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ABSTRACT OF THE DISSERTATION 

 

Neurocomputational mechanisms of timing, temporal context, and working memory 

 

by 

 

Michael James Seay 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2022 

Professor Dean Buonomano, Chair 

 

Humans effortlessly parse continuous experience based on its temporal 

structure, allowing us to recognize speech, detect regularity in sequences of events, 

and predict when things will happen. Yet it remains poorly understood how the nervous 

system accomplishes this multifaceted effort. In the current dissertation, I first review 

organisms’ abilities to sense timing on the scale of tens to hundreds of milliseconds, as 

well as evidence of sensory neurons that respond selectively based on temporal 

features or respond differently based on recent temporal context. I propose that 

neuronal selectivity to timing results from time-varying neural and synaptic properties, 

most notably short-term synaptic plasticity (STP), and I review supporting evidence. 

Next, I present a computational model that explains why different sensory neurons show 

different patterns of sensitivity to temporal context. Like real neurons observed in mice, 

model neuron responses either decrease, remain stable, or increase over the course of 
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repeated stimulation on short timescales, an effect that relies on the model’s usage of 

experimentally-observed STP at synapses with two distinct types of inhibitory 

interneurons. I test and confirm model predictions by analyzing the responses of mouse 

auditory neurons to trains of repeated pure tones. Subsequently, I shift my focus toward 

a potential mechanism of internally-generated timing on the circa-second scale: 

persistent activity states. I build on recent computational work by showing that counter-

intuitive “cross-homeostatic” plasticity rules are able to configure neural networks to 

exhibit stable persistent activity states in a large, sparsely-connected spiking model. 

Importantly, I show that when cross-homeostatic plasticity operates using only local 

signals, it fails unless counterbalanced by classical homeostatic plasticity. Finally, I test 

the idea that timing is computationally linked with working memory by performing 

behavioral experiments in humans. To do so, I employ two tasks that have the same 

stimulus structure but differ in whether timing or working memory is required to respond 

correctly. I find that in each task participants learn about and use the other task-

irrelevant component, which is consistent with the hypothesis that in some cases 

working memory and timing information are multiplexed in a time-varying format 

because of the importance of predicting when working memory will be used.  
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Abstract 

The ability to detect time intervals and temporal patterns is critical to some of the most 

fundamental computations the brain performs, including the ability to communicate and 

appraise a dynamically changing environment. Many of these computations take place 

on the scale of tens to hundreds of milliseconds. Electrophysiological evidence shows 

that sensory responses of some neurons are selective to the temporal features of 

driving stimuli including duration, interval, rate, or order. More generally neural 

responses to simple stimuli can be modulated based on the recent temporal context 

within a sequence of stimuli. Because the time constants of many time-varying neural 

and synaptic properties, including short-term synaptic plasticity (STP), are also in the 

range of tens to hundreds of milliseconds, they are strong candidate mechanisms 

underlying selectivity to temporal features and temporal context. Neurophysiological 

studies indicate that STP is indeed one of the mechanisms that contributes to temporal 

selectivity, and computational models demonstrate that neurons embedded in local 

microcircuits can exhibit temporal selectivity if their synapses undergo STP. Converging 
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evidence suggests that some forms of temporal selectivity emerge from dynamic 

changes in the balance of excitation and inhibition imposed by STP. 
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Chapter 1: Neurocomputational mechanisms for sensory timing and temporal 

contextual processing 

 
“How would you describe time?” 
The Big Business Man smiled. “Time,” he said, “is what keeps everything from 

happening at once.” 
“Very clever,” said the Chemist, laughing. 
 
Ray Cummings, “The Girl in the Golden Atom,” 1919 

 

1.1 The challenge of time 

Natural events proceed over time. When one listens to the radio over the course 

of several minutes or observes the growth of a plant over the course of a week, one 

engages stimuli that unfold and change from moment to moment. Yet, from the point of 

view of an organism, sequential changes in external stimuli are embedded in a 

continuously evolving stream of sensory input. In this sense, the temporal structure of 

events presents both a challenge and a valuable source of information. For example, 

the sub-millisecond difference between a sound’s arrival to the left and right ear can be 

used to localize an approaching predator, and the daily change in light that 

accompanies the movement of the sun can be used to calibrate when to gather food. 

But to capitalize on the information contained in the temporal structure of external 

inputs, animals must have adapted biological mechanisms to do so. 

As the previous examples illustrate, animals have evolved mechanisms to tell 

time on scales spanning more than ten orders of magnitude[1], but it is on the scale of 

tens-to-hundreds of milliseconds that our ability to tell time and extract temporal 

information is at its most sophisticated. Within this range, we are not only able to identify 

simple temporal intervals but extract higher-order temporal patterns. Speech 
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comprehension, for example, requires extraction of a hierarchy of temporal information: 

from the voice-onset time of syllables (which contributes to the /ba/ versus /pa/ 

distinction, for instance), to phrasal boundaries, to prosody[2, 3]. Indeed, speech can be 

recognized even when spectral information is impoverished but temporal structure is 

preserved, meaning that the temporal envelope alone provides a significant amount of 

information for speech recognition[4, 5]. 

 Importantly, even on the subsecond scale, timing is not a unitary problem, but 

encompasses a range of interrelated problems necessary for sensorimotor processing, 

learning, and cognition[6-8]. In the current chapter, I propose that temporal selectivity is 

an intrinsic property of neural circuits that relies on time-varying synaptic and neuronal 

properties, and I highlight short-term synaptic plasticity as one of the key mechanisms in 

the emergence of temporal selectivity. In the following chapters, I first focus on 

mechanisms of sensory temporal selectivity at the tens-to-hundreds of milliseconds 

scale, but then move on to the circa-second scale by focusing on mechanisms of 

internally-generated timing and its relationship with other cognitive phenomena. 

Specifically, I focus on the neurocomputational mechanisms underlying three distinct 

empirical phenomena: 1) short-term sensory adaptation in mouse auditory cortex, 2) the 

emergence of stable persistent activity states in excitatory-inhibitory networks, and 3) 

the relationship between interval timing and working memory. 

1.2 Evolved timing behaviors 

To approach the goal of understanding how the nervous system extracts 

information from the temporal structure of sensory inputs, we should first look to the 

natural world. Scientists and naturalists have observed a plethora of naturally-occurring 
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timing behaviors on the scale of tens-to-hundreds of milliseconds. These behaviors 

provide an opportunity to understand the ethological role of sensory timing and an 

empirical dataset for neuroscientists to study evolved solutions for overcoming the 

challenge of timing. 

In the auditory modality, timing information is particularly prominent. Many 

species of animals use acoustic signals for communication, courtship, territoriality, 

social affiliation, and conspecific recognition[9, 10]. Acoustic communication relies not 

only on spectral signatures (e.g., pitch) but on temporal features such as interval, 

duration, rate, and overall temporal structure. For example, cicadas and grasshoppers 

produce songs that consist of rhythmic sequences of sound pulses, and they use the 

temporal pattern of acoustical pulses to recognize conspecifics[11, 12]. In courtship, 

female crickets exhibit phonotaxis, a behavior characterized by walking or flying toward 

singing males, and phonotaxis is strongest at pulse durations and intervals that are 

within the range of the male calling song parameters[13, 14]. Similarly, some frog 

species use the duration and interval of acoustic pulses to differentiate between 

conspecific and heterospecific calls[12]. Changing the interval between a single pair of 

pulses in a male frog’s ten-pulse mating call significantly decreases the percentage of 

female frogs showing attraction[12]. 

Timing behaviors also extend beyond the auditory modality, and they do not 

always serve a communicative function. A non-auditory example of sensory timing 

comes from weakly electric mormyrid fish that utilize intervals between successive 

electric organ discharges[15]. Mormyrids produce patterns of eight to twelve electric 

pulses called scallops that identify the sender and play a role in courtship and 
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aggression behaviors[16]. And one of the best studied examples of sensory timing for a 

non-communicative function is echolocation in bats. Specifically, bats use the intervals 

between emitted acoustic pulses and their echo to navigate their environments and 

determine the position of potential prey[17]. 

Many forms of temporal processing rely on experience, highlighting the role of 

learning in sensory timing. Rodents, for example, can be trained to make temporal 

judgments as to whether intervals are short or long relative to each other[18, 19]. And 

humans are capable of robust temporal perceptual learning, which is generally reported 

to be interval-specific. For example, repeated interval discrimination of an auditory 

interval of 100 ms leads to improved discrimination around this interval, but not to 

shorter or longer intervals[20, 21]. 

The above examples establish that animals extract information from the temporal 

features of sensory events. Thus, they must possess some internal mechanisms for 

processing temporal features of sensory input streams. In the next section, I will review 

evidence of neurons that respond selectively to features such as interval and duration—

i.e., temporally-selective neurons. 

1.3 Temporal feature selectivity in sensory neurons 

Neurons that are tuned to temporal features such as interval, duration, pulse 

rate, and temporal structure of vocalizations have been reported in multiple species [22-

26] (Fig. 1.1). Timing-sensitive neurons have often been discovered through inquiry into 

the neural correlates of behaviors discussed in the previous section. For example, 

phonotactic tuning in female crickets to parametrically manipulated calling songs is 

mirrored in the tuning of their sensory neurons’ firing rates to the same stimuli[14]. And 
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neurons in the midbrain of the weakly electric mormyrid fish have been found to be 

tuned to pulse rate, spiking with low probability for pulse rates of 10 or 100 Hz but with 

high probability for a rate of 20 Hz [27-29]. (Fig. 1.1A). In vivo intracellular recordings 

have shown that these neurons’ pulse rate-sensitivity allows them to be sensitive to the 

precise temporal structure of scallops, discriminating natural scallops from time-

reversed, randomized, and jittered sequences[27, 29]. 

In addition to interval and rate tuning, many animals also possess neurons that 

are tuned to the duration of stimuli. Elegant examples of duration-tuned neurons come 

from studies in the brainstem of echolocating bats. Inferior colliculus neurons in 

echolocating bats are tuned to the duration of the high-frequency pulses that they emit 

[30-32], and the preferred durations match the range of durations used in echolocation 

signals[32-34]. More generally, duration-tuned neurons have been found in the central 

auditory systems of frogs[35-37], rodents[38, 39], chinchillas[40], and cats[41]. Duration-

sensitive neurons have also been observed in the visual modality: off responses 

recorded from neurons in the cat visual cortex can be tuned to the duration of a 

stationary bar of light[42] (Fig. 1.1B). The presence of duration-tuned neurons across 

species and sensory modalities suggests that duration selectivity is a general property 

of sensory systems. 

An important question pertaining to the temporally-tuned neuronal responses 

mentioned above is whether they reflect innate hardwired circuits, or rather emerge in 

an experience-dependent manner as a result of learning and plasticity. It seems likely 

that in some animals temporal selectivity reflects, at least in part, hardwired circuits. But  
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Figure 1.1 Temporal-selective neurons across species and modalities. 
A. Interval-sensitive neuron in the midbrain of an electric fish. Voltage traces were recorded during the 
presentation of trains of electrical pulses at intervals of 100 ms (left), 50 ms (middle) or 10 ms (right). 
Rows represent three separate repetitions of each train. At right, the amplitude of the postsynaptic 
potentials (PSPs) and number of spikes elicited by trains at each interval is plotted, demonstrating that 
the recorded neuron was tuned to pulses delivered at intervals of 50 ms. Reproduced from [27]. B. 
Duration-tuned neuron in cat visual cortex. The recorded neuron produced off responses to a static bar of 
different durations, with maximal response to a duration of 400 ms. Of 174 neurons, ~30% responded 
differentially to duration, and 3% showed sharp duration tuning curves. Reproduced from [42]. C. 
Complex spectrotemporal pattern-selectivity of a single neuron in the lateral magnocellular nucleus of the 
anterior neostriatum in an adult zebra finch. Response to the bird’s own song (BOS) in forward (left) and 
reversed (right) order. Below each spike plot, the song’s spectrogram and waveform are shown. Adapted 
from [43]. D. Interval-sensitive neuron in the auditory cortex of a rat. Spike raster (left) in response to five 
different stimuli, each composed of a 200-ms 3-kHz tone followed by a 50-ms 7-kHz tone (the recorded 
neuron’s characteristic frequency; CF) with different stimulus-onset asynchrony (SOA). Numbers 
represent the facilitation index. Graph (right) shows the average interval-tuning curve. The rat had been 
trained to detect an inter-tone onset interval of 300 ms (middle row on left). Reproduced from [44]. 
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in other cases, it is clear that temporal neuronal selectivity emerges in an experience-

dependent fashion (and as mentioned previously, many animals can learn to 

discriminate intervals and durations). One of the clearest examples of experience-

dependent acquisition of complex stimulus selectivity comes from songbirds. Like 

speech learning, song acquisition occurs early in a songbird’s life, and is critically 

dependent on auditory experience and feedback[45]. Neurons in multiple areas of the 

adult male finch brain are strongly selective for both spectral and temporal properties of 

birdsong; they respond more robustly to the bird’s own song (BOS) than to songs of 

conspecific individuals, and they respond less well to the BOS if it is played in 

reverse[43, 46-48] (Fig. 1.1C). 

Such experience-dependent emergence of temporally selective neurons has also 

been observed in mammals exposed to or trained on stimuli defined by interval, 

duration, or order of the underlying tones[44, 49-51]. For example, in one study rats 

were trained on a go/no-go task with a target stimulus composed of a 3 kHz tone 

followed by a 7 kHz tone with an inter-onset interval of 300 ms[44]. Recordings in 

primary auditory cortex revealed a substantial number of neurons that responded 

optimally at this interval, indicating that learning was accompanied by the formation of 

auditory neurons that were tuned to the spectrotemporal features of the target stimulus 

(Fig. 1.1D). 

Tuning to spatial features is among the most widely studied aspects of sensory 

systems—ranging from selectivity to specific orientations of visual lines to selectivity to 

the frequency of tones (which I consider “spatial” because of the tonotopic organization 

of the cochlea). The studies discussed above suggest that selectivity to temporal 
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features—e.g., duration, interval, rate, and order of sensory events—is also prevalent 

among sensory neurons. 

1.4 Temporal context 

Although the previous examples illustrate that nervous systems are capable of 

representing specific temporal features in specialized or learned stimuli, they do not 

address general capacities for parsing sequences of sensory events based on their 

temporal structure. It is well-known that the spatial arrangement of a pattern of visual 

stimuli will influence its perception (e.g., if the spacing between columns in a square grid 

of nine dots is increased, it will be perceived as three groups of three). Similarly, the 

temporal arrangement of stimuli influences the way in which an input sequence is 

perceived. Temporal features such as interval and duration influence perceptual 

grouping vs. separation, while repetition and regularity in temporal structure allows 

differentiation of redundant vs. novel stimuli[52-55]. This general property can be 

referred to as temporal context, and the ability to perceive the same stimulus or set of 

stimuli differently depending on temporal context can be considered a form of temporal 

processing, in that it is dependent on the temporal structure of the input sequence. 

One ubiquitous example of how temporal context of sensory stimuli shapes 

neuronal responses is the phenomenon of short-term sensory adaptation (Fig. 1.2A). 

Across modalities, sensory cortical neurons decrease their evoked firing rates to 

identical stimuli when they are repeated on short timescales – i.e., with interstimulus 

intervals up to several hundred milliseconds[56-65]. A closely related phenomenon that 

takes place with extensive repetition over longer timescales is stimulus-specific 

adaptation (SSA, Fig. 1.2B). In SSA, neurons selectively reduce their responses to a  
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Figure 1.2 Examples of temporal contextual modulation. 
A. Short-term sensory adaptation. Recordings from rat somatosensory cortex during repeated 4 Hz 
stimulation of the same whisker. The upper trace of square pulses indicates the stimulus train. Middle and 
lower traces are extracellular and intracellular recordings, respectively. Multiple overlaid trial responses of 
the first four and the last intracellular responses are shown below at an expanded time scale. Reproduced 
from [62]. B. Stimulus-specific adaptation (SSA). A 2.5 Hz sequence of tone pips at two possible 
frequencies. In two separate sequences, one frequency was presented 90% of the time (standard), while 
the other was presented 10% of the time (deviant). In the other sequence, the roles were reversed. Lower 
plots show the response of a single neuron recorded with an extracellular probe in mouse auditory cortex 
to tone A (left) and tone B (right) depending on its probability. Reproduced from [66]. C. Forward 
suppression. Maskers of variable frequency preceded a 10 kHz probe tone. Each upper raster plot 
displays the spiking response of a single neuron in cat auditory cortex to 20 repetitions of a two-tone 
sequence with maskers from 6-13 kHz. The lower overlaid line plot shows the total number of spikes to 
the 10 kHz probe tone as a function of the masker frequency for various delays. Reproduced from [67].   
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“standard” tone that comprises 90% of the tones in a continuous train of tones while 

responding robustly to rare “oddball” tones presented at a different tone frequency [54, 

66]. For many neurons, this relationship persists even when the roles of standard and  

oddball are reversed, indicating that SSA is not a result of frequency tuning but of the 

temporal structure of the sequence[66]. 

More generally, the response of auditory cortical neurons to a probe tone can be 

suppressed to different extents depending on the frequency of a single preceding 

masking tone (Fig. 1.2C), a phenomenon referred to as forward suppression[67-71]. For 

most units, the response to the probe depending on the masker frequency takes a “U” 

shape in which suppression deepens as the frequency of the masker is made more 

similar to the probe. However, for some units, presenting maskers that are distant in 

frequency actually causes an enhancement of the response to the probe – i.e., “forward 

facilitation” [70-72] – which indicates that the temporal contextual modulatory effect is 

complex and diverse in the population response. 

The possibility of response enhancement to arbitrary spatiotemporal patterns of 

stimuli opens up the way for general sequence sensitivity. Auditory cortical neurons that 

exhibit enhanced responses to sequences of simple stimuli such as pure tones, with no 

training or reinforcement, have been characterized in cats and monkeys[73-75]. Given 

that pure tones exemplify the basic components of auditory objects (i.e., fundamental 

frequencies), these observed sequence-selective neurons provide the representational 

substrate necessary for fundamental capacities such as order discrimination. And even 

in the case of the repeated presentation of an identical tone at moderate rates (e.g. 

every 400 ms), progressive increases in the evoked firing rate of single auditory cortical 
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neurons over the course of repetition have been observed in a minority of units in 

mouse auditory cortex[76]. Thus, the possibility of both suppression and facilitation in 

firing rates due to temporal context – and the mixture of both in the population response 

– may provide representational flexibility when sequence information could be either 

redundant or critical, depending on the behavioral circumstances. 

 Crucially, the temporal contextual functions reviewed above only operate when 

the interval between consecutive stimuli is within the tens-to-hundreds of millisecond 

range, indicating that the timing of temporal contextual interactions are calibrated to the 

average rate of environmental stimuli. For humans, this matches well with the rates of 

stimuli such as speech and music, and this explains why speech and music that is too 

fast or slow degrades in meaning. 

1.5 Neurocomputational mechanisms for sensory timing and temporal context 

The breadth of examples across species and modalities suggests that neural 

sensitivity to temporal features on the order of tens-to-hundreds of milliseconds reflects 

a general computation within sensory circuits. One hypothesis is that temporal tuning is 

an intrinsic property of local neural circuits that relies on time-varying synaptic and 

neuronal properties. Neurons and synapses possess an abundance of functional 

properties with time constants on the scale of tens-to-hundreds of milliseconds that 

have been proposed to contribute to sensory timing, including ionotropic and 

metabotropic receptors[77], ion channels[25, 78, 79], and most notably short-term 

synaptic plasticity (STP)[28, 80-84]. Below I focus on the contribution of STP to sensory 

timing but emphasize that other neural properties have also been implicated, perhaps 
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most notably dynamic changes in the excitation/inhibition balance and rebound 

excitation [28, 85-87]. 

1.5.1 Short-term synaptic plasticity (STP) 

STP refers to use-dependent changes in the strength of synaptic connections 

that take place on time scales of tens to hundreds of milliseconds[88]. At a synapse 

exhibiting STP, trains of presynaptic spikes that occur within a short timespan cause 

progressively smaller or larger postsynaptic potentials (Fig. 1.3). These two opposing 

forms of STP are referred to as short-term depression (or paired-pulse depression) and 

short-term facilitation (or paired-pulse facilitation) respectively. These two broad forms 

of STP, however, can interact to form more complex temporal profiles[89]. Short-term 

depression results primarily from exhaustion of readily-releasable vesicles in the 

presynaptic terminal. Short-term facilitation, although less precisely understood, 

involves an increase in probability of vesicle release due to residual presynaptic 

calcium, which may involve the activation of specialized presynaptic calcium 

sensors[88, 90]. 

STP is remarkably diverse across neuron types[91-94], cortical layers[95], brain 

regions[96, 97], and can be modulated by development[98-100], sensory 

experience[101], brain state[102], and by neuromodulation[103]. Despite this richness 

and diversity, some general principles have emerged. For example, although STP is 

generally attributed to presynaptic mechanisms, the nature of STP of excitatory 

synapses primarily depends on the postsynaptic cell type, while the nature of STP of 

inhibitory synapses primarily depends on the presynaptic cell type[89, 92, 104]. For 

excitatory-to-inhibitory synapses, excitatory postsynaptic potentials (EPSPs) onto fast- 
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Figure 1.3 Diversity of short-term synaptic plasticity (STP) at cortical synapses. 
Simulations of synaptic transmission with STP based on real whole cell recordings.Traces indicate 
voltage of the postsynaptic cell as the presynaptic cell fires a train of five action potentials at 20 Hz. 
Diagrams above each trace indicate the identity of pre- and postsynaptic neurons, including pyramidal 
(green triangle), Parvalbumin-positive inhibitory (red circle), and Somatostatin-positive inhibitory (cyan 
oval) cells. A. Facilitating (top) and depressing (bottom) inter-pyramidal synapses. Based on recordings 
performed for [98]. B. Excitatory-to-inhibitory (top row) and inhibitory-to-excitatory (bottom row) synapses. 
Based on recordings performed for [105]. 
 

spiking inhibitory parvalbumin-positive interneurons generally undergo moderate 

depression[91, 106, 107], whereas EPSPs onto low-threshold-spiking somatostatin-

positive inhibitory interneurons generally exhibit strong facilitation[107, 108] (Fig. 1.3B). 

1.5.2 The role of STP in temporal selectivity 

Even though STP is observed across virtually all synapses, there is no 

consensus as to its computational function[109, 110]. STP has been hypothesized to 

enable dynamic gain control[111, 112] as well as sensory adaptation and sensitization.   

