings are set to |tL| = ∆ind/10, |tR|/|tL| = 1.5, while the continuum-QD couplings
are chosen such that, via Eq. (4.13), |sdir|/|tL| =

!
2ξ/L with ξ/L = 0.2. The chem-

ical potential, the number of bands, and the parity are µ = 2∆ind, Nbands = 8, and

p = +1, respectively. The coefficients K
(2)
1 , K̃

(4)
1 and K̃

(4)
2 in Eq. (4.42) are computed

for h = ∆ind, αR = 0.5eV · Å, m∗ = 0.015me, L = 5µm, ∆ind = 0.2meV, and the
aforementioned values of VZ and µ. Here I0 = 2e∆ind/!.

4.7 Conclusion

In this work we investigated how the coupling between the quantum dot and the

superconductor continuum modes alters properties of T-QD-T junctions. As a model for

the topological superconductor we took a semiconducting nanowire with strong Rashba

spin-orbit coupling, proximitized by an s-wave superconductor and subject to a par-

allel magnetic field. Treating the MZM-QD coupling non-perturbatively and applying

perturbation theory in the continuum-QD coupling up to the fourth order we analyzed

the extent to which the continuum-QD coupling affects the QD-based charge-readout

measurement of the Majorana qubits and the 0− π transition in the T-QD-T junctions.

We found that for reasonable system parameters the continuum-QD coupling does

not considerably impact the visibility of the Majorana qubit measurement, even in the
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presence of multiple trivial bands in the superconductors. At the same time, we dis-

covered that the magnitude of the effect of the continuum-QD coupling on the 0 − π

transition depends on the relative ratio between the MZM and the continuum contribu-

tions to the supercurrent. For small or absent MZM-QD coupling a conventional sharp

0−π transition occurs as the parity of the QD switches from even to odd, whereas in the

case of a strong MZM contribution the supercurrent does not switch sign as one sweeps

through the island-QD energy detuning. In the intermediate regime when the Majorana

and the continuum contributions to the supercurrent are comparable, we found that the

supercurrent changes direction continuously as a function of the detuning and that the

sign crossing occurs at a non-zero value ∆0 of the detuning. The value of ∆0 depends on

the ratio between the MZM and the continuum contributions to the supercurrent. This

implies that in the intermediate regime the 0− π transition becomes a ”0− π crossover”

which does not occur simultaneously with the switch of the QD parity.

Our results have direct experimental consequences. For the experiments conducting

measurements of the supercurrent in T-QD-T junctions, this work we have shown that

such junctions can potentially exhibit the phenomenology of a 0 − π crossover. For

experiments aiming to perform a measurements of topological qubits, we showed that

the coupling between the QD and the continuum modes in the superconductors should

not be a factor limiting the visibility and the fidelity of such measurements.
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Chapter 5

Random-matrix theory of a

dynamical measurement-induced

phase transition in nonlocal Floquet

quantum circuits

5.1 Permissions and Attributions

1. The content of Chapter 5 and Appendix D is the result of a collaboration with Igor

L. Aleiner.

5.2 Introduction

Monitored quantum systems have been investigated extensively in recent years by

both theorists and experimentalists to study novel quantum effects arising due to the

interplay of the unitary dynamics and measurements. One such effect is the existence of
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distinct phases in the long-time dynamics of monitored systems, arising as a function of

the monitoring rate and the degree of scrambling, as well as the associated measurement-

induced phase transitions (MIPTs) between these phases [145, 146, 147, 148, 149, 150,

151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,

169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,

187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 154, 198, 199, 200, 201, 202, 203, 204,

205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,

224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241] (see

also reviews [242, 243]). Contrary to conventional phase transitions, these MIPTs cannot

be described in terms of the trajectory-averaged density operator; instead, one needs to

track individual quantum trajectories to reveal the presence of MIPTs. Consequently,

only quantities nonlinear in the density operator can be utilized to characterize MIPTs.

One such quantity is entanglement entropy, in terms of which the weak monitoring

phase can be described as the volume law phase, while the strong monitoring phase

corresponds to the area law of entanglement entropy. In monitored quantum circuits (see,

e.g., [145, 146]) the transition occurs between the volume law and the area law phases,

while at the critical point the entanglement entropy scales logarithmically with the system

size. Another quantity that can be utilized to analyze MIPTs is purity [147, 148], in

terms of which the weak monitoring phase corresponds to the mixed phase, where the

purification time of an initially mixed state scales exponentially with the system size,

whereas the strong monitoring phase corresponds to the pure phase, where an initially

mixed state purifies on a timescale independent of the system size.

Observing the MIPT in an experiment requires postselecting on a given quantum tra-

jectory multiple times. However, in a generic monitored quantum circuit the probability

to measure a generic quantum trajectory diminishes exponentially with the number of

measurements. This fact, makes the experimental detection of MIPTs in a direct way
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a formidable problem. Nevertheless, various ways have been proposed to overcome this

postselection barrier, either by incorporating active feedback conditioned onto the mea-

surement outcomes [179, 180, 181, 182, 183, 184, 185], utilizing classical simulations [186,

187, 188, 189], or with the help of space-time duality mappings [190, 191, 192, 193]. Re-

cently, signatures of MIPTs have been reported in multiple experiments [244, 245, 246].

In this work, we study MIPTs in monitored all-to-all interacting Floquet quantum

circuits. We focus on postselected quantum trajectories, which puts the transitions we

analyze in a class of ”forced” MIPTs [154]. The non-unitary Floquet evolution cycle that

we consider in the simplest case is described by an operator W0 = P0U
†P0UP0, where U

is a (random) unitary and P0 is a projective measurement. To qualitatively understand

the transition that occurs in this setting, we note that in the limit of no measurement,

P0 = 1, the evolution is trivial, W0 = 1, and the system completely retains the knowledge

of its initial conditions. On the other hand, in the limit when the majority of qubits are

measured, Tr[P0] ≪ N , where N is the Hilbert space dimension of the system, the

operators P0U
†P0 and P0UP0 acting within the projected part of the Hilbert space are

unrelated to each other, and the evolution becomes highly non-trivial, such that the

system rapidly loses the memory of its initial conditions. Based on these considerations,

at some intermediate strength of the measurement one might expect a phase transition

between the two regimes described above; the corresponding phases can be understood

in the sense of retaining some part or losing the memory of the system’s initial conditions

as it evolves.

Using the random-matrix theory (RMT), we analytically show the existence of such

transition in the thermodynamic limit, which is revealed in the spectrum of non-unitary

Floquet operators governing the evolution of the system. We identify two types of such

spectral transitions. One type is a transition between two distinct gapped phases, and

it is marked by a closure of the spectral gap at the critical point. The other type is a
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transition between a gapped and a gapless phase, where the gapless phase can be de-

scribed as an ”extended criticality”1. Since these transitions can be understood in terms

of retaining some part or losing the memory of the system’s initial conditions, they also

exhibit signatures in the long-time dynamics of the system. We show that by numeri-

cally calculating for small-sized systems the dynamics of certain physical quantities. One

of the quantities we consider is the purity of an initially mixed state, while the other

quantity is the probability to measure a specific Floquet quantum trajectory given the

intrinsic randomness in measurement outcomes.

We note here that spectral signatures of MIPTs have been studied priorly in vari-

ous monitored free-fermionic and spin chain models with non-Hermitian Hamiltonians

and postselected measurement outcomes [205, 206, 202, 204, 201, 200, 203], revealing

both volume-to-area law [200, 201, 203, 202] and log-to-area law [204, 205, 206] transi-

tions. The critical point in these models typically corresponds to the closure of the gap

in the imaginary part of the spectra of the corresponding non-Hermitian Hamiltonians.

Additionally, Refs. [203, 204] analyzed MIPTs in the spectrum of monitored periodi-

cally driven Floquet systems within the framework of non-Hermitian Hamiltonians. The

one-dimensional transverse field Ising model (with next-nearest-neighbor couplings and

imaginary fields) of Ref. [203] exhibited a volume-to-area law MIPT associated with the

Yang-Lee singularity, while the free-fermionic model of Ref. [204] revealed a log-to-area

law MIPT and the emergence of a non-Hermitian i0 mode. Our work complements the

aforementioned studies, providing a different gate-based model of a monitored Floquet

system, and presenting analytically calculated spectral signatures of MIPTs occurring

in the model. To the best of our knowledge, the RMT-based approach that we use to

perform calculations in our work has not been utilized priorly to study MIPTs.

1Note that signatures of the MIPT between a gapped and a gapless phase have been previously
reported in monitored free-fermionic systems [178, 173, 174].
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Figure 5.1: Schematic depiction of one Floquet cycle considered in our setup. Each
cycle is made out of s subcycles, with each subcycle consisting of unitary evolution
U , projective measurement, inverse unitary evolution U †, and another measurement.
The system is initialized by measuring P0 at t = 0, and the measurement at the end
of each cycle is fixed to be P0. Quantum trajectory within a cycle is determined by a
sequence of measurement outcomes, m = (i1, i2, . . . , i2s−1).

5.3 Model

In our setup we consider a Floquet system of n qubits subject to a unitary evolution

and projective measurements. The measurement outcomes are recorded and postselected.

Characterizing each measurement by a projection operator Pi = P 2
i , where i = 0 or 1

depending on the measurement outcome, we initialize the system by performing the pro-

jective measurement P0. After that, we consider a Floquet evolution with each Floquet

cycle built out of s subcycles, and each subcycle consisting of a unitary evolution U ,

a projective measurement, an inverse unitary evolution U †, and another measurement.

Measurement outcomes can differ between different subcycles; they are taken to be post-

selected but arbitrary, except for the last measurement in a cycle, which we require to

be P0. Schematic depiction of one Floquet cycle is shown in Fig. 5.1: each quantum

trajectory within the Floquet cycle can be characterized by a sequence of 2s − 1 mea-

surement outcomes, m = (i1, i2, . . . , i2s−1). For such quantum trajectory the evolution

of the density operator within each cycle is described by a non-unitary operator

Wm = P0U
†Pi2s−1U . . . Pi2U

†Pi1UP0, (5.1)
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and thus following one cycle of evolution the system density operator is given by

ρ1 =
Wmρ0Wm

Tr[W 2
mρ0]

, (5.2)

where ρ0 is the density operator at time t = 0. After k Floquet cycles the system density

operator reads

ρk =
W k

mρ0W
k
m

Tr[W 2k
m ρ0]

. (5.3)

We start by considering the simplest quantum trajectory allowed in our setup: it

corresponds to one subcycle within each Floquet cycle, m = i1, and, for concreteness, we

take i1 = 0. In Section 5.6 we show that the case of m = 1 and other, more complicated

trajectories can be analyzed using the results obtained for the case of m = 0. Evolution

along the m = 0 trajectory is described by a non-unitary Hermitian operator

W0 = P0U
†P0UP0. (5.4)

As we show in Appendix D.1, eigenvalues of W0 are confined between 0 and 1.

We consider projective operators in the form P0 = diag{1, 1, . . . , 1, 0, 0, . . . , 0} and

characterize P0 by its rank, TrP0 = bN , where N = 2n is the Hilbert space dimensionality.

The parameter b controls the strength of the measurement in our model. If simply nP

qubits are measured in the computational basis, then b = 1/2nP ; however, arbitrary

values of b = M/N with M = 1, . . . , N can be realized by coupling the system to ancilla

qubits using unitary gates and then measuring the ancillas [3]. The unitary evolution

operator U in our model is taken to be random. We model U as a Cayley transform of
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a random matrix H sampled from the Gaussian unitary ensemble (GUE):

U = (i+H)(i−H)−1, (5.5)

〈Hij〉 = 0, (5.6)

〈HijHkl〉 =
γ

N
δilδjk, (5.7)

where δil is the Kronecker delta and 〈...〉 denotes the random matrix ensemble averaging.

Parameter γ characterizes the ensemble of random matrices U . For example, for small

values of γ → 0 the distribution of H is narrow and U is sampled close to the identity

matrix 1. However, for larger values of γ the distribution of U is nontrivial. Numerically,

we find that the CUE and the ensemble (5.5)-(5.7) give the same results for the moments

of W0 up to arbitrary order when γ = 2, and later in the manuscript (see Eq. (5.50) and

the subsequent discussion) we show analytically that those moments are equivalent up

to the third order. However, while suspecting that the ensemble (5.5)-(5.7) with γ = 2

and the CUE are equivalent to each other when it comes to computing the moments of

W0, we lack a formal analytical proof of this fact.

In this work, we show that W0 as a function of b and γ exhibits spectral phase

transitions in the thermodynamic limit. As a preview of our results, here we present

numerical signatures of the transition in the spectrum of a randomly generated matrix

W0 for N = 2048. Histograms depicting the eigenvalue distribution of W0 for various

values of γ and b are illustrated in Fig. 5.2; for visual clarity, the zero eigenvalue is

excluded from the histograms. There are two types of transitions that can be found in

the spectrum of W0. The first type occurs when the parameter b is tuned: for b < 1/2,

the eigenvalue 1 is absent from the spectrum of W0, see Fig. 5.2(a) plotted for b = 1/8.

Upon increasing b, the gap between the largest eigenvalue and 1 decreases, eventually

closing at the critical value of bc = 1/2, as depicted in Fig. 5.2(b). Further increase in b
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Figure 5.2: Histograms representing the eigenvalue distributions of a numerically gen-
erated random matrix W0 for various values of γ and b. Dimensionality of the Hilbert
space is N = 2048. Averaging is performed over 40 random matrix realizations. For
visual clarity, the zero eigenvalue is excluded from the histograms. The gap near the
eigenvalue 0, while present, is too small to be noticed in subfigures (a),(c). We display
this gap in Fig. D.1 of Appendix D.2.

beyond the critical value, see Fig. 5.2(c), reopens the gap, but already in the presence of

the eigenvalue 1 in the spectrum.

Since here the Floquet evolution is determined by a non-unitary operator W k
0 , where

k is the number of the Floquet cycle, the presence (or the absence) of the eigenvalue 1 in

the spectrum of W0 has a profound effect on the long-time evolution of the system when

k → ∞. Specifically, the presence of the eigenvalues 1 leads to the evolution where the

system retains some part of memory of its initial conditions, while in the absence of the

eigenvalues 1 that is no longer the case. Thus, the two aforementioned phases exhibit

distinct dynamical behavior.

The second type of transitions occurs in the vicinity of the eigenvalue 0: for γ < γc

the spectrum has a gap near 0. This gap closes at the critical point γ = γc and remains
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closed for larger values of γ. In this work, we show that in the thermodynamic limit

γc =
1/2−

:
b(1− b)

(b− 1/2)2
. (5.8)

The described phenomenology of the transition near 0 is illustrated in numerically plotted

Figs. 5.2(d)-(f): for b = 1/2, Eq. (5.8) gives γc = 1, and thus Figs. 5.2(d),(e) reveal a gap

present in between the lowest eigenvalue and 0, while in Fig. 5.2(f) this gap is closed.

For b = 1/8 and b = 7/8, Eq. (5.8) gives γc ≈ 1.2, and thus Figs. 5.2(a),(c) should reveal

a gap near the eigenvalue 0. However, this gap is too small to be noticed on the scales

of Figs. 5.2(a),(c), and we present it in Fig. D.1 of Appendix D.2.

While the presence/absence of the eigenvalues 0 would not be revealed in the long-

time dynamics of the system, one can consider an operator

W1 = P0U
†P1UP0 = P0 −W0, (5.9)

where P1 = 1 − P0. Evidently, the eigenvalues 0 of the operator W0 correspond to the

eigenvalues 1 of the operator W1, and thus the second type of spectral transitions would

exhibit signatures in the long-time Floquet evolution governed by a non-unitary operator

W k
1 , where k is the number of the Floquet cycle.

Figure 5.3 depicts the critical curves γc vs bc for the eigenvalue 1 and the eigenvalue

0 transitions described above.

We study the aforementioned transitions analytically by considering moments of the

random matrix distribution. Ensemble averaged moments of W0 are proportional to the

projection operator, 〈W k
0 〉 ∝ P0, and thus one can write

〈W k
0 〉 = P0

TrN
(
〈W k

0 〉
)

bN
≡ µkP0, (5.10)
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Figure 5.3: Critical curves γc vs bc for the eigenvalue 1 transition (blue line, bc = 1/2)
and the eigenvalue 0 transition (green line, Eq. (5.8)).

where we have introduced parameters µk and TrN [...] denotes trace over the N × N

Hilbert space. Writing the moment generating function as an infinite series,

Γ1(λ) =
∞,

k=1

λ2kµk, (5.11)

we note that the presence of the eigenvalues 1 in the spectrum of W0 reveals itself as

a singularity in Γ1(λ) as λ → 1−. Hence, the aforementioned spectral transition in the

vicinity of the eigenvalue 1 can be diagnosed by calculating Γ1(λ) in the limit λ → 1−.

