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Abstract
Deep learning (DL) has been proposed to automate image segmentation and provide accuracy, consistency, and efficiency. 
Accurate segmentation of lipomatous tumors (LTs) is critical for correct tumor radiomics analysis and localization. The 
major challenge of this task is data heterogeneity, including tumor morphological characteristics and multicenter scanning 
protocols. To mitigate the issue, we aimed to develop a DL-based Super Learner (SL) ensemble framework with different 
data correction and normalization methods. Pathologically proven LTs on pre-operative T1-weighted/proton-density MR 
images of 185 patients were manually segmented. The LTs were categorized by tumor locations as distal upper limb (DUL), 
distal lower limb (DLL), proximal upper limb (PUL), proximal lower limb (PLL), or Trunk (T) and grouped by 80%/9%/11% 
for training, validation and testing. Six configurations of correction/normalization were applied to data for fivefold-cross-
validation trainings, resulting in 30 base learners (BLs). A SL was obtained from the BLs by optimizing SL weights. The 
performance was evaluated by dice-similarity-coefficient (DSC), sensitivity, specificity, and Hausdorff distance (HD95). For 
predictions of the BLs, the average DSC, sensitivity, and specificity from the testing data were 0.72 ± 0.16, 0.73 ± 0.168, and 
0.99 ± 0.012, respectively, while for SL predictions were 0.80 ± 0.184, 0.78 ± 0.193, and 1.00 ± 0.010. The average HD95 
of the BLs were 11.5 (DUL), 23.2 (DLL), 25.9 (PUL), 32.1 (PLL), and 47.9 (T) mm, whereas of SL were 1.7, 8.4, 15.9, 2.2, 
and 36.6 mm, respectively. The proposed method could improve the segmentation accuracy and mitigate the performance 
instability and data heterogeneity aiding the differential diagnosis of LTs in real clinical situations.
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Introduction

Lipomatous tumors (LTs) refer to a broad spectrum of 
mesenchymal tumors that range from benign entities such 
as lipoma to aggressive malignant tumor including lipo-
sarcoma [1]. Magnetic resonance imaging (MRI) is the 
modality of choice for evaluating LTs for its superior soft 
tissue contrast. It is used to distinguish benign lipomas 
from their malignant mimics, the well-differentiated lipo-
sarcomas. To distinguish these lesions, radiologists rely 
on visual evaluation of multiple MRI features including 
the level of fat saturation, architectural complexity in rela-
tion to the normal surrounding adipose tissue and pattern 
of contrast enhancement [2]. However, the qualitative 
assessment has demonstrated variable levels of diagnostic 
performance with reported accuracy levels ranging from 
58 to 74% [3–5]. MR exams are often composed of hun-
dreds or even thousands of images, and subtle important 
image features may be missed since interpretation itself 
is a complex visual search process that relies on several 
cognitive processes, including selective attention, working 
memory, and decision-making [6]. Diagnostic aids from 
quantitative radiomics have shown encouraging results in 
the characterization of many diseases including diagnosis 
of myocardial infarction [7] and small vessel disease [8], 
quantification of liver fibrosis [9], and classification [10] 
and grading [11] of soft tissue tumors. In LTs, 73–99% 
accuracy has been reported [12–20] for differentiating 
malignant from benign lesions. However, extraction of 
radiomic features is challenging because the identifica-
tion of the tumor extent and its segmentation are labor-
intensive and prone to human error, especially given that 
many of these tumors insinuate between soft tissue planes 
and can exceed 10 cm in their longest dimension [21]. In 
our experience, manual delineation of LTs requires not 
only well-trained experts, but also is time-consuming. For 
example, segmenting one tumor could take 4 h or even 
more. Furthermore, there is no generalized prior knowl-
edge of LTs that could be used in an atlas-based method, 
which is frequently used in neuroscience studies.