More generally, it is recognized that STP can implement temporal filters[80-82, 113, 

114]—that is, STP transforms temporal patterns of presynaptic spikes into different 

postsynaptic patterns depending on the STP characteristics of the activated synapses.  
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The ability to implement temporal filters at various timescales means that, at 

least theoretically, STP has the potential to underlie temporal selectivity in neurons[81]. 

For example, a simulation of a simple circuit composed of integrate-and-fire units 

demonstrates how STP can be used to generate interval selectivity (Fig. 1.4). In this 

simulation, an input unit forms facilitating synapses onto both an excitatory (Exc) and an 

inhibitory (Inh) unit that provides feedforward inhibition onto the Exc unit (Fig. 1.4A). As 

the Input unit generates spike pairs separated by intervals of 50, 100, or 200 ms in 

separate trials, the resulting EPSPs facilitate to different degrees (Fig. 1.4B). With 

appropriate tuning of synaptic weights, this simple circuit can function as an interval  

 

 

Figure 1.4 Interval selectivity simulated in a simple circuit with STP. 
A. Circuit composed of a single inhibitory (red circle) and excitatory (green triangle) neuron. Each 
synapse is endowed with STP [115]. Parameters used to simulate STP are shown, including the baseline 

release probability (U) and the time constants of facilitation (f) and depression (d).  B. Excitatory and 

inhibitory responses to separate input spike intervals of 50, 100, and 200 ms are overlaid, illustrating 
short-term facilitation. C. The weights of the Input→Exc synapse (x-axis) and Input →Inh synapse (y-axis) 
are varied, and the interval selectivity at each point is examined. The color in each region indicates the 
responsiveness of the Exc unit to one or more of the input intervals. Black areas represent regimes in 
which the Exc unit fired to the first pulse only, or did not fire at all. D. Voltage traces of the Exc and Inh 
units during simulations with synaptic weights that resulted in a 100 ms interval detector (dotted rectangle 
in C). Based on [116]. 
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detector in which the Exc unit is the readout (Fig. 1.4C). For example, there is a range 

of synaptic weights at the Input→Exc and Input→Inh connections in which the Exc unit 

fires exclusively to the 100 ms interval (Fig. 1.4D). This selectivity emerges because, for 

the 200 ms interval, short-term facilitation at the Input→Exc synapse has had more time 

to decay and thus the Exc unit’s EPSP is subthreshold, while for the 50 ms interval, 

short-term facilitation at the Input→Inh synapse is strong enough to drive the Inh unit to 

spike, thus vetoing what would be a suprathreshold EPSP in the Exc unit. 

Over the past decade converging experimental evidence has provided support 

for hypotheses suggesting that STP contributes to temporal selectivity. For example, 

STP appears to underlie temporal selectivity in the anuran auditory system[117], in 

which two broad classes of temporally-selective neurons have been identified. One 

class consists of short-interval cells that respond best when presented with an optimal 

number of pulses presented at faster rates[118]. Short-interval cells respond to 

consecutive inputs with EPSPs followed by large, slow inhibitory postsynaptic potentials 

(IPSPs). Selectivity appears to result from an enhancement of EPSPs elicited by 

repeated pulses—that is, a progressive enhancement in EPSP magnitude is eventually 

able to overcome the strong but stable inhibitory response to each pulse. Importantly, 

enhancement of excitation is optimal for certain pulse rates[119]. A second class of 

temporally-selective cells in anuran auditory systems responds well only to slow pulse 

rates but fails to respond to fast pulse rates. Electrophysiological experiments suggest 

that the low-pass properties of these neurons resulted from cancellation of temporally-

offset excitatory and inhibitory synaptic inputs at fast pulse rates, together with short-

term synaptic depression at high stimulation rates[120]. 



18 

Additional experimental work regarding the mechanistic involvement of STP in 

pulse rate selectivity comes from whole-cell recordings of neurons in weakly electric 

mormyrid fish[27-29]. By estimating synaptic conductances during temporally-selective 

responses, Baker and colleagues determined that both excitatory and inhibitory 

conductances exhibited short-term depression. However, for high-pass neurons 

(neurons tuned to faster pulse rates), inhibitory conductances depressed more strongly 

than excitatory conductances, while for most low-pass neurons excitation depressed 

more strongly[28]. Analytically reconstructing cellular responses while excluding short-

term depression led to drastically reduced diversity in interval tuning[28]. 

1.5.3 Neural and synaptic mechanisms of temporal contextual modulation 

STP has long been postulated to be a primary mechanism underlying the firing 

rate suppression that accompanies short-term sensory adaptation and forward 

suppression[62, 69]. Specifically, it has been proposed that depression at 

thalamocortical synapses causes the progressive decrease in firing evoked by identical 

repeated tones[62]. More recently, optogenetic experiments in mice have additionally 

implicated the involvement of inhibitory PV and SST interneurons[66, 71, 76], 

suggesting that intra-cortical inhibition, which is modulated by STP at excitatory-to-

inhibitory synapses, plays a role in short-term contextual modulation. After all, excitatory 

synapses onto SST interneurons should facilitate with repetition, and thus SST cells 

should provide a progressively larger inhibitory force in sensory circuits over the course 

of repetition. Optogenetic experiments have supported this idea. One experiment 

showed that optogenetically inactivating SST interneurons during the eighth but not the 

first tone in a sequence of identical repetitions significantly increased the tone-evoked 
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firing rate of excitatory units[76]. In an oddball paradigm designed to demonstrate 

stimulus-specific adaptation, inactivating SST interneurons increased the response of 

excitatory units to the standard but not the oddball tone, an effect that emerged as 

standards were repeated multiple times[66]. Finally, another experiment showed that 

optogenetically inactivating SST interneurons during forward suppression decreased the 

number of excitatory units exhibiting suppression as well as the degree of 

suppression[71]. 

 Mechanistic understanding of short-term facilitation phenomena is less well 

defined. Nevertheless, optogenetic inactivation experiments have also provided some 

support for the idea that, opposite to SST, the depression at excitatory-to-PV synapses 

may contribute to the stability or enhancement of responses that is often observed 

among excitatory units[71, 76]. One study found that inactivating PV units during 

forward suppression increased the number of suppressing units as well as the degree of 

suppression[71]. This finding provides support for the idea that the depression of 

feedforward PV inhibition may help to stabilize or enable enhancement of excitatory 

responses to identical stimuli. 

Aside from experimental studies, multiple computational models have recently 

used STP to successfully account for short-term sensory adaptation, stimulus-specific 

adaptation, and forward suppression[66, 70, 121, 122]. In chapter two of the current 

work, I offer a reduced spiking model of feedforward inhibition in sensory cortex that 

addresses both short-term sensory adaptation and facilitation to identically repeated 

stimuli [76, 122]. 
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1.5.4 Network models of temporal pattern selectivity based on STP 

The theoretical and experimental evidence discussed above indicate that STP 

plays a role in temporal filtering and the formation of temporally selective neurons. 

Indeed, as shown in Fig. 1.4, it is relatively straightforward to create interval selective 

neurons in disynaptic circuits that exhibit short-term facilitation. However, in this 

example, interval selectivity relies on the careful tuning of synaptic weights and STP. 

Far more general models of cortical computation referred to as state-dependent network 

models or liquid state machines[80, 81, 123, 124] propose that STP provides a rich 

mechanism to endow cortical networks with the ability to decode the spatiotemporal 

structure of stimuli. Specifically, STP functions as a memory of what happened within 

the past few hundred milliseconds. Consider the case of two identical tones arriving in 

the auditory cortex 100 ms apart during an interval discrimination task. Even if we 

assume the second tone activates the same pattern of thalamocortical inputs into the 

cortex as the first tone, it will arrive in a different cortical state, where some synapses 

will be depressed and others facilitated. Thus, the same tone should have a different net 

effect on the circuit, depending on the recent input history. While some neurons will be 

activated by both events, others are likely to be activated by one or the other, and these 

neurons can provide information about the length of the interval or the order of events.  

In these models, STP (and other time-varying properties) provides a memory 

buffer that ensures that each event is encoded in the context of the previous events. 

Thus if two tones A and B are presented 100 ms apart, the response to B does not 

simply encode the stimulus B, but ‘B preceded by A’. This view predicts that it should be 

possible to decode previous stimuli based on the population response to the current 
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stimulus. This prediction has been confirmed, by showing that in the visual cortex, when 

a pair of images is sequentially presented it is possible to determine the first image 

based on the response to the second[125]. Another prediction is that interval 

discrimination should be impaired by preceding stimuli, and indeed psychophysical 

experiments show that simply presenting two intervals to be judged close together in 

time impairs interval discrimination[126, 127]. While these results are consistent with the 

role of STP in establishing the state-dependence of the local network (the memory 

buffer), it remains to be determined whether STP is indeed one of the mechanisms 

underlying these results. Some support to this possibility comes from computer 

simulations, which have established that randomly connected recurrent neural networks 

endowed with STP are intrinsically capable of discriminating simple intervals[80, 81, 

123, 126, 128]. Furthermore, the presence of STP in such networks enhances their 

ability to discriminate complex temporal patterns such as speech[81, 129, 130]. 

1.6 Summary and overview of following chapters 

Time presents a challenge. For many organisms, the way in which their nervous 

systems have evolved to overcome this challenge fundamentally defines their mental 

world, allowing them to communicate and make sense of the sequential structure 

present in sensory streams. Across species and modalities, neuroscientists have 

observed sensory neurons that are sensitive to temporal features such as interval, 

duration, and overall spatiotemporal structure. Research thus far suggests that time-

varying synaptic and neural properties, most notably STP, not only support temporal 

selectivity but also provide more general properties such as temporal context sensitivity 

and state dependence. In the following chapters, I first focus on neurocomputational 
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mechanisms of temporal contextual processing at the tens-to-hundreds of milliseconds 

scale, but then I move on to the circa-second scale by focusing on mechanisms of 

internally-generated timing and its relationship with other cognitive phenomena. 

 First, chapter 2 tests the hypothesis that STP is a key mechanism underlying 

temporal contextual modulation using a unique experimental dataset of short-term 

sensory adaptation in mouse auditory cortex[76]. I present a reduced spiking model that 

accounts for the diversity of observed adaptation “profiles” with differential STP of 

excitatory synapses onto PV and SST interneurons. I confirm the model predictions with 

novel analyses of the experimental data, showing that: 1) Cortical neurons with steady 

firing rates across repeated stimuli exhibit shorter firing latencies than those with 

adapting or facilitating profiles, and 2) optogenetically inactivating PV interneurons 

during the first stimulus in a train of repeated stimuli causes a decreased excitatory 

response to the second stimulus 400 ms later. The results provide evidence that shifts 

in firing latency caused by STP are critical for short-term temporal contextual 

modulation. 

 Next, chapter 3 focuses on the long-term plasticity rules that configure neural 

circuits to support persistent activity states, which are mechanistically relevant to 

internally-generated timing phenomena. Recent computational work in my lab has 

shown that a family of “cross-homeostatic” plasticity rules is capable of robustly 

configuring synaptic weights to support stable persistent activity states in fully-

connected firing rate models. I reinforce and build on this work by demonstrating the 

robustness of the cross-homeostatic plasticity rules in a large sparsely-connected 

spiking model. Further, due to its sparse connectivity, my model was able to compare 
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local and global implementations of the cross-homeostatic rule, and a primary 

contribution of my work is to show that a local variation on this family of plasticity rules 

also succeeds, but only when counterbalanced by standard homeostatic forces. 

 Finally, given emerging data that suggests that both timing and working memory 

rely on the internal dynamics of local cortical circuits, I use behavioral experiments to 

test a link between timing and working memory. Specifically, chapter 4 tests the 

hypothesis that prospective timing is computationally linked with working memory by 

performing two complementary behavioral experiments in humans. In the first task, 

participants performed a simple variant of the delayed match-to-sample task in which 

cue identity could be used to predict the timing of the appearance of the probe stimulus 

(and thus when the memory judgement would need to be made). In the second task, 

participants had to make a timing judgement of the delay duration to respond correctly, 

but remembering the cue identity was not required to perform the task. I found that 

participants learned the task-irrelevant timing information in the working memory task, 

and they stored task-irrelevant cue identity information in working memory in the explicit 

timing task. My results are consistent with the hypothesis that in some cases working 

memory and timing information are multiplexed in a time-varying format because of the 

importance of predicting when working memory will be used. 
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Abstract 

Cortical responses to sensory stimuli are strongly modulated by temporal context. One 

of the best studied examples of such modulation is sensory adaptation. We first show 

that in response to repeated tones pyramidal (Pyr) neurons in male mouse primary 

auditory cortex (A1) exhibit facilitating and stable responses, in addition to adapting 

responses. To examine the potential mechanisms underlying these distinct temporal 

profiles, we developed a reduced spiking model of sensory cortical circuits that 

incorporated the signature short-term synaptic plasticity (STP) profiles of the inhibitory 

Parvalbumin (PV) and Somatostatin (SST) interneurons. The model accounted for all 

three temporal response profiles as the result of dynamic changes in 

excitatory/inhibitory balance produced by STP, primarily through shifts in the relative 

latency of Pyr and inhibitory neurons. Transition between the three response profiles 

was possible by changing the strength of the inhibitory PV→Pyr and SST→Pyr 

synapses. The model predicted that a unit’s latency would be related to its temporal 
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profile. Consistent with this prediction, the latency of stable units was significantly 

shorter than that of adapting and facilitating units. Furthermore, because of the history-

dependence of STP the model generated a paradoxical prediction: that inactivation of 

inhibitory neurons during one tone would decrease the response of A1 neurons to a 

subsequent tone. Indeed, we observed that optogenetic inactivation of PV neurons 

during one tone counterintuitively decreased the spiking of Pyr neurons to a subsequent 

tone 400 ms later. These results provide evidence that STP is critical to temporal 

context-dependent responses in the sensory cortex. 
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Chapter 2: Differential Short-Term Plasticity of PV and SST Neurons Accounts for 

Adaptation and Facilitation of Cortical Neurons to Auditory Tones 

 

2.1 Introduction 

 Auditory processing requires identification of temporal structure of stimuli on the 

subsecond time scale, including order, duration, interval, and temporal context. Speech, 

for example, is characterized not only by its spectral structure, but its temporal 

structure—including the order and duration of phonemes as well as intervals between 

them [1-3]. Despite the importance of identifying the temporal structure of auditory 

stimuli, the neural correlates and mechanisms of this process remain poorly understood.  

 One of the best studied examples of the modulation of the responses of auditory 

neurons by temporal context is sensory adaptation, in which responses to pairs or trains 

of consecutive tones progressively decrease [4-13]. Sensory adaptation is observed in 

the somatosensory and visual modalities as well [14-20]. There is, however, significant 

diversity in the modulation of cortical responses by consecutive stimuli, including 

neurons that exhibit enhanced responses to specific spatiotemporal patterns [4, 5, 11, 

13, 21, 22]. The diversity of adapting and facilitating responses presumably reflects the 

cross-purpose need to habituate to repetitive stimuli that carry little information (e.g., the 

tic of a clock), and to detect critical information carried by events occurring late in a 

sequence (e.g. in Morse code the letter I is represented by 2 consecutive dots, and the 

letter H by 4 dots) [23-25]. 

 Rodent studies have focused primarily on adapting (i.e. decreasing) responses to 

sequences of tones and proposed a number of potential underlying mechanisms 
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including short-term synaptic depression and long-lasting inhibition [7, 12, 23]. More 

recent studies have suggested differential roles for Parvalbumin (PV) and Somatostatin 

(SST) inhibitory interneurons in sensory adaptation [6, 26] and forward suppression 

measured with tone pairs [22, 27]. Auditory cortical neurons, however, exhibit a range of 

temporal profiles in response to sequences of tones, including stable responses and 

progressive facilitation. The mechanisms responsible for this diversity of temporal 

profiles are not understood, and it remains an open question whether the adapting, 

stable, and facilitating responses can be explained by the same set of mechanisms or 

rely on fundamentally different properties. 

 Previous research has suggested that short-term synaptic plasticity (STP) plays 

an important role in governing sensitivity to temporal context [16, 28-32]. Here we 

characterized the different temporal profiles of auditory neurons to sequences of tones, 

and developed a spiking neuron model that incorporates known differential short-term 

synaptic dynamics of PV and SST interneurons. In contrast to previous firing rate 

models [26, 27], here we use a spike-based model that accurately captures STP 

dynamics and the relative timing between excitation and inhibition, and makes 

experimental predictions about spike latency. We found that both adaptation and 

facilitation can be explained in terms of differences in the relative balance of inhibition 

originating from PV and SST neurons. The model generated a number of predictions 

including: 1) Different temporal profiles should be correlated with specific firing latency 

signatures, and 2) inactivating inhibitory neurons should prevent normally occurring STP 

of IPSPs, and thus alter pyramidal (Pyr) neuron responses to subsequent tones. Both 

predictions were tested and supported by the experimental evidence. 
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2.2 Results 

2.2.1 A1 neurons exhibit distinct temporal profiles in response to repeated tones. 

We first examined the temporal response profiles of primary auditory cortex (A1) 

neurons to trains of eight consecutive tones presented at a 2.5 Hz (400 ms). From a 

total of 406 neurons across 11 animals (5 PV-Cre and 6 SST-Cre), we identified a total 

of 1486 neuron-frequency pairs that exhibited a significant evoked response to either 

the first or last tone (see Methods). Based on the temporal profile of the number of 

spikes elicited in response to each of the eight tones in each train, we classified each 

neuron-frequency pair as adapting, stable, or facilitating (see Methods). Of these 38.7% 

were adapting, 55.5% stable, and 5.8% facilitating. Fig. 2.1 displays sample raster plots 

of each type of temporal profile (Fig. 2.1A, C, and E) and the population post-stimulus 

time histograms (PSTHs) across all neuron-frequency pairs within each category (Fig. 

2.1B, D, and F). Consistent with previous studies these results confirm that while many 

neurons exhibit robust sensory adaptation, there is significant diversity in the temporal 

profile of the responses including neurons that exhibit robust facilitation. 

2.2.2 Model of a simple cortical microcircuit that incorporates short-term synaptic 

plasticity 

 The presence of adaptation or facilitation within cortical neurons establishes that 

responses are sensitive to temporal context—in other words that there is a memory of 

recent stimulus history in the circuits. Early models suggested that one of the 

mechanisms underlying the sensitivity to temporal context is STP [16, 28, 29, 31, 33-

36], and recent work has focused on the differential STP among different classes of 

inhibitory neurons as contributing to sensory adaptation[6, 22]. We thus developed 
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Figure 2.15Single units in A1 exhibit diverse temporal profiles of responses to sequences of 
repeated tones, including adaptation, no change, and facilitation.  
In the experiment, a train of eight consecutive repetitions of the same 100 ms pure tone stimulus was 
presented at a rate of 2.5 Hz. The pie chart at top right shows the proportions of neuron-frequency pairs 
that exhibited adaptation (purple), no change (grey), or facilitation (orange). A. Spike raster (upper) and 
post-stimulus time histogram (PSTH; lower) for a neuron-frequency pair that exhibits classical adaptation, 
in which sensory responses to the same physical stimulus decrease with repetition on short timescales. 
B. 39% of neuron-frequencies with significant evoked activity were adapting. Population average 
normalized PSTH (upper) and bar plot of average normalized firing rate within 10-70 ms following tone 
onset by serial position (lower). C. Spike raster (upper) and PSTH (lower) for a neuron-frequency pair that 
exhibits no change or a steady firing rate over repetition. D. 55% of neuron-frequencies with significant 
evoked activity exhibited no change in firing rate over repetition. E. Spike raster (upper) and PSTH (lower) 
for a neuron-frequency pair that exhibits facilitation, in which sensory responses to the same physical 
stimulus increase with repetition on short timescales. F. 6% of neuron-frequencies with significant evoked 
activity were facilitating. 
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a spike-based model of feedforward activation of pyramidal neurons that incorporated 

the experimentally characterized short-term synaptic plasticity of PV and SST 

interneurons (Fig. 2.2). 

 Importantly, we used published empirically-derived STP estimates for each of the 

five synapses in our Pyr-PV-SST microcircuit (Fig. 2.2A). We modeled mild depression 

at the Input→Pyr synapse [16, 37, 38], moderate depression at the Input→PV synapse 

[38-40], strong facilitation at the Input→SST synapse [39, 41], strong depression at the 

PV→Pyr synapse [40, 42, 43], and stable synaptic strength at the SST→Pyr synapse 

[44, 45]. STP parameters are shown in Table 2.3. Additionally, the intrinsic properties of 

the three neuron classes were based on aggregate estimates from the NeuroElectro 

project and select electrophysiological studies [46, 47]. Using these units and synapses, 

we assembled a circuit with dual disynaptic feedforward inhibition from both PV and 

SST onto the Pyr unit and simulated the experimental protocol (Fig. 2.1). 

2.2.3 Model can account for all three temporal profiles by changing the inhibitory 

weights 

 We next asked whether this simple model with empirically-based STP values at 

the five synapses could account for all three experimentally observed temporal profiles. 

Our goal was to determine if the diversity of temporal profiles could be reproduced 

without changing the temporal dynamics of STP at each of the five synapses modeled 

here. Thus the free parameters in the model were the five synaptic weights: Input→Pyr, 

Input→PV, Input→SST, PV→Pyr, and SST→Pyr. We omitted higher order lateral 

connections, such as the SST→PV connections, because these are unlikely contribute 

to the fast latency responses studied here (see Methods). The input weights onto all 
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Figure 2.26Spiking model of feedforward cortical microcircuit with empirically-based short-term 
synaptic plasticity (STP). 
A. Three distinct units were modeled to resemble cortical pyramidal (Pyr, green), fast-spiking 
Parvalbumin-expressing interneurons (PV, red), and low-threshold-spiking Somatostatin-expressing 
interneurons (SST, cyan). The change in synaptic currents caused by repeated presynaptic spikes was 
governed by short-term synaptic plasticity (STP) derived from experimental observations. B. Single-unit 
membrane voltages from a model simulation of the experiment considered here (Natan et al., 2017). 
Because the SST→Pyr synapse is strong, Pyr unit spiking is suppressed during the 8th tone. C. Single-
unit membrane voltages when both the PV→Pyr and SST→Pyr synapses are relatively weak and 
balanced. Pyr unit spiking is relatively unaffected. D. Single-unit membrane voltages when the PV→Pyr 
synapse is strong. Pyr unit spiking is strongly suppressed during the 1st tone but only weakly suppressed 
during the 8th tone, resulting in facilitation. 
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three neuron classes were constrained such that they elicited biologically reasonable 

firing rates in response to single tones in the absence of any inhibition. We thus 

anchored the input weights and focused on a parametric analysis of the weights of the 

PV→Pyr and SST→Pyr connections. As shown in Fig. 2.2B-D, it is possible to 

transition between all three temporal profiles by changing only the PV→Pyr and 

SST→Pyr weights. Starting in a regime with weak inhibitory weights from both PV and 

SST, we observe a steady response profile (Fig. 2.2C). This is intuitive because in the 

absence of strong inhibition the temporal profile is primarily shaped by STP of the 

Input→Pyr connection—which is weakly depressing. By increasing the strength of the 

SST→Pyr connection, the system shifts to the adapting profile (Fig. 2.2B). Although 

early in the train SST generated inhibition is relatively weak, increasing the strength of 

the PV→Pyr connection shifts the profile from adapting to facilitating (Fig. 2.2D). 