Similarly, the transition in the vicinity of the eigenvalue 0 can be revealed by analyz-

ing moments of P0 − W0. Introducing parameters νk as 〈(P0 − W0)
k〉 ≡ νkP and the

corresponding moment generating function as

Γ2(λ) =
∞,

k=1

λ2kνk, (5.12)

we analytically reveal the 0 eigenvalue transition by calculating Γ2(λ) in the limit λ → 1−.
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The rest of the manuscript is organized as follows. In Sections 5.4 and 5.5, we

analytically study the transitions in the spectrum of W0. In Section 5.4, we employ

the RMT to analytically obtain Γ1(λ)|λ→1− and find the critical point of the spectral

measurement-induced transition in the vicinity of the eigenvalue 1. We do the same for

the transition in the vicinity of the eigenvalue 0 by evaluating Γ2(λ)|λ→1− in Section 5.5.

Section 5.6 describes how the results from Sections 5.4 and 5.5 obtained for W0 can be

used to analyze spectral measurement-induced transitions in other, more complicated

quantum trajectories. In Section 5.7, we numerically study how the aforementioned

transitions in the spectrum are revealed in the long-time dynamics of various physical

quantities in the system, such as the purity and the probability to measure a specific

Floquet quantum trajectory given the randomness in measurement outcomes. Summary

and concluding remarks are presented in Section 5.8.

5.4 Transition in the vicinity of the eigenvalue one

5.4.1 The RMT description of the transition

To characterize analytically the transition in the vicinity of the eigenvalue 1, we

calculate Γ1(λ)|λ→1− . To this end, we start our calculation by writing the following

4N × 4N matrix:

M̂(λ) =

4

56
0̌ Ľ

Ľ† 0̌

7

89+ λ

4

56
ť1 0̌

0̌ ť2

7

89 ≡ L̂+ λT̂ , (5.13)
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where 2N × 2N matrices Ľ, ť1 and ť2 are defined as

Ľ =

4

56
1 1

H i

7

89 , (5.14)

ť1 = 2P0

4

56
1 0

0 0

7

89 , (5.15)

ť2 =
P0

2

4

56
1 −1

−1 1

7

89 , (5.16)

respectively. We use hats and checks to distinguish operators in 4N , 2N and N dimen-

sions. In Appendix D.3, we show that the function Γ1(λ) of Eq. (5.11) can be expressed

as

Γ1(λ) = − λ

2bN
Tr4N

1
T̂ Ĝ

2
, (5.17)

where we have introduced Ĝ ≡ 〈M̂−1〉. To calculate Ĝ, we write matrix M̂(λ) as

M̂ = M̂0 +HΠ4×4
x , (5.18)

where we have introduced M̂0 ≡ M̂|H=0 and

Π4×4
x =

4

55555556

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

7

88888889

. (5.19)
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Hence, the Green’s function

Ĝ =

F
1

M̂0 +HΠ4×4
x

G
(5.20)

can be computed with the help of the self-consistent Born approximation (SCBA), which

is valid in the infinite Hilbert space limit, N → ∞. The self-energy Σ̂, defined in a usual

way as

Σ̂ = Ĝ−1
0 − Ĝ−1, (5.21)

where Ĝ0 ≡ M̂−1
0 , in the SCBA can be written as (here we do not imply summation over

repeated indices)

Σ̂il =
,

j,k

〈(HijΠ
4×4
x )Ĝjk(HklΠ

4×4
x )〉. (5.22)

Hence, Σ̂ = Σ4×4⊗1, where 1 is the N×N identity matrix, ⊗ denotes the tensor product

and

Σ4×4 =
γ

N
Π4×4

x TrN [Ĝ]Π4×4
x . (5.23)

Since only the inner 2×2 block of the matrix Π4×4
x is nonzero, Eq. (5.23) can be projected

onto the 2-dimensional inner block subspace without any loss of information. Denoting

the inner 2×2 block of the matrix Σ4×4 as Σ̄, and the inner 2N ×2N block of the matrix

Ĝ as Ǧ, we write the projected version of Eq. (5.23) as

Σ̄ =
γ

N
σ̄xTrN [Ǧ]σ̄x, (5.24)

where σ̄x is the 2 × 2 Pauli matrix. Here, we utilize bars to distinguish 2 × 2 matrices.

Expressing Ǧ in terms of its projected components as

Ǧ = P0ḡ1 + (1− P0)ḡ2, (5.25)
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where ḡ1,2 are 2× 2 matrices, we simplify Eq. (5.24) into

Σ̄ = γσ̄x[bḡ1 + (1− b)ḡ2]σ̄x = σ̄x(βḡ1 + αḡ2)σ̄x, (5.26)

with α ≡ γ(1− b) and β ≡ γb. To obtain the self-consistent system of equations, we need

to express ḡ1, ḡ2 in terms of Σ̄. Projecting Eq. (5.21) onto the 2N -dimensional subspace

yields

Ǧ = (Ǧ−1
0 − Σ̌)−1, (5.27)

where Ǧ0 = Ǧ|H=0 and Σ̌ = Σ̄⊗ 1. We calculate Ǧ−1
0 in Appendix D.4 using the explicit

form of matrices L̂0 = L̂|H=0 and T̂ . The result of the calculation is given by

Ǧ−1
0 = P0(fyσ̄y − f11̄) + (1− P0)σ̄y, (5.28)

where

fy =
1 + λ2

1− λ2
, (5.29)

f1 = − 2λ

1− λ2
. (5.30)

Note that

f 2
y − f 2

1 = 1. (5.31)

Plugging Eq. (5.28) into Eq. (5.27) yields an expression for Ǧ,

Ǧ = P0

/
fyσ̄y − f11̄− Σ̄

0−1
+ (1− P0)

/
σ̄y − Σ̄

0−1
, (5.32)
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comparing which with Eq. (5.25) allows one to express ḡ1 and ḡ2 in terms of Σ̄ as

ḡ1 =
/
fyσ̄y − f11̄− Σ̄

0−1
, (5.33)

ḡ2 =
/
σ̄y − Σ̄

0−1
, (5.34)

thus completing the self-consistent system of equations (5.26),(5.33) and (5.34). This

system of equations can be further simplified by parametrizing Σ̄ in the following way:

Σ̄ = u1̄− vσ̄y. (5.35)

In that case, ḡ1 and ḡ2 can be expressed in terms of parameters u, v as

ḡ1 =
(f1 + u)1̄ + (fy + v)σ̄y

(fy + v)2 − (u+ f1)2
, (5.36)

ḡ2 =
u1̄ + (1 + v)σ̄y

(1 + v)2 − u2
, (5.37)

while the system of equations (5.26),(5.33),(5.34) becomes a system of equations on u

and v:

H
IIIJ

IIIK

u =
β(f1 + u)

(fy + v)2 − (u+ f1)2
+

αu

(1 + v)2 − u2
,

v =
β(fy + v)

(fy + v)2 − (u+ f1)2
+

α(1 + v)

(1 + v)2 − u2
.

(5.38)

The moment generating function Γ1(λ) of Eq. (5.17) can also be expressed in terms of

the parameters u and v:

Γ1(λ) =
λ2

1− λ2

*
1− 2

λ

ufy − vf1
(fy + v)2 − (u+ f1)2

+
. (5.39)
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The corresponding derivation is presented in Appendix D.5. For convenience, we intro-

duce a new set of variables,

v± = v ± u, (5.40)

in terms of which system of equations (5.38) simplifies into

H
IIJ

IIK

v+ =
α

v− + 1
+

β

v− + f−
,

v− =
α

v+ + 1
+

β

v+ + f+
,

(5.41)

where

f± = fy ± f1 =
1∓ λ

1± λ
. (5.42)

Note that f+f− = 1. Γ1(λ) in terms of the new variables can be written as

Γ1(λ) =
λ2

1− λ2

*
1− 4α

(1− λ2)F

+
(5.43)

with

F =(v− + 1)(v+ + 1)(v+ + f+)(v− + f−)− α(v+ + f+)(v− + f−)− β(v− + 1)(v+ + 1).

(5.44)

5.4.2 Analysis of the self-consistent system of equations

System of equations (5.41) is of the fifth order and thus cannot be solved analytically

for general values of the system parameters. However, as described in the Introduction,

we only need to find the asymptotics of Γ1(λ) as λ → 1− in order to characterize the

transition in the spectrum. Before doing that, though, we analyze system (5.41) in the

simpler case of λ → 0.
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λ → 0 limit

The limit of λ → 0 yields f± = 1, and system of equations (5.41) becomes

H
IIJ

IIK

v+ =
γ

v− + 1
,

v− =
γ

v+ + 1
,

(5.45)

where we have utilized the fact that α + β = γ. Solution of this system of equations is

given by

v+ = v− ≡ v =
1

2

$
−1 +

:
1 + 4γ

%
. (5.46)

Here we pick a positive sign due to a constraint on Γ1(λ)|λ→0 that we describe below.

Expression (5.44) for F in the case of λ → 0 can be rewritten as

F = (v + 1)4 − γ(v + 1)2 = (v + 1)3, (5.47)

and thus

Γ1(λ)|λ→0 = λ2

*
1− 4α

(v + 1)3

+
= λ2

*
1− 4α

γ
A(γ)

+
, (5.48)

where

A(γ) =
8γ

/
1 +

√
1 + 4γ

03 . (5.49)

By definition, Γ1(λ)|λ→0 represents the first moment of the distribution of W0. Specifi-

cally,

Γ1(λ)|λ→0 = λ2µ1, (5.50)

and thus the requirement 0 ≤ µ1 ≤ 1 justifies picking the positive sign in Eq. (5.46).

Note that A(γ) reaches the maximum of Amax(γ) = 1/4 at γ = 2, in which case Γ1(λ) =

λ2(1− α/γ) = bλ2, which corresponds to the RMT value of 〈W0〉 = 〈P0U
†P0UP0〉 if the
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random matrix U is sampled from the CUE. By expanding Γ1(λ) to higher orders in

λ, one can also show analytically that for γ = 2 second and third moments of W0 are

µ2 = −b3 + 2b2, µ3 = 2b5 − 6b4 + 5b4, which are as well identical to the moments of W0

if U is sampled from the CUE. Numerically, we find that the CUE and the ensemble

(5.5)-(5.7) with γ = 2 are equivalent to each other when comparing moments of W0 up

to arbitrary order, but we lack a formal analytical proof that it is actually the case.

λ → 1− limit

The limit of λ → 1− corresponds to f− → +∞, f+ → 0+. In this case, system of

equations (5.41) can be solved by the following ansatz:

v−|λ→1− = f−ξ +
&

f 2
−ξ

2 + f−η, (5.51)

where ξ, η are unknown functions of α, β and

ξ

H
IIIIIIJ

IIIIIIK

> 0, α < β,

= 0, α = β,

< 0, α > β.

(5.52)

Hence, up to the leading order

v−|λ→1− =

H
IIIIIIJ

IIIIIIK

2f−ξ, α < β,

:
f−η, α = β,

− η

2ξ
, α > β,

(5.53)
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plugging which into system of equations (5.41) allows us to obtain the expressions for ξ

and η:

ξ =
1

4

1
−(α + 1) +

:
(α− 1)2 + 4β

2
, (5.54)

η = −2ξ
2β + α

1
β − 1 +

:
4α + (β − 1)2

2

2(α− β)
. (5.55)

At the same time, Eq. (5.44) in the limit λ → 1− yields

F|λ→1− =

"
α +

v−
f−

#
(v− + f−). (5.56)

Plugging expression (5.51) for v−|λ→1− with ξ and η given by Eqs. (5.54),(5.55) into

Eq. (5.56), we obtain the following asymptotics of Γ1(λ) in the limit λ → 1−:

(1− λ2)Γ1(λ)|λ→1− =

H
IIJ

IIK

0, α > β,

1− α/β, α < β,

(5.57)

or, rewriting α and β in terms of b and γ,

(1− λ2)Γ1(λ)|λ→1− =

H
IIJ

IIK

0, b < 1/2,

(2b− 1)/b, b > 1/2.

(5.58)

As described in Section 5.3, the singularity in Γ1(λ)|λ→1− corresponds to the presence

of the eigenvalue 1 in the spectrum of W0. Hence, Eq. (5.58) reveals the second order

phase transition in the spectrum of W0 at the critical point b = bc = 1/2. This transition

for a numerically generated random matrix W0 is depicted in Figs. 5.2(a)-(c), while the

corresponding critical curve is depicted in Fig. (5.3). The independence of the critical

point on the value of γ signifies the universality of the transition. At the critical point,
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Figure 5.4: Function (1 − λ2)Γ1(λ) calculated numerically using Eqs. (5.41)-(5.44)
(blue solid lines) and analytically using Eqs. (5.43),(5.51),(5.54)-(5.56) (orange dashed
lines) plotted for (a) b < 1/2, (b) b = 1/2, and (c) b > 1/2.

we obtain

Γ
(c)
1 (λ)|λ→1− =

1 + γ/2

2
:

γ(1− λ)
. (5.59)

Figure 5.4 depicts function (1− λ2)Γ1(λ) calculated numerically using Eqs. (5.41)-(5.44)

and analytically using Eqs. (5.43),(5.51),(5.54)-(5.56) for various values of b. Numerical

and analytical values are equal at λ → 1−, while for other values of λ the analytical

curves are only qualitatively similar to the numerical ones.

5.5 Transition in the vicinity of the eigenvalue zero

As described in Section 5.3, the transition in the vicinity of the eigenvalue 0 can be

obtained by computing Γ2(λ)|λ→1− . This can be done by performing calculations given in

Section 5.4.1 and Appendices D.3-D.5 with slight modifications. In particular, redefining

matrix ť2 as

ť2 =
1− P0

2

4

56
1 −1

−1 1

7

89 (5.60)
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and keeping the definitions of L̂, T̂ , M̂ and Ĝ the same as in Section 5.4.1 in terms of ť1

and the redefined ť2, we can rewrite Γ2(λ) in the form identical to Eq. (5.17):

Γ2(λ) = − λ

2bN
Tr4N

1
T̂ Ĝ

2
. (5.61)

The form of matrix Ĝ remains the same as in Eq. (5.20) and thus the self-energy in terms

of Ǧ is given by Eq. (5.26):

Σ̄ = σ̄x(βḡ1 + αḡ2)σ̄x, (5.62)

where α ≡ γ(1− b), β ≡ γb and

Ǧ = P0ḡ1 + (1− P0)ḡ2. (5.63)

Similarly to Appendix D.4, in Appendix D.6 we calculate Ǧ−1
0 for the modified matrix

ť2, which yields

Ǧ−1
0 = P0[σ̄y + λ(1 + σ̄z)] + (1− P0)[σ̄y + λ(1− σ̄z)]. (5.64)

Using this result and the fact that

Ǧ = (Ǧ−1
0 − Σ̌)−1, (5.65)

we obtain the expressions for ḡ1,ḡ2 in terms of Σ̄:

ḡ1 =
(
σ̄y + λ(1 + σ̄z)− Σ̄

)−1
, (5.66)

ḡ2 =
(
σ̄y + λ(1− σ̄z)− Σ̄

)−1
. (5.67)
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Parametrizing Σ̄ as

Σ̄ = u1̄− vσ̄y − wσ̄z (5.68)

and plugging it into Eqs. (5.62), (5.66) and (5.67), we obtain the self-consistent system

of equations on u, v and w:

H
IIIIIIIIIIIIIIIIIIIIJ

IIIIIIIIIIIIIIIIIIIIK

u =
α(u− λ)

(v + 1)2 − u2 + w2 + 2λ(u− w)

+
β(u− λ)

(v + 1)2 − u2 + w2 + 2λ(u− w)
,

w =
α(w − λ)

(v + 1)2 − u2 + w2 + 2λ(u− w)

+
β(w + λ)

(v + 1)2 − u2 + w2 + 2λ(u− w)
,

v =
α(v + 1)

(v + 1)2 − u2 + w2 + 2λ(u− w)

+
β(v + 1)

(v + 1)2 − u2 + w2 + 2λ(u− w)
.

(5.69)

Note that here we have to use three parameters (u, v and w) to parametrize Σ̄ instead

of only two parameters used for the same purpose in Section 5.4.1. Introducing new

variables, u± = u± w, we rewrite system (5.69) as

H
IIIIIIIJ

IIIIIIIK

u+ =
α(u+ − 2λ)

(v + 1)2 − u−(u+ − 2λ)
+

βu+

(v + 1)2 − u+(u− − 2λ)
,

u− =
αu−

(v + 1)2 − u−(u+ − 2λ)
+

β(u− − 2λ)

(v + 1)2 − u+(u− − 2λ)
,

v =
α(v + 1)

(v + 1)2 − u−(u+ − 2λ)
+

β(v + 1)

(v + 1)2 − u+(u− − 2λ)
.

(5.70)

Expressing Γ2(λ) of Eq. (5.61) in terms of the parameters u± and v yields

Γ2(λ) = −λ

β

*
α

u−

(v + 1)2 − u−(u+ − 2λ)
+ β

u+

(v + 1)2 − u+(u− − 2λ)

+
. (5.71)
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The corresponding derivation is presented in Appendix D.7.

