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Access to clean drinking water is necessary to maintain healthy populations. Remote 

locations often do not have the equipment or the means to test water quality. A rapid, 

affordable, user friendly, portable system that can detect and analyze pathogens in water 

is discussed in this thesis. The system is designed to optically quantify pathogens by digital 

droplet PCR (Polymerase Chain Reaction) using fluorescence detection and Lab-on-a-Disk 

technology. A sample microfluidic disk is inserted into the system. The system uses 

centrifugal forces to break apart cells within the sample, mix reagents with the sample, 

and generate droplets. Infrared heating is then used to amplify DNA within the sample. 

Fluorescent images of the droplets within the microfluidic disk are captured. The system 

functions as designed. 
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Introduction 

The goal of this project is to design the hardware and software for an extreme point of care 

diagnostic tool.  When trying to diagnose disease in remote locations, getting samples to a 

lab can be non-trivial.  By the time a sample gets to the lab, it could be too late to preform 

proper treatment. In these cases, time is precious; so a way to save time (and, untimely, 

save lives) will be to cut out the travel time and bring the lab to the point of care.  This 

project builds on the technology developed for lab-on-a-disk applications. It incorporates 

microfluidic assays, temperature control, PCR and florescence detection, into a single 

portable system that can transmit data wirelessly. The system is meant to be inexpensive to 

build and easy to replicate. The project is a collaboration between Michael Hoffman’s lab 

from the California Institute of Technology and Marc Madou’s lab from the University of 

California, Irvine.  Development for the system is funded in conjunction with the Reinvent 

the Toilet Challenge, put on by the Bill and Melinda Gates Foundation.  The immediate 

goal for the system is to detect pathogens in wastewater.   
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1  Extreme Point of Care, Background and Motivation 

The system described in this thesis is a portable pathogen analysis system. It was designed 

in order to meet specific goals: 1) to be affordable: $2/Test, $5k Capital, 2) to be sensitive: 

50 targets/Reaction, 3) to be user-friendly: sample in answer out, 4) and portable. These 

goals tailor the system to be used in Extreme Point-of-Care (EPOC) applications.  

 

Section 1.1 will look at how the system fits into extreme environments and developing 

countries. Section 1.2 gives a brief look into Lab-on-a-Disk technology. Section 1.3 

reviews digital droplet PCR.  

1.1 Extreme Point-of-Care 

In a review published in 2016 titled, “CD-Based Microfluidics for Primary Care in Extreme 

Point-of-Care Settings” by Suzanne Smith et al., the authors report on health care 

challenges in the developing world [1]. They describe how unreliable electricity, lack of 

trained staff, harsh environments and the distances patients have to travel affect the ability 

of patients to receive proper treatment. Smith et al. use these reasons to show that extreme 

point-of-care solutions are needed by today’s world saying, “Providing comprehensive 

primary care in under-resourced settings is a paramount global challenge, which can be 

clearly addressed by innovative, effective point-of-care (POC) diagnostic technologies, 

which are compatible with these extreme environments” [1]. The system discussed in this 

thesis sets out to be one of those “innovative, effective POC diagnostic technologies” as 

described by Smith et al.  
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In a review published in 2016 titled, “Challenges and Opportunities of Centrifugal 

Microfluidics for Extreme Point-of-Care Testing” by Issac J. Michael et al., the authors look 

at the current limitations of Extreme Point of Care Testing (EPOCT). They describe how 

current EPOCT technologies rely on lateral flow strips (LFSs) for disease screening but that 

centrifugal force-based systems are needed to perform advanced bioassays. Michael et al. 

look at where research in the field of EPOCT is heading saying, “Recent publications 

demonstrate significant interest in the microfluidic research community in exploring the 

advantages of centrifugal microfluidics for diagnostics in developing countries” [2]. The 

system discussed in this thesis looks to take advantage of “centrifugal microfluidics for 

diagnostics in developing countries” as mentioned by Michael et al.  

