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Abstract 

Equilibrium Vortex Motion in Two- and Three-Dimensional Superconductors 

Studied With a DC SQUID 

by 

Timothy J. Shaw 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor John Clarke, Chair 

1 

The equilibrium motion of vortices in two- and three-dimensional superconductors 

has been studied with a de Superconducting QUantum Interference Device (SQUID). This 

technique has the advantage of probing the system in a non-invasive manner as well as 

providing dynamic information over many decades in frequency. 

Through measurements of the spectral density of magnetic flux noise, S<r>(w), as 

a function of temperature and applied magnetic field, the effects of proton and heavy ion 

irradiation on flux noise in crystals of YBa2Cu30 7_ 0 have been measured and compared 

with the effects on the critical current, Jc. Both proton and heavy ion irradiation proved 

effective at reducing S<r>(w), with proton irradiation having a larger effect. These changes are 

attributed to the change in defect structure caused by the irradiation, which also increased Jc· 

From the temperature dependence of S<r>(w), the distribution of activation energies, D(U0 ), 

for vortex hopping ha been extracted. Irradiation moved the peak in D(Uo) from ,....., 0.2 

eV before irradiation to,....., 0.1 eV after irradiation and greatly reduced its magnitude. The 

change in the total number of active vortices over the measurement temperature range caused 

by irradiation is attributed to creation of high-energy pinning sites. Finally, comparison of 

S<r>(w) of the irradiated crystals to that of a typical thin film is argued to indicate that 

irradiation would not be a likely candidate for decreasing flux motion in superconducting 

magnetometers. 

Measurement of S<r>(w) due to the equilibrium Kosterlitz-Thouless-Berezinskii tran

sition in two-dimensional Josephson Junction Arrays (JJAs) was studied as a function of 
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temperature for three different arrays and using three different sensors. S<I>(w) is shown to 

obey dynamic scaling over as many as five decades in frequency, and estimates are made 

for the dynamic critical exponent z. An analytic theory for the high- and low-frequency 

behavior of S<I>(w) is presented and compared to the measured data, with the result that the 

low-frequency behavior is well described by the theory but the high-frequency behavior is 

not. Other theories and numerical simulations are described and compared with the data, 

but none are completely satisfactory. Lastly, suggestions for necessary further theoretical 

work and possible future experimental work are suggested. 



To my grandfather, who looked up at me about two years ago and said, 

"Tim, when are you going to graduate?". 

When I replied that it would be about two years, he remarked, 

Ill 

"You know, I'm over 80 years old now. You'ld better hurry up because I'm 

not sure how much longer I have." 

Grandpa, we both made it. 
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Preface 
A Ph. D. thesis should, I believe, satisfy two criteria. First, and foremost, it should 

present a clear and precise demonstration of original research worthy of the degree. Second, 

and almost as importantly, it should contain a more detailed description of the methods and 

thought processes that went into the work than would appear in scientific journals, so that 

future researchers might find it to be a valuable reference. 

To these ends, the following pages describe a portion of the research that I have done 

during my studies at Berkeley. I have attempted, wherever possible, to make it relatively 

self-contained in so far as it should be possible to understand the body of the work without 

reference to other sources. In addition, there appear rather detailed descriptions of the 

experimental apparatus and techniques which I hope will provide details which one often 

only obtains from the physicists with whom one works, s~ch as the type of adhesive used in 

a cryogenic measurement which, although seemingly minor, nevertheless play an important 

role in the functioning of an experiment. Lastly, I have drawn heavily on the theoretical 

work of others and have attempted, rather than just to cite the results, to provide details 

and insights into the calculations which are relevant to the measurements and which might 

provide a perspective not contained in the original work. 
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Chapter 1 

Introduction 

The research presented here is comprised of the results and analysis of two rather . 

different projects, but with a common thread-the study of equilibrium vortex motion in su

perconducting materials. The first project, the study of the effects of proton and heavy-ion 

irradiation on the pinning properties of YBa2Cu307_ 0 (YBCO) well below the supercon

ducting transition temperature, was motivated by two factors, a desir~ to understand the 

nature of pinning defects caused by irradiation and the hope of finding a technique to reduce 

the effects of vortex motion on the performance of superconducting magnetometers. This 

study of vortex pinning led to a project with the motivation of understanding vortex motion 

and the superconducting transition on a more fundamental level. Iri order to do so, we 

chose to examine a system in which pinning is unimportant and which is also much more 

uniform than high-temperature superconductors such as YBCO, namely a two-dimensional 

Josephson junction array (JJA). These arrays have long been regarded as an ideal system to 

·study the. two-dimensional metal-superconductor transition (commonly called the Kosterlitz

Thouless-Berezinskii [KTB] transition after the authors who first gave a foundation for its 

understanding) [5, 6, 7], and the understanding of this phase transition could lead to a 

better understanding of the superconducting transition in the quasi-two-dimensional high

temperature superconductors such as Bi2Sr2CaCu208+o. Before going into the details of the 

measurements and their interpretations, I will give a general overview of vortices in two- and 

three-dimensional superconductors, pinning in high-temperature superconductors, and the 

KTB transition. 
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1.1 Vortices in Two- and Three Dimensional Superconductors 

The magnetic properties of superconductors can be well described by a complex 

order parameter, W, as originally proposed on a phenomenological level by Ginzburg and 

Landau[8] and later justified as derivable from the microscopic theory of Bardeen, Cooper, 

and Schrieffer[9] by Gorkov[10]. The magnitude of W can be understood as being proportional 

to the density of superconducting electrons, and the gradient of the phase is proportional to 

the current. In a famous publication, Abrikosov[ll] showed that for >..j~ > 1/.../2, where A 

is the penetration depth for perpendicular magnetic fields and·~ is the correlation length, a 

magnetic field larger than the lower critical field enters the superconductor in the form of 

flux vortices, each containing a single quantum of magnetic flux, ~0 = hcj2e. 

The structure of a vortex is very different in two- and three-dimensional supercon

ductors. A vortex in a three-dimensional superconductor is shown schematically in Fig. 1.1. 

The order parameter goes to zero at the vortex center and approaches the bulk value on the 

scale of ~, and the magnetic field is a maximum in the center and decays towards zero with 

the characteristic length scale A. In a two-dimensional JJA, or in any two-dimensional super

conductor, the. situation is very different. The system can be modelled in a similar manner 

as for three-dimensional materials, in which the order parameter is zero at the center of 

the vortex and approaches the bulk value on the characteristic length scale of the core size 

(which I will call ro in order to not confuse it with another correlation length traditionally 

called~ to be discussed in Chapter 4), but the perpendicular penetration depth is infinite. 

Since real materials are never two-dimensional, there is a finite penetration depth, but as far 

as the topics to be discussed here are concerned, A is infinite in the JJAs. 

The differences between vortices in two and three dimensions has important impli

cations on the energy needed to create a vortex as well as the interaction between vortices. 

The energy needed to create an isolated vortex in a three-dimensional superconductor is 

approximately (see, for example, Ref. [1]) 

(1.1) 

where s is the thickness of the superconductor along the vortex axis, whereas for a two

dimensional JJA the creation energy is (see, for example, Ref. [12]) 

(1.2) 
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r 

Figure 1.1: Structure of a vortex in a three-dimensional superconductor. The magnitude of 
the order parameter, I"WI represents the superfluid density, and h is the value of the local 
magnetic induction. From Ref. [1]. 

where EJ is the Josephson coupling energy per junction, Ec is the core energy, and R is 

· the size of the system. The import31-nt difference here is that in a two-dimensional system 

the creation energy grows with the system size. In addition to the difference in isolated 

vortex creation energies, the interaction between vortices is very different in two- and three

dimensions. The circulating current around a vortex decays as a function of distance from 

the core as 

I(r) cx1jr ~ « r « >. 

erf>.. /r3/2 r » >. 

in three dimensions, and has the dependence 

I(r) ex 1/r 

(1.3a) 

(1.3b) 

(1.4) 

in two dimensions. The force exerted on another vortex by this current is given by the 
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Lorentz force 

FLorentz = I X q>O· (1.5) 

Therefore, from an examination of Eqs. (1.3)-(1.4) it is evident that vortices with large sep

aration have negligible interaction in three dimensions whereas the interaction is extremely 

long-ranged in two dimensions. 

1.2 Vortex Pinning in High-Temperature Superconductors 

Pinning is a generic term for the tendency of vortices to be preferentially attracted 

to certain regions of the sample due to inhomogeneities. There are many types of defects 

which can cause pinning, as described in the monograph of Campbell and Evetts[13] and the 

text by Ullmaier[14]. The most common are regions where \If is suppressed by local structural 

defects which allow the vortex core to save condensation energy by passing through the defect 

region, and surface roughness, which reduces the total energy of the vortex in thinner regions 

by allowing it to minimize its length. For the small magnetic fields in which the work here 

was carried out, the vortices have an average separation much greater than >. and via Eqs. 

(1.3) and (1.5) can be considered non-interacting. In this field regime, pinning and thermal 

excitations are the dominant mechanisms determining vortex motion, and the interaction of 

vortices and structure of the vortex lattice predicted by Abrikosov[ll] are irrelevant. 

1.3 Two Dimensions and the Kosterlitz-Thouless-Berezinskii 

Transition 

The system-size-dependent vortex creation energy and long range vortex interaction 

discussed above have important implications on the existence of superconductivity in two 

dimensions. This can be seen by examining the creation energy for an isolated vortex in 

Eq. (1.1). A rough estimate of the possibility of an isolated vortex can be made by noting 

that the for a system of size R, the vortex core can be located in approximately (Rjr0 ) 2 

different locations. Its entropy is then kB ln[(Rjr0) 2] and the free energy cost for creating 

an isolated vortex is (1rEJ- 2kBT)£n(Rjr0 ). Therefore, free vortices will be favorable for 

T > 1r E J /2k B and even for temperatures at which the sample would be superconducting 

in three dimensions, namely when there is a finite superfluid density, isolated vortices can 
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occur which make the sample have a finite static resistance. The low-temperature phase, in 

which there are no isolated vortices, can be understood by noting that the energy needed to 

create a vortex-antivortex pair of separation r is (see, for example, Ref. [15]) 

(1.6) 

Since the size of the system does not appear in the pair creation energy of Eq. (1.6), the low

temperature phase will consist of an equilibrium density of bound vortex-antivortex pairs, 

and the transition to the resistive state in this rough argument occurs at a temperature 

(1.7) 

The transition to the superconducting state in two dimensions occurs below the bulk 

transition temperature as described above. This phase transition is driven by fluctuations 

in the phase of the order parameter in the form of vortices, in sharp contrast to the three 

dimensional superconducting transition (in small magnetic fields) in which fluctuations in 

the magnitude of the order parameter drive the transition. 
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Chapter 2 

Experimental Techniques and 

Samples 

2.1 Flux Noise Measurements 

2.1.1 Cryogenic Insert 

The apparatus used to carry out the flux noise measurements to be described in 

this thesis was designed by Mark Ferrari for the purpose of studying vortex motion in high

temperature superconductors[16]. Subsequently, I made modifications to provide a larger 

frequency bandwidth and an improved sample alignment technique as will be described 

below. The main goal of the design was to provide an ideal environment for the heart of 

the apparatus, a de Superconducting Quantum Interference Device (SQUID) (namely at 

a temperature well below the rv7 K transition temperature and free from large static and 

varying magnetic fields), while allowing a sample at a temperature up to about 130 K to be 

placed within 100 pm of the SQUID. The insert which satisfied these criteria is shown in Fig. 

2.1, and fits inside of a fiberglass, superinsulated, liquid helium dewar. A mu-metal shield 

surrounds the dewar and reduces the earth's magnetic field to less than 1 pT, and a lead 

can surrounding the vacuum can drastically reduces fluctuating fields, the worst of which are 

due to the ubiquitous 60 Hz noise. The plumbing is relatively standard for cryogenic studies 

- a vacuum line to a vacuum can with an indium a-ring seal clamped with eight screws. A 

helium transfer line allows the five liter dewar to be filled without removing the insert. 

The heart of the apparatus is shown in Fig. 2.2, and consists of a hot side and a 



.-.--helium transfer line 

vacuum line 

transformer 
vacuum screws 

lead shield 

Figure 2.1: Schematic drawing of cryogenic insert. 
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cold side. The cold side is formed by a "' 1 em x "' 10 em x 0. 75 mm sapphire stage which 

is attached by a copper clamp to a copper plate which is in turn soldered to the top of the 

vacuum can, thereby providing good thermal contact between the sapphire stage and the 

liquid helium bath. Since the sapphire is relatively fragile, it is supported by a thick piece 

of fiberglass, which was chosen over metal in order to avoid excess noise at the SQUID due 

to Johnson noise currents. 

An expanded view of the hot and cold sides is shown in Fig. 2.2(b). On one side 

of the sapphire stage, the SQUID substrate is mounted with vacuum grease. On the reverse 

side a superconducting persistent-field coil is glued (with Miller-Stephenson epoxy). This 

coil has an outer diameter of 1.2 em, an inner diameter of 0. 75 em, and consists of 450 turns 

of 3 mil niobium wire. Inside the field coil is a 10 turn concentric coil used to provide the 

alternating and feedback flux necessary to operate one of the SQUIDs. 

The hot side consists of sample stage, on one side of which is mounted the sample 

and on the other side of which is mounted a thermometer and a resistive heater. Two 

different sample stages were used, one of which has a silicon sample stage and another with 

a sapphire stage. The thermal isolation between the the hot and cold sides was realized 

using two different methods. The first, as discussed in Ref. [16], employed Macor spacers 

between which was placed plastic bristles (such as those found in pastr.y brushes). Since this 

method was difficult and not very mechanically stable, and resulted in the destruction of at 

least one SQUID, a second method was used in which sharpened brass screws provided the 

thermal isolation and, in addition, allowed the separation between the SQUID and sample 

to be easily adjusted. Brass was chosen because of its relatively low thermal conductivity at 

liquid helium temperatures and its small thermal contraction (as opposed to nylon or other 

·plastic), but more importantly because it is not highly magnetic. 



(a) 

(b) /height -adjustment screws'-
sample stage , heater thermometer 

..... ···y 
mod. coil 

SQUID substrate sapphire stage 
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Figure 2.2: (a) Schematic drawing of cross section of vacuum can. (b) Magnified view of 
components of hot and cold sides. 
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2.1.2 SQUIDS and SQUID Electronics 

The three types magnetic flux sensors used in the measurements are of the geome

tries shown schematically in Fig. 2.3. The first type of sensor, shown in Fig. 2.3(a) and 

labelled SQUID 1, is a conventional square-washer design[17]. For the measurements on 

YBCO, two SQUIDs of this type were used, one with inner diameter 200 J.Lm and outer 

diameter 1 mm and another with inner diameter 26 J.Lm and outer diameter 1 rnm. For the 

measurements on Josephson junction arrays, three different SQUIDs were used. The first 

is a square-washer SQUID with inner diameter 180 J.Lm and outer diameter 900 J.Lm. The 
I 

second sensor, shown in Fig. 2.3(b) and labelled SQUID 2, is a square pickup loop of width 

250 J.Lm. The leads extend approximately 1.5 mm and form a five-turn input coil which is 

coupled inductively to a square-washer SQUID as shown in the image in Fig. 2.4(a). The 

leads lie on top of each other so that when a sample is placed over the pickup loop only 

the loop picks up the perpendicular magnetic field. The third sensor, shown schematically 

in Fig. 2.3 and labelled SQUID 3, is very similar to SQUID 2 but the pickup loop has a 

diameter of 100 J.Lm and is an extension of the SQUID body itself, as shown in the image in 

Fig. 2.4(b). 

During measurements, the sample was placed directly over the sensor. The SQUIDs 

were operated in the standard flux-locked-loop mode at a modulation frequency of 100kHz. 

Readers interested in the details can consult Ref. [17] and references therein, but a rough 

description will be given here. The general principle of of operation can be understood by 

first examining Figs. 2.5 and 2.6. In order operate the SQUID, the bias current and de flux 

is adjusted as shown in Fig. 2.5 to give the largest signal from the SQUID. The voltage 

across the SQUID is a periodic function of the flux threading the SQUID, with period 

cp0 = hcj2e, the superconducting flux quantum. A portion of the voltage-flux response is 

shown schematically in the top left curve of Fig. 2.6(a). In the flux-locked-loop mode, the 

ac flux is adjusted to have a peak-to-peak magnitude of cp0 j2. As shown in the lower left 

curve of Fig. 2.6(a), when the quasistatic flux, cpqs is an integer number of flux quanta, the 

resultant voltage across the SQUID will be at twice the 100kHz reference frequency, shown 

in the right curve of Fig. 2.6(a). In this way, when the amplified signal is referenced to the 

100kHz modulation frequency by the mixer as shown in Fig. 2.5, the result will be zero. If 

cpqs is now set at (N + 1/4)cp0 , as shown iii Fig. 2.6(b), the SQUID signal is at 100kHz and 

will produce a maximum signal after being referenced to the modulation frequency. One can 
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(a) 

(b) SQUID 2 

250 flm 

, .. 1.5 mm .. , 
(c) 

SQUID 3 

~ 
100 flm 

Figure 2.3: Schematic drawings of (a) SQUID 1, (b) SQUID 2, and (c) SQUID 3. See text 
for detailed descriptions. 
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modulation coil 

(a) 

-
100 J.liD 10 J.lm 

Figure 2.4: Image of (a) SQUID 2 and (b) SQUID 3 
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see that as the quasistatic flux is changed from N~o to (N + 1/4)~o, the signal from the 

mixer will steadily increase, and similarly decrease as the quasistatic flux is changed from 

N~o to (N- 1/4)~0 . Therefore, when the signal output from the mixer is sent through 

an integrating amplifier and the feedback on switch in Fig. 2.5 is closed, the electronics will 

feed a current through the feedback resistor, R1, which generates a flux through the SQUID 

via the mutual inductance Mt to null any changes in the quasistatic flux. In this way, the 

SQUID and electronics acts as a null detector of the flux through the SQUID. 

This describes the general operation procedure of the flux-locked-loop, but two 

aspects which are not obvious from the description is the reason for the 100kHz modulation 

and the necessity of the transformer to couple the SQUID signal to the preamplifier. A 

modulation frequency of 100- 500 kHz is used in order to overcome the 1/ f noise in the 

preamplifier which typically extends up to 10 - 50 kHz, and also to alleviate low frequency 

drift in the bias current and preamplifier. The transformer presents an impedance N 2 Rd 

to the preamplifier, where N is the turns ratio of the transformer and Rd is the dynamic 

impedance of the SQUID, in order to optimize impedance matching between the SQUID and 

preamplifier and to amplify the SQUID noise to a level higher than that of the preamplifier. 

The transformer used in the apparatus of Figs. 2.1 and 2.5 is a superconducting 

transformer consisting of a secondary coil with 750 turns of niobium wire wound around a 

teflon form, around which are wound 11 turns of lead tape, forming the primary coil. The 

transformer sits outside of the vacuum can as shown in Fig. 2.1, and was used instead of 

the apparatus' original tuned tank circuit because it provides a larger frequency bandwidth. 