 Fig. 2.3 contrasts experimental (Fig. 2.3A1-C1) and simulated (Fig. 2.3A2-C2) 

examples of units from all three classes of temporal profiles. The unfilled bar plots 

display the model results of average evoked firing rates of the Pyr unit across twenty 

trials with independent noise currents provided to each unit. Importantly, the only 

parameters that were varied between the three simulated temporal profiles were the 

synaptic strengths (i.e. maximal conductances) of the SST→Pyr and the PV→Pyr 

synapses. All other parameters, including the STP parameters at each synapse, were 

the same across all simulations. 

 In order to quantify the robustness of the above results across different relative 

ratios of PV and SST inhibition we conducted a two-dimensional parameter search 

across the SST→Pyr and PV→Pyr weights. At each combination of inhibitory weights, 
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Figure 2.37Model circuit reproduces experimentally observed adaptation, steady responses, and 
facilitation by changing relative strength of PV/SST inhibition. 
These three temporal profiles reflect three of the weight sets across a systematic parametric analysis of 
the PV→Pyr and SST→Pyr weights (D). In the A, B, and C panels the upper filled bar plot displays the 
average tone-evoked firing rate from 10-70 ms for an exemplary experimentally-observed neuron-
frequency pair across a minimum of 40 trials, while the bottom, unfilled bar plot displays the average 
tone-evoked firing rate of the Pyr unit in the model across 20 trials with independent noise when synaptic 
weights were set as indicated by the inset diagrams and the outlined weight combinations shown in D. All 
error lines indicate the standard error of the mean. A1. Exemple of an experimentally observed adapting 
response. A2. Simulated adapting Pyr unit. Bars indicate the mean firing rate evoked by a simulated 
sequence of “tones” based on their serial position. In this simulation, the SST→Pyr synapse was relatively 
strong, as indicated by the inset circuit diagram. B1. Experimental example of a steady neuron. B2. 
Simulated steady Pyr unit: both the PV→Pyr and SST→Pyr synapses were relatively weak and balanced, 
as indicated by the inset circuit diagram. C1. Experimental example of a facilitating Pyr neuron. C2. 
Simulated facilitating Pyr unit: the PV→Pyr synapse was relatively strong, as indicated by the inset circuit 
diagram. D. Color-coded heatmap of the slope of the Pyr firing rate across serial positions (i.e. the 
temporal profile) as the weights PV→Pyr and SST→Pyr synapses were parametrically varied. More 
intensely purple squares reflect adaptation, while more intense orange squares reflect facilitation. 

 

we quantified the average firing rate of the Pyr unit at each serial position across 20 

trials. To quantify and visualize the temporal profiles, we regressed the Pyr unit firing 

rate against the serial position and took the slope as a quantitative index in which 

positive values indicated facilitation, negative values adaptation, and values near zero 

indicated a steady firing profile (Fig. 2.3D). These results confirm the robustness of the 

model across different inhibitory weights, and highlight the importance of the relative 

balance of PV and SST inhibition. One can see that the diagonal of the parametric 

analysis reveals mostly steady responses, indicating that it is not simply the absolute 

strength of PV or SST inputs that determines the temporal profile. For example, at 
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PV→Pyr weights of 10-15 nS, facilitating, steady, or depressing profiles can be 

observed, depending on the weight of the SST→Pyr connection. 

2.2.4 STP acts via changes in spike latency 

 The above results are driven by the dynamic shifts in E/I balance produced by 

STP. For example, facilitation of the Input→SST is responsible for the progressive 

decrease in Pyr firing in response to repeated tones. It is reasonable to assume that this 

modulation relies on an increase in the number of spikes in the SST neuron. A detailed 

analysis of the model, however, revealed a more complex mechanism. Specifically, 

much of the modulation of the firing rates of the Pyr neurons is not governed by the 

change in the spike number of inhibitory neurons, but by the shift in their firing latency. 

 To examine the importance of STP-dependent shifts in spike latency of inhibitory 

neurons in shaping Pyr profiles we first considered a circuit in the adaptation regime 

(Fig. 2.4A). As the Pyr unit firing rate decreases across serial positions, the 1st spike 

latency of the SST unit decreases in a correlated manner, due to short-term facilitation 

of the Input→SST synapse. Although the SST unit’s 1st spike latency and the Pyr unit’s 

firing rate simultaneously change in a nonlinear manner, there was a strong linear 

correlation between the two (r = 0.99, p < .001). In a circuit in the facilitation regime 

(Fig. 2.4B) the increase in Pyr unit firing rate across serial positions was correlated with 

an increase in 1st spike latency of the PV unit due to short-term depression of the 

Input→PV synapse (r = 0.96, p < .001)—note however, that the range of the latency 

shifts was narrower because of the relatively weak short-term depression at the 

Input→PV connection. Importantly, we note that such a relationship will only be found 

for circuits with a single dominant source of inhibition, and that in scenarios with weak or 
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Figure 2.48Temporal profiles are shaped by STP-driven changes in spike latency. 
A1. Decreasing firing rate in Pyr unit in a circuit in the adaptation regime across consecutive tones. A2. 
Relationship between firing rate in A1 and first spike latency of SST. Note that the color or each point 
corresponds to the serial position in A1.  B1. Increasing firing rate in Pyr unit in a circuit in the facilitating 
regime across consecutive tones. Note the relatively narrow range of PV latency changes compared to 
SST. B2. Relationship between firing rate in A1 and first spike latency of PV. C. Starting from the model 
results in the adaptation weight regime, we recorded the average tone-evoked latency of SST spikes 
during the second tone. Then, we re-ran the simulation while artificially replacing the SST unit spiking on 
tones 3-8 to be the same as the average on tone 2. D. When SST unit spiking was “frozen” at its latency 
during tone 2, adaptation was eliminated despite no change in the firing rate of the SST unit. 

 

balanced sources of inhibition (which tend to exhibit steady temporal profiles) such a 

relationship will not hold. The previous analyses suggest that decreases in the latency 

of SST spiking produced by short-term facilitation of the Input→SST synapse plays a 

role in the adaptation profile. But they do not demonstrate that the change in spike 

timing causes the change in Pyr unit firing rate within the model. 

 To demonstrate a causal relationship, we developed an approach for artificially 

altering the timing of the inhibitory unit. We reran the simulations under the adapting 

regime, but replaced the spike times of the SST unit for tones 3-8 with the average 
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spike times of the SST unit during tone 2 (Fig. 2.4C). Thus we artificially “froze” the SST 

unit spike times and prevented the STP of the Input→SST synapses from naturally 

decreasing the tone-evoked latency of the SST neurons, while preserving the increase 

in spike number produced by STP during tones. This manipulation caused the Pyr unit 

to exhibit a steady firing rate across serial positions 2-8, eliminating the adaptation after 

tone 2 (Fig. 2.4D). Importantly, the firing rate of the SST unit in the trials where its spike 

timing was “frozen” was identical to its firing rate shown in Fig. 2.3A2. Thus, the 

temporal profile of adaptation can primarily be attributed to a progressive reduction in 

the tone-evoked spike latencies of the SST unit. 

 This result is consistent with previous experimental and computational data 

establishing that the temporal relationship between the onsets of excitatory postsynaptic 

potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in pyramidal neurons 

plays a fundamental role in shaping their neuronal responses [48, 49]. The earlier the 

onset of the IPSP, the more effective it is at preventing the EPSP from driving the 

pyramidal neuron to threshold. Our model predicts that the adaptation produced by 

progressive facilitation of the Input→SST synapse is not driven primarily by increased 

spiking of the SST neurons, but rather the progressive decrease in the latency of input-

evoked SST spiking. It is relevant to stress that this latency effect would likely not be 

captured as well by firing rate models which are less well suited to pick up on the highly 

nonlinear interactions between shifts in EPSP/IPSP latencies and all-or-none spike 

generation [48-51]. 
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2.2.5 Model correctly predicts longer response latencies under adaptation and 

facilitation 

 Relative timing of the EPSPs and IPSPs onto the pyramidal neurons is a critical 

determinant of the model. To be effective, inhibition must arrive quickly enough to 

interact with excitatory inputs and prevent potential spiking. Based on this observation, 

we hypothesized that steady neurons do not undergo strong temporal-context 

modulation, because they often fire before the onset of inhibition. Thus, a key prediction 

of our model is that there should be a relationship between the input-evoked latency of 

the Pyr unit and the extent to which that unit’s firing rate is decreased by inhibition. More 

specifically, we predicted that short-latency Pyr units should be less vulnerable to 

inhibition while still exhibiting mild forms of firing rate adaptation due to mild depression 

at the Input→Pyr synapse. In contrast, we predicted that longer latency Pyr units should 

be more strongly modulated by feedforward inhibition. 

 To test these predictions, we first measured the response latency of each 

neuron-frequency pair in the experimental data. We operationalized response latency 

as the time of the maximal peak in the post-stimulus time histogram (PSTH) in response 

to the first (adapting and stable responses) or final (facilitating responses) tone. Even 

within a temporal profile class response latency varied considerably, as evidenced by a 

plot of PSTHs sorted by latency (Fig. 2.5A-B). However, consistent with our prediction, 

the mean latency of the steady group was significantly shorter than that of the 

adaptation and facilitation groups (Fig. 2.5C). Specifically, a one-way Kruskal-Wallis 

test revealed a significant difference in response latency among the three classes (2
(2, 

1483) = 42.5, p < .001), and post-hoc Dunn tests revealed that both the adapting and 
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Figure 2.59Evoked spike timing differs between temporal profile groups according to model 
predictions. 
A. Image plot of each neuron-frequency pair’s PSTH, clustered by temporal profile (adapting, steady, 
facilitating) and sorted within each temporal profile by the latency of maximal evoked firing. Each row 
represents a single unit’s average PSTH, expressed as the normalized deviation from baseline firing rate. 
Within adapting and steady temporal profiles, units are sorted by latency of maximum deviation to the 1st 
tone. Within the facilitating temporal profile, units are sorted by latency of maximum deviation to the 8th 
tone. B. The same data in A re-plotted (see outlines) to show the distribution of average spike timing 
across trials for the time regions surrounding the peak response of that temporal profile. C. Bar plot 
comparing the mean tone-evoked latencies within each temporal profile. Error lines indicate the standard 

error of the mean. There was a significant difference in response latency among the three classes (2 (2, 

1483) = 42.5, p < .001). Both the adapting and facilitating classes of neuron-frequency pairs had 
significantly longer mean response latencies than the stable class (adapting vs. stable, Z = 6.18, p < .001; 
facilitating vs. stable, Z = 3.25, p < .001), but the adapting and facilitating classes were not different from 
each other (adapting vs. facilitating, Z = -0.28, p = .29). 
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facilitating classes of neuron-frequency pairs had significantly longer mean response 

latencies than the stable class (adapting vs. stable, Z = 6.18, p < .001; facilitating vs. 

stable, Z = 3.25, p < .001). However, the adapting and facilitating classes were not 

different from each other (adapting vs. facilitating, Z = -0.28, p = .29) (Fig. 2.5C). This 

result provided support for the notion that pyramidal cells that fire with a short latency — 

presumably because they receive strong excitatory synaptic inputs — undergo less 

temporal-context modulation because dynamic changes in IPSP strength are less 

effective in influencing pyramidal neurons spiking generated by feed-forward activity. In 

other words, the inhibitory inputs onto these units are functionally weak because they 

are delayed relative to excitation. 

 Finally, because there was a large degree of variation in the response latency 

within a temporal profile, we considered whether the degree of adaptation or facilitation 

for a given unit-frequency was correlated with its response latency. We quantified the 

degree of adaptation or facilitation as the t-statistic resulting from the linear regression 

of tone-evoked spikes by the tone’s serial position (see Methods). We found that for 

adapting unit-frequencies the degree of adaptation was mildly correlated with response 

latency (r = -.194, p < .001) such that more strongly adapting unit-frequencies had 

longer evoked latencies. For facilitating unit-frequencies, this relationship was not 

significant. 

2.2.6 Model predicts a paradoxical decrease in firing caused by prior PV 

inactivation. 

 A long-standing challenge has been to establish a causal role for STP in 

temporal-context modulation. Interestingly, because of the model’s reliance on STP to 
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account for temporal-context effects, it led to a unique and counterintuitive prediction. 

Specifically, because by definition STP is dependent on the previous spike history on 

the time scale of tens-to-hundreds of milliseconds, preventing spikes evoked by a tone 

in one class of neurons should prevent STP and alter responses to subsequent tones. 

Indeed, as shown in Figure 2.6A, optogenetic inactivation of PV neurons (due to 

hyperpolarization driven by light activation of Cre-dependent ArchT) can sometimes not 

produce any effect during the optogenetically inhibited tone, but can alter the Pyr 

neuron response to a tone presented 400 ms later. 

 We first simulated optogenetic inhibition of PV and SST neurons by strongly 

hyperpolarizing either PV or SST model units from 100 ms before to 150 ms after the 

first tone presentation. Inhibitory inactivation of PV, but not SST, unit caused a history-

dependent effect on Pyr unit spiking under stable and facilitating weight regimes (Fig. 

2.6B). More specifically, in the stable weight regime, inactivating the PV unit during the 

first tone caused a decrease in the number of Pyr spikes evoked by the second tone 

(sign rank Z = -3.59; p < .001). We will refer to this as an “n+1” effect because 

manipulation during one tone alters the response to the next tone in the absence of any 

further manipulation. A similar effect of slightly smaller magnitude was observed for the 

facilitating weight regime (sign rank Z = -3.42; p < .001). The n+1 effect was primarily a 

result of the STP profile of the PV→Pyr synapse (Fig. 2.2B). Because the PV unit 

normally spikes robustly during the first tone presentation, the PV→Pyr synapse is 

normally weakened during the second tone presentation due to its strong short-term 

depression—this depression normally counterbalances some of the some of the short-

term depression of the EPSPs generated by the inputs. Hyperpolarizing and thus 
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Figure 2.610Simulated inactivation of inhibitory units correctly predicts that PV interneuron 
inactivation during the 1st tone causes a decrease in the tone-evoked firing rate during the 2nd 
tone for steady and facilitating units. 
A. Example of an experimentally recorded Pyr neuron in which inactivation of PV interneurons during the 
1st tone decreased the firing rate evoked by the 2nd tone. In the spike raster (upper), the green rectangle 
indicates trials and window of optical stimulation. The line plots (lower) display PSTHs separately for trials 
with and without optical stimulation during the 1st tone. B. Effect of simulated PV inhibition on Pyr unit 
firing rates in adapting (purple), steady (grey), or facilitating (orange) regimes. Bars indicate the mean 
firing rate evoked by the 2nd in a simulated pair of “tones” with and without simulated optogenetic 
inactivation of the PV unit during the 1st tone. Means were taken across 20 trials. Significant differences 
were found for the steady and facilitating weight regimes.C. Simulated SST inhibition on Pyr unit firing 
rate. SST inhibition during the 1st tone did not significantly alter Pyr firing in any of the three regimes (p > 
.05). D. Experimentally observed effects of PV inhibition on Pyr firing to the subsequent tone, across all 
three temporal profile classes. Shaded regions indicate the standard error of the mean. Significant 
differences were found only for the steady and facilitating neuron-frequency pairs. E. Mean normalized 
evoked firing rates of adapting (purple), steady (grey), or facilitating (orange) neuron-frequency pairs in 
response to SST inhibition. Consistent with the model predictions of the model no significant differences 
were observed in either class of temporal profiles (p > .05). *p < 0.05, **p < 0.01, ***p < 0.001 
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preventing the PV unit from spiking during the first tone effectively postpones its initial 

and strongest inhibitory effect until the second tone. Thus, following PV inactivation on 

the first tone, PV inhibition is stronger on the second tone, reducing the Pyr unit firing 

rate. The n+1 effect in response to PV neuron inactivation was not observed in the 

adapting weight regime (p > 0.05), because it is dominated by SST inhibition (Fig. 2.6B, 

top panel). In contrast to PV inactivation, no effect of prior inactivation was observed for 

SST inactivation (all p > 0.05; Fig. 2.6C), both because the SST→Pyr synapse 

exhibited relatively little STP and because the SST unit is relatively inactive during the 

first tone presentation. 

 Finally, we tested whether the n+1 effect was present in vivo (Fig. 2.6D-E). We 

contrasted the trials on which there was light inactivation during the first tone to trials in 

which there was no light inactivation during the first tone, and compared the number of 

spikes evoked by the second tone (note that there was no optogenetic inactivation 

during the second tone). In PV-Cre mice, there was a significant n+1 effect for stable 

neuron-frequency pairs (sign rank Z = -3.10; p = .002) and a significant but weaker prior 

light effect for facilitating neuron-frequency pairs (sign rank Z = -2.29; p = .02). Fig. 2.6E 

shows a raster plot and PSTH of a sample neuron that exhibited the n+1 effect—

specifically inhibition of PV neurons during the first tone increased the number of spikes 

in response to the second tone. As in the computational model, the n+1 effect was not 

observed in the adapting group in response to PV inhibition (p > .05). Again, as in the 

model, there was no n+1 effect produced by SST inactivation in either the adapting, 

stable, or facilitating groups (all p > .05). These results provide a strong validation of a 
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counterintuitive prediction of the model, and strong support for the role of STP in 

temporal-context modulation. 

2.3 Discussion 

 A large body of experimental evidence has demonstrated that there is significant 

diversity in the temporal profile of the firing property of cortical neurons in response to 

repeated stimuli. However, the origin this diversity has remained largely unexplored. 

The current study identified a novel mechanism underlying temporal-context modulation 

of sensory stimuli as the source of the diversity of temporal response profiles. We found 

that a simple feedforward model that incorporated empirically-based STP properties at 

five different synapses can account for the three experimentally observed temporal 

profiles by simply altering the relative weights of PV and SST inhibition. Critically the 

model generated two predictions that were experimentally tested and validated. 

 The first prediction was a relationship between temporal-profile class and tone-

evoked spike latency. This prediction arises as a consequence of STP at the inhibitory 

branches the circuit (i.e., Input→PV→Pyr and Input→SST→Pyr), and, that for this STP 

to modulate pyramidal firing the EPSPs and IPSPs onto a pyramidal neuron must 

overlap in time. Thus, the strong temporal-context modulation in the adapting and 

facilitating groups suggest a broad temporal overlap between excitation and inhibition. 

In contrast, the relatively weak temporal context modulation in the stable populations, 

suggests that these neurons may fire too quickly to be strongly modulated by the 

inhibitory branch of the circuit which is delayed as a result of the additional synaptic 

step. This prediction was confirmed by demonstrating that the latency of the stable 
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population was significantly shorter than that of the adapting and facilitating population 

(Fig. 2.5).  

 The second prediction of the model was that because temporal-context 

modulation is driven by changes in E/I balance imposed by STP, that “blocking” STP 

should result in what we refer to as an “n+1” effect. Specifically, that optogenetically 

inhibiting PV neurons should prevent potential STP at the PV→Pyr synapse. If this STP 

is contributing to temporal-context modulation, then inhibition during tone n should 

influence the pyramidal neuron response at tone n+1. This novel prediction was 

experimentally confirmed by showing that inactivation of PV neurons at the first tone 

decreased firing of the pyramidal neurons in response to the second tone (Fig. 2.6). In 

contrast, this effect was not observed by inhibiting the SST neurons, a result also 

predicted by the model because unlike the significant short-term depression at the 

PV→Pyr, the SST→Pyr IPSP exhibits weak and inconsistent forms of STP. This result 

provides some of the best evidence to date that STP contributes to sensory adaptation. 

2.3.1 STP generates temporal-context modulation through spike rate and latency 

shifts 

 It is increasingly recognized that PV and SST neurons fulfill distinct 

computational roles within cortical microcircuits [e.g., 6, 22, 26, 52, 53, 54]. As both PV 

and SST neurons inhibit pyramidal neurons, a crucial question pertains to which 

differences between PV and SST neurons underlie their different computational roles. 

Critical differences include distinct connectivity patterns (e.g., SST neurons primarily 

target pyramidal dendrites), and intrinsic excitability (PV neurons are fast-spiking, and 

SST are low-threshold)[42, 43]. But one of the most robust differences between PV and 
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SST neurons lies in their STP properties, specifically, excitatory inputs to PV neurons 

generally undergo short-term synaptic depression, while the excitatory synapses onto 

SST neurons exhibit dramatic facilitation [38, 39, 41, 44, 55]. Using computational and 

experimental approaches we were able to quantify the contributions of inhibition not 

only to adaptation, but also to facilitation, and distinguish between firing rate and spike 

latency contributions. Our results provide for a novel differential role for PV and SST in 

temporal context modulation. Further, we find that the diversity of temporal response 

profiles in cortical neurons may be explained by the initial connectivity of local circuits—

i.e., whether the dominant source of inhibition onto a pyramidal neuron is tilted towards 

PV or SST neurons. 

 In contrast to previous models of how STP may underlie temporal context 

modulation, which have relied on abstract or firing rate implementations, our spiking 

model emphasizes a key functional mechanism of STP. The dynamic decreases and 

increases in synaptic strength imposed by STP are not expressed solely by changing 

spike probability and rate, but by relatively small shifts in the latency of inhibitory neuron 

firing. That is, in the temporal relationship between the EPSPs and IPSPs impinging on 

the pyramidal neurons. Indeed, previous experimental and computational results have 

demonstrated that both short- and long-term synaptic plasticity can shape neural 

computations by modulating the race to threshold between EPSPs and IPSPs. For 

example, latency delays of a mere millisecond in inhibitory firing can convert a 

subthreshold excitatory input in to a suprathreshold input [48, 49, 51]. Thus, the balance 

between excitation and inhibition is not simply governed by absolute synaptic strength 

but by the relative timing of EPSPs and IPSPs in the pyramidal neurons. Thus a further 
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prediction that emerges from the model is that significant shifts in the latency of SST 

neurons should shorten in response to consecutive tones. And that it is possible that 

short-term facilitation onto SST neurons might not significantly increase SST firing rate, 

but still underlie adaptation through shifts in latency.  

2.3.2 Limitations of the model 

 The model presented here is highly simplified in that it does not take into account 

the full complexity of cortical microcircuits, including the presence of recurrent 

excitation, and the connections between SST→PV and PV→SST neurons [56, 57]. 

