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Introduction

The spinal cord role in diabetic neuropathy has been described since

early  1900  and  reviewed  in  detail  in  the  previous  edition  [1].  In

contrast to the vulnerable peripheral nerves, the spinal cord is exposed

to less glycemic stress as a consequence of lower glucose levels in the

cerebral spinal fluid than in the plasma [2]. However, the spinal cord is

not  protected  from  diabetes-induced  injury.  Indeed,  structural  and

functional  damage  are  discernable  in  the  spinal  cord  of  diabetic

patients with histological  evidence of neuropathy,  radiculopathy and

myelopathy  [1] and clear atrophy detectable by magnetic resonance

imaging (MRI) scans [3, 4]. Structural damages are also detected in the

spinal cord of animal models of diabetes, although not to the extent of

structural degeneration seen in human [1]. Rather than merely acting

as  a  passive  conduit  for  the  flow  of  afferent  information  from  the

periphery  to  the  higher  central  nervous  system,  it  is  increasingly

evident  that  the  spinal  cord  is  a  complex  sensorimotor  processing

interface. The spinal cord is the first site of integration of sensory input

from the periphery and the last site of descending control of sensory

and motor systems, therefore disruption of its function may impede

appropriate CNS control systems and contribute to apparent peripheral

neuropathy [5].
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The number of studies on the function and contribution of the spinal

cord to diabetes neuropathy has increased in an almost exponential

fashion in the last 15 years (from 15 articles per year in 2006 to 45-50/

year in  the last  5  years  for  spinal  cord  and diabetic  neuropathy in

PubMed search). The main progress areas in the last 15 years will be

developed in this chapter.

- Inflammation 

- Molecular mechanisms 

- Spinal disinhibition

- Spinal cord Stimulation 

Inflammation

- Microglia activation in type 1 diabetes  

Several  mechanisms  taking  place  at  the  spinal  cord  level  may

underline  the  development  and  maintenance  of  diabetic  peripheral

neuropathy.  Although  diabetic  neuropathy  is  not  an  inflammatory

neuropathy per se, among these mechanisms, activation of microglia,

and  subsequent  release  of  proinflammatory  cytokines  and  reactive

oxygen intermediates have been suggested as playing an important

role in spinal sensitization. Systemic changes such as hyperglycemia

may  be  involved  in  microglial  activation.  Under  culture  conditions,
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hyperglycemia  can  cause  morphological  changes  indicative  of

activation of  microglia  as well  as increased release of  inflammatory

cytokines [6, 7]. However, hyperglycemia was shown to be necessary

but not sufficient to induce hyperalgesia, which was associated with

increase of extracellular signal-regulated kinase (ERK), cJun N-terminal

kinase (JNK) and p38 phosphorylation in the spinal cord and dorsal root

ganglia  (DRG),  more  particularly  in  neurons  and  microglia  of

streptozotocin  (STZ)  diabetic  rats  [8]. Microglial  density  increased

along  with  phosphorylated  p38  MAPK  (a  marker  of  microglial

activation) in diabetic rodent spinal cord, correlating with mechanical

hyperalgesia  [9,  10] and  a  cannabinoid  receptor  B2  (CB2)  agonist

attenuated the neuropathic state, with reduced elevation of microglial

density  and  phosphorylated  p38  in  diabetic  mice  [10].  Similarly,

exercise, gabapentin and lidocaine attenuated microglia activation, as

measured  by  p38  phosphorylation  in  diabetic  rodents  [11-13].

However, in our group, we have shown that differences exist between

microglial  activation  observed in  diabetic  rats  and that  observed in

nerve-ligated rats (Dr. Lee-Kubli, unpublished). Unlike nerve-injury that

caused a large increase in the total number of microglia, diabetes was

not  associated  with  a  change  in  microglia  number.  However,  the

percentage of microglia with retracted processes was similar in both

diabetic and nerve-ligated rats and was consistent with descriptions of

morphological activation depicted in the literature [8, 14, 15]. 
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Additionally,  the  mitogen-activated  protein  kinases  (MAPK)s

phosphorylation  was  not  detected  in  diabetic  non-hyperalgesic  rats

and  N-methyl-D-aspartate receptor  (NMDAR) activation was required

for the MAPK phosphorylation in neurons and microglia and consequent

hyperalgesia  in  the  diabetic  hyperalgesic  rats  [8].  The  NMDAR

contributes to central sensitization in the spinal cord, a phenomenon

which comprises  various  pathophysiological  mechanisms responsible

for neuropathic pain-like signs in animal models.  NMDAR function is

modulated  by  post-translational  modifications  including

phosphorylation, and this is proposed to underlie its involvement in the

production  of  pain  hypersensitivity.  In  particular,  increased

phosphorylation of NMDAR1 was found in neurons and microglial cells

in the spinal cord of STZ-rats developing hyperalgesia. Blockers of MEK

(an upstream kinase of ERK) and of NMDAR suppressed hyperalgesia

and decreased NMDAR phosphorylation, demonstrating involvement of

neuronal  and microglial  NMDA and  ERK in  central  sensitization  and

mechanical hyperalgesia in diabetes [16]. 

Microglia involvement in allodynia in type 1 diabetic rats was further

supported  by  administration  of  gabapentin  or  minocycline,  which

attenuated microglial activation (reduction of expression of the early

gene cFos) that correlated with reduced allodynia in STZ diabetic rats

[13,  14,  17-19].  Inhibition  of  microglial  activation  by  minocycline

restored  normal  spinal  expression  of  OX-42,  BDNF  and  DREAM  (a
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calcium regulated transcriptional  repressor)  proteins  [20].  Increased

microglial activation and protein expression of BDNF and DREAM were

not present in diabetic rats without  painful  neuropathy (hypoalgesia

after formalin injection) [21].