1.2 Lab-on-a-CD 

In a review article published in June 2015, “Lab-on-a-CD: A Fully Integrated Molecular 

Diagnostic System” Ling X. Kong et al. describe the current and future states of Lab-on-a-

CD technology. Kong et al. describe the forces used in current Lab-on-a-CD technologies 

saying: 

“A simple motor generates several pseudo-forces on the platform: the centrifugal 

force, which acts as a liquid pump and generates a force gradient affecting fluids 

differently at varying radial positions; the Coriolis force, which allows for direction-

specific liquid-pumping control; and the Euler force, which can be used to create 

turbulence during mixing.“ 
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Kong et al. analyze geometries and methods to achieve operations such as storage and 

dispensation of reagents, efficient sample preparation, nucleic acid (NA) amplification, 

and rapid detection [3].  The system, described in this thesis, uses some of these 

geometries and methods to preform assays.  

 

1.3 Digital Droplet PCR 

In a paper published in 2015 titled, “Centrifugal step emulsification applied for absolute 

quantification of nucleic acids by digital droplet RPA,” Friedrich Schuler et al. describe the 

uses and methods of producing aqueous droplets. In their introduction Schuler et al. state: 

“One of the most important applications of aqueous droplets is the use in digital 

amplification techniques such as digital PCR (dPCR) [4]. Digital PCR offers many 

advantages over the bulk reaction [5], such as absolute quantification without the 

need for standards and much higher accuracy and sensitivity.” 

The system aims to use the advantages of Digital PCR referenced by Schuler et al. [6]. 

 

In a paper published in 2016 titled, “Digital droplet PCR on disk” Friedrich Schuler et al. 

present a disk design that integrates droplet generation, PCR and fluorescence readout. 

Droplets are generated within a microfluidic disk on a spinning platform. The disk is then 

transferred to a thermocycler and transferred again into a microarray scanner [7]. This 

paper shows that digital droplet is possible on a disk. The system described in this thesis 
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aims to integrate droplet generation, thermal cycling and imaging into a single platform 

thus removing the need to transfer the disk to multiple platforms.   

2 System Overview 

The spin stand performs digital droplet Polymerase Chain Reaction (PCR) to detect 

pathogens in wastewater. The assay includes cell lysis, or the breaking apart of cell walls, 

mixing, droplet generation, thermal cycling to perform DNA amplification and florescence 

detection. The spin stand integrates all parts of the assay into a single platform. The 

individual subsystems are controlled by a central processing unit and displayed on a LCD 

screen. The subsystems include 1) motor control, 2) temperature control, and 3) 

florescence detection.  The system block diagram is shown in Figure 1.  

 

Figure 1: System Block Diagram 
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2.1 Central Processing Unit 

The Raspberry Pi was chosen as the central processing unit (CPU). A Raspberry Pi (Figure 

2) is a low cost credit-card sized computer [8], which provides a platform that allows for 

quick integration of multiple sensors and actuators. The Raspberry Pi, which receives data 

from the motor, temperature controller and imaging systems, controls motor speed and 

position as well as CD temperature. The Raspberry Pi also analyses the images to 

determine the amount of DNA in the sample.  

 

Figure 2: Raspberry Pi 3 
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2.2 Display 

The system uses a 7-inch liquid crystal display (LCD) screen to interface with the system 

and display data (Figure 3). It is connected to the CPU via DSI interface. The system 

employs a graphic user interface that allows the user to alter various parts of the assay 

such as spin speeds, temperature and imaging.  

 

Figure 3: LCD screen 
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2.3 Motor Control 

The motor (Figure 4) is the heart of the spin stand. The disk relies upon centrifugal forces 

to move through cell lysis, mixing and droplet generation. The CPU communicates with 

the motor driver board over a USB interface. Position data from an optical sensor, which is 

attached to the motor shaft, is encoded and sent to the motor driver as feedback for motor 

position. A block diagram of the motor control subsystem is shown in Figure 5. 

 

 

Figure 4: Motor 
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Figure 5: Motor Control Block Diagram 

 

2.3.1 Mechanical Cell Lysis 

Within the lysis chamber of a sample CD there are magnetically soft disks. The chambers 

are passed through a stationary magnetic field and the magnetically soft discs move back 

and forth within the lysis chamber causing the cell walls to break apart. The spin stand 

uses an array of neodymium magnets to create a stationary magnetic field. As the CD 

spins, the discs inside the lysis chamber are pushed radially outward. The magnets are 

placed radially inward from the chamber. As the chamber approaches the magnets, the 
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discs are pulled in toward the center of the disk. This results in the magnetically soft disks 

oscillating within the lysis chamber. As the disks move back and forth with in the sample, 

the cell walls are broken apart and DNA is released.  

