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Abstract 

Successful applications of connectionist learning to 
educational issues include word reading, single-digit 
multiplication, and prime-number detection. While closely 
modeling human learning, these applications underscore the 
importance of practice, feedback, prior knowledge, and well-
structured lessons. Among the remaining simulation 
challenges in educational domains are other reading and 
arithmetic skills, learner-generated goals, social aspects of 
learning, and learning by direct instruction.  

Keywords: Connectionism; education; reading; 
multiplication; prime-number detection. 

Introduction 
Because connectionism has dominated the theoretical study 
of learning for the last 20 years, it would be surprising if it 
yielded no useful applications to the field of education, 
where learning is obviously a key issue. However, most 
connectionist research is resolutely theoretical with very 
little effort expended on solving educational problems. The 
few systematic treatments of applying connectionism to 
education were written years ago and seem to have barely 
scratched the surface of possibilities. This paper reviews 
some of the more promising lines of connectionist research 
into learning in the key educational domains of reading and 
mathematics before attempting to abstract some 
recommendations that might be of interest to educational 
researchers. First though, modern connectionism is 
distinguished from the older, behaviorist connectionism, 
which had been applied to education nearly a century ago. 
Finally, some of the considerable challenges that education 
poses for connectionist modeling are discussed. 

Connectionism Old and New 
The central idea of modern connectionism is that mental 
processes can be modeled by interconnected networks of 
simple units. This is quite different from the older, 
behavioristic connectionism. Behaviorism emphasized the 
learning of associations between stimuli and responses and 
the idea that responses become habitual by being rewarded.  

Despite some rather minor historical influence on, and 
superficial similarities with, modern connectionism, the 
differences are more profound than some critics believe 
(e.g., Fodor & Pylyshyn, 1988). Whereas behaviorists 
discussed a single association between a stimulus and a 
response, modern connectionism deals with large, 
multilevel, massively parallel networks. Moreover, many 
contemporary networks are designed with recurrent 
connectivity which allows for sequential processing and 
complex network dynamics. Following from these 

differences, the old knowledge representation schemes were 
entirely local, whereas modern networks often employ 
distributed schemes in which each unit represents many 
different ideas and each idea is represented by many 
different units. These distributed representations are more 
efficient and robust, more biologically realistic, and account 
for a variety of interesting psychological phenomena. 
Behaviorism was uninterested in mental states, while 
modern connectionists invest considerable energy into 
determining what their networks know at various points in 
learning. Such knowledge-representation analyses often 
become an essential part of explaining psychological 
phenomena.  

The law of effect emphasized that habit formation was 
controlled by rewards. Contemporary connectionist models 
have demonstrated the difficulty of learning from evaluative 
reward signals indicating that an organism is doing well or 
badly (Hertz, Krogh, & Palmer, 1991). In contrast, many 
neural networks learn from fully specified target vectors that 
indicate the correct response to particular inputs, making 
learning faster and more accurate. Taken together, these 
differences provide modern networks with vastly more 
learning power than simple habits possess. A habit 
implements only a simple linear relation between a stimulus 
and a response, whereas there are now proofs that a network 
with a single layer of hidden units can learn any continuous 
function to any degree of accuracy if this layer has enough 
hidden units (Hertz et al., 1991). There are also proofs that 
any function can be learned by a network with two hidden 
layers, if there are enough hidden units in each layer. 
Finally, although most of the theoretical work in 
behaviorism was vague and speculative, contemporary 
connectionism is characterized by working computational 
models that enable evaluation of the quality of data 
coverage and generate testable predictions.  

Connectionism has been more concerned with 
establishing a theoretical understanding of learning than 
with developing applications to education or other practical 
fields. However, because connectionists have had so much 
success modeling the learning of reading and elementary 
mathematics, there is the possibility for applications to 
educational practice.  