Peripheral  infiltrated  macrophage  may also  contribute  to  the  spinal

cord  inflammation  as  their  number  increased  throughout  the

development  of  diabetic  neuropathy  in  STZ  mice.  Administration  of

clodronate  liposomes  to  deplete  monocyte  reduced  infiltrated

macrophages along with alleviation of tactile allodynia [22].

Similarly,  alteration  of  astrocytes  activation  may  be  involved  in

diabetic  neuropathic  pain.  However,  the  role  of  astrogliosis  in  the

hyperalgesia  detected  in  type  1  diabetic  rodents  is  not  clear,  with

report  showing  decreased  GFAP-positive  astrocytes  [23,  24] while

other  reported  increased  activation  of  astrocytes  in  addition  to

microglial  activation  in  the  spinal  cord  of  STZ  diabetic  rats  [25].

Reduced activation of microglia and astrogliosis were also observed in

the spinal cord of the HFD/STZ diabetes model only at the late stage

(after 30 days of diabetes) [26].

- Proinflammatory peptides and cytokines  
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Various  studies  have  shown  increased  proinflammatory  cytokines

levels in diabetic rodent spinal cord. Here we report only recent studies

for kinins and TNFa, while studies showing efficacy to reduce microglial

activation and cytokines release are reported in Table 1. 

Kinins are defined as pro-inflammatory and vasoactive peptides, which

act through the activation of two G-protein-coupled receptors denoted

as B1  and B2 [27, 28]. The pro-nociceptive kinin B1 receptor (B1R) is

upregulated on sensory C-fibers, astrocytes and microglia in the spinal

cord  of  STZ-diabetic  rat.  This  upregulation  was  associated  with

increased  Iba1  staining  and  reversed  by  microglia  inhibitors

(fluorocitrate and minocycline), while improving tactile allodynia [29].

Tumor necrosis factor alpha (TNFa) is a proinflammatory cytokine that

has been implicated as a key pain mediator in the development and

maintenance  of  neuropathic  pain  conditions.  TNFa was  significantly

increased in STZ diabetic rats that had painful diabetic neuropathy and

to  a  lesser  extend  in  diabetic  rats  with  non-painful  neuropathy  as

determined  by  their  response  to  von  Frey  filaments  [30].  The

production of TNFa in the spinal cord has been shown to be increased

in diabetic mice, and attenuation of this overproduction by a selective

cannabinoid CB1 receptor antagonist prevented mechanical allodynia

[31].  Systemic  or  intrathecal  administration  of  etanercept,  a  TNFa
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inhibitor,  alleviated  tactile  allodynia  in  diabetic  mice  [32].  The

increased TNFa levels in diabetic rat spinal cord was also reduced by

treatment with a  Poly(ADP-ribose)Polymerase-1 (PARP) inhibitor  [33].

TNFa has been shown to be elevated in diabetic spinal cord and its

modulation improved painful diabetic neuropathy.

Numerous studies have shown activation of microglia and release of

proinflammatory  cytokines  (Il1b,  TNFa)  in  STZ  rodents  that  were

reduced by administration of various compounds, extracts and drugs

(Table 1).

Modulation of  spinal  cord inflammation in rodent models  of  diabetic

neuropathy  supports  the  contribution  of  inflammation  to  painful

diabetic neuropathy and shows it could be a beneficial therapeutical

avenue to explore for treatment of diabetic neuropathy.

- Inflammation in type 2 diabetes  

In contrast to the type 1 diabetic rodent models, spinal astrocytes, but

not microglia, were shown to be activated in type 2 diabetic mice. The

astrocyte activation correlated with increased expression of IL1b and

increased phosphorylation of NMDAR in spinal dorsal horn neurons of

type  2  diabetic  mice  [34].  In  the  type  2  diabetic  mice,  astrocytic
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inhibition attenuated allodynia while microglia inhibition had no effect

[34].

Phosphorylated ERK was increased in the spinal cord and DRG of type

2  diabetic  mice  (db/db)  [35] and  inhibition  of  MEK  (ERK  Kinase)

attenuated mechanical allodynia,  thermal hyperalgesia, and formalin

response in these mice  [36]. The enhanced ERK phosphorylation was

detected  in  projection  sensory  neurons  and  was  associated  with

astrocyte activation, increased NMDAR1 phosphorylation in projection

neurons  and  upregulation  of  nitric  oxide  synthase  (neuronal  and

inducible) in interneurons and astrocytes peaking up at 10 weeks of

diabetes  [35].  Inhibition  of  NMDAR,  MAPK  or  NOS  decreased  ERK

phosphorylation,  NOS  upregulation,  and  reduced  astrocytosis  and

GFAP  upregulation  in  db/db  mice  spinal  cord  while  inhibiting

mechanical allodynia [35]. Increased ERK activation was demonstrated

in ZDF rats following pressure of the hindpaw. This was reduced after 7

weeks  of  treatment  with  pioglitazone  (a  peroxisome  proliferator-

activated  receptor  g (PPARg)  ligand)  [37].  However,  the  treatment

reversed  hypoglycemia,  therefore  the  effect  on  spinal  sensitization

cannot be attribute to pioglitazone alone but partially to a reversal of

diabetes.

