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ABSTRACT

Objective: Ubiquitous technologies can be leveraged to construct ecologically relevant metrics that comple-

ment traditional psychological assessments. This study aims to determine the feasibility of smartphone-derived

real-world keyboard metadata to serve as digital biomarkers of mood.

Materials and Methods: BiAffect, a real-world observation study based on a freely available iPhone app, allowed

the unobtrusive collection of typing metadata through a custom virtual keyboard that replaces the default key-

board. User demographics and self-reports for depression severity (Patient Health Questionnaire-8) were also col-

lected. Using >14 million keypresses from 250 users who reported demographic information and a subset of 147

users who additionally completed at least 1 Patient Health Questionnaire, we employed hierarchical growth curve

mixed-effects models to capture the effects of mood, demographics, and time of day on keyboard metadata.

Results: We analyzed 86 541 typing sessions associated with a total of 543 Patient Health Questionnaires.

Results showed that more severe depression relates to more variable typing speed (P< .001), shorter session

duration (P< .001), and lower accuracy (P< .05). Additionally, typing speed and variability exhibit a diurnal pat-

tern, being fastest and least variable at midday. Older users exhibit slower and more variable typing, as well as

more pronounced slowing in the evening. The effects of aging and time of day did not impact the relationship

of mood to typing variables and were recapitulated in the 250-user group.

Conclusions: Keystroke dynamics, unobtrusively collected in the real world, are significantly associated with mood

despite diurnal patterns and effects of age, and thus could serve as a foundation for constructing digital biomarkers.
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INTRODUCTION

Background and significance
Traditional ways of assessing mental health usually rely on clinical

evaluations or diagnostic interviews or mood rating scales that are

intermittently administered in a controlled environment (ie, a clinic

or laboratory). In addition, such measures frequently depend on

patients’ self-reports or reports from their family members or care-

takers, and thus are subject to recall and recency biases, especially in

individuals with impaired insight or cognition.1 They may also take

extended amounts of time and be expensive. Moreover, the intermit-

tent “snapshot” nature of these traditional assessment models may

not reflect intraindividual variability (IIV), which could serve as rel-

evant additional clinical information. For example, the time of the

day an assessment is administered2 and the sleep quality of the pa-

tient3 have been shown to affect cognitive performance. Therefore,

clinical assessment can be enhanced and extended by granular, time-

dependent metrics captured in ecologically relevant daily tasks in

real-world settings.4,5

Current advances in smartphones and wearable devices can be

leveraged for real-world continuous and unobtrusive data collection,

possibly granular enough to construct features that could capture

cognitive dynamics and potentially detect subtle intra- and interindi-

vidual heterogeneity.6–10 Thanks to their high temporal resolution

and the volume of sessions available, these approaches lend them-

selves particularly well to the study of diurnal patterns. In this study,

we show how real-world data collected from smartphone keyboard

in a large-scale open-science project can provide clinically relevant

information. Specifically, we assess IIV through smartphone typing

behaviors collected when users normally and routinely engage with

their smartphones throughout the day as it relates to self-reported

mood.

IIV can manifest as the inconsistency or fluctuations in task per-

formance within an individual throughout the day.11 Disruptions in

circadian rhythms may drive early neurodegeneration,12 suggesting

that the relationship between diurnal patterns and IIV may be a sen-

sitive marker of early cognitive decline, as supported by 2 recent

studies13,14 investigating typing speed collected on a virtual key-

board of a tablet and a physical keyboard.

Circadian rhythms are also clinically relevant for the onset,

symptomatology, and trajectory of mood disorders.15–17 Studies us-

ing data collected from wearable devices have proposed diurnal

phase shifts as potential markers for mood disorders.18 Further, in-

herent to mood disorders is the chronic course of illness, at times re-

lapsing and remitting over the course of weeks, days, or even

hours,19 thus supporting the advantage of more frequent, dense sam-

pling as evidenced in several studies.20–22 For example, one recent

study leveraged various sensors from wearable devices to predict

mood states for the next 3 days and infer depressive, manic, or hypo-

manic episodes in individuals suffering from major depressive disor-

der and bipolar disorder.23

Objective
This study aims to investigate the effects of mood, age, and diurnal

patterns on naturalistic real-world typing acquired using a mobile

health (mHealth) smartphone technology in a citizen science sample.

We hypothesize that (1) keyboard typing features will be signifi-

cantly associated with mood ratings over time and (2) the associa-

tion with mood may be modulated by effects of age and diurnal

changes within days.

