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ABSTRACT 

 We introduce a general surface passivation mechanism for cesium lead halide perovskite 

materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical 

study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed 

together with ab initio calculations to identify surface halide vacancies as the predominant source 



of charge trapping. The number of surface traps per nanocrystal is quantified by 1H NMR 

spectroscopy, and that number is consistent with a simple trapping model in which surface halide 

vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping 

behavior that differs between CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that 

introduction of anionic X-type ligands can produce trap-free bandgaps by altering the energetics 

of lead-based defect levels. General rules for selecting effective passivating ligand pairs are 

introduced by considering established principles of coordination chemistry. Introducing softer, 

anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum 

yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating 

full trap passivation. This work provides a systematic framework for preparing highly luminescent 

CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving 

fundamental understanding of these materials and informing future synthetic and post-synthetic 

efforts towards trap-free CsPbX3 nanocrystals. 

 
INTRODUCTION 

Essentially trap-free nanocrystals represent optimal building blocks for optoelectronic 

technologies, as these materials possess high luminescence efficiencies,1-3 narrow fluorescence 

linewidths, excellent photostability, and tunable absorption and emission.4-9 Inorganic cesium lead 

halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals offer an appealing alternative to prototypical 

metal chalcogenide nanocrystals, as they represent an important class of ionic, defect-tolerant 

semiconductors with tunable emission in the visible spectrum.10-17 The defect tolerance of CsPbX3 

nanocrystals is a major enabling factor in their bright photoluminescence without a passivating 

shell.18-20 However, the quantum yields of these nanocrystals do not yet regularly approach unity. 

The utility of devices based on CsPbX3 nanocrystals is currently limited by incomplete 



understanding of their surface chemistry and the underlying charge trapping pathways that prevent 

near-unity photoluminescence quantum yield. Addressing these challenges not only has the 

potential to greatly enhance the utility of this new class of nanocrystals, but also to increase 

understanding of charge trapping and ligand binding for highly ionic semiconductor surfaces.  

 Termination of an extended inorganic solid crystal inherently creates under-coordinated 

atoms, making surface traps a ubiquitous challenge for nanocrystals.21-30 The pursuit of trap-free 

nanocrystals is thus intimately intertwined with identification and passivation of surface defects. 

Typically, passivation is achieved by 

employing an epitaxial shell of a larger 

bandgap material1, 31 or through the use of 

capping ligands.32-35 Passivating ligands 

are a particularly promising option, as a 

larger bandgap shell introduces a tunneling 

barrier that hinders charge extraction.36 

Ligands can bind to nanocrystal surfaces in a variety of motifs, well described by the Covalent 

Bond Classification.37 Scheme 1 depicts L-, X-, and Z-type ligands, which are classified by the 

number of electrons (2, 1, and 0, respectively) that the neutral ligand donates to the metal when 

forming a bond to the surface. 

 Nanocrystal surfaces are difficult to characterize due to both their spatial and temporal 

heterogeneity.22, 38, 39 This problem is exacerbated by weak bonding on CsPbX3 nanocrystal 

surfaces, which creates a highly dynamic ligand shell. Initial reports on CsPbBr3 nanocrystals 

synthesized by the standard oleylamine/oleic acid protocol10 have shown that a highly dynamic 

equilibrium exists between free and bound oleylammonium bromide ligand pairs while oleate 

Scheme 1. Nanocrystal Ligand Binding Motifs 
According to the Covalent Bond Classification Method 

 



species do not bind to the surface.40-42 Surface cesium can be replaced by the oleylammonium head 

group in a substitution mechanism.41 Alternatively, oleylammonium can bind surface halides 

through an addition mechanism. The literature on surface passivation of lead halide perovskite 

materials is growing rapidly, with a wide variety of chemical species having been shown to 

improve photoluminescence.3, 43-56 Here, we seek to unify these findings through a molecular-level 

understanding of surface trap passivation in CsPbX3 nanocrystals; this requires a combined 

experimental and theoretical investigation of their surface chemistry. 