Molecular mechanisms
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- Mitochondrial function  

Mitochondrial  respiratory  chain  activity  is  reduced  in  heart,  kidney,

skeletal  muscle  and  DRG  of  patients  with  type  2  diabetes  and/or

diabetic  rodents  (reviewed  in  [38])  and  contributes  to  impaired

bioenergetics  due  to  alteration  of  the  AMP-activated  protein  kinase

(AMPK)/sirtuin  (SIRT)/peroxisome  proliferator-activated  receptor  g

coactivator  a (PGC1a)  pathway. In contrast to the peripheral  nerves

and the brain  [38-40],  little  is  known about mitochondria  dynamics,

distribution  and  function  in  the  diabetic  spinal  cord.  Mitochondrial

fission  was  increased,  resulting  in  reduction  of  mitochondria  in

neuronal axons and was accompanied by an abnormal distribution of

mitochondria away from the axons towards the cell bodies in the spinal

cord neurons of type 1 diabetic rats and  in ventral spinal cord neurons

in  culture  in  high  glucose  condition  [41].  The  mitochondria  also

appeared  fragmented.  Another  recent  study  showed  reduction  in

mitochondrial mass in the STZ diabetic rat spinal cord [42, 43]. 

More  studies  on  spinal  cord  mitochondria  are  required  to  fully

characterize the role of the spinal cord in diabetic neuropathy.

- Synaptic plasticity  
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In  contrast  to  the  spinal  mitochondria,  synaptic  plasticity  has  been

extensively studied in the last 15 years.

Imaging of the spinal cord of type 1 diabetic rats by BOLD functional

MRI demonstrated a decreased blood-oxygen-level-dependent activity,

indicative  of  changes  in  synapses  between  primary  afferents  and

second order  neurons  [44].  Synaptic  and  dendritic  alterations  were

detected after established diabetes in type 1 diabetic rats with reduced

axonal stabilization and dendritic structures associated with decreased

expression of ILK-PINCH proteins levels in the spinal cord [45]. In STZ

diabetic  rats,  alterations  in  dendritic  spine  morphology  have  been

shown in the dorsal spinal cord and were associated with indices of

neuropathic pain [46]. Morphologic changes were not observed after 1

week of diabetes when hyperglycemia was present without evidence of

pain  [46]. Additionally, evoked responses to brush and low force von

Frey filaments, but not higher force static von Frey stimulation, were

recorded from wide dynamic range (WDR) neurons in STZ diabetic rat

spinal cord while, in the genetic BB/Wor rat model, responses to brush

and von Frey stimulation were not affected, corresponding to their lack

of tactile hypersensitivity [47].

In neuronal cells, RhoA, a member of the small molecular G proteins

family, Ras superfamily (see review [48]), is involved in the guidance

and extension  of  axons  as  well  as  the  development  and  structural
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plasticity of  dendrites and dendritic  spines  [49,  50]. Several  studies

have suggested that RhoA regulates the stability of dendritic branches

and spines in  neurons  [49,  51].  High glucose levels  can induce the

activation  of  RhoA  through  multiple  mechanisms  mediated  by  PKC,

cyclic guanosine monophosphatase (cGMP)-dependent protein kinase

G (PKG) and reactive oxygen species [52]. It was also shown that RhoA

and its downstream kinase, Rho kinase (ROCK) play important roles in

the development and/or maintenance of chronic pain [53, 54] and the

direct  activation of  ROCK is involved in diabetic painful  neuropathy.

The expression of cleaved product of ROCK was increased in rats fed a

high-fructose  diet  [55].  Furthermore,  ROCK  inhibitors  have  shown

efficacy in STZ diabetic rat with attenuation of mechanical allodynia

and thermal responses, and reduction of WDR neuron hyperxactability

[46, 56]. Other intracellular pathways and proteins play a role in the

altered  synaptic  plasticity  in  diabetes.  APPL1,  a  neuronal  adaptor

protein,  affects  synaptic  plasticity,  but  its  defined  role  in  the

pathogenesis  of  painful  diabetic  neuropathy  is  under  investigation.

APPL1 expression was decreased in neurons and microglia of diabetic

rats  that  presented  mechanical  and  thermal  hyperalgesia.  Reduced

APPL1  was  associated  with  activation  of  mTor,  reduction  of  AMPK

phosphorylation and regulation of  dendritic  spines.  APPL1 deficiency

exacerbated  the  hyperalgesia  in  STZ-rats  and  restoration  of  APPL1

levels ameliorated painful diabetic neuropathy [57].
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Sirtuins also play a role in synaptic plasticity and pain.  Sirtuin levels

were  shown  to  be  decreased  along  with  enhanced  expression  of

structural  synaptic  plasticity  (PSD95,  GAP 43  and synaptophysin)  in

spinal  dorsal  horn of  diabetic neuropathic  rats  and db/db mice  [58]

[59].  Activator  of  Sirtuin  1 relieved pain behavior  and inhibited  the

enhanced structural synaptic plasticity in diabetic rats and db/db mice

while silencing Sirtuin 1 induced pain behavior in normal rats [58].

Preclinical work in animal models of diabetes demonstrated alteration

of synaptic plasticity at the spinal cord levels contributing to painful

diabetic neuropathy,  that corroborated with human data, where MRI

imaging  showed  spinal  cord  atrophy  as  an  early  process  only  in

patients with clinically detectable diabetic painful neuropathy [4]. 

- Receptors and ion channels  

Pain, and more particularly here, diabetic painful neuropathy, is linked

to  aberrant,  exaggerated  or  reduced  receptors  and  ion  channels

activity. Preclinical models of painful diabetic neuropathy have allowed

studies of  the pathological  modulation of  ion channels  at the spinal

cord level and the development of therapies.

o Glutamatergic receptors  
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mRNA for  subunits  of  glutamatergic  NMDA and AMPA receptors  are

increased in the spinal cord of diabetic rodents [60]. More specifically,

NMDA R1 subunit levels were increased in the spinal dorsal horn of STZ

diabetic  rats  which  were  hyperalgesic/allodynic  and  magnesium,  a

voltage-dependent  blocker  of  NMDA,  prevented  the  increased  of

phosphorylated NR1 (activation) and thermal and tactile allodynia [16,

61]. Similar results were obtained with the NMDA antagonist MK-801

[62].  Additionally,  higher  expression  of  phosphorylated  spinal  NR2B

subunit  was  accompanied  by  tactile  allodynia  and  increased

nociceptive  response  in  the  formalin  test  in  diabetic  rats  and  was

reduced  by  intrathecal  treatment  with  ifenprodil,  an  atypical  non-

competitive  NMDA R2B  antagonist  [63].  Expression  of  spinal  NMDA

R2B was reduced along with TRPV1 expression in diabetic mice after

treatment  with  Ginger  extracts  and  was  associated  with  partial

alleviation  of  allodynia  and thermal  hyperalgesia  [64].  Activation  of

NMDA R was also demonstrated in prediabetes and type 2 diabetes.