MATERIALS AND METHODS

Study design and demographics
Our research was structured around an mHealth application, BiAf-

fect (https://www.biaffect.com/), that is freely available on Apple’s

app store and open to all U.S. adults for study enrollment directly

via their iPhones. Once enrolled, BiAffect replaces the standard iOS

keyboard with a cosmetically similar keyboard and records key-

stroke dynamics metadata regardless of whether the user is texting,

writing an email, posting on social media, etc., while preserving ano-

nymity of content (ie, not what one types but how it is typed). The

application is supported by Apple’s open source ResearchKit frame-

work (Figure 1).24

Onboarding and data collection
Data analyzed in this study were collected within the first 15 months

of our ongoing BiAffect study, comprising the most active users of

our custom keyboard who also chose to provide their demographic

information. In addition to keystroke dynamics, participants were

prompted and encouraged to report their depression symptom sever-

ity using the Patient Health Questionnaire-8 (PHQ-8) (omitting the

suicidality question)25 once a week. The PHQ is a valid and reliable

measure that has been used extensively in clinical care research26–28

and shown to be sensitive to indication of depressive episodes and

measurement of treatment response.29–33

The study was approved by the University of Illinois at Chicago’s

Institutional Review Board and all participants provided an in-

formed e-consent on the BiAffect app, designed in collaboration

with Sage Bionetworks (Seattle, WA) (see Supplementary Figures 1

and 2 for more details).

Data processing
The BiAffect keyboard records timestamps of keypress events and

their type (ie, character, punctuation, backspace, autocorrect, or au-

tosuggestion). Operationally, one typing session is initiated when

the keyboard is activated, and terminated after 8 seconds of inactiv-

ity, or at the time of keyboard deactivation. Session duration is de-

fined as the length of a typing session in seconds.

Examining the distribution of interkey delays to understand typing

speed, pausing, and typing variability

To analyze the speed of typing during a session, we followed

similar approaches to those published in studies from our

group34,35 and others.13 First, interkey delay (IKD) was calcu-

lated as the time difference between 2 consecutive keypresses and

we restricted our analysis to IKDs between character-to-character

keypress events only. Other transitions were excluded because

they may encode additional cognitive processes beyond typing

alone (eg, character-to-backspace may encode processes subserv-

ing self-monitoring of typing mistakes and their correction). Fur-

ther, as IKDs exhibit a heavy right-tailed distribution (Figure 1)

with values between 0 and 8 seconds (longest delay allowed in a

session), we hypothesized that long IKDs encode events other

than word-level typing behavior (eg, pauses), while short IKIDs

would be more relevant for capturing the everyday casual typing

speed. Thus, the typing speed of a typing session is operationally

inferred using the median (50th percentile) IKD in that session

(the median was selected as it is the most stable estimate of cen-

tral tendency for positively skewed distributions). By contrast,

pausing is operationally defined as the 95th percentile of the

session-level IKD distribution (the 95th percentile is chosen as it

1008 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7

https://www.biaffect.com/
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa057#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa057#supplementary-data


is commonly employed to capture behavior that is outside of the

norm; also see Supplementary Table 14). Last, in order to quan-

tify the typing variability at a session level, we used the median

absolute deviance (MAD) of IKDs.

Typing accuracy

To infer typing accuracy, the ratio of autocorrect instances relative

to the total session character count was recorded (number autocor-

rects/total number of characters per session).

Figure 1. Overview of BiAffect data collection and feature extraction process. (A) Keypress-level typing metadata are collected via the BiAffect keyboard and

stored by Sage Bionetworks. (B) Interkey delays (IKDs) for keypress transitions from character to character are aggregated at a session level to obtain the 25th,

50th (median), and 95th percentile IKDs and the median absolute deviance (MAD) IKD. Typing accuracy in a session is defined as the autocorrect rate (ie, ratio of

autocorrect instances to the total number of characters). Last, the session duration (seconds) in each session is obtained by aggregating all delays in a session.

(C) An example for the hourly typing activity over multiple days from 2 active users is shown in the top right as an illustration of the potential patterns captured

via continuous, unobtrusive collection. The blue dashed line highlights the different levels of activity at night, with user B exhibiting a more irregular activity pat-

tern than user A. Size of the marker is proportional to the number of characters typed per hour.
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Typing mode (1- vs. 2-handed typing)

Careful consideration was given to the typing mode (using 1 or 2

hands when typing), as it is likely to affect typing speed. To classify

typing mode, we developed and validated an approach using linear

regression. This method was validated via independent test data for

over 220 sessions (40 182 total keypresses) collected on internal test-

ing phones, yielding >99% accuracy (see Supplementary Figures 3

and 4).

Time of day

In order to assess diurnal patterns, every session was stamped with

the hour of the day in the user’s local time and then aggregated in 3-

hour increments, yielding 8 time points throughout the day. Data

were aggregated in this fashion to allow more stable estimates of the

parameters extracted from the metadata.