A small blocking resistor, Rb, prevents all of the SQUID bias current from being shunted 

through the primary coil of the transformer. A tunable room temperature capacitor is used 

to adjust the resonant frequency of the transformer to 100 kHz with a small Q ~ 2. 



integrator 

reset 

buffer 
amplifier 
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variable gain 
amplifier 
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'-----....Jcapacitor 

transformer 
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Figure 2.5: Schematic of electronics used to operate SQUID. 

14 



15 

(a) 

<I> qs = N<I>o <I>ac = (<1>0 /4) cos( rot) 

(b) 

<I> qs = (N+ 1/4 )<1>0 

Figure 2.6: Flux modulation scheme for SQUID with (a) <I>qs = N<I>o and (b) <I>qs = (N + 
1/4)<I>o. 
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2.1.3 Measurement Procedure 

The general flux noise measurement procedure was to first adjust the current to the 

resistive heater of the hot side and wait for the temperature to stabilize. Next, the SQUID 

bias current and alternating flux modulation were optimized as described in Section 2.1.2. 

Then, the feedback on switch was closed to begin the flux-locked-loop mode (see Fig. 2.5 

for visualization of the procedures discussed here), and the conversion factor between flux 

through the SQUID and output buffer voltage, RtfMt (see Fig. 2.5), was determined. The 

standard procedure for determining RtiMt was to manually increase the static flux input 

and then reset the integrator. This caused the lock point of the feedback loop to jump 

by an integer number of flux quanta through the SQUID (chosen to be ±1 <.1> 0 by judicious 

adjustment of the static flux), and the resultant change in v, gave RtiMt, or equivalently 

the current needed to produce a flux change of <.1>0 through the SQUID. 

In order to measure the power spectral density of flux noise, Sq,(w), the buffer 

voltage, v,, was fed to a spectrum analyzer. The spectrum analyzer bandwidth was then set 

and 50 to 1000 averages were taken, depending on the measurement bandwidth, followed by 

a dump of the resultant spectra to a computer. 

In addition to the flux noise measurements, for the measurements on Josephson 

junction arrays it was necessary to make electrical measurements, namely the differential 

resistance, dV I dl, as a function of static bias current and temperature. A measurement 

schematic is shown in Fig. 2.7. An alternating current at a frequency of 47Hz was fed into 

the array via a function generator to provide an rms current of 10 J.LA. The voltage leads 

to the array were coupled to a PAR 190 transformer, with a gain of 100, and the resultant 

voltage was fed to a lock-in amplifier. The temperature dependence of dV I dl, at zero static 

bias, was measured by adjusting the current to the resistive heater (see Fig. 2.2), waiting for 

temperature to stabilize, and then recording the lock-in output. In order to measure dV I dl 

as a function of static bias current, at fixed temperature, the ac current was set as described 

as above and a computer running LABView™ stepped up the bias current while recording 

the output from the lock-in. 
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Figure 2.7: Scheme for electrical measurements of arrays. 
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2.2 Samples 

The two crystals of YBa2Cu301-x (YBCO) were grown by Alice White from a 

partially melted BaCu02-CuO based mixture[18], and have approximate dimensions of 1 

mm x 1 mm x 30 J.Lm, with the c-axis along the smallest dimension. One crystal was 

irradiated with 3.1 MeV protons at a :fluence of 3 x 1020 m-2, which has been shown[19] to 

produce the optimal enhancement of Jc by introducing a large number of small ( ~ 2 nm 

diameter) defects approximately 2 nm apart[20]. The second crystal was irradiated with 

1 GeV Au ions at a :fluence of 4.8 x 1014 m-2, which produces columnar defects through 

the sample of average diameter"' 5 nm with an average separation of about 50 nm[21, 22]. 

The samples will be referred to as: P1 and P2, proton irradiated sample before and after 

irradiation; I1 and 12, heavy ion irradiated sample before and after irradiation. 

The Josephson junction arrays [23] consist of 0.2 J.Lm-thick niobium islands on top of 

a 0.3 J.Lm-thick copper film. The islands form an array of SNS Josephson junctions of width 4 

J.Lm and length 2 J.Lm. In order to determine the effects of lattice geometry and critical current 

on the measured flux noise, three different arrays were studied: one of a triangular-lattice 

geometry [Fig. 2.8(a)] with a lattice constant of 14 J.Lm, which will be denoted as array A, 

and two of a square-lattice geometry [Fig. 2.8(b)] with a lattice constant of 10 J.Lm, which will 

be denoted as array B and array C. Array A is 3mm wide and 10 mm long, corresponding 

to 217 x 625 junctions, array B is 1 mm wide and 10 mm long, corresponding to 100 x 1000 

junctions, and array Cis 1 mm wide and 10 mm long, corresponding to 140 x 1400 junctions 

(the lattice of array C is rotated 45 degrees in comparison to the lattice of array B). 
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(a) (b) 

10 Jlffi 10 Jlm 

Figure 2.8: Images of small sections of (a) array A and (b) array B. 
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For both fundamental and technological reasons, vortex motion in high-temperature 

superconductors (HTSCs) has been intensely studied since the discovery of these materials. 

When a HTSC is cooled through its transition temperature, Tc, in the presence of a mag

netic field, the magnetic field penetrates the sample in the form of vortices, each containing 

a single flux quantum, ci>0 . Even in the absence of a field, vortex-antivortex pairs and vor

tex rings have a sufficiently small energy of formation that they are spontaneously created 

near Tc· The vortices can be pinned at defects, which provide regions of reduced super

conductivity. Defects in as-grown materials often vary appreciably from sample to sample, 

and currently there is no consensus as to the types of defects which are largely responsible 

for vortex pinning[24, 25] . From a fundamental viewpoint, understanding vortex motion is 

essential for determining the properties of pinning sites. From a technological viewpoint, it 

is vitally important to develop materials which effectively restrict vortex motion, since ther

mal fluctuations and applied currents can cause vortices to move. Vortex motion produces 
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dissipation and noise-both highly detrimental to the performance of HTSC devices. Dissi

pation limits the critical current of wires and tapes used to carry large currents, for example, 

in superconducting magnets, and low frequency noise can severely limit the magnetic field 

sensitivity of Superconducting Quantum Interference Devices (SQUIDs). 

In order to study the effects of a known type of defect, and also in attempts to make 

HTSCs with higher critical current densities, Jc, many groups have introduced artificial de

fects through irradiation with high energy particles, namely protons, neutrons, and heavy 

ions[24]. Most of the experimental studies have used techniques such as ac and de magne

tization, flux creep, and current-voltage measurement to determine the effects of irradiation 

on Jc, pinning energies, and pinning forces[25]. Usually, these studies involve large magnetic 

fields (>0.1 T) and large current densities ( l'oJ Jc)· In the presence of large magnetic fields 

and currents, the .vortices interact strongly and their motion is determined by the largest 

available pinning energies and forces. In contrast, in the presence of small magnetic fields 

and currents the interaction between vortices is negligible and their motion is determined 

by thermal activation between pinning sites. In order to investigate the link between be

tween these two regimes, and also with the hope of finding a method to reduce flux noise 

in SQUIDs, we undertook a study of the effects of irradiation on the flux noise and critical 

current of the two YBCO samples described in Section 2.2. Crystals were chosen instead of 

the more technologically important thin films because as-made crystals have a much lower 

density of defects, and therefore a larger effect due to irradiation was expected. 

3.2 Critical Currents 

Figure 3.1 shows Jc of both samples before and after irradiation, determined with a 

vibrating-sample magnetometer at a frequency of 84Hz with field sweep rates of 20-40 mT js. 

Within a factor of two, the critical currents are identical in samples Pl and 11, at a given 

temperature and field, at all temperatures and fields studied. The same is true in samples 

P2 and 12, demonstrating that both proton and ion irradiation with the fluences given above 

produced nearly identical increases in Jc· This temperature- and field-dependent increase 

in Jc ranged from factors of 2-30. In this regime of large magnetic fields and currents, the 

two relevant sample-dependent factors determining Jc are the pinning force of an individual 

defect and the density of defects[26]. Since the defect structure, and hence the pinning 

force, created by a given type of irradiation are much more difficult to control than the 
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(dotted line). 
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density of defects, one aims to create the largest possible defect density without degrading 

the superconductivity in too large a fraction of the sample. In order to check the damage 

done by the irradiation, we determined Tc of both samples by measuring the static magnetic 

shielding with a de SQUID (see Sec. 3.3). The proton irradiation reduced Tc from 90.0 K to 

86.5 K and the ion irradiation reduced Tc from 89.5 K to 89.0 K, indicating that irradiation 

had not destroyed the superconductivity in a large fraction of either sample. As is evident 

from Fig. 3.1, these large densities of defects proved to be effective in decreasing vortex 

motion, and hence in increasing Jc, in good agreement with earlier studies[25, 19, 20]. 

3.3 Magnetic Flux Noise 

3.3.1 Measurement of Vortex Motion in Equilibrium 

In contrast to applications involving large magnetic fields and currents, where the 

density and pinning force of defects is important, for HTSC SQUID magnetometers one aims 

to restrict vortex motion and hence reduce the low frequency magnetic field noise in the 

presence of small magnetic fields and currents. In this regime, since the density of vortices 

is low and vortex motion is determined by thermal activation, it is important to create 

defects with the largest possible pinning energies. Of course, for operation of SQUIDs in the 

earth's magnetic field, the density of defects should be greater than the density of vortices 

created. Since a field of 100 J.LT creates 5 x 1010 vorticesjm2, the defect density produced 

by the irradiation described in Sec. 3.2 is much larger than the vortex density present in the 

measurements described below. To our knowledge, there have been no previous studies of 

the effects of irradiation in reducing vortex motion in the presence of small magnetic fields 

and currents. 

In order to study the effects of irradiation in the small field regime ( <2 mT), we 

measured the noise generated by the motion of vortices in thermal equilibrium[16] (that is, 

with no applied current) in the same samples for which we determined Jc· Two different 

SQUIDs were used, both of the square washer design shown schematically in Fig. 2.3, with 

inner and outer dimensions of 200 J.Lm and 1 mm (sample P1) and 26 J.Lm and 1 mm (samples 

P2, 11, and I2). The superconducting persistent current coil shown in Fig. 2.2 was used to 

apply a magnetic field, B, parallel to the c-axis of the sample. Our procedure was to raise 

the temperature of the sample above Tc, store a field in the coil, cool the sample to the 
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desired temperature, and measure the spectral density of magnetic flux noise, Sq,(w). 

3.3.2 Magnetic Field Dependence: Data and Qualitative Explanation 

We first determined the effects of irradiation on the magnetic field dependence of 

Sq,(w). Figure 3.2 shows Sq,(1 Hz) at T = 75 K of both samples before and after irradiation. 

The data at IBI = 1 J.LT were taken at zero applied field, so that the ambient field was 

~ 1 J.LT. Open and closed symbols correspond to opposite signs of the applied field (except 

for the points at 1 J.LT), showing that the direction had no effect. Over the entire field range, 

both types of irradiation reduced Sq,(1 Hz). At IBI = 50 J.LT, Sq,(1 Hz) of P2 was roughly 

100 times smaller than that of Pl. In contrast, at the same field, Sq,(1 Hz) of I2 was reduced 

by a factor of only 3 compared with that of Il. In addition, the data show two different 

types of field dependence. For both samples P2 and I2, Sq,(1 Hz) is approximately linear in 

IBI above a threshold value, and flattens off at smaller fields. For P1, Sq,(1 Hz) increases 

linearly with IBI over the entire field range, but for I1 we do not have sufficient data to 

determine if Sq,(l Hz) flattens off at low fields. 

Qualitatively, we understand the two types of field dependence of Sq,(l Hz) as fol

lows. When the sample is field-cooled through Tc, there are two sources of vortex formation, 

thermal fluctuations and the magnetic field. The field produces a density of vortices pro

portional to IBI and of the same sign. In addition, near Tc, the energy needed to create 

vortex-antivortex pairs and vortex rings is smaller than ksT. Many of these pairs and rings 

annihilate as the sample cools, but some become pinned. Therefore, at small enough fields 

the density of thermally created vortices is larger than the density of field-created vortices 

and the noise is independent of field. At higher fields, the number of field created vortices 

dominates and the noise increases with IBI. 
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film at T = 77 K. Points shown at 1 J..LT should be interpreted as taken at /BI ~ 1 J..LT. Open 
and closed symbols are for opposite signs of B (except at 1 J..LT). Dotted lines are to guide 
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3.3.3 Dutta-Dimon-Horn Model 

In order to analyze the data quantitatively, we use our extension of the Dutta

Dimon-Horn (DDH) model[16, 27). In this model, each vortex is confined to a double well 

potential, that we assume to be symmetric, as shown inset in Fig. 3.3(a). Evidence for the 

validity of this model has been previously reported[16), and the main point is that at the 

temperatures at which the noise measurements are made the only vortices which contribute 

to the flux noise in the. measurement bandwidth have relatively small activation energies 

and are pinned in areas with two relatively closely spaced defects. Within the model, we 

can immediately identify the important difference between critical current measurements, 

which are sensitive to pinning forces, and noise measurements, which are sensitive to pinning 

energies. The pinning force is proportional to the curvature of the pinning potential whereas 

the pinning energy is given by the height of the barrier, U(T), between each well as shown 

in Fig. 3.3(a). If we assume that the wells are parabolic, a vortex hopping from one side to 

the other moves a distance 

e = cu112 (T), (3.1) 

where C is a constant and U (T) is the temperature dependent activation energy. 

We assume a temperature dependent activation energy since most pinning inter

actions for isolated vortices [14) yield pinning energies proportional the the vortex self

energy[28), 

(3.2) 

where .X(T) is the penetration depth, and we take 

(3.3) 

where Uo is the zero temperature activation energy. 

Given the relation [Eq. (3.1)) between the hopping length and the energy barrier 

height, we next assume the flux coupled through the SQUID decreases linearly from <.Po to 

zero as the vortex moves radially between the inner and outer edges of the washer[16). In 

fact, the coupling coefficient between the SQUID and sample is not unity, typically varying 

between 0.5 and 1, but our simplifying assumption of perfect coupling does not materially 

affect our conclusions. Therefore, a vortex hopping a distance £ at an angle (} with respect 
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to the radial direction produces a change 

~4> = 4>o(ljw) cose (3.4) 

in the flux threading the SQUID, where w is the width of the SQUID washer. Thermal 

activation of the vortex between the two wells produces a Lorentzian power spectrum[29) 

where 

r= 

,6(T) = 
ro exp [Uo,B(T) J, 
U(T)/UokBT = (1- (T/Tc) 4]/kBT, 

(3.5) 

(3.6) 

(3.7) 

and r01 is the attempt frequency. For an ensemble of independent vortices, the total noise 

power spectrum is the sum of the individual spectra in Eq. (3.5). We assume that there is a 

distribution of zero temperature activation energies, D(U0 ), or equivalently a distribution of 

hopping distances, so that D(U0 )dU0 represents the number of occupied double wells with 

zero temperature activation energies between Uo and U0 +dUo. If the noise processes are 

incoherent and randomly distributed over the angle e, the total flux noise power spectrum is 

1100 (~4>)27 
S<J.>(w, T, B) = -

2 
dUoD(Uo) ( )2 · 0 1 + WT 

(3.8) 

The kernel of Eq. (3.8) is sharply peaked at an energy 

Uo(w, T) = ln(1/wro)/ ,6(T). (3.9) 

Assuming that D(U0 ) varies slowly over the width, 1/ f3(T), of the kernel, we can take 

D(U0 (w, T), B) outside the integral in Eq. (3.8), carry out the integration, and substitute 

for ~4>, r, ,6(T), and U0 (w, T) using Eqs. (3.4), (3.6), (3.7), and (3.9) to find 

- [ w2 ] [,6(T)]2 
D(U0 (w, T), B) = 7r ln(1/wro) C4>o wS<I>(w, T, B). (3.10) 

From Eq. (3.10), we see quantitatively that S<J.>(w, T, B)is directly proportional to 

D(Uo(1 Hz,75 K), B). Since D(U0 (1 Hz,75 K), B) is also proportional to ,62(T), we re

stricted the temperature regions over which we measured S<J.>(w, T, B) to temperatures far 

enough below Tc to ensure that the difference between the measured temperature dependence[30) 

\ 



28 

of .X(T) and the two-fluid result assumed in Eq. (3.2) would not affect our conclusions. There

fore, by measuring Sif?(w, T, B) we can extract the distribution of pinning energies and its 

dependence on w, T, and B. Since Sif?(w) ex: 1/wa, where a ~ 1[16], at all temperatures and 

fields for the data described in this paper, the distribution of activation energies is nearly 

frequency independent. We therefore concentrate on the field and temperature dependence 

of D(Uo(w, T), B). 
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3.3.4 Magnetic Field Dependence: Quantitative Explanation 

The linear field dependence of Sq,(1 Hz) in Fig. 3.2 is explained by the intuitive 

notion that the number of active vortices is proportional to the applied field provided there 

are more field-created than thermally created vortices. In addition, there must be more 

equivalent pinning sites than vortices. These pinning sites become populated with increasing 

field. At low fields, the flattening of Sq,(1 Hz) indicates that the number of active vortices 

is determined by vortices created and pinned as the sample is cooled below Tc. 

Even though the field dependence is well described by Eq. (3.10), Fig. 3.2 shows 

that there is a large sample-to-sample variation. Since the total number of vortices at a given 

field, in the linear field dependence regime, is identical in each sample, we must account for 

this variation. Evidently, at least one of the parameters To, f3(T), C, or D(U0) must be 

sample dependent. It is very unlikely that the substantial variation can be explained by 

different values of To since Sq,(w) is a logarithmic function of To, which ranges typically from 

10-11 to 10-13s[31, 32, 33]. For example, if we were to take To = w- 11s for sample P1, Eq. 

(3.10) would require that To ~ 0.1 s in sample P2 to account for the 100-fold difference in 

the noise power in the linear field dependence regime. It is also unlikely that the variation 

can be explained by different pinning mechanisms since f3(T) ex: 1/ A2(T) and A(T) should 

be relatively sample-independent this far below Tc. Even the small factor of 4 difference in 

Sq,(1 Hz) at T = 75 K and B = 50 1-LT between P1 and Il, nominally identical samples, 

would require a factor of 2 different in A(75 K). The third possibility is that C varies from 

sample to sample. From Eq. (3.1) we see that 1/C2 is proportional to the curvature of an 

individual well. It is possible that different curvatures could explain the smaller differences 

between Sq,(1 Hz) of samples P1, Il, and I2, but is inconceivable that this could vary by 

the factor of 100 necessary to account for the factor of 100 difference in the noise power 

of P1 and P2 in the linear field dependence regime. Since different values of To, f3(T), or 

C seem most unlikely to explain the noise variation, we assume that To and C are sample 

independent constants and use the form of f3(T) given in Eq. (3.7). We are thus led to the 

conclusion that the change in Sq,(1 Hz) arises from changes in D(U0 ). 