Deep learning (DL) has been proposed to automate 
medical image segmentation, which subsequently can 
be used in multiple image analysis domains including 
improved radiological diagnostics [22, 23]. Unlike organ 
segmentation having certain prior information, automati-
cally segmenting LTs in MR images poses a great challenge 
from biological and scanner-related perspectives. LTs are  
biologically heterogeneous and can be strikingly indistin-
guishable compared to the surrounding normal adipose 
tissue or may vary significantly from surrounding tissue. 
Also, they may arise anywhere in the body, which widens 
the complexity of anatomical shape analysis. Furthermore, 

MRI images may harbor scanner hardware and software 
related artifact, such as signal intensity inhomogeneity 
from surface coils. The range and meaning of MRI image 
intensity values vary for the same protocol and even for 
the same body region [24]. Additional sources of MR 
data heterogeneity include the employment of numerous 
acquisition and processing protocols for the same clinical 
application both within and in-between different institu-
tions and the acquisition of variable sizes of field-of-view 
(FOV) with subsequent voxel size variability. Although 
the resulting heterogeneous data do not necessarily impair 
the physicians’ qualitative diagnostic output, it poses a 
significant challenge for any pre-processing algorithm 
attempting to achieve high segmentation accuracy and 
robust stability using deep learning [25]. These factors 
mentioned above increase the performance instability of 
supervised trainings and decrease the generalizability of 
the selected training data distribution to new data. Despite 
better data quantity requirement for training a neural net-
work in this study, integrating data from multiple sources 
has ramifications, and it is not easy to find a solution in a 
single network design. To mitigate the data heterogene-
ity problem, we proposed an ensemble learning frame-
work combining multiple convolutional neural networks 
(CNNs) trained individually using K-fold cross-validation 
with the training data curated using a variety of correction 
and normalization methods. Some features of the hetero-
geneous training data might be missing when using only 
one data preparation method and result in poor segmen-
tation performance. The complimentary features might 
be presented by different data preparation methods to the 
neural networks, and the ensemble learning framework 
could provide better segmentation performance by opti-
mally weighting all the trained neural networks for testing 
data instead of equal-weighted averaging. The aim of this 
work was to study the segmentation accuracy and stabil-
ity of our proposed DL-based Super Learner approach 
for delineating LTs on T1-weighted (T1W) or proton-
density (PD) MR images, curated from multiple centers,  
in comparison to any single trained neural network.

Materials and Methods

I. MR Images and Training Data Preparation

This study used non-fat saturated T1W or PD MR 
images from 185 patients; 83 males, 102 females; age 
58.4 ± 11.9 years (range: 23–89 years), who underwent mus-
culoskeletal MRI as part of the pre-operative evaluation of 
their LTs at 4 participating institutions. Details on cohort 
identification are similar to the ones that have been previously 
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described [26]. The study was approved by the Institutional 
Review Board at the host university, and several data transfer 
agreements were in effect between host university and other 
universities. All the procedures were HIPAA-compliant, 
and an informed consent was waived for this retrospective 
chart review study at all sites. All patients underwent surgi-
cal resection of the tumor within 3 months from the date of 
their MRI scans, and histopathology was available for all the 
resected lesions. MRI data were acquired using several dif-
ferent MR scanners similarly as previously described [26], all 
studies included at least acquisition of T1W or PD sequence. 
A fellowship-trained, board-certified radiologist with 3 year-
experience after musculoskeletal fellowship (LN) reviewed 
MR images and categorized the anatomical location of the 
tumor into 5 groups: distal upper limb (DUL, n = 5), distal 
lower limb (DLL, n = 3), proximal upper limb (PUL, n = 41), 
proximal lower limb (PLL, n = 88) or Trunk (T, n = 48, which 
also included LTs in the neck region). Imbalance in tumor 
location is mandated by the characteristics of the studied 
disease, and these custom tumor categories were introduced 
to be used for the systematic analysis in this work, despite 
no general guideline for categorization yet being proposed.

Anonymous MRI images in DICOM format were 
imported into a viewing workstation running OsiriX MD 
v.9.5.1. (Pixmeo, Switzerland). Two radiology residents 
(both at their 4th year of training [PGY-4]) reviewed the 
images, identified the tumor on the described MR sequence 
and delineated the tumor manually slice-by-slice on the 
axial plane. All delineations were checked for accuracy by 
a third resident (PGY-4), and any required modifications 
were implemented. The residents were closely supervised 
by a board-certified radiologist while delineating the tumors. 
The delineations were randomly selected for validation from 
different residents. The final delineations were exported 
as training masks (ground truths) in DICOM format. For 
each series, a corresponding mask series was created, with 
intensity of 1 representing tumor and 0 representing the 
background.