2.3.2 Mixing and Droplet Generation 

Mixing of the samples with reagents and droplet generation are primarily functions of disk 

geometry and rotation speed. The spin stand must be able to rotate the CDs at different 

speeds in order to move the sample from chamber to chamber. Spin speeds are 

determined experimentally. The reagents allow the specific strains of DNA to fluoresce. 

Any DNA contained in a droplet will be amplified through PCR and will then be detected 

through digital imaging.  

2.4 Temperature Control 

In order to perform DNA amplification through PCR, the system must be able to control 

the temperature of the samples within the disk. The disk temperature cycles between 60°C 

and 95°C and then ends with a denature stage at 98°C. The system is made up of Infrared 

(IR) lamps, and IR sensor and a blower. The Infrared (IR) sensor is connected to the CPU 

through an Analog to Digital Converter (ADC). The lamps and blower are connected to 

the CPU through their own individual driver boards.  A block diagram of the temperature 

control system is shown in Figure 6. The CPU uses proportional-integral-derivative (PID) 

control to move quickly from one temperature to the next. 
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Figure 6: Temperature Control Subsystem 

 

2.4.1 Infrared Lamps 

An array of 5W Infrared (IR) lamps is used to heat the radius of the disk that houses the 

droplet chambers. The infrared lamps are connected to the CPU through a driver board. 

The CPU controls the IR lamps using a pulse width modulated (PWM) signal.  
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Figure 7: IR Lamp Array 

2.4.2 Blower 

 A 12V blower as shown in Figure 8 is used to remove heat. This blower is connected to 

the CPU through a driver board and is controlled by a PWM signal.  

 

Figure 8: 12V Blower 
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2.4.3 IR Sensor 

An IR sensor, as shown in Figure 9, gives feedback to the temperature controller. The 

analog signal from the IR sensor is converted to a digital signal and read by the CPU. 

 

Figure 9: Infrared Sensor 
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2.5 Florescence Detection 

Once the DNA has been amplified the chambers are ready to be imaged. The imaging 

detection subsystem includes excitation LEDs, thin-film dichroic filters and a camera. The 

LEDs are turned on and off by relays controlled by the CPU. The filters are on a slider that 

is controlled by relays. The camera is connected to the CPU via USB interface.  The block 

diagram for the florescence detection subsystem is shown in Figure 10. 

 

Figure 10: Florescence Detection Subsystem 
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2.5.1 Excitation LEDs 

The droplets are excited by LEDs. There are two wavelengths of excitation: 450nm and 

525nm. The LEDs operate between 900mW and 1020mW. They are mounted on a Metal-

Core Printed Circuit Board (MCPCB) as shown in Figure 11. The MCPCB is designed to 

provide high-power output in a compact package [9].  

 

 

Figure 11: LEDs 

2.5.2 Filters  

Because the droplets fluoresce at a different wavelength compared to their excitation, thin-

film dichroic filters allow for cleaner imaging of the droplets. There are two filters that 

correspond to the two wavelengths of LEDs.  For green fluorescence, the absorption 

maximum is at about 450nm and the emission maximum is an about 500nm.  For the 

orange fluorescence, the absorption is at about 530nm and the emission at about 590nm. 
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The dichroic filters block the lower wavelengths of the LEDs and let the higher 

wavelengths of the florescent droplets pass to the camera. The filters are on a linear slider 

as shown in Figure 12. The CPU controls a motor, which actuates the slider.   

 

Figure 12: Filter Holder and Slider 
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2.5.3 Camera 

The camera for this system is a Raspberry Pi Camera as shown in Figure 13. This camera 

was chosen for ease of integration with the Raspberry Pi. Open source libraries and 

tutorials make this camera ideal for rapid prototyping. The camera is connected to the 

CPU via CSI interface; it has a 5-megapixel resolution, and has a fixed focus lens onboard. 

In terms of still images, the camera is capable of 2592 x 1944 pixel static images, and also 

supports 1080p30, 720p60 and 640x480p60/90 video[10]. 