Eight-Item PHQ

The standard instrument has 9 items and asks participants to report

how bothered they have been by items over the past 2 weeks on a

scale from 0 (not at all) to 3 (nearly every day). Given our open sci-

ence design, which does not permit clinical monitoring or oversight,

we chose to eliminate the suicide item from our study. The resulting

PHQ-825 had total scores ranging from 0 to 24, with higher scores

indicating greater depressive symptoms. Additionally, as the PHQ-

8 is designed to measure depression severity over the course of 2

weeks, we decided to prompt users, on a weekly basis instead of ev-

ery 2 weeks to counter common attrition in self-reports, to perform

mood assessments using PHQ-8.

The relationship between depression symptom severity and key-

stroke dynamics was analyzed by propagating the PHQ-8 score to

typing sessions that occurred within a time window of a given PHQ-

8 score. First, the very first PHQ-8 rating in every user was used to

tag all typing sessions within 2 weeks prior to this rating (as the

PHQ is designed to capture overall depression severity within the

preceding 2 weeks of a rating). When multiple PHQs were available,

a linear interpolation was then performed for the typing sessions in

between consecutive self-reports if (1) their score difference was

lower than 5 and (2) PHQ-8 scores were not further than 2 weeks

apart. Otherwise, for each pair of consecutive PHQs that were tem-

porally disconnected or exhibiting a large score difference, we prop-

agated the second PHQ-8 score 2 weeks prior to it (in the case of

temporal disconnection), or up to the day after the preceding PHQ-

8 (in the case of a large score difference). Last, for any typing ses-

sions between each pair of consecutive PHQs that remained

untagged, we explored 3 different schemes that carry the score of

the first PHQ-8 of this pair after its rating by up to 0, 1, and 2

weeks. Similarly, these 3 variations were employed to carry the score

of the very last PHQ-8 of each user after its rating (see Supplemen-

tary Tables 1-5).

Statistical analysis
We conducted growth curve mixed-effects (multilevel) models36 in

R (version 3.6.1; R Foundation for Statistical Computing, Vienna,

Austria) and lme4 (version 1.1-21)37 using maximum likelihood fit-

ting to examine dependent variables (DVs) of session-level typing

speed, typing variability, typing accuracy, and session duration and

their relationship to other session-level features and demographics.

In total, the number of typing sessions that entered our 2-level

mixed-effects models are n¼142 202 nested in the 250-user group

(sample A) and N¼86 541 nested in the 147-user group (sample B;

a subset of sample A, sample B differs from A in that each of these

86 541 typing sessions can be linked back to a specific PHQ-8, thus

allowing us to investigate the effect of mood on typing; see Figure 2

and Table 1).

Random effects
Random effects of the models included the user as the cluster in

which sessions were nested, and we allowed each user to have their

own intercept. This means that every subject could have their own

mean of the point estimate of the DVs per session, thus allowing us

to control for variance differences between users that cannot be later

attributed to a fixed effect in our model. Further, this produces a

more stable and generalizable point estimate per user. We note that

our final models do not include the effects of gender or the phone

type, as they explained no variance beyond the random intercept

term for each user (Supplementary Tables 11 and 12).

The intraclass correlation coefficient (ICC) measures the homo-

geneity of the cluster (ie, the user) on the DV38 and is calculated for

our 2-level model intercepts only (null model) as the ratio of be-

tween cluster variance to total variance. These numbers can be inter-

preted as the cohesion or correlation within the cluster. We

computed ICCs for models with DVs of 50th percentile IKD (ICC ¼
0.79), 95th percentile IKD (ICC ¼ 0.35), MAD IKD (ICC ¼ 0.55),

session duration (ICC ¼ 0.21), and the rate of autocorrect per ses-

sion (ICC ¼ 0.10). These ICC values all suggest that we do need to

use 2-level model to examine our fixed effect. We further allowed

each user to have their own orthogonal linear and quadratic slopes

for the time of day and different intercepts for their typing mode.

This allows more stable estimates of both typing mode and time of

day, as these are essentially repeated measures within user (cluster)

and allow for each user to potentially have their own unique differ-

ence in typing mode and effects over the course of the day. When we

add fixed predictors to this multilevel model, it allows us to state

whether there are reliable slopes across users. Because of the way

they fit random and fixed slopes at the user level (cluster), these

models are generally understood to be more generalizable poten-

tially outside our individual samples.36

Fixed effects
The fixed-effects structure was tested in 2 ways (a was set to .05).