Spinal  NMDA R2 expression and activation were increased in high fat

diet  fed  mice  at  24  weeks  when  tactile  allodynia  and  thermal

hyperalgesia  occurred  [65].  Furthermore,  inhibition  of  NMDA  R2B

alleviated  tactile  allodynia  but  not  thermal  hypoalgesia  in  the

prediabetic mice [65]. In type 2 diabetic mice (db/db), NMDA inhibition

by  intrathecal  MK801  reduced  mechanical  allodynia  along  with

reduction of pERK, pAKT, TNFa and IL6 levels in the spinal cord [66].
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Synaptic  calcium-permeable  AMPA  receptors  are  increased  in  the

spinal  dorsal  neurons  of  diabetic  rats  and  blocking  them  reduced

nociceptive  hypersensitivity  [67].  Increased  metabotropic  glutamate

receptors  (mGluR5)  in  spinal  cord  of  STZ  diabetic  rats  may  also

contribute  to  increased  glutamatergic  input  and  nociceptive

transmission in diabetic neuropathic pain [68]. 

o Adrenergic receptors  

Adrenergic  receptors  are  G  protein-coupled  receptors,  with  2  main

groups,  a and  b,  which  activation  can  generate  analgesic  effect  or

contribute to chronic neuropathic pain [69]. The increased amplitude of

glutamatergic excitatory postsynaptic current in spinal cord slides from

STZ diabetic rats were inhibited by a specific a2-adrenoceptor agonist,

that  concurrently  alleviated  hyperalgesia.  The  electrophysiological

study suggested an up-regulation of  a2-adrenoceptors activity in the

spinal  cord  horn  of  STZ  diabetic  rats  and  a  somewhat  contrastive

antinociceptive effect of the  a2 adrenoceptor agonist that resulted in

attenuation  of  glutamatergic  transmission  in  the  spinal  dorsal  horn

[70].  In  allodynic  db/db  mice,  decreased  levels  of  neuronal  a2

adrenergic receptor protein were detected during period of mechanical

allodynia,  which  was  alleviated  by  systemic  administration  of
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dexmedetomidine,  a  selective  a2  adrenergic  receptor  agonist  [71],

possibly via the Wnt10a/b catenin signaling pathway [72]. 

o Ligand-gated channels

Transient  receptor  potential  (TRP)  channels  transduce  extracellular

stimuli  into  neuronal  responses  through  influx  of  calcium  [73] and

when  dysfunctional,  may  contribute  to  painful  diabetic  neuropathy.

Protein expression of TRP vanilloid 1 (TRPV1) was increased at an early

stage  in  the  spinal  cord,  but  not  the  DRG,  of  STZ  rats  developing

allodynia.  The  increased  TRPV1  levels  were  detected  in  small  size

CGRP  neurons  and  intrathecal  administration  of  TRPV1  antagonists

alleviated  allodynia  [74].  Similarly,  increased  expression  of  TRPV1

receptor  in  the  spinal  cord  of  STZ  diabetic  rats  was  reduced  by

treatment  with  the  antidepressant  mirtazapine  [75].  Recently,  in

contrast, TRPV1 and CGRP expressions were shown to be reduced in

the  spinal  cord  of  diabetic  rats  and  further  decreased  with

administration  of  Ropivacaine,  a  commonly  used clinical  anesthetic,

dramatically affecting NCV of the sciatic nerve [76], suggesting greater

precaution when planning surgery for patients with diabetes.

Spinal  TRP ankyrin 1 (A1) channels, on central terminals of  primary

afferent  nerve  fibers,  were  shown  to  play  an  important  role  in

maintenance  of  mechanical  hypersensitivity  and  contribute  to

cutaneous neurogenic inflammation while cutaneous TRPA1 channels
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contributed  to  mechanical  hypersensitivity  in  STZ  rats  [77,  78].

Methylglyoxal, a reactive glucose metabolite, was reported to facilitate

painful diabetic neuropathy via sensitization of TRPA1-adenylyl cyclase

type 1 (AC1) signaling cascade in type 2 diabetic db/db mice [79].

o Voltage-gated sodium channels

Voltage-gated sodium channels (Nav) play a critical role in controlling

cellular  excitability  and  have  gain  interest  for  their  role  in  painful

diabetic neuropathy particularly Nav 1.3, 1.7 and 1.8 among the 10

sodium channel a subunits (Nav1.1-1.9 and NavX).

Intrathecal administration of Nav1.7 and Nav1.8 antagonists alleviated

thermal hyperalgesia in diabetic mice but not in control mice, although

changes  in  the  spinal  sodium channels  proteins  were  not  different

between control and diabetic mice [80].

o Voltage-gated calcium channels 

Voltage-gated calcium channels of L, N and T type are widely studied

for  their  role  in  neuropathic  pain,  with  the  T-type  channel  Cav3.2

particularly  studied  in  painful  diabetic  neuropathy,  mainly  in  DRG

sensory  neurons  [81].   Limited  numbers  of  studies  have  indirectly

shown a role of dorsal horn T-channels in neuropathic pain responses

with intrathecal administrations of T-channel blockers rapidly reducing
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neural  excitability  and pain responses  [82,  83].  Only  one study has

demonstrated that specific inhibition of Cav3.2 T channels in superficial

dorsal  horn  neurons  suppressed  spontaneous  excitatory  synaptic

transmission in diabetic rats to a greater extent than in healthy age-

matched animals [84].

