
UCLA
UCLA Previously Published Works

Title
From random to predictive: a context-specific interaction framework improves selection 
of drug protein-protein interactions for unknown drug pathways.

Permalink
https://escholarship.org/uc/item/0nc3m7xw

Journal
Integrative Biology, 14(1)

ISSN
1757-9694

Authors
Wilson, Jennifer L
Gravina, Alessio
Grimes, Kevin

Publication Date
2022-03-21

DOI
10.1093/intbio/zyac002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nc3m7xw
https://escholarship.org
http://www.cdlib.org/


Received: November 12, 2021. Revised: February 1, 2022. Editorial decision: February 3, 2022. Accepted: February 3, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Integrative Biology, 2022, 1–12

https://doi.org/10.1093/intbio/zyac002

Original Article

From random to predictive: a context-specific interaction
framework improves selection of drug protein–protein
interactions for unknown drug pathways
Jennifer L. Wilson 1,*, Alessio Gravina 2 and Kevin Grimes3

1Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
2Department of Computer Science, University of Pisa, Pisa, Italy
3Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
*Corresponding author. E-mail: jenniferwilson@ucla.edu

Abstract

With high drug attrition, protein–protein interaction (PPI) network models are attractive as efficient methods for predicting drug
outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and
they have low precision and prediction performance; performance is often no better than random (AUROC ∼0.5). Typically, PPI
models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream
proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could
improve prediction performance. We compared two global approaches—statistical and distance-based—and our novel per-phenotype
approach, ‘context-specific interaction’ (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or
designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared
to 0.51), and a 76–95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale
for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.

Keywords: drug pathways, protein network modeling, side effect prediction

INSIGHT
Drug side effects are routinely analyzed using target proteins, yet targets influence protein networks. We studied severe side effects
and discovered that downstream proteins were often more predictive of drug side effects than targets, suggesting that downstream
protein analysis could enhance side effect prediction. Our approach is innovative because we inferred a set of noncausative drugs
using drug label data, and we emphasized a per-side effect approach; many approaches apply global rules for predicting drug
network effects. We benefitted from the integration of drug targets, protein networks, and side effect phenotype data to discover
the predictive power of downstream proteins.

INTRODUCTION
Analyzing protein pathways downstream of drug targets
is an attractive approach for understanding drug effects;
however, these methods are not currently used to priori-
tize drug targets because of their tendency to overpredict
drug phenotype associations. There’s ample motivation
for understanding drug effects on cellular pathways and
using protein interactions to anticipate resulting pheno-
types [1–3]. Pathways analyses have been useful in under-
standing disease mechanisms [4, 5] by linking disease-
associated genes through protein–protein interactions.
Similarly, protein–protein interactions (PPIs) have also
linked low-signal genetic associations from genome-wide
association studies [6, 7]. Linking drug targets to disease-

associated genes via PPIs has also been used for iden-
tifying repurposing opportunities [8–12] and for predict-
ing drug combination effects [13, 14]. Interestingly, link-
ing drug targets to phenotype-associated genes predicts
many more drug–phenotype relationships than are sup-
ported by the evidence. These additional predictions are
often considered to be false positives because we lack
gold standards of negative, or no-effect, relationships
between drugs and phenotypes [15]. This has limited the
prediction performance and precision of using PPIs to
anticipate drug effects. A recent approach, which lever-
aged PPIs for understanding drug mechanisms, reported
precision values of 0.064–0.091 for theirs and comparator
approaches [16].
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Multiple pathway–based searches have leveraged
disease-specific information to prioritize drug targets;
however, these successes were limited to single disease
applications. From these applications, we hypothesized
that phenotype-specific information could improve
predictive performance of PPI approaches. Specific
pathway examples span many disease areas including
epilepsy [17], Huntington’s disease [18], clear cell
renal cell carcinoma [19] and breast cancer [20], but
each example explores targets for a single disease. In
comparison, existing PPI approaches have used global
methods where similar rules—distance thresholds or
statistical thresholds—are applied to simultaneously
scrutinize several drug–phenotype relationships, both
for drug safety and efficacy. While we hypothesized
that incorporating phenotype-specific information into
PPI methods could improve performance, we lacked
quantitative evidence for this approach.

We aimed to understand the effect of incorporating
phenotype-specific information on PPI predictive perfor-
mance and discovered a striking increase in performance
and precision by incorporating this information. Because
we lacked drug null effect data, we pursued an innovative
strategy using drug–side effect relationships extracted
from drug labels. We narrowed our data to the most
severe side effects (e.g. myocardial infarction, pancre-
atitis), referred to as designated medical events (DMEs),
from the warnings, boxed warnings, and precautions
sections of the drugs’ labels because this subset of side
effects has received consistent FDA review, compared to
‘milder’ adverse events (e.g. nausea, rash). We reasoned
that drugs without a DME listed on the drugs’ label are
likely not causative for the side effect or caused the
side effect in rare circumstances. Further, we assumed
that labeled warnings for severe side effects were less
sensitive to underreporting or heterogeneity in report-
ing rates observed for all side effects [21]. Using this
assumption, we generated a novel and useful dataset of
positives (drugs with the side effect on their label) and
negatives (drugs without the side effect on their label).
Additionally, unintended drug side effects are a major
contributor to drug attrition [22, 23] and improving side
effect prediction performance could be of great utility
to the PPI and drug development communities. We used
interpretable machine learning to analyze labeled and
unlabeled drugs with a PPI association to a side effect
DME and measured the impact of this data on prediction
performance and precision.