λ → 0 limit

Similarly to the previous section, we first solve system of equations (5.70) in the limit

λ → 0. The result reads

u+ = − 4αλ

1 +
√
1 + 4γ

, (5.72)

u− = − 4βλ

1 +
√
1 + 4γ

, (5.73)

v =
1

2

$
−1 +

:
1 + 4γ

%
, (5.74)

plugging which into Eq. (5.71), we obtain

Γ2(λ)|λ→0 =
32αλ2

/
1 +

√
1 + 4γ

03 . (5.75)

Here the positive sign in the expression (5.74) for v is taken to ensure the positivity of

Γ2(λ)|λ→0. Recalling the definitions of Γ1(λ) and Γ2(λ), see Eqs. (5.11) and (5.12), we

note that in the limit λ → 0,

Γ1(λ)|λ→0 = µ1λ
2, (5.76)

Γ2(λ)|λ→0 = ν1λ
2, (5.77)

where by definition µ1P0 ≡ 〈W0〉 and ν1P0 ≡ 〈P0 −W0〉. Thus,

[Γ1(λ) + Γ2(λ)] |λ→0 = λ2, (5.78)

which is consistent with the RMT results (5.48),(5.49) and (5.75).
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λ → 1− limit

In general, system (5.70) can be rewritten as a fifth order equation on v. Solution of

this equation in the limit λ → 1− is given by

v−|λ→1− =

H
IIIIIIIIJ

IIIIIIIIK

O(1), γ < γc,

3

3
γ2 − 4(γ − 1)

2(1− λ)
, γ = γc,

3
4(γ − 1)− γ2(2b− 1)2

8(1− λ)
, γ > γc,

(5.79)

where

γc =
1/2−

:
b(1− b)

(b− 1/2)2
. (5.80)

At the same time, Γ2(λ) can be rewritten solely in terms of v:

Γ2(λ) =
v(v + 1)− γ

β(v + 2)
. (5.81)

Plugging solution (5.79) for v into Eq. (5.81), we obtain the asymptotics of Γ2(λ) in the

limit λ → 1−:

√
1− λΓ2(λ)|λ→1− =

H
IIIJ

IIIK

0, γ < γc,3
4(γ − 1)− γ2(2b− 1)2

8γ2b2
, γ > γc.

(5.82)

The derivation of Eqs. (5.79)-(5.82) is given in Appendix D.8. Figure 5.5 depicts function
√
1− λΓ2(λ) calculated numerically using the fifth order equation (D.55) and Eq. (5.81)

for various values of γ and b. The dotted orange line in Fig. 5.5(c) indicates the analyt-

ically calculated value of
√
1− λΓ2(λ)|λ→1− for γ > γc given in Eq. (5.82). Figure 5.5

demonstrates consistency between the analytically calculated results at λ → 1− and the
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Figure 5.5: Function
√
1− λΓ2(λ) calculated numerically using Eqs. (5.41)-(5.44)

(blue solid lines) and analytically using Eqs. (5.43),(5.51),(5.54)-(5.56) (orange dashed
lines) plotted for (a) b < 1/2, (b) b = 1/2, and (c) b > 1/2.

numerically calculated ones.

The singularity in Γ2(λ)|λ→1− indicates the closed gap near the eigenvalue 0 in the

spectrum of W0, and thus the result (5.82) shows the presence of the spectral phase

transition at γ = γc. This eigenvalue 0 transition is illustrated in Figs. 5.2(d)-(f) for

numerically generated random matrix W0, while the corresponding critical curve is de-

picted in Fig. (5.3). The dependence of γc on b in this case indicates that the transition

near the eigenvalue 0 is non-universal, as opposed to the transition near the eigenvalue

1, which occurs at the universal critical point bc = 1/2, see Section 5.4.

5.6 Spectral transitions for other quantum trajecto-

ries

In Sections 5.4 and 5.5, we analyzed transitions in the spectrum ofW0, the non-unitary

Floquet evolution operator that represents the simplest possible quantum trajectory in

our setup, m = 0. For other, more generic quantum trajectories, see Eq. (5.1), the

corresponding non-unitary Floquet evolution operator can be rewritten as a polynomial

of W0 and P0. For example,

W1 = P0U
†P1UP0 = P0 −W0, (5.83)
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where P1 is a projective measurement operator corresponding to the measurement out-

come 1: P1 = 1− P0. Another example is

W(0,1,1) = P0U
†P1UP1U

†P0UP0 = W 2
0 −W0. (5.84)

Given the fact that generic Wm can be rewritten as a polynomial of W0 and P0, and

since all terms in the polynomial commute with each other, the spectrum of Wm and its

spectral transitions can be obtained from the spectrum of W0 and the corresponding W0

spectral transitions described in Sections 5.4 and 5.5. For example, given Eq. (5.83), the

eigenvalues w1 of W1 can be written as

w1 = 1− w0, (5.85)

except for the trivial zero eigenvalues coming from the projector P0. Here w0 denotes

the eigenvalues of W0. Equation (5.85) shows that the eigenvalue 0(1) transition in the

spectrum ofW0 translates into the eigenvalue 1(0) transition in the spectrum ofW1, while

properties of the corresponding transitions remain the same. Likewise, given Eq. (5.84),

the eigenvalues of W(0,1,1) can be written as

w(0,1,1) = w2
0 − w0, (5.86)

and hence both the eigenvalue 0 and the eigenvalue 1 transitions in the spectrum of W0

correspond to the eigenvalue 0 transition in the spectrum of W(0,1,1). Similar arguments

can be applied for generic Wm.
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5.7 Signatures of the transitions in the long-time dy-

namics of the system

In Section 5.4, we have shown that the operator W0 exhibits a spectral phase tran-

sition in the vicinity of the eigenvalue 1 between two distinct gapped phases, with one

phase (when b > 0.5) characterized by the presence of the eigenvalue 1 in the operator’s

spectrum, while in the other phase (when b < 0.5) the eigenvalue 1 is absent from the

spectrum. Considering a system of qubits whose Floquet evolution is determined by a

non-unitary operator W k
0 , where k is the number of the Floquet cycle, one could expect

that at large k the two aforementioned spectral phases give rise to two distinct dynamical

phases. In particular, the presence of the eigenvalues 1 would lead to the system retaining

some part of the memory of its initial conditions, while in the absence of the eigenvalues

1 such memory is rapidly lost as the system evolves. In this Section, we numerically

calculate certain physical quantities in the system evolving under W k
0 and demonstrate

how the two phases in the spectrum of W0, as well as the corresponding eigenvalue 1

phase transition analyzed in Section 5.4, reveal themselves in the long-time behavior of

these quantities.

The first quantity we consider is the purity of the evolving state. If at k = 0 the

initial state is completely mixed, the density operator for a given k can be written as

ρk,0 =
W 2k

0

Tr[W 2k
0 ]

, (5.87)

and thus the purity reads

Tr[
L
ρ2k,0

M
] =

N
Tr[W 4k

0 ]

Tr[W 2k
0 ]2

O
, (5.88)

where as before 〈...〉 denotes the random matrix ensemble averaging. Figure 5.6 illustrates
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Figure 5.6: Numerically calculated purity (5.88) of an initially completely mixed state
plotted as a function of a Floquet cycle k for γ = 1 and various values of b,N , when
the cycle evolution is described by a non-unitary operator W0. The insets in (a)-(c)

depict the purification time tp = min
"
k
###Tr〈ρ2k,0〉 > 0.95

$
as a function of the number of

qubits n = log2N in the system. In (a) the averaging is performed over 10000 random
matrix realizations for N = 16, 32, 64, 128, 256; 5000 realizations for N = 512; 1000
realizations for N = 1024; and 100 realizations for N = 2048. In (b) the averaging
is performed over 10000 random matrix realizations for N = 16, 32, 64, 128, 256; 5000
realizations for N = 512; 1000 realizations for N = 1024; and 150 realizations for
N = 2048. In (c) the averaging is performed over 1000 random matrix realizations for
N = 16, 32, 64, 128, 256, 512; 500 realizations for N = 1024; and 100 realizations for
N = 2048. In (d),(e) the averaging is performed over 320 random matrix realizations.

the evolution of the numerically calculated purity of Eq. (5.88) for various parameter val-

ues and system sizes. Within the strong monitoring phase (see Fig. 5.6a and 5.6b plotted

for γ = 1, b = 0.25 and γ = 1, b = 0.4375, respectively) an initially mixed state purifies

with time; however, the purification time increases with the system size. To quantify

this increase, we formally define the purification time as tp = min
(
k
PPTr〈ρ2k,0〉 > 0.95

)
and

plot it as a function of the number of qubits in the system n = log2 N ; these plots are

shown as insets in Fig. 5.6(a),(b). Note that the vertical axis in these plots is logarith-

mic. These results suggest that for the small system sizes that we use to numerically
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calculate the purity, the purification time scales sub-exponentially with the system size

(exponential scaling is shown as a gray dashed line on the tp vs n plots), and the pace of

the purification decreases with the increase in b. However, we stress that the exponential

scaling might be reached for larger system sizes which are beyond the ones that we have

considered – it is hard to draw definitive conclusions on the tp vs n scaling for the small

system sizes studied in our work. More studies are necessary to determine the details of

the purification dynamics in the strong monitoring phase, and it could be an interesting

topic for future works.

At the critical point, γ = 1, b = 0.5 (see Fig. 5.6c), an initially mixed state purifies,

and the purification time tp scales exponentially with the system size as tp ∝ 22n, or tp ∝

N2. The inset in Fig. 5.6(c) depicting tp as a function of n illustrates this scaling behavior.

Note that the exponential scaling of tp with the system size is a signature of the ”mixed”,

or the ”volume law”, phase, and contrary to the situation in other MIPT models [147],

here it corresponds to the critical point. The reason for such peculiar behavior is the

role that the measurement operator plays in our model: while in conventional MIPT

models the measurement is used to disentangle qubits from the rest of the system, here it

determines whether the system retains some part of the memory of its initial conditions

or not.

The weak monitoring case, i.e. when b > 0.5, is qualitatively different. The numer-

ically calculated dynamics of the purification in this case is depicted in Fig. 5.6(d),(e)

plotted for γ = 1, b = 0.625 and γ = 1, b = 0.75, respectively. The presence of the

eigenvalues 1 in the spectrum of the evolution operator in the weak monitoring phase,

which has been shown in Sections 5.3 and 5.4 (see also Fig. 5.2c), leads to the system

retaining some part of the memory of its initial conditions as it evolves. Due to this effect

an initially mixed state fails to purify entirely, as depicted in Fig. 5.6(d),(e).

Another quantity, the dynamics of which we consider, is the probability that the
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Figure 5.7: (a),(b) Numerically calculated probability (5.89) of the Floquet quantum
trajectory, representing the evolution under W k

0 , plotted as a function of a time step
k for γ = 1 and various values of b, when the initial state at k = 0 is (a) pure and (b)
completely mixed. The insets in the figures are log-log versions of the corresponding
curves. Dimensionality of the Hilbert space is N = 2048. The averaging is performed
over 320 random matrix realizations.

system evolution is given by an operator W k
0 , given that in general the outcome of each

measurement is random. The probability of observing such Floquet quantum trajectory

of length k is given by

pk,0 = Tr[
L
P0W

2k
0 ρ0

M
], (5.89)

where ρ0 is the density operator at k = 0. Figure 5.7 depicts the numerically calculated

probability (5.89) for small system sizes as a function of k in the case of a pure (Fig. 5.7a)

and a completely mixed (Fig. 5.7b) initial state. The insets in Fig. 5.7 depict the log-log

versions of the plots. In the strong monitoring phase (i.e. when b < 1/2) the probability

exponentially decays to zero with time for both the pure and the mixed initial states:

pk→∞,0 → 0. This behavior is consistent with the system losing the memory of its initial

conditions (which is the property of the strong monitoring phase in our model): under

such evolution, the number of possible quantum trajectories grows exponentially with

time, and correspondingly the probability to measure one specific quantum trajectory

decays exponentially to zero.

The situation changes qualitatively if one considers the weak monitoring phase, i.e.

the case with b > 1/2. Within this phase the probability (5.89) decreases to a finite
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value pk→∞,0 as k increases from zero, and stays constant at this value as the system

evolves further, both for the pure and the mixed initial states. Such behavior can be

understood by computing the probability to measure the outcome ”0” throughout the

evolution. After k cycles of the Floquet evolution and a unitary operation U , the density

operator reads

ρk,k+1 = U
W k

0 ρ0W
k
0

Tr[W 2k
0 ρ0]

U †. (5.90)

Thus, the probability to measure the outcome ”0” in the middle of the k + 1-st Floquet

cycle is equal to

Tr[P0ρk,k+1] =
Tr[P0UW k

0 ρ0W
k
0 U

†]

Tr[W 2k
0 ρ0]

=
Tr[W 2k+1

0 ρ0]

Tr[W 2k
0 ρ0]

. (5.91)

This probability reaches 1 in the limit of k → ∞ if W0 has eigenvalues 1 in its spectrum,

which is the case in the weak monitoring phase. The probability = 1 means that through-

out the evolution at late times the system remains in the appropriate part of its Hilbert

space, and thus it retains part of the memory of its initial condition. Finite probability

to measure this Floquet quantum trajectory at k → ∞ also signifies that this trajectory

is unique in the sense that for every other trajectory the probability to measure it goes

to zero as k → ∞.

We note here that since the probability (5.89) is essentially defined in terms of the

moments of the operator W0, one can calculate the steady-state value pk→∞,0 using the

moment generating function Γ1(λ) of Eq. (5.11). In particular, since 〈W 2k
0 〉 = µ2kP0, we

note that pk,0 = µ2k for a pure initial state and pk,0 = bµ2k for the completely mixed

initial state, and moments µ2k can be calculated via Γ1(λ). Taking the limit λ → 1−

in Γ1(λ), we note that in this case all moments contribute (almost) equally to Γ1, and

since in the steady state all moments are (almost) equal to each other, µk→∞ ≡ µ̃, we
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can write

(1− λ2)Γ1(λ)|λ→1− = µ̃ (5.92)

where the left-hand side has already been calculated and is given by Eq. (5.58). Thus,

for b ≤ 1/2 we find that pk→∞,0 = 0, whereas in the weak monitoring phase

pk→∞,0 =

H
IIJ

IIK

(2b− 1)/b, if ρ0 is pure,

2b− 1, if ρ0 is completely mixed,

(5.93)

which is in a perfect agreement with numerical results of Fig. 5.7. In particular, using

Eq. (5.93) for a pure initial state we find that pk→∞,0 = 2/3 for b = 0.75 and pk→∞,0 = 0.4

for b = 0.625, whereas for the completely mixed initial state we obtain pk→∞,0 = 0.5 for

b = 0.75 and pk→∞,0 = 0.25 for b = 0.625.

The critical point b = 1/2 corresponds to the power law decay of the probability

(5.89), which can be clearly seen in the log-log versions of the plots shown as insets

in Fig. 5.7. Here we would also like to note that while Fig. 5.7 is plotted for N =

2048, numerically we find no meaningful dependence of the probability (5.89) on N for

numerically accessible small system sizes.

As for the eigenvalue 0 transition studied in Section 5.5, its signatures in terms of

physical quantities can be analyzed by considering a Floquet evolution described by an

operator W k
1 , where W1 is given by Eq. (5.83), since the eigenvalue 0 transition for W0

corresponds to the eigenvalue 1 transition for W1. However, since the spectrum of W0

does not exhibit two gapped phases at the eigenvalue 0, instead showing signatures of a

gapped and a gapless phase (see Fig. 5.2(d-f)), the corresponding weak monitoring phase

is not present when analyzing the evolution of physical quantities under W k
1 . The details

of such analysis are presented in Appendix D.9.
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5.8 Summary & Conclusion

In the present work we have analyzed, both analytically and numerically, forced

measurement-induced transitions in all-to-all coupled monitored Floquet quantum cir-

cuits. The model that we have studied features a Floquet cycle that consists of a for-

ward and a backward unitary evolution intermixed with projective measurements. The

simplest quantum trajectory described within our model is defined by a non-unitary

Floquet cycle operator W0 = P0U
†P0UP0, where U is a unitary operator and P0 is a

projective measurement operator. Here we write the measurement operator as P0 =

diag{1, 1, . . . , 1, 0, 0, . . . , 0}, such that the strength of the measurement is characterized

by the rank of the projection operator, TrP0 = bN .

To study the spectrum of the non-unitary operator W0 in the thermodynamic limit,

we have developed a novel RMT-based approach that treats unitary operators U as

random matrices drawn from an ensemble characterized by a parameter γ, see Eqs. (5.5)-

(5.7). Using this RMT-based mean-field approach, we have analytically demonstrated

the existence of the measurement-induced transitions in the spectrum of W0. Specifically,

we have uncovered two types of transitions: one type occurs between two distinct gapped

phases in the vicinity of the eigenvalue 1, with the spectral gap closing at the critical

point. The two gapped phases in this case differ by the presence of the eigenvalue 1 in

the spectrum of the evolution operator. The other type of transition occurs between a

gapped and a gapless phase, taking place in the vicinity of the eigenvalue 0 of the operator

W0. Considering b and γ as system parameters, we have analytically calculated phase

diagrams describing both types of transitions, and performed numerical simulations for

small system sizes supporting our findings.