First, fixed effects were constructed hierarchically through the ad-

dition of increasingly complex terms, and likelihood ratio tests (�2

log-likelihood of model fits) were used to compare nested models

(against chi-square distribution) to ensure that increasingly com-

plex terms were warranted (hierarchical growth models are de-

tailed in Supplementary Tables 6-10). A –2 log-likelihood (ie,

deviance) was used to assess model fit because of both the nested

(ie, multilevel) nature of the data (users have multiple sessions) and

because we allowed random slopes for users based on their typing

mode and the time of the day that they were typing. Both the multi-

levels (sessions nested in users) and the random slopes make tradi-

tional metrics of R2 and RSME from nonmultilevel regressions

difficult to interpret and we report deviance because it can com-

pare nested models and for consistency.36,42 Second, the signifi-

cance of individual predictors was assessed via estimating the

degrees of freedom with Satterthwaite approximations.39 The goal

of this 2-step significance testing was to first ensure improvement

in the overall model fit from a less complex model, and second to

ensure the reliability of the individual parameters of this best fit

model. Models involving IKD were tested hierarchically adding the
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time of day, age and gender of the user, typing mode, and number

of characters per session. Time of day and the total character

length per session were entered as second-order orthogonal polyno-

mials,40 which allowed the independent assessment of significance

of terms (linear and quadratic). Last, in order to quantify the effect

of depressive symptoms, the PHQ-8 score was added as a linear

fixed effect.

RESULTS

Of the 369 most active users (top 60%) chosen based on a minimum

of 1000 keypresses per person, we analyzed typing sessions from

250 (sample A: median 12 151 [interquartile range (IQR), 4 482, 35

663], mean 30 544.9 6 89 679 keypresses per person) who reported

their demographic information (mean 37.75 6 12.25 years of age;

gender: 70% women, 27% men, 2% nonbinary, 1% undisclosed).

Collectively, sample A comprises 142 202 typing sessions (median

181 [IQR, 74, 552], mean 568.8 6 1508.9 sessions per user) that en-

tered our mixed-effect models.

Additionally, in order to investigate the effects of mood on typing,

we further identified a subset of 147 users (sample B: mean

39.53 6 11.80 years of age, gender: 73% women, 23% men, 3% non-

binary, 1% undisclosed), who completed at least 1 PHQ-8 (median 2

[IQR, 1, 5], mean 4.22 6 5.90 PHQs per person; a total of 543 PHQs

with a mean score of 9.0 6 5.94). In total, 86 541 typing sessions en-

tered the mixed-effects models for sample B (based on tagging typing

sessions up to 2 weeks after the last PHQ-8; the main results were stable

regardless of whether we propagated the last PHQ-8 rating 0, 1, and 2

weeks forward; see Supplementary Appendix for more details).

An overview of the keyboard data and demographics in the 250-

user group and the 147-user group can be found in Table 1 and

Figure 2.

Hierarchical growth-curve mixed-effects models were employed

on the session level for typing speed (50th percentile IKD), pausing

(95th percentile IKD), variability (MAD IKD), and accuracy (rate of

autocorrect per session), as well as session duration (in seconds). All

the trends observed in the larger model (250 users) hold true in the

subsample (147 users) as well.

Figure 2. Overview demographics for the 2 samples used in mixed-effects linear models with dependent variables for typing speed, typing variability, pausing,

typing accuracy, and session duration. Sample A consisted of 250 users (n¼ 142,202 sessions) and was used to investigate effects of time of day, age, typing

mode (ie, 1- or 2-handed), total number of characters, etc. in a session. Sample B (147 users, n ¼ 86,541 sessions) was a subset of sample A comprising users

who completed at least 1 Patient Health Questonnaire-8 (PHQ-8) and was used to additionally investigate the effect of mood (543 total PHQs).
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Typing speed (50th percentile IKD), typing variability

(MAD IKD), and pausing (95th percentile IKD)
Sample A

As shown in Table 2 (models 1-3A), we found a significant non-

linear diurnal pattern for typing speed (ie, 50th percentile IKD),

typing variability (ie, MAD IKD), and pausing (ie, 95th percentile

IKD), modeled using a second-order polynomial. People typed

faster with less variability and exhibited the least amount of paus-

ing midday (between noon and 3:00 PM in their respective time

zones). We note a 11.36% (95% confidence interval [CI],

11.21%-11.52%) decrease in speed, a 12% (95% CI, 11.89%-

12.13%) increase in variability, and a 12.2% (95% CI, 12.14%-

12.23%) increase in pausing around midnight (between 0:00 and

2:00 AM) compared to midday.

There was a positive linear effect for age on median IKD, such

that younger users (�20 years of age) typed 62% (95% CI, 61.2%-

64.0%) faster, 57% (95% CI, 56.3%-58.9%) less variably, and

paused 61% (95% CI, 59.8%-62.6%) less than older users (�70

years of age). Further, we report a significant interaction between di-

urnal patterns and age, such that older people exhibited a more pro-

nounced slowing in their typing speed and an increase in variability

toward the end of the day (Figure 3).

Typing speed also exhibited a nonlinear relationship with the

number of characters per session, with shorter sessions (20 charac-

ters) being 12.3% (95% CI, 11.85%-12.7%) slower and 12.4%

(95% CI, 11.94%-12.9%) more variable than longer sessions

(�120 characters). As expected, 1-handed typing sessions were

found to exhibit slower and less variable typing speed than 2-

handed sessions.