RESULTS
Statistical thresholding cannot clearly separate
true and false positives
We first investigated a statistical threshold method
(Fig. 1A) for separating true positives and true negatives.
The motivation for this approach is that setting a
significance threshold is relatively easy to implement,
and theoretically, true positive phenotypes may be

more significantly associated with drug networks than
true negative phenotypes. In our case, we specifically
explored whether DMEs from the drug’s labels were
more significantly associated with a drug’s network
than DMEs not listed on the drug’s label. For this
analysis, we used PathFX [9] in its original published
form and altered the significance threshold for filtering
network-associated phenotypes. Briefly, PathFX used
a network propagation technique, starting from a
drug’s target proteins, to identify a network of relevant
protein–protein interactions from a larger interactome
network (further described in Materials and Methods,
Supplemental Fig. 1). The algorithm used a database of
gene–phenotype associations and statistical enrichment
to identify enriched network phenotypes relative to the
original interactome. Of the 1970 drugs, 997 drugs had
drug target proteins from DrugBank [24] and at least one
interaction partner in our interactome. PathFX required
drug target proteins to seed the network propagation
search. We used PathFX to create networks for these
997 drugs and investigated where PathFX identified a
true positive—a network association between a drug
and a DME on the drug’s label—and a false positive—
a network association to a DME not listed on the drug
label, at increasing score thresholds. We investigated
the multiple hypothesis–corrected P-values and the
normalized P-values. The normalized P-values represent
the ratio of the multiple hypothesis–corrected P-value for
a phenotype to the median of all multiple hypothesis–
corrected P-values derived from 100 input-matched ran-
dom networks. PathFX used 100 random networks each
generated with input-matched drug-binding proteins to
measure the distribution of drug–phenotype associations
and calculated this distribution per phenotype (to
account for the fact that phenotypes are associated
with a wide range of total proteins). The distributions
for these P-values, both raw and normalized, overlap
(Supplemental Fig. 2), and when we plotted sensitivity
and specificity on the ROC graph, the area under the
receiver operator curve (AUROC) is 0.51 (Fig. 1C). These
results suggested that a global statistical threshold for
predicting drug–phenotype relationships is insufficient
for separating true and false positives.

Using a distance-based approach does not
increase prediction performance
We next investigated a distance metric for separating
true and false positives (Fig. 1A). Conceptually, we were
motivated to understand if including PPIs that were
‘close’ to or ‘far’ from drug target proteins improved
our ability to discern true from false positives. The
assumption in this framework is that drug effects are
only propagated to proteins within a defined proximity
relative to the drug target proteins. In this paradigm,
‘close’ signaling molecules might interact directly with
a drug target, and ‘far’ signaling molecules may be
several protein–protein interactions removed from a
drug’s target. As mentioned, many approaches have used
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Figure 1. Consideration of three frameworks shows superior performance of context-specific analysis. (A) We considered three frameworks: 1.
statistical enrichment—a network association is selected if the drug’s PPI network is enriched for associations to a phenotype of interest relative to
random, input-matched networks. 2. distance-based—an interaction distance function is calibrated to identify positive phenotypes and minimizing
false positive phenotypes. 3. context-specific interactions (CSI) analysis—machine learning analysis (e.g. logistic regression) is used to discover which
downstream genes/proteins and interactions separate true from false positives. (B) Positive drug–DME relationships are extracted from the warnings,
boxed warnings, and precautions section of the drug’s label. Negative cases (or cases where the drug is not expected to cause the DME) are inferred
from the absence of the DME on the drug’s label. Red or blue triangles represent positive or negative drugs, and multiple shades of yellow/orange are
meant to distinguish different DMEs in the dataset. (C) ROC curves for distinguishing true and false positives using P-value (orange) or a
distance-based approach (blue) or using CSIs (green). Legend indicates AUROC value for each framework.