30 

3.3.5 Extracting D(U0 ) 

We now explore which pinning sites the vortices occupy, that is, the -dependence 

of D(flo) on flo. Since D(flo) varies only logarithmically with To [Eq. (3.10)] and typical 

values of To range from w-n to w- 13s, we take To = w- 11s so that Eq. (3.9) yields flo ~ 

23kBT[1- (T/Tc) 4]- 1 . Therefore, by measuring S-~>(1 Hz) versus T, we map out the number 

of active vortices over the energy interval corresponding to that temperature interval. In 

order to study this dependence, we have measured S-~>(1 Hz) versus T for samples P1, P2, 

11, and 12 at B = +200 /-LT, -160 /-LT, -160 /-LT, and + 100 /-LT respectively. To make a 

comparison, we scaled S-~>(1 Hz) to IBI = 100 /-LT using the linear field dependence in this 

regime (see Fig. 3.2). Figures 3.3(a)-(d) show S-~>(1 Hz) versus T for P1 and Il, P2 and !2, 

P1 and P2, and I1 and 12 respectively. The lines through the data are cubic spline fits, and 

the maximum temperatures represented, corresponding to U0 = 0.6 eV, are 82.9 K, 80.0 K, 

82.5 K, 82.1 K for samples P1, P2, Il, and 12 respectively. Figure 3.3(a) shows that the 

two nominally identical as-prepared crystals exhibit very different flux noise over almost the 

entire temperature range, reflecting the fact that low frequency 1/w noise in HTSCs is very 

sample dependent as noted in previous measurements[16], in contrast to the nearly identical 

values of Jc described in Sec: 3.2. The noise of the irradiated samples shown in Fig. 3.3(b) 

are comparable below T ~ 45 K whereas at higher temperatures 12 exhibits considerably 

higher noise than P2. A comparison of each crystal before and after irradiation in Figs. 

3.3(c) and (d) shows that the proton irradiation produced a substantial noise reduction over 

the entire temperature range, except at T = 4.2 K, whereas the ion irradiation produced a 

reduction only between T ~ 45 K and 75 K. Indeed, below about 25 K the irradiation with 

ions increased the noise. 

We can gain a better understanding of this behavior by examining the distribution 

of activation energies extracted from the noise data of Fig. 3.3. Figure 3.4(a) shows C2 D(flo) 

versus Uo for all four samples, calculated using Eqs. (3.7) and (3.10), and the cubic spline 

fits to the data shown in Fig. 3.3. Figure 3.4(b) shows the same information for P2 and 

12 with an expanded vertical axis to make the features more visible. We have adjusted 

the anchor points of the spline fits within the error bars to minimize artificial features in 

C 2 D(flo) introduced by scatter in the data. 

There are two important features visible in Fig. 3.4. The first is that samples P1 

and I1 both show peaks in C2 D(fl0 ) near flo = 0.1 eV and 0.2 eV, whereas samples P2 
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Figure 3.3: Sq.(1 Hz) at IBI = 100 1-LT for (a) P1 and Il, (b) P2 and 12, (c) P1 and P2, (d) 
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with energy barrier U (T) between minima of separation £. 
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Figure 3.4: C2 D(Uo) versus U0 for (a) Pl, P2, Il, !2, and (b) P2, !2 with an expanded 
vertical axis. Calculations are based on Eqs. (3.7), (3.9) with r 0 = 10-11 s, and (3.10), and 
the cubic spline fits to the data shown in Fig. 3.3. 
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and I2 show peaks only near 0.1 eV. We note that the discrepancies between the two-fluid 

and measured[30] temperature dependences shift the peaks in C 2 D(fio) only slightly, and 

do not affect their relative magnitudes. The change in the peak structure implies that both 

kinds of irradiation largely eliminated the occupied sites with pinning energies near 0.2 e V 

and greatly reduced the number of occupied sites with pinning energies near 0.1 eV that we 

observed in the unirradiated samples. We point out that the energies near 0.1 eV can not be 

those required to "hop the average distance between defects, "'2 nm for P2 and "'50 nm for 

I2. If they were, Eq. (3.1) would predict a large difference between P2 and I2. Furthermore, 

they would be the largest pinning energies present in the crystals. Equations (3.5) through 

(3.7) would then predict that at temperatures above the value corresponding to flo= 0.1 eV, 

about 50 K, r would become very long and Sq;(w) would become vanishingly small. In fact, 

as shown in Fig. 3.3, Sq;(w) is certainly non-zero forT> 50 Kin the irradiated samples. We 

conclude that the vortices responsible for the observed noise must be pinned at relatively 

closely spaced defects with a much larger energy barrier against hopping to the next double 

well, supporting this assumption of our model. 

The second important feature is that the area under C 2 D(fio) prior to irradiation 

is much greater than after irradiation. Since this area gives the total number of active 

vortices in that energy range, it is evident from Fig. 3.4 that the number of active vortices 

in the experimental energy range was drastically reduced by both kinds of irradiation. From 

the data we' are unable to determine if the majority of the vortices that were active in the 

unirradiated samples near U0 = 0.2 e V have moved to higher or lower energy after irradiation, 

but the rapid upturn in D(fio) at low energies [Fig. 3.4] indicates that at least some vortices 

have been pinned in very low energy sites. However, in order for low energy pinning sites 

to account for the drastically smaller number of active vortices in the irradiated samples, 

there would need to be an extremely large peak in D(fio) in the very narrow energy range 

Q-10-2 eV corresponding to temperatures between 0 K and 4.2 K. To explore this region, 

we measured Sq;(1 Hz) between T = 1.6 and 16 K at IBI = 0. Between T = 4.2 and 16 K, 

the noise ~as nearly identical to that measured at IBI = 100 J.LT shown in Fig. 3.3. The 

resultant C 2 D(fio) exhibited a peak of magnitude 300m2 jeV2 and width"' 10-2 eV. The 

area under this sharp peak clearly does not account for the area difference under the curves 

of C 2 D(fio) of P1 and P2 shown in Fig. 3.4, even when one accounts for the fact that the 

measurement was made in zero field. Therefore, it is likely that the majority of the vortices 

that were active near 0.2 eV in the unirradiated samples were pinned at high energy sites 
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after irradiation, outside the experimental energy range. 

Since it is the barrier between different double wells and not the barrier within a 

given double well that determines where the vortices are pinned as the sample cools through 

Tc, we would expect some active vortices at low energies even in the presence of high energy 

pinning sites. However~ one might expect that the high energy sites created by the irradiation 

would trap a large number of the vortices originally responsible for the peaks in D(Uo) near 
- . 
U0 = 0.1 e V and 0.2 e V in equal proportion, hence reducing both peaks by the same fraction. 

Thus, it is surprising that the two very different kinds of irradia~ion essentially eliminated 

the peak near 0.2 eV while leaving the peak near 0.1 eV, albeit greatly reduced in height. 
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3.3.6 Thin Film Sample 

Although both kinds of irradiation reduced the 1/w noise in the crystals substan

tially, the noise remains higher than that observed in good quality thin films. As an illustra

tion, in Fig. 3.2 we plot S.p(1 Hz) versus IBI at T = 77 K for a 300 nm-thick YBCO film laser 

deposited on a SrTi03 substrate. We see that the smallest noise power of the crystals, that 

of P2, is still an order of magnitude larger than that of the thin film in the linear field depen

dence regime, and a factor of 50 higher in nominally zero field. By the same token, critical 

currents of thin films are substantially higher than those of irradiated crystals[19, 34, 35], 

and irradiation has been found to have a negligible effect on the critical current density of 

typical thin films that have high values of Jc as-prepared[36]. We conjecture that although 

proton irradiation with the stated fluence reduced the flux noise of a YBCO crystal much 

more than did ion irradiation, it would be unlikely to reduce the noise of high-Jc thin films. 

For example, a substantial increase in the fluence would destroy too large a fraction of the 

material. On the other hand, a lower fluence would create defects that are farther apart, 

and that might possibly have higher pinning energies. However, as we saw in Sec. 3.3.5, the 

fluences used to create samples P2 and 12 most likely created high energy pinning sites, but 

not all of them were occupied by vortices and the noise was not reduced to a value nearly as 

small as that of a typical thin film. This implies that as-prepared thin films contain such a 

large number ofhigh energy pinning sites that additional pinning sites created by irradiation 

with a. lower fluence would be unlikely to :reduce their 1/ w noise. 

3.4 Concluding Remarks 

Both proton and heavy ion irradiation reduced 1/w noise in YBCO crystals. Pro

tons proved much more effective, reducing S.p(1 Hz) at T = 75 K by two orders of magnitude 

at magnetic fields between 0.01 and 2 mT. On the other hand, as is well known[25], both pro

tons and heavy ions with properly chosen fluences produced comparable increases in Jc· The 

fact that proton and ion irradiation had very different effects on the flux noise and similar 

effects ·on Jc reflects the fact that Jc is determined by the pin~ing forces of a large density of 

defects which collectively pin the vortex lattice present in large magnetic fields. In contrast, . 

the flux noise is determined by the pinning energies of sites which trap the small number of 

vortices present in small magnetic fields as the sample cools below Tc. Thermal activation 
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of independent vortices over these energy barriers is therefore very sample dependent since 

it depends on individual pinning sites. 

Using the temperature dependence of Sq,(1 Hz) and a model based on uncorrelated 

vortex motion, we showed that the unirradiated samples had peaks in the distribution of 

activation energies near fio = 0.1 and 0.2 eV. After irradiation, there was a single peak near 

0.1 e V of much smaller magnitude. The fact that the noise was reduced implies a substantial 

reduction in the overall magnitude of D(U0 ) which we attributed to the trapping of vortices in 

high energy sites outside the experimentally accessible energy range. However, the reduced 

levels of noise in the irradiated crystals were still substantially larger than those that we 

typically observe in high quality thin films, and we argued that irradiation would therefore 

probably not further reduce noise in thin films. Thus, we believe that irradiation is unlikely 

to be a tool for reducing 1/ f noise in thin film, high-Tc SQUIDs and magnetometers; the 

increase in this noise when the devices are operated in the earth's magnetic field continues 

to be a crucial issue. We conclude by stating that further studies are needed to confirm 

that irradiation, or another method of introducing artificial defects, would not reduce the 

1/w noise in thin films and that even a modest reduction of a factor of two would have 

important technological implications. However, a recent publication by Dantsker et al.[37] 

demonstrated a novel technique for eliminating vortex motion in thin films of YBCO which 

could provide a much more effective ~d less costly alternative to the as yet unproven benefits 

of irradiation. 
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3.5 Flux Noise Near the Superconducting Transition in High

Temperature Superconductors 

The previous part of this chapter dealt with the flux noise well below the supercon

ducting transition, but the measurement technique has also been used extensively to study 

the transition itself[16, 38]. Examples of this for two different samples are shown in Figs. 

3.5 and 3.6. Figure 3.5(a) shows Sq,(1 Hz) versus temperature for a 1500 A-thick film of 

Bi2Sr2CaCu20s+8 (BSCCO). Approaching the transition from high temperature, Sq,(1 Hz) 

rises sharply and peaks very near the superconducting transition. Evidence that the peak 

does occur at or near the transition is shown in Fig. 3.5(b), in which is plotted the mutual 

inductance between the modulation coil and the SQUID, M 1, as a function of temperature. 

By examining Fig. 2.2(b), one can see that if a superconducting sample is place~ near the 

sensor and a small field is applied with the modulation coil, that screening currents in the 

sample will counteract this applied field, reducing the net field seen by the sensor and thereby 

decreasing the mutual inductance between the sensor and the modulation coil. Therefore, 

by measuring Mf as a function of temperature it is possible to obtain a reasonably accurate 

estimate of the temperature at which the sample becomes superconducting. A similar mea

surement on a 3000 A-thick film of YBCO showing the same general features as Fig. 3.5 is 

shown in Fig. 3.6. The point which gives MJ ~ 7 pH is an artifact of the measurement tech

nique. As described in Section 2.1.3, MJ is determined by resetting the feedback loop which 

produces a fast step in the magnetic field seen by the sample. Very near, but below, the 

phase transition vortex pinning is very weak and these field steps can cause vortex hopping 

which in turn causes anomalies in the measurement of M f. 

The striking feature of Figs. 3.5 and 3.6 is that the magnitude of Sq,(1 Hz) at the 

peak is approximately 10-3 <I>6/Hz for both samples. For all the samples measured in our 

laboratory, the magnitude of the noise peak was relatively sample independent, or at least 

much less sample dependent than the noise well below the transition. Shown in. Table 3.1 

is a compilation of the magnitude of Sq,(1 Hz) at the peak. One possible explanation for 

the relatively sample independent value of Sq,(1 Hz) at the peak is that near the transition, 

pinning effects are UI_limportant and the noise depends only on the fact that the samples 

are HTSCs. However, the results are not completely sample independent as evidenced by 

Table 3.1. A possible reason for this can be seen in Fig. 3.7, in which is plotted Sq,(w) 

versus frequency for some of the temperatures near the noise peak in Fig. 3.6. Below and 
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Figure 3.5: (a) Sq,(l Hz) versus temperature and (b) MJ versus temperature of a 1500 
A-thick film of BSCCO. . 
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at the peak, at the temperatures T = 88.38, 88.60, and 88.67 K, the spectra display a 1/w0 

behavior, and this behavior occured in every sample that we have measured. However, at 

temperatures above the peak, the spectra tend to flatten off at low frequencies and have one 

or two knees or bumps. In some other samples, the behavior of the spectra showed bumps 

and knees as in Fig. 3. 7 and in others just developed a gradually decreasing slope a -+0. We 

believe that this is caused by the fact that HTSC materials are never completely uniform 

and different regions become superconducting at slightly different temperatures. In this way, 

the regions that are superconducting produce flux noise by vortex motion between pinning 

centers, and the pinning centers are different in every sample. The Lorentzian spectra of each 

individual vortex hopping event often add to give a 1/w0 -behavior as discussed in Section 

3.3.3, but occasional a few dominant hopping events give rise to the bumps as in Fig. 3. 7. It 

is extremely unlikely that the noise near the superconducting transition in HTSCs, at lea.St in 

the very low-field regime, is caused by the ideal sample behavior, namely fluctuations in the 

magnitude of the order parameter as mentioned in Section 1. The reasons are one, that the 

spectra are sample dependent as mentioned above, and two, that the width in temperature 

for the ideal transition should be very small. 

The noise due to the superconducting transition in real, i.e non-uniform, HTSC 

materials has not yet been given a theoretical foundation, although possibilities were sug

gested by Rogers et al.[39, 40] and Foulds et al.[41]. Rogers et al. suggest that the noise 

near the transition is caused by Brownian motion of vortex-antivortex excitations which have 

a variance, ( <1> 2), which is very nearly independent of temperature, and that this leads to 

a value of S~(l Hz) at the peak which depends only on the coupling between the SQUID 

and the sample. Foulds et al., through measurements of the flux noise of HTSC disks and 

· rings, argue that the data are consistent with a single activation energy for vortex hopping, 

and similarly to Rogers et al. find that the value of S~(1 Hz) at the peak depends sensi

tively on the coupling between the SQUID and the sample. However, given the somewhat 

sample-dependent values of S~(1 Hz) at the peak as listed in Table 3.1, and the likely role 

of sample inhomogeneities and SQUID-sample coupling mentioned above, we believe that a 

universal theory of the flux noise due to the superconducting transtion in HTSCs would be 

very difficult to verify experimentally. Since we were intrigued by the possibility of studying 

the superconducting transition, we decided to explore a much more uniform system, namely 

a two-dimensional Josephson junction array. This will be the topic of the next chapter. 
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Table 3.1: Compilation of Sq,(1 Hz) at the noise peak for all samples measured in our 
laboratory. 

I Sample I Material I Thickness I Description s~eak(1Hz) 
I1 YBCO 30 J.Lm crystal 1 X 10 -4 

12 YBCO 30 J.Lm crystal, heavy ion irradiated 6 X 10 "4 

P2 YBCO 30 J.Lm crystal, proton irradiated 1 X 10-3 

HITC812 YBCO 3000 A film 4 X 10 3 

holey YBCO 3000 A film 1 X 10 3 

M031589A YBCO 3000 A film 9 X 10 "4 

M0497C7 YBCO 4000 A a-axis film 8 X 10 "4 

df381 YBCO 1500 A film 4 X 10-3 

Y2th YBCO 2000 A film 1 X 10 -~ 
087131B3 YBCO 2000 A square-washer-shape film 1 X 10 3 

G8835C5 YBCO 2000 A square-washer-shape film 6 X 10 .4 

S1ITRING YBCO 2000 A square-washer-shape film 7 X 10 ·o 

P2568C YBCO 30 J.Lm crystal 4 X 10-4 

BSCC01 BSCCO 40 J.Lm flake 9 X 10 5 

BSCC02 BSCCO 150 J.Lm flake 1 X 10-4 , 6 X 10-5 

961 BSCCO 750 A film 8 X 10-4 

978 BSCCO 1500 A film 1 X 10 3 

1181 BSCCO 4 J.Lm crystal 7 X 10 4 

L1BA BSCCO llj.L crystal 6 X 10-4 

488 BSCCO 29 J.Lm crystal 2 X 10 4 

TCBC01 TCBCO 2 J.Lm film 4 X 10 4 

TCBC03 TCBCO 2 J.Lm film 6 X 10 4 
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Chapter 4 

Two-Dimensional Josephson 

Junction Arrays 

4.1 Introduction 

In the previous chapter, vortex motion in high-temperature superconductors (HTSCs) 

was studied well below the transition temperature with the goal of understanding pinning 

properties in these materials. The measured spectral density of flux noise, S~p ( w), was highly 

sample-dependent because of the varying defect structure, both inherent and artificially pro

duced. The measurements produced insight into the possibility of reducing vortex motion in 

these materials, but both the fundamental nature of vortex motion and the superconducting 

phase transition was not addressed. The flux noise associated with the phase transition in 

HTSC materials has been studied in some detail in our group[16), with the result that the 

magnitude of S~p(l Hz) at the transition temperature was relatively sample-independent and 

approximately w-3 ~5/Hz. However, even a qualitative explanation of this result is lacking. 