Additionally, we focused on a single neurons, rather than a large-scale population 

model [58]. These simplifying assumptions allowed us to firmly ground the model in the 

empirical data and avoid making assumptions about the recurrent circuitry underlying 

cross-frequency interaction. Importantly, it is unlikely that that these higher-order circuit 

interactions significantly contribute to the short-latency pyramidal neuron responses to 

single tones being studied here. In order to further understand the cross-frequency 

suppression and facilitation effects, in the future, detailed population-level models will 

have to be developed. Towards this goal the current results highlight the importance of 

empirically defining the detailed microcircuit structure as latency differences of a few 

milliseconds can have a profound functional effect.   

 Critical to our objective of anchoring the model in the experimental data, are the 

assumptions related to the direction, magnitude, and temporal profile of STP at each 

synapse type. The model is largely robust to the changes in the empirically-derived 

values regarding the magnitude and times constants of STP. However, the presence of 

short-term facilitation at the Input→SST synapse, and depression at the PV→Pyr 
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synapses are key to the presented results. And while there is significant variability in the 

experimental estimated of the STP parameters at the synapse classes simulated here, 

to the best of our knowledge all experimental data points to facilitation and depression 

of Input→SST and PV→Pyr synapses respectively [38, 39, 41, 44, 55, 59]. Similarly, 

experimentally observed differences in the intrinsic properties of PV and SST neurons 

were also incorporated into the model. These included the time constants, spike 

threshold, spike adaptation, and the localization of inhibitory inputs onto the Pyr units. 

While these properties influence model behavior, they are not fundamental to obtaining 

the reported results. 

2.3.3 Predictions and Conclusions 

 In addition to the predictions tested here a number of additional predictions 

emerge from the current study, including: 1) the first-spike latency of SST neurons 

should decrease in response to consecutive tones; 2) adapting and facilitating neurons 

should receive strong SST and PV inhibition, respectively; and 3) that experience-

dependent increases in responses to tone sequences [21, 60, 61] might be attributable 

to SST plasticity—e.g., long-term depression of SST IPSPs. Overall our results suggest 

that differential PV and SST inhibition contributes to the diversity of temporal context 

profiles [6, 22, 26]. Importantly the current results provide compelling evidence that 

short-term synaptic plasticity is indeed a key mechanism driving temporal context 

modulation, by characterizing a novel n+1 effect that arises as a direct consequence of 

STP. 
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2.4 Methods 

2.4.1 In vivo electrophysiology 

 The experimental data set used here was the same as that used in a previously 

published data set [6]. Eleven adult male PV-Cre (B6;129P2-Pvalbtm1(cre)Arbr/J) and 

SST-Cre (Ssttm2.1(cre)Zjh/J) mice aged 12-15 weeks were anesthetized, and AAV 

encoding Cre-dependent ArchT [6] were injected into auditory cortex (A1) 2-4 weeks 

prior to experimental recordings. For the electrophysiology recording session mice were 

again anesthetized, and a linear silicon 32-electrode probe placed into A1. Online 

monitoring of sound-evoked responses was used to ensure correct electrode positioning 

and to identify a 1.3 octave range of pure tone frequencies between 1 and 80 kHz that 

evoked multi-unit responses ranging from maximal to weak. Offline spike sorting was 

performed using commercial software. 

 Acoustic tone stimuli were 100-ms tone pips separated by 300 ms of silence (400 

ms stimulus-onset-asynchrony). Trains of eight tones of a single frequency were 

presented, separated by 2.4 s of silence. Each train used one of 10 frequencies within 

the 1.3 octave range in a pseudorandom and counterbalanced manner. In half of the 

trials, an optic fiber was used to direct 532-nm laser light into A1 from 100 ms before to 

150 ms after each of 4 time periods: during the first tone, during the last tone, or during 

the silent period 400 ms before or 400 ms after the train. 

2.4.2 Analysis of A1 recordings 

 Temporal profiles to the presentation of eight tones of the same frequency were 

classified as adapting, stable, or facilitating, by regressing the number of tone-evoked 

spikes against the corresponding serial position. Statistical tests (sign rank, rank sum, 
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or linear regression, see below) were performed using single-trial spike counts within 

the 10-70 ms period following tone onset as the outcome variable, with the significance 

level α set to 0.05. Adapting temporal profiles were defined by a significant evoked 

response to the first tone and a significant negative slope across serial positions. 

Facilitating profiles were defined by a significant evoked response to the final tone and a 

significant positive regression slope. Steady temporal profiles were defined as those 

with a significant response to both the first and final tones of a train and a nonsignificant 

regression. As in previous studies, analyses were based on neuron-frequency pairs, 

i.e., each of the 10 frequencies used in the tone trains was tested and analyzed 

separately for each neuron [6]. 

 To help ensure that our analyses only included pyramidal cells, we took 

advantage of the Cre-dependent ArchT expression in the following manner: For PV-Cre 

mice, adapting and steady unit-frequencies were excluded if they had significantly lower 

1st-tone evoked firing rate during light compared to non-light. For SST-Cre mice, steady 

and facilitating unit-frequencies were excluded if they had significantly lower 8th-tone 

evoked firing rate during light compared to non-light. Although indirect light-driven 

decreases in activity in pyramidal cells could be produced through disinhibition (e.g. in a 

SOM → PV → Pyr) this method decreases the likelihood of false-positive Pyr units in 

our analyses. Furthermore, the number of units that exhibited a light-driven decrease in 

activity was small: 22 adapting unit-frequencies (3.8%), 30 steady unit-frequencies 

(3.6%), and 3 facilitating unit-frequencies (3.5%) were excluded in this manner.  

 Post-stimulus time histograms (PSTHs) were calculated by convolving spike 

times with a Gaussian kernel of standard deviation 10 ms. When averaged across 
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neuron-frequencies, PSTHs for each neuron-frequency were converted to a normalized 

deviation from baseline firing rate in the following manner: First, we calculated the mean 

and standard deviation of the firing rate in the baseline period during the 1 second 

period between trials. Next, we subtracted the mean from the PSTH and divided by the 

standard deviation of the baseline firing rate. Finally, we normalized each PSTH such 

that its maximum was 1. 

 For the latency analysis (Fig. 2.5), PSTHs were calculated in the standard 

manner by summing spikes within 4 ms time bins. A neuron-frequency’s tone-evoked 

latency was operationalized as the center of the time bin with the highest firing rate 

between 10 and 100 ms following tone onset for either the first (adapting and steady 

profiles) or last tone (facilitating profiles). To test for the effect of prior light on the 

evoked firing rate at serial position 2 (Fig. 2.6), sign rank tests were employed. 

2.4.3 Computational Model 

 Units were simulated as conductance-based integrate-and-fire units (Table 2.1). 

Three distinct types of neuronal units were implemented: excitatory pyramidal (Pyr), 

fast-spiking inhibitory Parvalbumin (PV), and low-threshold inhibitory Somatostatin 

(SST) units. The three unit types were modeled with distinct intrinsic parameters 

including membrane time constant, spike threshold, and an afterhyperpolarization 

current designed to reproduce their firing properties and spike-adaptation (see Table 

2.2). Pyr units were modeled as two-compartment (soma and dendrite) units, while both 

types of inhibitory units were simulated as a single compartment unit. Simulations were 

implemented in the NEURON simulation environment [62], and were based on 

previously published models [49, 63]. Each unit’s membrane potential was subject to 
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Table 2.1 Global Parameters in Chapter 2. 

Parameter Value 

Integration time step (ms) 0.05 

Temperature (°C) 36 

Cell Length (cm) 10 

Cell Diameter (cm) 10 

Resting membrane potential (mV) -65 

Leak conductance (uS / cm2) 100 

Internal resistance (Ω⋅cm) 35 

Refractory period (ms) 3 

AHP reversal potential (mV) -80 

Dendritic compartment length (cm) 100 

Dendritic compartment diameter (cm) 0.5 

Noise Current (nA) 0.005 

Global NEURON parameters used for all units and simulations. 

 

Table 2.2 Unit Parameters in Chapter 2. 

Parameter Pyr PV SST 

Membrane Time Constant (ms) 15 7.5 19 

Spike threshold (mV) -35 -40 -45 

Spike duration (ms) 1 0.5 0.75 

Membrane capacitance (μF/cm^2) 1.5 0.75 1.9 

AHP Conductance Incremement (uS / cm^2 / spike) 100 25 50 

AHP Decay Time Constant (ms) 5 1 3 

NEURON parameters that differed between units.  
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leak, afterhyperpolarization, and synaptic currents as follows: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝑔𝐿(𝑉𝑚 − 𝐸𝐿) + 𝑔𝐴𝐻𝑃(𝑉𝑚 − 𝐸𝐴𝐻𝑃) + 𝑔𝑠𝑦𝑛(𝑉𝑚 − 𝐸𝑠𝑦𝑛) 

 Excitatory and inhibitory synaptic transmission was modeled using Alpha 

synapses with forward and backward binding [64]. Short-term synaptic plasticity (STP) 

was incorporated at all synapses using the Tsodyks-Markram formulation [65, 66], 

wherein repeated presynaptic spikes modulated the maximal synaptic conductance by a 

product of resources (R) and availability (u): 

𝑅𝑛+1 = 1 − [1 − 𝑅𝑛(1 − 𝑢𝑛)] ∙ 𝑒
−

∆𝑡𝑠𝑝

𝜏𝑑  

𝑢𝑛+1 = 𝑈 + 𝑢𝑛(1 − 𝑈) ∙ 𝑒
− 

∆𝑡𝑠𝑝

𝜏𝑓  

where d and f are the time constants of depression and facilitation respectively, and U 

can be interpreted as the initial release probability. R and u are updated at the time of 

each presynaptic spike and tsp is the interval between the current and previous spike. 

All cellular and synaptic parameters were defined in consultation with the NeuroElectro 

project and studies of paired patch-clamp recordings from connected cortical cells [36, 

38-41, 55, 67]. Synaptic parameters are shown in Table 2.3. 

 Each unit received 3 distinct input fibers, and tones were simulated as a single 

spike in each input fiber once in sequence with a fixed 5 ms inter-spike interval 

(simulations with inter-spike intervals in the 5-10 ms range and the same weight 

parameters yielded similar results). Optogenetic inactivation was modeled by transiently 

injecting a current of -.01 nA to the inactivated unit. The simulated circuit was based on 

the feedforward connectivity of a cortical microcircuit [53, 68], and thus did not 

incorporate the positive feedback between pyramidal neurons, or negative feedback  
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Table 2.3 Synaptic Parameters in Chapter 2. 

Parameter Inp-Pyr Inp-PV Inp-SST PV-Pyr SST-Pyr 

Synaptic Delay (ms) 3 1 2 0.5 0.5 

U 0.15 0.25 0.05 0.35 0.2 

d (ms) 250 500 10 800 100 

f (ms) 10 10 800 10 100 

NEURON parameters that differed between synapses. 

 

produced by pyramidal to inhibitory neuron activation. This simplifying assumption was 

made because we focused primarily on the short-latency responses of A1 neurons 

which are less likely to be influenced by feedback circuitry [7]. Furthermore, as we 

simulated a reduced circuit, the relatively large single synaptic currents reflect the near 

synchronous activation of multiple synapses [69, 70]. This simplified circuit allowed a 

more tractable approach that was better constrained by the experimental data.  

2.4.4 Experimental Design and Statistical Analysis 

 For our analysis of the experimental dataset considered here [6], between-

subjects variables included mouse genotype (PV-Cre or SST-Cre) and the temporal 

profile (adapting, steady, or facilitating). From 5 male PV-Cre mice, there were 225 

adapting, 413 steady, and 45 facilitating unit-frequencies. From 6 male SST-Cre mice, 

there were 350 adapting, 412 steady, and 41 facilitating unit-frequencies. Within-

subjects variables included the serial position within each train of tone pips (1-8) and the 

presence or absence of light during optogenetic inactivation experiments (non-light vs. 

light). To classify unit-frequencies based on their temporal profile (Fig. 2.1), and to 
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assess firing latency (Fig. 2.5C), epochs containing light stimulation were excluded, 

yielding a minimum of 40 non-light epochs for each unit-frequency and serial position. 

Separating trials to assess the effect of prior light on the evoked activity at serial 

position 2 (Fig. 2.6) yielded a minimum of 20 epochs per condition. To classify unit-

frequencies based on their temporal profile, Wilcoxon signed rank tests (to test for the 

presence of evoked activity), linear regression models (to determine the slope of the 

temporal profile), and Wilcoxon rank sum tests (to exclude potential interneurons) were 

employed. To compare latencies between temporal profiles (Fig. 2.5), a one-way 

Kruskal-Wallis test was used, and the Dunn procedure was used to perform pairwise 

comparisons between the three temporal profiles. To test for the effect of prior light at 

tone 2 (Fig. 2.6), Wilcoxon signed rank tests were employed. 

 For statistical analysis of the simulation results, we used the same statistical 

tests as for the experimental data. The between-subjects variable was the interneuron 

unit type that received simulated optogenetic inactivation (PV or SST). Within-subjects 

variables included the serial position within each train of tones (1-8) and presence or 

absence of simulated inactivation. For all simulations that were subject to statistical 

tests, 20 trials were performed for each condition. 
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Chapter 3: Orchestrated excitatory and inhibitory plasticity enables stable 

persistent activity in a large spiking model 

 

Abstract 

The synaptic connectivity regime in which strong recurrent excitation is stabilized by 

inhibition enables neural circuits to sustain persistent activity states that are of 

fundamental computational utility. Yet the algorithmic rules that configure synaptic 

weights into this regime remain unknown. One excellent example of the self-organized 

emergence of stable persistent activity is the development of Up states in isolated 

cortical networks. Although experiments suggest that plasticity guides neurons to exhibit 

homeostatically-defined levels of activity, it has recently been shown that standard 

homeostatic rules alone are inherently poorly-suited to configure networks to support 

stable persistent activity states. Inspired by empirical observations of Up states, I model 

a large, sparsely-connected network of spiking units and compare the ability of different 

homeostatic-like plasticity rules to configure its synaptic weights in order to support 

stable persistent activity. I demonstrate that a family of cross-homeostatic plasticity 

rules can robustly configure an initially silent network’s synaptic weights in order to 

generate Up states. Interestingly, I show that a variation on cross-homeostatic plasticity 

that uses local rather than global signals fails to properly configure networks toward 

stable Up states unless standard homeostatic plasticity operates alongside it. Results 

suggest that standard homeostatic and cross-homeostatic plasticity mechanisms can 

work together in a complementary manner to calibrate self-amplifying yet inhibition-

stabilized circuits.  
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Chapter 3: Orchestrated excitatory and inhibitory plasticity enables stable 

persistent activity in a large spiking model 

 

3.1 Introduction 

It is well known that recurrent connectivity is the dominant circuit motif in brain 

areas such as cortex, which enables persistent activity states that are hypothesized to 

instantiate short-term memories among other computations[1, 2]. But it remains poorly 

understood how networks come to be able to exhibit stable persistent activity, 

particularly given the risk of uncontrollable runaway excitation (e.g. epileptic activity). 

What are the guiding principles that steer networks toward a regime capable of 

generating controlled persistent activity, without having their weights carefully pre-

defined to do so? More concretely, what are the synaptic plasticity rules that allow 

inhibition-stabilized persistent activity to emerge in a self-organizing manner? 

One of the best examples of self-sustained persistent activity, which is observed 

in cortical networks in many preparations in vivo and in vitro, comes from the bistable 

regime that switches between Down and Up states[3-6]. Up states refer to brief time 

periods (e.g. 500 ms - 2 s) in which nearly all neurons in the network fire spikes and 

become stably depolarized by recurrent volleys of synaptic communication. 

Experimental work has shown that cortical networks gradually transition from 

quiescence (i.e. near-zero firing rate) to the appearance of spontaneous Up states over 

the course of development both in vivo[7] and in vitro[8], during which time the Up 

states increase in frequency and duration. Interestingly, the spontaneous occurrence of 

Up states in vitro can be manipulated by chronically exciting pyramidal cells in the 
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culture for 24-48 hours[9, 10]. The latter result motivates the hypothesis that synaptic 

connections amongst excitatory and inhibitory neurons are guided by homeostasis – 

that is, the strength of synaptic connections are changed in order to achieve a target 

level of activity. Computational models have recently made progress in identifying the 

plasticity rules that could guide this process, by showing that certain homeostatic-like 

learning rules are capable of robustly modifying synaptic weights in order to support Up 

states [11]. 

However, there are several gaps in ongoing computational work. The 

orchestrated learning rules proposed by Soldado-Magraner and colleagues are 

composed as a sum of standard homeostatic and “cross-homeostatic” terms[11]. 

Standard homeostatic plasticity rules have long been well-defined[12] as an algorithm 

occurring within a single synapse that makes use of the sensed activity levels (e.g. firing 

rates) of only the presynaptic and postsynaptic neurons that form that synapse. In 

contrast, the cross-homeostatic term requires a neuron to maintain a sensed value of 

the activity of some set of neurons in the “opposite” population, i.e. an excitatory neuron 

would need to sense inhibitory firing rates, and vice versa. But does the postsynaptic 

neuron have access to a global signal representing the average activity of all cells in the 

opposite population, or does it only integrate the activity of the cells from which it 

receives input? Because the firing rate models that have been used so far were fully-

connected, these two possibilities have been indistinguishable. 

Moreover, it remains to be investigated whether the firing rate model’s results[11] 

depend on the assumptions and simplifications made relative to more biologically 

realistic spike-based models. In the current work, I hope to fill these gaps by 
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demonstrating that unsupervised excitatory and inhibitory learning rules can guide large, 

sparse networks of spiking units to exhibit persistent states with homeostatically-defined 

firing rates in the bistable regime. In grappling with the novel complexities of the model, 

I uncover nontrivial implementation and parameter effects, and explore their 

consequences. 

3.2 Results 

3.2.1 A large spiking network model of Up states 

One of the best studied forms of emergent stable, self-sustained, and persistent 

activity states is the phenomenon of Up states [3-6], which occur in a bistable regime 

that alternates between Down and Up states. The Down state represents a state of 

network quiescence, with voltage near the resting membrane potential and firing rates 

near zero. In contrast, when an Up state is ignited nearly all neurons in the network 

become simultaneously active, propelled by massive volleys of synaptic communication 

that last around a second or longer. Despite the large-scale network activity during the 

Up state, average firing rates stay relatively low, and neurons are remarkably stably 

depolarized. How is this possible? I illustrate the answer to this question with a spiking 

model of Up states shown in Fig. 3.1. 

In the model network shown in Fig. 3.1, 2000 leaky-adaptive integrate-and-fire 

units (1600 excitatory and 400 inhibitory, examples of spiking behavior shown in Fig. 

3.1A) are connected on average to 25% of the other units with current-based synapses. 

Each unit thus receives on average 400 excitatory and 100 inhibitory synapses, with 

weights defined such that excitation dominates. When 100 excitatory units in the 

network receive an external excitatory input large enough to cause a single spike (a  
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Figure 3.111A large, sparse, spiking network model of Up states. 
A. Units were leaky-adaptive integrate-and-fire units. Voltage traces display the response to 250 ms 
square pulses of injected current. Excitatory units (cyan) had a spike adaptation current, while inhibitory 
units (red) did not. B. When 100 excitatory units in the 2000-unit network (20% inhibitory) received 
external excitatory currents large enough to cause a spike, the network’s recurrent connectivity (pconn = 
0.25) enabled Up states: stable and self-sustained bouts of recurrent activity lasting about one second. 
Exemplary voltage traces for individual excitatory and inhibitory units are shown for two Up states in a 
longer simulation. C. During simulated Up states, all units in the network become active, spiking at 
relatively low rates. The raster shows spiking activity for a random 200 unit subset of the network, while 
the lower traces show the PSTH averaged across all units in each population.  
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“kick”)[13, 14], they recruit additional excitatory units, triggering an avalanche of activity 

(Fig. 3.1B & C). Yet the network does not explode (i.e. runaway excitation) because 

inhibitory units are also recruited, which provide negative currents that partially 

counteract excitatory currents. The net-positive current that each unit receives supports 

a stable firing rate, which in turns generates the amount of excitation and inhibition 

required to sustain itself. As the units continue to fire for several hundreds of 

milliseconds, a negative spike adaptation current builds in the excitatory units until it 

reaches a critical amount needed to destabilize the ongoing Up state[14], and the Up 

state terminates. These results demonstrate that the simulated network’s behavior 

provides a sufficiently accurate model of Up states in the bistable regime when its 

synaptic weights are carefully pre-defined. 

3.2.2 During an Up state, the model network exhibits the paradoxical effect 

 The key feature that allows a self-sustained state of persistent activity is the 

strong recurrent excitation that amplifies excitation produced by the “kick”. In contrast, 

the key feature that enables stability is the recurrent inhibition that prevents the positive-

feedback from “running away”. When both features are in place, the network can be 

described as an inhibition-stabilized network, or ISN[15-17]. A signature behavior of 

ISNs is that externally-injected current applied to the inhibitory neurons causes the 

opposite of its expected effect, a phenomenon referred to as the paradoxical effect. As 

shown in Fig. 3.2, the spiking model of Up states exhibits the paradoxical effect. Here, I 

conducted a simulation in which I triggered an Up state that was made artificially more 

stable by disabling the spike adaptation current that is normally present in the excitatory 

units. During a 5 second Up state, a small positive current of variable size was injected  
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Figure 3.212During an Up state, the model network exhibits the paradoxical effect. 
Depolarizing all inhibitory units during a simulated Up state decreased the mean firing rate (FR) of both 
excitatory (cyan) and inhibitory (red) populations. Up states were evoked in 5 second trials, and a square 
pulse of positive current was injected into the inhibitory units from 3 to 4 seconds. A. Post-stimulus time 
histograms (PSTHs) of the excitatory population average FR across 30 trials for each current amplitude. 
B. PSTHs of the inhibitory population average FR across trials. C. Mean FR from 3-4 s as a function of 
applied current. Increasingly depolarizing all inhibitory units decreases the FR for both populations. 

 

into all of the inhibitory units in the network for 1 second (from 3-4 s). Thirty trials were 

conducted at each current value, and a post-stimulus time histogram (PSTH) was 

constructed by averaging the firing rate across trials and units for each population 

separately. Naively, one may expect that the injected positive current will depolarize 

inhibitory units, increase the inhibitory firing rate (FR), and that the increased FR in the 

inhibitory units will decrease the excitatory FR. However, in this network as the positive 

current injected into the inhibitory units is increased, the inhibitory FR decreases, and 

the excitatory FR decreases as well (Fig. 3.2A & B). A linear regression of the mean FR 

between 3 and 4 seconds under applied currents of 0, 8, 16, and 24 pA show that 

increasing the applied current predicted a decrease in the FR of both the excitatory and 

inhibitory populations (Fig. 3.2C; excitatory: β = -.10 Hz / pA; inhibitory: β = -.32 Hz / 

pA). 