In this article, we demonstrate a systematic route to highly luminescent CsPbX3 

nanocrystals with variable compositions and morphologies. We explore the relationship between 

surface chemistry and optoelectronic performance by performing a wide range of ligand 

exchanges. X-ray photoelectron spectroscopy, absolute photoluminescence quantum yield 

(PLQY) experiments, and ab initio calculations are used to elucidate the nature of the organic-

inorganic interface and its role in charge trapping. The number of surface defects per nanocrystal 

is quantified by 1H NMR spectroscopy and is consistent with a simple model of charge trapping. 

Surface halide vacancies are identified as the predominant source of charge trapping, with an effect 

that varies significantly based on CsPbX3 halide composition. Different degrees of defect tolerance 

between the halide compositions helps to explain the relatively poor PLQY of CsPbCl3 in addition 

to the high PLQY of CsPbBr3 and CsPbI3. Guided by ab initio calculations, we develop a general 

scheme for ligand passivation of deleterious under-coordinated lead atoms that is grounded in 

established principles of coordination chemistry. This analysis is used to prepare essentially trap-

free CsPbBr3 and CsPbI3 nanocrystals along with brighter CsPbBr3-xClx nanocrystals. We propose 

a general passivation mechanism whereby new ligands bind surface lead by substituting into 

surface halide vacancies, thus raising the energy of lead 6p levels to where they are no longer 



present in the bandgap. This mechanism is able to unify existing literature reports, thereby 

informing synthetic and post-synthetic design principles for trap-free CsPbX3 nanocrystals.  

 
MATERIALS AND EXPERIMENTAL METHODS 

Chemicals. Cesium carbonate (99.9%), 1-octadecene (90%), oleic acid (90%), oleylamine (70%), 

lead(II) bromide (99.999%), lead(II) chloride (99.999%), lead(II) iodide (99.999%), lead(II) oxide 

(99.999%), anhydrous toluene (99.8%), anhydrous ethyl acetate (99.8%), anhydrous hexanes 

(>99%), anhydrous tetrahydrofuran (>99%), didodecyldimethylammonium bromide (98%), 

mesitylene (>99.8%), benzoic acid (>99.5%), benzylamine (>99%), decylamine (95%), myristic 

acid (>99%), hexylphosphonic acid (95%), 2-ethyl-1-hexylamine (98%), fluoroacetic acid (95%), 

difluoroacetic acid (98%), trifluoroacetic acid (99%), methanesulfonic acid (>99%), tri-n-

octylphosphine (97%), butyric acid (>99%), lead(II) nitrate (>99%), lead(II) hydroxide (99%), 

cesium acetate (>99.99%), toluene-d8 (>99%), nickel(II) chloride hexahydrate (>97%), and zinc 

dust (>98%) were purchased from Sigma-Aldrich and used as received. Ethyliododifluoroacetate 

(96%) was purchased from Matrix Scientific and used as received. 2,2-difluorononanoic acid was 

synthesized from ethyliododifluoroacetate and 1-octadecene following a previously reported 

procedure.57, 58 

Nanocrystal Synthesis and Isolation. CsPbBr3 nanocrystals were synthesized following a 

previously reported procedure,10 with slight modifications. Typically, anhydrous ODE (5 mL) and 

PbBr2 (0.188 mmol) were loaded into a 3-neck flask inside of a glovebox, and the flask was then 

transferred to a Schlenk line and dried/degassed under vacuum at 110 °C for 15-20 minutes. Dried 

oleic acid (0.5 mL) and oleylamine (0.6 mL) were then injected under dry argon gas and the 

temperature was raised to 140 °C to complex the PbBr2 salt. Following complete dissolution of 

PbBr2, which we found to occur within 15-20 minutes, the temperature was raised to 155 °C in 



preparation for the injection of warm (~100 °C) cesium oleate solution (0.5 mL, 0.125 M). 