Aberrant regulation of nociceptive receptors and ion channels in the

dorsal horn of diabetic rats contribute to increased pronociception via

ion channels in sensory neurons. Modulation of spinal receptors and

channels may lead to novel therapies for painful diabetic neuropathy.

- Oxidative stress  

Reactive oxygen species (ROS) are produced by physiological functions

and scavenged by enzymatic and non-enzymatic antioxidant system.

In  diabetes,  chronic  hyperglycemia  leads  to  an  imbalance  of  the

oxidative  status  [85] and  increased  oxidative  stress  occurs  in

peripheral and central tissues [86]. Several studies have demonstrated

the role that oxidative stress plays at the level of the spinal cord to

contribute to diabetic neuropathic pain, mainly by demonstrating the

beneficial effect of antioxidants.

Poly(ADP-ribose)Polymerase-1  (PARP)  is  an  nuclear  enzyme  that

cleaves  nicotinamide  adenine  dinucleotide  (NAD+),  contributes  to
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NAD+ deletion and energy failure,  impaired signal  transduction and

apoptosis  [87].  Enhanced  activation  of  PARP  was  demonstrated  in

diabetic rat spinal cord, with increased nitrotyrosine levels in neurons,

oligodendrocytes  and  astrocytes.  A  PARP  inhibitor  prevented  sciatic

nerve  and  spinal  PARP  activation,  nitrotyrosine  accumulation  and

ameliorated the neuropathy in the STZ rats [33].

Curcumin is a natural  polyphenol  with multiple properties,  the most

recognized being antioxidant and antiinflammatory [88]. Curcumin was

shown to ameliorate diabetic neuropathy by suppression of oxidative

stress in brain and sciatic nerves of diabetic rats [89] and recently was

shown to reduce oxidative stress markers in the spinal cord of STZ-

diabetic  rats  via  inhibition  of  the  spinal   NADPH  oxidases  [90].

Consistently with its antiinflammatory properties, curcumin was shown

to reduce expression of TNFa and TNFa receptor 1 in the dorsal horn of

STZ diabetic rats [91].

Increased oxidative stress damage and neuronal activation (Fos) in the

spinal  cord  neurons  were  normalized  by  10  weeks  of  preventative

treatment  of  STZ  rats  with  an  antioxidant  (epigallocatechin-gallate)

[92],  by  mexiletine,  a  sodium  channel  blocker  with  antioxidative

properties [93] and by treatment with ozone and/or insulin [94].
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Increased  oxidative  stress  has  been  demonstrated  in  diabetic

neuropathy  and  the  ability  to  scavenge  ROS  ameliorates  diabetic

neuropathy in rodents.

- Serotonin/noradrenaline reuptake inhibitors   

Among the currently 4 FDA approved drugs to improve painful diabetic

polyneuropathy [95], 2 are serotonin/noradrenaline reuptake inhibitors

(SSRI/SNRI),  duloxetine  and  fluoxetine,  although  fluoxetine  is

supported  by  only  a  small  study.  Duloxetine  was  the  first  SSRI

prescription  drug  approved  by  FDA  for  the  management  of  pain

associated  with  diabetic  neuropathy  [96] and  is  the  most

recommended  and  prescribed  treatment  for  painful  diabetic

neuropathy  while  studies  continued  to  define  its  mechanism(s)  of

action.  Duloxetine  exerted  its  anti-allodynic  effect  in  diabetic  rats

predominantly via indirect activation of 5HT2A receptors in the spinal

cord  [97]. Duloxetine is a balanced serotonin/noradrenaline reuptake

inhibitor  and  its  efficacy  may  also  depend  on  modulation  of

noradrenaline, as it reduced noradrenergic signals in the spinal cord by

inhibiting  the  norepinephrine  transporters  [98].  Other  mechanisms

may play a role in the analgesic effect of duloxetine. In diabetic mice,

duloxetine  treatment  for  4  weeks  alleviated  allodynia  and  thermal

hyperalgesia and this was associated with reduction of microglia and
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astrocytes  expression  [99],  and  reduced  overexpression  of  TLR4-

MYd88 dependent pathway  [100]. Other antidepressants, milnacipan

(SNRI),  paroxetine  and  fluvoxamine  (SSRI)  [101] and  ammoxetine

(SNRI)  [102] alleviated allodynia in STZ diabetic rats after intrathecal

administration.  Despite the influence of serotonin in pain modulation,

SSRIs are less effective than tricyclic antidepressants. 5HT2A receptor

density was not affected in the spinal cord of diabetic rats  [97, 103]

but the PDZ domains of PSD-95 that interacts with 5HT2A receptors

was upregulated. This interaction PDZ/5HT2AR might contribute to the

resistance of SSRI-induced analgesia in painful diabetic neuropathy, as

disrupting this interaction enhanced fluoxetine antihyperalgesic effect

[103].

Aberrant regulation of nociceptive receptors and ion channels in the

dorsal horn of diabetic rats contribute to increased pronociception via

ion channels in sensory neurons. Modulation of spinal receptors and

channels may lead to novel therapies for painful diabetic neuropathy.