 What explains this seemingly contradictory result? Perhaps most intuitively, the 

same self-amplifying recurrent excitation that endows the network with the ability to 
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exhibit persistence can also be self-deamplifying. More concretely, when positive 

current is injected into the inhibitory units, they briefly fire additional spikes that 

decreases the excitatory FR. Suppression of excitatory units then causes a withdrawal 

of excitation from both inhibitory and excitatory units. As long as the recurrent excitation 

that is withdrawn by the change in excitatory FR is larger than the external positive 

current being injected into the inhibitory units, the result will be a net decrease in the 

inhibitory FR. And this will only be the case in a network with strong recurrent excitation 

that is held in check by inhibition, i.e. an ISN. 

The paradoxical effect can also be understood in dynamical terms if the spiking 

model is simplified into a Wilson-Cowan model[18], and the steady-state FR change 

from any given pair of initial FR values are visualized as a vector field in a two-

dimensional plane with the average excitatory FR as the x-axis and inhibitory FR as the 

y-axis (i.e. standard phase-plane analysis)[19]. The positive current injected into the 

inhibitory units warps the phase-plane such that the upper stable fixed point – the point 

at which neither excitatory nor inhibitory FRs should change – is pushed toward the 

origin (i.e. both the excitatory and inhibitory FR at the fixed point decrease). And if the 

injected current is large enough (here, 32 pA), the phase plane will be warped such that 

the excitatory and inhibitory nullclines no longer intersect at the upper stable fixed point 

at all, ending the Up state. 

3.2.3 The cross-homeostatic family of learning rules configures networks to 

support self-sustained persistent activity  

In cortical organotypic cultures network behavior is initially completely dominated 

by the Down state, but over the course of ex vivo development Up states begin to occur 
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spontaneously, increasing in frequency and duration from the second to fourth week in 

vitro[8, 9, 11]. What are the algorithmic rules that govern this process? Studies have 

shown that the emergence of Up states can be manipulated by chronically exciting cells 

in the culture during the developmental period[9, 10], which suggests that the strength 

of synaptic connections amongst excitatory and inhibitory neurons are guided by 

homeostatic rules, i.e. rules that are designed to achieve a target level of activity. 

Recent computational work has shown, however, that the standard family of 

homeostatic plasticity rules is inherently unable to guide synaptic weights to regimes 

that support Up states[11]. Specifically, they can only successfully guide modeled 

networks to a self-sustained regime in a narrow and biologically implausible parameter 

region where inhibitory-to-excitatory synaptic strengths are initialized to be relatively 

large, and weights onto inhibitory units are changed much, much more slowly (e.g. 100 

times more slowly) than weights onto excitatory units. In contrast, the same work 

demonstrated that a novel family of “cross-homeostatic” learning rules is inherently 

stable and robust to weight initialization while allowing excitatory and inhibitory weights 

to be changed at the same rate[11]. These rules consistently guided modeled networks 

to exhibit Up states over the course of simulated development. 

Although the previous work showed that the cross-homeostatic family of plasticity 

rules is stable analytically and demonstrated its robustness in a fully-connected firing 

rate models 100 units[11], it has yet to be implemented in a sparsely-connected spiking 

model. Here, I used a simulated training protocol similar to what was used in the 

previous firing rate model, but I applied it to the spiking network model. Specifically, I 

provided the external kick that allowed recurrent excitation to ignite an Up state and 
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recorded the network’s response in a 1500 ms trial. After calculating each unit’s FR 

within the network response, synaptic weights were modified according to the cross-

homeostatic learning rule, and the process was repeated over many trials. 

Fig. 3.3 demonstrates a training session using the cross-homeostatic family of 

learning rules from an initially unresponsive network (i.e. a network dominated by the 

Down state). After a trial, each of the one million synaptic connections among the 1600 

excitatory and 400 inhibitory units is modified according to the cross-homeostatic 

plasticity equations shown in Fig. 3.3A based on the network response to external 

stimulation. Initially, only the directly stimulated excitatory units fire spikes, so the other 

units receive a narrow volley of excitatory postsynaptic potentials (EPSPs) that lasts for 

tens of milliseconds (Fig. 3.3B, trial 1). Because the average FR of excitatory and 

inhibitory units during the network’s response are far below their target setpoints, 

functionally excitatory synaptic weights (𝐽𝐸𝐸 and  𝐽𝐼𝐼) are strengthened, while functionally 

inhibitory synaptic weights (𝐽𝐼𝐸  and 𝐽𝐸𝐼) are weakened (Fig. 3.3D, trials 1 to 200). 

Eventually, excitation from directly stimulated units pushes beyond the spike threshold 

of unstimulated units, driving reverberatory volleys of excitation and inhibition (Fig. 

3.3B, trial 240). At this point, the network response contains complex polysynaptic 

activity that lasts up to a few hundred milliseconds even if it does not yet constitute a 

true Up state. 

For the next phase of the training session (trial 300 to 500), recurrent excitation 

has become strong enough to support rudimentary persistent states, but evoked 

network dynamics are unstable and sputter out within several hundred milliseconds as 

excitatory units fire at a rate above their homeostatic setpoints (Fig. 3.3B, trial 320).   
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Figure 3.313Cross-homeostatic learning rules configure synaptic weights to support Up states. 
A. The global implementation of the cross-homeostatic learning rule equations modifies synapses 
according to the presynaptic FR times the difference between the opposite population average FR and its 
homeostatic setpoint. B. Spike rasters, PSTHs, and voltage traces for excitatory (cyan) and inhibitory 
(red) units from exemplary trials over the course of training. C. Population average firing rates over the 
course of training. To aid in visualization, I show a moving average with a width of 5 trials. D. Mean 
weights for each synaptic class over the course of training. In this example the weights were initiated in 
an early developmental regime reflecting a silent network. E. Duration of the network spiking response 
over the course of training. To aid in visualization, I show a moving average with a width of 5 trials. F. 
Histograms of the unit FRs for the excitatory and inhibitory populations after the network has converged. 
G. Scatterplot of the sum of incoming excitatory synaptic weights versus the sum of incoming inhibitory 
synaptic weights for each excitatory unit. H. Same as G but for inhibitory units.  
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Accordingly, the vector describing the network’s heading through weight space rotates: 

Although 𝐽𝐸𝐸 continues to strengthen and 𝐽𝐸𝐼 continues to weaken, 𝐽𝐼𝐼 now begins to 

weaken while 𝐽𝐼𝐸  begins to strengthen. Unintuitively, this allows the network to calibrate 

the average excitatory FR downward toward its setpoint while continuing to boost the 

average inhibitory FR. As this process continues, the average excitatory FR settles into 

its setpoint (5 Hz) from above, while the average inhibitory FR arrives at its setpoint (14 

Hz) from below. Over the course of training, network dynamics have become more 

stable and thus more persistent (Fig. 3.3B, trial 1800), and the response duration has 

progressively increased until it lasts for the full trial period considered here (Fig. 3.3E). 

Because the homeostatic error terms (e.g. 𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ
̅̅ ̅̅ ̅ ) approach zero, weight 

changes become minimal, and the network remains in a final convergent state. 

Importantly, neither the weights within a given class nor the individual unit FRs 

are homogeneous, as can be seen in the spike raster (Fig. 3.3B). Indeed, a histogram 

of unit FRs averaged across the final thousand trials (Fig. 3.3F) shows that they range 

widely with a coefficient of variation of about 0.8. This is because synaptic weights were 

initialized from a normal distribution, and each unit randomly receives a different amount 

of net current (i.e. balance of excitation and inhibition). Even though the cross-

homeostatic learning rules are designed to modify weights so that the network reaches 

its setpoints, the rules importantly operate using the average FR of each population, i.e. 

the error term in each equation is essentially a single value that reflects the global error 

across all excitatory units or all inhibitory units. When the two populations have each 

reached their setpoints on average, weights will no longer change, so there is no 

motivation to balance excitation and inhibition onto an individual unit. Indeed, when the 
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final synaptic weight matrices are used to plot the sum of excitatory input onto each unit 

against the corresponding sum of inhibitory input, the relationship resembles a two-

dimensional Gaussian distribution (Fig. 3.3G & H). In other words, the total excitation 

and inhibition that a given unit receives is not correlated (excitatory: β = 0.01, p = 0.80; 

inhibitory: β = -0.01, p = 0.72). Units in the upper left portion of the “cloud” that receive 

relatively large amounts of inhibition but little excitation will accordingly have a low FR, 

while those in the lower right portion that receive relatively little amounts of inhibition but 

large excitation will accordingly have a high FR. 

3.2.4 A combined cross-homeostatic and homeostatic learning rule balances 

excitation and inhibition onto individual units 

 Because the error term in the implementation of the cross-homeostatic rule that I 

have shown thus far uses the global population mean firing rate (e.g. 𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ
̅̅ ̅̅ ̅), 

individual units are not driven to their setpoint FRs as in standard homeostatic learning 

rules. Although each population’s average FR converges to the setpoint, there is a large 

variance in FR between units. For the same reason, if one were to assume that the 

cross-homeostatic rule is the only rule guiding unit FRs in a network, it would result in a 

peculiar experimental prediction: manipulating a small number of units in a network 

would not directly produce plasticity to help those units return to their own target 

setpoints (i.e. by modifying their own incoming synaptic weights) but rather would 

produce plasticity to help their postsynaptic partners reach their setpoints. This 

prediction ostensibly conflicts with experimental results showing, for example, that 

manipulating the FR of subsets of excitatory neurons in visual cortex causes the 

strength of inhibition onto the manipulated units to change in the same direction[20]. 
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One potential resolution to this conflict is to assume that classical homeostatic forces 

are also in place, i.e. a learning rule formed by the sum of both cross-homeostatic and 

homeostatic terms (Fig. 3.4A). In fact, such a combined rule can be derived analytically 

from the loss function formed by the sum of excitatory and inhibitory unit error with 

respect to their setpoints [11]. 

 Fig. 3.4 demonstrates the convergence process for what I will refer to as the 

“two-term” or “combined” family of plasticity rules, because it is formed as the sum of 

cross-homeostatic and homeostatic terms. Exact trajectories for the FR and weights 

differ from the purely cross-homeostatic case, with excitatory weights  𝐽𝐸𝐸 and  𝐽𝐼𝐸  

increasing and inhibitory weights  𝐽𝐸𝐼 and  𝐽𝐼𝐼 decreasing over the first several hundred 

trials in order to boost both the excitatory and inhibitory FRs (Fig. 3.4B & C). Once the 

excitatory FR has reached its setpoint, the inhibitory FR overshoots and all four weight 

classes reverse direction to optimize the inhibitory FR while maintaining the excitatory 

FR at its setpoint, eventually reaching a convergent and stable response of maximum 

duration (Fig. 3.4D). Convergence in population average FRs, average weights, and 

response duration superficially resembles the purely cross-homeostatic case, but there 

are some important differences. A histogram of the unit FRs averaged across the last 

thousand trials in the two-term training process shows that the variance in FR is 

drastically reduced compared to the purely cross-homeostatic case (Fig. 3.4E versus 

3.3G), with a coefficient of variation of about 0.3 rather than 0.8. This difference in 

variance is statistically significant for both excitatory and inhibitory populations 

(excitatory: F1599, 1599 = 4.8 × 10-6, p < .001; inhibitory: F399, 399 = 1.2 × 10-6, p < .001). 

Plotting the sum of excitatory input onto each unit against the corresponding sum of  



89 

 

Figure 3.414Combined cross-homeostatic and homeostatic learning rules balance excitation and 
inhibition onto individual units, decreasing cross-unit FR variance. 
A. The homeostatic terms (second term in each equation) modify synapses according to the presynaptic 
FR times the difference between the postsynaptic FR and its homeostatic setpoint. B. Population average 
firing rates over the course of training. To aid in visualization, I show a moving average with a width of 5 
trials. C. Mean weights for each synaptic class over the course of training. D. Duration of the network 
spiking response over the course of training. To aid in visualization, I show a moving average with a width 
of 5 trials. E. Histograms of the unit FRs for the excitatory and inhibitory populations after the network has 
converged. F. Scatterplot of the total incoming excitatory synaptic weights versus the total of incoming 
inhibitory synaptic weights for each excitatory unit. G. Same as F but for inhibitory units. 
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inhibitory input in the final weight matrices explains why this is the case. Unlike the 

purely cross-homeostatic case, the addition of the homeostatic term has caused 

excitatory and inhibitory input to individual units to become roughly balanced so that  

they resemble a line rather than a cloud (Fig. 3.4F & G). In these final weights, the 

inhibition that a given unit receives is correlated with the excitation that it receives 

(excitatory: β = 0.38, p < 0.001; inhibitory: β = 0.37, p < 0.001) In other words, when an 

individual unit receives a large amount of excitation, it also receives a large amount of 

inhibition, and when an individual unit receives a small amount of excitation, it also 

receives a small amount of inhibition. As a result, the net excitation that each unit 

receives is similar across units, and this is reflected in the tightened distributions of FRs. 

The homeostatic rule balances excitation and inhibition onto individual units 

because, unlike the cross-homeostatic rule, it proposes a distinct weight change for 

each synapse that is intended to push the postsynaptic unit’s individual FR to its 

setpoint. Although useful for balancing excitation and inhibition, the homeostatic rule 

alone fails to push networks toward weights that support stable and self-sustained 

activity states[11]. Yet when combined with the cross-homeostasis, the two rules can 

apparently work together without preventing the other from achieving its goal. 

3.2.5 Local implementation of the cross-homeostatic rule fails unless 

counterbalanced by standard homeostasis 

One potentially implausible property of the cross-homeostatic rule as I have 

implemented it thus far is that it assumes each neuron has access to a global signal 

representing the average activity of the opposite (“crossed”) population.  Although such 

a global signal may be possible, it may be more biologically plausible to assume that 
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any given neuron has access only to the activity of its presynaptic partners in the 

opposite population. This local variation on the cross-homeostatic rules can be 

implemented by simply replacing the variable that represents the average of the 

opposite population’s FR (e.g. 𝑟𝑖𝑛ℎ
̅̅ ̅̅ ̅) with a vector in which each element represents the 

average FR amongst that unit’s presynaptic partners in the opposite population. In this 

case, proposed weight changes are distinct for each synapse depending on the 

hypoactivity or hyperactivity of its presynaptic partners in the opposite population. The 

left-hand column of panels in Fig. 3.5 demonstrates an example training procedure 

using a local implementation of the cross-homeostatic rules. Interestingly, although the 

first several hundred trials resemble the global cross-homeostatic case, average FRs 

quickly become unstable and vary wildly from trial to trial (Fig. 3.5B & C). The average 

inhibitory FR overshoots its setpoint as the average excitatory FR undershoots its 

setpoint, and the average weights continue to diverge rather than reaching final steady 

values. If the training procedure is allowed to continue, the FRs and weights will never 

converge and instead continue to diverge, becoming more chaotic as the weights 

approach minimal and maximal values (not shown). 

Although the exact cause for the failure of the local cross-homeostatic rule is not 

fully clear, two key observations help provide an intuition: First, examination of the 

individual unit FRs over the course of training shows that they vary chaotically; some 

units exhibit very large FRs for hundreds of trials only to eventually decrease back down 

to low FRs while other units do just the opposite (not shown). This is not the case in the 

global implementation, where although FR variance is high, units roughly maintain their 

FR over the course of training. Second, the local and global implementations affect FR  
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Figure 3.515A local implementation of the cross-homeostatic learning rule fails unless the 
homeostatic rule operates alongside it. 
A. The local implementation of the cross-homeostatic learning rule modifies synapses according to the 
presynaptic FR times the difference between the average FR among the presynaptic partners in the 
opposite population and their homeostatic setpoint. B. Population average firing rates over the course of 
training for the local cross-homeostatic rule alone. To aid in visualization, I show a moving average with a 
width of 5 trials. C. Mean weights for each synaptic class over the course of training for the local cross-
homeostatic rule alone. D. The homeostatic terms (second term in each equation) modify synapses 
according to the presynaptic FR times the difference between the postsynaptic FR and its homeostatic 
setpoint. E. Population average firing rates over the course of training for the two-term rule with local 
cross-homeostasis. To aid in visualization, I show a moving average with a width of 5 trials. F. Mean 
weights for each synaptic class over the course of training for the two-term rule with local cross-
homeostasis.  
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variance very differently over the course of training. Whereas the global implementation 

of the cross-homeostatic rule drives FR variance to asymptotically stable levels as the 

network successfully converges, the local implementation sharply increases FR 

variance to a higher value in both populations, and the increase in FR variance tracks 

the increasingly chaotic changes in average FR as the network fails to converge (not 

shown). Thus it seems that the way in which the local implementation proposes distinct 

changes to each synapse increases the cross-unit FR variance, and this problem 

becomes more and more exacerbated over the course of training. 

As the right-hand column of panels in Fig. 3.5 demonstrates, adding the classical 

homeostatic term to the local implementation of the cross-homeostatic rule allows it to 

successfully converge. Average FRs and weights follow a trajectory that strongly 

resembles the two-term rule with the global implementation of the cross-homeostatic 

rule (Fig. 3.5E & F). At the end of training, FR variance in the network that used the 

two-term rule with local cross-homeostasis is not statistically different from the network 

that used the two-term rule with global cross-homeostasis (excitatory: F1599, 1599 = 1.05, 

p = .34; inhibitory: F399, 399 = 1.13, p = .24). Thus, as in the global implementation, when 

the standard homeostatic rules are in place, they tend to decrease the cross-unit FR 

variance, which is apparently enough to counteract the local cross-homeostatic rule’s 

tendency to uncontrollably increase cross-unit FR variance. Notably, combining the 

local cross-homeostatic and standard homeostatic rules yielded plasticity dynamics that 

guided the network toward stable self-sustained responses, despite each component 

rule failing to do so on its own. 
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3.2.6 Comparing convergence and stability across rule variations 

 In the current analysis, I have considered four distinct families of learning rules 

that result from the two possible implementations of the cross-homeostatic rule (global 

or local) and whether or not the homeostatic term was included (cross-homeostatic only 

or two-term). Although I illustrated their convergence in example training sessions that 

resemble developmental conditions (i.e. beginning from zero firing rate in both 

populations), it is also important to demonstrate the generality of these results across 

different weight initializations. In Fig. 3.6, I quantify the convergence and stability of the 

four different rules across 6000-trial training sessions beginning from nine different 

weight initializations. 

 To illustrate the nine weight initializations, I first show the trajectories taken by 

the two-term global family of rules through weight space. Weight initializations were 

chosen to capture a diversity of weight magnitudes (i.e. low-gain and high-gain) that 

started from either developmental conditions (zero FR) or nonzero FRs that were not at 

the setpoints. Despite starting from vastly different initial average weights, networks that 

used the rule families other than the local cross-homeostatic rule alone converged for all 

nine weight initializations. Ultimately, the networks’ average weights arrived at different 

positions on a line reflecting the balance of excitation and inhibition that allowed them to 

exhibit sustained activity at the target setpoints (Fig. 3.6A & B). 

 In order to compare the ability of the different rules to guide network activity to 

the homeostatic setpoints and remain stable once convergence had taken place, I 

quantified the mean-squared error (MSE) of the population FR and the unit FRs with 

respect to their setpoints averaged over the last 2000 trials. First, I examined the  
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Figure 3.616A comparison of convergence and stability across the four rule variations using 
different initial weight conditions at low and high gains. 
A. A visualization of the initial mean weights onto the excitatory units (upward-pointing triangles) and the 
path of convergence taken by the 2T-global rule toward its final convergent weights (downward-pointing 
triangles) for the nine different initial conditions. B. Same visualization as in A, but for the mean weights 
onto the inhibitory units. C. The mean squared error (MSE) of the population average FRs with respect to 
their homeostatic setpoints over the final 2000 trials of training (i.e. after convergence) as a function of the 
rule family that was used. D. The MSE of individual unit FRs with respect to their homeostatic setpoints 
over the final 2000 trials of training as a function of the rule family that was used. E. The mean absolute 
change in weights (MACW) over the final 2000 trials of training as a function of the rule family that was 
used. For panels C, D, and E, all individual data points are shown, and error bars represent the 95% 
confidence interval. CH = cross-homeostatic, 2T = two-term, which refers to the combined homeostatic 
and cross-homeostatic rules, G = global cross-homeostasis, L = local cross-homeostasis.  
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population average FR with respect to its setpoint (Fig. 3.6C). I found that only the local 

cross-homeostatic rule failed to achieve an acceptable level of convergence with the 

population average FR. The mean terminal squared error for the population average 

FRs was 81.2 Hz2 for the local cross-homeostatic rule, while it was about 1.7 Hz2 for the 

other rules (post hoc t values all < -15, all p’s < .001). There were no differences 

amongst the other three rules (all p > 0.9). 

Next, I quantified the MSE of the individual unit FRs with respect to their 

setpoints (Fig. 3.6D). Since even for the two-term rules FR variance was considerable, 

this value was much larger in general. Unsurprisingly, I again found that the local cross-

homeostatic rule performed the worst with a value of 2335 Hz2 (post hoc t’s all < -58, all 

p’s < .001). In contrast, both two-term rules (with local and global cross-homeostasis) 

performed the best and equally well with values of 19.7 Hz2 and 21.6 Hz2 respectively, 

while the global cross-homeostatic rule’s performance was intermediate with a value of 

96.9 Hz2. Post hoc tests from a one-way ANOVA that included the three successful 

rules showed that the two-term rules had significantly lower MSE of individual unit FRs 

(both t’s < -7, p’s < .001). This is because without the homeostatic term the global 

cross-homeostatic family of rules has no mechanism for driving individual units to their 

setpoints and instead can only optimize the population average FR toward the setpoint. 

 While the previous MSE measures were useful in quantifying the robustness of 

convergence across different weight initializations, I also wanted to quantify the stability 

of the rules once the target setpoints had been reached. To do so, I created a measure 

that captures how much weights changed on each trial, which I termed the mean 

absolute change in weights (MACW). I then quantified the average MACW across the 
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final 2000 trials. As shown in Fig. 3.6E, MACW was largest (mean value of 0.135 pA) 

for the local cross-homeostatic family of rules because it did not allow convergence and 

instead continued to make chaotic, unstable weight changes from trial to trial. MACW 

was significantly lower for the other three rules compared to the local cross-homeostatic 

rule (all t’s < -3.6, all p’s <.005). In contrast, the global cross-homeostatic learning rule 

had the lowest MACW with a mean value of 0.035 pA, and both two-term rules (with 

local and global cross-homeostasis) had intermediate and comparable mean values for 

the MACW of 0.064 and 0.067 pA. However, the differences in MACW amongst the 

three successful rules were not statistically significant (all |𝑡| < 1.7, all p’s > 0.25). 