network propagation and most network propagation
methods tune the ‘distance’ before pursuing classifi-
cation or prediction. To measure performance at ‘close’
and ‘far’ distances, we modified PathFX from the original

published form (Supplemental Fig. 1). Specifically, the
original PathFX algorithm relied on an empirically
derived path score threshold to minimize common
biases for network algorithms including hub bias (a
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gene/protein has high connectivity because it is well
studied; this is further explained in methods). Although
other network propagation techniques have not used
the same empirical path score, we considered this path
score to be a sufficient proxy for understanding how
tuning interaction path distance can affect prediction
performance. To measure the effect of tuning inter-
action path distance, we created modified versions of
PathFX using nonoptimal path score thresholds (e.g.
PathFX_dist0.9, PathFX_dist0.8, etc., further explained
in Materials and Methods). Conceptually, a higher or
lower score threshold forced PathFX to analyze proteins
‘closer’ or ‘farther’ from drug targets, respectively. In our
interaction network, edges are scored from 0 to 1.0; edge
scores reflected the likelihood of an interaction derived
from a corpus of data and high-quality interactions
had higher scores (further described in Materials and
Methods). When modifying PathFX, a path score of 0.99
was sufficiently high enough to exclude any down-
stream network proteins and ‘networks’ at this score
effectively only included drug targets. We reanalyzed
the 997 drugs mentioned above using these distance-
constrained versions and investigated how including
‘farther’ downstream proteins affected performance.
We had anticipated that performance would increase
initially and then decline as we included downstream
proteins that were too far from the targets. At distances
of 0.82–0.99, we were unable to generate a full ROC
curve (Fig. 1C) because the sensitivity and specificity
did not improve at increasing distances. We discovered
that modifying the path score threshold did not increase
an ability to detect true positive associations to DME-
associated genes. This suggests that global propagation
away from drug target(s) may not be sufficient for dis-
cerning true from false positive phenotypic associations.

Context-specific interactions increase ability to
discern true from false positive DME associations
Much of biology is context dependent meaning that
the molecular drivers of a pathway are specific to that
pathway context. Indeed, many pathway investigations
have used disease-specific pathways to uncover target
candidates for therapeutic interventions [17, 18, 20]. We
hypothesized that each DME may result from association
to DME-specific downstream proteins and that a better
separator of true and false positives could be the specific
network genes/proteins supporting an association to a
DME phenotype. The assumption in this context-specific
interaction (CSI) framework is that drug phenotypes
result from association to specific proteins. For example,
we hypothesized that of all drug networks associated
to myocardial infarction genes (or any other DME), that
drugs with the labeled warning (true positives) would
share network proteins that were distinct from drug
networks where the DME was not on the label (false
positives). To test this hypothesis, we combined PathFX,
a network propagation technique, with subsequent
machine learning analysis. We generated matrix files

for all drugs associated with a DME where each row
represented a drug, and each column represented a DME-
associated gene in a drug’s network (Fig. 1A3). Each row
was labeled as a true positive (the DME was on the drug’s
label) or a false positive (the DME was not on the drug’s
label but was associated with the drug’s network). We
tested logistic regression, decision trees, and random
forest algorithms for their ability to distinguish true
from false positives on a per-DME–phenotype basis.
We performed nested cross-validation to select among
these methods and used the F1 statistic to discover
that these methods were comparable in performance
(Fig. 1A, Supplemental Fig. 3, Supplemental Table 1). We
selected the F1 statistic because the number of true
and false positives was not balanced, and this metric
is more stable when there is class imbalance. We
selected a simple logistic regression because it was
the most straightforward method for interpretation
and next generated a logistic regression model per
DME. However, we were only able to conduct cross-
validation for DMEs where we had at least 10 true and
false positive examples and this reduced our analysis to
16 DMEs.

Using a logistic regression model combined with net-
works discovered for DME-associated drugs increased
AUROC values 50% over statistical thresholds (AUROC
0.77 compared to 0.51) or distance methods (Fig. 1C)
when investigating all DMEs. Performance varied for each
DME (Supplemental Fig. 4). To understand differences in
performance per DME, we investigated multiple perfor-
mance metrics—F-score, precision, recall and AUROC—
and their relationship to features of the input data—total
number of true positives, total number of false positives,
ratio of true positives to false positives, fraction of all
cases that are true positives, total number of genes asso-
ciated to the DME, number of genes appearing in only a
single network and the fraction of genes that are shared
between true and false positive drug networks and the
correlation of performance metrics to these data fea-
tures (Supplemental Fig. 5, Supplemental Table 2). The
average F-score and average precision were moderately
correlated (R ∼ 0.6) with the ratio of true to false posi-
tives used for model training and were moderately nega-
tively correlated (R ∼ −0.6) with the number of false posi-
tives (Supplemental Fig. 5B). This suggested that context-
specific modeling efforts are improved when balanced
datasets of true and false positives are available. Model
performance was not affected by the total number of
genes, or the proportion of genes shared between true
and false positive networks. The latter results highlighted
that classification depends on the combinatorial effect
of genes and further emphasized the need to simul-
taneously study multiple proteins downstream of drug
effects instead of just single targets. We further investi-
gated precision of each method (Table 1) because many
network methods have suffered from low precision. We
discovered that a CSI approach improved precision 76%
(0.499 vs 0.284) compared to the statistical threshold
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Table 1. Average precision per approach.

P-value threshold Distance CSI

Average precision 0.284 0.256 0.499

approach and 95% (0.499 vs 0.256) compared to the dis-
tance approach (Table 1).