Spinal disinhibition

Depending  on  the  physiological  and  pathophysiological  state,

processing  in  the  spinal  cord  dorsal  horn  may  dampen  down  or

enhance output from nociceptive projection neurons. Several possible

mechanisms  of  spinally  mediated  enhancement  of  ascending

nociceptive  drive  including  wind-up,  long-term  potentiation,  glial
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inflammation,  altered  descending  pain  modulation  and  spinal

disinhibition  have  been  implicated  in  centrally  mediated  pain.  The

following section will  focus on the accumulating evidence suggesting

that spinal disinhibition plays an important role in pain generation in

diabetic neuropathy. 

The major inhibitor transmitters in the spinal cord are γ-aminobutyric

acid  (GABA)  and  glycine.  GABA  acts  via  GABA-A  and  GABA-B  to

produce inhibition either at pre-synaptic terminals, thereby reducing

transmitter release (i.e. pre-synaptic inhibition) or on the post-synaptic

dendrites (i.e post-synaptic inhibition). GABA-A mediated inhibition is

ionotropic  resulting from the passage of ions through voltage gated

channels  [104]. The main ion that permeates the pore of the GABA-A

receptor is chloride (Cl-), the concentration of which is much greater in

the  extracellular  space.  The  polarity  of  the  GABA-A  response  is

determined largely by the intracellular Cl-  concentration. In the post-

developmental nervous system, the low intracellular Cl- concentration

is controlled by the potassium (K+)/chloride (Cl-) co-transporter KCC2

which extrudes intracellular Cl- [105]. Following GABA-A activation, Cl-

enters the cell according to its electrochemical concentration gradient

causing  inhibitory  post-synaptic  potentials  (IPSP)  leading  to  phasic

hyperpolarization  [104]. It is increasingly recognized that subtypes of

GABA-A  also  occur  at  sites  other  than  the  synapse.  These
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extrasynaptic GABA-A receptors, which are activated by GABA derived

from  glial  cells  and  ‘circulating’  GABA  [106],  produce  tonic

hyperpolarisation and consequently tonic inhibition of spinal cord cells

[107, 108] and primary afferents [109].

GABA-B mediated inhibition is, in contrast, metabotropic. The GABA-B

receptor  is  G-protein  coupled  and  the  binding  of  GABA  triggers  a

second messenger cascade  [110, 111]. In the post-synaptic cell, this

results  in  activation  of  G  protein-activated  inwardly-rectifying  K+

(GIRK) channels which are highly co-localized with GABA-B receptors

[110-112].  The  resulting  increase  in  K+  conductance  promotes  K+

efflux  from  the  cell  and  hyperpolarisation.  In  contrast  to  the  fast

inhibitory signalling mediated by GABA-A receptors, GABA-B receptor

mediated hyperpolarisation is slow and prolonged [111]. 

Inhibitory interneurons in the spinal cord are intimately associated with

nociceptive circuits [113]. The effect of this inhibition is to reduce the

output  of  projection  neurons  in  response  to  noxious  peripheral

stimulation. Accordingly, in normal rodents, spinal application of GABA

or glycine antagonists result in behavioral indices of hypersensitivity

and pain to both noxious and innocuous tactile stimulation [114-117].

Conversely,  enhancement  of  spinal  GABA  elevates  nociceptive

thresholds  and  reverses  behavioral  indices  of  pain  in  rodent  pain

models  [118-121].  A  reduction  in  this  tonic  GABAergic/glycinergic
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inhibition  of  ascending  nociceptive  transmission,  a  phenomenon

termed disinhibition, is a putative mechanism of central sensitization

and  could  potentially  result  from  loss  of  inhibitory  interneurons  or

attenuation of inhibitory neurotransmitter storage/release  [122, 123].

Indeed, a reduction in GABAergic tone in the dorsal horn of the spinal

cord has been demonstrated in models of peripheral nerve injury [124,

125]. However, this is not the case in the spinal cord of diabetic rats

exhibiting behavioral indices of pain. In the STZ rat model of type 1

diabetes, concentrations of GABA in the spinal cord are increased in

both basal state as well as evoked responses in the formalin-induced

pain model.  In contrast,  in the same study,  levels  of  the excitatory

neurotransmitter  glutamate  are  diminished  [126].  Given  that  spinal

cord  GABA-A  receptor  protein  levels  are  not  significantly  altered  in

STZ-rats  [127] the  paradoxical  co-existence of  increased GABA and

increased  nociceptive  drive  suggest  that  there  is  impaired/altered

post-synaptic responsiveness to GABA. 

Alterations  in  the  post-synaptic  responsiveness  to  GABA  were  first

described in a peripheral  nerve injury model of pain in non-diabetic

rats [128]. Increasing evidence indicates that the dysfunctional spinal

inhibitory  processing  seen  in  STZ-rats  results  from  a  similar

mechanism. Allodynia and other behavioral indices of pain in STZ-rats

are  associated  with  down-regulation  of  post-synaptic  KCC2  in  the
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dorsal, although not ventral, spinal cord [127, 129]. This causes GABA,

acting via spinal GABA-A receptors, to become pro-nociceptive rather

than  inhibitory.  Accordingly,  spinal  GABA-A  blockade,  which  under

normal circumstances is pro-nociceptive, reverses allodynia in STZ-rats

[127]. The mechanism, like that seen in the peripheral  nerve injury

model,  also involves BDNF. Spinal administration of  BDNF in normal

rats  phenocopies  the  findings  in  STZ-rats  with  the  emergence  of

allodynia  and  reduced  spinal  KCC2  expression  [129].  Furthermore,

sequestration of spinal BDNF in STZ-rats reverses allodynia [129]. The

source  of  the  BDNF  in  STZ-rats  is  currently  not  clear,  although,

interestingly, BDNF expression is elevated in the dorsal root ganglia of

STZ-rats  raising the  possibility  that  it  may derive  from the primary

afferent fibers [130]. 