All the MR images and their masks were converted 
from DICOM format to raw data format (float 32-bit) and 
resampled to the image matrix size of 512 × 512 with the 
corresponding voxel size while preserving the aspect ratio 
(mostly from higher dimensions). The different scanners and 
acquisition protocols across the participating institutions can 
result in signal intensity range variation and non-uniformity 
(e.g., due to inhomogeneous magnetic field, instable gra-
dient field, susceptibility and different surface coils, and 
non-specific relationship between signal intensity and tis-
sue types). The N4ITK approach (N4 correction) [27] was 
proposed to correct inhomogeneous magnetic field (bias 
field) in MR images. To improve the stability and accuracy 
of the LT segmentation by taking advantage of the ensem-
ble learning, multiple neural networks were trained with the 

data undergoing different pre-processing methods. In this 
work, four normalization/standardization methods were 
individually investigated and combined with the N4 cor-
rection: Z-score (mean and standard deviation), max/min 
per three-dimensional tumor volume, max/min per slice, and 
Nyul standardization [28] methods. Each normalization or 
standardization method could suppress certain features of 
the MR images due to pixel value scaling or compression.

The 185 patient exams were single split for fivefold cross-
validation trainings (80%, 148 exams), optimization of the 
ensemble weight (9%, 17 exams), and final performance 
testing (11%, 20 exams). For the fivefold cross-validation 
trainings (base learners), the 148 exams were randomly split 
into five equal groups, and each group was used as validation 
data in turn and the rest as training data. The training data 
were augmented on-the-fly by using rotation, scaling, and 
flipping horizontally and vertically. To estimate the ensem-
ble weights of the base learners in the ensemble network, 
17 exams were used in the calculation of the super learning 
loss. The final performance was evaluated using the last 20 
exams for each base learner and the super learner.

II. CNN Architectures

The U-Net architecture is known for its superiority in multi-
resolution feature extraction. A standard U-Net [29] and 
attention U-Net [30] were implemented using TensorFlow 
as shown in Fig. 1. The U-Net was composed of five resolu-
tion levels of convolutional layers, and each level was skip-
connected between the encoding and decoding processes. 
The root feature of the convolutional layers on the first level 
was 32 and increased by a factor of 2 every level down. 
Each convolutional layer was followed by a BatchNorm layer 
[31] and a Rectified Linear Unit (ReLU) activation function. 
The sigmoid activation function was used in the final layer 
to output a probability map for tumor segmentation. The 
attention U-Net was implemented on top of the U-Net with 
additional attention blocks in the skip-connections to focus 
on extracting self-attention features in the region-of-interest. 
As a result, there are 12.5 and 13.6 million trainable param-
eters in the U-Net and attention U-Net, respectively.

III. CNN Training and Ensemble Learning

The U-Nets were individually trained with the MR images 
normalized by Z-score before and after the N4 correction and 
by the other three normalization methods after the N4 correc-
tion, whereas the attention U-Net was trained with the images 
normalized by Z-score after the N4 correction. Since the MR 
images are too divergent to be completely corrected for the 
bias field by the N4 correction without losing some feature 
information, we decided to train one of the U-Nets with the 
data before the correction. A dice-coefficient loss function was 
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optimized by Adam optimizer [32] to train the individual base 
learners, U-Nets, and attention U-Nets. The batch size of 16 
image slices and total epoch number of 120 were used for all 
the trainings of the base learners.

After reviewing the performance of the base learners, not 
a single trained base learner or image normalization method 
in this work could always result in good segmentation per-
formance for any specific patient data because of the data 
heterogeneity. In addition, the stability of the optimization 
in the trainings could vary a lot due to the representativity 
of the random split training data to the validation and testing 
data. Therefore, combining all the trained base learners using 
equal-weighted averaging would not provide optimal results. 
To mitigate these issues, all the trained base learners were 
weighted differently and combined using the Super Learner 
(SL) ensemble framework [33]. The workflow of our proposed 
ensemble framework is illustrated in Fig. 2.