Although differences did not reach statistical significance, the global cross-homeostatic 

rule may be slightly more stable because once the population average FR reaches the 

setpoint, the error term approaches zero and the rule will not propose any more weight 

changes. On the other hand, the two-term rules could be considered slightly “less 

stable” than the global cross-homeostatic rule alone in the following way: from trial to 

trial, variations in random noise cause some units to fire more or less than their 

setpoints, and in response, the homeostatic term will attempt to optimize their FRs and 

continue to alter the weight matrices accordingly. Yet despite the ongoing attempt to 

optimize individual unit FRs, it is clear that the network’s convergent behavior (i.e. 

exhibiting stable Up states with population average FRs at the setpoints) is maintained, 

and thus the combined rules can be said to be stable. 

3.3 Discussion 

Persistent activity states are among the most useful mechanisms for neural 

computation, because preserving information about a triggering event after it has 
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passed enables entire classes of cognitive functions. Since the identification of 

persistent activity states as a strong candidate mechanism underlying working 

memory[1], decades of experimental and computational work have explored its short-

term mnemonic function and extended its role into arenas including timing, attention, 

and memory consolidation during sleep[21-23]. Although self-amplifying yet inhibition-

stabilized regimes have been recognized as being critical for stable persistent activity, 

the algorithmic rules that can calibrate neural circuits into this regime remain poorly 

understood. In the current work I demonstrate that orchestrated plasticity rules based on 

homeostatic and cross-homeostatic principles allow large, sparsely-connected networks 

of spiking units to exhibit stable persistent activity states that resemble the well-studied 

phenomenon of Up states. 

3.3.1 The interplay of cross-homeostatic and standard homeostatic forces 

While useful for pushing each neuron toward its setpoint FR, standard 

homeostasis cannot cope with ISNs operating in the paradoxical regime[11]. Consider a 

hypothetical network that is pre-configured to support stable persistent activity in which 

all inhibitory units are firing just beneath their setpoint FR. Standard homeostatic 

plasticity would naively increase excitatory weights onto inhibitory units, but this strategy 

would counter-productively decrease inhibitory FR due to the paradoxical effect. This 

example illustrates one manifestation of how standard homeostasis can fail to configure 

networks to support stable persistent activity at the setpoint FRs [11]. Standard 

homeostasis can technically be stable when inhibitory-to-excitatory synaptic strengths 

are initialized to be relatively large, and inhibitory weights are changed much more 

slowly (e.g. 100 times more slowly) than excitatory weights. But experimental work 
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suggests that inhibitory neurons undergo homeostatic plasticity at the same rate as 

excitatory neurons[24-26], leading to the conclusion that standard homeostatic plasticity 

alone cannot account for the emergence of persistent stable activity. In contrast, as I 

demonstrate in Fig. 3.3, global cross-homeostatic rules can configure networks to 

exhibit stable Up states by itself. However, when interfacing the model with biological 

reality, the idea that global cross-homeostatic plasticity is the only learning rule at work 

in real networks faces at least two biological challenges. 

First, if cross-homeostatic plasticity were operating alone it would lead to the 

prediction that manipulating the activity of certain subsets of units (e.g. some excitatory 

neurons) would not directly produce plasticity to help those units return to their FR 

setpoints. Instead of modifying their own incoming synapses, cross-homeostatic 

plasticity would instead modify synapses that target the opposite population, even if that 

population was already at its setpoint FR. Although such plasticity could conceivably 

modify FRs that would then cause additional plasticity to indirectly bring the manipulated 

units back to their setpoints, this prediction appears to conflict with previous 

experimental findings. For example, Xue and colleagues showed that after 

overexpressing a potassium channel in and consequently reducing the FR of a small 

subset of pyramidal cells in primary visual cortex, incoming inhibition onto the 

manipulated units was selectively reduced[20], which would be consistent with standard 

homeostatic plasticity. 

Second, the global cross-homeostatic rule would require each unit in each 

population to have access to a signal representing the average FR in the opposite 

population. A simple modification to address this concern is to assume that each neuron 
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instead uses a local sensed value for the FR, e.g. by averaging the activity of its 

presynaptic partners in the opposite population. However, the current work predicts that 

using only local cross-homeostatic plasticity in sparse networks would chaotically 

destabilize plasticity dynamics throughout the population and prevent units from stably 

achieving their setpoints (Fig. 3.5, left column), which is also clearly inconsistent with 

experimental observations. 

As the current work demonstrates, a combined rule formed by the sum of cross-

homeostatic and standard homeostatic terms addresses both above concerns. 

Remarkably, such a combined rule can be derived analytically from the loss function 

formed by the sum of terms representing the squared error of excitatory and inhibitory 

populations with respect to their homeostatic setpoints[11]. Despite their differences, 

cross-homeostatic and homeostatic forces appear to work together in a complementary 

manner without interfering with each other. More specifically, the tendency of standard 

homeostatic plasticity to push each individual unit toward its setpoint by balancing its 

incoming excitation and inhibition – and thus decreasing cross-unit FR variance – 

counteracted the tendency of local cross-homeostasis to increase cross-unit variance. 

As a result, a combined rule with standard homeostasis and local cross-homeostasis 

successfully configured networks toward stable persistent activity at the setpoints (Fig. 

3.5, right column), despite both component rules failing to do so on their own. 

3.3.2 Cross-homeostasis: local or global? 

As noted previously, the global cross-homeostatic rule would require each unit in 

either population to have access to a signal representing the average FR in the opposite 

population. Furthermore, two distinct global signals would be needed (one for each 
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population), and the value of the signal would need to be roughly homogeneous across 

the spatial extent of the population. However, the idea that neural networks use a global 

signal to regulate homeostasis may not be so far-fetched. For example, experimental 

results in hippocampal cultures showed that chronically reducing FRs through 

pharmacological means caused the network to adjust its average FR back to baseline, 

but individual neurons were not guaranteed to return to their baseline FRs[27]. A global 

signal could theoretically be implemented by a non-synaptic signaling molecule, e.g. a 

gaseous signaling molecule such as nitric oxide or a paracrine messenger[28]. In the 

absence of a global signaling mechanism, cross-homeostatic plasticity could also use 

purely local signals if a neuron can maintain a representation of the average FR across 

its presynaptic partners in the opposite population. One way to implement this 

biologically would be with metabotropic receptors, e.g. mGlu receptors on an inhibitory 

interneuron or GABAB receptors on a pyramidal cell. Slow activation of second 

messenger pathways could allow neurons to integrate synaptic activation from the 

opposite population, which could be compared to an internal, genetically-defined level of 

expected activation. And because homeostatic plasticity appears to primarily regulate 

ionotropic receptors, metabotropic receptor activation would be decoupled from ongoing 

plasticity. 

Previous computational modeling work demonstrated that the cross-homeostatic 

family of plasticity rules can configure synaptic weights to support persistent stable 

activity in a firing rate model with 100 units[11]. However, because the network was 

fully-connected (each unit connected to all other units), the model was unable to 

distinguish between local and global implementations of the cross-homeostatic rule. In 



102 

the current work I used a sparsely-connected network (probability of connection = 0.25) 

and found, surprisingly, that when units sensed the FR of the opposite population locally 

via their synaptic inputs, the cross-homeostatic rule failed unless counter-balanced by 

standard homeostasis. Assuming that standard homeostatic plasticity also operates in 

parallel, the current results are thus consistent with either a global or local 

implementation of cross-homeostatic plasticity. 

3.3.3 Future directions 

 A primary contribution of the current work was to show that conclusions made on 

the basis of simpler models (e.g. firing rate models) were upheld in a more biologically 

realistic model. Indeed, in computational models it is often difficult to determine the level 

of biological realism necessary to reach useful conclusions. For example, the sparse 

connectivity employed in my model was necessary to distinguish between local and 

global forms of cross-homeostasis. Nevertheless, there are some aspects of the current 

model that could be modified to be even more biologically realistic, which I would expect 

to be informative. 

First, my model used only one type of inhibitory unit that was meant to resemble 

Parvalbumin interneurons and did not employ short-term synaptic plasticity (STP), a 

phenomenon in which a synapse’s strength changes on short timescales based on its 

usage [29]. Experimental work has characterized several genetically distinct types of 

inhibitory interneurons with differing excitability and STP at incoming and outgoing 

synapses[30]. Recent computational work has shown that incorporating multiple 

inhibitory unit types[31] and endowing them with experimentally-observed STP 

profiles[32] impacts model behavior. Perhaps most relevant to the current work is the 
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observed predominance of weak short-term depression at excitatory-to-excitatory 

synapses[30], a force I expect to work alongside spike adaptation to place limitations on 

the duration of persistent states. Yet excitatory-to-excitatory STP has also been 

observed to be remarkably diverse and layer-dependent[33], which opens up the 

possibility that short-term facilitation could actually reinforce persistence in some parts 

of the circuit. 

Second, the current work does not address the conundrum of how Up states 

(and other forms of stable persistent activity) are initiated. Spiking models of Up states 

generally throw this problem into stark relief, because one must decide how to model a 

stochastic source that can bridge the large (~15 mV) gap between resting membrane 

voltage and spike threshold[14]. If large amplitudes of membrane voltage noise are 

used, then voltage distributions are not bimodal as is observed experimentally, leading 

to the conclusion that large, synchronous events (“kicks”) initiate Up states[13, 14]. But 

this leaves behind the mystery of what causes the “kicks.” For in vitro cortical networks, 

possible candidate mechanisms including intrinsically-bursting pyramidal cells[34] or 

astrocytic calcium transients[35, 36]. 

3.3.4 Conclusion 

Determining the learning rules that govern neural connectivity is a core goal in 

neuroscience because learning rules establish unifying principles that span molecular, 

cellular, systems, and computational levels of analysis. Here we reinforce and build on 

the theory of cross-homeostatic learning rules[11], showing that they can guide 

networks to support persistent activity states using local signals in a sparsely-connected 
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spiking network model, but only when operating alongside standard homeostatic 

learning rules. 

3.4 Methods 

3.4.1 Units 

The units in the model were simulated as leaky integrate-and-fire neurons with a spike 

adaptation current. The membrane potential of each unit was represented as: 

𝐶𝑚

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑔𝐿(𝐸𝐿 − 𝑉(𝑡)) + 𝐼𝑠𝑦𝑛(𝑡) − 𝐼𝑎𝑑𝑎𝑝𝑡(𝑡) + 𝜎√𝜏𝑚𝜂(𝑡) 

𝑑𝐼𝑎𝑑𝑎𝑝𝑡(𝑡)

𝑑𝑡
=

−𝐼𝑎𝑑𝑎𝑝𝑡(𝑡)

𝜏𝑎𝑑𝑎𝑝𝑡
 

The noise term 𝜎√𝜏𝑚𝜂(𝑡) represents an Ornstein-Uhlenbeck process with zero mean, 

standard deviation 𝜎, and a time constant equal to the membrane time constant 𝜏𝑚 =

 𝐶𝑚/𝑔𝐿. When 𝑉(𝑡) ≥ 𝑉𝑡ℎ𝑟𝑒𝑠ℎ, the unit emitted a spike, its voltage was reset to 𝑉𝑟𝑒𝑠𝑒𝑡 , and 

its adaptation current 𝐼𝑎𝑑𝑎𝑝𝑡  was incremented by 𝛽/𝜏𝑎𝑑𝑎𝑝𝑡. After spiking, the unit entered 

an absolute refractory period 𝜏𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑜𝑟𝑦. During a unit’s absolute refractory period, it 

could not emit spikes, and the differential equation representing its voltage was not 

updated (i.e. its voltage was “paused” at 𝑉𝑟𝑒𝑠𝑒𝑡  until the absolute refractory period 

ended). Default values for unit parameters can be found in Table 3.1. 

3.4.2 Synapses 

At the core of my model were the interactions within and between the 𝑁𝑒𝑥𝑐 

excitatory (E) units and 𝑁𝑖𝑛ℎ inhibitory (I) units. Synapses were implemented as current-

based, and the total synaptic current 𝐼𝑠𝑦𝑛(𝑡) was summed across each unit’s incoming 

synapses with distinct synaptic weights determined by the matrices 𝐽𝐸𝐸,  𝐽𝐼𝐸 , 𝐽𝐸𝐼, and  𝐽𝐼𝐼. 
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Thus the total synaptic current to the postsynaptic excitatory or inhibitory unit was given 

by each of the following two equations respectively: 

𝐼𝑠𝑦𝑛(𝑥, 𝑡) = ∑ 𝐽𝐸𝐸(𝑥, 𝑦)

𝑁𝑒𝑥𝑐

𝑦=1

𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) + ∑ 𝐽𝐸𝐼(𝑥, 𝑦)

𝑁𝑖𝑛ℎ

𝑦=1

𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) 

𝐼𝑠𝑦𝑛(𝑥, 𝑡) = ∑ 𝐽𝐼𝐸(𝑥, 𝑦)

𝑁𝑒𝑥𝑐

𝑦=1

𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) + ∑ 𝐽𝐼𝐼(𝑥, 𝑦)

𝑁𝑖𝑛ℎ

𝑦=1

𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) 

The kinetics of the synaptic currents were determined by the function 𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) for 

each presynaptic unit y and postsynaptic unit x. When a presynaptic spike occurred in 

unit y at time 𝑡∗, 𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) was incremented by an amount described by a delayed 

difference of exponentials equation[37]: 

Δ𝑠𝑠𝑦𝑛(𝑥, 𝑦, 𝑡) =  
𝜏𝑚

𝜏𝑑 − 𝜏𝑟
[exp (−

𝑡 − 𝜏𝑙 − 𝑡∗

𝜏𝑑
) − exp (−

𝑡 − 𝜏𝑙 − 𝑡∗

𝜏𝑟
)] 

where 𝜏𝑚 indicated the postsynaptic membrane time constant. Thus, the synaptic 

kinetics were determined by the synaptic delay 𝜏𝑙, the synaptic rise time 𝜏𝑟, and the 

synaptic decay time 𝜏𝑑, which differed for excitatory and inhibitory synapses (see Table 

3.2). Normalization constants were chosen so that varying synaptic time constants 

would not affect the time integral of the synaptic current. The synaptic delay 𝜏𝑙 was 

uniformly distributed between 0 and 1 ms (0 and 0.5 ms) across all excitatory (inhibitory) 

synapses. Default values for synaptic parameters can be found in Table 3.2. 

3.4.3 Network 

By default, networks consisted of 𝑁𝑒𝑥𝑐 E units (1600) and 𝑁𝑖𝑛ℎ I units (400) with 

probability of connection 𝑝𝑐𝑜𝑛𝑛 = 0.25. Depending on 𝑝𝑐𝑜𝑛𝑛, many of the values in the 

matrices 𝐽𝐸𝐸,  𝐽𝐼𝐸 , 𝐽𝐸𝐼 , and  𝐽𝐼𝐼 were zero indicating the absence of a connection. Each  
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Table 3.1 Unit parameters in Chapter 3. 

Cell Parameter Symbol Value (E) Value (I) Unit 

Resting potential 𝐸𝐿 7.6 6.5 mV 

Reset potential 𝑉𝑟𝑒𝑠𝑒𝑡  14 14 mV 

Spike threshold 𝑉𝑡ℎ𝑟𝑒𝑠ℎ  20 20 mV 

Refractory period 𝜏𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑜𝑟𝑦  5 2 ms 

Membrane capacitance 𝐶𝑚 200 100 pF 

Leak conductance 𝑔𝐿 10 10 nS 

Membrane time constant 𝜏 20 10 ms 

Adaptation strength 𝛽 3 0 nA·ms 

Adaptation time constant 𝜏𝑎 500 n/a ms 

Noise standard deviation 𝜎 2.5 2.5 mV 

Model parameters defining intrinsic properties of excitatory (E) and inhibitory (I) units. 

 

Table 3.2 Synaptic parameters in Chapter 3. 

Synaptic Parameter Symbol Value (E) Value (I) Unit 

Rise time 𝜏𝑟 8 1 ms 

Fall time 𝜏𝑑 23 1 ms 

Mean synaptic delay 𝜏𝑙 1 0.5 ms 

Model parameters defining kinetics of excitatory (E) and inhibitory (I) synapses. 
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weight matrix was generated by first initializing a connectivity matrix 𝐴𝑋𝑌 of zeros, with 

𝑁𝑥 columns and 𝑁𝑦 rows. After calculating the expected number of synapses that would 

be present based on 𝑝𝑐𝑜𝑛𝑛, that many elements in 𝐴𝑋𝑌 were chosen without 

replacement to be 1s. Nonzero diagonal elements were not allowed in the case of 𝐴𝐸𝐸 

or 𝐴𝐼𝐼. 𝐴𝑋𝑌 thus always had uniformly random connectivity with no autapses and a 

probability of connection exactly equal to 𝑝𝑐𝑜𝑛𝑛. Weight matrices were then initialized by 

replacing the nonzero elements of 𝐴𝑋𝑌 with numbers drawn from normal distributions of 

a pre-defined mean and a coefficient of variation equal to 0.2. Network simulations were 

evaluated using forward Euler integration using a time step of 0.1 ms. 

3.4.4 Procedure 

 Because the homeostatic learning rules that have been developed thus far are 

designed to optimize the firing rate (FR) during the Up state for the E and I units, I used 

a procedure in which Up states were triggered in short trials of 1.5 seconds. In each 

trial, a synaptic current large enough to cause a spike (𝐼𝑠𝑦𝑛 ⇒ 𝐼𝑠𝑦𝑛 +  0.98 𝑛𝐴) was 

injected into a number of E units equal to 5% of the total population (i.e. for a network 

with 2000 units, 100 E units). This constituted a “kick” that provided the possibility for 

recurrent excitation to ignite an Up state. 

 After each trial, I first calculated the post-stimulus time histogram (PSTH) of 

spiking across all units of each type as the average number of spikes per unit in 10 ms 

bins, yielding a population PSTH for the excitatory and inhibitory units over the course 

of the trial. Using the population PSTH of the I units, Up states were detected as 

contiguous periods of time in which the FR exceeded 0.2 Hz for at least 100 ms. Down 

states that were shorter than 100 ms were considered interruptions of an Up state and 
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were thus “deleted,” combining the surrounding Up states. In general, I found that this 

method of detecting Up states was robust, and many parameters worked well to detect 

Up states. Further, because I used relatively short 1500 ms trials with a single “kick” 

presented at 100 ms, it was extremely rare that more than one Up state would be 

elicited (i.e. a single Up state was either elicited or not). 

 If there was a single Up state, the FR during the Up state for each unit was 

calculated in order to be used in the learning rule. If there were no Up states, I instead 

calculated the average FR for each unit in the time period of nonzero FR, although in 

this case I considered the FR of the 100 directly stimulated excitatory units to be the 

average of all other excitatory units in order to avoid synaptic weight biases onto and 

from the input population. FRs for each unit in each trial contributed to a vector of 

moving averages with time constant 𝜏𝐹𝑅 (here, 𝜏𝐹𝑅 = 2). The moving average was 

initialized at the exact FR elicited during the first trial. Using the moving averages, I 

constructed the row vectors 𝑟𝑒𝑥𝑐 and 𝑟𝑖𝑛ℎ  in which the elements represent the moving 

average values of each unit’s FR. 

3.4.5 Learning rules 

Standard homeostatic plasticity. The homeostatic learning rules considered here 

operate on the assumption that each type of unit (excitatory or inhibitory) has a fixed 

“set-point” of activity, which are scalars that I refer to here as 𝑟𝑒𝑥𝑐𝑆𝑒𝑡 and 𝑟𝑖𝑛ℎ𝑆𝑒𝑡. Based 

on experimental data[31] I used values of 5 and 14 Hz for the 𝑟𝑒𝑥𝑐𝑆𝑒𝑡 and 𝑟𝑖𝑛ℎ𝑆𝑒𝑡 

respectively. Weight changes are applied between trials on the basis of the comparison 

between the observed unit FRs during the Up state (𝑟𝑒𝑥𝑐 and 𝑟𝑖𝑛ℎ) and the setpoints. 
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I first describe a family of learning rules that I refer to as the standard 

homeostatic family, in which a synapse’s strength is modified based on the product 

between the presynaptic FR and the “error” of the postsynaptic unit’s FR with respect to 

the target set-point: 

Δ𝐽𝐸𝐸 =  𝛼1 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐) 

Δ𝐽𝐸𝐼 = −𝛼1 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐) 

Δ𝐽𝐼𝐸 = 𝛼1 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ) 

Δ𝐽𝐼𝐼 =  −𝛼1 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ) 

where 𝛼1 is a learning rate constant, with units that convert the product of FRs into the 

same units as the weight matrix (in the current study, 𝛼1 is defined by default to be 

0.0025
𝑝𝐴

𝐻𝑧2). Notice that the signs above have been chosen so that if the postsynaptic 

unit’s FR is below its setpoint, excitation onto that unit is increased while inhibition onto 

that unit is decreased. In contrast, when the postsynaptic unit’s FR is above its setpoint, 

excitation onto that unit is decreased while inhibition onto that unit is increased.  

Cross-homeostatic plasticity. The cross-homeostatic family[11] rely on the product 

between the presynaptic FR and the average FR error of a set of units in the opposite or 

“cross” population: 

Δ𝐽𝐸𝐸 =  𝛼2 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐸𝐼 = −𝛼2 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐼𝐸 = −𝛼2 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐼𝐼 = 𝛼2 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠) 
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where 𝛼2 is again a learning rate constant with the same units as 𝛼1. To implement the 

error term (𝑟𝑝𝑜𝑝𝐶𝑟𝑜𝑠𝑠) I examined two distinct formulations. First, and most simply, cross-

homeostatic learning could rely on a global signal that integrates and averages the 

activity of all units in the opposite population. In this case, 𝑟𝑝𝑜𝑝𝐶𝑟𝑜𝑠𝑠 is a column vector of 

length equal to the number of units in the postsynaptic population, with all values set to 

the average of the opposite population: 

𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠𝐺𝑙𝑜𝑏𝑎𝑙(𝑖) = 𝑚𝑒𝑎𝑛(𝑟𝑖𝑛ℎ) 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁𝑒𝑥𝑐 

𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠𝐺𝑙𝑜𝑏𝑎𝑙(𝑖) = 𝑚𝑒𝑎𝑛(𝑟𝑒𝑥𝑐) 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁𝑖𝑛ℎ 

 In the second formulation, cross-homeostatic plasticity relied upon a local signal, 

in which each postsynaptic unit only has access to the activity of its presynaptic 

partners in the opposite population. In this case, each element of 𝑟𝑝𝑜𝑝𝐶𝑟𝑜𝑠𝑠 represents 

the average FR of the units in the opposite population that synapse onto that unit. For 

this implementation I multiply the unit FRs by the connectivity matrix 𝐴𝑋𝑌 and divide by 

the vector that results from summing its columns, which I refer to as 𝑎⃗𝑋𝑌. Note that the 

⊘ symbol refers to element-wise division. 

𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠𝐿𝑜𝑐𝑎𝑙 = 𝐴𝐸𝐼𝑟𝑖𝑛ℎ ⊘ 𝑎⃗𝐸𝐼 

𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠𝐿𝑜𝑐𝑎𝑙 = 𝐴𝐼𝐸𝑟𝑒𝑥𝑐 ⊘ 𝑎⃗𝐼𝐸 

Two-term cross-homeostatic plasticity. Lastly, I consider a combined homeostatic and 

cross-homeostatic learning rule in which the two families defined above are summed: 

Δ𝐽𝐸𝐸 =  𝛼1 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐) + 𝛼2 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐸𝐼 = −𝛼1 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐) − 𝛼2 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐼𝐸 = 𝛼1 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ) − 𝛼2 ∙ 𝑟𝑒𝑥𝑐
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠) 

Δ𝐽𝐼𝐼 =  −𝛼1 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑖𝑛ℎ𝑆𝑒𝑡 − 𝑟𝑖𝑛ℎ) + 𝛼2 ∙ 𝑟𝑖𝑛ℎ
T

∙ (𝑟𝑒𝑥𝑐𝑆𝑒𝑡 − 𝑟𝑒𝑥𝑐𝐶𝑟𝑜𝑠𝑠) 
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 Finally, for all terms in all learning rules, whenever there appears a vector of 

presynaptic FRs (𝑟𝑒𝑥𝑐, 𝑟𝑖𝑛ℎ), I imposed a minimum value such that each element was at 

least 1 Hz. The minimum constraint (1 Hz) was instituted because the weight changes 

are always a product of the presynaptic FR; thus, when the presynaptic FRs are near 

zero, the weight changes would be near zero and would take hundreds of times more 

trials to make significant changes, which was computationally impractical. Note that this 

minimum value constraint was not applied to the appearance of FR vectors when they 

occur in a homeostatic error term. Additionally, synaptic weights were constrained to 

stay within minimum and maximum weight values of 10 pA and 750 pA respectively, for 

all synapses. 

3.4.6 Evaluations of learning rules: convergence and post-convergence stability 

 To evaluate the ability of the learning rules to push the network toward the 

setpoints, I first used a standard mean squared error (MSE) approach and averaged the 

squared error of the excitatory and inhibitory population average FRs at each trial: 

𝑀𝑆𝐸𝑝𝑜𝑝(𝑡𝑟𝑖𝑎𝑙) =  
1

2
(𝑚𝑒𝑎𝑛(𝑟𝑒𝑥𝑐) − 𝑟𝑒𝑥𝑐𝑆𝑒𝑡  )2 +

1

2
(𝑚𝑒𝑎𝑛(𝑟𝑖𝑛ℎ) − 𝑟𝑖𝑛ℎ𝑆𝑒𝑡 )2  

Next, to quantify error of individual units with respect to their setpoints, I created a 

quantifier of MSE across all individual excitatory and inhibitory units at each trial: 

𝑀𝑆𝐸𝑢𝑛𝑖𝑡𝑠(𝑡𝑟𝑖𝑎𝑙) =  
1

𝑁𝑝𝑜𝑝
∑ (𝑟𝑖 − 𝑟𝑝𝑜𝑝𝑆𝑒𝑡  )2

𝑁𝑝𝑜𝑝

𝑖=1

 

where 𝑟𝑝𝑜𝑝 represented the vector of FRs of that population (excitatory or inhibitory) and 

𝑟𝑝𝑜𝑝𝑆𝑒𝑡 represented the corresponding set-point. 
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 Finally, because convergence to the setpoints does not necessarily ensure that 

the weights have “converged” (i.e. stopped changing) I additionally employed a 

measure of the mean absolute change in weights on a given trial: 

𝑀𝐴𝐶𝑊(𝑡𝑟𝑖𝑎𝑙) = 𝑚𝑒𝑎𝑛(|Δ𝐽𝐸𝐸|) +  𝑚𝑒𝑎𝑛(|Δ𝐽𝐸𝐼|) +  𝑚𝑒𝑎𝑛(|Δ𝐽𝐼𝐸|) +  𝑚𝑒𝑎𝑛(|Δ𝐽𝐼𝐼|) 
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Chapter 4: Testing the relationship between timing and working memory with two 

complementary tasks 

 

Abstract 

Working memory and timing have generally been considered to be separate 

mental functions with distinct neural implementations. Yet both require transiently 

storing information for future usage – retrospective information in the case of working 

memory and prospective information in the case of timing. To test the hypothesis that 

working memory and timing are linked, I designed two behavioral tasks that had the 

same stimulus structure but differed in terms of whether working memory or timing 

information was explicitly required to respond correctly. In both cases, participants 

learned about and used the other task-irrelevant component. The pattern of results is 

consistent with the employment of cue-specific neural sequence-like representations 

that multiplex working memory and timing information. This suggests that in some cases 

working memory is coded in a time-varying format because of the importance of 

predicting when it will be used. 
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Chapter 4: Testing the relationship between timing and working memory with two 

complementary tasks 

4.1 Introduction 

 In daily life, humans engage with events that have predictable temporal structure. 

For example, the moment a traffic stoplight changes from green to yellow, one can 

predict about how long it will take for the light to subsequently change to red. 

Furthermore, our ability to prospectively anticipate events is also flexible, as the 

particular traffic intersection, the type of stoplight (e.g. yellow arrow), and the context 

(e.g. as a pedestrian rather than driver) could determine the relevant duration and/or the 

best behavioral response. It is clear that such a feat depends upon timing, which I use 

here to refer to the ability to track time to anticipate the onset of external events on the 

scale of seconds[1, 2]. Yet one can also make the argument that such an anticipatory 

act depends on working memory (WM), the ability to transiently maintain information in 

mind (e.g., the light changed) and later use it flexibly to support a behavior or decision 

[3, 4]. Indeed, the example illustrates how prospectively timing a predictable interval and 

retrospectively maintaining information about the initiating event are often intertwined. 

Without retrospective information, a timing prediction would lose its particular meaning 

and thus its utility for flexibly guiding behavior at a future moment. 

 A recently growing body of evidence suggests that WM and timing are 

interconnected computations. In nonhuman animals, studies have observed similar 

signatures of neural activity during the fixed delay periods in timing tasks such as 

temporally-cued reward[5, 6] and in WM tasks such as delayed nonmatch-to-sample[7]. 

In diverse areas including hippocampus, striatum, and cortex, neural activity patterns 
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during the delay period resemble sequences, in which single neurons fire sparsely at 

certain times, i.e. the peak firing rates throughout the neural population “tile” the delay 

period. Computational and analytical work suggests that sequential population activity 

provides an optimal representational framework for tracking time[6], akin to temporal 

basis functions used in temporal difference reinforcement learning[8]. There is also 

evidence that neural activity during the delay period of WM tasks is more generally time 

varying[9-12], including cue-specific neural sequences [7]. But the coding framework 

that is used to simultaneously track time and preserve cue identity – and how the 

computational strategy depends on the exact behavioral requirements – remains 

unclear. 

 If time-varying activity (e.g. a cue-specific sequence) is used to instantiate a 

fused representation of both WM and timing, then one would predict that requiring 

mnemonic information at an unexpected time (e.g. halfway through the sequence) 

would yield weaker performance than at the expected time. Indeed, behavioral studies 

in humans have demonstrated that while performing a WM task, participants make 

slower and less accurate memory judgments when probed at an unexpected time [13-

15]. A related prediction would be that extracting timing information from a cue-specific 

neural sequence should result in systematic errors if that cue is typically associated with 

a different time interval. For example, if a cue associated with a short delay is instead 

followed by a long delay, then the neural state triggered by the cue may provide timing 

information that is incongruent with reality. To my knowledge, this prediction has not 

been tested. 
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 In the current work, I developed two behavioral tasks that use the same stimulus 

structure but vary as to whether the WM or timing components are explicit (i.e. required 

to solve the task) or implicit (i.e. task-irrelevant, although potentially informative). My 

results demonstrate that participants learn task-irrelevant timing information during an 

explicit WM task and task-irrelevant WM information during an explicit timing task. I add 

to existing evidence that probing WM at an unexpected time impairs performance, and I 

provide novel evidence that probing internal timing at moments that conflict with the 

prediction of a timing-informative cue leads to systematic errors in time judgement. 

4.2 Results 

4.2.1 The differential delayed match-to-sample (dDMS) task 

 To test the relationship between timing and WM, I first developed a variant of a 

standard WM task, the delayed match-to-sample task. Delayed match-to-sample tasks 

involve three phases: cue, delay, and probe. First, the participant is presented with a 

cue stimulus, in the simplest case with only two alternatives (A or B). The cue is then 

removed, and participants must maintain the identity of the cue in mind during an empty 

delay period. Finally, once the delay period has ended, either of the two stimuli are 

presented as a probe, resulting in four possible cue-probe combinations (AA, AB, BA, 

BB). Once the probe has been presented, participants are required to respond 

differentially based on whether the cue and probe matched (AA or BB) or did not match 

(AB or BA). In most prior research, the duration of the delay period between the cue 

stimulus and probe stimulus is fixed or randomized across trials; however, the key 

variation in the current task was that cue identity predicted the duration of the delay 

period on most trials (Fig. 4.1A). Accordingly, I termed the task the differential delayed 
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match-to-sample (dDMS) task. For example, if the cue was A (AA or AB), the delay 

period was likely to last 1 second (80% of trials), while if the cue was B (BA or BB), the 

delay period was likely to last 2.2 seconds (80% of trials), and this mapping was 

counterbalanced across participants. Importantly, the duration of the delay period was 

irrelevant to the requirements and instructions of the task. I hypothesized that through 

experience with the task, participants would form an association between the cue 

identity and the delay period duration, allowing them to predict when the probe would 

appear based on the cue – or conceivably, to infer the content of WM based on when 

the probe appeared. To test whether participants learned the cue-delay association, the 

cue-delay contingency was reversed in a random 20% of the trials, allowing me to 

contrast behavioral performance between what I refer to as the Standard and Reverse 

trials. 

 Three behavioral measures were used to quantify WM performance in the task: 

median reaction time (RT), accuracy (proportion of trials with correct responses), and 

the inverse efficiency score (IES) – a measure that combines information about both RT 

and accuracy. IES, which is simply RT divided by accuracy, takes into account the 

possibility that individual participants may prioritize speed at the expense of accuracy or 

vice versa, also known as the speed-accuracy tradeoff[16, 17]. For all three measures, 

there was a main effect of Reversal in which behavioral performance was worse for the 

Reverse trials (RT: F1, 26 = 7.4, p < .05; accuracy: F1, 26 = 13.4, p < .005; IES: F1, 26 = 9.1, 

p < .01), indicating that violation of the cue-delay association impaired WM performance 

(Fig. 4.1B-D). In other words, participants were not only slower when WM was probed 

at the unexpected time, but they also made more errors. For both RT and IES, there  
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Figure 4.117Timing biases performance in a working memory task with a cue-delay contingency. 
A. The differential-Delayed-Match-To-Sample (dDMS) task was based on a standard two-alternate forced 
choice implementation of delayed match-to-sample task, in which participants pressed a button to 
indicate whether two stimuli separated by a memory delay were the same (match) or different (non-
match). However, cue identity predicted the duration of the delay period on 80% of the trials (Standard), 
while the cue-delay contingency was reversed on the remaining 20% of the trials (Reverse). The mapping 
between the cue stimulus and the likely memory delay was counterbalanced across participants. B. 
Median reaction time (RT) as a function of Delay and Reversal conditions. Median RT was significantly 
slower for the Reverse trials, and it was also significantly slower at the Short Delay. C. Accuracy as a 
function of Delay and Reversal conditions. Participants made significantly more errors on Reverse trials. 
D. Inverse efficiency (median RT / accuracy) as a function of Delay and Reversal conditions. Inverse 
efficiency is a measure which combines both speed and accuracy of performance and in which larger 
values indicate worse performance. Participants were significantly less efficient on Reverse trials, and 
they were also significantly less efficient at the Short Delay. 
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was also a main effect of Delay in which participants responded more quickly at the 

Long delay (RT: F1, 26 = 30.7, p < .001; IES: F1, 26 = 14, p < .001). Faster responses at 

the longer delay likely reflect the fact that since the probe could only appear at two 

potential delays, once the short delay had elapsed the participant could be more certain 

that it would appear at the long delay, which I refer to as the hazard rate effect [18]. 

 To increase the validity of the results, I then performed a replication study of the 

dDMS task in an independent sample of participants (Fig. S4.1). In the replication 

study, there was a significant main effect of Reversal for both RT and IES (RT: F1, 38 = 

9.0, p < .005; IES: F1, 38 = 8.5, p < .01) but not accuracy (F1, 38 = 1.55, p = .22). There 

was however a significant interaction between Reversal and Delay for accuracy (F1, 38 = 

4.1, p < .05), and a significant simple effect of Reversal at the Long Delay (t(38) = 2.6, p 

< .05), indicating that in the replication study participants made more errors when the 

common cue-delay contingency was reversed at the Long Delay. Just as in the original 

study, in the replication study there were significant effects of Delay for both RT and IES 

(RT: F1, 38 = 31.3, p < .001; IES: F1, 38 = 36.1, p < .001), reflecting the hazard rate effect. 

When Study (Original vs Replication) was added as a third factor in a statistical analysis 

that included all of the data, all Study-related factors were insignificant for all three 

measures (all p > .05), indicating that the two studies were statistically indistinguishable. 

Therefore, I also collapsed the two studies together and found that the pattern of 

significant factors was the same as in the original study, with significant main effects of 

Reversal for all three measures (RT: F1, 65 = 16.6, p < .001; accuracy: F1, 65 = 9.0, p < 

.005; IES: F1, 65 = 17.5, p < .001) and significant main effects of Delay for RT and IES 

(RT: F1, 65 = 60.1, p < .001; IES: F1, 65 = 49.2, p < .001). 
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4.2.2 The interval stimulus association (ISA) task 

 If timing and WM share coding mechanisms when memory delays are 

predictable, then one may predict that not only should timing information affect WM 

performance but that an inverse effect from WM onto timing should exist. In the dDMS 

task, which explicitly required WM, participants implicitly learned and were biased by 

task-irrelevant timing information. This motivates the intriguing question of whether in an 

explicit timing task, participants could implicitly learn and be biased by task-irrelevant 

WM information. To address this possibility, I developed an explicit timing task with a 

cue-delay contingency that I term the interval stimulus association task (ISA; Fig. 4.2A). 

The ISA task had the same stimulus structure as the dDMS task but differed in the task 

instructions and the correct response on Reverse trials. Specifically, participants were 

instructed to respond based on the combination of the duration of the delay and the 

identity of the probe. For one pair of opposing delay and probe stimulus combinations 

(e.g. short-circle and long-star), participants were required to press one button, while for 

the other pair of delay-probe combinations (e.g. short-star and long-circle), they were 

required to press a different button. Just as in the dDMS task, the cue predicted the 

delay duration in 80% of the trials, while for the other 20% of the trials the delay was the 

opposite duration. But unlike the dDMS task, correct responses were explicitly tied to 

the duration of the delay and so were inverted for Reverse trials. Importantly, 

participants were instructed that on any given trial the interval to be judged would be 

initiated by either a circle or a star and that the cue identity was irrelevant to the task 

beyond indicating the onset of the interval. 
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Figure 4.218Cue identity biases performance in a timing task with a cue-delay contingency. 
A. In the Interval Stimulus Association (ISA) task, participants pressed a button based on the duration of 
the delay between the cue and probe stimuli as well as the identity of the probe stimulus. Each correct 
response mapped to two opposing delay-probe combinations (i.e. one response mapped to Short-Circle 
and Long-Star, while the other response mapped to Long-Circle and Short-Star). However, cue identity 
predicted the duration of the delay period on 80% of the trials (Standard), while the cue-delay contingency 
was reversed on the remaining 20% of the trials (Reverse). Unlike the dDMS task, because the delay was 
explicitly tied to the correct response, the correct response was also inverted on Reverse trials. The 
mapping between the cue stimulus and the likely cue-probe interval was counterbalanced across 
participants. B. Median reaction time (RT) as a function of Delay and Reversal conditions. Median RT 
was significantly slower for the Reverse trials, and it was also significantly slower at the Short Delay. C. 
Accuracy as a function of Delay and Reversal conditions. Participants made significantly more errors on 
Reverse trials. D. Inverse efficiency (median RT / accuracy) as a function of Delay and Reversal 
conditions. Inverse efficiency is a measure which combines both speed and accuracy of performance and 
in which larger values indicate worse performance. Participants were significantly less efficient on 
Reverse trials, and they were also significantly less efficient at the Short Delay. 
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For all three behavioral measures (RT, accuracy, and IES), there was a main 

effect of Reversal in which behavioral performance was worse for the Reverse trials 

(RT: F1, 21 = 9.2, p < .01; accuracy: F1, 21 = 12.9, p < .005; IES: F1, 21 = 11, p < .005), 

indicating that violation of the cue-delay association impaired timing-discrimination 

performance (Fig. 4.2B-D). In other words, participants made more errors and 

responded more slowly when the cue stimulus that initiated the delay period predicted a 

different time interval, which implies that participants maintained a working memory of 

the cue’s identity until the arrival of the probe. For both RT and IES, there was also a 

main effect of Delay in which participants made their responses more quickly at the 

Long delay (RT: F1, 21 = 25.7, p < .001; IES: F1, 21 = 12.5, p < .005), reflecting the hazard 

rate effect. 

 To increase the validity of the results, I performed a replication study of the ISA 

task in an independent sample (Fig. S4.2). The pattern of significant factors in the 

replication study was the same as in the original study, with significant main effects of 

Reversal for all three behavioral measures (RT: F1, 24 = 9.3, p < .01; accuracy: F1, 24 = 

7.8, p < .05; IES: F1, 24 = 8.8, p < .01) and significant main effects of Delay for both RT 

and IES (RT: F1, 24 = 14.2, p < .001; IES: F1, 24 = 5.2, p < .05). When Study (Original vs 

Replication) was added as a third factor in a statistical analysis that included all of the 

data, all Study-related factors were insignificant for all three measures (all p > .05), 

indicating that the two studies were statistically indistinguishable. I also collapsed the 

two studies together and found that the pattern of significant factors was the same, with 

significant main effects of Reversal for all three measures (RT: F1, 46 = 18.5, p < .001; 
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accuracy: F1, 46 = 19.4, p < .001; IES: F1, 46 = 19.7, p < .001) and significant main effects 

of Delay for RT and IES (RT: F1, 46 = 37.9, p < .001; IES: F1, 46 = 15.9, p < .001). 

 Together, the results of the dDMS and ISA tasks provide human behavioral 

evidence of a link between timing and WM, at least when the duration of the memory 

delay is predictable. In the dDMS task, participants explicitly encoded the cue stimulus 

identity into WM to perform the task but implicitly tracked the task-irrelevant delay. On 

the other hand, in the ISA task, participants explicitly tracked elapsed time after the cue 

to perform the task, but the results show that they also implicitly stored the task-

irrelevant cue identity in WM. These results are consistent with the notion that WM and 

timing are multiplexed and stored in time-varying patterns. Ongoing computational 

studies in my lab support the notion that a strong candidate of this time-varying pattern 

is a cue-specific neural sequence. In such a coding scheme, each cue triggers a neural 

sequence that can be decoded to extract information not only about how much time has 

passed since the cue was presented but also its identity. 

4.3 Discussion 

 Transiently storing past information and prospectively anticipating future events 

are widely considered to be among the most fundamental functions the brain performs 

[2-4, 19, 20]. Despite this, the fields of working memory (WM) and timing have 

developed largely independently of each other, as they have been generally considered 

separate mental functions with distinct neural implementations. However, on a 

computational level, timing and WM share similar functional constraints: both require 

transiently storing information – retrospective information in the case of WM and 

prospective information in the case of timing (e.g. when an event will occur in relation to 
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a previous stimulus). These properties can be viewed as intertwined, in much the same 

way that an hourglass both encodes the memory that it was recently turned over and 

also tells when a future event will take place. 

4.3.1 Background 

 For years experimental psychologists have employed behavioral tasks with a 

rigidly repeating temporal structure, and the tradition of analyzing how temporal 

structure affects performance, primarily reaction time (RT), is now over sixty years 

old[21, 22]. One main conclusion has been that as the delay between a warning signal 

and a stimulus that requires a response becomes more predictable (i.e. has a smaller 

variance), participants respond more quickly[22]. This result alone suggests that the 

brain attempts to learn the temporal structure of external events to optimize 

performance. As the field of implicit timing took shape, researchers found that when cue 

identity predicts the duration of the delay, and the participants simply needed to press a 

button in response to target stimulus that appeared after a delay, RT is systematically 

faster when the response stimulus appears at the time predicted by the cue and 

systematically slower when the response stimulus appears at the time not predicted by 

the cue[23-25]. In this case, not only is the temporal structure of the task learned, but 

the cue’s identity becomes in some sense bound to the corresponding temporal 

prediction, i.e. a cue-delay association. 

Despite progress in understanding temporal prediction in simple target detection 

tasks, it has remained less clear how representations that underlie temporal prediction 

are incorporated into WM. Recently, a few studies have shown that when the duration of 

a WM delay is predictable, expected timing affects not only RT but also accuracy of the 
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memory judgement[13-15]. A leading conceptualization of these effects is that it reflects 

the allocation of attention in the temporal domain[19]. In the current study, I 

hypothesized that expected timing was constituted by a cue-specific temporal pattern of 

neural activity that simultaneously represented the cue identity and when the probe 

would likely appear. Based on previous and ongoing computational work in my lab[6], I 

specifically conjecture that the most likely form of the temporal pattern is a neural 

sequence, but other time-varying activity patterns such as ramping firing rates are also 

possible[12, 20]. However, the neural sequence hypothesis is compatible with the 

temporal attention hypothesis if one assumes that temporal attention is supported by 

the neural sequence (e.g. attention is increased at the end of the sequence). 

4.3.2 Relationship between the hazard rate effect and the current results 

 A consistent finding across many prior studies is that when multiple delays are 

possible, participants respond more quickly following the longer delay regardless of cue-

based temporal expectation[18]. This is because once the shorter delay has elapsed, 

the participant should be more certain that the target will appear at the longer delay, 

which is referred to as the hazard rate effect. Consistent with previous studies, I also 

observe the standard hazard rate effect in both the dDMS and ISA tasks (Fig. 4.1B & 

4.2B). 