Following injection, the mixture was stirred for 5 s and then cooled using an ice-water bath. 

Following the synthesis, 5-10 mL of anhydrous hexanes was added to the crude solution, which 

was then centrifuged at 4000 rpm for 3 min to remove excessively large nanocrystals and other 

unwanted byproducts. The supernatant was observed to be transparent and intensely green in color. 

The solubility of the nanocrystals depended on the relative proportions of ODE, a poor solvent for 

these nanocrystals, and hexanes, a better solvent. Hexanes was removed in a step-wise fashion by 

flushing the surface of the solution with a stream of argon or nitrogen, and different sizes of 

nanocrystals were isolated from the reaction mixture. Isolated nanocrystals were resuspended in 

anhydrous hexanes or toluene and stored in a glovebox. 

Ligand Exchange Method. Stock solutions of nanocrystals (~1-2 µM) were precipitated with 

addition of an antisolvent (typically anhydrous ethyl acetate, 2× the volume of original nanocrystal 

solution), separated from the supernatant via centrifugation (10,000 rpm for 6 minutes), then 

resuspended in a dilute (~1-10 mM) mixture of new ligand pairs in anhydrous hexanes or toluene. 

Repeating this precipitation-resuspension process a total of 3 times was found to yield a complete 

exchange in all cases. Performing this process in neat solvent rather than a dilute ligand pair 

solution rapidly degrades the nanocrystals.  

Optical Spectroscopy. All optical measurements were performed on dilute samples of 

nanocrystals in hexanes or toluene. For typical CsPbBr3 nanocrystals, concentrations on the order 

of 1-10 nM were found to have suitable optical densities. Absorption spectra were collected on a 

Shimadzu UV-3600 spectrophotometer with 0.5 nm increments using the slowest scan speed. 

Photoluminescence emission spectra were collected on a Horiba Jobin Yvon TRIAX 320 

Fluorolog. Time-resolved fluorescence lifetimes were collected on a Picoquant Fluotime 300 with 



PMA 175 detector and an LDH-P-C-405 diode laser (excitation wavelength of 407.7 nm). 

Absolute quantum yields were determined optically using a custom integrating sphere 

spectrofluorometer which is described elsewhere.59  

Powder X-ray diffraction (XRD). Diffraction patterns of drop-cast nanocrystal samples were 

obtained using a Bruker D-8 GADDS diffractometer equipped with a Co Kα source and a Bruker 

Vantec 500 detector. Patterns were typically collected by merging frames centered at 2θ = 30, 50, 

and 70 degrees where each frame was collected for 40 minutes. 

X-ray Photoelectron Spectroscopy (XPS). XPS spectra of CsPbBr3 nanocrystals drop-cast on a 

Si wafer were collected using Thermo Scientific K-Alpha Plus X-ray photoelectron spectrometer. 

The spectra were acquired with monochromatized Al Kα radiation and 400 µm beam size. Cs, Pb, 

and Br were quantified by fitting GL(30) peak shapes and calibrating the C 1s edge to 284.8 eV. 

NMR spectroscopy. NMR spectra of micromolar concentrations of CsPbBr3 nanocrystals in 

toluene-d8 were measured on a Bruker 700 MHz spectrometer with an inverse cryoprobe for 

greatly enhanced 1H sensitivity. Quantitative measurements were collected after tuning the probe 

and determining the exact 90° radio frequency pulse. After a spectrum was collected, concentration 

was determined by integrating the peak(s) of interest against an internal standard (mesitylene) of 

known concentration. 2D NOESY experiments were performed using a gradient-enhanced 

NOESY pulse sequence, with a mixing time of 500 ms and a delay time of 7 s. Spectra were 

typically collected overnight (10-12 hour acquisition times) to ensure high-quality data. 