Before obtaining the SL predicted segmentations of the 
testing data, the ensemble weights were first optimized by 
minimizing the following SL loss function:

where  i is the index of the input image slices, j is the index 
of the base learners, wj is the ensemble weight of the j-th 
base learner, m is the total number of the base learners, pji 
is the segmentation of the image slice i predicted by the j-th 
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base learner, and yi is the ground truth (manual delineation) 
of the image slice i . During the optimization, each ensemble 
weight was restricted to the range from 0 to 1, and the sum 
of the all ensemble weights was to 1.

The SL predicted probability map, pSL,i , is computed 
using the optimized ensemble weights and the correspond-
ing base learners by

A standard threshold of 0.5 was used on the SL pre-
dicted probability map to generate the final segmentation. 
A receiver operating characteristic (ROC) analysis was con-
ducted to study the discriminant capability of the SL and 
the influence of the threshold on the accuracy of the final 
segmentation.

In this work, a total of 30 base learners resulted from 
6 combinations of the CNNs and correction/normalization 
methods for fivefold cross-validation trainings as described 
above. The segmentations of the 17 patient exams were first 
predicted using these 30 base learners and then fed into the 
SL loss function as pji . The ensemble weights were initial-
ized as 1/30 and optimized using Adam optimizer. It took 75 
epochs for the ensemble weights to converge in this work.

The fivefold cross-validation trainings, the ensemble 
weight optimization and SL prediction were conducted on 
a NVIDIA Tesla V100 32 GB GPU. The computation time 
for the cross-validation trainings was approximately 193 s/
epoch, for ensemble weight optimization 6 s/epoch and for 
prediction 19 ms per image slice.

pSL,i =
∑m

j=1
wjpji.

Fig. 1   The U-Net architecture with the optional attention gate (AG). 
The feature maps from the skip-connections were scaled using the 
attention coefficients calculated in attention gates with the feature 

maps from the coarser level. Both networks with and without the 
attention gates were implemented in this work
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V. Evaluation Metrics

The performance of the final SL predicted segmentations of 
the 20 testing data was evaluated against the manual delinea-
tions by dice-similarity-coefficient (DSC), sensitivity, speci-
ficity, and 95th percentile of the Hausdorff distance (HD95) 
[34] in comparison with the predictions from the 30 base 
learners. All the metrics are overlap-based except for HD95 
which is boundary distance-based and measures the 95th 
percentile of the Euclidean distances of the nearest points 
between the predictions and ground truths. The disadvantage 
of the overlap-based metrics is that they do not account for 
the spatial distribution of the correct or misclassified voxels 
[35]. On the contrary, HD95 is more sensitive to the dif-
ferences in the delineation contour and spatial position of 
the voxels. For easier comparison between the SL and base 
learners, the overlap-based metrics difference was presented 
directly, since the metrics range is between 0 and 1, while 
the improvement for HD95 was represented by percentage 
because the boundary distance is arbitrary depending on the 
accuracy of the predicted segmentation.

To statistically compare the performance of the individ-
ual base learners and SL ensemble predictions for the 20 
testing data, we first conducted an ANOVA with post hoc 
Tukey multiple-comparison adjustment. After removing two 

significantly underperforming outlier base learners, the aver-
age performance of remaining base learners was used for com-
parisons against SL ensemble predictions. The values of the 
metrics used for comparing performance (DSC, sensitivity, and 
specificity) demonstrated skewed distributions; accordingly, 
the non-parametric equivalent of paired t test (i.e., Wilcoxon 
signed rank test) was used for this comparison.