Sample B

The pattern observed in models 1-3A (Table 2) for time of day, age,

total character length per session, and typing mode is recapitulated

in model 1-3B for individuals who completed the PHQ-8. Further,

we found that, on average, persons with a PHQ-8 score of 20 corre-

sponded to a 2.2% (95% CI, 2.13%-2.33%) shortening of the 50th

percentile IKD and a 7.8% (95% CI, 7.52%-8.13%) increase in

pausing (higher 95th percentile IKD) when compared with persons

with a PHQ-8 score of 0. Similarly, typing sessions corresponding to

Table 1. Summary demographics, PHQ-8, and typing data distribution for sample A (142 202 sessions, 250 users) and sample B (86 541 ses-

sions, 147 users)

Sample A Sample B

Age

Mean 6 SD 37.75 6 12.25 39.53 6 11.80

Gender

% Women 70 73

% Male 27 23

% Nonbinary 2 3

% Undisclosed 1 1

Typing data

Total number of typing sessions 142 202 86 541

Total number of users 250 147

Typing sessions per user

Median (IQR) 181 (74-552) 207 (84-577)

Mean 6 SD 568.8 6 1508.9 588.71 6 1133.4

Total keypresses per user

Median (IQR) 12 151 (4482-35 663) 13 405 (4967-37 562)

Mean 6 SD 30 544.9 6 89 679 31 611.1 6 66 054

Days of keyboard activity per user

Median (IQR) 35 (6-15) 16 (9-29)

Mean 6 SD 32.01 (54.51) 29.11 (45.34)

Self-reported psychiatric disordersa

Bipolar disorderb 82/175 51/107

Depression 124/181 75/111

Anxiety 116/181 71/111

Attention deficit/hyperactivity disorder 46/181 29/111

Posttraumatic stress disorder 45/181 31/111

PHQ-8

Total number self-reports — 543

PHQ-8 score per person

Median (IQR) — 9.8 (5.3, 13.4)

Mean 6 SD 9.0 (5.94)

PHQs per person

Median (IQR) — 2 (1-5)

Mean 6 SD 4.22 6 5.90

Sample B is a subset of A in that, in addition to demographic information, people in B also completed at least 1 PHQ-8.

IQR: interquartile range; PHQ-8: Patient Health Questonnaire-8.
aThe denominator for each self-reported group is the total number of users in that sample (A or B) who completed the self-reported questionnaire for each psy-

chiatric condition. The numerator represents the number of users who responded positive to a previous diagnosis for that condition.

bIncludes bipolar disorder I, bipolar disorder II, and other unspecified bipolar disorder.
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a PHQ-8 score of 20 were found to exhibit a 3.3% (95% CI,

3.14%-3.39%) increase in typing variability, possibly driven by the

faster typing speed yet longer pauses (Figure 4).

Model improvement was computed for sample B by adding the

PHQ-8 score as a main effect to the final model for typing speed (v2

¼ 14.8, P< .001, deviance ¼ �262 592), typing variability (v2 ¼
9.18, P< .01, deviance ¼ �311 871), and pausing (v2 ¼ 22.9,

P< .001, deviance ¼ 103 879).

For completeness, additional IKD percentile models were also

explored for typing speed (the 25th and 75th percentile IKD), and

for alternative percentile measurements of pausing (80th, 85th,

and 90th percentile IKD; see the Supplementary Appendix). The

longer pausing effect in more severe depression can be observed

starting at the 85th percentile IKD model and remaining statisti-

cally significant at both the 90th and the 95th percentile IKD

model.

Typing accuracy (rate of autocorrect instances per

session)
Sample A

Typing accuracy (Table 3) exhibited a nonlinear relationship with

the number of characters per session, with longer sessions showing a

14.1% (95% CI, 13.4%-14.8%) increase in the number of autocor-

rect instances. As expected, more autocorrect instances related to

faster typing (shorter median IKD).

Sample B

Lower typing accuracy found in sessions with a higher number of

characters and faster typing described in model A was observed in

model B as well. In addition, we found that (compared with a PHQ-

8 of 0) a PHQ-8 score of 20 led to a 7.2% (95% CI, 6.84%-7.67%)

increase in typing mistakes.