Models of Reading 
A debate about whether it is better to teach reading with the 
rules of letter-to-sound correspondence or by learning to 
visually recognize whole words began in the 1960s 
(Foorman, 1994). There are hundreds of such phonic rules, 
but because letter-to-sound correspondence is only quasi-
regular, they are not all that useful to learn as universally 
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quantified rules (Seidenberg, 2005). An example rule is 
When there are two vowels side by side, the long sound of 
the first one is heard and the second is usually silent. 
Another example is When there are two vowels, one of 
which is final e, the first vowel is long and the e is silent. It 
turns out that the first rule is correct only about 45% of the 
time and the second about 63% of the time (Adams, 1990).  

A theoretical framework for an influential series of 
connectionist models of reading that are not based on rules 
is pictured in Figure 1 (Seidenberg, 2005). The solid 
rectangles represent groups of network units encoding 
information on orthography, phonology, or semantics, while 
the dashed rectangles represent groups of hidden units that 
encode nonlinear transformations between the spelling, 
sound, and meaning encodings. The bidirectional arrows 
indicate connection weights traveling in both directions. By 
adjusting these connection weights, the system can learn to 
transform written words into pronunciations or meanings, 
meanings into written words or pronunciations, and 
pronunciations into written words or meanings. Most of the 
research to date has concentrated on the mapping from 
written words to pronunciations, i.e., reading aloud. Such 
network-based models learned to pronounce the words they 
were trained on, such as gate and save, and generalized 
successfully to novel words such as rave (Harm & 
Seidenberg, 1999; Plaut, McClelland, Seidenberg, & 
Patterson, 1996).  
 

 
 
 
 
 
 
 
 

Figure 1: Theoretical framework for Seidenberg’s 
connectionist models of reading. 

These connectionist models also covered a number of 
well-documented psychological regularities such as 
frequency, similarity, and regularity effects. The frequency 
effect holds that common words are read more quickly than 
rare words. Network models also correctly predicted an 
interaction of frequency with similarity, namely that 
frequency effects would be smaller for words with many 
similar neighbors (e.g., save) than for more isolated words 
such as sieve. The regularity effect is that words with 
regular neighbors are read more quickly than words with 
irregular neighbors. For example, the word gave has a 
regular pronunciation but has irregular neighbors like have. 
Consequently, words like gave take longer to read aloud 
than words such as must, which have no irregular neighbors. 
Such regularity effects are larger for lower-frequency words 
and for less-skilled readers.  

In neural networks, such effects can be understood in 
terms of weight sharing. Because all words share the same 
set of network weights and neural learning attempts to 

reduce as much error as possible, frequent words, words 
highly similar to other words, and words with regular 
neighbors are read more quickly and accurately. Similar 
words or regular words tend to support each other in terms 
of pronunciation. However, high frequency words can 
achieve speed and accuracy without similarity and regularity 
because of their sheer frequency. These three factors of 
frequency, similarity, and regularity can compensate for 
each other in that words at a disadvantage in one respect 
might benefit from another factor.  

A curiosity of Seidenberg’s models is that a network has 
no explicit representation of lexical entries, i.e., words. 
Language researchers typically not only assume a lexicon, 
but the frequency effect in reading is customarily explained 
by storing frequencies for each lexical entry. Nonetheless, 
Seidenberg’s networks cover the frequency effect without 
possessing an explicit lexicon, suggesting that it may be 
unnecessary in people as well.  

Recent models that also include the mapping from 
orthography to semantics enabled connectionist models to 
address the issue of phonics vs. visual recognition in 
teaching reading (Harm & Seidenberg, 1999). In contrast to 
previous models assuming a conflict between visual and 
phonetic routes, their networks revealed collaboration 
between the two routes. Early in training, networks relied 
somewhat more on the orthography–phonology route, but 
with additional training, the orthography–semantics–
phonology route increased in importance, simulating a 
psychological progression observed in children. Just as with 
children, skilled reading of words involved convergent 
contributions of both of these routes from orthography to 
phonology.  