 

 

Figure 13: Raspberry Pi Camera 
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3 Hardware 

3.1 Power Management 

There are 4 voltage levels used by the system: 12V, 36V, 5V and 3.3V. The system takes in 

12V and powers the IR lamps and the blower. The motor is powered by 36V. The control 

for the lamps, blower and filter slider are given by 3.3V PWM signals. All other 

subsystems are powered by 5V. 

3.1.1 12 Volts 

The system is designed so that it can be plugged into a car cigarette lighter. A 12V 15Amp 

Power Converter, as shown Figure 14, is used to simulate the power supplied by a 

cigarette lighter. 12V from the converter powers the IR lamp driver and the blower. 

 

Figure 14: 12V 15Amp Power Converter 
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3.1.2 36 Volts 

A DC-to-DC converter, as shown in Figure 15, is used to convert 12V from the supply to 

36V for the motor.  

 

Figure 15: 12V to 36V converter  

3.1.3 5 Volts 

A 12V DC to 5V DC Step Down Converter, as shown in Figure 16, is used to supply the 

Raspberry Pi, LCD screen, filter slider, camera, IR sensor and motor driver.  

 

Figure 16: 12V to 5V Converter 
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3.1.4 3.3 Volts 

The Raspberry Pi outputs 3.3V PWM signals. Three separate 3.3V signals are used to 

switch the filters, control the brightness of the IR lamps, and regulate blower speed.  

3.2 Central Processing Unit – Raspberry pi 

As previously mentioned, the Raspberry Pi controls the system.  The functionality of the 

Raspberry Pi exceeds the needs of the project but the ease of integration and the low cost 

make it the ideal for early prototypes. Open source software as well as onboard 

components (such as: the camera interface, USB ports, Wi-Fi, Bluetooth and a DSI port) 

allow for incorporation of all parts of the system with relative ease as compared to 

building a processor from scratch or using a system without such components.  The 

Raspberry Pi was also chosen based on the familiarity that the designers have in using said 

platform for other embedded systems projects. As the system matures and needs are 

solidified, it will be possible to move to a cheaper micro-controller. However, for the early 

iterations, the versatility of the Raspberry Pi justifies the extra cost. 

3.3 LCD screen   

The LCD screen was basically plug and play. There was no programming necessary and 

within minutes the Raspberry Pi combined with the screen essentially functions as a tablet. 

The screen operates with a 5V supply that can be provided by the Raspberry Pi GPIO pins. 

The only difficulty in working with the LCD screen to date is that the screen is not 

sensitive to double-click. This means that executing programs will either take tapping the 

screen repeatedly or a wireless mouse will be required for double clicking on 
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applications. Eventually this will not be a problem because the application will be 

programmed to open at start up.  

3.4 Temperature control  

3.4.1  Peltier Cells 

Peltier cells, as seen in Figure 17, were used in the initial design for temperature control. 

When two dissimilar metals are joined at a junction and a current is passed through the 

junction a temperature gradient is generated across the junction [11]. This effect, which 

was discovered in 1834 by Jean-Charles-Athanase Peltier, can also be seen when joining 

two dissimilar semiconductors. Peltier cells utilize this property by putting an array of 

junctions together to get an appreciable temperature difference between two plates.  

 

The direction of current determines which plate gets hot and which gets cold. The idea 

was to use the Peltier cells as heaters and then reverse the current direction and use them 

as coolers. Peltier cells were abandoned in the design for two main reasons: 1) Low 

efficacy 2) complexity of contact heating and cooling a spinning disc. In terms of 

efficiency, each Peltier cell drew around 0.5Amps so the number of PCR chambers that 

could be put on a disk was limited to the number of Peltier cells that could be powered; 

the design would have been limited to 2-4 cells.  In terms of contact heating, a design was 

proposed to employ a custom micro-controller that was inductively powered and could 

spin with the microfluidic disk. Designing and testing the custom microcontroller proved 
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to not be worth the extra cost when compared to the simplicity of non-contact heating that 

could be done by infrared lamps.  

 

Figure 17: Peltier Cells 

3.4.2 IR Lamps 

Infrared lamps were chosen as an alternative to Peltier cells. IR lamps do not need to be in 

direct contact with the PCR chambers and thus do not require a separate micro-controller. 