Table 2. Summary of the final mixed effects models showing estimates for dependent variables of typing speed (model 1), typing variability

(model 2), and pausing (model 3)

Typing speed (median IKD) Typing variability (MAD IKD) Pausing (95th percentile IKD)

Model 1A Model 1B Model 2A Model 2B Model 3A Model 3B

Fixed effects

Intercept 0.296c 0.307c 0.123c 0.126c 0.902c 0.917c

(0.005) (0.006) (0.002) (0.003) (0.015) (0.018)

Timed 1.544c 1.216c 0.713c 0.495c 5.742c 3.758c

(0.263) (0.315) (0.134) (0.146) (1.089) (1.021)

Timee 3.357c 2.850c 1.446c 1.178c 10.639c 8.827c

(0.239) (0.260) (0.117) (0.116) (0.897) (0.814)

Age 0.069c 0.065c 0.026c 0.024c 0.204c 0.194c

(0.005) (0.006) (0.002) (0.003) (0.014) (0.017)

Typing mode 0.016c 0.016c 0.005c 0.004b 0.007 0.007

(0.002) (0.003) (0.001) (0.001) (0.007) (0.008)

Session characters lengthd �3.717c �3.068c �1.543c �1.284c �9.109c �7.128c

(0.054) (0.056) (0.040) (0.042) (0.457) (0.466)

Session characters lengthe 1.643c 1.319c 0.738c 0.600c 3.732c 2.499c

(0.052) (0.053) (0.038) (0.040) (0.437) (0.445)

PHQ — �0.002c — 0.001b — 0.020c

(0.001) (0.000) (0.004)

Timed � Age 0.522a 0.644a 0.196 0.290a 1.069 1.368

(0.256) (0.304) (0.130) (0.140) (1.054) (0.979)

Timee � Age 0.406 0.297 0.333b 0.218 0.376 0.192

(0.233) (0.253) (0.114) (0.113) (0.873) (0.794)

Random effects Variance Variance Variance Variance Variance Variance

User j (Intercept) 0.005 0.005 0.001 0.001 0.029 0.026

User j Typing Mode 0.001 0.001 0.000 0.000 0.004 0.004

User j Timed 12.069 11.202 2.502 1.907 59.048 29.717

User j Timee 9.154 6.747 1.640 0.941 38.557 17.810

Residual 0.003 0.003 0.001 0.002 0.058 0.062

Model fit

AIC �438 810.2 �262 557.8 �525 470.1 �311 836.0 73.295 5554.95

BIC �438 672.1 �262 417.3 �525 332 �311 695.5 211.405 5695.47

Log-likelihood 219 419.1 131 293.9 262 749.1 155 933.1 �22.648 �2762.47

Observations 142 202 86 541 142 202 86 541 142 202 86,541

Standard errors are listed in in parentheses. Sample A (142 202 sessions, 250 users) and sample B (86 541 sessions, 147 users) had fixed effects for orthogonal

linear and quadratic effects of time, age, typing mode, and session character length. Sample B adds Patient Health Questionnaire-8. Dependent variables were typ-

ing speed, variability, and pausing.

AIC: Akaike information criterion; BIC: Bayesian information criterion; IKD: interkey delay; MAD: median absolute deviance.
aP < .05.
bP < .01.
cP < .001.
d1st order coefficient.
e2nd order coefficient.
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Deviance testing was employed for the typing accuracy model af-

ter adding the PHQ-8 as a main effect to show model improvement

(v2 ¼ 6.12, P< .05, deviance ¼ �378 809).

Session duration
Sample A

As shown in Table 3, we report that session duration was found to

increase by 16.2% (95% CI, 13.4%-18.8%) in older people, even

when accounting for the median IKD, which was previously found

to increase with age (Table 2, models 1A and 1B). Further, we found

a 13.0% (95% CI, 12.8%-13.3%) increase in session duration in

sessions with a 0.2 autocorrect rate compared to those with 0 auto-

correct events. In addition, we report a nonlinear diurnal pattern in

session duration, with the shortest sessions occurring midday, coin-

ciding with the time of day when people typed the fastest (Table 3,

models 1A and 1 B and Figure 4). As expected, 1-handed sessions

were found to be longer than 2-handed sessions.

Sample B

The same pattern was observed, with longer session duration ob-

served in older users, in sessions with a lower typing accuracy, and

in 1-handed typing sessions. In addition, we note that on average

sessions corresponding to a PHQ-8 score of 20 were 7.95% (95%

CI, 7.73%-8.17%) shorter in duration when compared with sessions

corresponding to a PHQ-8 score of 0, even when accounting for typ-

ing speed as a covariate, suggesting a decrease in overall phone use

(Figure 4). The session duration model was found to improve by

adding the PHQ-8 score as a main effect (v2 ¼ 45.54, P< .001, devi-

ance ¼ 701 787).

Post hoc analysis for self-reported diagnoses as main

effects after accounting for PHQ-8
Self-reported histories of depression, bipolar disorder, anxiety,

attention-deficit/hyperactivity disorder, and posttraumatic stress dis-

order (Table 1) were tested as main effects in our models after ac-

counting for PHQ-8 (sample B), and none were found to be

significant after controlling for multiple comparisons (see the Sup-

plementary Appendix for more details).

DISCUSSION

As part of a naturalistic crowd-sourced study on keystroke dynamics

and mood in the real world, this study examined intra- and interin-

dividual variability in keystroke dynamics metadata to reveal an un-

derlying mood effect. To this end, we first identified various

keystroke dynamics features, and established the feasibility of col-

lecting large-volume, passively collected typing metadata using an

open-science research model.