Results

Examples of the MR images per tumor location are shown 
on the same display scale in Fig. 3, with Z-score normaliza-
tion or Nyul standardization before and after the N4 cor-
rection and the corresponding manually delineated tumor 
masks (yellow). The bias field (or intensity non-uniformity) 
in the images was mostly corrected using the N4 correc-
tion, but it is not always effective because of the data het-
erogeneity, such as the dimmer area in the lower left of the 
DLL image in Fig. 3. There are examples without much 
bias field, such as the PLL case in Fig. 3, that show little 
changes before and after the N4 correction. The images after 
the Nyul standardization could show more structural details 
on the same display scale while enhancing the background, 
such as the DUL case in Fig. 3.

Fig. 2   The workflow of the ensemble framework. The curated patient 
exams were split into three groups for the three steps: neural network 
training, super learner weight optimization, and final performance 
evaluation. All the exams first underwent the corresponding normali-

zation/correction. Each neural network was trained using fivefold 
cross-validation to obtain the base learners, pj, whose super learner 
weights, wj , were optimized before being used in the final perfor-
mance evaluation
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The DSCs of the individual base learners per patient 
exam were box plotted with that of the ensemble predic-
tions in Fig. 4 for the 20 testing data. For the individual 
base learners, the average DSC, sensitivity, and specific-
ity across all the testing data were 0.724 ± 0.156, 0.734 
± 0.168, and 0.990 ± 0.012, respectively, while for the SL 
ensemble predictions were 0.803 ± 0.184, 0.781 ± 0.193, 
and 0.995 ± 0.001. However, two base learners were signifi-
cantly underperforming; Learner 9 had significantly lower 
specificity compared to 21 out of the remaining 29 learners 
(72%); and Learner 30 had significantly lower sensitivity 
and lower DSC compared to 22 of the remaining 29 learners 
(76%). To avoid biasing the subsequent comparisons in favor 
of the SL ensemble predictions, these two underperforming 
learners were removed for subsequent comparisons, and the 
average of 28 base learners was compared to SL. The SL 
ensemble predictions demonstrated significantly higher DSC 
(0.803 ± 0.184 vs. 0.737 ± 0.157; P = 0.0005), sensitivity 
(0.781 ± 0.193 vs. 0.739 ± 0.173; P = 0.001), and specificity 
(0.995 ± 0.010 vs. 0.991 ± 0.011; P < 0.0001). A bar chart of 
the average results with statistical significance comparisons 
is shown in Fig. 5. The averages of DSC, sensitivity, speci-
ficity, and HD95 per tumor location in the testing data for 
the individual base learners and SL ensemble predictions 
as well as their averages of the all 20 testing data are sum-
marized in Table 1. The DSCs, sensitivity, specificity, and 
HD95 for the individual base learners are summarized in 
the supplementary Tables S1–S4, respectively. Additionally, 

the DSCs, sensitivity, specificity, and HD95 of the SLs with 
optimized weights and equal weights are summarized in the 
supplementary Table S5. The receiver operating character-
istic (ROC) curves of the testing data are plotted in Fig. 6.  
Five representative examples of the SL ensemble predictions 
(red) overlaid together with the tumor delineations for the 
tumor locations on the MR images are shown in Fig. 7a. The 
additional five examples showing the performance in the tumor 
locations where the majority of the training data comprises, 
i.e., PUL, PLL, and Trunk, are presented in Fig. 7b. The predic-
tions of the 30 base learners at the central slice of the tumor are 
plotted for three patient exams, Test#3 (DLL), 8 (PLL), and 17 
(T), in the supplementary Figs. S1–S3 in comparison to SL.

Discussion

The DSC of the predictions for most of the testing data spreads 
widely between different base learners; this suggests great 
performance instability when using any single base learner 
for prediction. Conventionally, only one trained base learner 
would be used for the final segmentation and could suffer the 
aforementioned issues due to the data heterogeneity and per-
formance variability. The average DSC, sensitivity, and speci-
ficity across all the testing datasets show that the improvement 
of using SL ensemble framework for prediction is significant 
(P value < 0.05) over those of the individual base learners. 
The average DSC performance of SL (0.803) from the 20 