A large single IR lamp had been used on earlier spin stands in the BioMEMS Lab. 

However, in this design an array of small lamps is used, making heating more uniform. 

The IR lamps are set in aluminum parabolic reflectors, as shown in Figure 18, that direct 

the light and heat in parallel rays. Initially the desire was to have the lamps placed evenly 

around the circumference of the disk, as shown in Figure 7, but in order to fit other 

components (camera, IR sensor, blower) the lamps were arranged in a half circle.  
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Figure 18: IR Lamps 

 

Figure 19: IR lamps and lamp holder 
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3.4.3 Thermistor 

When contact heating and cooling with Peltier cells was part of the design, contact 

temperature sensing was achieved by thermistors. A thermistor is a circuit element that 

changes resistance according to temperature. A thermistor was to be placed in contact 

with each PCR chamber. A 10KΩ thermistor was placed in series with a 10KΩ resistor and 

the node between the two elements was connected to an analog input of an Arduino Uno. 

A simple tutorial of how to use a thermistor with an Arduino was found in a tutorial by 

Adafruit [12]. The thermistor circuit was to be built into the custom spinning micro 

controller. Once the decision was made to move away from contact heating, the Peltier 

cells and the thermistors became obsolete but the code, which was developed with these 

elements, persisted through consecutive designs.  

3.4.4 IR sensor 

The IR sensor was purchased from Process Sensors Corporation. It is capable of operating 

in analog and digital modes. The IR sensor’s analog data is connected to an 8-bit analog to 

digital converter. The analog data from the IR sensor ranges from 0V to 5V. The Raspberry 

Pi only accepts a high of 3.3V but the system should not get hot enough to produce a 5V 

reading from the IR sensor. As a precaution, a 3.3V zener diode is placed across the 

output of the sensor to protect the Raspberry Pi. 

3.4.5 IR controller board 

The IR controller board was based off a controller board from a previous BioMEMS Lab 

spin stand. The updated board used all surface mount components, not including the 
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header. The previous generation controller board is 4” by 8” while the new board is 1.5” 

by 1.7”. The schematic and board layout (Figure 20) was done using Eagle Cad software. 

The board was fabricated by OSH Park and assembled at UC Irvine.  

 

Figure 20: IR Driver Board Layout 
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3.5 Motor and Encoder 

3.5.1 Motor 

The motor, as shown in Figure 4,was purchased from Anaheim Automation. It is a 36V 

motor that has an upper-end speed of 4000rpm and an upper torque of 31oz-in. The 

speed and torque are more than what will be needed by the final assay but having extra 

torque and speed is helpful for experimenting with different micro-fluidic designs. Once 

the assay is tuned, a less powerful motor can be used.  

3.5.2 Encoder 

An optical encoder, as shown in Figure 21, detects motor position. The encoder senses 

4000 pulses per revolution and is powered by the 5V coming from the motor driver board. 

The encoder allows the system to be programmed to stop the disk at precise locations in 

order to image the PCR chambers.   

 

 

Figure 21: Motor Position Encoder 
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3.6 Florescence Detection 

3.6.1 Cell Phone Florescence  

Initial system designs included a cellphone as the CPU and the cellphone’s camera as the 

imaging device. Initial florescence detection using a cellphone was demonstrated as 

shown in Figure 22. The design of the system moved away from using a cellphone 

because of two main unwanted characteristics: 1) cellphones become outdated annually 

and 2) cellphone dimensions change yearly and differ by brand. It proved more 

challenging and more expensive to design around cellphones compared to purchasing a 

much cheaper microprocessor (Figure 2) and camera (Figure 13). Working with the initial 

cellphone proof-of-concept was helpful in follow up iterations as it allowed the designers 

to become familiar with florescence and optical filtering.  