In order to study the superconducting transition, one would ideally like to have 

a pinning-free sample. As this is nearly impossible in high-temperature superconductors, 

we decided to explore a much more uniform system, namely a two-dimensional Josephson 

junction array (JJA). The two dimensional metal-superconductor transition has been widely 

studied in two dimensional arrays of Josephson junctions because these systems are very 

uniform and their relevant parameters are easily determined. It is widely accepted that the 

zero-field transition is described by the Kosterlitz-Thouless-Berezinskii (KTB) theory [5, 6, 7, 
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12] and its extension to non-zero frequency [42, 43, 44, 45, 46]. According to this theory, phase 

coherence is established throughout the sample below a temperature TKTB, and the system is 

superconducting. For temperatures above TKTB but below the bulk transition temperature, 

even though individual islands are superconducting the array is not. The thermal excitations, 

vortices and antivortices, that trigger this phase transition are topological defects of the order 

parameter. Below TKTB vortices and antivortices bind in pairs to produce a vortex dielectric, 

while above TKTB the pairs dissociate to form a vortex plasma. In the vortex plasma phase, 

one can identify a characteristic length, ~, as the average separatiqn between free vortices; 

as T --+ TtTB, ~ diverges. Thermal fluctuations that perturb the vortex density away from 

its equilibrium value relax through some local dynamic process. Thus, associated with the 

characteristic length ~ there is a characteristic frequency, 21l'w~, corresponding to the inverse 

of the time required for the disturbance to propagate across the distance ~. As ~ diverges, 

w~ --+ 0, signifying critical slowing down. In general w~ ex: (~/~0)-z, where the exponent 

z depends on the dynamics of the relaxation and ~0 is a length scale characteristic to the 

specific sample. For simple diffusion, z = 2. 

Previous experimental studies had involved both electrical resistance [47, 48, 49, 50, 

51, 52, 53, 54, 55, 56, 57] and two-coil mutual inductance [58] techniques, both of which apply 

an external force to the system and are generally confined to a specific frequency. Because 

the transition to the resistive state is determined by the dissociation of vortex pairs by 

thermal fluctuations, these external forces, which also dissociate pairs, affect one's ability to 

study the intrinsic critical phenomena near the true thermodynamic transition temperature. 

In addition, measurements confined to a specific frequency do not give information about 

the dynamics of the phase transition and if the specific frequency is not zero, one can not 

·even be sure that the measurement is measuring the correct behavior of the zero-frequency 

phase transition. For this reason, we undertook to study the equilibrium dynamics of the 

KTB transition using the apparatus described in Chapter 2. 
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4.2 Theory 

As mentioned in Section 4.1, for a previous publication [59] [hereafter referred to as 

(I)] a scaling ansatz was derived to describe the behavior of Sq,(w) near the KTB transition. 

In addition, a rather simplistic model was proposed to describe the low-frequency behavior 

of Sq,(w) which allowed extraction of the dynamic critical exponent z. Professor Dung-Hai 

Lee later elaborated on that scaling theory in order to develop a more detailed theory giving 

concrete predictions for the high- and low-frequency behavior of Sq,(w)[60], and this theory 

will be explained below. 

It will be useful to begin with the schematic illustration of the flux noise measure

ment shown in Fig. 4.1. A square flux sensor of area e;ff is placed a distance d above the 

array of area A. The cartesian coordinate system is defined by the components (x, y,.z) so 

that the ar:r:ay lies in the plane of z = 0. Three-dimensional vectors will be denoted by 

(x, z), where xis the vector component in the plane of the array and sensor, and primed 

coordinates designate the plane of the array while unprimed coordinates denote the plane 

of the sensor. The fluctuating vortex density in the array, Pv(x', 0; t), generates a magnetic 

field at the point (x, d), Bz(x, d; t), with an instantaneous z-component 

Bz(x, d; t) ='Po j d2x' M(x- x', d)pv(X', 0; t). 

flux sensor 

Figure 4.1: Configuration of flux noise measurement showing a square 
flux sensor of width feff a distance d away from an array. 

(4.1) 
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In the above, ~o = h/2e is the superconducting flux quantum and 

(4.2) 

is the array-sensor coupling function.[60] Equations (4.1) and (4.2) ignore the distortion of 

the magnetic field due to the sensor. Since the sensors are superconducting, it is possible 

that the field produced by the vortices in the array might be affected by the sensor, but 

calculation of these effects would be very difficult and time consuming. Instead, taking a 

more practical approach, the experiment was carried out with sensors with the three different 

geometries shown in Fig. 2.3. The results will be discussed in detail in the following section, 

but the conclusion was that sensor geometry did not affect the measurements. Therefore, it 

will be assumed for the following theoretical calculations that the sensors have no effect on 

the field generated by the vortices in the array. 

Next, Bz(x, d; t) is integrated over x enclosed by the area t;ff of the sensor so that 

the instantaneous total flux, ~(t), through the sensor is 

~(t) = j d2xBz(x, d; t). (4.3) 

From Eqs. (4.1) and (4.3) the flux-flux autocorrelation function is given by 

(~(t)~(t')) = ~6 j d2xd2yd2x'd2y' M(x- X', d)M(y- y, d)(pv(X', 0; t)pv(Y', 0; t')), (4.4) 

where() denotes the thermodynamic average and the primed (unprimed) integrals are taken 

over the area of the array (sensor). The spectral density of magnetic flux noise is defined 

as S<I>(w) = J dteiwt(~(t)~(O)), so that substituting Eq. (4.4) in to this definition. gives the 

general expression 

S<I>(w) = q>6 j d2xd2 yd2x'd2y'dteiwtM(x- X', d)M(y- y, d)(Pv(X', 0; t)pv(Y', 0; t')). (4.5) 

In general, (Pv ( x', 0; t )Pv (y, 0; t')) depends on t- t', and ignoring boundary effects it depends 

on x' - Y'. For the subsequent analysis it is convenient to go to the Fourier representation 

·of Eq. (4.5) by substituting 

M(x- X'; d)= (21r)-2 j d2qM(q, d)eirl-(x-x') (4.6a) 

and 

(4.6b) 
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In addition, to simplify the calculation a cutoff is defined for the integration over the area 

of the sensor via a form factor, Y ( q, letr), as 

I 2 

~ 2 ._.:. J 2 I 1/f. ·-- 41r£ ff d xetq·x-+ Y(q, letr) = d xe- X effetq·x = e 2 3 2. 
xEsensor [1 + ( qletr) l I 

(4.7) 

Since vortices outside of the area under the sensor contribute negligibly to the flux threading 

it, this particular cutoff procedure should not influence the results. Next, substituting Eqs. 

( 4.6) and ( 4. 7) into Eq. ( 4.4) yields 

Sq,(w) = q,5 /(d2q/47r2 )12 (q,letr)M 2(q,d)Avv(q,w), (4.8) 

where 

M(q, d)= e-qd. (4.9) 

In order to proceed further, one can draw on the work of Houlrik et al.[61] who showed that 

Avv ( q, w) is related to the imaginary part of the inverse Coulomb gas dielectric function, 

E(q,w), via 

(4.10) 

In Eq. (4.10), T' is the dimensionless Coulomb gas temperature and Im(x) is the imaginary 

part of x. Thus, substituting Eq. (4.10) into Eq. (4.8) gives 

q,2T' 1 J . 
Sq,(w) = 4~3 ~ d2 qq2Y 2 (q,letr)M 2 (q,d) 1Im[E-1 (q,w)JI. (4.11) 

Up to this point, the calculation been very general in the sense that it did not involve any 

assumptions about the nature of the vortex dynamics or the phase transition. The next step 

will be to elucidate the predicted scaling behavior of Sq,(w) as well its frequency dependence, 

beginning with Eq. (4.11). The first assumption is that Sq,(w) is caused by vortex dynamics 

associated with the KTB transition. As mentioned in Section 4.1, for the KTB transition 

there ,is a diverging correlation length, ~' and an associated frequency, w~, which is defined 

as 

(4.12) 

where wo is a characteristic frequency, ~0 is a characteristic length, and z is the dynamic 

critical exponent. 
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Now, the scaling behavior of Sq,(w) can be calculated by noting that c(q,w) is 

dimensionless and that the only relevant length and frequency scales are~ and w~ respectively. 

In other words, the dynamic scaling form for the vortex dielectric function is given by 

expressing it in terms _of dimensionless lengths and frequencies scaled by powers of ~ and w~ 

respectively. Therefore, near the KTB transition 

(4.13) 

where F 1 is a scaling function and the term A/ e has been added to account for possible 

finite-size effects. Substituting Eq. (4.13) for the dielectric function and Eqs. (4.7) and (4.9) 

for the form factor and coupling function respectively into Eq. (4.11) gives 

where F2 is another scaling function. Equation '(4.14) is the result for the scaling behavior 

of Sq,(w) and agrees with the result of (I). 

Next, in order to predict the behaviors of Sq,(w) in the limit of both high and low 

frequencies let's return to Eq. (4.11). Since the product of the SQUID form factor [Eq. 

(4.7)] and the array-SQUID coupling function [Eq. (4.9)] restricts the region in qspace that 

dominates the integral to be that of q · min(d,feff) ;S 1; to a good approximation the q in 

c(q,w) of Eq. (4.11) can be replaced by zero. 1 In this case, provided that finite-size effects 

. are unimportant and therefore cis independent of the array size, A, Sq,(w) is given by 

( 4.15) 

where F3 is a function which is determined by the geometry of the measurement apparatus. 

This is an important prediction of the calculation which justifies the assumption in (I) that 

the function F2 in the scaling prediction ofEq. (4.14) is independent of (feff/~, dj~, and A/e). 

It depends only on two factors: first, that the sensor selects the long-wavelength excitations 

so that only the zero-wavevector limit of c(q, w) is relevant, and second, that finite-size effects 

1This approximation is valid provided that qf, ;S 1, or equivalently f,jmin(d,fetr) ;S 1, which is likely to 
be true as will be discussed in Section 4.4 
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are unimportant. Therefore, a constant F = F 3 (leff, d) can be substituted in to Eq. (4.15) 

to give 

(4.16) 

From Eq. (4.16), we see that the frequency dependence of S<I>(w) is determined 

solely by the zero-wavevector dielectric function, E(w) = c(q -+ O,w). This quantity was 

calculated by Ambegaokar et al.[43, 44, 45] in the context of superfluid films; and it will be 

useful to draw on their calculations here. 

An important first assumption is that the vortices diffuse with a diffusion constant 

D. Next, the vortex dielectric function is decomposed into two parts, one representing the 

contribution of bound vortex-antivortex pairs and the second due to the contribution of free 

vortices: 

(4.17) 

Let's concentrate on the bound pair contribution first. Via a Fokker-Planck equa

tion, the bound pair contribution was shown[43] to be given by the equation 

1
00 d€(r) 

Eb(w) = 1 + dr-d-g(r,w), 
To T 

(4.18) 

where €( r) is the length-dependent dielectric constant, g( r, w) is the response function for 

pairs of separation r, and r0 is small-length-scale cutoff. In the region of temperatures which 

are relevant to the measurements to be described in the following section, c(r) can be well 

described by the approximation[43] 

- Ec 
E(r) ~ 1 + [2£n(r/ro)]-1 ' 

(4.19) 

where Ec is a constant defined by the length- and temperature-dependent dielectric constant, 

E(r, T), as Ec = €(r-+ oo, T = TKTB) and r0 is the minimum vortex separation. The response 

function g(r,w) can be well approximated by[44] 

14Dr-2 

g(r,w) ~ 
14

D _2 . (4.20) 
r -zw 

Since the dielectric constant in Eq. (4.19) is a slowly varying function of rover the region 

where g(r, w) crosses between its low- and high-frequency behaviors, the real and imaginary 

parts of the response function can be approximated by 

Re[g(r,w)] ~ 8(14Dr-2 - w) ( 4.21a) 
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and 

Im[g(r,w)] ~ (7r/4)ro(r- J14Djw), (4.21b) 

respectively, where e(x) and o(x) are the standard Heavyside and delta functions. From 

Eqs. (4.21), it is apparent that the behavior of the bound pair contribution to the dielectric 

constant is determined by a characteristic vortex-antivortex pair separation 

rw = J14Djw. ( 4.22) 

The physical interpretation of Eqs. (4.21) and (4.22) is that if an electric field of frequency 

w is applied to the vortices, only those pairs which have a separation smaller than r w have 

sufficient time to follow the applied field and thus determine the real, or inductive, response. 

Similarly, the imaginary, or dissipative, response is dominated by those vortices which move 

the largest distance in one cycle, those with separation rw. 

The next step is to substitute Eqs. (4.21) for the response function in to Eq. (4.18) 

and use the definition of rw given by Eq. (4.22) to find 

Re[Eb(w)] = €(r = rw) (4.23a) 

and 

Im[Eb(w)] = ~ [r(d~~)) L=rw. (4.23b) 

Using the formula for €(r) given by Eq. (4.19) in Eqs. (4.23) gives 

Ec 
Re[cb(w)] = 1 + [2fn(rwfro)]-l (4.24a) 

and 

7r ~ 1 
Im[cb(w)] = S {1 + [2fn(rwfro)]-l F fn 2(rwfro) (4.24b) 

7r€c 

~ 8fn2 (rw/ro) · 

The approximations in Eqs. ( 4.24) are due to the fact that rw » ro in order for the calculation 

to be physically meaningful. 
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Having calculated the bound pair contribution to the dielectric constant, let's turn 

to the free vortex contr.ibution. The free vortices give rise to a Drude-like contribution to 

the dielectric constant, 

( ) = 47l"i (1l"EJD{pv)) 
Ef w w kBT 0 

( 4.25) 

The results of Eqs. (4.24) and (4.25) will now allow the determination of the flux 

noise via Eq. (4.16). First, an important distinction must be made regarding whether the 

free or bound vortices dominate the system response at a given frequency. The two relevant 

length scales determining which contribution dominates are the correlation length ~ and the 

diffusion length r D = J D / 1l"W. From these two lengths, one can define a crossover frequency 

as the frequency at which rn =~,so that 

(4.26) 

Defining the crossover frequency as identical to w{ follows from the logical assumption that 

since it is determined by the correlation length in this model, it is natural to equate it with 

the generic characteristic frequency defined in Eq. (4.12). In doing so, Eqs. (4.12) and (4.26) 

give z = 2, as expected for diffusive dynamics, and 

2 . 
wo = D/1l"~o· ( 4.27) 

Equation ( 4.26) implies that measurements at frequencies lower than w{ probe 

fluctuations in the equilibrium vortex density which have diffused a distance larger than ~

To these measurements, the system appears disordered in the sense that the free vortices 

. destroy any coherence of the fluctuations. On the other hand, measurements at frequencies 

larger than w{ probe fluctuations on length scales smaller than ~- In other words, high

frequency measurements probe the critical behavior even though the temperature is higher 

than the true thermodynamic transition temperature. For frequencies w > w{, Ambegaokar 

et al.[45] found that bound vortex-anti vortex pairs dominate the system response. Therefore, 

the flux noise in this regime can be found by first calculating 1/E(w) = 1/Eb(w) from Eqs. 
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( 4.24) to find 

-1 Im[Eb(w)] · 
lim[€ (O,w)JI = Re[E~(w)] + Im[E~(w)] 

~ 8Ecfn2(rwlro)' 
(4.28) 

and then substituting this result in to Eq. ( 4.16), with the result 

F~2T' 1 
S4>(w » w~) = 32 ~ o 2( I ) 

1r Ec w{.n rw ro 
(4.29) 

Equation (4.29) predicts that S4>(w) ex: [wf.n2 (rwlro)]- 1. Thus, the dominant frequency 

dependence is 1lw with a logarithmic correction. In the opposite regime, when w < w~, 
Ambegaokar et al.[45] found that free vortices dominate the system response. The flux noise 

is then given by substituting the free vortex contribution to E(w) given by Eq. (4.25) into 

Eq. (4.16) for S4>(w) with the result 

( 4.30) 

where (Pv) has been replaced by 9-efining a proportionality constant "' such that (Pv) - 1 = Ke2. 

Equation ( 4.30) has an qualitative intuitive explanation in terms of the fluctuation

dissipation theorem. At low frequencies, the array can be viewed as a system with a resistance 

R which, via the fluctuation-dissipation theorem, produces incoherent current fluctuations 

with a frequency-independent spectral density sf ex: T' I R, where the effective temperature of 

. the vortices, T', replaces the usual ksT. Since a current fluctuation in the sample produces a 

magnetic flux fluctuation through the sensor, the flux noise is then S4> ex: Sf ex: T' I R. One can 

then make the simple argument that the sample's low-frequency resistance is proportional to 

the average density of free vortices, R ex: (Pv) ex: 1 I e' and therefore s4> ex: T' e. Aside from 

an extra factor ofT', the prediction of Eq. ( 4.30) agrees with this qualitative argument, thus 

lending support to the more rigorous calculation. 

Now that predictions for the scaling behavior [Eq. (4.35)), high-frequency behavior 

[Eq. (4.29)), and low-frequency behavior [Eq. (4.30)) of S4>(w) have been developed, let's 

turn to a description of the measurements. 
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4.3 Measurements 

4.3.1 Current-Voltage Measurements 

In order to make a quality check of arrays A and B, the temperature dependence 

of the differential resistance at zero bias current, (dVjdl)I=o, was measured as a function 

of temperature, T, with an rms current of 10 J.LA at a frequency of 47 Hz as described 

in Section 2.1.3. Figures 4.2(a) and 4.2(b) show (dVjdl)I=o versus T for arrays A and B 

respectively. The drop in resistance near T = 8 K marks the transition temperature of the 

niobium islands. As the temperature is lowered, a resistive plateau develops and is followed 

by a second precipitous drop, which is the standard signature for the phase transition as 

seen in previous experiments [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. Since both arrays A. 

and B qualitatively exhibited the expected behavior, ( dV / dl)I=o was not measured for array 

c. 
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Figure 4.2: dVjdl versus temperature of (a) array A and (b) array B, measured with zero 
static bias current and an rms current of 10 J.LA at a frequency of 47Hz. 
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For the measurements described here, a more important property than (dV/dlh=o 

of the arrays is the temperature dependent critical current per junction, ic(T). This quantity 

determines the dimensionless Coulomb gas temperature, T', introduced in Section 4.2 via 

T' = kBT/EJ(T) = 2ekBT/Iiic(T). (4.31) 

In order to determine ic(T), dV/dl was measured as a function of the static bias current. 

The critical current was defined by setting the current at which dV / dl was a maximum 

as Nic(T), where N is the number of junctions across the width of the array[62, 63). A 

representative example of this is shown in Fig. 4.3(a), as measured on array B at T = 1.29 

K. 

Well below the transition temperature of the individual islands, the critical current 

of SNS junctions in the dirty limit are expected to have the temperature dependence[64] 

ic(T) = ic(O) exp( -''r•IT). ( 4.32) 

Shown in Figs. 4.3(b) and 4.3(c) are fn[ic(T)] versus v'T data for all three arrays from 

which we extract the values for ic(O) and 'Y shown in Table 4.1. As will be describe later, 

four separate measurements were made on array B, which will be denoted as B(1) through 

B(4) in chronological order. As evident from Fig. 4.3(b), the critical current of array B did 

decrease as a function of time. In addition, the arrays had very different critical current 

behaviors, and this will allow the determination of the effects this had on the magnetic flux 

noise measurements. 