Computational Methods. Density functional theory calculations were performed using the 

Vienna ab initio simulation package (VASP).60 The core−valence interaction was described by the 

projector−augmented wave (PAW) method.61 The cutoff for planewave expansion was set to 300 

eV. Structures were relaxed until the force on each atom was smaller than 0.05 eV/Å. For the 



structural relaxation of systems with halide vacancies, the screened Coulomb hybrid functional of 

Heyd−Scuseria−Ernzerhof (HSE) was adopted,62 and for the relaxation of other systems, the 

generalized gradient approximation of Perdew−Burke−Ernzerhof (GGA−PBE) was used.63 The 

electronic structures for all systems considered were calculated at the HSE level after relaxation. 

The spin−orbit coupling (SOC) correction was also included in both structural relaxation and 

electronic structure calculations. The surface slab model was constructed based on orthorhombic 

CsPbX3. It contains 11 atomic layers in a 2×2 supercell with 216 atoms. A vacuum layer larger 

than 12 Å was used to avoid interaction between periodic images. The Brillouin zone was sampled 

by the Γ point. 

 
RESULTS AND DISCUSSION 

On the Atomistic Nature of the CsPbX3 Inorganic Surface. Following synthesis and isolation, 

colloidal CsPbBr3 nanocrystals exhibit cube-like morphology with typical size distributions ±10% 

in edge length as measured (N=75 particles) by transmission electron microscopy (TEM) (See 

Supporting Information). Photoluminescence quantum yield (PLQY) values range from 60–90%, 

determined optically using an integrating sphere.59 Although these nanocrystals are relatively 

bright, sub-unity PLQY values demonstrate the presence of energetic losses due to deleterious 

charge trapping and nonradiative recombination, thereby motivating an investigation into the 

origins of these processes. The underlying trapping pathways that prevent near-unity PLQY in 

CsPbX3 nanocrystals remain a subject of debate, which hinders rational improvements of 

optoelectronic performance. 

For metal chalcogenide nanocrystals, dangling bonds at the surface introduce localized 

mid-gap states that can trap charges.21-23, 64, 65 However, ab initio calculations of pristine (100) 

CsPbX3 surfaces terminated by CsX facets19, 41, 66, 67 yield trap-free, fully delocalized electronic 



structures without the need for passivating ligands (Figure S1).19, 68 This suggests that surface 

dangling bond states of low-index CsX terminated CsPbX3 nanocrystals lie outside of the bandgap 

and thus do not affect photoluminescence efficiency. Therefore, we hypothesized that as-

synthesized surfaces are not pristine, but rather contain local point defects that are a likely cause 

of sub-unity PLQY in CsPbX3 nanocrystals. Unfortunately, the atomistic nature of the CsPbX3 

nanocrystal surface remains poorly understood. As such, quantitative X-ray photoelectron 

spectroscopy (XPS) – a surface-sensitive technique – was used to elucidate the surface 

stoichiometry of four different CsPbBr3 samples. Based on the inelastic mean free path, the first 

2.0 nm of material was probed in this experiment. For these samples, each with PLQY of 60-65%, 

an average surface stoichiometry of Cs:Pb:Br of 0.78±0.04:1:2.83±0.02 was determined (Figure 

S2, Table S1). Deviations from the expected stoichiometry (Table S2-S3) support the hypothesis 

regarding the presence of surface point defects, namely vacancies in these systems.18, 20, 69 

However, the number of vacancies determined by XPS represents an upper bound, as the low 

cohesive energy of lead halide perovskite materials can lead to the loss of surface atoms when 

samples are transferred from the solvent phase to the vacuum, and exposed to high-energy X-rays 

in the ultra-high vacuum environment.70, 71 In contrast, ambient techniques such as 1H NMR 

spectroscopy can offer quantitative insight into surface structure without inducing sample 

evolution and/or degradation, as will be demonstrated later in this work. 