Fig. 3   T1-weighted MR images 
per tumor location (left to right) 
normalized by Z-score before 
and after bias correction (N4), 
normalized by Nyul standardi-
zation after N4 correction and 
the manual delineations (yellow 
shade) overlaid on MR images. 
The images are displayed on the 
same scale. The images (top to 
bottom) are from distal upper 
limb (DUL), distal lower limb 
trunk (DLL), proximal upper 
limb (PUL), proximal lower 
limb (PLL), and trunk (T)
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testing datasets was 10.9% better than that of the individual 
base learners (0.724). The high specificity resulted from the 
class imbalance between tumor and non-tumor voxels that is 
the reason for non-discriminative area under the ROC curve 
(AUC) between the testing datasets. It is worth noting that the 
dice-coefficient loss function used for the trainings in this work 
is insensitive to the class imbalance because it only considers 
the tumor class but not the background class during trainings, 
unlike binary cross-entropy function. Given the ROC curves of 
the testing data, the SL could provide very good discriminant 
capability between LTs and other tissues on most of the testing 
data. The threshold was not specifically optimized for every 
testing dataset, but 0.5 seems to be appropriate for having good 
sensitivity and specificity in this work.

The major challenge of the deep learning-based LT seg-
mentation in MR images is the data heterogeneity, not only 
the curated patient exams from multicenter but also the 
biological characteristics of the LT. In the segmentation of 
organs or other type of tumors, all the available data would 
be used for training a neural network without categorizing 
them for performance evaluation. We introduced a classifi-
cation method to group the patient exams by the five tumor 
locations for a systematic analysis. The values and spread 
of the DSC results from the testing data implied that the 
segmentation performance may be associated with the tumor 
location and the individual amount of the training data for 
each location. Without considering the tumor locations in 

Fig. 4   Box plot of dice-similarity-coefficient (DSC) of the testing datasets for the 30 individual base learners and Super Learner (pink circles). 
Most of Super Learner DSCs are higher than the upper quartile of the individual learners

Fig. 5   Bar chart of average dice-similarity-coefficient (DSC), sen-
sitivity, and specificity for the individual base learners and Super 
Learner. The error bars represent the standard deviation calculated 
across the 20 testing datasets from different tumor locations. ‘*’ indi-
cates the difference is statistically significant (P value < 0.05)
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the trainings, the DSCs of the SL predictions from 17 of 
the 20 testing data outperformed the 75th percentile of the 
DSCs from the individual base learners. Only one testing 
data located in DLL, showed worse DSC of the SL predic-
tions than the median of the individual base learners. To 
further investigate the relationship between the performance 

and tumor location, we summarized the average evaluation 
metrics for each tumor location. All the evaluation metrics 
were improved when using the SL ensemble learning, except 
for the DSC and sensitivity in DLL. The lack of patient 
data in the tumor locations of DLL for training indeed had 
a negative impact on the tumor segmentation in the same 

Table 1   The averages of DSC, 
sensitivity, specificity, and 95th 
percentile Hausdorff Distance 
(HD95) per tumor location and 
for all 20-testing data

Metric DUL [2] DLL [1] PUL [4] PLL [6] T [7] ALL [20]

DSC
  Individual 0.752 0.323 0.665 0.838 0.710 0.724
  Super Learner 0.857 0.180 0.730 0.911 0.826 0.803
  Improvement 0.105 −0.143 0.065 0.073 0.116 0.079

Sensitivity
  Individual 0.784 0.234 0.666 0.802 0.772 0.734
  Super Learner 0.806 0.099 0.711 0.862 0.844 0.781
  Improvement 0.022 −0.135 0.045 0.060 0.072 0.047

Specificity
  Individual 0.996 0.998 0.979 0.995 0.990 0.990
  Super Learner 0.999 1.000 0.985 0.999 0.995 0.995
  Improvement 0.003 0.002 0.006 0.004 0.005 0.005

HD95 (mm)
  Individual 11.5 23.2 25.9 32.1 47.9 34.5
  Super Learner 1.7 8.4 15.9 2.2 36.6 15.9
  Improvement (%) 85.2 63.8 38.6 93.1 23.6 54.9