Table 4.1: Single junction parameters for ar
rays during measurements shown in Fig. 4.4 

I Array I ic(O) (A) I '"'( I rn (mO) I 
A 1.6 X 101 8.2 1 

B(1) 1.4 X 10-1 9.1 3 
B(2) 1. 7 X 10 -l 9.7 3 
B(3) 9.1 X 10-2 9.3 3 
B(4) 9.1 X 10-2 9.3 3 
c 2.7 X 10 -~ 5.8 30 
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Figure 4.3: (a) dVjdl versus Ide for array B(l), showing N(= lOO)ic(T = 1.29 K). (b) and 
(c) fn(ic) versus v'T measured during the experimental runs shown in Fig. 4.4. Values of 
the slopes and intercepts extracted from the straight line fits shown are given in Table 4.1. 
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4.3.2 Noise Measurements 

To carry out magnetic flux noise measurements of the KTB transition in the absence 

of an applied magnetic field, the apparatus was cooled in the ambient field inside the mu-metal 

shield surrounding the dewar, which was measured to be less than 1 f.LT. This field therefore 

produced a frustration, j, of less than 4% for array A and less than 5% for arrays B and 

C. Frustration is defined as the fraction of a superconducting flux quantum, 4?0 = h/2e, per 

unit cell of the array generated by the magnetic field perpendicular to the array. Because 

the phase transiti~ns for all three arrays occurred at temperatures below 4.2 K, it was 

necessary lower the helium pressure with a mechanical pump to reduce the bath temperature 

to approximately 1.2-1.3 K. A current was then applied to the resistive heater to bring the 

array to the desired temperature and the spectral density of magnetic flux noise, S<l> ( w), was 

measured. 

Shown in Fig. 4.4 are the resultant noise spectra for six different measurements, 

and the array-SQUID combinations used for each figure are listed in Table 4.2 along with the 

SQUIDs' effective diameters, fetr· All the figures in Fig. 4.4 show S<I>(w) versus frequency 

measured at a number of different temperatures above TKTB· The spectra at each temper

ature are compilations of two or three spectra measured with different bandwidths, and the 

larger scatter seen in the low-frequency segments is caused by averaging fewer times than 

in the higher frequency segments. Lower temperatures correspond to larger values of the 

low-frequency noise. The letters correspond 'to the chronological order in which the measure

ments were made. Figure 4.4(a) shows S<I>{w) of array A measured with SQUID 1. Figure 

4.4(b) shows S<I>(w) of array B{1), again measured with SQUID 1, allowing the comparison 

of the results from arrays of different geometry [Figs. 4.4{a) and 4.4{b)]. The scatter in 

Table 4.2: Experimental parameters for data 
shown in Fig. 4.4. 

I Array I Figure I SQUID I feff {f.Lm) I 
A 4.4{a) 1 400 

B{1) 4.4(b) 1 400 
B{2) 4.4{c) 2 250 
B{3) 4.4{d) 3 100 
B(4) 4.4(e) 1 400 
c 4.4{f) 1 400 
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(ro/2n) (Hz) 

Figure 4.4: Spectral density of magnetic flux noise, Sq,(w), versus frequency resulting from 
six measurements. The array and SQUID used, and the temperatures at which spectra were 
measured, are (a) array A using SQUID 1, T(K)=3.881, 3.901, 3.924, 3.954, 3.965, 3.980, 
4.002, 4.025, 4.052, 4.089, 4.115, 4.151, 4.185, 4.249, 4.385, 4.499, and 4.721, (b) array B(1) 
using SQUID 1, T(K)=1.825, 1.857, 1.869, 1.885, 1.899, 1.906, 1.924, 1.956, 1.978, 2.010, 
2.033, 2.054, 2.098, 2.146, and 2.379, (c) array B(2) using SQUID 2, T(K)=1.685, 1.698, 1.71, 
1.725, 1.751, 1.783,1.810, and 1.848, (d) array B(3) using SQUID 3, T(K)=l.741, 1.758, 
1.779, 1.797, 1.817, 1.837, and 1.857, (e) array B(4) using SQUID 1, T(K)=1.748, 1.767, 
1.782, 1.801, 1,813, 1.841, 1.866, 1.884, 1.903, and 1.934, and (f) array C using SQUID 1, 
T(K)=3.158, 3.221, 3.246, 3.293, 3.349, 3.404, 3.467, 3.591, and 3.726. Smaller temperature 
corresponds to larger low frequency noise. 



58 

the low frequency portions of the higher temperature data are a result of subtraction of the 

SQUID noise. Figures 4.4(c) and 4.4(d) show S4>(w) of arrays B(2) and B(3), respectively, 

measured with SQUIDs 2 and 3 respectively, allowing the comparison of S4>(w) from array B 

measured with SQUIDs of three different geometries [Figs. 4.4(b) through 4.4(d)]. The sharp 

spikes in Fig. 4.4( d) are due to unusually large external noise sources, primarily at 60 Hz. In 

order to investigate the effects of array aging and/or different background magnetic fields, 

S4>(w) of array B [denoted as B(4) for this measurement] was remeasured with SQUID 1. 

The bumps in the low frequency portions of the highest temperature data are due to SQUID 

noise. Lastly, Fig. 4.4(f) shows S4>(w) of array C measured with SQUID 1 in order to allow 

the comparison of the results from two arrays with identical geometries, measured with the 

same SQUID, but with very different critical currents [Figs. 4.4(e) and 4.4(f)]. 

In general, the data have two similar features. First, at a given temperature the low

frequency noise is white and the high-frequency noise for different temperatures approaches 

or falls on the same curve, which has a frequency dependence of 1/w0
, where the exponent 

a ~ 1. Second, in a given measurement, or equivalently figure, as temperature drops the 

white noise increases and the crossover frequency between the white and 1/w0 behavior 

moves towards smaller frequency. used to make all the measurements In addition to the 

similarities mentioned above, there are some differences between the data from different 

measurements. First of all, the high frequency portion of the spectra does not have the same 

slope in the different measurements. Drawing a straight line through the 1/w0 portion of 

the spectra for each set of data in Fig. 4.4 gives the slopes a= 0.9, 1, 0.9, 1, 0.85, and 0.9 for 

Figs. 4.4(a) through 4.4(f) respectively. Secondly, the data from different measurements are 

shifted vertically with respect to each other. In other words, at the temperature at which the 

·crossover frequency reaches a specific value, the value of S4>(w = w~) is different for different 

measurements. 
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4.3.3 Additional Evidence for a Phase Transition 

Although the noise data presented above exhibited the characteristics of a phase 

transition via a characteristic frequency diverging towards zero for lowering temperatures, 

and the resistance dropped rapidly towards zero, there was additional evidence that the noise 

is indeed due to a superconducting phase transition. In addition to having zero resistance, 

one of the distinguishing characteristics of a superconductor is the ability to expel applied 

magnetic fields. One of the procedures in the noise measurements, as discussed in Section 

2.1.1, was to measure the mutual inductance between the modulation coil and the SQUID, 

Mr, at each temperature before S<I>(w) was measured. As discussed in Section 3.5, as the 

sample goes superconductiilg it decreases the mutual inductance between the sensor and the 

modulation coil. Therefore, by measuring Mr as a function of temperature it is possible to 

obtain a rough estimate of the temperat"qre at which the sample becomes superconducting. 

An example of this measurement is shown in Fig. 4.5, where Mr, normalized to the 

high-temperature value, is shown plotted versus temperature for arrays A and B(l). The 

solid symbols correspond to the results obtained from the technique for measuring RJIMt 

described in Section 2.1.3. The open symbols correspond to the results obtained by applying 

an external current to the modulation coil, with the feedback loop open, and monitoring 

the voltage output from the SQUID at the preamplifier output. The difference obviously 

means that the sample responds differently to pulsed than to slow changes in applied field, 

but we do not yet have an explanation for this behavior. From this figure, it is obvious 

that the array A starts to become superconducting somewhere between 3.6 and 3.8 K, and 

similarly array B(l) somewhere between 1.6 and 1.7 K. Therefore, it is reasonable to assume 

that the noise data of Figs. 4.4( a) and 4.4(b) are at temperatures above the superconducting 

transition (and by similarity that this is true for all the data of Fig. 4.4), and then turn to 

quantitative comparisons of the data with the theory of Section 4.2. 
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4.4 Comparison of Data with Theory 

Now that the features of the measured S<I>(w) have been explained, let's compare 

these results to the predictions of Section 4.2, beginning by testing the general scaling be

havior predicted by Eq. (4.14). As mentioned in Section 4.2, within this model there is 

good reason to believe that the scaling behavior is independent of any geometric param

eters. However, to test this prediction it will suffice to first neglect the dependence on 

l!.effl~, dl~, and Ale and then check if the measurements are consistent with this assump

tion. Therefore, ignoring for now any dependence on geometrical parameters, Eq. (4.14) 

predicts 

wS<I>(w) = F2(wlwf.) 

=·;:2(:0 (~:) z), ( 4.33) 

where the second step follows from substituting for Wf. using the definition given in Eq. (4.12). 

Now, making use of the form of~ relevant for Josephson junction arrays[12], 

(4.34) 

where b is a constant, we substitute it in Eq. (4.33) to predict the scaling behavior 

wS<I>(w) = F2(:
0 

exp(bzl Jr'- T1<TB)). (4.35) 

Equation (4.35) implies that, by choosing the correct values for TKTB and bz and 

plotting wS<I>(w) versus the scaled frequency wexp(bzl JT'- T1<T8 ), the raw data should 

collapse on to a single· curve. To do so, T' was determined using Eqs. (4.31) for T' and 

· ( 4.32) for ic(T) along with the parameters given in Table 4.1. Shown in Fig. 4.6 are the 

results of this procedure for the data shown in Fig. 4.4, and the fitting parameters bz and 

TKTB used for each of the figures in Fig: 4.4 are given in Table 4.3. The letters correspond 

to those of Fig. 4.4. Recall that the scatter in the low frequency portion of Fig. 4.6(b) is 

due to subtraction of SQUID noise and the sharp spikes in Fig. 4.6( d) are due to spurious 

external noise. Overall, the data collapse fairly well, especially that of Figs. 4.4(b) and 4.4( d), 

justifying the prediction in Section 4. 2 that F2 is independent of l!.eff I~' d I~~ and A I e 0 

For all of the arrays except for array B(3), for which the data did not span a large 

enough region of temperature, the quality of the data collapse is highly dependent on the 

choice of TKTB but relatively weakly on the choice of bz. Increases (decreases) in bz for some 
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.. Figure 4.6: (w/2n)S;p(w) versus (w/27r)(~/~o)z; letters correspond to the raw data shown in 
Fig. 4.4. Extracted values of TKTB and bz are given in Table 4.3. 

Table 4.3: Results from data collapse of data shown in Fig. 
4.4. 

I Array I Figure I TKTB (K) bz 

A 4.6(a) 3.72 (3.68, 3.76) 1.7 (2.1, 1.6) 
B(1) 4.6(b) 1.63 (1.56, 1.68) 3.8 ( 4.3, 3.3) 
B(2) 4.6(c) 1.60 (1.58, 1.62) 2.1 (2.5,1.7) 
B(3) 4.6(d) 1.57 (0, 1.65) 4.1 (8.5,2.5) 
B(4) 4.6(e) 1.52 (1.46, 1.65) 3.4 ( 4.0, 2.0) 
c 4.6(f) 2.85 (2.60, 2.96) 2.5 (3.5, 2.0) 
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range around the values listed in Table 4.3 could be compensated for by decreases (increases) 

of TKTB to obtain a collapse of comparable quantity. However, changes in bz outside of this 

range could not be compensated for by changes in TKTB and resulted in a lower quality 

data collapse. The spread in both bz and TKTB that produced data collapses of comparable 

quality to those shown in Fig. 4.6 are given in Table 4.3 next to the optimal values. Smaller 

values of TKTB required larger values of bz and the spreads in each are listed next to the 

optimal values as (min,max) and (max,min) pairs for TKTB and bz respectively. 

Although the data collapsed reasonably well, in agreement with the predicted KTB 

behavior, the high frequency portions of collapsed spectra at different temperatures in Figs. 
,. 

4.6(a), 4.6(c), 4.6(e), and 4.6(f) do not lie on top of each other. On the other hand, all 

the spectra in Figs. 4.6(b) and 4.6(d) do lie on top of each other and the scatter is due to 

averaging only 200 times for the lowest frequency segments as mentioned above. The lack of 

a perfect collapse at high frequencies therefore resulted from the fact that a :f= 1 for all the 

data. 

Before dealing with the high-frequency behavior, let's compare the low-frequency 

predictions to the data. Beginning with Eq. (4.30) and substituting for~ using Eq. (4.34) 

gives the predicted low-frequency behavior 

(4.36) 

In order to test Eq. (4.36), the low-frequency noise, S¥:, is defined as a horizontal 

line drawn through the frequency independent part of the noise spectra at each temperature 

in Fig. 4.4. Equation (4.36) then predicts that plotting fn(S¥:/T'2
) versus 1/JT'- T£<TB• 

using TKTB found from the data collapse, should produce a straight line of slope 2b. Figures 

4.7(a) and 4.7(b) show the results of this procedure for the data of Fig. 4.4, as well as straight 

line fits from which the values of 2b shown in Table 4.4 were extracted. 

By comparing the values of bz from the data collapse, given in Table 4.3, with the 

extracted values of 2b in Table 4.4, it is evident that there is a large scatter in the value 

· z and that the all the measurements would indicate that z < 2. However, since the data 

collapse did not determine bz very precisely, in order to provide a better estimate it can be 

extracted by using the temperature dependence of the characteristic frequency w~, 

( 4.37) 
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Figure 4.7: (a) and (b) fn(S:fT' 2
) versus 1/JT'- T~TB of the noise data shown in Fig. 

4.4. Values of 2b extracted from the straight line fits shown are listed in Table 4.4. (c) 
and (d) £n(wt)27r) versus 1/ JT'- T~TB of the noise data shown in Fig. 4.4. Values of bz 
extracted from the straight line fits shown are listed in Table 4.4 
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where~ has been replaced using Eq. ( 4.34) and w0 using Eq. ( 4.27) in the definition of w~ given 

by Eq. ( 4.12). The theory presented in Section 4.2 does not give an analytic formula for S;p ( w) 

at all frequencies, so that w~ cannot be determined by fitting to a specific functional form. 

However, since w~ is the only characteristic frequency associated with the KTB transition, 

it is logical to define it as the frequency which separates the white and 1lwcx behavior of the 

S;p(w) data shown in Fig. 4.4. To be more specific, w~ will be defined as the intersection of 

the line defining s~ and the line proportional to 1 I wcx shown in each of the figures of Fig. 4.4. 

Equation (4.37) then predicts that plotting £n(wd27r) versus lj.JT'- TKTB' using TKTB 

obtained from the data collapse, should produce a straight line of slope -bz and intercept 

Dl1r~6- .Figures 4.7(c) and 4.7(d) show the resultofthis procedure, and the extracted values 

of bz and D l1r~6 are shown in Table 4.4. These values of bz fall within the range of values 

that produced comparable data collapses given in Table 4.3. Also shown in Table 4.4 are the 

values of the dynamic critical exponent, z, calculated from the values of 2b and bz obtained 

from the temperature dependences of s~ and w~ respectively. 

There was a reasonably large spread in z over the six measurements, and all gave 

z < 2. However, the spread in z cannot be due to incorrectly chosen values of TKTB or to 

inaccurate determinations of T' because the same scaling parameter, 1 I JT' - TKTB, was 

used to extract both bz and 2b. There are many possible explanations for the scatter in z as 

well as the fact that z # 2 as predicted by the model. The first is that the model is incorrect. 

This possibility will be dealt with in Section 4.5, but let's assume for now that the model is 

correct and look for explanations within the model. 

Table 4.4: Parameters extracted from the KTB pre
dictions for the scaling behavior of s~ and w~ deter
mined from the data shown in Fig. 4.4. 

I Array I 2ba. I bz6 I zc I Dl1r~6 (Hz) I 
A 2.6(2) 2.1 1.6 8 X 105 

B(l) 5.2 3.9 1.5 1 X 107 

B(2) 2.6 2.3 1.8 3 X 10° 
B(3) 4.9 4.0 1.6 6 X 106 

B(4) 4.7 4.0 1.7 2 X 107 

c 3.4 2.6 1.5 2 X 105 

aextracted from the temperature dependence of s~ 
b extracted from temperature dependence of w{ 

ccalculated using the. values for 2b and bz shown here 
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One possible explanation is that the characteristic frequency, w~, was not defined 

correctly. As mentioned above, w~ cannot be determined by fitting S<I>(w) to a specific 

functional form and the definition as the intersection of the 1 j w0 line and the line defining 

S~ might not be correct. However, since w~ in the theory marks a separation between two 

different types of vortex dynamics and the only such observable feature in S<I>(w) is the 

crossover between white and 1/w0 behavior, this definition is likely a good one. Another 

possibility can be seen by returning to the scaling behavior prediction of Eq. (4.33). The 

low-frequency noise is frequency independent, which means that the function F2(wjw~) must 

have the form 

or 

( 4.38) 

where the last step follows from the definition of :F2 (wjw~) in Eq. (4.33). Therefore, com

paring Eq. (4.38) to the low-frequency prediction of Eq. (4.30). indicates that the dynamic 

critical exponent is determined by the equation 

(4.39) 

This is clearly incorrect because z cannot depend explicitly on T'. The discrepancy arises 

because an implicit assumption in scaling theory is that, close enough to the phase transi

tion, the temperature dependence of the correlation length is so strong that, as far as any 

explicit dependence of the system's properties on T' [such as T'2 in Eq. ( 4.30)) is concerned, 

· T' is essentially a constant. However, for the measurements presented above, due to the 

strong temperature dependence of the Josephson coupling energy [see Eq. (4.31)), T' varies 

reasonably strongly over the temperature range for which the data in Fig. 4.4 were measured, 

as shown in Fig. 4.8. This leads to the question of whether the scaling theory predictions, 

and more generally the KTB theory, are valid for the measurements presented in Section 4.3. 

This ~ill be covered in more detail in Section 4.5, but first let's return to the high-frequency 

behavior of the measured noise in order to address the issue that a"/= 1 as mentioned earlier. 