Dyslexia can be simulated in these network models by 
impairing either the network or its training (Harm & 
Seidenberg, 1999). Reducing the number of hidden units 
could be analogous to a child with limited cognitive 
resources (Seidenberg & McClelland, 1989). Making each 
letter string activate more orthographic units could mimic a 
visual impairment (Seidenberg, 1992). Limiting the amount 
of training could correspond to inadequate educational 
opportunity (Seidenberg, 2005). Ignoring training in the 
orthography-phonology route could simulate teaching 
without phonics (Harm & Seidenberg, 1999). In all of these 
impaired cases, network learning focuses on the largest 
current source of error, namely that contributed by 
regularly-pronounced words, thus sacrificing the reading of 
words with exceptional pronunciations.  

Other, rule-based computational models have relatively 
more difficulty accounting for this diverse set of 
psychological phenomena, underscoring the conclusion that 
these networks make a compelling descriptive model of how 
children learn to read.  

The main prescriptive implication of these models for 
reading instruction is that students would learn to read well 
if provided with plenty of examples of printed words, and 
their meanings and pronunciations. Pointedly, children 
should not be trained in the application of specific phonic 

 
Semantics 

Hiddens 

Hiddens 

Hiddens 

Orthography Phonology 
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rules (because those have too many exceptions) and should 
not be trained without attention to phonological codes. 

Models of Mathematics 
Mathematics is another area of unnatural skills taught over 
several years of formal instruction which has also been 
modeled with neural networks. The two examples 
considered here are learning of the single-digit 
multiplication table and prime-number detection. 

Multiplication 
Learning the single-digit multiplication table requires about 
5 to 6 years of schooling and even adults continue to make 
some errors (Campbell & Graham, 1985). The most 
commonly studied multiplication problem is the so-called 
production task in which two single-digit multiplicands are 
presented and the participant is asked to provide their 
product. Several regularities are evident in the psychological 
literature on single-digit multiplication:  
1. Computational methods such as repeated addition (m x 

n = adding m, n times) are gradually replaced by recall 
of products (Siegler, 1988).  

2. Reaction time increases with the size of the 
multiplicands, except that the 5s table and tie problems 
(e.g., 3 x 3, 8 x 8) are quicker than would be expected 
(Campbell & Graham, 1985).  

3. Adults who are under mild time pressure make errors 
on about 8% of the problems (Campbell & Graham, 
1985).  

4. Errors are typically close to the correct product, and 
often substitute a close multiplicand for the correct 
answer (McCloskey, Harley, & Sokol, 1991).  

5. There is a sizeable correlation (r = .93) across problems 
between reaction time and error (Campbell, 1987).  

Building on the successes and overcoming some of the 
limitations of earlier connectionist models (Anderson, 
Spoehr, & Bennett, 1991; McCloskey & Lindermann, 1992; 
Stazyk, Ashcraft, & Hamann, 1982), Dallaway (1994) 
designed a feedforward network that captured phenomena 2-
5. The topology of Dallaway’s model for multiplying the 
digits 2-9 is shown in Figure 2. Target output vectors were 
designed by turning on one product unit and leaving the 
others off, implementing so-called 1-of-n coding. 
Percentage of error types plotted in Figure 3 indicate a good 
fit of the model to adult errors, although the overall error 
rate was higher for the networks at 14.1%. As shown in 
Table 1, operand errors are characterized by changing one 
of the operands, close-operand errors by changing to an 
operand close to a multiplicand, and frequent-product errors 
by giving a frequently occurring product. Table errors 
involve answering with a less frequent product that is in the 
multiplication table but does not share multiplicands with 
the problem being tested. Operation errors are produced by 
adding instead of multiplying the given multiplicands. As 
measured by settling time, networks reacted about as 
quickly to multiplication by 6 as to multiplication by 5. This 

was unexpected and it complicates any easy explanation of 
the speedup on 5s problems. 

Variant models did not fit the human data nearly as well 
as the foregoing model did. For example, model fit 
deteriorated when the 0 and 1 multiplication tables were 
trained along with the 2-9 tables. Some researchers believe 
that multiplication by 0 and 1 is rule governed, rather than 
being based on connectionist pattern matching (McCloskey, 
Aliminosa, & Sokol, 1991), but it seems possible that the 
greater regularity of 0 and 1 multiplications only makes 
them seem rule governed. Also, fit to human reaction time 
data was worse when the training sample was no longer 
biased in favor of smaller multiplicands. Even with these 
limitations, just as with computational models of learning to 
read, connectionist models here have few rivals for fitting 
human performance.  