In addition, we have demonstrated how spectral transitions can be identified for other,

more complicated quantum trajectories, based on the results obtained for the simplest
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case of W0.

Furthermore, we have suggested that spectral MIPTs uncovered in our work can be

interpreted as transitions in terms of either losing completely or retaining part of the

memory of the system’s initial conditions as it evolves. In particular, considering the

eigenvalue 1 transition between the two gapped phases of the operator W0, the weak

monitoring phase corresponds to the phase where the system retains part of the memory

of its initial condition throughout its evolution, while in the strong monitoring phase

the memory of the initial conditions is rapidly lost. We note that these signatures of

the strong and the weak monitoring phases differ from the ones in conventional MIPT

models, where the measurement-induced phases are typically interpreted as volume vs

area law phases or pure vs mixed purification phases. Such peculiar nature of the phases

in our case is due to the unique details of our model, where the evolution consists of both

forward evolution and backward evolution operators, intermixed with the measurement

operations.

To support our interpretation of the measurement-induced phases and the correspond-

ing transition occurring within our model, we have numerically studied the long-time

dynamics of certain physical quantities for small-sized systems. One quantity that we

have considered is the purity of an initially completely mixed state. For the evolution

governed by a non-unitary operator W k
0 , where k is the number of Floquet cycles, we

have shown that in the strong monitoring phase (which features the absence of the eigen-

values 1 in the spectrum of W0) an initially mixed state purifies, and the purification

timescale increases with the system size and decreases with the measurement strength.

However, more studies are necessary in order to definitively determine the system size

scaling of the purification time in the strong monitoring phase. At the critical point,

when the gap in the spectrum of W0 closes, we have demonstrated that tp ∝ 2κn with

κ = 2. Such exponential scaling of the purification time with the system size is a typical
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signature of the mixed or the volume law phase in conventional MIPT models. On the

other hand, in the weak monitoring phase (which features the presence of the eigenvalues

1 in the spectrum of W0) an initially mixed state fails to purify entirely, a property that

is consistent with our interpretation of the system retaining part of the memory of its

initial conditions as it evolves within this phase.

Another physical quantity, the dynamics of which we have numerically studied, is the

probability to measure the Floquet quantum trajectory described by an operator W k
0 ,

given that the measurement outcomes at each step are random. We have shown that in

the strong monitoring phase this probability exponentially decays to zero as the system

evolves, while in the weak monitoring phase after an initial decrease it remains constant

and finite for k → ∞. This behavior is also consistent with the system losing(retaining)

memory of its initial condition as it evolves within the strong(weak) monitoring phase.

At the critical measurement strength the probability exhibits a power-law decay to zero.

Dynamical signatures of the eigenvalue 0 transition between a gapped and a gapless

phase in the spectrum of W0 can be studied by considering a Floquet evolution governed

by an operator W k
1 , where W1 = P0 − W0, since the eigenvalues 0 of the operator W0

correspond to the eigenvalues 1 of W1. Similarly to the case of the eigenvalue 1 tran-

sition in the spectrum of W0 discussed above, we have calculated the dynamics of the

purity and the measurement probability in the system evolving under the operator W k
1 .

We have found that the late-time dynamics of these quantities exhibits signatures of a

gapped and a gapless phase, consistent with our results obtained for the eigenvalue 0

transition in the spectrum of W0. Overall, these numerical results for the purity and

the measurement probability illustrate that the spectral phases and the corresponding

transitions, uncovered analytically in our work, manisfest themselves in the long-time

dynamics of various physical quantities.

Generally, a full understanding of the physics in monitored quantum circuits lacks
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due to the scarcity of analytically solvable models. The present study provides such the-

oretical model and its analytical treatment via an RMT-based approach applied to iden-

tify spectral signatures of MIPTs. Moreover, this model features measurement-induced

phases and transitions that do not fall within the conventional MIPT paradigm of vol-

ume law-area law phases (or pure-mixed purification phases). Our work can serve as an

inspiration for the development of other analytically treatable MIPT models and for the

application of the RMT to study monitored quantum circuits.

While we have provided some numerical results showing signatures of the transi-

tions in the long-time dynamics of certain physical quantities, such as purity and the

measurement probability, more systematic studies are necessary to make definitive con-

clusions about the properties of the measurement-induced phases in our model and the

corresponding transitions.

The possibility of an experimental implementation of our theoretical model on modern

NISQ devices is an open question. While theoretically the probability (5.89) to measure

the W k
0 Floquet quantum trajectory can provide an experimentally detectable signature

of the transition without the need for performing the postselection (see Fig. 5.7), real-

istic experiment would inevitably encounter multiple obstacles that would have to be

resolved. In addition to standard issues crippling modern devices such as decoherence

and imperfect gate fidelities, a practical implementation of the gate U utilized in our

model that scrambles the entire system would require the application of many single-

qubit and two-qubit gate layers which would effectively decrease the circuit depth that

can be efficiently simulated. Besides, gate imperfections would lead to the discrepancy

between practically implemented gates U and U †, which would in turn produce results

differing from the theoretical predictions made in our work.
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Appendix for Chapter 2

A.1 Analytical expressions for the proximity-induced

terms of the nanowire Green’s function in the

absence of spin-orbit and magnetic scattering

in the SC

In the absence of magnetic and spin-orbit scattering Γso = Γsf = 0 pair poten-

tial in the superconductor is constant as a function of Zeeman energy ∆ = ∆00 up to

the Clogston limit, and analytical solution to the Usadel equations (2.9a)-(2.9b) can be

obtained[56]:

tan θ =

&
4ω2

n∆
2 + [(V SC

Z )2 + ω2
n −∆2]

2 − (V SC
Z )2 − ω2

n +∆2

2ωn∆
(A.1)

coshφ =
ωn +∆ tan θ:

ω2
n + [∆2 − (V SC

Z )2] tan2 θ + 2ωn∆ tan θ
(A.2)

sinhφ =
V SC
Z tan θ:

ω2
n + [∆2 − (V SC

Z )2] tan2 θ + 2ωn∆ tan θ
(A.3)
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Performing analytical continuation of the Matsubara frequencies ωn → −iω, we obtain

the proximity induced terms of the Green’s function (2.18)

i cos θ coshφ = − −ω2 + S

2ω
&

1− (ω2+S)2

4∆2ω2

&
S − (−h2+∆2)(ω2+S)2

4∆2ω2

(A.4)

sin θ sinhφ = − h(ω2 + S)2

4∆2ω2

&
1− (ω2+S)2

4∆2ω2

&
S − (−h2+∆2)(ω2+S)2

4∆2ω2

(A.5)

sin θ coshφ = − (−ω2 + S)(ω2 + S)

4∆ω2

&
1− (ω2+S)2

4∆2ω2

&
S − (−h2+∆2)(ω2+S)2

4∆2ω2

(A.6)

i cos θ sinhφ = − h(ω2 + S)2

2∆ω
&

1− (ω2+S)2

4∆2ω2

&
S − (−h2+∆2)(ω2+S)2

4∆2ω2

(A.7)

where for notational purposes we denoted

S = −(V SC
Z )2 +∆2 +

&
−4∆2ω2 + (ω2 − (V SC

Z )2 +∆2)
2
. (A.8)
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B.1 Island(s) and QD(s) contributions to the total

low-energy Hamiltonian of the qubit(s)-QD(s)

system

B.1.1 2-MZM case

In this Appendix we derive effective Hamiltonian ĤC+QD of Eq. (4.2). The island and

QD contributions to the total low-energy Hamiltonian (3.1) of the coupled island-QD

system take the form ĤC = EC(N̂−Ng)
2+EM(N̂−Ng)(n̂−ng) and ĤQD = hn̂+εC(n̂−ng)

2

respectively, where N̂(n̂) is a charge occupation of the island(QD), EC(εC) is a charging

energy of the island(QD), Ng(ng) is a dimensionless gate voltage of the island(QD), EM

is a mutual charging energy between the island and the QD and h is energy of a single

electron level of the QD. Here we assumed a single-level QD without spin degeneracy,

which is a valid assumption in high external magnetic field for small enough QD.

Total charge conservation in the system dictates that N̂ + n̂ = Ntot, where Ntot is a
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total number of electrons in the system. Using this, ĤC+ ĤQD can be rewritten in terms

of only one operator, e.g. n̂, yielding up to a constant term:

ĤC + ĤQD = (EC + εC − EM)(n̂− ñg)
2 (B.1)

with effective dimensionless gate voltage given by

ñg =
EC(Ntot −Ng) + εCng − h/2− EM(Ntot −Ng + ng)/2

EC + εC − EM

. (B.2)

Relabeling parameters in terms of effective ones as EC+ εC−EM → εC, ñg → ng, we get

ĤC + ĤQD → ĤC+QD with ĤC+QD given by Eq. (4.2).

B.1.2 4-MZM case

Denoting N̂i(n̂i), i = 1, 2 as a charge occupation of the ith island(QD), Ng,i(ng,i), i =

1, 2 as a dimensionless gate voltage of the ith island(QD), hi, i = 1, 2 as energy of a single

electron level of the ith QD, we describe the islands and QDs contribution to the low-

energy Hamiltonian of the 4-MZM system as

ĤC + ĤQD =
e2

2

4,

i,j=1

ν̂iPij ν̂j +
,

i=1,2

hin̂i (B.3)

up to a constant. Here ν̂i represent dimensionless excess charge of the islands/QDs, i.e.

ν̂i =

H
IIJ

IIK

(N̂i −Ng,i), i = 1, 2

(n̂i−2 − ng,i−2), i = 3, 4

(B.4)

and Pij are matrix elements of the inverse of the 4× 4 capacitance matrix of the system

with the first(last) two indices representing the islands(QDs) degrees of freedom. The
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first term in Eq. (B.3) corresponds to the total electrostatic energy of the system while

the second term is a total orbital energy of the QD levels. Notice that the Hamiltonian

is always diagonal in the basis of the occupation numbers of islands and quantum dots.

Thus, energies εα, α ∈ {i1, i2, d1, d2} introduced in Section 3.3.2 can be found by plugging

appropriate values n̂i, N̂i ∈ {0, 1} of the island and QD charges into Eq. (B.3).

B.2 Quantitative comparison of capacitance of 2- and

4-MZM measurements

To gain intuition about the different signal strengths of the 2- and 4-MZM mea-

surements we compare the corresponding curvatures ∂2ε/∂∆2 of the two cases which

are proportional to the capacitive response Cdiff,p. In particular we consider the case

∆dd = ∆ = 0 using Eqs. (3.6) and (3.16) since finite ∆dd expressions are too complicated

in the 4-MZM case to be illuminating. We find:

∂2

∂∆2

PPP
∆=0

εp,gs(φ) = − 1

4|t̄p(φ)|
(B.5)

∂2

∂∆2
dd

PPP
∆dd=0

ε(4)p,gs(φ) = −

?
t2Σ +

&
t4Σ − 4t̄

(4)
p (φ)4

4
√
2

&
t4Σ − 4t̄

(4)
p

(B.6)

Note that t4Σ ≥ 4t̄
(4)
p , we therfore see that

&
t4Σ − 4t̄

(4)
p (φ)4/tΣ plays a similar role for the

4-MZM case as |t̄p(φ)| does for the 2-MZM case.

As mentioned in the main text, for perfectly symmetric tuning |tα| = t, the 2- and

4-MZM cases show parity-dependent energy shifts of similar order. We now look at the

capacitive responses in the same limit. Let’s consider p = 1 (p = −1 can be obtained by
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shifting φ → φ+ π). We then find,

∂2

∂∆2

PPP
∆=0

ε+,gs(φ− π/2) = − 1

8t

1

sin(φ/2)
(B.7)

∂2

∂∆2
dd

PPP
∆dd=0

ε
(4)
+,gs(φ) = − 1

8t

cos(φ/4− π/4)

sin(φ/2)
(B.8)

where we used simplifications that apply without loss of generality for 0 ≤ φ ≤ 2π which

bounds 1/
√
2 ≤ cos(φ/4−π/4) ≤ 1. We therfore see that in this limit the 2- and 4-MZM

capacitive response behaves very similarly differing by at most a factor of
√
2.

B.3 4-MZM measurement in case tδ ∕= 0

In case of tδ ∕= 0 solutions of the quartic equation (3.14) have cumbersome analytical

form and we do not present them here. Instead, we parametrize the coupling asymmetry

giving rise to finite tδ using the parameter β such that |t1| = |t3| = t, |t2| = |t4| =

t(1− β)/(1 + β), t2δ = 8βt2/(1 + β)2 and plot solutions of Eq. (3.14) as functions of ∆dd

in Fig. B.1 for φ = 0 and various values of β. Fig. B.1 illustrates that finite values of

tδ introduce a shift of the crossings (or avoided crossings if |t1| ∕= |t3| and/or |t2| ∕= |t4|)

away from ∆dd = 0 which can be calculated analytically giving

∆shift
dd = ±

√
2t2δ

<==>t2Σ −
&

t4Σ − 4t̄
(4)
p (φ)4 − t4δ

4t̄
(4)
p (φ)4 + t4δ

. (B.9)

Taking into account this shift in ∆dd, the ground state part of the 4-MZM system spec-

trum in case the of tδ ∕= 0 still looks qualitatively similar to the one of the 2-MZM system

spectrum depicted in Fig. 3.2(a) for all cases shown in Fig. B.1.
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Figure B.1: Eigenenergies of the Hamiltonian (3.13) for different parities p and as a
function of QD-QD detuning ∆dd for various values of coupling asymmetry β. Here
we set |t1| = |t3| = t, |t2| = |t4| = t(1 − β)/(1 + β), ∆di = 0. Panel (a) is given by
the analytical expressions of Eq. (3.16).

B.4 SNR for 1/f noise

In this appendix we derive expressions for Y and σY for Gaussian noise that is fully

described by a two-point correlation function with 1/f spectral power density Sx(ω) =

αx/|ω|. Using the expansion of Eq. (3.17) together with 〈δx〉 = 0 we find

Y = y0 +
y2
2τm

! τm

0

dt〈δx(t)2〉 = y0 +
y2
2

!
dωSx(ω) . (B.10)
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Strictly speaking this expression is divergent but physical constraints provide frequency

cutoffs for S(ω). The low frequency cutoff ωmin is given by the time that passed since the

measurement apparatus was calibrated. Calibration redefines very slow noise components

into the signal. In general ω−1
min > τm but depending on the way the qubit is operated

ω−1
min could exceed τm by several orders of magnitude. The high frequency cutoff is given

by the inverse of the correlation time of the noise τc since for t′ < τc one would expect

〈δx(0)δx(0)〉 ≈ 〈δx(0)δx(t′)〉. We thus regularize Eq. (B.10) via

Y = y0 + y2αx

! ∞

ωmin

dω
1

ω

1

τc

! τc/2

−τc/2

dteiωt ≈ y0 + y2αx

/
1− γ − log(ωminτc/2)

0
(B.11)

where γ ≈ 0.577 is the Euler’s constant and we used that ωminτc ≪ 1.

The variance is given by

σ2
Y =

1

τ 2m

! τm

0

! τm

0

dtdt′
-
y21〈δx(t)δx(t′)〉+

+
y22
4

/
〈δx(t)δx(t)δx(t′)δx(t′)〉 − 〈δx(t)δx(t)〉〈δx(t′)δx(t′)〉

0.
(B.12)

The integral of the first order term can be evaluated as

! τm

0

! τm

0

dtdt′ 〈δx(t)δx(t′)〉 =
! τm

0

! τm

0

dtdt′
! ∞

−∞
dωeiω(t−t′)Sx(ω) =

= 4τ 2m

! ∞

−∞
dω

sin2(ωτm/2)

(ωτm)2
Sx(ω) (B.13)

We again regularize the integral by introducing the low frequency cutoff ωmin, this yields

a first order contribution to σ2
Y of

8y21αx

! ∞

ωminτm

dζ
sin2(ζ/2)

ζ3
≈ y21αx

/
3− 2γ − 2 log(ωminτm)

0
(B.14)
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where for simplicity we used the limit ωminτm ≪ 1.