Inhibitory  function  in  the  spinal  cord  can  be  assessed  using  rate-

dependent depression (RDD) of the Hoffmann-reflex (H-reflex)  [131].

The  H-reflex  is  a  trans-spinal  reflex  that  is  elicited  by  electrical

stimulation of a mixed motor and sensory nerve trunk.  The H-reflex

can be measured in mammalian species including rodents and humans

using  a  simple  modification  of  traditional  nerve  conduction  studies

[132-135].  When a second H-wave is  elicited with  an inter-stimulus

interval  less  than  2s  following  the  initial  stimulation,  the  H-wave
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amplitude decreases relative to the first response. The measure of the

change in amplitude is referred to as H-reflex RDD - also known as

paired-pulse depression or frequency-dependent depression [136-141].

The  plausibility  of  RDD  as  a  mechanistic  biomarker  of  loss  of

GABAergic  inhibition  due  to  GABA  reversal,  spinal  disinhibition  and

resultant pain-related phenomena in painful diabetic neuropathy has

been  demonstrated  in  a  number  of  studies  in  rodents.  STZ  rats

exhibiting mechanical hypersensitivity/allodynia and reduced KCC2 in

the dorsal horn show attenuation of RDD  [127].  Furthermore, spinal

delivery  of  either  the  KCC2  blocker  DIOA  or  BDNF  to  control  rats,

interventions that mechanistically recapitulate the spinal disinhibition

phenotype in STZ rats, are also associated with impaired RDD  [127,

129].  In  keeping  with  the  underlying  mechanism of  GABA reversal,

both the behavioral indices of pain and loss of RDD in all these models

are reversed by spinal administration of GABA-A antagonists [127] - a

pharmacological  intervention  that  both  induces  hypersensitivity  and

impairs RDD in control  rats. RDD and allodynia in STZ rats are also

reversed  by  the  carbonic  anhydrase  inhibitor  acetazolamide,  which

mitigates  the  effects  of  reduced  KCC2  and  Cl-  dysregulation  by

decreasing bicarbonate efflux through GABA-A receptors [142].
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Spinal disinhibition and loss of RDD in painful diabetic neuropathy are

not  just  dependent  on  synaptic  GABA-A.  For  example,  altered

responsiveness of the  a5 subunit-containing GABA-A receptor is also

implicated in allodynia and impaired RDD in STZ rats  [143]. Normal

levels of RDD can also occur in the presence of GABA-A blockade. As

we have already discussed, spinal disinhibition and impaired RDD are

reversed by GABA-A blocking drugs in normal rats treated with KCC2

antagonist DOIA or BDNF as well as in diabetic rats [127]. This implies

that other inhibitory mechanisms can also contribute to RDD in the

spinal cord of STZ rats. Further evidence for this is revealed in studies

investigating the time course of RDD and spinal disinhibition in STZ-

rats  which  indicate  that  the  development  of  spinal  disinhibition  in

diabetes is a dynamic time-dependent process involving GABA-A and

GABA-B  mediated  responses  [142].  Impaired  RDD  due  to  GABA-A

reversal  is  initially  compensated  by  GABA-B  mediated  inhibition.

However, over time, due to increasing GABA-A reversal or attenuation

of  GABA-B  inhibitory  function,  impaired  RDD  and  the  full  spinal

disinhibition  phenotype  becomes  evident.  The  role  of  glycinergic

inhibition in spinal disinhibition in diabetic rats has not been studied

extensively although glycine release in the spinal cord of STZ rats are

mildly reduced [126].
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The disclosure of spinal disinhibition as a putative pain mechanism in

STZ rats raises the question as to whether similar mechanisms occur in

clinical  populations  with  painful  diabetic  neuropathy.  This  is  of

potential clinical importance as it may lead to mechanistically targeted

drug  discovery  or  individualized  therapy  in  patient  populations.

However,  this  would  require  identification  of  populations  or  sub-

populations of patients with painful diabetic neuropathy in whom spinal

disinhibition is a major pain mechanism. Currently it is not possible to

measure levels of dorsal horn GABA or KCC2 in humans. However, RDD

is conserved across mammalian species including humans raising the

possibility  that  results  obtained  in  rodents  may  be  translated  to

diabetic patients.

To  assess  the  translational  potential  of  the  pre-clinical  findings,  we

measured  the  magnitude  of  H-reflex  RDD  in  patients  with  type  1

diabetes  and  painful  or  painless  neuropathy  [144].  In  a  sub-set  of

patients  with  painful  diabetic  neuropathy,  there  was  loss  of  RDD

compared to both healthy controls and patients with painless diabetic

neuropathy. Importantly, the impairment of RDD was independent of

measures of both large and small fiber neuropathy, indicating that is

not merely a reflection of severity of neuropathy. Loss of RDD was also

independent of glycemic control. These findings support the hypothesis

that  impaired RDD may serve  as  clinical  biomarker  in  a  sub-set  of
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patients where pain arises primarily from spinal disinhibition. We have

also recently demonstrated that impaired RDD is also seen in patients

with  type  2  diabetes  and  painful  neuropathy  (unpublished

observations). Like the findings in type 1 diabetes, not all subjects with

type  2  diabetes  and  neuropathic  pain  demonstrated  impairment  of

RDD.  Approximately  60%  of  patients  with  diabetes  will  develop

neuropathy,  30% of  those with neuropathy will  develop neuropathic

pain  and,  from our  exploratory  study,  40% of  those will  show RDD

deficits. In contrast, diabetic rodents exhibit much more homogeneous

neuropathy,  neuropathic  pain  and  impaired  RDD phenotypes  [131].