Keystroke dynamics relate to mood and age
In our previous published studies that analyzed the Android pilot

data acquired in a much smaller sample of bipolar participants using

a traditional research design,34,35 we reported that keystroke dy-

namics features similar to those used in this paper, aggregated at a

week level were able to predict depression severity at the end of that

week (ie, the depression severity is the DV). By contrast, the main

theme of the present article was to take a complementary approach

by asking whether keystroke dynamics at the session level (thus at a

much higher granularity) are modulated by mood ratings, as well as

by other variables such as the time of day and user demographics.

Results established that typing speed exhibits slowing with age,

while pausing between typing and variability in typing speed in-

crease with age. Similarly, our hypothesis that keystroke dynamics

features may relate to mood34,35 is supported by our findings that in

more severe depression there is a significantly higher variability in

IKDs (as measured by MAD). This effect is likely due to longer

pauses (the 95th percentile IKD within a session) yet slightly shorter

50th percentile IKD. This is consistent with reported findings of

higher IIV in task performance in mood disorders.41 Further, typing

accuracy, as encoded using session-level autocorrect rates, also

decreases in more depressed individuals. Last, sessions correspond-

ing to elevated depressive symptoms were found to be shorter in du-

ration, suggesting a decrease in smartphone keyboard use during

more severe depression.

Collectively, these findings are in line with published literature

that consistently demonstrated age-related cognitive decline and

neurocognitive impairments in mood disorders for both average and

deviation in cognitive performance,41 and thus in support of our

central theme of keystroke dynamics serving as digital biomarkers of

mental health.

Figure 3. Linear mixed-effects model fit for median interkey delay (model 1,

sample A in Table 2) as a function of age and time of day. A nonlinear diurnal

pattern for typing speed was found, with the fastest typing occurring midday

(12 PM to 3 PM) and the slowest typing at night. Older users are also shown to

exhibit slower typing. Last, the significant interaction between age and time

of day results in a more pronounced slowing in older users in the evening.

Model obtained by plotting median interkey delay at different times in the

day while fixing all other model covariates at their average value. The shaded

area represents standard error ribbons.
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Figure 4. Linear mixed-effects model fits using sample B for 50th percentile interkey delay (IKD) (model 1), median absolute deviance (MAD) IKD (model 2), 95th

percentile IKD (model 3), and session duration (model 5) as a function of age, time of day, and Patient Health Questonnaire-8 (PHQ) score. We found a nonlinear

diurnal pattern for all dependent variables corresponding to fastest and least variable typing, shortest pauses, and shortest session duration midday (12-3 PM). Ad-

ditionally, older users typed slower, typed more variably, paused longer, and had longer session durations than did young participants. Last, in more severe de-

pression (higher PHQ score, continuous line), we found an increase in typing speed variability (higher MAD IKD), owing to faster typing (lower 50th percentile

IKD), and longer pauses between typing (higher 95th percentile IKD), as well as shorter session durations. We note that the effects of PHQ remained consistent

even when accounting for diurnal patterns and aging effects. Model obtained by plotting dependent variables at different times in the day while fixing all other

model covariates at their average value.
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Keystroke dynamics further reflect circadian rhythm on

a granular level
As our platform allows for the collection of high-volume repeated

measures for each user, another major theme of our paper is estab-

lishing the feasibility of inferring highly granular intra-individual

variations. Of particular importance for parsing through typing per-

formance variability is the temporal richness of measurements that

can capture diurnal patterns, suggestive of circadian rhythms affect-

ing typing dynamics (slower and more variable typing at the end of

a day). More importantly, our integrated approach unveiled com-

plex effects, such as a time of day and age interaction, suggesting

that older users exhibit a more pronounced slowing in their typing

speed at night.

Limitations
Although our naturalistic approach offers ecological validity at scale

when compared with studies employing traditional neuropsychologi-

cal evaluations in artificial settings by allowing shorter and more fre-

quent assessments, it also suffers from several limitations, such as the

inability to verify self-reported diagnoses and symptom severity, as

well as the lack of gold-standard clinician ratings. In addition, owing

to the “in-the-wild” nature of the study, there are many unknown

confounding factors that we are not able to control. Nevertheless, de-

spite these shortcomings, our main conclusions are strongly signifi-

cant and in line with other findings in published literature.