Fig. 6   Receiver operating characteristic (ROC) curves and area under 
curve (AUC) of Super Learner predictions from the 20 testing data-
sets. The mean ROC curve is in bold blue and the individual curves 

from the 20 testing datasets are in gray. The gray shadow indicates ± 1 
standard deviation
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location, while good performance for other tumor locations. 
We would need more data from each tumor location, espe-
cially for DUL and DLL, for training as well as to confirm 
the performance improvement. In comparison with the test-
ing data number 3 (DLL), number 17 (T) also showed wide 
spread DSC from the base learners but better performance 

of SL. The possible reason could be the greater number of 
patient exams in T than DLL. Although the performance of 
SL in T was improved for the testing data, the class of trunk 
may still include distinct variation given the spread of the 
DSC. This class could be further broken down to different 
classes.

Fig. 7   The SL ensemble 
predictions (red) and tumor 
delineations (yellow) per 
tumor location overlaid on the 
T1-weighted MR images giving 
orange color for the correctly 
predicted tumor region. First 
two columns represent the 
central image slices of the 
tumors without and with the 
delineations and predictions, 
respectively, whereas the second 
two columns represent the edge 
image slices of the tumors. The 
predictions are often worse in 
the edge slices than in the cen-
tral slices of tumor. The dice-
similarity-coefficient (DSC) 
was calculated per volume. 
Each testing dataset has differ-
ent voxel size, FOV coverage, 
and tumor size and shape, but 
they all have the same matrix 
size of 512 × 512. The green 
arrow indicates the misclas-
sification region separated from 
the tumor. a Five representa-
tive examples for the tumor 
locations. b Additional five 
representative examples for the 
tumor locations of PUL, PLL, 
and Trunk
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The HD95 is a spatial distance-based measure and takes 
into account the difference in contour and location. In addi-
tion, the HD95 is more sensitive than other overlap-based 
measures to any false positive voxel predictions that are 
spatially located away from the reference standard deline-
ated tumor [35]. The predictions of trunk lesions showed the 
largest HD95 among all the five tumor locations, because 
the trunk encompasses a large anatomical area and dem-
onstrates numerous anatomical variations. Additionally, the 
large FOV coverage is more liable for multiple false positive 
predictions. In comparison to the individual base learners, 
the HD95 was reduced substantially by a factor about 23% to 
85% (average reduction = 49%) for different tumor locations 
when using our proposed SL ensemble learning approach.

This study has some limitations. First, the number of 
datasets per tumor location from all the institutions is still 
relatively small especially in terms of deep learning train-
ing and performance evaluation, although this is by far the 
largest international multi-institution database of lipomatous 
tumor that is published. It could cause the class imbalance 
resulting in prediction bias and decreased the segmentation 
accuracy for the tumor location of which the training data 
are fewer. Second, the proposed Super Learner ensemble 
framework was implemented with 2D neural networks, and 
the correlation between image slices was not yet considered. 
Normal tissue could sometimes be misclassified as tumor 
in nonconsecutive image slices because the information 
from the neighboring slices is lacking. The disjoint mis-
classified tumor segments result in the increased HD95 per 
patient data. Third, the data preprocessing methods used in 
this work only include basic correction and normalizations. 
In future work, 3D neural network, more sophisticate data 
preprocessing methods and classification method of tumor 
locations will be investigated with the proposed framework 
to further improve the segmentation accuracy.

Conclusion

In conclusion, our study demonstrated that the segmentation 
performance instability caused by the inevitable data hetero-
geneity and individual trainings could be mitigated using the 
Super Learner ensemble framework. The whole processing 
time could be significantly reduced, and the human effort can 
be mainly focused on reviewing the predictions and correcting 
any encountered inconsistencies. The predicted tumor segmen-
tation could be used for radiomic analysis and tumor classifica-
tion. Future work will investigate different base learners other 
than the correction and normalization methods for the Super 
Learner ensemble learning and develop state-of-the-art neu-
ral network architecture. More institutions have provided data, 
which are being used for further developing the relationship 
of the performance and tumor locations. Our future work will 

validate this tool for lesion classification and characterization, 
with the ultimate goal to develop a radiologist-friendly tool 
that can be deployed in clinical practice.
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