Whilst this may reflect a more complex aetiopathogenesis of painful

diabetic  neuropathy  in  humans,  it  is  also  plausible  that  this

heterogeneity can be used to enable definition of abnormal values and

predict  therapeutic  response  to  medications  that  target  spinal

inhibition,  one  of  these  drugs  being  duloxetine.  The  selective

serotonin-norepinephrine re-uptake inhibitor duloxetine, used to treat

painful diabetic neuropathy  [145], alleviates the tactile allodynia and

also restores RDD in STZ-rats in a spinal 5HT2A receptor dependent

manner  [97,  144] and  diabetic  patients  with  impaired  spinal

disinhibition seemed to find duloxetine to be an efficacious treatment

for their neuropathic pain [146].
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To summarize, there is accumulating pre-clinical evidence that loss of

RDD  and  indices  of  neuropathic  pain  share  a  common  pathogenic

mechanism involving spinal KCC2 depletion and disinhibition caused by

inversion  of  GABA-A  receptor  function.  Although  the  exact  neural

circuitry  has yet to be defined, both RDD and behavioral  indices of

neuropathic  pain  also  exhibit  common  responses  to  spinally  acting

analgesics.  RDD  status,  which  is  easily  measurable  in  clinical

populations, may be a viable biomarker for identifying the dominant

generator site in individual patients with painful diabetic neuropathy

and  for  predicting  efficacy  of  therapeutic  strategies  that  alleviate

spinal disinhibition.

Spinal cord stimulation

Spinal cord stimulation (SCS) is proposed to relieve chronic intractable

pain  by  stimulating  nerve  fibers  in  the  spinal  cord.  The  resulting

impulses in the fibers may inhibit the conduction of pain signals to the

brain, according to the pain gate theory proposed by Melzack and Wall

[147] and block the sensation of pain. In general, SCS is part of an

overall  treatment  strategy  and  is  used  only  after  the  more

conservative  treatments  have  failed  (review  in  [148]).  SCS  is  an

effective  therapy  for  different  chronic  painful  conditions  that  has

gained interest for painful  peripheral  diabetic neuropathy within the

last  15  years.  In  addition  to  the  pain  gate  theory,  several  other
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mechanisms have been proposed for the beneficial effect of  SCS in

diabetes (review in [149]). SCS may produce peripheral vasodilatation

via stimulation of the sympathetic system and release of neurotrophic

factors  [150, 151], may involve small diameter nociceptive afferents

expressing  TRPV1  receptor  which  stimulation  induces  release  of

calcitonin  gene-related  peptide  (CGRP)  and  nitric  oxide  [152] and

activation of ERK [153]. Vasodilatation was observed after SCS in STZ

diabetic rats, however hyperglycemic conditions attenuated the blood

flow  responses  to  SCS  [154],  possibly  due  to  the  decreased  CGRP

levels [155, 156], or reduced TRPV1 containing C fibers [152]. Another

mechanism may involve alteration of spinal neurochemistry, such as

increased GABA and acethylcholine after SCS resulting in activation of

inhibitory interneurons with reduction of allodynia in neuropathic pain

models [157, 158]. This plausible mechanism has not been studied in

diabetic  models  and may not  apply  to  efficacy  of  SCS in  diabetes.

GABA  has  been  shown  to  be  excitatory  in  diabetic  rats  due  to

impairment in  spinal  KCC2,  resulting  in  spinal  inhibitory  dysfunction

(see Spinal disinhibition section above and [126, 127, 146])

Mechanisms by which SCS improves neuropathic pain, particularly in

diabetes,  are  not  clearly  understood.  However,  studies  in  diabetic

patients  have  shown  efficacy.  Neuropathic  pain  was  significantly

reduced after 6 months of SCS in diabetic patients with chronic pain in

their lower limbs that was not responsive to conventional treatment
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and this was not associated with changes in microcirculatory perfusion

[159]. SCS showed pain relief of more than 50% in 50-77% of patients

[160, 161] and up to 5 years [162]. 

Optimization  of  SCS  parameters  has  shown  improvement  over

conventional  SCS  (30-120Hz).  One  of  these  optimization  is  High

Frequency SCS (150-500 Hz).  In a preclinical rodent model of type 1

diabetes, alleviation of mechanical hypersensitivity was independent of

the frequency of stimulation applied [163]. However, it was shown that

high frequency SCS demonstrated delayed effect after cessation of SCS

on mechanical allodynia in STZ diabetic rats [164].

Recently, another paradigm of stimulation has been developed, burst

SCS (five pulses at 500 Hz, delivered 40 times per second). Burst SCS

reduced pain further than tonic stimulation  (30-120 Hz) with reduced

local  paresthesia  [165].  58% of  the patients  experienced significant

additional pain reduction [166].

SCS has improved in the last 15 years with High Frequency and burst

protocols applied to diabetes-induced neuropathic pain not responding

to current treatments. However, little is known in diabetic conditions

and the  mechanisms by which  SCS is  effective  in  diabetic  patients

remain unknown. Further studies are needed to understand how SCS
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works in diabetes and to predict which patients may benefit from SCS,

possibly patients with evidence of spinal disinhibition detected by RDD.

Summary/Conclusions

It is clear, particularly from the preclinical rodent studies, that diabetes

is a multifactorial disease. Many mechanisms take place in the spinal

cord, contributing to neuropathy and painful neuropathy that can be

alleviated in animal models by a multitude of drugs. However, little has

been translated to human with many failed clinical trials. Nevertheless,

progress  has  been  made  with  spinal  cord  stimulation  to  benefit

intractable pain, 4 FDA-approved drugs are now available and a new

method of detection of pain generation site may facilitate physicians’

prescription  ability  of  the  current  drugs.  The  detection  of  pain

generation  site  by  RDD may  also  enhance  clinical  trial  design  and

patient selection for central versus peripheral effectors, and therefore

contribute to more successful clinical trials.
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