CSIs are further attractive for their interpretability. For
instance, logistic regression feature importance scores
highlighted network proteins—both drug targets and
downstream proteins—that are associated with true and
false positive drugs for each DME. We investigated the
feature importance scores generated by logistic regres-
sion for all DMEs and highlighted an example for edema
in Fig. 2. For all other DMEs, merged network images are
included in Supplemental File 1 (Supplemental Figs 6–
20) and feature importance scores are contained in
Supplemental File 2. We overlaid feature importance
scores on a merged network for edema to visualize these
scores in the context of drug protein–protein interaction
networks (Fig. 2). The merged network contains the
union of all protein–protein interactions for true and
false positive drug networks associated with edema.
Interestingly, the logistic regression prioritized more
downstream than target proteins as indicated by more
red/blue protein shading in the lower-middle layer of the
merged PPI network and by the protein type in the figure
table. Further, higher feature importance scores could be
used to prioritize and test downstream proteins for their
role in modulating drug effects. For instance, endothelin
1 (EDN1) had the highest feature importance score in
the model, and it was an ‘intermediate’ or downstream
protein (none of the edema-associated drugs targeted
this protein) discovered in multiple drug networks.
Administration of endothelin-1 to mice has been shown
to increase edema [25]. Thinking mechanistically, this
could suggest that drug-induced edema is caused by
increased EDN1 protein that is stimulated downstream
from drug-targeted proteins. The endothelin receptor
type A (EDNRA) also has high feature importance and
is an intermediate network gene, further suggesting
that the endothelin pathway may modulate drug-
induced edema. Our analysis hypothesizes that drug
targets proximal to the endothelin pathway are more
likely to have effects on edema, which may be a drug
development risk. Follicle-stimulating hormone receptor
(FSHR) was also a downstream protein of many drugs
associated with edema on their labels and FSHR had
high feature importance. Literature supports that high
doses of gonadotropins, including follicle-stimulating
hormone, can result in edema [26]. Our method also
prioritized vascular endothelial growth factor (VEGF),
and anti-VEGF therapies are used for treating edema-
related conditions such as diabetic macular edema,
supporting the relevance of this protein for drug-induced
edema. The cytokine, C-X-C Motif Chemokine Ligand 8

(CXCL8), more commonly known as interleukin 8 (IL8),
is also associated with edema, but literature suggests
a correlative relationship. Specifically, higher levels
of IL8 are associated with diabetic macular edema
[27] and inhibition of mechanistic target of rapamycin
(MTOR) attenuated both IL8 release and lung edema in
an LPS-induced model of lung injury [28]. While also
associated with LPS-induced lung injury, our approach
deprioritized C-X-C Motif Chemokine Ligand 2 (CXCL2)
[29], suggesting that this protein is not associated with
drug-induced edema. Additionally, reduced caveolin 1
(CAV1) expression levels were associated with greater
brain edema in an influenza-associated encephalopathy
model [30]; however, our model also deprioritized this
scaffolding protein, suggesting that this molecule is also
not associated with drug-induced edema. Experimental
validation was outside the scope of this work, but these
results highlight interesting opportunities for further
validating these mechanistic predictions and the need
to parameterize network relationships to understand
the magnitude of downstream effects on drug-induced
phenotypes. In this section, we illustrated the type of
interpretation aided by our method for edema; however,
the phenotype-specific models for other side effects
could also be used to understand which downstream
proteins could be modifying other drug-induced effects
(feature importance scores for other DMEs are contained
in Supplemental File 2).

DISCUSSION
Protein–protein interaction networks are increasingly
used to predict drug phenotypes; however, these meth-
ods tend to overpredict phenotype associations. We
observed that many methods use global approaches
for assessing all phenotypes and we hypothesized
that developing phenotype-specific approaches would
improve prediction performance. We compared two
global approaches—statistical thresholding and distance
thresholding—to our novel per-phenotype approach,
‘context-specific interactions’ (CSI). With CSI analysis,
we measured a striking increase in model perfor-
mance and precision when predicting adverse drug
phenotypes. The CSI approach is additionally attractive
as a ‘white-box’ machine learning approach. More
specifically, the method prioritized protein–protein
interactions downstream of drug targets that may
represent a pathway for the drug-induced effects.
We highlighted an example for edema where edema-
causing drugs did not share the same targets, but
they shared similar downstream proteins. We predicted
downstream proteins for 15 other DMEs using this
approach, suggesting novel insights for drug-induced
side effects. Proteins downstream of positive drugs were
distinct from proteins downstream of false positive
drugs and literature evidence supports the possible
relevance of these proteins. The major contribution of
CSI analysis is that prediction performance and precision
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6 | Integrative Biology, 2022

Figure 2. Meta-analysis of DME-associated merged network identified CSIs for edema. The merged interaction network for all true and false positive
drugs associated with edema highlighted which network components—drug-binding and network proteins—have high feature importance in the
logistic regression model (A). True/false positive drugs are represented in the top layer as upright/inverted triangles, respectively. Drug-binding and
intermediate pathway proteins are represented in the second and third layers. The size of the protein reflects the number of networks in which the
protein appears. Relevant edema-associated phenotypes are represented as boxes in the last layer. Protein coloring reflects the feature importance in
the logistic regression model. Red/blue coloring represents association to true/false positive networks. We have also provided tabular results (B)
indicating protein feature importance score and whether the protein is drug-binding and a histogram (C) of ranked feature importance scores.

are improved by linking targets to downstream proteins
associated with drug-induced phenotypes instead of
using global methods for prioritizing downstream
proteins.