 
 
 
 
 
 
 
 
 
 

Figure 2: Dallaway’s (1994) multiplication network.  
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Figure 3: Percent of error types (Dallaway, 1994). 

Percents do not sum to 100 because types are not mutually 
exclusive. 

 
Table 1: Multiplication table with three types of error 

highlighted 
x 2 3 4 5 6 7 8 9 
2 4 6 8 10 12 14 16 18 
3 6 9 12 15 18 21 24 27 
4 8 12 16 20 24 28 32 36 
5 10 15 20 25 30 35 40 45 
6 12 18 24 30 36 42 48 54 
7 14 21 28 35 42 49 56 63 
8 16 24 32 40 48 56 64 72 
9 18 27 36 45 54 63 72 81 

 
Close operand errors for 4x5:  
Operand errors for 9x8:  
Frequent products: italics 

 

 

Multiplicand 1 
8 course-coded units 

Multiplicand 2 
8 course-coded units 

Tie-flag unit coded as 1 if 
tie, 0 otherwise 

10 hidden units 

65 product units 
Coded as 1 of n 

Don’t know, 4, 6, 9… 81 
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Applications of this and related models to educational 
practice remain tentative, but likely would be similar to 
those made for reading: include many examples of correct 
multiplication that go just beyond the student’s current 
ability. The role of addition in learning and understanding 
multiplication should probably be explored in future 
computational modeling and psychological experimentation 
because of its apparent role in children’s learning and its 
possible role in several multiplication errors (Lemaire & 
Siegler, 1995).  

Prime-number detection 
Detection of prime integers is a relatively advanced 
mathematical skill that has also been modeled with neural 
networks. An integer greater than 1 is a prime number if it 
has two divisors, 1 and itself. An integer greater than 1 
having more than two divisors is a composite number. The 
integer 1 is neither prime nor composite.  

It might seem that the primality of an integer n could be 
determined by checking whether n is divisible by any 
integer between 2 and n – 1. Prime-number detection can be 
done in that fashion, but it can also be done more efficiently. 
The only divisors really needed are prime numbers from 2 
to the integer part of √n. Still more efficiency can be gained 
by starting with the smallest prime number and increasing 
divisor size until locating a divisor that divides evenly into 
n. Starting with small divisors and increasing divisor size in 
this way is efficient because the smaller the prime divisor, 
the more composite numbers it can detect in any fixed range 
of integers. 

A connectionist system called knowledge-based cascade-
correlation (KBCC) discovered this efficient algorithm from 
learning examples and recruiting previously-learned 
knowledge of divisibility (Egri & Shultz, 2006). KBCC is 
based on a somewhat simpler connectionist algorithm called 
cascade-correlation (CC). CC learns from examples by 
recruiting single hidden units as needed to reduce network 
error. CC was used to simulate a large number of 
developmental phenomena (Shultz, 2003). Compared to CC, 
KBCC has the added advantage that it can recruit previous 
knowledge stored in networks as well as recruiting single 
hidden units (Shultz & Rivest, 2001). Both CC and KBCC 
are constructive neural learners that build their new learning 
on top of existing knowledge.  

In the prime number simulation (Egri & Shultz, 2006), the 
pool of source knowledge contained networks that had 
previously learned whether an integer could be divided by 
each of a range of divisors. There was a divide-by-2 
network, a divide-by-3 network, a divide-by-4 network, etc., 
up to a divisor of 20. The source networks had been trained 
on integers in the range of 2-360. Then 20 KBCC target 
networks were trained on 306 randomly-selected integers in 
the range of 21-360. As these target networks learned, they 
opted to recruit only source networks that involved prime 
divisors below the square root of the largest number they 
were trained on, in this case 360. These sources were 
recruited in order from small to large, and installed on a 

single layer. Moreover, the target networks avoided 
recruiting single hidden units, source networks with 
composite divisors, any divisors greater than square root of 
360 even if they were prime numbers, and divisor networks 
with randomized connection weights.  