 

Figure 22: Cellphone Florescence Detection 
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3.6.2 Excitation LEDs and Filters 

The system is made to detect orange and green fluorescence. For orange fluorescence, the 

absorption maximum is at about 530nm and the emission at about 590nm. For green 

fluorescence, the absorption maximum is at about 450nm and the emission maximum is 

an about 500nm.  Light from a green LED of 530nm and a blue LED of 450nm shine onto 

the edge of the disk during imaging. The disk acts as a wave-guide allowing the light to 

illuminate the PCR chamber. Reagents are specifically chosen to allow for particular 

strands of DNA to be excited by the chosen wavelengths. Droplets with those particular 

strands of DNA will fluoresce. In order to see the florescent droplets, filters are placed in 

front of the camera to block the light from the LEDs.  A deep amber filter was chosen to 

block out the light form the green LED and a golden amber filter was chosen to block out 

the light from the blue LED. The absorption spectra of the golden and deep amber filters 

are shown in Figure 23 and Figure 24, respectively. 
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Figure 23:  Golden Amber filter spectrum 
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Figure 24: Deep amber filter spectrum 
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3.6.3 Camera and Lens 

The camera, as shown in Figure 13, was purchased from Arducam. It seamlessly 

integrated with the Raspberry Pi. The camera has a fixed focus lens on board so an 

additional lens was needed to be able to focus on the droplets. The lens used is a Tamron 

12VM412ASIR 1/2" 4-12mm F/1.2 Infrared Manual C-Mount Lens as shown in Figure 25.  

 

Figure 25: Lens 
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4 Software 

4.1 Central Processing Unit– Raspberry pi and Display 

The Raspberry Pi is running the latest version of NOOBS (New Out Of the Box Software). 

The desktop environment on the Raspberry Pi is PIXEL (Pi Improved Xwindows 

Environment, Lightweight). The assay application is an executable file that is programmed 

in Python. The graphical user interface for the assay application is developed using the 

Tkinter module which is the standard Python interface to the Tk GUI toolkit [13].  

4.2 Temperature control  

The temperature controller uses Proportional, Integral and Derivative (PID) control logic. 

The code used for the PID control of the IR lamps was developed by Ivmech Mechatronics 

Innovation Ltd as open-source software [14]. 

4.2.1 IR Lamps 

The IR Lamps are controlled by a PWM signal from the CPU. The commands to control 

the output are taken from an open source library named RPi.GPIO [15]. The functions 

used from this library are “setup” and “PWM”. The “setup” function tells the CPU how to 

allocate the General Purpose Input/Output (GPIO) pins as either an input or an output. 

The “PWM” function allows duty-cycle changes of desired signals. The changes in the 

duty cycle are determined by calculations from the PID control logic.  
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4.2.2 IR sensor 

The IR sensor outputs voltage between 0V and 3.3V and is nearly linear with respect to 

temperature. It is connected to the ADC, which maps the output voltage to a digital signal, 

ranging from 0 to 1023. Software for reading the ADC was taken from the Adafruit website 

[16]. 

4.2.3 Blower 

The blower is controlled by a PWM signal from the CPU. The same functions that are used 

for pulse width modulation of the lamps are used for the blower.  

4.3 Motor  

The motor driver accepts ASCII commands. The application sends the motor driver the 

serial commands that correspond to the speed and/or positions each step of the assay. The 

baud rate of communication between the CPU and the driver board is 9600 bits per 

second.  

4.4 Florescence Detection 

4.4.1 Camera 

The commands to control the camera are taken from an open source library named 

Picamera [17]. The two functions used from this library are “preview” and “capture”. The 

“preview” function displays video from the camera onto the LCD screen and “capture” 

function saves camera images to the Raspberry Pi Desktop.  
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4.4.2 Excitation  

Each excitation LED is controlled by an output signal from the Raspberry Pi. The 

commands to control the output are taken from the RPi.GPIO library [15]. The functions 

that are used from this library are “setup” and “output.” The “setup” function tells the CPU 

how to allocate the General Purpose Input/Output (GPIO) pins as either an input or an 

output. The “output” function sends an on or off signal that changes the voltage on the 

corresponding GPIO pin to either 0V or 3.3V.  

4.4.3 Filter Slider 

The filter slider is controlled by three output signals from the CPU. Similar to the LEDs, the 

signals for the filter slider are simply on or off. One of the signals turns the slider DC motor 

on and off. The other two signals determine which direction the current flows through the 

motor, which corresponds to forward and reverse.  