Our CSI approach required examples of positive and
negative drugs and was limited to prediction of drug side
effects because we lacked sufficient negative cases for
drug effects on disease. We made a useful assumption
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that drugs without a DME on its label were likely not
causative of or rarely caused the side effect. However,
there are many types of information that influence a
labeled warning—including reporting rates and severity
of the side effect—and thus, there may be limitations to
this assumption. It would be important to test our predic-
tions on a novel dataset or consider side effect severity
when analyzing associated downstream proteins. Simi-
larly, this limited our analysis to drug side effects and
prevented analysis of drugs’ disease-modifying effects.

To expand CSI analysis for predicting a drug’s effect on
disease, we would require several examples where drugs
were tested and found to have no effect on a disease.
We discovered that prediction performance and preci-
sion correlated with the number of positive and negative
examples in the dataset; we observed that a relatively
large number of false positives reduced model perfor-
mance. Future CSI analyses will require more positive
examples or computational techniques to improve class
balance. Similar techniques have been used to extract
adverse drug reactions from the electronic health records
[21]. Because drugs aren’t routinely tested in multiple
disease indications, a recent approach combined drug
approvals with ongoing clinical studies to identify gold
standard datasets for considering repurposing opportu-
nities [31]. However, the scale of this dataset is still insuf-
ficient for considering the number of drug–phenotype
associations discovered from PPI networks. Recent tech-
nological developments in observational studies using
the electronic health record may provide an opportunity
for developing sufficient examples. For instance, the LEG-
END study simultaneously measured the effect of cardio-
vascular drugs on multiple cardiovascular outcomes [32].
Additionally, recent developments to the CohortMethod
[33] package enabled simultaneous consideration of mul-
tiple ‘control’ outcomes for which a drug is expected to
have no effect.

CSI ‘mining’ may advance PPI network predictions
to have sufficient predictive power to inform decision-
making at the level or regulatory review or industrial
selection. Although curating positive and negative
training examples is required for CSI analysis, we
anticipate opportunities to use cell-based screens or
phenotypic assays for deriving these examples. Already,
we have explored using high-throughput screening and
PPI networks as a means for mining CSIs relevant
to psychiatric disease demonstrating the utility of
experimental systems for deriving positive and negative
examples. Further experimental validation would be
needed to confirm the relevance of downstream proteins
identified in CSI analysis. As an initial test of these
predictions, we identified drug combinations where a
drug interaction was predicted if the combo drug bound
a DME-associated downstream protein. We further
measured drug interaction effects on DMEs using the
electronic health record (in preparation), further sug-
gesting that CSIs identify downstream proteins relevant
to drug-induced phenotypes. Together, these results

suggest a paradigm shift toward network engineering
of context-specific pathways to more effectively predict
drug phenotypes.

MATERIALS AND METHODS
Extracting true positive and true negative drug
examples from drug labels
We extracted relevant phenotypes from the drugs’
labels using a custom natural language processing
(NLP) query (publication forthcoming, data included in
Drugs_labeled_for_AEs.txt). In this query, we searched
text in the ‘warnings’, ‘boxed warnings’, and ‘precautions’
portions of drugs’ labels and looked for specific des-
ignated medical event (DME) terms or synonyms. The
selection of terms and synonyms were done in collabora-
tion with FDA scientists using their in-house NLP pipeline
for reading text and extracting relationships (publication
forthcoming). We specifically searched for mentions of
agranulocytosis, anaphylactic reaction, cardiac arrest,
cerebral infarction, completed suicide, deep vein throm-
bosis, delirium, edema, gastric ulcer, generalized tonic–
clonic seizure, hemolytic anemia, hemorrhage, hepatic
necrosis, hyperlipidemia, hypertension, interstitial lung
disease, myocardial infarction, myopathy, neuroleptic
malignant syndrome, pancreatitis, peripheral neuropa-
thy, pneumonia, proteinuria, pulmonary edema, QT
prolongation, sepsis, serotonin syndrome, sleep apnea
syndrome, sleep disorder, Stevens–Johnson syndrome,
tardive dyskinesia, thrombocytopenia, ventricular tachy-
cardia, and visual acuity reduced. This analysis yielded
associations between 1970 drugs and 34 DMEs.