KBCC target networks never recruited a divide-by-2 
source network, but this was because they instead used the 
least significant digit of n, which was coded in binary form, 
to directly determine if n was odd or even. Like people who 
use the least significant digit of base-10 numbers to check 
for divisibility by 5 or 10, this is a handy shortcut to having 
to divide by 2.  

The KBCC target networks learned to classify their 
training integers about three times faster than did 
knowledge-free CC networks, and they generalized nearly 
perfectly to test integers that were untrained. Without 
divisibility knowledge, networks did not generalize better 
than chance. As predicted by this simulation, adults testing 
the primality of integers also used mainly prime divisors 
below √n and ordered divisors from small to large, showing 
that the networks provided an accurate model of human 
performance. The main recommendation for education is 
not only to use examples, but also to structure curricula so 
that learning can build on existing knowledge. 

Educational Relevance 
As neural network modeling of learning continues, further 
applications to education could become more apparent. 
Some implications of such models of reading and 
mathematics were already noted, concerning the use of 
examples and fully specified feedback on what to do with 
those examples. Teaching with examples is compatible with 
the classically important idea of learning by doing. Because 
students may vary considerably in their current skills, 
providing such examples can be challenging in a classroom 
setting. However, it could be accomplished with materials 
that vary enough in difficulty to continuously provide at 
least some examples just beyond the ability of each student.  

Another important recommendation from connectionism 
is to accompany examples with complete feedback about 
appropriate responses to each problem. Full target feedback 
is more informative than the evaluative feedback provided 
by rewards which was emphasized in classical 
connectionism. Computational results show that converting 
information about being wrong into a useful target vector 
makes learning both slower and more difficult (Hertz et al., 
1991).  

Full target feedback is also more informative than the 
cues to disequilibrium that were characteristic of the 
educational recommendations of Piagetian theory (Piaget, 
1970). In Piaget’s view, disequilibrium occurred when there 
was an imbalance between the processes of assimilation and 
accommodation. This could occur when a child copied 
without understanding or distorted reality to fit internal 
conceptions. In either case, cognitive change might be 
stimulated, but not much useful information was provided 
about how to improve and thus restore equilibrium.  
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Another clear educational recommendation stemming 
from connectionist modeling is that repetition and patience 
are often required for successful learning. This idea derives 
partly from the fact that connectionist learning is often quite 
slow. Some insight into reasons for this slowness has been 
attained from systematic study of variation in learning-rate 
parameters. When learning rate is set too high, networks 
often oscillate across error minima. To settle closer to such 
minima, it is often necessary to lower learning rate in order 
to take small steps in connection-weight adjustments, thus 
slowing down learning. This could also be true of brain 
networks, and if it is, then educators should not expect 
success by rushing through difficult material.  

As might be expected, methods for increasing both the 
speed and accuracy of network learning are under active 
investigation. For example, it is becoming clearer that 
networks learn faster and more accurately if they can bias 
their learning by recruiting relevant existing knowledge. In 
the case of prime-number detection, successful 
generalization to untrained integers actually required 
recruiting existing knowledge about divisibility. This 
suggests the use of curricula designed to ensure that lessons 
are presented in some optimal order. Network simulations 
might be useful in identifying lesson sequences likely to 
facilitate learning and generalization.  

Yet another implication of connectionist simulations is 
that context is important and that it can limit the amount of 
generalization. Connectionist learning algorithms naturally 
exhibit context effects whenever it is the case that 
contextual cues aid learning. The tradeoff is that such 
contextual effects ensure that generalization is not universal. 
If more generalization is desired, teachers might want to 
decontextualize learning. Decontextualization could be 
accomplished by varying contextual cues while learning 
from examples, thus allowing a learner to generalize the 
basic target function across different contexts. Again, it 
might be the case that exploratory network simulations 
could help to determine how best to accomplish this.  