In order to examine the high-frequency behavior in more detail, let's return to the 

prediction of Eq. ( 4.29) and examine only the frequency dependence. Substituting Eq. ( 4.22) 
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Figure 4.8: T' versus temperature, calculated for the temperatures at which Sq;(w) was 
measured in Fig. 4.4, using Eq. (4.31) and the parameters for ic(T) given in Table 4.1. 
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for rw in to Eq. (4.29) predicts the frequency dependence 

S~(w » w~) ex [wfn2 (~~)] -
1 

_ [wfn2 ( 1:~~5 :o)] -1 

(4.40) 

where the last step follows from expressing the diffusion constant D in terms of the definition 

of Wo given in Eq. (4.27). To illustrate this, shown in Fig. 4.9(a) is a plot of s~(w » w~) 
versus wjCw0 , where the constant C = 14rr~5/r6 and for concreteness the value has been set 

such that Cw0 = 106 radjs. For the present purposes, the relevant aspect of Eq. (4.40) is 

the slope on a log-log plot; 8log[S~(w)]/Olog(w), which is shown in Fig. 4.9(b) as a function 

of wjCw0 . It is evident that the slope approaches -1 only for frequencies w « Cwo. In fact, 

the slope does not reach -0.9 until wjCw0 ~ 4 x 10-12 . Since the values of w0 extracted from 

the temperature dependence of w~ shown in Table 4.3 ranged from approximately 2 x 105 

to 2 x 107 , the theoretical prediction of Eq. (4.40) demands physically unlikely values of ~0 
and/or r0 . For example, choosing wjCw0 ~ 4 x 10-12 (the value whe~e S~(w) ex 1jw0·9 , and 

letting w0 = 2 x 106 , in the middle of the values extracted from the data, Eq. (4.9) then 

demands that ro/~o ;S 2 X 10-4 . 

Values for r 0 and ~0 satisfying r0j~0 ;S 2 x w-4 are unlikely, but not impossible. 

It is important to note that there is no reason to believe that ro is of order of the lattice 

spacing. The reason is that r 0 is probably best pictured as the smallest allowable separation 

of a vortex-antivortex pair, and in a Josephson junction array it is possible to have a pair 

with a separation of less than one lattice spacing. Lobb et al.[12] showed by numerical 

calculation that, at low temperatures (much below TKTB), a vortex centered at a point in 

· between two neighboring superconducting islands has a different (higher) energy state than 

a vortex centered between the islands forming a unit cell. This is shown schematically in Fig. 

4.10, where a vortex which moves from position A to position C has to cross an energy barrier 

at position B, Ebarrier = Es- EA ~ 0.2EJ. A similar calculation for a triangular lattice 

found an energy barrier Ebarrier ~ 0.043EJ. Now, when dealing with vortices on length 

scales smaller than the lattice spacing it is, in principle, necessary to take into account 

these energy barriers which form what is commonly called the egg-carton potential of the 

array. However, since at the temperatures where S~(w) was measured ksT _2: Ebarrier (or 

equivalently T' _2: Ebarrier/ EJ(T) as shown in Fig. 4.8), the egg-carton potential is washed 

out and it is reasonable to treat the array as a fiat potential. Then, the important point is 
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that a vortex with a center away from the cell center is a well-defined object and therefore 

it is possible that r0 is much smaller than the lattice spacing. 

On ~he other hand, it is generally accepted that ~0 is of order of the lattice spacing 

because ~ shm.ild never be smaller than the lattice spacing. In other words, an average of 

one free vortex per unit cell gives an average phase shift of 21r integrated around the cell, 

which for a square lattice gives an average phase shift between neighboring islands of 1r /2 

and via the Josephson relation, i = icsin(B = 7r/2), an average current equal to the critical 

current. Since it is energetically unfavorable to have a current between neighboring islands 

which is greater than the critical current, one concludes that ~ must always be larger than 

the lattice spacing. 

In the measurements presented in Section 4.3, there was no direct measurement of 

~· However, it is possible to determine the range over which~ varied. Shown in Fig. 4.11(a) is 

a plot of ~/~0 versus temperature for each of the measurements shown in Fig. 4.4, calculated 

using the values of TKTB and 2b given in Table 4.4. For some of the measurements, ~ varied 

by as much as two orders of magnitude. In general one would expect that ~ is smaller than 

the smallest dimension of the array and larger than the lattice size. Shown in Fig. 4.1l(b) 

Figure 4.10: Illustration of a vortex moving from the 
center of an array cell at position A to the center of the 
adjacent cell at position C while crossing the energy 
barrier at position B. 



71 

D /:), array A 
1000 xg 0 array B(l) 

~ 0 array B(2) 
¢~~ X array B(3) 1:!. 

~v + array B(4) 1:!. 

0 
0 1:!. 0 100 ¢ D array C 

UJ' 
¢'Jt.~ '6 \ -UJ' 0 
¢ + D 0 
¢ D 0 
¢ 0 

10 
0 1:!. 

D 0 

1:!. 

/:), array A 1:!. 

10-3 1:!. 
01:0 0 array B(l)O 

\ \ 0 array B(2) <o 
X array B(3) 0 

~ + array B(4) 
0 

a 0 

10-4 . 0 array C 
0 1:!. . 

'-" ¢ .g 0 
UJ' ¢ D 1:!. 

¢% 

0 1:!. 

D 

10-5 D 

10-3 /:), array A 1:!. D 0 array B(l) D 1:!. 
D 0 array B(2) 1:!. 
§ 
D X array B(3) 

\ ~ + array B(4) a ¢ D 
'-" 

10-4 
D 0 array C 0 

UJ' D 
'b \ ~ 

D 0 1:!. 
0 

D 0 1:!. 
0 1:!. 

10-5 

2.0 2.5 3.0 3.5 4.0 4.5 

Temperature (K) 
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assuming that e = a at the highest temperature. 



72 

is a plot of~ versus temperature assuming that, at the lowest temperature for which S4>(w) 

was measured, ~ was equal to the smaller dimension of the array, and Fig. 4.11( c) shows 

a similar plot under the assumption that, at the highest temperature for which S4>(w) was 

measured, ~ was equal to the lattice size. Listed in Table 4.5 are the values of ~0 resulting 

from the assumptions associated with Fig. 4.11. For all the measurements except for those 

on array B(1), ~ remained within the bounds stated above, and even for array B(1) ~ did 

not span such a large range that it would have been much larger than the smaller dimension 

of the array or much smaller than the lattice size. 

Further evidence that the correlation length fell in the range a :S ~ ;S(smallest 

array dimension) can be seen by examining Figs. 4.12 and 4.13. Figure 4.12(a) shows four 

spectra measured on array B(1) at T = 1.750 K. First, a measurement from 0.4- 100 Hz 

was made, followed by one from 10-4000 Hz, and then this was repeated. Each of the two 

measurements with the same bandwidth are identical within the scatter, indicating that the 

measurements provided a true thermodynamic average [note that this temperature is above 

TKTB for array B(1)]. However, shown in Fig. 4.13(b) are four individual time traces of the 

data used to calculate the 0.4-100 Hz spectra, two taken from the first spectra and two from 

the second. A close examination reveals that there are sharp jumps in the flux threading 

the sensor as a function of time <P(t), reminiscent of random telegraph signals often seen in 

high-temperature superconductors[16]. These sharp jumps can be understood by realizing 

that when~ is of order of the width of the sensor, there is an average of only one free vortex 

under it so that at times only one vortex moves from (or to) the area under the sensor and 

causes a sudden jump in <P(t). 

Table 4.5: Values of ~0 resulting from the as
sumptions leading to Figs. 4.11 and 4.20 

I Array I ~o J.Lm a I ~o J.Lm 6 I ~o J.Lm c I 
A 10 4 100 

B(1) 0.6 1 50 
B(2) 3 0.5 10 
B(3) 1 0.1 1 
B(4) 2 0.2 9 
c 6 1 40 

"assuming that ~ :::; smallest array dimension 
bassuming that~~ a 
cassuming that ~ ~ feff 
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Figure 4.12: (a) Four sets of noise spectra measured at T = 1.750 K on array B(1), measured 
in the chronological order 0.4- 100Hz, 10-4000 Hz, 0.4- 100Hz, and 10-4000 Hz. (b) 
Flux versus time traces taken during the 0.4- 100Hz measurements of (a). The traces are 
offset vertically for clarity and the top two were from the first measurement and the bottom 
two from the second. 
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These sudden jumps in q>(t) could also be interpreted as caused by vortices hopping 

within the egg-carton potential of the array if the sample were at a temperature below 

TKTB· Howe~er, the mutual inductance measurement presented in Section 4.3 indicated that 

1.75 K > TKTB· Further evidence that this is the case, and that the transition temperature 

TKTB = 1.63 K extracted from the data collapse is reasonably accurate is provided in Fig. 

4.13, which shows the identical set of measurements as described for Fig. 4.12. The time 

traces shown in Fig. 4.13(b) show similar jumps in q>(t) as those of Fig. 4.12(b). However, 

the top two time traces, taken during the first 0.4 - 100 Hz measurement are distinctly 

different than the bottom two, taken during the second. The likely cause for this behavior 

is that below TKTB the array is superconducting, but there are still vortex-antivortex pairs 

of finite separation created which can be pinned in the egg-carton potential of the array. In 

this way, at some time there is a configuration of vortices and antivortices hopping in the 

array which changes on a reasonably slow time scale so that the noise measurements do not 

provide a true thermodynamic average of the system, as evidenced by the spectra shown in 

Fig. 4.13 where the 10 - 4000 Hz spectra taken at different times are distinctly different. 

Presumably, if one averaged for a long enough time, spectra measured at different times 

would be identical because all possible system states would be probed. For obvious practical 

considerations, and to ensure a finite time until my graduation, this was not done. 

Given the above arguments, it is likely that ~0 is of the order of the lattice size and 

likely that ro is considerably smaller than the lattice size. However, a more important point 

is that according to Fig. 4.9(b) and Eq. (4.40), the slope of S<I>(w) approaches -1 very slowly 

as a function of decreasing w / Cwo. Even allowing for very small values of r0 , it is extremely 

unlikely that the experimental data shown in Fig. 4.4 for which a = -1 can be described by 

the predictions of Eq. (4.29). 

Now that it has been established that the theoretical predictions of Section 4.2 

cannot explain the high-frequency part of the measured data and also that there is a question 

of whether the KTB scaling theory predictions are valid when T' varies reasonably strongly 

over the temperature range where data was measured, it is necessary to ask whether it is 

valid to apply the KTB predictions to the data. 
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Figure 4.13: (a) Four sets of noise spectra measured at T = 1.612 K on array B(1), measured 
in the chronological order 0.4 - 100 Hz, 10 - 4000 Hz, 0.4 - 100 Hz, and 10 - 4000 Hz. (b) 
Flux versus time traces taken during the 0.4- 100 Hz measurements of (a). The traces are 
offset vertically for clarity and the top two were from the first measurement and the bottom 
two from the second. 



76 

4.5 Applicability of the KTB Predictions 

According to the KTB theory, the value of T' at the transition temperature is 

determined by the equation 

(4.41) 

The precise value of Ec is not known because it depends on the chemical potential, or energy 

needed to create a vortex-antivortex pair of the minimum allowable separation, of the system. 

Smaller chemical potentials make pair creation more favorable and thereby a larger vortex 

density near the transition, which translates to a smaller value of TKTB and a larger value of 

Ec· Several authors have argued[65, 66, 67, 68, 69] that for small enough chemical potential 

the transition becomes first order while others[70, 68] found no evidence of a first-order 

transition even at very small chemical potential, and to date there has been no experimental 

evidence for a first-order transition. 

As mentioned in Section 4.4, the minimum possible vortex pair separation, ro, in 

these arrays might be much smaller than the lattice spacing, and this would give a smaller 

value of the chemical potential and thereby a larger value of fc· The value of fc f~r the 

measurements presented in Section 4.3 can be inferred by solving Eq. (4.41) for fc and then 

using the values for TKTB given in Table 4.4 to calculate TKTB using Eq. (4.31) and the 

parameters for ic(T) given in Table 4.1. The results are shown in Table 4.6, along with the 

(min,max) values calculated from the spreads in TKTB from Table 4.3. The values ranged 

from 19 to 29 (excluding the oo for array B(3) which resulted from the noise data not covering 

a large enough range of temperature to determine TKTB accurately), which is consistent with 

having a small value of r 0 and therefore a small chemical potential. 

However, this determination of Ec relies on the measurements of ic as discussed 

in Section 4.3, which might not have been the best method. The reason can be seen by 

examining Fig. 4.14, which shows fn(ic) versus temperature, where the temperatures at 

which S<I>(w) was measured are indicated by vertical lines with arrows to the right indicating 

the lowest temperature at which S<I>(w) was measured and vice-versa for arrows to the left. 

In other words, the critical current measurements indicated that ic -::/= 0 at some of the 

temperatures above TKTB· One must keep in mind that the critical current was measured at 

a frequency o£"47 Hz, so that one would expect a non-zero critical current at temperatures 

above the zero frequency TKTB· Since the true transition temperature is determined by the 



Table 4.6: Values of Tf:<TB and Ec for the measurements pre
sented in Section 4.3. TkTB was calculated using Eq. (4.31) 
and the value of TKTB from Table 4.3, and from these Ec 

was calculated using Eq. (4.41). The spreads in Tf:<TB and 
Ec due to the spreads in TKTB listed in Table 4.3 are given in 
parentheses. 

I Array I TkTB Ec 

A 7 X 10 2(7 X 10 2, 8 X 10 2) 22(23, 20) 
B(1) 5 x 10-2 ( 4 x 10-:.::, 7 x 10-2) 29(23, 39) 
B(2) 8 X 10-2(7 X 10 ·:t, 8 X 10 ·2) 19(20, 17) 
B(3) 8 X 10 2(0, 1 X 10 1) 19( oo, 13) 
B(4) 7 X 10-2(5 X 10 ·:l, 1 X 10-1) 23(31, 13) 

A 8 X 10 ·2(7 X 10 ·:l, 8 X 10 ·2) 20(23,20) 
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condition w{ = 0, one can similarly define a finite-frequency transition temperature TKTB(w) 

by the condition w{ = w. Shown in Fig. 4.14 by solid symbols (note that these are not 

measured values of ic) are the temperatures at which w{ = 27r47 rad sec-1 for each of the 

noise measurements of Fig. 4.4. At least for arrays A and B(2), there was a measurable critical 

current at temperature well above TKTB(47 Hz) when one would have expected the critical 

current to approach zero rapidly above this temperature. However, other measurements 

have shown a critical current above TKTB[48, 55] and the majority of measurements of the 

non-linear current-voltage characteristics exhibited an exponent V oc p(T) at low currents, 

where a(T) = 3 was used to define TKTB· Above TKTB, a(T) gradually decreased from 3 to 

1[47, 52, 53, 54, 57], and a(T) > 1 implies a maximum in dVjdi at a non-zero current since 

the arrays must become ohmic at high currents. Therefore, the non-zero critical currents at 

temperatures above TKTB(47 Hz) shown in Fig. 4.14 are consistent with previous studies and 

likely reflect the rounding of the arrays' current-voltage characteristics due to fluctuations. 

More troubling than the large values of Ec is the general assumption of the KTB the

ory that that the scaling parameter (T'- TkTB) /Tf:<TB « 1 in order for the renormalization 

group calculations to be valid. However, most experimental measurements observed behavior 

consistent with the KTB predictions over a much wider temperature range[48, 58, 55, 57]. In 

the measurements presented in Section 4.3, (T'-TkTB)/TkTB 2: 1 as shown in Fig. 4.15. As 

far as the measurements presented here are concerned, it is not possible to determine exactly 

why the data obeyed the KTB scaling predictions in this temperature range. Nevertheless, 

this is the experimental result and the challenge is then to develop a theoretical model to 
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Figure 4.14: ic versus temperature for the measurements shown in Fig. 4.4, showing the 
temperatures at which Sw(w) was measured as well as the temperature at which w.; = 271"47 
rad sec-1. See text for detailed description. 
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account for this behavior. Minnhagen[67] proposed that scaling behavior observed over this 

large temperature range is due to a more general Coulomb gas scaling than to the KTB 

predictions. In addition, one could argue that in this temperature range it is difficult to 

distinguish between the KTB behavior and that of other models, and these possibilities will 

be discussed in the following section. 

b. array A 

12 0 array B(l) 
+ array B(4) 

8 
0 array C 

~ 0 

~ 4 0 
t:. 

t:. 0 

~~ (a) ...._ 
,.-,. 

~ 
~ 2.0 • 0 array B(2) 

I X array B(3) ~ X 
._., 1.5 ~ 

1.0 

0.5 

2.0 2.5 3.0 3.5 4.0 4.5 
Temperature (K) 

Figure 4.15: (T' -Tf<TB)/Tf<TB versus temperature, calculated for the temperatures at which 
S~(w) was measured in Fig. 4.4, using Eq. (4.31) and the parameters for ic(T) given in Table 
4.1 
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4.6 Other Explanations for the Noise Data 

There have been many attempts to describe the vortex dynamics associated with 

the two-dimensional superfiuid/superfiuid transition as mentioned in Section 4.1. For the 

purpose of this thesis, only a small number which are possible candidates to explain the 

measurements presented in Section 4.3 will be discussed. Those theories and simulations 

which predict only a 1/w312 or 1/w2 noise behavior at high frequencies[46, 71, 72], with no 

intermediate 1/w region, are cited merely for completeness. However, it is important to point 

out that theories which predict a 1/w region and a crossover to 1jw312- or 1/w2-behavior 

are not inconsistent with the measurements (as will be discussed below). The reason is that 

the arrays must have a crossover to 1/wa>1-behavior at some frequency so that the noise 

integrated over all frequencies is finite. 

This section will first discuss the possibility that the flux noise was caused by vortex 

hopping within the egg-carton potential of the array, not because it is a likely explanation 

of the measurements but rather to demonstrate that it is not. Next, two analytic theories 

will be discussed, one of which gave results nearly identical to those of Section 4.4. Lastly, 

the results of two numerical simulations will be presented. 

4.6.1 Vortex Hopping 

The small values of TKTB' and therefore large values of'Ec, discussed in the previous 

section leads us to ask the important question of whether, for all the'measurements presented 

· in Section 4.3, T' < TKTB· If indeed this were the case, one could argue that the vortices 

were hopping around within the egg-carton potential of the array via thermal activation 

·· which would have given a characteristic frequency with the thermally-activated behavior[73] 

Whop= wo,hopexp[-CJEJ(T)/kBT] = w~ 

= wo,hop exp[ -C J /T'], (4.42) 

where the constant C 1 depends on the array geometry. Recall from Section 4.4 that for an 

array with uniform E1's, CJ ~ 0.2 for square arrays and CJ ~ 0.043 for triangular arrays. 

However, it is likely that there was some variation in E1 across the array and therefore C1 

was determined by the largest energy barrier. To examine this possibility, shown in Figs. 

4.16(a) and 4.16(b) are plots of the same data of Fig. 4.7, with w~ renamed Whop, except 

that the horizontal axis is 1/T'. The fits to fn(wd27r) versus 1/T' shown as straight lines in 
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the figure gave the values for wo,hop and C1 listed in Table 4.6.1. As is evident, the values 

for wo,hop are not unreasonable and the values for CJ are larger than one would expect, but 

as mentioned above the arrays were likely somewhat non-uniform. What is more striking is 

that, within the scatter, the values of C1 for the triangular and square arrays are comparable. 