 

5 CAD Assembly 

Horacio Kido PhD designed the system’s assembly in SolidWorks. Figure 26 through 

Figure 29 show different CAD views of the system. The system is divided into three 

compartments: the disk compartment, motor compartment and CPU compartment. 
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5.1 Case and Frame 

The case was laser cut from black acrylic sheets. Aluminum extrusions form the frame of 

the structure. The LCD screen holder, as shown in Figure 30, was 3D printed from 

polycarbonate.  

 

Figure 26: CAD isometric view of the system 
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Figure 27: CAD right side view of the system 

 

 

Figure 28: CAD left side view of the system 
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Figure 29: CAD front view of the system 

 

 

Figure 30: LCD screen holder 
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5.2 Disk Compartment 

The disk compartment contains: the disk, spin chuck, IR Lamps, IR sensor, filters and filter 

slider, and magnets. A cut-a-way view of the disk compartment is shown in Figure 31. The 

magnets are not shown in this figure as they are suspended from the lid of the system. 

Figure 32 shows the disk compartment during assembly.  

 

Figure 31: CAD view of disk compartment 
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Figure 32: View of disk compartment during assembly 
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5.3 Motor Compartment 

The motor compartment sits directly below the disk compartment. It includes the motor 

and motor driver, camera and lens, DC-DC converters, the blower and the blower driver. 

A cut-a-way view of the motor compartment is shown in Figure 33. 

 

Figure 33: View of motor compartment 
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5.4 CPU Compartment 

The CPU Compartment is inside the LCD screen holder. It houses the Raspberry Pi and the 

IR lamp driver board. A cut-a-way view of the CPU compartment is shown in Figure 34. 

 

Figure 34: CPU compartment 
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5.5 Assembled system 

Figure 35 through Figure 39 show various views of the assembled system. 

 

Figure 35: Completed system, test disk, and power supply 
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Figure 36: Right side view of the system 

 

Figure 37: View of system with lid open 
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Figure 38: View of the disk compartment 
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Figure 39: Front view with GUI 

 

6 Data and Analysis 

6.1 PID Temperature Control 

6.1.1 Temperature Control Using a TMP36 for Detection 

Early testing of PID control used a temperature sensor that was in direct contact with one 

side of a Peltier cell. The other side of the cell was attached to a heat sink. The 

temperature sensor was a TMP36 from Analog Devices. Figure 40 shows an initial warm 

up and four cycles between 60°C and 95°C.  
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Figure 40: Temperature control using TMP36 

 

6.1.2 Temperature Control Using a Thermistor for Detection 

PID control testing was also done using a thermistor as the temperature sensor. One side 

of the Peltier cell was in contact with the thermistor; the other side was in contact with 

ambient air. Figure 41 shows an initial warm up and three cycles between 60°C and 95°C.  

 

Figure 41: Temperature control using a thermistor 
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6.1.3 Temperature Control with Peltier and Thermistor Attached to the Disk 

Once the Peltier cell was attached to a disk, the time to ramp up to 95°C remained 

approximately the same but the time to cool down to 60°C was extended, as shown in 

Figure 42. 

 

Figure 42: Temperature control with Peltier cell attached to disk 
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6.2 Imaging 

Orange and green fluorescent micro beads were used to test the system’s ability to view 

droplets. The test disk, as shown in Figure 43, is loaded into the upper compartment of the 

system. Figure 44 shows one of the test chambers being excited by the blue LED; the filters 

can be seen through the clear test disk. During assay execution the lid is closed and the 

Raspberry Pi camera captures the images. Each chamber is imaged twice, once with green 

excitation and a second time with blue excitation.  

 

The test disk includes four chambers. The first chamber contains no micro beads and 

contains only water. The second chamber contains orange fluorescent beads. The third 

chamber contains green fluorescent beads. The forth chamber contains orange and green 

fluorescent beads. Figure 45 through Figure 52 are images of each of the four chambers 

when excited by wavelengths of 530nm and 450nm, respectively. Each image is saved to 

the Raspberry Pi as a JPEG file.   