Many of these educational recommendations coming from 
connectionist research (practice, feedback, prior knowledge, 
well-structured lessons) at first may appear more consistent 
with teacher-centered, rather than child-centered, 
approaches to education. This seems a bit paradoxical given 
that constructive connectionist approaches (such as CC and 
KBCC) are quite consistent with a Piagetian approach to 
knowledge acquisition that serves as the psychological basis 
for much child-centered education.  

Whereas teacher-centered education focuses on structured 
lesson plans, extensive practice, and feedback, child-
centered education emphasizes curiosity, problem solving, 
and learning by discovery (Chall, 2000). Although these 
approaches are often portrayed as being in opposition, 
constructivist connectionist modeling suggests a possible 
rapprochement, by providing computational demonstrations 
that effective learning incorporates both of these 
approaches. In connectionist learning, knowledge 
representations are constructed and abstracted by the 

learner, rather than merely memorized. Moreover, this 
learning is particularly effective when lessons are well 
structured, building more complex ideas on top of simpler 
earlier ideas, and well practiced, with detailed information 
about correct responses. 

Challenges for Future Research 
There a number of educational concerns that are currently 
well beyond the ability of current connectionist models. 
Some of these stem from the fact that current models do not 
yet cover many of the phenomena in learning to read or 
perform mathematics. For example, existing connectionist 
models of reading do not cover more than the reading of 
monosyllabic words. Reading of multisyllabic words, 
phrases, sentences, paragraphs, and large bodies of text all 
await further investigation. This is also true of other paths 
within Seidenberg’s word-reading framework that relate 
print, sound, and meaning.  

There are likewise many aspects of arithmetic that are still 
uncovered by connectionist models including counting and 
subitizing; addition and subtraction; multi-column addition, 
subtraction, and multiplication; division; ratios and 
proportions; algebra; and many other topics. At this point, 
even the conceptual origin of integers is still a mystery, 
particularly but not exclusively for connectionist approaches 
that represent unit activations in terms of real numbers. In 
both reading and arithmetic, connectionism is only just 
getting started.  

Another unsolved problem is the neglect of the goals that 
learners might have. Much of connectionist learning is built 
on the principle of error reduction, where error is the 
discrepancy between actual and target output values. Error 
reduction could well be a goal of human learners, but it is 
likely that humans sometimes create other learning goals. 
Some examples of alternate goals could be completing an 
assignment, achieving happiness, accepting a challenge, or 
enjoying social interaction. It is unclear whether 
connectionism could capture the setting of goals and 
learning under such goals.  

In general, the social aspects of learning are not addressed 
by current connectionist modeling. These would include the 
teacher-student relationship as well as peer interaction, 
competition, and collaboration.  

A particularly glaring omission from the connectionist 
literature is that of direct, explicit instruction. Most formal 
education involves lectures or lessons presented in a verbal 
fashion by an instructor to rather passive students. Although 
examples and student activity can sometimes be skillfully 
included in direct instruction, it is not clear how neural 
networks would be able to learn from direct verbal 
instruction itself. It may be that typical connectionist weight 
adjustment procedures are far too slow to capture the rapid 
learning that sometimes follows direct verbal instruction. A 
particularly vivid example concerned training humans to 
detect the gender of day-old chicks by either example 
(which takes years) or direct instruction (which takes only 
minutes) (Biederman & Shiffar, 1987).  
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One promising approach is to represent verbal instruction 
as a pattern of activation in a constraint-satisfaction network 
(Noelle & Cottrell, 1995). Attractor basins in such a 
network could be trained as a kind of instruction language. 
Additional attractors might be realized by interactions 
among trained attractors. Direct instruction input could 
settle into an attractor basin and modulate a feed-forward 
task-learning network. Applied to multi-column addition of 
binary numbers, with instruction sequences such as write a 
sum, announce a carry, and move to next column, a version 
of this system learned instructions but failed to generalize to 
novel problems. Because of the clear importance of learning 
from instruction, and its likely interaction with learning by 
doing, further work on this problem is probably warranted. 
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