The second term in (B.12) can be evaluated with the help of Wick’s theorem which

is valid given the assumption of the Gaussian noise. Specifically, we write

! τm

0

! τm

0

dtdt′〈δx(t)δx(t)δx(t′)δx(t′)〉 =

=

! τm

0

! τm

0

dtdt′ {〈δx(t)δx(t)〉〈δx(t′)δx(t′)〉+ 2〈δx(t)δx(t′)〉〈δx(t)δx(t′)〉} (B.15)

Note that the first term in (B.15) cancels with the last term in (B.12), while the second

term in (B.15) can be written as

! τm

0

! τm

0

dtdt′〈δx(t)δx(t′)〉〈δx(t)δx(t′)〉 =

=

! τm

0

! τm

0

dtdt′
! ∞

−∞

! ∞

−∞
dωdω′ei(ω+ω′)(t−t′)Sx(ω)Sx(ω

′) =

= τ 2m

! ∞

−∞

! ∞

−∞
dωdω′Sx(ω)Sx(ω

′)
sin2((ω + ω′)τm/2)

((ω + ω′)τm/2)2
. (B.16)

Once again, we regularize the integral by introducing the low frequency cutoff ωmin and

get

2τ 2mα
2
x

! ∞

ωminτm

! ∞

ωminτm

dζdζ ′
1

ζζ ′

"
sin2((ζ + ζ ′)/2)

((ζ + ζ ′)/2)2
+

sin2((ζ − ζ ′)/2)

((ζ − ζ ′)/2)2

#
(B.17)

The integral given above cannot be computed analytically for arbitrary values of ωminτm.

However, in the limit ωminτm ≪ 1 certain simplifications are possible. First, we perform
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one of the integrals in (B.17) and expand the result in powers of ωminτm:

! ∞

ωminτm

dζ
1

ζζ ′

"
sin2((ζ + ζ ′)/2)

((ζ + ζ ′)/2)2
+

sin2((ζ − ζ ′)/2)

((ζ − ζ ′)/2)2

#
=

=
4

ζ ′3
{−1 + (1 + γ) cos ζ ′ − Ci(ζ ′) + log(ζ ′) + ζ ′Si(ζ ′)− log(ωminτm)(1− cos(ζ ′))}+

+O(ωminτm)

(B.18)

where Ci(ζ ′) = −
'∞
ζ′

dt cos(t)/t and Si(ζ ′) =
' ζ′

0
dt sin(t)/t. Next, we integrate (B.18)

over ζ ′ and expand the result in powers of ωminτm once again. This yields the expression

for the second order contribution to σ2
Y in the limit ωminτm ≪ 1:

y22α
2
x

! ∞

ωminτm

! ∞

ωminτm

dζdζ ′
1

ζζ ′

"
sin2((ζ + ζ ′)/2)

((ζ + ζ ′)/2)2
+

sin2((ζ − ζ ′)/2)

((ζ − ζ ′)/2)2

#
≈

≈ y22α
2
x

/
7− 6γ + 2γ2 + (4γ − 6) log(ωminτm) + 2 log2(ωminτm)

0
(B.19)

Hence, the expression for variance in the limit ωminτm ≪ 1 takes the form

σ2
Y ≈y21αx

/
3− 2γ − 2 log(ωminτm)

0
+

+y22α
2
x

/
7− 6γ + 2γ2 + (4γ − 6) log(ωminτm) + 2 log2(ωminτm)

0
. (B.20)

B.5 Temperature dependence of detuning noise

In this Appendix we briefly analyze temperature dependence of the detuning noise

described in Section 3.5 of the main text. Fig. B.2 illustrates signal (3.20) and noise

(3.21) calculated as a function of system temperature for the average QD charge (Sn,

Nn) and the differential capacitance of the QD (SC, NC). Both dependencies in Fig. B.2

are plotted for values of detuning and phase corresponding to (or close to) the maximum
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Figure B.2: Signal (3.20) and noise (3.21) for the 2-MZM measurement of the aver-
age QD charge 〈nQD〉(a) and differential QD capacitance Cdiff/CΣ,D(b) as a func-
tion of temperature T for φ = π/2 and different values of ∆/t. Here we set
|t1| = t, |t2| = 1.5t, t = εC/5 = 0.02 meV, Cg/CΣ,D = 2 and the noise is detun-
ing noise of strength

√
αC = 0.01.

visibility points, see discussion in Section 3.5 of the main text.

The signal strength in Fig. B.2 decreases with temperature due to the fact that

the energies (3.6) are symmetric with respect to ε = 0 line, see Fig. 3.2(a), and hence

the difference between the observables for p = +1 and p = −1 vanishes at large T .

The noise strength also usually decreases with temperature because the slope of the

observables plotted as a function of ∆ decreases with temperature too. However, there

are certain parameter regimes when the slope is already in the saturation and hence

it rises with T thus increasing the noise strength as well, see for example Fig. B.2(a)

for T/t ≲ 1.5. Overall, based on Fig. B.2 we conclude that lowering T benefits the

measurement visibility.

136



Appendix for Chapter 3 Chapter B

B.6 Derivation of the expression for Cdiff,− in the

limit |t̄−| ≪ T, σ∆

Expressions for energy and differential capacitance for the ground and exited states

are given in Eqs. (3.6) and (3.8):

εgrp = −1

2

&
∆2 + 4|t̄p|2 = −εexcp , (B.21)

Cgr
diff,p

C2
g/CΣ,D

= − 4εC|t̄p|2
(∆2 + 4|t̄p|2)3/2

= −
Cexc

diff,p

C2
g/CΣ,D

. (B.22)

In the high temperature limit temperature-averaged Cdiff,− becomes

Cdiff,− =
Cgr

diff,−e
−εgr− /T + Cexc

diff,−e
−εexc− /T

e−εgr− /T + e−εexc− /T
−−−−−→
T≫|t̄−|,∆

−
Cexc

diff,−ε
exc
−

T
∝ |t̄−|2

T (∆2 + 4|t̄−|2)
. (B.23)

Given Gaussianly distributed random varaible ∆ with variance σ2
∆, averaging Cdiff,− over

the distribution gives in the limit σ∆ ≫ |t̄−|

Cdiff,− ∝ |t̄−|2
Tσ∆

× 1

|t̄−|
=

|t̄−|
Tσ∆

. (B.24)

B.7 Noise in MZM-QD couplings

Noise in the MZM-QD coupling amplitudes |t1|, |t2| results from the noise in electro-

static gates controlling those couplings. Similarly to the case of the detuning noise (3.22)

in the main text we assume that the coupling noise has 1/f power spectrum:

St(ω) = t2
αt

|ω| (B.25)
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where we explicitly separated MZM-QD coupling energy |t1|, |t2| ∼ t and dimensionless

noise strength αt.

We estimate αt using experimental measurements of the dephasing time in gatemon

qubits that use quantum wire suitable for topological superconductivity. Reference [247]

reports T ∗
2 ∼ 4 µs in InAs/Al based gatemon with qubit frequencies fQ ∼ 5GHz. We

assume that fQ ∝
√
EJ ∝ √

gJ , where EJ , gJ are the Josephson energy and dimensionless

conductance of the junction. We can then obtain an upper bound on the fluctuations of gJ

by assuming that the dephasing is dominated by noise in the dimensionless conductance

of order ∆gJ which yields the estimate ∆gJ/gJ = 1/(πT ∗
2 fQ) ∼ 2 × 10−5. This can

be used to estimate the fluctuations in t which is proportional to
√
gJ of the junction

connecting the qubit island and the QD. Assuming similar relative fluctuations of gJ

yields
√
αt ∼ 10−5. Note that the amount of variations in the conductance of a junction

due to charge noise in the environment does depend on the regime in which the junction

is operated. Junctions that are operated close to pinch off will likely show a stronger

susceptibility to fluctuations. Nevertheless, the significantly smaller value of
√
αt ≪

√
αC

obtained in the above estimate makes it unlikely that the noise in the tunnel coupling

overcomes the detuning noise.

Similar to the case of the detuning noise in the main text we analyze effects of the

coupling noise perturbatively. Using expressions for expectation value and variance of

the observables (3.18),(3.19) we calculate signal and noise via Eqs. (3.20),(3.21). The

perturbative treatment of the noise is well satisfied since
√
αt ≪ 1. Fig. B.3 illustrates

the signal Sn (SC) and the noise Nn (NC) calculated for the average QD charge (a)-(b)

(differential capacitance of the QD (c)-(d)) as a function of detuning. The signal lines

in Fig. B.3 resemble the ones in Fig. 3.6 and we refer reader to the main text for the

discussion of the signal. Coupling noise, on the other hand, has a behavior qualitatively

different from its detuning counterpart. First, in contrast to the detuning noise, the
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Figure B.3: Effect of noise in the MZM-QD coupling. Signal (3.20) and noise (3.21)
for the 2-MZM measurement of the average QD charge 〈nQD〉 (a)-(b) and differ-
ential QD capacitance Cdiff/CΣ,D (c)-(d) as a function of detuning ∆ for different
values of φ. Here we assume that the system is in its ground state (T = 0) and set
|t1| = t, |t2| = 1.5t, t = εC/5 = 0.02 meV, Cg/CΣ,D = 2, and the strength of the
coupling noise

√
αt ∼ 10−5.

coupling noise Nn vanishes at zero detuning as illustrated in Fig. B.3(a)-(b). This is

associated with 〈nQD,p〉 being identically zero at ∆ = 0 for any value of |t̄p|. At the

same time, the local minimum at ∆ = 0 of the detuning noise NC, see Fig. 3.6(c)-(d),

is not present in the case of the coupling noise as can be observed in Fig. B.3(c)-(d).

The reason for this is that at ∆ = 0 the capacitance is affected by noise in the coupling

already to first order as opposed of detuning noise which only acts at second order. Akin

to the detuning noise, the effect of coupling noise vanishes together with the signal for

large detuning values emphasizing that external noise sources, e.g. amplifier noise, would

likely be dominant in that regime.
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Overall, the SNR for the coupling noise exceeds 104 in case of 〈nQD〉 and Cdiff for

most of the parameter values except vicinity of a few isolated points where the signal is

fine tuned to zero. This signifies that due to
√
αt ≪

√
αC the MZM-QD coupling noise

is not significant enough to affect the measurement visibility.

Intuitively, the weaker effect of noise on the tunnel coupling can be explained by

differences in the sensitivity of the voltages controlling the tunnel coupling and the charge

occupation. Assuming for simplicity a lever arm close to unity, the detuning changes

significantly when the corresponding voltage of the QD changes the charge occupation

by one electron. This corresponds to voltages ∼ εC/e which is typically or the order of

0.1− 1mV. Changing the strength of the tunnel coupling on the other hand requires to

sufficiently change the electrostatic potential in the tunneling barrier. The corresponding

voltages are typically much larger ∼ 10 − 100mV. Nevertheless, we caution that for

sufficiently ill-behaved junctions which show sharp resonances in the dependency of the

dimensionless conductance with respect to the junction gate voltage the general trend of

weak coupling noise might be broken.

B.8 Phase noise

The phase noise arises due to the noise in magnetic flux penetrating the enclosed

area of the interference loop in the coupled island-QD setup, see Fig. 3.1. The flux

noise, in turn, can originate from fluctuations in external magnetic field needed to tune

the nanowires into the topological regime and/or from magnetic moments of electrons

trapped in defect states of superconductors [248]. We estimate it by referring to the noise

measurements in flux qubits which have interference loop based architecture similar to

our topological setup. Refs. [249, 250] observe 1/f behavior of the flux noise in flux

qubits and report the noise value of S
1/2
Φ (1 Hz) ∼ 1µΦ0Hz

−1/2, where Φ0 = h/(2e) is the
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superconducting flux quantum. Based on this we write the phase noise spectral power in

our setup as

Sφ(ω) =
αφ

|ω| (B.26)

with
√
αφ ∼ 10−6.

Following analysis of the detuning noise in the main text and the MZM-QD coupling

noise in Appendix B.7, here we treat 1/f phase noise perturbatively and calculate cor-

responding signal S and noise N via Eqs. (3.20),(3.21). Note that
√
αφ ≪ 1 is needed

for the perturbative treatment of the noise to work. The results of the phase noise

calculations are illustrated in Fig. B.4(a)-(b) for the average QD charge (Sn, Nn) and

Fig. B.4(c)-(d) for the differential capacitance of the QD (SC, NC) as a function of de-

tuning. The signal lines in Fig. B.4 closely resemble the ones in Fig. 3.6 so the discussion

of the signal can be found in the main text. On the other hand, the phase noise lines

in Fig. B.4 are qualitatively similar to the coupling noise lines in Fig. B.3, see Appendix

B.7 for the corresponding discussion. The main difference between the phase noise and

the coupling noise is that the phase noise is smaller: the SNR for the phase noise exceeds

105 in case of both 〈nQD〉 and Cdiff for most of the parameter values except vicinity of

a few isolated points in parameter space where the signal is fine tuned to zero. Near

φ = π/2 the SNR is greater than 1010 for most of detuning values. Note also that the

dependence on φ of the phase noise is much more significant than the dependence on φ

of the coupling noise, cf. Fig. B.4(a)-(b) and Fig. B.3(a)-(b). Overall, we predict the

phase noise to be not strong enough to affect the measurement visibility.
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Figure B.4: Effect of phase noise. Signal (3.20) and noise (3.21) for the 2-MZM
measurement of the average QD charge 〈nQD〉 (a)-(b) and differential QD ca-
pacitance Cdiff/CΣ,D (c)-(d) as a function of detuning ∆ for different values of
φ. Here we assume that the system is in its ground state (T = 0) and set
|t1| = t, |t2| = 1.5t, t = εC/5 = 0.02 meV, Cg/CΣ,D = 2, and the strength of the
flux noise

√
αφ ∼ 10−6.
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C.1 Analytic expressions for the eigenenergies of the

Hamiltonian (4.4)

The eigenergies of the Hamiltonian (4.4) are given by

ε1 =

?
∆2

ind + V 2
Z + ξ2k + (αRk)2 − 2

&
V 2
Z∆

2
ind + (V 2

Z + α2
Rk

2)ξ2k, (C.1)

ε2 =

?
∆2

ind + V 2
Z + ξ2k + (αRk)2 + 2

&
V 2
Z∆

2
ind + (V 2

Z + α2
Rk

2)ξ2k, (C.2)

where ξk = k2/2m∗ − µ.

C.2 Relative strength of the MZM-QD and the

continuum-QD couplings of Eqs. (4.11),(4.12)

The MZM-QD and the continuum-QD couplings can be rewritten in terms of the

tunneling matrix elements with the help of Ref. [251]. In particular, Eq. (52) from
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Ref. [251] gives the following expression for the MZM-QD tunneling Hamiltonian:

ĤT-MZM = e−iφ̂/2
,

ρ=↓,↑

,

l=L,R

Wlφρ(rl)uMZM,l(rl)f
†
ργl + h.c., (C.3)

where Wρ are the tunneling matrix elements, uMZM(r) is the Majorana wavefunction and

φρ(r) are wavefunctions of the QD orbitals. Comparing this expression for the MZM-QD

tunneling Hamiltonian with expression (4.8) of the main text, and taking into account

that the Majorana wavefunction normalization requires |uMZM(r)|2 ∼ 1/ξ, where ξ is the

coherence length in the nanowire, we can express the MZM-QD coupling as

|tρl|2 ≈ W 2
l |uMZM,l(rl)|2|φρ(rl)|2 = W 2

l |φρ(rl)|2
1

ξ
. (C.4)

As for the continuum-QD coupling, Eq. (12) from Ref. [251] provides an expression

for the corresponding tunneling Hamiltonian:

ĤT-NW = e−iφ̂/2
,

ρ,σ=↓,↑

,

l=L,R

,

k

Wlφρ(rl)ψkσl(rl)f
†
ρckσl + h.c., (C.5)

where compared to Eq. (12) from Ref. [251] we have neglected tunneling from the su-

perconducting shell as it is not part of our model, and refrained from expressing the

nanowire electronic operators in terms of their Bogoliubov counterparts. Here ψkσl(r) are

wavefunctions of the electronic modes in the nanowires, normalized as |ψkσl(r)|2 ∼ 1/L.

Comparing this expression for the continuum-QD tunneling Hamiltonian with expression

(4.9) of the main text, we find that the continuum-QD coupling can be expressed as:

|sρσl|2 ≈ W 2
l |ψkσl(rl)|2|φρ(rl)|2 = W 2

l |φρ(rl)|2
1

L
. (C.6)
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From Eqs. (C.4),(C.6) it follows that

|tρl|
|sρσl|

≈

3
L

ξ
. (C.7)

C.3 Analytic expressions for the coefficients α, β of

Eqs. (4.19)-(4.20)

The expressions for the coefficients αp,n, βp,n, n = 0, 1, read

αp,0 =
∆+

:
∆2 + 4|t̄p|2

t̄p

?
8 + 2∆

|t̄p|2

$
∆+

:
∆2 + 4|t̄p|2

%2
, αp,1 =

2?
8 + 2∆

|t̄p|2

$
∆+

:
∆2 + 4|t̄p|2

%2
,

(C.8)

βp,0 =
∆−

:
∆2 + 4|t̄p|2

t̄p

?
8 + 2∆

|t̄p|2

$
∆−

:
∆2 + 4|t̄p|2

%2
, βp,1 =

2?
8 + 2∆

|t̄p|2

$
∆−

:
∆2 + 4|t̄p|2

%2
,

(C.9)

where for notational convenience we denoted t̄p,↑ as t̄p. We further note that

|βp,0|2 =
1

2

A
1− ∆:

∆2 + 4|t̄p|2

B
, |βp,1|2 =

1

2

A
1 +

∆:
∆2 + 4|t̄p|2

B
. (C.10)

These identities are used throughout the chapter.
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(i)

(ii)

(iii)

Figure C.1: Schematic illustration of an example of the second order tunneling process.
Solid black dots represent the electrons hopping between the superconductor with the
gap ∆g and the two-level QD with the Zeeman splitting h. Grey wavy lines represent
the quasiparticle continuum in the superconductors.