In the cases where a DME was listed on a drug’s label,
we considered this a ‘positive’ drug. Interestingly, gold
standard datasets for negative drug effects (e.g. a drug
was tested for diabetes but does not affect the diabetes
phenotype) are lacking [15]. Because FDA review of seri-
ous adverse reactions, including DMEs, is rigorous for all
approved drugs, we reasoned that if a drug’s label did not
list a DME, then the drug likely does not cause the DME
or causes the DME rarely. This assumption provided a
valuable opportunity for understanding network method
performance when other gold standard datasets were
lacking. Using this reasoning, we defined ‘negative’ drugs
as any of the 1970 drugs in our drug set that do not have
a DME listed on their drug label. We defined positives
and negatives for each DME separately. For instance,
496 drugs were associated with myocardial infarction on
their drug label, and these drugs were considered posi-
tives for the myocardial infarction DMEs. The remaining
1474 drugs in our 1970 drug set were considered nega-
tives for the myocardial infarction DME.

Modeling true positive and negative networks
with PathFX
Because we could not create network associations with-
out knowledge of drug-binding targets, we removed drugs
without targets in DrugBank, leaving a set of 997 drugs
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8 | Integrative Biology, 2022

for further analysis. We analyzed these 997 drugs using
PathFX with default parameter settings. PathFX uses
drug-binding proteins as inputs to identify a protein–
protein interaction network around targets based on the
likelihood of the interaction existing and then uses net-
work genes/proteins to identify phenotypes enriched in
this network relative to the entire interactome. The orig-
inal interaction network published with PathFX contains
an edge score for all protein interactions. The edge score
reflects the amount and quality of evidence (e.g. the
number of publications, and the type of experimental
analysis used to discover the interaction) and all scores
are normalized from 0–1. A higher score reflects more
and greater quality of evidence that the proteins interact.
This scoring is based on the MIScore [34] method and is
fully elaborated in [9]. PathFX uses a depth-first search
to discover protein–protein interactions around a drugs’
target(s). The depth first search stops when a path score
falls below the empirically derived threshold. This path
score threshold was derived by measuring path unique-
ness per network gene across a wide range of thresholds.
At each threshold, and for each gene, the uniqueness
of a path was measured as the difference between the
path’s score and the average of all path scores for a gene.
Path scores greater than the average were considered
unique and path scores below the average were consid-
ered not unique. The empirical threshold was selected
by counting the proportion of total unique paths in the
network. At high score thresholds (e.g. 0.99), very few
path scores exceeded this threshold and very few paths
were unique. As we measured lower values (e.g. 0.7),
many more paths were discovered, but the proportion of
paths above the average path score for a gene peaked
and then diminished. We formulated the scoring this
way because highly connected and highly studied genes
(e.g. ubiquitin or tumor protein P53 (TP53)) could be
compared to their own averages. This would generate
a stricter threshold for including highly studied genes
without penalizing network genes with fewer interacting
partners. In the original PathFX publication, this score
was set to 0.77. Unique to our approach; this path score
was not optimized for capturing drug–disease associa-
tions but was set to minimize biases such as hub bias
when including protein interactions in a drug pathway.
Conceptually, this path score represented an interaction
distance where we had the strongest support from the
underlying interactome data.

After identifying a network of proteins, PathFX uses a
multiple hypothesis–corrected Fisher’s exact test to mea-
sure phenotypes for which network genes are enriched
relative to the entire interactome. We calibrated this pro-
cess by generating networks using random size-matched
sets of drug targets and measuring the enrichment to
all phenotypes. A real network was considered enriched
for a phenotype if the multiple hypothesis–tested P-value
was above the median P-values for 100 random networks
seeded with the same number of input proteins. For a
full list of features and outputs, see [9, 35]. For each

Table 2. Number of true positives identified in PathFX
networks by DME.

DME Number of
positives

Hypertension 841
Myocardial infarction 263
Hemorrhage 154
Pancreatitis 128
Pneumonia 125
Edema 54
Myopathy 36
Tardive dyskinesia 35
Hyperlipidemia 35
Sepsis 29
Peripheral neuropathy 28
Thrombocytopenia 27
Proteinuria 27
Gastric ulcer 26
Pulmonary edema 18
Delirium 17
Cerebral infarction 10
Hemolytic anemia 9
Cardiac arrest 7
Hepatic necrosis 4
Agranulocytosis 5
Ventricular tachycardia 2
Interstitial lung disease 2
Deep vein thrombosis 1

drug, PathFX analysis yielded a PPI network and a list of
phenotypes associated with these networks.

When analyzing these 997 drugs, we defined a true
positive as a case where PathFX identified the DME,
or a synonym, in the drug’s network. We defined a
false positive as a case where PathFX identified a DME
in the network of a negative drug. We defined a false
negative as a case where PathFX didn’t identify a DME
associated with a positive drug. We defined a true
negative as when PathFX didn’t identify an association to
a DME for a negative drug. This analysis was conducted
using the script define_tp_fp.py and it created the
following outputs: drugs_to_dmes_true_positive.txt,
drugs_to_dmes_false_positives.txt, files that contain the
true positive and false positive examples. Of the original
34 DMEs, we discovered at least one network association
for 24 of the DMEs (Table 2). For remaining analyses, we
focused on the 24 DMEs where we found at least one
network association.