Since, as mentioned above, the energy barrier is approximately 4 7 times larger in a square 

array than in a triangular array (for a given E1 of course), it is extremely unlikely that 

thermally-activated vortex hopping could explain the temperature dependence of Wt;· 

Table 4. 7: Parameters extracted from the data 
of Fig. 4.16 using Eq. 4.42 

I Array I wohop (rad/s) I CJ I 
' 

A 9 X 103 1.0 
B(1) 2 X 104 1.5 
B(2) 1 X 105 1.5 
B(3) 2 X 104 1.9 
B(4) 2 X 104 1.6 

A 1 X 103 1.2 
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2 4 6 10 12 14 

Figure 4.16: (a) £n(SJC/T) versus 1/T' for the noise data of Fig. 4.4. (b) and (c) £n(wf)2tr) 
versus 1/T' for the noise data shown in Fig. 4.4. 
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4.6.2 Regime Interpretation 

In a recent publication[7 4], a model was proposed to explain vortex dynamics in 

two-dimensional superconductors in terms of a regime interpretation based on the ratio 

Y = (rw/~)2 = f 0Jwe, where rw is identical to the definition ofEq. (4.22) with 14D replaced 

by a junction-determined phase diffusion rate, r 0 . The calculation is rather detailed, so only 

an outline of the relevant ideas and the results will be quoted here. 

Beginning with a Langevin equation essentially identical to Eq. (4.65), the authors 

calculated the complex vortex conductivity u(w) = o-1(w)+iu2(w). The most important steps 

were that the Hamiltonian was decomposed into spin wave and vortex parts and a gaussian 

approximation was made so that the Josephson sinusoidal coupling was replaced with (Bi

Bj)2 . This approximation amounts to a long-wavelength approximation. In addition, it was 

assumed that the dynamic critical exponent z = 2. 

Before giving the results, it will useful to relate the complex conductivity to Sq.(w) 

via the relation[61] 

Sq.(w) = 2~~r' IJmC(~)) I, (4.43) 

as well as the relation between the dielectric constant and the complex conductivity[67], 

1 
u(w) = -iwLkE(w), ( 4.44) 

where Lk = ~5/471"2 EJ is the kinetic inductance[12]. The result is 

~4T' 
Sq.(w) = 2rr~EJ o-1(w), (4.45) 

so that only the dissipative part of u(w) is needed to calculate the flux noise as expected. 

Capezzali et al. found three different results for o-1(w) which depended on the value 

of Y, which were 

o-1(w) _ Tl{ 
a-0~2 - [1 + (r5fw2~4)-1] Y»1 ( 4.46a) 

_ 2TL fn(fo/we) 
- rr[1- (r5fw2~4)-1] 

(4.46b) 

dTL arctan( we /fo) 
- dfw 2(we /fo) 

y « 1, (4.46c) 

where uo is a conductivity scale, £f. = £n(~jr0 ), fw = fn(rwfr0 ), and Tl is the renormalized 

KTB coupling strength EJ/ksT evaluated at the length£. In the regime Y « 1, TL ~ 
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T~ + e-l and for y :s 1, Cappezali et al. claim that TL ~ T~, so that Eqs. ( 4.46a) and 

( 4.46b) are easily evaluated. In the regime Y » 1, in order to achieve the correct result 

o-1 ex: e it is necessary that T£{ be independent of ~ in contrast to the result of Waganblast 

and Fazio quoted in Section 4.6.3 who claimed that T£{ ex: ~4 . Therefore, using these results 

in Eqs. (4.46) and then substituting for u1(w) in Eq. (4.45) one finds the final results for 

Sif!(w) 

<P6T'u0 Ke{l!n(fo/we)~
2 

Sif!(w) = 27r2EJ [1 + (f5Jw2~4)-1] 
_ <P6T'uo Kewl!n(fo/we)e 
- 7r3 EJ [1- (f6Jw2~4)-1) 

= 
<P6T'uofo arctan( we /fo) 

47r2 EJ w£n2(rw/ro) 

y » 1 ( 4.47a) 

(4.47b) 

Y«l. (4.47c) 

Note that Eqs. (4.47a) and (4.47c) predict essentially the same behavior for Sif!(w) 

as the calculations presented in Section 4.2, including the logarithmic correction to 1/w 

behavior at high frequency. It is difficult to determine if the data of Section 4.3 exhibit 

the behavior predicted by Eq. (4.47b) in the intermediate frequency regime because it is 

likely that this regime is very narrow. It is somewhat surprising that two very different 

calculations give similar results for the flux noise, but this agreement lends support to each. 

Since the weaknesses of these predictions were discussed in detail in Section 4.4, they will 

not be repeated here. 
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4.6.3 XY Model with Local Damping 

Wagenblast and Fazio[2) developed a model for the vortex dynamics based on the 

two-di~ensional XY model with the additional assumption that, at each site, the phase 

fluctuations are damped. They speculated that this damping is ohmic and due to coupling 

of the superconducting islands to the normal metal underneath. Then, in order to calculate 

the flux noise, they used a two-step procedure by first calculating the contribution due to 

free vortices using a Debye-Hiickel approximation and then taking into account the physics 

at length scales smaller than ~ by means of a renormalization of the coupling constants. The 

method was similar to that used by Berker and Nelson[75) to calculate the specific heat and 

superfluid density above TKTB. For details of the calculation, see Ref. [2), as only the results 

and underlying assumptions will be discussed here. 

Beginning with the Euclidean action for the system with ohmic damping and per

forming a Villain transformation to obtain the dynamic action for the vortices, the authors 

arrived at the expression for the flux noise due to the free vortices 

(4.48) 

where K is a constant determined by the geometry of the measurement apparatus and F4 is 

a scaling function given by 

( 
w 471'~2) 1Y ( w- ix) -l F4 x = -, y = ~ = -Im dw 1 + w _ 

2
. 

w~ {.eff 0 w tx 
(4.49) 

In these expressions, w~ = WJd(~o/~)2 , WJd = 21l'EJ/(~51io:R), and o:R = RQ/R where RQ = 
h/ 4e2 is the resistance quantum and R is the shunt resistance between each island and the 

underlying copper. Shown in Fig. 4.17 is a plot of the scaling function F4 versus w / wf. with 

47l'e ;e;ff = 107 . Since the flux noise !s proportional to wF4 , it is evident that the prediction 

gives white noise for w/w£; < 1, a crossover to 1/w behavior for 1 < w/w£; < 47l'e ;e;ff, and 

finally a crossover to 1/w2 behavior for wjwf. > 47l'e ;e;ff. 
In order to take into account the effect of bound pairs up to separations of order of 

the the correlation length, the authors used the scaling relation 

(4.50) 

The scaling was then carried out to (* = fn(~/~o) and substituted in to Eq. (4.49) to give 
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Figure 4.17: Scaling function F4 of Eq. (4.49) as a function of x = w/wr, for 47Te ;t;ff = 107 , 

illustrating the crossover at x = 1. The inset shows the same scaling function with an 
expanded horizontal axis in order to show a second crossover at x = 47Te / t;ff. Figure taken 
with permission from Ref. [2] 
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the final expression 

. £4 T'((*) 1 ( w 47r~2 ) 
S.p(w) = K~6 8e~ ~-F4 X= -,y = ---;;x- . 

1l" ., w w~ <-eff 
(4.51) 

As can be seen by examining Eq. ( 4.51) and Fig. 4.17, a necessary condition for the prediction 

to agree with the measured noise is that T'((*)/~4 is temperature independent. As an 

attempt to justify this, the authors begin with the Kosterlitz renormalization group equations 

(4.52a) 

and 

(4.52b) 

A numerical iteration of Eqs. (4.52) with the initial conditions T'(O) = 1l"j0.9 (10% above 

the transition temperature) and y(O) = e-2/T'(O) is shown in Fig. 4.18, from which it can 

be seen that the scaling behavior of T' approaches the behavior T' ( () <X e4(. Since the 

scaling is carried out to (* = fn(~/~0 ), the result is that T'((*)/~4 is indeed temperature 

independent. However, as shown in Fig. 4.18(b ), even at ( = 2 the fugacity y(2) » 1 so that 

higher order terms in y for the RG equations will become important and Eqs. (4.52) are no 

longer valid. In fact, the ~/~o plot of Fig. 4.11(a) indicates that 1.5 .:S ( .:S 7. However, if it 

is assumed that T'((*)/~4 is temperature independent, the results for the behavior of S.p(w) 

are as shown in Fig. 4.19. The similarity to the noise data of Fig. 4.4 is striking, but the 

requirement that T'((*)/~4 be temperature independent is only a hypothesis and has not 

·been· rigorously justified. 

Also, as is evident from Fig. 4.17 and as mentioned earlier, the theory predicts 

1/w-behavior only for WJd(~5Je) < w < 47l"WJd(~5/£;ff) and a crossover to 1/w2-behavior for 

w > 41l"WJd(~5/£;ff). This means that to have an appreciable. region of 1/w-behavior, the 

correlation length must be much larger than the effective diameter of the sensor. Shown 

in Fig. 4.20 is a plot similar to that of Fig. 4.11, using Fig. 4.1l(a) for the temperature 

dependence of ~/~0 and with the assumption that ~ > fetr at the highest temperature for 

each of the curves. The values of ~0 resulting from this assumption are listed in Table 4.5. 

Since ~o is expected to be of order of the lattice size as mentioned in Section 4.4, the values 

shown in Table 4.5 are not unreasonable. What is more surprising is that for all of the data 
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Figure 4.18: Results for the numerical integration of 
the KT scaling relations given by Eqs. (4.52). 

S8 

sets, except that for array B(3), ~exceeded the smaller dimension of the array and for some 

of the measurements even exceeded the larger dimension of the array. Although it is not 

impossible that ~ follows the KTB scaling form when is is l~ger than one or both dimensions 

of the array, in general one would expect to see finite size effects in this case. 

A feature of this theory which does not appear in the measurements is a crossover 

to 1/w2-behavior. However, it is possible that this frequency, 

( 4.53) 

lies outside of the experimental bandwidth. Since all the parameters of Eq. ( 4.53) are known 

except for the shunt resistance R, is is possible to make an upper bound on Wcut,ld by letting 

R = Tn. Shown in Fig. 4.2l(a) is a plot of Wcut,Id versus temperature calculated from Eq. 

(4.53) and using the values of EJ calculated from the measured critical currents just as 

was done in Section 4.4. By comparing the values of Wcut,Id to the highest measurement 

frequencies in Fig. 4.4, one would expect that for arrays A and B(l) the crossover to 1/w2-

behavior should have appeared. Also, the values of Wcut,ld in Fig. 4.2l(a) are an overestimate 
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Figure 4.19: Spectral density of magnetic flux noise according to Eq. (4.51) with the addi
tional assumption that the renormalized coupling T' ( (*) ex e4 . The parameters used were 
b = 2.06, TKTB = 1.63 K, w2 = 1.3 x 107, and for temperatures of the data shown in Fig. 
4.4. T' was calculated using Eq. (4.31) and the parameters given in Table 4.1. Figure taken 
with permission from Ref. [2]. 
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Figure 4.20: ~ versus temperature using ~/~o from Fig. 4.11(a) and under the assumption 
that ~ > fetr at the highest temperature for each data set. 

because the shunt resistance R is expected to be smaller than the single junction resistance[2, 

76]. 

Although the resemblance between the predictions of this model shown in Fig. 4.19 

and the data of Fig. 4.4(b) is compelling, the fact that (1) (T' j ~)4 has not been convincingly 

shown to be temperature independent, (2) ~must be much larger than the array dimensions 

for some of the data, and (3) a crossover to 1/w2-behavior was not observed lead to the 

conclusion that, at present, the local damping model is not a satisfactory description of the 

measurements. 

\ 
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temperature calculated using Eq. (4.64). 
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4.6.4 Coulomb Gas Scaling 

The two-dimensional Coulomb gas (2DCG) model has been studied intensely by 

Petter Minnhagen and co-workers[67) as a model for the two-dimensional superconduct

ing/superfl.uid transition. In a recently published article[3), this model was used to describe 

vortex dynamics near the KTB transition temperature and to compare to numerical simula

tions of the two-dimensional XY model. The interested reader should consult Refs. [3) and 

[67) which contain much more detailed information about the 2DCG model, but the regime 

relevant to the measurements presented in Section 4.3 will be described here. 

The numerical simulations began with the Hamiltonian (for zero frustration) 

H =I: 2EJ { 1- cos2
P

2
.[(0i- Oj)/2)}, 

{ij) 

(4.54) 

where Oi is the order parameter phase at site i, (ij) denotes a sum over nearest neighbors, 

and the parameter p allows for increased vortex densities near the phase transition. The 

case p = 1 gives the usual 2D XY model, but the authors concentrated on p = 2 in order 

to ensure a large enough vortex density near the phase transition so that the vortex fluctu

ations dominated the system's response. In addition to the static Hamiltonian given by Eq. 

( 4.54), Ginzburg-Landau dynamics were introduced into the problem through the Langevin 

equation, 

ndOi(t) _ -raH ·() 
dt - aoi + 1Jz t , (4.55) 

where r is a diffusion rate and 1Ji(t) is a fluctuating noise source satisfying the condition 

(rli(t)1Jj(t')) = 2rkBT6ij6(t- t'). ( 4.56) 

In order to compare the results of the numerical simulations to analytic predictions, 

the authors use the Minnhagen phenomenology (MP) description. In the MP description, 

and in the long-wavelength limit, the imaginary part of the vortex dielectric constant is given 

by 

( 4.57) 

where 

(4.58) 
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Equations (4.57) and (4.58) are valid in the regime where n..\~g » 1, where n is the total 

vortex density and Acg is the Coulomb gas screening length and is related to the correlation 

length via 

- T'c2 
,\ 2 - _Ec.=.g_<:._ 
cg- 271" (4.59) 

Next, the flux noise was related to the imaginary part of the dielectric constant via S<I>(w) ex 

(T' /w)llm[l/c(w)]l, which, using Eq. (4.57), gave 

T' WWcg 
S<I>(w) ex -::- 2 2 R.n(w/wcg)· 

€cgW -Wcg 
(4.60) 

Shown in Fig. 4.22 is a plot of (€c9 /T')S~g(w) versus w, from the simulations and 

using p = 2. There is a narrow frequency region where the noise has a 1/w-behavior, but far 

too narrow a region to agree with the many decades of 1/wa-behavior observed in the data 

of Fig. 4.4. However, using the value p = 1 appropriate for the pure XY model, the authors 

observed the noise spectrum shown in Fig. 4.23 in which there is a much larger region of 

!/~-behavior. and an approach to 1jw312 above a cutoff frequency Wcut· 

A few comments about the simulations are necessary here. First, they do not 

show a crossover to white noise at low frequencies, most likely because they were interested 

in probing the critical dynamics and did not extend the frequency range to low enough 

frequency to probe the dynamics outside of the critical region. This can be seen explicitly by 

examining Figs. 4.22 and 4.23, where the lowest frequencies studied were about two orders 

of magnitude below r EJ jn which, as discussed below, is a very high frequency. Second, 

the crossover to ljw312-behavior, not present in the data of Section 4.3, is not necessarily 

inconsistent with the data. The reason for this can be seen by making a rough estimate for 

the cutoff frequency Wcut· Setting p = 1 in the Hamiltonian of Eq. (4.54) and substituting 

in to the Langevin equation, Eq. (4.55), gives (ignoring the fluctuating noise term) 

dO· """"' dtz = -rEJ L..,sin(Oi -Bj)· 
ij 

(4.61) 

Equation (4.61) is remarkably similar to the Josephson equation for the time derivative of 

the phase difference between sites i and j, 

d(Oi- Oj) _ 4rnEJ . (O· _ ·) 
dt - fi2 sm z ()J . (4.62) 

Essentially, the phase diffusion equation, Eq. 4.61, indicates a local rate of phase change 

at site i based on the phase of it's nearest neighbors but ignores the long-range interaction 
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Figure 4.23: S~g(w) versus w on a log-log plot, for a temperature very near T~TB from 
numerical simulations of Section 4.6.4 with p = 1. The solid line has slope -1 and the 
dashed line has slope -3/2. Figure courtesy of A. Jonsson. 
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of the Josephson relation, Eq. ( 4.62), resulting from the fact that site j is coupled to its 

neighbors, which are in turn coupled to their neighbors, and so on. Nevertheless, making a 

crude comparison of Eqs. ( 4.61) and ( 4.62) indicates that 

(4.63) 

Since the simulations indicate that the cutoff frequency, above which the noise has a 1 I w312-

behavior, occurs at Wcut ~ r EJ l!i, Eq. (4.59) predicts that 

(4.64) 

Shown in Fig. 4.21 is a plot of Wcut versus temperature calculated from Eq. ( 4.64) using 

the values of EJ calculated from the measured critical currents just as was done in Section 

4.4. For all of the arrays, Wcut is far above the experimental bandwidth and it is therefore 

not surprising that the measurements in Fig. 4.4 do not display 1lw312-behavior at high 

frequencies. 

Given that the numerical simulations presented above, for the p = 1 case, exhibit 

a 1 I w noise region and also that the lack of a crossover to 1 I w312 in the measurements 

is understandable, it is reasonable to conclude that the XY model with Ginzburg-Landau 

dynamics is at least a possible explanation of the measurements. However, one aspect of the 

simulations which is clearly inconsistent with the measurements is the range of temperatures 

above TKTB for which the simulations agreed with the data. Even for the p = 2 case, shown 

in Fig. 4.23, which exhibited critical dynamics over a larger temperature range than for 

the p = 1 case, the 1 I w region extended at most two orders of magnitude below Wcut at a 

. temperature T' ITKTB ~ 1.1. As described in relation to Fig. 4.21(b), Wcut lies outside ofthe 

experimental bandwidth and the noise data exhibited 1lw-like behavior over many decades 

in frequency, even for temperatures T' ITKTB » 1 (a plot T' ITKTB for the temperatures at · 

which the noise data of Fig. 4.4 is shown in Fig. 4.24). As mentioned in Section 4.5, most 

experimental measurements have observed KTB-like behavior at temperatures which are 

theoretically outside of the range of validity of the KTB model. The Coulomb gas predictions 

are expected to be valid over a wider range of temperatures[67], but the numerical simulations 

presented above do not provide an adequate description of the measurements presented in 

Section 4.3. 
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4.6.5 Numerical Simulations Based on the Resistively Shunted Junction 

Model and Time-Dependent Ginzburg-Landau Dynamics 

In order to study the dynamics associated with the KTB transition in Josephson 

junction arrays, Tiesinga et al.[4, 77] carried out numerical simulations for two types of dy

namics, one based on the resistively shunted junction (RSJ) model which is used extensively 

in the treatment of single junctions, and another based on time-dependent Ginzburg-Landau 

(TDGL) dynamics. The equation of motion for the order parameter phase of both models 

can be written in the form 

&O(r, t) """"' ( ') &H ( , at = 7 r r,r &O(r',t) + W r,r ,t), (4.65) 

where r(r, r') is the damping function, H = EJ cos[B(r', t)- B(r, t)] is the Hamiltonian, and 

W(r, r', t) is the noise function. 