C.4 Details of the second order perturbative calcu-

lations

The second order processes include virtual tunnelings from a T(QD) onto the QD(T)

and back onto the same T(QD), with a creation and annihilation of a virtual quasiparticle

during the process. Importantly, since the same topological superconductor is involved in

the tunneling events, no overall phase is accumulated during the second order processes,

and the only phase dependence would come from the MZM-QD coupling which is treated

unperturbatively. Formally, the second order correction in the continuum-QD couplings

is given by

ε
(2)
p,− =

,

m

PPP〈m|ĤT-NW|−〉p
PPP
2

ε
(0)
p,− − εm

. (C.11)
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The excited states |m〉 correspond to a quasiparticle created in either L or R topological

superconductor. Figure C.1 schematically illustrates an example of a second order pro-

cess. States |m〉 have parity −p and can be either the |−〉−p or the |+〉−p eigenstates of

the MZM-QD Hamiltonian, see Eqs. (4.19)-(4.20). Hence, we write

ε
(2)
p,− = ε

(2)
I + ε

(2)
II (C.12)

with

ε
(2)
I =

,

l=L,R

,

j=1,2

,

k

PPP−p〈−, 1kjl|ĤT-NW|−〉p
PPP
2

ε
(0)
p,− − (ε

(0)
−p,− + εkjl)

, (C.13)

ε
(2)
II =

,

l=L,R

,

j=1,2

,

k

PPP−p〈+, 1kjl|ĤT-NW|−〉p
PPP
2

ε
(0)
p,− − (ε

(0)
−p,+ + εkjl)

, (C.14)

where ε
(0)
p,± are the ”unperturbed” energies (4.22) of the MZM-QD Hamiltonian and 1kjl

indicates the creation of the type j quasiparticle in the lth topological superconductor

with the momentum k and the energy εkjl given by Eqs. (C.1)-(C.2). Recalling ex-

pressions (4.19)- (4.20) for the states |±〉 and expression (4.10) for the continuum-QD

tunneling Hamiltonian, we calculate the matrix elements in Eq. (C.14) and obtain

ε
(2)
I =−

,

l=L,R

,

j=1,2

,

k

|βp,1β
∗
−p,0(s

∗
↑↑lukj↑ + s∗↑↓lukj↓) + βp,0β

∗
−p,1(s↑↑lv−kj↑ + s↑↓lv−kj↓)|2

εkjl + ε
(0)
−p,− − ε

(0)
p,−

,

(C.15)

ε
(2)
II =−

,

l=L,R

,

j=1,2

,

k

|βp,1α
∗
−p,0(s

∗
↑↑lukj↑ + s∗↑↓lukj↓) + βp,0α

∗
−p,1(s↑↑lv−kj↑ + s↑↓lv−kj↓)|2

εkjl + ε
(0)
−p,+ − ε

(0)
p,−

,

(C.16)
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where we have only considered tunneling into the lower in energy dot level ρ =↑ which

is justified if the Zeeman splitting on the dot is much larger than the respective level

broadening h ≫ Γ↓l. In the denominator, the expressions

ε
(0)
−p,− − ε

(0)
p,− =

$
−
:

∆2 + |t̄−p|2 +
:

∆2 + |t̄p|2
%
/2 and

ε
(0)
−p,+ − ε

(0)
p,− =

$:
∆2 + |t̄−p|2 +

:
∆2 + |t̄p|2

%
/2 are much smaller than εkjl in the limit

∆g ≫ ∆, |tL|, |tR| and hence can be neglected. This makes the denominators in Eqs. (C.15)

and (C.16) identical. The enumerator in Eq. (C.15) can be rewritten as

|βp,1β
∗
−p,0|2

/
|s↑↑l|2u2

kj↑ + |s↑↓l|2u2
kj↓ + 2|s↑↑ls↑↓l|ukj↑ukj↓

0
+

+ |βp,0β
∗
−p,1|2

/
|s↑↑l|2v2−kj↑ + |s↑↓l|2v2−kj↓ + 2|s↑↑ls↑↓l|v−kj↑v−kj↓

0
+

+
(
βp,1β

∗
−p,0β

∗
p,0β−p,1

/
s∗↑↑lukj↑ + s∗↑↓lukj↓

0 /
s∗↑↑lv−kj↑ + s∗↑↓lv−kj↓

0
+ c.c.

)
. (C.17)

Similarly, the enumerator in Eq. (C.16) can be rewritten as

|βp,1α
∗
−p,0|2

/
|s↑↑l|2u2

kj↑ + |s↑↓l|2u2
kj↓ + 2|s↑↑ls↑↓l|ukj↑ukj↓

0
+

+ |βp,0α
∗
−p,1|2

/
|s↑↑l|2v2−kj↑ + |s↑↓l|2v2−kj↓ + 2|s↑↑ls↑↓l|v−kj↑v−kj↓

0
+

+
(
βp,1α

∗
−p,0β

∗
p,0α−p,1

/
s∗↑↑lukj↑ + s∗↑↓lukj↓

0 /
s∗↑↑lv−kj↑ + s∗↑↓lv−kj↓

0
+ c.c.

)
. (C.18)

Since the denominators are the same, the sum of the two enumerators (C.17) and (C.18)

enters the expression for ε
(2)
p,−. In this sum, the last terms in the expressions (C.17)

and (C.18) (i.e. the cross terms) cancel one another due to the fact that β∗
−p,0β−p,1 +

α∗
−p,0α−p,1 = 0. Besides, given that |β∗

−p,0|2 + |α∗
−p,0|2 = |β∗

−p,1|2 + |α∗
−p,1|2 = 1, the other

terms in the sum of (C.17) and (C.18) can be combined yielding for the total energy
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correction

ε
(2)
p,− =− 2|βp,1|2

,

j=1,2

,

k

|sdir|2u2
kj↑ + |ssf|2u2

kj↓ + 2|sdirssf|ukj↑ukj↓

εkj
−

− 2|βp,0|2
,

j=1,2

,

k

|sdir|2v2−kj↑ + |ssf|2v2−kj↓ + 2|sdirssf|v−kj↑v−kj↓

εkj
, (C.19)

where the sum over l = L,R results in the factor of 2. When writing Eq. (C.19) we

assumed for simplicity that the continuum-QD couplings on the left and on the right are

the same |s↑σL| = |s↑σR| ≡ |s↑σ|, and introduced the direct |sdir| ≡ |s↑↑| and the spin-flip

|ssf| ≡ |s↑↓| couplings to the spin-up dot level ρ =↑. Equation (C.19) has a clear physical

meaning: due to the MZM-QD couplings, the electron wavefunction is spreaded across the

QD and the island. Recalling Eqs. (4.19)-(4.20), one can note that |βp,1|2 is a probability

for the electron to be found on the dot, while |βp,0|2 is a probability for the electron to be

found on the island. Thus Eq. (C.19) represents the contributions to the energy coming

from the dot-to-island virtual electron tunneling (the first term in Eq. (C.19)) and the

island-to-dot virtual electron tunneling (the second term in Eq. (C.19)) multiplied by the

respective probabilities. Taking into account the fact that u2
kj↑ = u2

−kj↓, j = 1, 2, and

v2−kj↑ = v2kj↓, j = 1, 2, see Eq. (4.7), Eq. (C.19) becomes

ε
(2)
p,− =− 2|βp,1|2

,

j=1,2

,

k

(|sdir|2 + |ssf|2)u2
kj↑ + 2|sdirssf|ukj↑ukj↓

εkj
−

− 2|βp,0|2
,

j=1,2

,

k

(|sdir|2 + |ssf|2)v2−kj↑ + 2|sdirssf|v−kj↑v−kj↓

εkj
. (C.20)

Rewriting the summation over the momentum in Eq. (C.20) as an integral via

,

k

=
L

2π

! ∞

−∞
dk, (C.21)
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where L is the length of the nanowires, and recalling the expressions for |βp,0|2, |βp,1|2

given in Eq. (C.10), we obtain

ε
(2)
p,− = −(|sdir|2 + |ssf|2)K(2)

1 + |sdirssf|K(2)
2

∆ind

∆:
∆2 + 4|t̄p(φ)|2

, (C.22)

where we neglected the part independent of the detuning ∆ and the phase difference φ

(note that in the second order the dependence on φ only enters through |t̄p|). Here

K
(2)
1 =

L

2π

! ∞

−∞
dk

,

j=1,2

u2
kj↑ − v2−kj↑

εk,j/∆ind

, (C.23)

K
(2)
2 =

L

π

! ∞

−∞
dk

,

j=1,2

ukj↑ukj↓ − v−kj↑v−kj↓

εk,j/∆ind

. (C.24)

Finally, setting here ssf = 0 we derive Eq. (4.24) of the main text:

ε
(2)
p,− = − |sdir|2

∆ind

K
(2)
1

∆:
∆2 + 4|t̄p(φ)|2

. (C.25)

C.5 Details of the fourth order perturbative calcu-

lations

As described in the main text, out of all terms in the expression for the perturbative

correction to the ground state energy in the fourth order we only consider the ones

that give rise to the 2π-periodic phase dependence and hence are important for the

analysis of the 0− π transition. All the other terms in the fourth order involve processes

appearing in the second order, and thus are parametrically smaller that their second
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(i)

(ii)

(v)

(iii)

(iv)

single-level

(i)

(ii)

(v)

(iii)

(iv)

two-level

Figure C.2: Schematic illustration of an example of the fourth order tunneling process
for the single-level (left panel) and the two-level (right panel) tunneling. Solid black
dots represent the electrons hopping between the superconductor with gap ∆g and the
two-level QD with the Zeeman splitting h. Grey wavy lines represent the quasiparticle
continuum in the superconductors.

151



Appendix for Chapter 4 Chapter C

order counterparts. Thus, the relevant fourth order term is given by

ε
(4)
p,− =

,

m2,m3,m4

p〈−|ĤT-NW|m4〉〈m4|ĤT-NW|m3〉〈m3|ĤT-NW|m2〉〈m2|ĤT-NW|−〉p
(εp,− − εm2)(εp,− − εm3)(εp,− − εm4)

. (C.26)

The excited states |m2〉 have parity −p and correspond to a quasiparticle created in the

L(R) topological superconductor, the states |m3〉 have parity +p and correspond to a

quasiparticle created in each of the two topological superconductors, while the states

|m4〉 have parity −p and correspond to a quasiparticle created in the R(L) topological

superconductor. In addition, the states |m2〉, |m3〉 and |m4〉 can be either |−〉, |+〉 or |h〉

eigenstates of the MZM-QD Hamiltonian, see Eqs. (4.19)-(4.21).

C.5.1 Single-level tunneling contribution

In this subsection we consider the tunneling only through the lower in energy spin-up

QD level. Left panel in Fig. C.2 schematically illustrates an example of this type of vir-

tual processes. In this case the states |m2〉, |m3〉 and |m4〉 are either |−〉 or |+〉. First, we

study the case with |m2〉 = |−, 1kjl〉−p, |m3〉 = |−, 1kjl, 1k′j′l′〉p and |m4〉 = |−, 1k′j′l′〉−p,

where 1kjl indicates the creation of the type j quasiparticle in the lth topological super-

conductor with the momentum k. Note that here j, j′ = 1, 2 and l, l′ = L,R but l ∕= l′,

i.e. when two quasiparticles are present, they are present in the different topological

superconductors. Otherwise, the phase dependence would not appear. Then, the matrix
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elements in Eq. (C.26) read

〈m2|ĤT-NW|−〉p = βp,0β
∗
−p,1(s↑↑lv−kj↑ + s↑↓lv−kj↓) + βp,1β

∗
−p,0(s

∗
↑↑lukj↑ + s∗↑↓lukj↓), (C.27)

〈m3|ĤT-NW|m2〉 = β−p,0β
∗
p,1(s↑↑l′v−k′j′↑ + s↑↓l′v−k′j′↓) + β−p,1β

∗
p,0(s

∗
↑↑l′uk′j′↑ + s∗↑↓l′uk′j′↓),

(C.28)

〈m4|ĤT-NW|m3〉 = βp,0β
∗
−p,1(s↑↑lukj↑ + s↑↓lukj↓) + βp,1β

∗
−p,0(s

∗
↑↑lv−kj↑ + s∗↑↓lv−kj↓), (C.29)

p〈−|ĤT-NW|m4〉 = β−p,0β
∗
p,1(s↑↑l′uk′j′↑ + s↑↓l′uk′j′↓) + β−p,1β

∗
p,0(s

∗
↑↑l′v−k′j′↑ + s∗↑↓l′v−k′j′↓).

(C.30)

Recalling the phase dependence of the couplings given in Eq. (4.12), we note that only

two terms in the product of the matrix elements (C.27)-(C.30) have a non-trivial phase

dependence and the rest of the terms can be neglected. The first non-trivial term is

ei(φl′−φl)|βp,0|4|β−p,1|4(|s↑↑l|v−kj↑ + |s↑↓l|v−kj↓)(|s↑↑l′ |uk′j′↑ + |s↑↓l′ |uk′j′↓)×

× (|s↑↑l|ukj↑ + |s↑↓l|ukj↓)(|s↑↑l′ |v−k′j′↑ + |s↑↓l′ |v−k′j′↓) =

= ei(φl′−φl)|βp,0|4|β−p,1|4(|s↑↑l|2v−kj↑ukj↑ + |s↑↓l|2v−kj↓ukj↓)×

× (|s↑↑l′ |2uk′j′↑v−k′j′↑ + |s↑↓l′ |2uk′j′↓v−k′j′↓) =

= ei(φl′−φl)|βp,0|4|β−p,1|4(|sdir|2v−kj↑ukj↑ + |ssf|2v−kj↓ukj↓)×

× (|sdir|2uk′j′↑v−k′j′↑ + |ssf|2uk′j′↓v−k′j′↓), (C.31)

where in the first equality we have utilized the fact that v−kj↑ukj↓ + v−kj↓ukj↑, j = 1, 2,

are odd functions of the momentum, see Eq. (4.7), and thus eventually summing them

over k would yield zero, hence allowing us to drop these terms at this stage. In the

second equality of the expression (C.31) we have introduced the direct and the spin-flip

couplings. Given the fact that v−kj↑ukj↑ = −vkj↓u−kj↓, see Eq. (4.7), and keeping in mind

that the expressions are eventually summed over the momenta k, k′, we simplify (C.31)
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into

ei(φl′−φl)|βp,0|4|β−p,1|4(|sdir|2 − |ssf|2)2ukj↑v−kj↑uk′j′↑v−k′j′↑. (C.32)

The second non-trivial term in the product of the matrix elements (C.27)-(C.30) can be

simplified in the same way into

ei(φl−φl′ )|βp,1|4|β−p,0|4(s∗↑↑lukj↑ + s∗↑↓lukj↓)(s↑↑l′v−k′j′↑ + s↑↓l′v−k′j′↓)×

× (s∗↑↑lv−kj↑ + s∗↑↓lv−kj↓)(s↑↑l′uk′j′↑ + s↑↓l′uk′j′↓) =

= ei(φl−φl′ )|βp,1|4|β−p,0|4(|sdir|2 − |ssf|2)2ukj↑v−kj↑uk′j′↑v−k′j′↑. (C.33)

Using expressions (C.32)-(C.33) and summing over l, l′ = L,R; l ∕= l′, we write the

single-level contribution to the fourth order energy correction as

ε
(4,1)
p,− =− 2 cos(φ)(|βp,0|4|β−p,1|4 + |βp,1|4|β−p,0|4)(|sdir|2 − |ssf|2)2×

×
,

j,j′=1,2

,

k,k′

ukj↑v−kj↑uk′j′↑v−k′j′↑

(εkj + ε
(0)
−p,− − ε

(0)
p,−)(εkj + εk′j′)(εk′j′ + ε

(0)
−p,− − ε

(0)
p,−)

, (C.34)

where φ = φR − φL. As in the second order case, applying the limit ∆g ≫ ∆, |tL|, |tR|

allows us to neglect the expressions ε
(0)
−p,− − ε

(0)
p,− and ε

(0)
−p,+ − ε

(0)
p,− in the denominator:

ε
(4,1)
p,− = −2 cos(φ)(|βp,0|4|β−p,1|4 + |βp,1|4|β−p,0|4)(|sdir|2 − |ssf|2)2×

×
,

j,j′=1,2

,

k,k′

ukj↑v−kj↑uk′j′↑v−k′j′↑

εkj(εkj + εk′j′)εk′j′
. (C.35)

Next, we include the processes when the excited states |m2〉, |m3〉 and |m4〉 can be

|+〉. This simply amounts to replacing some of the β’s with α’s in Eqs. (C.27)-(C.30).