Plotting P-value distributions and estimating
AUROC values
In the same script (define_tp_fp.py) where we defined
our true and false positive examples, we generated
plots of the P-values for these associations. When we
started our PathFX algorithm, we hypothesized that an
optimized P-value threshold may be able to distinguish
the true from false positives. However, when we plotted
the multiple hypothesis–corrected P-values reported
from the default PathFX for positive and negative drugs,
we generated overlapping distributions. We plotted
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both the raw P-values and the normalized P-values.
The normalized P-values are the multiple hypothesis–
corrected P-values normalized to the median P-value
threshold of 100 random networks (explained above).
To generate values for the ROC curve, we further
filtered the normalized P-values for counting true and
false positives on a range from 0 to 1 and stored
the counts of true positives and false positives for
later ROC curves. The define_tp_fp.py script generated
the plots, raw_values.png, and norm_pvalues.png, and
generated the data object, pvalue_roc_values.pkl, for
further analysis. We analyzed the AUROC in the script,
plot_ROC_pv_soDist.py, using the trapez method imple-
mented in Python.

Measuring the effect of interactome distance on
detecting DME associations
We developed modified versions of PathFX to test the
effect of altering PPI distance on detecting associations
to DMEs. Indeed, many successful network approaches
have used interactome distance functions to iden-
tify relationships between drug targets and disease-
associated genes [8, 12, 16]. For the original PathFX
construction, we empirically derived an interaction score
threshold to prevent hub bias and to maximize path
uniqueness (explained above) [9]. A key assumption in
these approaches is that a drug’s targets are proximal to
DME- or disease-associated genes, or that distance can be
described by a single, global function. We hypothesized
that changing the path score threshold would reveal
an optimal distance to recover relationships between
drug target(s) and DME-associated genes. To measure
the effect of path distance on detecting associations to
side effects, we created 11 custom versions of PathFX
each with a different path score threshold. Effectively,
changing the score threshold allowed us to focus on
networks that were relatively close or far from the
drug’s targets. In this case, ‘close’ represented proteins
that interacted with drug targets directly and ‘far’
represented proteins that were multiple interactions
downstream of a drug target. These scripts are contained
in the PathFX_soDist/scripts/directory and are named
phenotype_enrichment_pathway_so_dist_0.82.py where
‘0.82’ represents the score threshold used in this version.
The other score thresholds used include 0.82–0.90, 0.95
and 0.99. We started our experiment using a stringent,
high threshold (i.e. 0.99) and then relaxed this threshold
to increasingly allow more edges to be considered in
network construction. Given the score distribution of
our interaction network , we found that computational
time increased significantly as we reached the 0.82
range because consideration of every path relative to
all network paths was quite slow. We stopped at this
score threshold because the computational time was
increasingly slow and because we were not increasing
the ability to detect more true positives. In each version,
we recalculated the expected distributions of multiple
hypothesis–corrected P-values per phenotype using

100 random networks with size-matched input sets.
A network was associated with a phenotype if the
multiple hypothesis–corrected P-value was greater than
the median P-value of 100 random networks for that
phenotype with the same number of drug target inputs.

We reanalyzed networks for our 997 drugs at each
path score threshold by using each version. Generating
networks for all 977 drugs using each of the 11 versions
is contained in the script run_pathfx_all_distances.py.
As above, we investigated whether the networks for
these drugs contained associations to true or false
positive DMEs at each score threshold and calcu-
lated the sensitivity and specificity as mentioned
above. We analyzed these results using the script,
count_tp_fp_so_dist.py, and the results of this script are
saved in the PathFX_soDist/results/analyze_so_dists/dire
ctory. We then used the plot_ROC_pv_soDist.py to count
the true and false positive rates at each score threshold
and plot the ROC curve using these values. This script
generated the pvalue_ROC_dist.png figure.

Logistic regression, decision trees, and random
forests analysis
For this analysis, we created binary matrices for all
true and false positive networks associated with a
DME. These matrices included a 1/0 if a gene was/was
not included in the drug’s network, respectively. Row
labels reflected whether the drug’s label was associated
with the DME. This analysis is included in the script
create_positive_negative_files.ipynb and this analysis
yielded a matrix file for each of 24 DMEs: agranulocytosis,
cardiac arrest, cerebral infarction, deep vein thrombosis,
delirium, edema, gastric ulcer, hemolytic anemia, hem-
orrhage, hepatic necrosis, hyperlipidemia, hypertension,
interstitial lung disease, myocardial infarction, myopa-
thy, pancreatitis, peripheral neuropathy, pneumonia,
proteinuria, pulmonary edema, sepsis, tardive dyski-
nesia, thrombocytopenia, and ventricular tachycardia.
To facilitate future analyses, these files are saved
in/ML_network_positives_negatives/dme_DMENAME.txt
where DMENAME is replaced with each of the DMES of
interest.