Further, mood self-reports (PHQ-8) were substantially sparser

than keyboard data, so we elected to propagate their scores to typing

Table 3. Summary of the final mixed-effects model showing estimates for dependent variables of typing accuracy (model 4) and session du-

ration (model 5)

Typing accuracy (rate autocorrect) Session duration (seconds Z-scored)

Model 4A Model 4B Model 5A Model 5B

Fixed effects

Intercept 3.071b 2.917c 0.157b 0.131b

(0.077) (0.091) (0.014) (0.019)

Timec 5.577 �1.243 0.650 0.920

(7.618) (7.624) (1.202) (1.200)

Timed 0.808 �1.182 7.030b 5.981b

(5.411) (5.230) (1.347) (1.324)

Age 0.008 �0.050 0.045b 0.047a

(0.075) (0.088) (0.013) (0.018)

Typing mode 0.046 0.042 0.081b 0.073b

(0.039) (0.045) (0.013) (0.017)

Session characters lengthc 39.752b 33.722b 221.491b 186.201b

(2.942) (2.901) (0.795) (0.770)

Session characters lengthd �36.109b �30.938b �29.392b �22.348b

(2.782) (2.737) (0.752) (0.726)

Median IKD �0.644b �0.611b 0.276b 0.274b

(0.014) (0.018) (0.004) (0.005)

Rate Autocorrect – – 0.035b 0.033b

(0.002) (0.003)

PHQ – 0.063a – �0.044b

(0.025) (0.007)

Timec � Age 3.873 5.929 �1.557 �0.662

(7.342) (7.280) (1.151) (1.151)

Timed � Age 0.447 �4.501 �1.824 �1.835

(5.227) (5.063) (1.304) (1.281)

Random effects Variance Variance Variance Variance

User j (Intercept) 1.366 1.125 0.038 0.045

User j Typing mode 0.147 0.108 0.023 0.022

User j Timec 6792.687 4337.487 61.602 45.470

User j Timed 1846.221 1072.357 104.535 68.311

Residual 7.523 7.284 0.549 0.512

Model fit

AIC 691 935.0 418 293.16 319 344.961 188 420.291

BIC 692 083.06 418 443.05 319 502.801 188 579.553

Log-likelihood �345 952.54 �209 130.58 �159 656.481 �94 193.145

Observations 142 202 86 541 142 202 86 541

Sample A (142 202 sessions, 250 users) and sample B (86 541 sessions, 147 users) had fixed effects for orthogonal linear and quadratic effects of time, age, typ-

ing mode, and session character length. Sample B adds the Patient Health Questionnaire-8 score. Model 5 also adds typing accuracy as a fixed effect. Dependent

variables were typing accuracy and session duration.

AIC: Akaike information criterion; BIC: Bayesian information criterion; IKD: interkey delay; MAD: median absolute deviance.
aP < .05.
bP < .001.
c 1st order coefficient.
d2nd order coefficient.
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sessions within a time window to preserve as much typing data as

possible. To this end, for pairs of consecutive PHQs not differing

more than 5 points and no further apart than 2 weeks we used inter-

polation, although main results remain stable when alternative inter-

polation methods were used (Supplementary Material Tables 1-5).

Additionally, many enrolled participants (total of 989 users by

June 2018) did not contribute enough keypresses to be included in

our analyses, likely owing to BiAffect’s custom keyboard not per-

forming as well as the native iOS keyboard for them or possible pri-

vacy and confidentiality concerns. As the native iOS keyboard and

the underlying technology are a trade secret, we thus cannot pre-

cisely quantify how the native keyboard differs from ours. However,

one possible difference is in the autosuggest and autocorrect func-

tionality, which in the native iOS keyboard is adaptive and thus is

likely implemented using state-of-the-art natural language process-

ing algorithms, whereas in the BiAffect keyboard, we employed a

simple N-gram approach.

While several preprocessing steps were taken to account for as

much unexplained variance in our data as possible (ie, we engi-

neered features for 1- vs 2-handed typing mode, we parsed for

within-user variation via random-effects, etc.), it is likely that cer-

tain sources of variation (eg, the specific digrams preferred by an in-

dividual, right-handed vs. left-handed, etc.) may still not be

captured by our model, given that the data are naturalistically col-

lected and we did not record the actual content typed.

Although our main findings are statistically significant, the effect

sizes are likely small and thus may not be clinically ready to make

inferences about differences between groups in real-world settings.

Additional research and refinement will be required.

Last, cognition spans multiple recognized domains, yet it

remains to be seen how our passive measurements may potentially

map onto these distinct domains. Moreover, data collection in the

wild is more susceptible to inattentiveness and distractions, poten-

tially diluting the predictive strength of our metrics.

CONCLUSION

Our investigation over keystroke dynamics metadata derived from

more than 14 million keypresses demonstrated the feasibility of us-

ing real-world passively collected keystroke dynamics to examine

the relationship between typing performance, circadian rhythms,

and depression symptom severity. Most importantly, we showed

that more severe depression is associated with more variable typing

speed, shorter keyboard sessions, and a decrease in typing accuracy.

Taken as a whole, the main findings of our study support the prom-

ise of unobtrusively collected keystroke dynamics serving as tempo-

rally sensitive, digital biomarkers of mental health.
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