Summing over all the possible states then gives the following full fourth order single-level
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energy correction

ε
(4,1)
p,− =− 2 cos(φ)(|sdir|2 − |ssf|2)2

(
|βp,0|2(|β−p,1|2 + |α−p,1|2)(|βp,0|2 + |αp,0|2)×

×(|β−p,1|2 + |α−p,1|2) + |βp,1|2(|β−p,0|2 + |α−p,0|2)(|βp,1|2 + |αp,1|2)×

×(|β−p,0|2 + |α−p,0|2)
) ,

j,j′=1,2

,

k,k′

ukj↑v−kj↑uk′j′↑v−k′j′↑

εkj(εkj + εk′j′)εk′j′
, (C.36)

which can be simplified into

ε
(4,1)
p,− =− cos(φ)

(|sdir|2 − |ssf|2)2
∆3

ind

K
(4)
1 (C.37)

with

K
(4)
1 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↑uk′j′↑v−k′j′↑

εkj(εkj + εk′j′)εk′j′/∆3
ind

. (C.38)

Note that we have replaced the summation over the momentum with the integration via

Eq. (C.21). Setting ssf = 0 in Eq. (C.37), we derive Eq. (4.30) of the main text.

C.5.2 Two-level tunneling contribution

In this subsection we consider the contribution to the fourth order energy correction

(C.26) originating due to the tunneling through both of the QD levels. The right panel in

Fig. C.2 schematically illustrates an example of this type of virtual process. In particular,

we study the case when one of the virtual states |m2〉, |m3〉, |m4〉 is the state with an

occupied spin-down dot level, |h〉. Other terms with more than one virtual excited state

being |h〉 are much smaller due to the assumed large Zeeman splitting on the dot, h ≫ ∆.

First, we focus on the case |m3〉 = |h, 1kjl, 1k′j′l′〉p. Taking for concreteness |m2〉 =
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|−, 1kjl〉−p, |m4〉 = |−, 1k′j′l′〉−p, the matrix elements in Eq. (C.26) read:

〈m2|ĤT-NW|−〉p = βp,0β
∗
−p,1(s↑↑lv−kj↑ + s↑↓lv−kj↓) + βp,1β

∗
−p,0(s

∗
↑↑lukj↑ + s∗↑↓lukj↓), (C.39)

〈m3|ĤT-NW|m2〉 = β−p,0(s↓↑l′v−k′j′↑ + s↓↓l′v−k′j′↓), (C.40)

〈m4|ĤT-NW|m3〉 = β∗
−p,0(s

∗
↓↑lv−kj↑ + s∗↓↓lv−kj↓), (C.41)

p〈−|ĤT-NW|m4〉 = β−p,0β
∗
p,1(s↑↑l′uk′j′↑ + s↑↓l′uk′j′↓) + β−p,1β

∗
p,0(s

∗
↑↑l′v−k′j′↑ + s∗↑↓l′v−k′j′↓).

(C.42)

Product of the matrix elements (C.39)-(C.42) has only one term with a nontrivial phase

dependence that reads

ei(φl′−φl)|βp,1|2|β−p,0|4(|s↑↑l|ukj↑ + |s↑↓l|ukj↓)(|s↓↑l′ |v−k′j′↑ + |s↓↓l′ |v−k′j′↓)×

× (|s↓↑l|v−kj↑ + |s↓↓l|v−kj↓)(|s↑↑l′ |uk′j′↑ + |s↑↓l′ |uk′j′↓) =

= ei(φl′−φl)|βp,1|2|β−p,0|4(|sdir|ukj↑ + |ssf|ukj↓)(|ssf|v−kj↑ + |sdir|v−kj↓)×

× (|ssf|v−k′j′↑ + |sdir|v−k′j′↓)(|sdir|uk′j′↑ + |ssf|uk′j′↓), (C.43)

where we have assumed that the couplings to the left and to the right topological su-

perconductor are identical and have introduced the direct and the spin-flip couplings as

|sdir| ≡ |s↑↑| = |s↓↓| and |ssf| ≡ |s↑↓| = |s↓↑|. Using the fact that ukj↑v−kj↑ = −u−kj↓vkj↓

and ukj↑v−kj↓ = −u−kj↓vkj↑, see Eq. (4.7), the expression (C.43) can be simplified into

ei(φl′−φl)|βp,1|2|β−p,0|4(|sdir|2 − |ssf|2)2ukj↑v−kj↓uk′j′↑v−k′j′↓, (C.44)

where we have utilized the fact that the above expression is eventually summed over

the momenta k, k′. Using the expression (C.44) and summing over l, l′ = L,R; l ∕= l′,

the corresponding contribution to the energy correction in the limit ∆g ≫ ∆, |tL|, |tR| is
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given by

ε
(4,2)
p,− |m3=h =− 2 cos(φ)|βp,1|2|β−p,0|4(|sdir|2 − |ssf|2)2

,

j,j′=1,2

,

k,k′

ukj↑v−kj↓uk′j′↑v−k′j′↓

εkj(εkj + εk′j′ + h)εk′j′
.

(C.45)

Furthermore, adding the possibility that the states |m2〉, |m4〉 can be |+〉, we obtain

ε
(4,2)
p,− |m3=h = −2 cos(φ)|βp,1|2

/
|β−p,0|2 + |α−p,0|2

02
(|sdir|2 − |ssf|2)2×

×
,

j,j′=1,2

,

k,k′

ukj↑v−kj↓uk′j′↑v−k′j′↓

εkj(εkj + εk′j′ + h)εk′j′
, (C.46)

which using the fact that |β−p,0|2 + |α−p,0|2 = 1 can be simplified into

ε
(4,2)
p,− |m3=h =− cos(φ)

(|sdir|2 − |ssf|2)2
∆3

ind

K
(4)
2

2

A
1 +

∆:
∆2 + 4|t̄p(φ)|2

B
(C.47)

with

K
(4)
2 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↓uk′j′↑v−k′j′↓

εkj(εkj + εk′j′ + h)εk′j′/∆3
ind

. (C.48)

Second, we study the case with |m2〉 = |h, 1kjl〉−p and |m3〉 = |−, 1kjl, 1k′j′l′〉p, |m4〉 =

|−, 1k′j′l′〉−p. The relevant matrix elements are

〈m2|ĤT-NW|−〉p = βp,0(s↓↑lv−kj↑ + s↓↓lv−kj↓), (C.49)

〈m3|ĤT-NW|m2〉 = β∗
p,0(s

∗
↓↑l′uk′j′↑ + s∗↓↓l′uk′j′↓), (C.50)

〈m4|ĤT-NW|m3〉 = βp,0β
∗
−p,1(s↑↑lukj↑ + s↑↓lukj↓) + βp,1β

∗
−p,0(s

∗
↑↑lv−kj↑ + s∗↑↓lv−kj↓), (C.51)

p〈−|ĤT-NW|m4〉 = β−p,0β
∗
p,1(s↑↑l′uk′j′↑ + s↑↓l′uk′j′↓) + β−p,1β

∗
p,0(s

∗
↑↑l′v−k′j′↑ + s∗↑↓l′v−k′j′↓).

(C.52)
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Product of the matrix elements (C.49)-(C.52) has only one term with a nontrivial phase

dependence:

ei(φl′−φl)|β−p,1|2|βp,0|4(s↓↑lv−kj↑ + s↓↓lv−kj↓)(s↓↑l′uk′j′↑ + s↓↓l′uk′j′↓)×

× (s↑↑lukj↑ + s↑↓lukj↓)(s↑↑l′v−k′j′↑ + s↑↓l′v−k′j′↓) =

= ei(φl′−φl)|β−p,1|2|βp,0|4(ssfv−kj↑ + sdirv−kj↓)(sdirukj↑ + ssfukj↓)×

× (ssfuk′j′↑ + sdiruk′j′↓)(sdirv−k′j′↑ + ssfv−k′j′↓), (C.53)

which similarly to Eq. (C.44) can be simplified into

−ei(φl′−φl)|β−p,1|2|βp,0|4(|sdir|2 − |ssf|2)2ukj↑v−kj↓uk′j′↑v−k′j′↓. (C.54)

Note the overall minus sign present in the expression (C.54); this minus sign was absent in

the expression (C.44). The different signs in the expressions (C.44) and (C.54) ultimately

lead to the 0− π transition. The contribution to the energy correction coming from the

expression (C.54) in the limit ∆g ≫ ∆, |tL|, |tR| is given by

ε
(4,2)
p,− |m2=h =2 cos(φ)|β−p,1|2|βp,0|4(|sdir|2 − |ssf|2)2

,

j,j′=1,2

,

k,k′

ukj↑v−kj↓uk′j′↑v−k′j′↓

(εkj + h)(εkj + εk′j′)εk′j′
,

(C.55)

which when summed with the terms where the states |m2〉, |m4〉 are |+〉, becomes

ε
(4,2)
p,− |m2=h = 2 cos(φ)|βp,0|2(|βp,0|2 + |αp,0|2)(|β−p,1|2 + |α−p,1|2)(|sdir|2 − |ssf|2)2×

×
,

j,j′=1,2

,

k,k′

ukj↑v−kj↓uk′j′↑v−k′j′↓

(εkj + h)(εkj + εk′j′)εk′j′
. (C.56)
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This can be simplified into

ε
(4,2)
p,− |m2=h =cos(φ)

(|sdir|2 − |ssf|2)2
∆3

ind

K
(4)
3

2

A
1 +

∆:
∆2 + 4|t̄p(φ)|2

B
(C.57)

with

K
(4)
3 =

L2

2π2

! ∞

−∞
dkdk′

,

j,j′=1,2

ukj↑v−kj↓uk′j′↑v−k′j′↓

(εkj + h)(εkj + εk′j′)εk′j′/∆3
ind

. (C.58)

Third, we analyze the case with |m4〉 = |h, 1k′j′l′〉−p and |m2〉 = |−, 1kjl〉−p, |m3〉 =

|−, 1kjl, 1k′j′l′〉p. The relevant matrix elements read:

〈m2|ĤT-NW|−〉p = βp,0β
∗
−p,1(s↑↑lv−kj↑ + s↑↓lv−kj↓) + βp,1β

∗
−p,0(s

∗
↑↑lukj↑ + s∗↑↓lukj↓),

〈m3|ĤT-NW|m2〉 = β−p,0β
∗
p,1(s↑↑l′v−k′j′↑ + s↑↓l′v−k′j′↓) + β−p,1β

∗
p,0(s

∗
↑↑l′uk′j′↑ + s∗↑↓l′uk′j′↓),

〈m4|ĤT-NW|m3〉 = βp,0(s↓↑lukj↑ + s↓↓lukj↓),

p〈−|ĤT-NW|m4〉 = β∗
p,0(s

∗
↓↑l′v−k′j′↑ + s∗↓↓l′v−k′j′↓).

Performing the same manipulations as in the |m2〉 = |h, 1kjl〉−p case, one can show that

the energy corrections in the two cases are identical:

ε
(4,2)
p,− |m4=h = ε

(4,2)
p,− |m2=h. (C.59)

Finally, summing over the three cases |m2〉 = |h, 1kjl〉−p, |m3〉 = |h, 1kjl, 1k′j′l′〉p and

|m4〉 = |h, 1kjl〉−p considered above, we obtain the total fourth order two-level energy
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correction:

ε
(4,2)
p,− = ε

(4,2)
p,− |m2=h + ε

(4,2)
p,− |m3=h + ε

(4,2)
p,− |m4=h =

= cosφ
(|sdir|2 − |ssf|2)2

∆3
ind

@
K

(4)
3 − K

(4)
2

2
−

A
K

(4)
3 +

K
(4)
2

2

B
∆:

∆2 + 4|t̄p(φ)|2

C
.

(C.60)

Setting ssf = 0 in Eq. (C.60), we derive Eq. (4.34) of the main text.
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Appendix for Chapter 5

D.1 Constraints on the eigenvalues of the

W0 = P0U
†P0UP0 operator

W0 = P0U
†P0UP0 is a Hermitian operator, and since it can be written as W0 =

(P0UP0)
†(P0UP0), it is positive semidefinite. Thus, its eigenvalues are λW0 ≥ 0.

On the other hand, W0 can be considered an orthogonal projection of a Hermitian

operator A = U †P0U , and thus, by Cauchy Interlacing Theorem, eigenvalues of W0

are interlaced with eigenvalues of A. In particular, it follows from the theorem that

λW0 ≤ max[λA], where λA denotes eigenvalues of A. At the same time, eigenvalues of the

operator A are either 0 or 1, and hence λW0 ≤ 1.
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Figure D.1: Histograms representing the zoomed in near zero eigenvalue distributions
of a numerically generated random matrix W0 for γ = 1 and various values of b.
Dimensionality of the Hilbert space is N = 2048. Averaging is performed over 80
random matrix realizations. For visual clarity, the zero eigenvalue is excluded from
the histograms.

D.2 Histograms revealing the eigenvalue 0 gap for

γ = 1, b = 1/8 and γ = 1, b = 7/8

Fig. D.1 illustrates numerically calculated and zoomed in near zero spectra of a

randomly generated matrix W0 for the same values of parameters γ, b, as spectra of

Fig. 5.2(a)-(c). For b = 1/8, Eq. (5.8) gives γc ≈ 1.2 for the critical value of γ, and thus

Fig. D.1(a) plotted for γ = 1, b = 1/8 reveals a gap between the smallest eigenvalue and

the 0 eigenvalue. The same gap is present for γ = 1, b = 7/8, as shown in Fig. D.1(c).

On the other hand, for γ = 1, b = 1/2, one finds that γ = γc, and hence the 0 eigenvalue

gap is closed, as depicted in Fig. D.1(b).

D.3 The derivation of expression (5.17) for the

moment-generating function Γ1(λ)

Matrix M̂(λ) of Eq. (5.13) can be written as

M̂(λ) = (1̂ + λT̂ L̂−1)L̂, (D.1)

162



Appendix for Chapter 5 Chapter D

and thus its inverse reads

M̂−1 = L̂−1(1̂ + λT̂ L̂−1)−1 = L̂−1 + L̂−1(−λT̂ + λ2T̂ L̂−1T̂ )
∞,

k=0

λ2k(L̂−1T̂ L̂−1T̂ )kL̂−1,

(D.2)

where

L̂−1 =

4

56
0̌ (Ľ†)−1

Ľ−1 0̌

7

89 . (D.3)

The inverse of the matrix Ľ can be straightforwardly calculated from Eq. (5.14):

Ľ−1 = (i−H)−1

4

56
i −1

−H 1

7

89 . (D.4)

Note that the unitary evolution operators U and U † can be expressed in terms of Ľ−1 as

U =

"
1 −1

#
Ľ−1

4

56
1

0

7

89 , (D.5)

U † =

"
1 0

#
(Ľ†)−1

4

56
1

−1

7

89 . (D.6)

Using Eq. (D.3) and the definition of the matrix T̂ given by the second part of Eq. (5.13),

it is straightforward to show that

L̂−1T̂ L̂−1T̂ =

4

56
(Ľ†)−1ť2Ľ

−1ť1 0̌

0̌ Ľ−1ť1(Ľ
†)−1ť2

7

89 (D.7)
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and

Tr4N

1
T̂ L̂−1

2
= 0, (D.8)

Tr4N

*$
L̂−1T̂ L̂−1T̂

%k

] = 2Tr2N [
/
(Ľ†)−1ť2Ľ

−1ť1
0k
+
, (D.9)

Tr4N

*
L̂−1T̂

$
L̂−1T̂ L̂−1T̂

%k
+
= 0. (D.10)

Next, we consider a function λTr4N

1
T̂ M̂−1

2
, which with the help of Eqs. (D.8)-(D.10)

can be written as

λTr4N

1
T̂ M̂−1

2
=

λTr4N

@
T̂ L̂−1T̂ (−λ1̂ + λ2L̂−1T̂ )

∞,

k=0

λ2k(L̂−1T̂ L̂−1T̂ )kL̂−1

C
=

Tr4N

@
(−1̂ + λL̂−1T̂ )

∞,

k=0

λ2k+2(L̂−1T̂ L̂−1T̂ )kL̂−1T̂ L̂−1T̂
C
=

Tr4N

@
(−1̂ + λL̂−1T̂ )

∞,

k=1

λ2k(L̂−1T̂ L̂−1T̂ )k

C
=

− 2
∞,

k=1

λ2kTr2N

1/
(Ľ†)−1ť2Ľ

−1ť1
0k2

. (D.11)

Plugging in the explicit form of the matrices ť1, ť2 given by Eqs. (5.15),(5.16) and em-

ploying identities (D.5),(D.6), we rewrite Eq. (D.11) as

−λ

2
Tr4N

1
T̂ M̂−1

2
=

∞,

k=1

λ2kTrN

1/
U †P0UP0

0k2
=

∞,

k=1

λ2kTrN
(
W k

0

)
. (D.12)

Averaging the above equation over the ensemble of random matrices H, we obtain the

following identity:

−λ

2
Tr4N

1
T̂ Ĝ

2
=

∞,

k=1

λ2kTrN

1Q
Ŵ k

0

R2
, (D.13)
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where we have introduced Ĝ ≡ 〈M̂−1〉. Recalling Eq. (5.10) and the definition of the

moment generating function Γ1(λ) introduced in Eq. (5.11), we obtain identity (5.17) of

the main text,

Γ1(λ) = − λ

2bN
Tr4N

1
T̂ Ĝ

2
. (D.14)

D.4 The derivation of expression (5.28) for Ǧ−1
0 in the

case of Γ1(λ)

From Eq. (D.2) it follows that

Ĝ0 ≡ M̂−1
0 = L̂−1

0 + L̂−1
0 (−λT̂ + λ2T̂ L̂−1

0 T̂ )
∞,

k=0

λ2k(L̂−1
0 T̂ L̂−1

0 T̂ )kL̂−1
0 , (D.15)

where L̂−1
0 = L̂−1|H=0. Using explicit forms of matrices T̂ and L̂−1

0 , we obtain the

following identity:

T̂ L̂−1
0 T̂ L̂−1

0 T̂ = T̂ , (D.16)

using which we simplify expression (D.15) for Ĝ0 into

Ĝ0 = L̂−1
0 +L̂−1

0 (−λT̂ +λ2T̂ L̂−1
0 T̂ )

∞,

k=0

λ2kL̂−1
0 = L̂−1

0 +L̂−1
0

A
− λT̂
1− λ2

+
λ2T̂ L̂−1

0 T̂
1− λ2

B
L̂−1

0 .