The difference between the RSJ and TDGL models is that in the RSJ model, current 

is conserved, i.e. current at site r can only flow to its neighbors, while for the TDGL model 

current is not conserved (this is sensible only for SNS arrays with a normal metal underlayer 

where the current can flow to the underlayer). To be more specific, for the RSJ model 

rRSJ(r, r') =: roG(r, r'), (4.66) 

where G(r, r') is the two-dimensional lattice Green's function which accounts for current 

conservation at each site. The noise function WRSJ(r, t; r', t') = 7JRSJ(r, t; r', t') is defined as 

random, Gaussian noise such that 

(7JRSJ(r, t; r + ei, t')) = 0 

(7JRSJ(r, t; r + ei, t')7JRSJ(r', t; r' + ej, t')) = 2roT'8i,j8(r- r')8(t- t'), 

where ej is a vector of one lattice spacing in direction j. For the TDGL model 

rTDGL =: ro8(r- r') 

(4.67) 

(4.68) 

(4.69) 

and the noise function WTocL(r, t; r', t') = 7JTDGL(r, t)8(r - r')8(t - t') is again random, 

Gaussian noise defined such that 

(7J(r, t)) = 0 

(77(r, t)71(r', t')) = 2r0T' 8i,j8(r- r')8(t- t'). 

(4.70) 

(4.71) 
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The numerical simulations were then carried out on a 64 x 64 array, and the flux 

noise was calculated by covering the array with sensors of size fetr x fetr ( 4 sensors if fetr = 32, 

16 sensors if fetr = 16 and etc.) and determining the vortex number noise in the time domain 

v 1 . . . 2 
9£etr(t) = N[(N£eff(t)Nletr(O))- (N£eff(O)) ], 

. fetr 
( 4. 72) 

where Ni (t) is the number of vortices under sensor i at time t. The spectral density of <-eff 
flux noise was determined by carrying out the Fourier transform of Eq. (4.72), and is shown 

in Fig. 4.25(a) for TDGL dynamics and in Fig. 4.25(c) for RSJ dynamics. Both types of 

dynamics exhibited 1/wa-behavior at high frequencies and approaching white noise at low 

frequencies, with the slopes a near 1 but slightly larger for RSJ than for TDGL dynamics. 

The major difference between the results for the two different dynamics appeared in 

the determination of the dynamic critical exponent z. In order to determine z, the correlation 

length was determined by calculating the zeroth-momentum phase correlation function from 

the equilibrium phase correlation function ge(r, t; r', t') = (e[B(r,t)-B(r',t')l) and fitting it to 

form 

(4.73) 

with e as given in Eq. ( 4.34). Then, a data collapse of gY (t) was performed by scaling <-eff 
the results from different temperatures and sensor sizes using the scaling form gf (t) <X . eff 
FeetT(t/rf,) with Tf, <X e: Shown in Figs. 4.25(b) and 4.25(d) is the result of this procedure 

for TDGL and RSJ dynamics respectively, with the insets showing the resultant values of 

Tf, used to extract z. The somewhat surprising result was that z(TDGL) ~ 2 whereas 

z(RSJ) ~ 0.9. Clearly, the TDGL results provide a much better agreement with the data, 

·for both z and the high-frequency slopes a. This is not surprising since, as mentioned in 

Section 4.6.3, the phase damping due to the shuri.t resistance from an island to the copper 

underlayer can dominate over that due to the junction resistance. In fact, these simulations 

indicate that this is likely the case. 

The most striking aspects of these simulations are that they exhibit both white noise 

at low frequencies and 1/wa-behavior, with a~ 1, at high frequencies and also exhibit this 

behavior at temperatures where the correlation length ~ < fetr· This latter result supports 

the assumption in Section 4.4 that the correlation length is smaller than the sensor's effective 

width, in contrast to the condition required for the local damping model of Section 4.6.3 that 

e » fetr· In addition, the data collapse in Figs. 4.25(b) and 4.25(d) was independent of the 
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Figure 4.25: S<I>(w) versus w for (a) TDGL and (b) RSJ dynamics. The curves at different 
temperatures have been shifted vertically for clarity. From top to bottom, the temperatures 
for each spectrum are: (a) T'=l.08,1.16,1.24,1.32, and 1.48 (b) T'=l.08,1.10,1.12,1.20,1.28, 
and 1.36. The insets to (a) and (c) show the high-frequency slopes of each spec
trum versus T' The collapse results for gY (t) are shown for (b) TDGL dynamics at 

<.eff 
temperatures T'=l.12,1.16,1.20,1.24, and 1.28 and (d) RSJ dynamics at temperatures 
T'=l.12,1.16,1.20,1.24,1.28,1.32, and 1.36 with ( +) showing the results using a SQUID with 
feff = 16 and ( o) denoting a SQUID with feff = 32. The insets to (b) and (d) show the 
scaling of r~ versus~ for (D) feff = 16 and (o) feff = 32. The dot-dashed (continuous) line is 
a linear fit to the feff = 16 (feff = 32) data. Figure taken with permission from Ref. [4). 
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size of the array and the sensor, supporting the conclusion in Section 4.4 that the scaling 

function :F2 is independent of geometrical parameters. 
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4.6.6 Summary of Other Theories 
'-

None of the theories presented in this section gave a completely satisfactory descrip

tion of the measurements of Section 4.3, and the numerical simulations lent support_ to the 

measurements but did not give sufficient insight to the problem to allow the determination 

of a correct theory. However, before discussing in detail the conclusions that can be gained 

from the material presented so far, an aspect of the measurements not previously discussed 

will be covered-namely the effects of the small background magnetic field in which the ar~ays 

were cooled. 
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4. 7 Magnetic Field Effects 

As mentioned in Section 4.3, the background field present inside the mu-metal shield 

produced an unknown frustration of less that 4% for array A and less than 5% for arrays 

B and .C. A hint of these effects can be seen in Fig. 4.26(a), which exhibited qualitatively 

different behavior than the data from the six measurements s_hown in Fig. 4.4. Rather than 

showing white noise, the slope of the low frequency portion of the spectra show a non-zero 

slope which becomes more negative as temperature is lowered. These data were data taken 

on array C using SQUID 3 at several different temperatures. One possible explanation for 

this behavior is that the unknown background magnetic field was larger in this case than 

for the data of Fig. 4.4, so that there was a substantial number of vortices created by this 

field. As temperature was lowered, the density of thermally-created free vortices decreased 

and the behavior began to be dominated by the field-created vortices. 

In an attempt to understand this behavior, a superconducting persistent-field coil 

[see Fig. 2.2(b)] was used to apply a magnetic field to array C while measuring S4>(w) using 

SQUID 1. Shown in Fig. 4.26{b) are noise spectra, at fixed temperature, for five different 

values of applied frustration: /app = 0%, -4%, -6%, -8%, and - 20%. There is obviously 

a strong magnetic field dependence. The data for f app = O%and - 20% do not extend to 

low enough frequency to see if the noise becomes white at ~ow frequency. However, the 

data at /app = -4%, -6%, and- 8% do not look even qualitatively similar to either the 

data in Fig. 4.4 or Fig. 4.26(a). There are two regions of 1/wo. noise with different slopes 

as in Fig. 4.26(a), but there is a rapid upturn in 84> at the lowest frequencies. A likely 

explanation for this behavior is that the superconducting washer of the SQUID [see Fig. 

2.2] distorted the magnetic field lines and therefore produced a very non-uniform field at the 

array. This behavior likely did not occur previously, even though the fields applied were of 
1 

the same order of magnitude as the ambient field, because in the measurements taken in the 

absence of an applied field, the SQUID did not cool below its transition temperature until 

after the background field was frozen in to the lead shield surrounding the vacuum can. In 

this situation, the background field would be trapped in the SQUID washer in the form of 

vortices and the field distribution would be more uniform than if the field were applied with 

the SQUID washer in a superconducting state. 

To address the question of the distortion of the magnetic field due to the presence 

of the SQUID washer, a resistive heater was attached to the SQUID chip, allowing the 
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Figure 4.26: Sq,(w) versus frequency of array C measured with SQUID 3 showing: (a) a 
situation where the low frequency noise is not white in the absence of an applied frustration, 
(b) effects caused by a frustration applied with the persistent current coil [see Fig. 2.2], (c) 
effects caused by a frustration applied by rotating the sample in the background field, and 
(d) effects caused by a 60 Hz external noise field. 
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SQUID to be heated above its transition temperature and cooled in the presence of the 

field. In addition, the lead can was removed from surrounding the vacuum can to allow the 

adjustment of lapp by rotation of the dewar in the ambient field. Shown in Fig. 4.26(c) are 

four sets of spectra all taken at the same temperature, labelled (1) through (4). Spectra 

(1) were taken first after which we removed the currents circulating in the persistent-field 

coil arising from any changes in ambient field. Then the spectra labelled (2) were measured. 

Following this, the dewar was rotated to roughly, within 10 degrees, the position where the 

background field ~as parallel to the array face. Then, the persistent current in the field 

coil was removed and spectra (3) were measured. At this point, the SQUID was heated 

and cooled in the ambient field, and spectra ( 4) were measured. It is evident that all these 

procedures had a dramatic effect on S<I>(w), but none of the spectra exhibited the features 

seen in Fig. 4.4. The changes in frustration due to the above-mentioned procedures were 

less than 0.5%, which was determined by rotating the dewar more than 180 degrees while 

monitoring the flux through the SQUID. This change in frustration was much smaller than 

the maximum mentioned in Sec. 4.3.2 because the ambient magnetic field varies within the 

laboratory, being smaller inside the screened room where the measurements were made than 

in the part of the room where the apparatus was first cooled down from room temperature. 

The fact that spectrum (4) does not have the form of the spectra of Fig. 4.4 is 

at first thought surprising, since heating and cooling the SQUID in the presence of the 

background field should have recreated the circumstances which produced the spectra of 

Fig. 4.4. However, the lack of the lead can surrounding the vacuum can resulted in a much 

larger level of 60 Hz noise. The ratio of S<I> at 60 Hz to S<I> due to the array near 60 Hz 

was approximately 2, 4, 40, and 60 for spectra (1) through (4) respectively. It is likely that 

the 60 Hz noise disrupted the equilibrium dynamics of the array. Further evidence for this 

hypothesis is shown in Fig. 4.26(d). The spectra of Fig. 4.26(d) were taken at six different 

temperatures and are labelled (5) through (10), in order of increasing temperature. They 

were taken with the lead can surrounding the vacuum can and the apparatus was cooled 

in the background field, just as for the the data of Fig. 4.4. However, there was a much 

larger 60 Hz external noise signal present, of unknown origin, than was present for the data 

of Fig. 4.4. The ratio of 60 Hz noise to array noise near 60 Hz, was approximately 3, 3, 3, 6, 

and 24 for spectra (5) through (10) respectively. Only the two highest temperature spectra 

show behavior qualitatively dissimilar to that of Fig. 4.4, namely a feature in the frequency 

region where white noise would be expected [see arrows in Fig. 4.26(d)]. The four lowest 
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temperature spectra show behavior very similar to the spectra of Fig. 4.4. This indicates that 

relatively small external magnetic field noise at a single frequency can disrupt the systems 

equilibrium dynamics. This small external 60 Hz signal, for spectra (9) and {10) in Fig. 

4.26( d), corresponds to an an rms applied frustration of 1.3 x w-5 and 9. 7 x 10-6 respectively. 

If such a small external field source can disrupt the equilibrium dynamics of the system, the 

possibility of measuring the linear response by using a two-coil mutual inductance system 

as used by other groups (58, 78, 79] would be difficult. It should be mentioned that the 100 

kHz field used to operate the SQUID corresponded to an rms frustratiqn of approximately 

w-4, much larger than the 60Hz noise in Figs. 4.26(c) and 4.26(d). The amplitude of the 

100 kHz field was reduced by more than a factor of two and increased by more than a factor 

of three with no effect on the array's noise. Presumably the frequency was too large to affect 

the low frequency noise. 

The data of Fig. 4.26 do not conclusively explain the fact that the high-frequency 

portions of the data of Fig. 4.4 exhibit different slopes. However, they do illustrate the 

rather strong effects that a small static or fluctuating field can have on the equilibrium noise 

properties of arrays and suggest that a small frustration could have caused the different 

values of a evident in Fig. 4.4. In addition, numerical simulations on the effects of a 2% 

frustration on the noise spectra of arrays found that the high-frequency slope was affected 

by the field, causing the slope to increase as temperature was lowered[77]. 
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4.8 Summary, Conclusions, and Suggestions for Future Work 

In summary, the spectral density of magnetic flux noise caused by the equilibrium 

KTB transition has been measured in three arrays of overdamped Josephson junctions using 

sensors of three different geometries. All of the noise data exhibited a similar form, white at 

low frequencies and proportional to 1/w0
, with a~ 1 at high frequencies. Through a data 

collapse, it was demonstrated that the noise obeyed dynamic scaling in agreement with the 

KTB theory over as many as five decades in frequency. In addition, measurement of the mu

tual inductance between sample and sensor as well as of flux versus time through the SQUID 

above and below the transition temperature extracted from the data collapse indicated that 

this transition temperature was indeed due to the true superconducting transition. 

In addition, an analytic theory was presented based on the calculation of the vor

tex dielectric constant, assuming that the vortices obey diffusive dynamics. This theory 

described well the temperature dependence of the low frequency noise, s~, but the 1/w fre

quency dependence at high frequencies was not adequately explained. From the temperature 

dependence of S~ and w~ it was possible to obtain an estimate of the dynamic critical expo

nent which fell in the range 1.5 ;S z ;S 1.8. However, the determination of z in this manner 

is of questionable validity because of the large variation of T' over the temperature ranges 

where Sq,(w) was measured would indicate that z is temperature dependent, as discussed in 

Section 4.4 in association with Eq.( 4.39). In fact, the theories of Wagenblast and Fazio and 

Capezzali et al. explicitly assumed that z = 2 and still found the temperature dependence 

s~ ex T'f.2 and s~ ex T't;2 I EJ which would, in the same way as for the theory of Section 

4.2, give a temperature dependent dynamic critical exponent. 

Therefore, in contrast the the claim of Ref. [59], these measurements have not 

provided an unambiguous determination of the dynamic critieal exponent. In order to do 

so, it would be necessary to have both an analytic prediction for the form of Sq,(w) to 

determine the crossover frequency w~ and also the ability to disentangle the temperature 

dependence of f. from that ofT'. The former is a challenge· for theorists, and the hope is 

that the measurements presented here have given a better understanding of the dynamics 

of the phase transition from which theorists can begin to develop a more accurate model. 

The latter, namely studying the phase transition Closer to the transition temperature, will 

likely not be possible in SNS arrays because of the strong temperature dependence ofT' and 

the fact that the crossover frequency would be far· to small to be accessible in a reasonable 
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measurement time. One method to possibly overcome this would be to carry out flux noise 

measurements on SIS arrays such as those studied by the Delft group[53, 56], since these 

arrays have a weakly temperature dependent critical current. 

Two additional analytic theories were compared to the data, with the regime inter

pretation of Capezzali et al. in Section 4.6.2 giving nearly identical results to the theory of 

Section 4.2. The theory of Wagenblast and Fazio described in Section 4.6.3 gave results for 

Sq,(w) bearing an incredible resemblance to the data of Fig. 4.4, bu.t the issue of the renor

malized coupling constant remains unresolved, as well as the issue of whether the correlation 

length can be much larger than the array size. Both of these theories assumed z = 2 and 

found noise spectra similar to the measurements of Fig. 4.4, and the Wagenblast and Fazio 

theory indicated the likelihood that local damping of the order parameter due to the shunt 

resistance between the islands and the metallic underlayer plays an important role in the 

system's dynamics. 

Numerical simulations based on time-dependent Ginzburg Landau and resistively 

shunted junction dynamics presented in Sections 4.6.4 and 4.6.5 showed noise spectra similar 

to that of Fig. 4.4, and indicated that local damping is likely to be important in determining 

the dynamics of the phase transition in SNS arrays, in support of the Wagenblast an Fazio 

theory, The simulations of Tiesinga et al. gave evidence that the dynamic critical exponent 

in the local damping model z ~ 2 as well as indicating that the noise spectra of Fig. 4.4 are 

consistent with the correlation length ~ being smaller than the sensor size. 

There remain unanswered two very fundamental questions regarding the supercon

ducting transition in two-dimensional Josephson junction arrays. The first of these is the 

reason why nearly all experimental studies have shown results consistent with the KTB 

··scaling predictions at temperatures far enough above the transition temperature that the 

KTB theory is not mathematically valid. The second is a complete understanding of the 

dynamics of the phase transition and the value of the dynamic critical exponent z. The 

former question presents a theoretical challenge which the measurements presented here can 

not address. However, the non-invasive measurements of the equilibrium vortex fluctuations, 

using a de SQUID as a sensor, described in detail in this chapter, have shed considerable 

light on the latter. 

In to order suggest possible future studies of the KTB transition in Josephson 

junction arrays, it is probably most instructive to describe what I believe to be a better 

measurement scheme. First, a modified sensor similar to the one used by the Neuchatel 
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group[58, 79], which could measure both the flux noise and the complex impedance of the 

array would provide much more information and would also provide a cross-check between 

the dissipative part of the impedance and the noise via the fluctuation-dissipation theorem. 

In addition, it would pwyide the ability to determine the transition temperature both by the 

data collapse of the flux noise and also by the supposed universal ratio of the dissipative to 

inductive components of the impedance. This measurement could be realized with a two-coil 

technique as shown schematically in Fig. 4.27. In this arrangement, a gradiometer consisting 

of a pair of superconducting, concentric, counter-wound coils is surrounded by a solenoidal 

drive coil, and the assembly is placed very close to the array. The leads from the top coil 

of the gradiometer are connected to the superconducting input coil of a SQUID, forming a 

closed superconducting loop. In order to measure the complex impedance, an alternating 

field is generated by the drive coil which is not sensed by the balanced gradiometer. How

ever, currents generated in the sample in response to the field are picked up by the bottom 

coil of the gradiometer pair due to its proximity. The measurement of the flux noise then 

involves simply turning off the drive coil, and the bottom coil of the gradiometer senses the 

fluctuations in the sample. This technique, even with ideal balancing of the gradiometer and 

impedance matching the gradiometer to the SQUID's input coil, would not be as sensitive 

as the measurements presented in Section 4.3. However, for the noise measurements shown 

in Fig. 4.4, the noise floor of the SQUID was far below the sample noise and the reduced 

sensitivity would likely be acceptable. 

In addition to this modified measurement scheme, it would be very instructive to 

study SIS arrays, because of their weakly temperature-dependent critical current as men

tioned above, but also because it would 'shed light on the respective roles of local damping 

between superconducting islands and the underlying metallic ground plane and intersite 

damping between superconducting islands. 
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Figure 4.27: Scheme for measurement of complex impedance and flux noise. 
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