 

Orange fluorescence was much harder to see so the brightness of the green LED was 

increased to be significantly greater then the blue LED. This is why the images are almost 

completely black when the blue LED is used for excitation and there are no green 

fluorescent beads present as shown in Figure 46 and Figure 48.  
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Figure 43: Test disk 

 

 

Figure 44:  Test disk, blue excitation LED, Filters 
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Figure 45: Water chamber with green excitation 

 

Figure 46: Water chamber with blue excitation 
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Figure 47: Chamber with orange Fluorescent beads and green excitation 

 

Figure 48: Chamber with orange fluorescent beads and blue excitation 
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Figure 49: Chamber with green fluorescent beads and green excitation 

 

 

Figure 50: Chamber with green fluorescent beads and blue excitation 
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Figure 51: Chamber with orange and green fluorescent beads and green excitation 

 

 

Figure 52: Chamber with orange and green fluorescence and blue excitation 
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7 Conclusion and Future Work 

The system was designed according to the needs of the project. It is a portable device that 

is capable of cycling through temperatures for PCR. It is also capable of detecting 

fluorescence.  

 

When building a system and fitting the components together for the first time, there are 

aspects of the hardware that the designers plan to improve in later iterations of the 

prototype. Many of these improvements are discussed in section 7.1.  

 

All the subsystems are functional and many parts of the assay are integrated into software 

but there are two software components that still need to be implemented into the main 

executable file. The integration of these components is discussed in section 7.2.  

 

Image processing is needed to analyze the fluorescent images. This is discussed in section 

7.3.  

 

In order to know if the system will work with pathogens in wastewater, there is still work 

to be done with the microfluidic sample disk. The system will allow the disk designers to 

rapidly test their designs, however; a working sample disk is not operational at this point 

in time. Progress on the disk design is discussed in section 7.4. 
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7.1 Hardware Updates 

7.1.1 Driver Boards  

There are multiple driver boards and each are connected to the GPIO pins by jumper 

wires. Future plans include combining all the driver boards onto one PCB and connecting 

the driver board to the Rasbperry Pi using a ribbon cable. This will clean up the space 

inside the CPU compartment and improve assembly. 

7.1.2 Filter Slider 

The filter slider is currently controlled by relays. The relay board was an off-the-shelf quick 

fix that was implemented in order to meet a demonstration deadline. It uses full power to 

move the slider between positions. Future plans include replacing the relays with an H-

bridge motor driver. It will use less power and less force to move the slider back and forth.  

7.1.3 Case 

All the components fit tightly in the motor compartment. During assembly there were non-

essential components that we removed in order to fit everything in. Non-essential 

components included extension chords for the HDMI and USB ports to the case, and an 

additional 5V DC-to-DC converter so that the LCD screen and CPU could have separate 

power supplies.  The system still works without these components however being able to 

reach the ports, without having to disassemble the system, will be advantageous. The extra 

power supply was recommended by the LCD screen manufacturer but not required. A 

larger case will allow these items to be implemented to the next design.  
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7.1.4 Fluorescence 

When the blue LED is turned on, only the green fluorescent beads appear on the image; 

however, when the green LED is turned on, both the green and orange beads are visible. 

The quantity of orange beads can still be found using the current system by subtracting the 

green beads from the total number of beads shown.  Tuning the brightness of the LEDs and 

finding sharper filters may be beneficial to truly multiplex multiple types of fluorescence. 

Experimentation with different types of fluorescence is also needed.   

7.2 Software Updates 

7.2.1 Temperature Control 

Initial testing of temperature control on the system has shown promise. Reaching and 

holding temperatures between 95°C and 60°C has been achieved but cycling between 

temperatures still needs to be implemented into the main code. Additionally, the PID 

parameters still need to be tuned.  

7.2.2 Graphic User Interface 

Currently the GUI just displays the steps and the images. Future plans are to allow the user 

to input changes to steps and be able to tune parameters without having to open up the 

source code.  
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7.3 Counting Droplets 

The image-processing component of the project still needs to be completed. Software will 

be developed that can look at the images and count bright spots. Information from this 

code will go into quantifying pathogens in a given sample.  

7.4 Microfluidic Sample Disk 

The sample disk is still in the design phase. There are two main problems with the 

microfluidic assay that still need to be solved: 1) droplets tend to coalesce during thermal 

cycling and 2) there is a large bubble in the PCR chamber. 

 

7.5 Final Note 

The system operates as designed. Whether or not the system will be able to detect 

pathogens is still yet to be determined.  
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