(D.17)

Defining a projector onto the 2N -dimensional inner block subspace as

Π̂ =

4

55555556

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

7

88888889

, (D.18)
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we obtain the following identities:

Π̂L̂−1
0 Π̂ =

4

55555556

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

7

88888889

, (D.19)

Π̂L̂−1
0 T̂ L̂−1

0 Π̂ = 2

4

55555556

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

7

88888889

P0, (D.20)

Π̂L̂−1
0 T̂ L̂−1

0 T̂ L̂−1
0 Π̂ = 2

4

55555556

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

7

88888889

P0. (D.21)

We utilize these identities to project Eq. (D.17) onto the 2N -dimensional subspace, which

yields

Ǧ0 = (1− P0)σ̄y + P0 (fyσ̄y + f11̄) , (D.22)

where σ̄y and 1̄ are the two-dimensional Y Pauli and the identity matrices, respectively,

and we have introduced the following functions of λ:

fy =
1 + λ2

1− λ2
, (D.23)

f1 = − 2λ

1− λ2
. (D.24)
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Expression (5.28) of the main text is obtained by inverting Ǧ0 of Eq. (D.22):

Ǧ−1
0 = (1− P0)σ̄y + P0(fyσ̄y − f11̄). (D.25)

D.5 The derivation of expression (5.39) for Γ1(λ) in

terms of the parameters u and v

First, we would like to derive certain identities, which we will make use of when

obtaining the expression for Γ1(λ). We start by noting that

T̂ =
∂Ĝ−1

0

∂λ
= −Ĝ−1

0

∂Ĝ0

∂λ
Ĝ−1
0 , (D.26)

and hence

Π̂Ĝ0T̂ Ĝ0Π̂ = −∂Ǧ0

∂λ
=

2P0

1− λ2
(f1σ̄y + fy1̄) . (D.27)

Next, given the fact that Tr4N

1
L̂−1

0 T̂
2
= 0 and

L̂−1
0 T̂ L̂−1

0 T̂ =

4

55555556

1 0 0 0

−2i 0 0 0

0 0 1 −1

0 0 0 0

7

88888889

P0, (D.28)

we obtain

Tr4N

1
Ĝ0T̂

2
= − 2λ

1− λ2
bN, (D.29)

where we have used expression (D.17) for Ĝ0 and identity (D.16).

Moving on to the expression for Γ1(λ) itselt, plugging Eq. (5.21) into expression (5.17)
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for Γ1(λ) yields

Γ1(λ) = − λ

2bN
Tr4N

1
T̂ (1̂− Ĝ0Σ̂)−1Ĝ0

2
, (D.30)

which, after expanding (1̂− Ĝ0Σ̂)−1 into a series and separating the first two terms from

the rest, can be transformed into

Γ1(λ) =

− λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Ĝ0T̂ Ĝ0Σ̂

2
+ Tr4N

1
Ĝ0T̂ Ĝ0Σ̂

$
1̂ + Ĝ0Σ̂ + . . .

%
Ĝ0Σ̂

2T
=

− λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Ĝ0T̂ Ĝ0Σ̂

2
+ Tr4N

1
Ĝ0T̂ Ĝ0Σ̂ĜΣ̂

2T
. (D.31)

Since Σ̂ = Π̂Σ̂Π̂, we can rewrite Eq. (D.31) as

Γ1(λ) = − λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Π̂Ĝ0T̂ Ĝ0Π̂Σ̂

2
+ Tr4N

1
Π̂Ĝ0T̂ Ĝ0Π̂Σ̂Π̂ĜΠ̂Σ̂

2T
=

= − λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Π̂Ĝ0T̂ Ĝ0Π̂

$
1̂ + Σ̂Π̂ĜΠ̂

%
Σ̂
2T

=

= − λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Π̂Ĝ0T̂ Ĝ0Π̂Ĝ−1

0 Π̂ĜΠ̂Σ̂Π̂
2T

, (D.32)

where in the last equality we have made use of the Dyson’s equation,

Ĝ = Ĝ0 + Ĝ0Σ̂Ĝ = Ĝ0

$
1̂ + Σ̂Ĝ

%
. (D.33)

Finally, plugging Eqs. (5.25),(5.28),(5.35),(D.27) and (D.29) into Eq. (D.32), we obtain

Γ1(λ) =
λ2

1− λ2

*
1− 2

λ

ufy − vf1
(fy + v)2 − (u+ f1)2

+
, (D.34)

where we have utilized expression (5.36) for ḡ1 and identity (5.31). The derived expression

for Γ1(λ) is Eq. (5.39) of the main text.
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D.6 The derivation of expression (5.64) for Ǧ−1
0 in the

case of Γ2(λ)

Equation (D.15) remains valid with the redefined matrix ť2 of Eq. (5.60), and we use

it to calculate expressions for Ǧ0 and Ǧ−1
0 . Noting that

L̂−1
0 T̂ L̂−1

0 T̂ = 0, (D.35)

Eq. (D.15) can be simplified into

Ĝ0 = L̂−1
0 − λL̂−1

0 T̂ L̂−1
0 . (D.36)

Taking into account the explicit form of the matrices T̂ and L̂−1
0 , we find that

Π̂L̂−1
0 T̂ L̂−1

0 Π̂ = 2

4

55555556

0 0 0 0

0 1− P0 0 0

0 0 P0 0

0 0 0 0

7

88888889

, (D.37)

which together with Eq. (D.19) allows us to derive the expression for Ǧ0,

Ǧ0 = P0[σ̄y − λ(1− σ̄z)] + (1− P0)[σ̄y − λ(1 + σ̄z)]. (D.38)

Inverting this expression yields

Ǧ−1
0 = P0[σ̄y + λ(1 + σ̄z)] + (1− P0)[σ̄y + λ(1− σ̄z)], (D.39)

which is nothing but Eq. (5.64) of the main text.
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D.7 The derivation of expression (5.71) for Γ2(λ) in

terms of the parameters u and v

Γ2(λ) can be expressed in terms of Ĝ0, Ĝ, T̂ and Σ̂ using Eq. (D.32):

Γ2(λ) = − λ

2bN

S
Tr4N

1
Ĝ0T̂

2
+ Tr4N

1
Π̂Ĝ0T̂ Ĝ0Π̂Ĝ−1

0 Π̂ĜΠ̂Σ̂Π̂
2T

, (D.40)

where all the involved matrices are from Section 5.5. Recalling expression (D.36) for Ĝ0,

identity (D.35), and the explicit form of matrices L̂−1
0 , T̂ , we find that

Tr4N

1
Ĝ0T̂

2
= 0 (D.41)

and

Ĝ0T̂ Ĝ0 = L̂−1
0 T̂ L̂−1

0 . (D.42)

Plugging Eqs. (5.63),(5.64),(5.68),(D.37),(D.41),(D.42) into expression (D.40) yields

Γ2(λ) = −λ

b

*
(1− b)

u− w

(v + 1)2 − u2 + w2 + 2λ(u− w)
+

+b
u+ w

(v + 1)2 − u2 + w2 + 2λ(u+ w)

+
, (D.43)

where we have used expressions (5.66)-(5.68) for ḡ1, ḡ2. Switching variables to u± = u±w

and expressing b in terms of α, β leads to Eq. (5.71) of the main text:

Γ2(λ) = −λ

β

*
α

u−

(v + 1)2 − u+u− + 2λu−
+ β

u+

(v + 1)2 − u+u− + 2λu+

+
. (D.44)
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D.8 The solution of the system (5.70) in the limit

λ → 1−

System (5.70),

u+ =
α(u+ − 2λ)

(v + 1)2 − u−(u+ − 2λ)
+

βu+

(v + 1)2 − u+(u− − 2λ)
, (D.45)

u− =
αu−

(v + 1)2 − u−(u+ − 2λ)
+

β(u− − 2λ)

(v + 1)2 − u+(u− − 2λ)
, (D.46)

v

v + 1
=

α

(v + 1)2 − u−(u+ − 2λ)
+

β

(v + 1)2 − u+(u− − 2λ)
, (D.47)

can be simplified by plugging Eq. (D.47) into Eqs. (D.45) and (D.46), which yields

u+

(
(v + 1)2 − u−u+ + 2λu−

)
= −2αλ(v + 1), (D.48)

u−
(
(v + 1)2 − u−u+ + 2λu+

)
= −2βλ(v + 1). (D.49)

Plugging Eqs. (D.48) and (D.49) back into Eq. (D.45), we obtain the following identity:

2λv + u+ + u− = 0, (D.50)

while summing Eqs. (D.48) and (D.49) yields

u+u− =
(v + 1) [v(v + 1)− γ]

v + 2
. (D.51)

Using Eqs. (D.50) and (D.51), we express u+ and u− in terms of v:

u+ = −vλ+ sign(β − α)

:
(v + 2) {γ + v [−1 + γ + v(v + 2)(λ2 − 1)]}

v + 2
, (D.52)

u− = −vλ+ sign(α− β)

:
(v + 2) {γ + v [−1 + γ + v(v + 2)(λ2 − 1)]}

v + 2
, (D.53)
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where the signs are picked to produce the correct solution at λ = 0. Furthermore,

plugging Eqs. (D.51) and (D.52) into Eq. (D.48) allows us to obtain a fifth order equation

on v,

(v + 2)3(α− β)2λ2 − (γ + 2v + 2)2
-
γ + v

(
−1 + γ + v(v + 2)(λ2 − 1)

)U
= 0, (D.54)

which can be rewritten as

4v5(λ2 − 1) + 4v4(γ + 4)(λ2 − 1) + v3
-
γ2(λ2 − 1) + 4γ(3λ2 − 2)+

+
(
20− (α− β)2

)
λ2 − 24

U
+ 2v2

-
γ2(λ2 + 1) +

(
4(γ + 1)− 3(α− β)2

)
λ2 − 8

U
+

v
(
γ3 + 7γ2 + 8γ − 12(α− β)2λ2 − 4

)
+ γ3 + 4γ2 + 4γ − 8(α− β)2 = 0.

(D.55)

Note that Eq. (D.55) is valid for an arbitrary value of λ. In the limit λ → 1−, the phase

transition corresponds to the change of sign in the term ∝ v3. This term is equal to zero

when

γ = 1 +
(α− β)2

4
, (D.56)

using which we obtain the critical condition on γ,

γc =
1/2−

:
b(1− b)

(b− 1/2)2
, (D.57)

172



Appendix for Chapter 5 Chapter D

i.e. Eq. (5.80) of the main text. Using Eq. (D.55), we derive the asymptotics (5.79) of v

in the limit λ → 1−,

v−|λ→1− =

H
IIIIIIIIJ

IIIIIIIIK

O(1), γ < γc,

3

3
γ2 − 4(γ − 1)

2(1− λ)
, γ = γc,

3
4(γ − 1)− γ2(2b− 1)2

8(1− λ)
, γ > γc.

(D.58)

Plugging Eqs. (D.48) and (D.49) into expression (5.71) for Γ2(λ) and making use of

identity (D.51), we obtain expression (5.81) for Γ2(λ) in terms of v,

Γ2(λ) =
v(v + 1)− γ

β(v + 2)
, (D.59)

combining which with the results for v−|λ→1− yields the asymptotics of Γ2(λ) in the limit

λ → 1−:

√
1− λΓ2(λ)|λ→1− =

H
IIIJ

IIIK

0, γ < γc,3
4(γ − 1)− γ2(2b− 1)2

8γ2b2
, γ > γc.

(D.60)

This is Eq. (5.82) of the main text.
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D.9 Dynamics of the purity and the Floquet trajec-

tory probability under the evolution of W k
1 op-

erator

Since W1 = P0−W0, the eigenvalue 0 transition for W0 corresponds to the eigenvalue

1 transition for W1. Thus, the transition studied in Section 5.5 can be revealed by

considering the dynamics of physical quantities evolving under W k
1 operator. Similarly

to Section 5.7 of the main text, here we study the purity of an initially completely mixed

state,

Tr[ρ2k,1] =
Tr[W 4k

1 ]

Tr[W 2k
1 ]2

, (D.61)

and the probability to measure the W k
1 Floquet trajectory given the intrinsic randomness

in the measurement outcomes,

pk,1 = Tr[P0W
2k
1 ρ0], (D.62)

as physical quantities of interest. Figure D.2 depicts the numerically calculated purity

(D.61) for b = 0.5 and various values of γ, N , while Fig. D.3 shows the numerically

calculated probability (D.62) for a pure and a completely mixed initial state at k = 0.

In the main text we have shown that the spectrum of W0 does not exhibit two gapped

phases at the eigenvalue 0, instead showing signatures of a gapped and a gapless phase.

For this reason, contrary to Figs. 5.6,5.7 of the main text, Figs. D.2,D.3 do not reveal one

of the gapped phases where an initially mixed state fails to purify, and the probability

pk,1 saturates at a nonzero value as k increases. Instead, Figs. D.2,D.3 demonstrate

signatures only of the gapped phase without the eigenvalue 1 (in the spectrum of W1)

and the critical phase with the closed gap. For the mixed state purification dynamics,
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Figure D.2: Numerically calculated purity (D.61) of an initially completely mixed
state plotted as a function of a Floquet cycle k for b = 0.5 and various values of
γ, N , when the cycle evolution is described by a non-unitary operator W1. The insets

depict the purification time tp = min
"
k
###Tr〈ρ2k,0〉 > 0.95

$
as a function of the number of

qubits n = log2N in the system. In (a) the averaging is performed over 10000 random
matrix realizations for N = 16, 32, 64, 128, 256; 5000 realizations for N = 512; 1000
realizations for N = 1024; and 200 realizations for N = 2048. In (b) the averaging
is performed over 10000 random matrix realizations for N = 16, 32, 64, 128, 256; 5000
realizations for N = 512; 1000 realizations for N = 1024; and 150 realizations for
N = 2048. In (c) and (d) the averaging is performed over 1000 random matrix
realizations for N = 16, 32, 64, 128, 256, 512; 500 realizations for N = 1024; and 100
realizations for N = 2048.
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Figure D.3: (a),(b) Numerically calculated probability (D.62) of the Floquet quantum
trajectory, representing the evolution under W k

1 , plotted as a function of a time step k
for b = 0.5 and various values of γ, when the initial state at k = 0 is (a) pure and (b)
completely mixed. The insets in the figures are log-log versions of the corresponding
curves. Dimensionality of the Hilbert space is N = 2048. The averaging is performed
over 320 random matrix realizations.
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within the gapped phase the purification time seems to increases sub-exponentially with

the system size, similarly to the case of W k
0 in the main text, although more studies are

necessary to make a final conclusion on the tp vs n scaling behavior within this phase. At

the gapped-gapless phase transition critical point, Fig. D.2 suggests the purification time

that scales exponentially with the system size as tp ∝ 21.5n, and within the gapless phase

the scaling is exponential as well, tp ∝ 22n. At the same time, Fig. D.3 illustrates that

the probability (D.62) decays with time in both the gapped and the gapless phases: the

decay is exponential within the gapped phase and power-law within the gapless phase.
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H. Suominen, J. Suter, V. Svidenko, S. Teicher, M. Temuerhan, N. Thiyagarajah,
R. Tholapi, M. Thomas, E. Toomey, S. Upadhyay, I. Urban, S. Vaitiekėnas,
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