We first used the scikit-learn module in Python
and selected a nested cross-validation procedure to
compare logistic regression, decision trees, and random
forest because this procedure generated a more realistic
estimation of the model generalization capabilities. We
used the F1 score to evaluate model performance in this
analysis because this metric is robust to imbalances
in datasets and because high precision and high
recall are valuable for detecting adverse outcomes.
We used an inner and outer split of 4 because of the
limited size of our dataset and we sampled several
parameter configurations for each model type using
a grid-based search. Specifically, we tested 1152, 288,
and 620 model configurations for random forest,
decision trees, and logistic regression, respectively
(described more in Table 3). We completed these analyses
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Table 3. Model configurations explored during nested
cross-validation.

Method Features Total config-
urations

Random
forest

n_estimators: 10, 100, 200, 300, 400,
500, 600, or 700;
criterion: gini or entropy;
max_depth: no limit, 3, 8, or 13;
min_samples_split: 2, 10, or 30;
min_samples_leaf: 1, 10, or 20;
class_weight: balanced or no weights

1152

Decision
trees

criterion: gini or entropy;
max_depth: no limit, 3, 8, or 13;
min_samples_split: 2, 10, or 30;
min_samples_leaf: 1, 10, or 20;
class_weight: balanced or no weights;
splitter: best or random

288

Logistic
regression

penalty: L1 or L2
C: the concatenation of numbers
spaced evenly on a log scale starting
from −5 to 4 generated from 10
samples and from 300 samples

620

Total configurations resulted from the Cartesian product of each feature
vector.

using the DecisionTreeClassifier, LogisticRegression, and
RandomForestClassifer methods from scikit-learn in
Python. The results of those analysis are included in
Supplemental Fig. 3 and the analysis was completed in
the script, ML_network_positives_negatives/run_all_dme
_models_ncv.py.

To generate test scores for the ROC curves using logis-
tic regression, we modified ML_network_positives_negati
ves/run_all_dme_models_new_log_reg.py and ML_netwo
rk_positives_negatives/all_pathways.py scripts. We used
default methods in scikit-learn to measure F1, ROC, and
accuracy from the logistic regression model. To plot all
ROC curves, we used plot_ROC_all_methods_072720.py.
We also used default methods in scikit-learn to export
the feature importance scores from the LogisticRegres-
sion classifier.

Plotting merged networks
To analyze feature importance scores, we used ML_netwo
rk_positives_negatives/save_and_plot_feat_imp_scores.py.
This script analyzed the feature importance scores gener-
ated after the model fitting and generated Supplemental
File 2. This file is a copy of ML_network_positives_negativ
es/log_reg/logistic_regression_all_feature_importance.xl
sx. We next plotted merged networks and feature impor-
tance values using network_images/plot_feat_imp_on_
networks.ipynb. In the Python notebook, we merged
interaction networks for positive and negative drugs
associated with each DME. Using the merged graph, we
created custom methods to plot drugs as triangles in
the top-most layer of the graph, drug-binding proteins
in the second layer of the graph, intermediate proteins
in the third layer of the graph, and DME-related
phenotypes in the fourth and bottom layer of the graph.
We additionally used the feature importance scores

generated previously to create custom color maps for all
merged networks highlighting the network proteins with
feature importance scores in the logistic regression. This
script also generated 16 text files, one for each DME (e.g.
‘edema_feature_import_drug_binding_table.txt’, availa-
ble in GitHub), from which we created tables associ-
ating all network genes to their feature importance
scores and node type (either drug binding or not drug
binding). We manually copied these files into the
SF2_AllDME_feature_import_drug_binding_table_format
ted.xlsx to create the Supplemental Table.

Analyzing features associated with logistic
regression performance metrics
We analyzed relationships between input data fea-
tures and multiple performance metrics. We first
calculated the average F-score, average precision, aver-
age recall, and AUROC (‘ROC value’), for each DME
over a range of acceptance thresholds. This analysis
is included in plot_ROC_all_methods_072720.py and
used Python Pandas DataFrame objects to generate
a table of values for each of the 24 DMEs analyzed
with logistic regression. These results are saved in
the file DME_individal_ROC_values_input_counts.xls.
We further expanded this table to include the total
number of genes analyzed, the total number of true
positive networks, the total number of false positive
networks, the ratio of true to false positive exam-
ples, the proportion of true positive examples, the
number of singleton genes and the fraction of shared
genes between true and false positives per DME.
In this case, a ‘singleton’ refers to a gene that is
present in only one true or false positive example.
We used the script explore_ind_dme_performance.py
to add these values to the table. The script generated
DME_individual_ROC_values_input_counts_expanded.xls.
These values are also included in Supplemental Table 2.
To calculate correlation values, we used the CORREL
function in Excel and exported a formatted table to illus-
trate the range of values. This formatted table is included
in the GitHub repository as DME_individual_ROC_values_
input_counts_annotated.xlsx.
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