For studies in which the cue predicts the likely timing of the target, the hazard 

rate effect has also been used to explain why for some studies the RT difference 

resulting from violation of cue-based expectations is asymmetric at the short and long 

delays, with large increases in RT when targets appear unexpectedly early and little to 

no difference when targets appear unexpectedly late[23, 25]. In the latter case cue-
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based temporal expectations are at odds with the temporal prediction generated by the 

hazard rate, and it seems that the hazard rate can sometimes override cue-based 

temporal expectations[23, 25]. Although findings have been mixed as to whether cue-

based expectation effects on RT are symmetric at early and late delays, most early 

studies of implicit timing that used simple target detection paradigms found smaller 

effects at the long delay[25], and some studies found no effect whatsoever at the long 

delay[23]. 

In the dDMS, I found that the RT deficit incurred by violating the cue-based 

expectation was roughly symmetrical at both the short and long delays (Fig. 4.1B). 

Among the three previous studies that used memory delay contingencies in a WM task 

that I am aware of, two also found symmetrical cue-based expectation effects on RT at 

short and long delays[13, 14], while the other did not find a negative effect of 

unexpected timing on RT at the long delay [15]. However, in the latter study’s task 

structure, cue stimulus features were not associated with the likely delay; instead, 

temporal expectations came about because each block of trials predominantly used one 

memory delay, meaning that the temporal expectation was associated more with the 

context than the cue[15]. Thus I speculate that in the first two studies referenced 

above[13, 14] and in the dDMS task, expectation effects on RT are found at both short 

and long delays because the cue information maintained in WM provides a temporal 

prediction that conflicts with the hazard rate. As for the ISA task, the RT deficit caused 

by violating cue-based expectation was observed to be substantially smaller at the late 

delay in the initial sample of the ISA task (Fig. 4.2B), although statistically I only 

observed a main effect of delay and no interaction between cue and delay. However, in 
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the replication sample and in the combined original and replication samples, the RT 

effects appear to be nearly symmetrical (Fig. S4.2A & S4.2D). I speculate that unlike 

the hazard rate, cue-based temporal expectations affect both speed and accuracy such 

that the two may trade off[17], and as a result the IES measures generally show a more 

symmetrical effect of cue-based temporal expectation (Fig. 4.1D & Fig. 4.2D). 

Another interesting feature of the current results is that although the hazard rate 

effect is beneficial for speed of response at the long delay, it does not appear to provide 

any benefit for the accuracy of the memory judgement in the dDMS task or the timing 

judgement in the ISA task (Fig. 4.1C & 4.2C). This result is consistent with the three 

previous studies that used WM delay contingencies[13-15]. The lack of a hazard rate 

effect on accuracy suggests that speed benefits at the long delay result from a distinct 

process, and the cause of errors cannot simply be attributed to generalized temporal 

surprise. 

Just as for RT, cue-based expectation effects on accuracy are symmetrical at the 

short and long delays (Fig. 4.1C & 4.2C), which suggests that they result from the same 

process that slows RT when cue-based expectations are violated. The two previous 

studies in which cue features were associated with the likely memory delay found that 

the effect of violating cue-based expectations was roughly symmetrical at the short and 

long delays[13, 14], while the study that used context-based expectations found no 

difference in accuracy at the long delay[15]. Together, these results suggest that 

erroneous responses were made because at either delay participants used information 

both about cue identity (which was irrelevant in the ISA task) and probe timing (which 
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was irrelevant in the dDMS task), which I attribute to the employment of cue-specific 

time-varying representations. 

4.3.3 Interpreting the results of the ISA task 

 The development of the ISA task was driven by our core hypothesis that timing 

and WM are inherently linked. Although previous studies had shown that task-irrelevant 

timing information affects WM performance [13, 15], a reciprocal effect in which WM 

information could affect timing performance had not been demonstrated. The results of 

the ISA task thus solidify evidence of the link between timing and WM by testing it from 

the other side, and to my knowledge, the ISA task is the first of its kind. 

 Interpreting the results of the ISA task is more difficult than the dDMS task, and 

because of the novelty of this task comparable studies are nonexistent to my 

knowledge. Studies of explicit timing typically follow psychophysical protocols and 

require participants to discriminate time intervals that are much more similar in 

magnitude (e.g. 10% difference). Although the intervals compared in the current task 

were highly distinct, participants also needed to discriminate the probe stimulus and 

map the interval-probe combination onto the correct response. As a result, the ISA task 

was more difficult than the dDMS task, which is reflected in the longer reaction times 

and lower accuracy on average (Fig. 4.1 & 4.2). Nevertheless, participants were still 

able to learn the task and achieve an average accuracy of about 90%. Interestingly, due 

to the two-alternative forced choice structure of the task, participants had to map each 

pair of opposing interval-probe combinations to a single button (e.g. short-circle and 

long-star both mapped to a single button). A consequence of this is that if participants 

made a mistake, it cannot be determined whether they misjudged the timing component 
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or the probe discrimination component (e.g. relative to short-circle, both short-star and 

long-circle are incorrect). However, given that categorizing the probe stimulus should 

have been trivial, errors likely resulted from misjudgment of the timing component or a 

more generalized cognitive conflict. Given the distinctiveness of the two possible delay 

durations, it is somewhat surprising that cue identity caused participants to misjudge the 

duration more frequently in trials with the reversed cue-delay relationship (Fig. 4.2C). In 

my view, this is because participants exploited the informativeness of the cue to aid in 

their temporal judgements, which underscores how prospective usage of cue 

information inherently served to form a WM of cue identity in the ISA task. 

4.3.4 Future work and conclusions 

 Overall, the results of the dDMS and ISA tasks are consistent with my hypothesis 

that participants employ cue-specific time-varying representations that both memorize 

the cue identity and tell when the probe stimulus will likely appear. Future studies 

should directly test this idea by measuring neural activity in nonhuman animals during 

tasks with the same structure. I predict that population neural activity in areas such as 

hippocampus, striatum, or frontal cortex will exhibit cue-specific neural sequences[5-7] 

whose length matches the predicted probe timing. Another potential approach for 

understanding the mechanisms underlying timing and WM is to use a computational 

model and train the model neural network on the same tasks. If training biologically 

plausible models to perform the dDMS and ISA tasks causes the emergence of cue-

specific neural sequences, it would provide strong evidence that cue-specific neural 

sequences serve as the computational link between timing and WM. 
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4.4 Methods 

4.4.1 Participants 

 Across four experiments, a total of 130 human volunteers (62 female, 5 left-

handed, mean age = 29, range 18-40) participated in the study. Data from seventeen 

participants were excluded from analysis due to low accuracy (less than 70%) or 

consistently slow reaction time (RT) such that too few trials met inclusion criteria (less 

than 50% of possible trials in any Reversal x Delay condition remaining after RT 

exclusion). All participants provided informed consent before participating and were paid 

for their participation. The study was approved by the Institutional Review Board of 

UCLA. 

4.4.2 Online experimentation and recruitment 

Experiments were conducted online, with hosting provided by Gorilla 

(https://gorilla.sc/) and recruitment provided by Prolific (https://www.prolific.co/). The 

precision and accuracy of timing on the Gorilla platform (i.e. of visual presentation and 

RT) has been studied in detail[26, 27]. Although RT measurements are inaccurate, 

being ~80 ms larger than the true RT, they are relatively precise with standard 

deviations of approximately 8-21 ms depending on the exact browser, operating system, 

and device[27]. Participants accessed the experiment using personal computers 

running Google Chrome or Mozilla Firefox. No other device types (i.e. phones or 

tablets) or browsers were allowed. Participants on the Prolific platform were only eligible 

for the study if they were between the ages of 18 and 40, residing in the United States, 

fluent in English, and had never participated in an online study from my laboratory on 

Prolific. Before beginning the task, participants read and signed an informed consent 

https://gorilla.sc/
https://www.prolific.co/
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form that asked them to: 1) complete the study in a quiet place without distractions, 2) 

maximize their browser window and not adjust it during the experiment, 3) have normal 

or corrected-to-normal vision (i.e. to wear glasses or contacts if prescribed), and 4) not 

participate if they had a history of seizures, epilepsy, or stroke. After providing consent, 

participants completed a short demographics form including their age, handedness, and 

gender. Participants were then given instructions on how to perform the task, which 

stressed the importance of both speed and accuracy. Participants were also informed 

that if they were faster and more accurate than the average of the other participants in a 

given sample of participants, they would receive a bonus payment. 

4.4.3 The differentially delayed match-to-sample (dDMS) task 

 Participants performed a two-alternate forced choice task, which I term the 

differentially delayed match-to-sample (dDMS) task, in which I manipulated temporal 

expectation regarding expected probe time based on the encoded item (Fig. 4.1A). The 

background was always white, and all stimuli were black and presented in the center of 

the screen. First, a 150 ms duration fixation cross was presented, which indicated the 

start of a few trial. Following a 500-1000 ms interval, a 150 ms duration visual cue was 

presented, which could either be a black circle or black star, matched for area, with 50% 

probability. After a variable duration delay, a 150 ms duration probe stimulus was 

presented that was either the exact same stimulus or the opposite stimulus with 50% 

probability. Participants were instructed to press one of two buttons on their keyboards, 

F or J, to indicate whether they thought the cue and probe stimuli matched or did not 

match. The mapping between the response button and its meaning was 

counterbalanced across participants; for half of the participants, F indicated a match 
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and J a nonmatch, while this mapping was reversed in the other half. The response 

period was unlimited in duration, and the task did not proceed unless a response was 

given. All incorrect responses were followed by negative feedback (a “thumbs down” 

icon). After a response was given, there was a 1500-2000 ms inter-trial interval. 

 The critical manipulation in the current study involved the expected probe time. 

When appearing as a cue, one stimulus (e.g. the circle) was followed by a memory 

delay of 1000 ms on 80% of the trials and a delay of 2200 ms on the remaining 20% of 

the trials. In contrast, the other stimulus (e.g. the star) was followed by a 2200 ms delay 

on 80% of the trials and a 1000 ms delay on 20% of the trials. In this way, I expected 

participants to learn that one stimulus was likely to be a followed by a short delay, and 

the other was likely to be followed by a long delay. Trials in which the true delay was the 

most likely delay are referred to here as “Standard,” and trials in which the true delay 

was not the most likely delay are referred to as “Reverse.” The mapping between the 

cue stimulus and the likely memory delay was counterbalanced across participants. 

 Five blocks of 80 trials (64 valid, 16 invalid) were presented for a total of 400 

trials. Blocks were identical in composition but had different trial orders. Trial order was 

pseudorandomized independently for each block for each participant with the following 

constraints: 1) The first eight trials of each block were always Standard. 2) A Reverse 

trial could not immediately follow another Reverse trial. Participants were also given 

eight valid training trials with each cue before the five experimental blocks. Participants 

were given the opportunity to take short breaks between each block. Each block took 

approximately eight minutes to complete, and participants finished the experiment in 45 

minutes on average. At the end of the experiment, participants were asked whether they 
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noticed that one stimulus tended to be followed by a certain delay and provided a 

response of “Yes,” “No,” or “I don’t know.” 

4.4.4 The interval-stimulus association (ISA) task 

 The interval-stimulus association (ISA) task was identical in stimulus structure to 

the dDMS task, but the correct responses and instructions were different (Fig. 4.2A). 

Rather than being instructed to compare the cue and probe stimuli to each other, 

participants were instructed to discriminate the time interval of the delay period and the 

probe stimulus. As described in the previous section, the delay interval could either be 

1000 ms (Short) or 2200 ms (Long), and the probe stimulus could either be a Circle or a 

Star. Participants were instructed to press one key in response to one pair of opposing 

interval-probe combinations (e.g. press the F key in response to Short-Circle or Long-

Star) and to press the other key in response to the other interval-probe combinations 

(e.g. press the J key in response to Long-Circle or Short-Star). The mapping between 

the response button and the pair of opposing interval-probe combinations was 

counterbalanced across participants (i.e. in the other half of participants, Short-

Circle/Long-Star was associated with the J key, and Long-Circle/Short-Star was 

associated with the F key). Participants were instructed that for any given trial the cue 

stimulus could be either a Circle or Star and that the cue stimulus was thus irrelevant to 

the task beyond indicating the onset of the delay interval. But just as in the dDMS task, 

the cue stimulus identity (Circle or Star) predicted the delay interval on 80% of the trials 

(Standard trials), while for the remaining 20% of the trials, the cue stimulus was followed 

by the other delay interval (Reverse trials). However, in the ISA task, the correct 

response changed when the delay interval changed. 
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4.4.5 Analysis of Behavioral Data 

Training trials were excluded from all analyses. Trials with RT outside of the 

range of 100-3000 ms were discarded. For the remaining trials, I considered three 

measures of performance: accuracy, RT, and the inverse efficiency score (IES). For 

accuracy, I calculated the proportion of trials of a given type with a correct response. 

For RT, I first discarded incorrect trials. Then, trials with outlying RT were discarded in 

the following way: For each participant and each Reversal x Delay condition separately, 

trials that were further than 4 standard deviations away from the mean were discarded. 

RT was calculated as the median of the remaining trials for that condition. Finally, the 

inverse efficiency score (IES), a combined measure of speed and accuracy in which 

larger values indicate worse performance, was calculated as follows: 

𝐼𝐸𝑆 =
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

4.4.6 Statistical analysis 

 There were no between-subjects factors. Trials were classified based on 

Reversal (Standard vs. Reversal) and Memory Delay (Probe Early vs. Probe Late). 

Thus, I used a 2 x 2 repeated-measures ANOVA with factors of Reversal and Memory 

Delay and used follow-up paired-samples t tests to test for Reversal effects at each 

Memory Delay separately when there was an interaction. 
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Figure S4.1.  
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Figure S4.2. 
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Figure S4.119Timing biases behavioral performance in an independent replication sample of the 
dDMS. 
A. In an independent replication sample of the dDMS task, median reaction time (RT) on correct trials 
was slower when the more common relationship between the cue and the working memory delay (80%) 
was reversed (20%). median RT on correct trials was slower when the more common relationship 
between the cue and the working memory delay (80%) was reversed (20%). In addition to the significant 
main effect of Reversal, there was a significant main effect of Delay, indicating a hazard rate effect. B. In 
the dDMS replication study, participants were not less accurate on average when the common cue-delay 
relationship was reversed. However, there was a significant interaction between Reversal and Delay 
qualified by a simple effect of Validity at the Long Delay. C. In the dDMS replication study, participants 
had worse (larger) inverse efficiency scores when the common cue-delay relationship was reversed. In 
addition to the significant main effect of Reversal, there was a significant main effect of Delay, indicating a 
hazard rate effect. D. In a sample that combined the original and replication study samples for the dDMS 
task, median RT on correct trials was slower when the common cue-delay relationship was reversed. In 
addition to the significant main effect of Reversal, there was a significant main effect of Delay, indicating a 
hazard rate effect. E. In the combined sample, participants were less accurate on average when the 
common cue-delay relationship was reversed. For accuracy, there was only a significant main effect of 
Reversal. F. In the combined sample, participants had worse (larger) inverse efficiency scores when the 
common cue-delay relationship was reversed. In addition to the significant main effect of Reversal, there 
was a significant main effect of Delay, indicating a hazard rate effect. 
 
Figure S4.220Cue identity biases behavioral performance in an independent replication sample of 
the ISA. 
A. In an independent replication sample of the ISA task, median reaction time (RT) on correct trials was 
slower when the more common relationship between the cue and the working memory delay (80%) was 
reversed (20%). median RT on correct trials was slower when the more common relationship between the 
cue and the working memory delay (80%) was reversed (20%). In addition to the significant main effect of 
Reversal, there was a significant main effect of Delay, indicating a hazard rate effect. B. In the ISA 
replication study, participants were less accurate on average when the common cue-delay relationship 
was reversed. For accuracy, there was only a significant main effect of Reversal. C. In the ISA replication 
study, participants had worse (larger) inverse efficiency scores when the common cue-delay relationship 
was reversed. In addition to the significant main effect of Reversal, there was a significant main effect of 
Delay, indicating a hazard rate effect. D. In a sample that combined the original and replication study 
samples for the ISA task, median RT on correct trials was slower when the common cue-delay 
relationship was reversed. In addition to the significant main effect of Reversal, there was a significant 
main effect of Delay, indicating a hazard rate effect. E. In the combined sample, participants were less 
accurate on average when the common cue-delay relationship was reversed. For accuracy, there was 
only a significant main effect of Reversal. F. In the combined sample, participants had worse (larger) 
inverse efficiency scores when the common cue-delay relationship was reversed. In addition to the 
significant main effect of Reversal, there was a significant main effect of Delay, indicating a hazard rate 
effect. 
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Chapter 5: Conclusion 

 When things happen at different times, they become in a sense disconnected 

from each other. As a result, it’s not trivial to extract meaningful information from of a 

pattern of events that plays out over time, and many organisms’ abilities in this regard 

are deeply limited. Humans excel at parsing the temporal structure of experience, which 

allows us to recognize speech, detect regularity in sequences of events, and predict 

when things will happen. 

Although humans can tell time across ten orders of magnitude[1], most 

sophisticated sensory temporal processing abilities take place on the scale of tens-to-

hundreds of milliseconds. Naturally-occurring behaviors in nonhuman organisms 

demonstrate that temporal features on this scale such as interval, rate, and duration are 

critical for communication, courtship, and even navigation[2-4]. Accordingly, many 

organisms possess sensory neurons whose responses are selective to the behaviorally-

relevant timing features[5-7]. More generally it has been shown that in a number of 

species, the sensory neuronal response to a stimulus depends on the recent history of 

inputs, which I refer to as temporal context[8, 9]. In the current work, I propose that 

neurons become endowed with sensitivity to timing and temporal context on the 

subsecond scale due to time-varying neuronal and synaptic properties, and perhaps the 

most useful tool for creating temporal selectivity on this scale is short-term synaptic 

plasticity (STP)[10]. 

In order to investigate the mechanisms underlying sensitivity to temporal context, 

I created a spiking model to explain the diversity of single pyramidal (Pyr) neuron 

responses to repeated tones, which included steady and facilitating responses in 
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addition to the well-studied phenomenon of short-term sensory adaptation[11]. The 

model incorporated two different types of inhibitory units based on Parvalbumin (PV) 

and Somatostatin (SST) inhibitory interneurons, and I modeled the STP of the synapses 

between Pyr, PV, and SST units based on empirical observations[12]. By varying the 

strength of the PV-to-Pyr and SST-to-Pyr synapses, my model could transition between 

adapting, steady, and facilitating temporal profiles of responses to repeated inputs. 

Furthermore, my model made two key predictions that were verified in the experimental 

data: 1) Neurons with steady firing rates across repeated stimuli should have shorter 

firing latencies than adapting or facilitating neurons, and 2) optogenetically inactivating 

PV interneurons during the first tone in a train of repeated tones should cause a 

decreased response to the second tone occurring 400 ms later. These results suggest 

that the way sensory responses are modulated by the temporal structure of a stimulus 

sequence depends on intra-cortical STP, and the modulation often results from STP-

driven shifts in the firing latency of the neurons. 

In contrast to sensory timing, many sophisticated forms of internal timing (e.g. 

temporal expectation or motor timing) take place on the scale of seconds. Short-term 

memory is another potentially mechanistically-related computation that also relies on 

internal neural network dynamics on this time scale. Short-term memory has been 

proposed to rely on stable persistent activity states generated by local recurrent neural 

networks[13]. In my work, I contributed to a growing body of theoretical work regarding 

the long-term plasticity rules that can configure synaptic weights of neural networks to 

support stable persistent activity states. My results show that inhibition-stabilized 

networks (ISNs)[14], in which strong recurrent excitation is balanced by inhibition, 
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provide a highly reliable synaptic regime to enable stable persistent activity states. 

However, ISNs necessitate learning rules that anticipate and deal with their unintuitive 

properties. In a large, sparsely-connected spiking model, I reinforce the recent finding 

that one solution is a family of “cross-homeostatic” learning rules, in which excitatory 

and inhibitory neurons alter their incoming weights according to the average input they 

receive from the opposite population[15]. Interestingly, I provide a novel finding that 

cross-homeostatic plasticity rules can operate using purely local signals, but only if 

classical homeostatic plasticity rules are also in place. 

 Because natural contexts often have predictable temporal structure, 

requirements to maintain information in working memory and to anticipate the timing of 

future events are often intermixed and overlapping. A growing body of experimental data 

suggests that there are similar patterns of neural activity during the maintenance of 

working memory and the anticipation of a time interval[16, 17], which suggests that the 

two functions may be computationally linked. To test this idea at the level of human 

behavior, I designed two tasks with the same predictable temporal structure but 

complementary behavioral requirements. The first task only required participants to 

maintain a cue stimulus in working memory, but the results showed that performance 

was worse when the probe stimulus occurred at an unpredicted time. The second task 

only required participants to judge the duration of the interval between the cue and 

probe stimuli, but the results showed that performance was worse when the cue identity 

predicted a different time interval, implying that participants stored cue information in 

working memory. This pattern of results is consistent with the notion that if the brain can 

predict when working memory will be used, it utilizes a shared coding format that fulfills 
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the functional requirements of both prospective timing and working memory 

maintenance. Based on prior experimental findings and ongoing computational work, I 

speculate that the most likely coding format is a cue-specific neural sequence, in which 

single neurons fire sparsely at specific times during the delay period, and the population 

activity can be used to decode both the content of working memory and also when a 

future event will take place. 

 As a whole, my work demonstrates that parsing the temporal structure of 

experience is a multifaceted challenge with distinct functional requirements depending 

on the timescale and behavioral pressures. In order to sense timing features on the 

scale of tens-to-hundreds of milliseconds, which enables for example the discrimination 

of phonemes and the perception of prosody in speech, the brain is likely to rely heavily 

on STP to create a rich representational substrate in which some neurons respond 

selectively to certain time intervals or durations and there is a mixture of adapting and 

facilitating responses in the population response. Yet in order to prospectively anticipate 

time intervals on the scale of seconds, the brain must instead rely on network 

mechanisms that can bring about persistent activity states or time-varying patterns such 

as neural sequences, whose durations are able to outlast the time constants of STP. In 

turn, the ability to generate persistent activity states and neural sequences likely 

depends on long-term plasticity mechanisms. Nervous systems thus stand as a 

cumulative history of the myriad evolved solutions for overcoming the challenge of time 

at various scales. In humans, these mechanisms form a stunning hierarchical 

symphony, allowing us to not only use temporal patterns as a medium for meaning but 

to orient ourselves within the temporal structure of events.  
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