Sub-stoichiometry of surface cesium is well-documented in the literature, and has been 

explained by a substitution mechanism where oleylammonium ions substitute into cesium 

vacancies.41, 72, 73 A Pb:Br ratio that deviates from the expected stoichiometry is also well-

documented in the literature, with the common interpretation being a lead-rich surface.3, 51 

However, this result can be equivalently interpreted as a bromide-deficient surface, an 



interpretation that shapes the way we think about charge trapping in these materials. One can assess 

the validity of each interpretation by considering existing ab initio calculations of APbX3 surface 

defects. For a lead-rich surface, extra lead atoms on CsX facets would need to occupy sites such 

as adatoms, antisites, and interstitials, which have prohibitively high (>2 eV) formation energies.20, 

68, 69 Additionally, a lead-rich surface introduces defect levels that are too deep (defined here as 

>5kbT) within the bandgap to be consistent with 80-90% PLQY for as-synthesized CsPbBr3 

nanocrystals.69 In contrast, a bromide-deficient surface would present bromide vacancies as the 

dominant defect type, which introduces shallow (defined here as <5kbT) defect levels.74-76 The 

presence of surface bromide vacancies is also consistent with labile oleylammonium bromide 

ligand pairs, bromide-poor synthetic conditions, and high anionic conductivities.11, 12, 77, 78 

Therefore, for both electronic and synthetic reasons, we believe that the 1:2.83±0.02 Pb:Br surface 

ratio can be accounted for with bromide vacancies rather than excess lead atoms.  

The Role of Surface Halide Vacancies in Charge Trapping. Non-stoichiometric nanocrystal 

surfaces can harm optoelectronic performance by creating localized trap states.65, 79-81 Guided by 

non-stoichiometric XPS results, halide-deficient surfaces were investigated as the potential source 

of charge trapping. We sought a method for controlling the introduction of halide vacancies on the 

surface of CsPbX3 nanocrystals. Given the unstable nature of lead halide perovskite materials, it 

was particularly important to devise a method that can remove surface halides without altering or 

degrading the material in any other way. This was achieved by directly exploiting the weak 

bonding of oleylammonium halide ligand pairs, whose chemical equilibrium is described by eq 1. 

VX represents a surface halide vacancy. 

𝑅𝑁𝐻$%𝑋' + 𝐶𝑠𝑃𝑏𝑋$ ∙ 𝑉/ ↔ 𝐶𝑠𝑃𝑏𝑋$ ∙ 𝑅𝑁𝐻$%𝑋'																																(1) 



It is unfavorable for oleylammonium ions to dissociate as discrete solvated ions in low polarity 

solvents such as toluene, therefore they are most likely removed from the surface with a counterion 

to preserve charge neutrality.82 With oleate ions absent from the surface,40-42 halide ions are the 

only available counterions present. A simple dilution experiment offers a very mild and 

controllable way to introduce surface halide vacancies as the ligand pair equilibrium shifts towards 

free species. As such, monitoring the PLQY over a range of concentrations offers direct insight 

into the PLQY dependency on the halide vacancy concentration. Although reabsorption can be a 

concern when high concentrations are present 

in a fluorescence experiment, this would result 

in measured PLQY being lower than true 

PLQY, which would cause measured PLQY to 

decrease with increasing concentration. 

However, the opposite trend was observed for 

these samples, indicating that the effects of 

halide vacancies dominate over any 

reabsorption that may be present. Although 

excessive dilution can induce rapid 

degradation of CsPbX3 nanocrystals, this was 

only found to occur for nanocrystal 

concentrations <0.005 µM, which is far below 

the concentrations utilized here. 

These experiments demonstrate a composition-dependent relationship between surface 

halide vacancy concentration and PLQY. Increasing the concentration of surface halide vacancies 

	
 

Figure 1. Absolute PLQY as a function of nanocrystal 
concentration for CsPbBr1.5Cl1.5, CsPbBr3, and CsPbI3. 
Nanocrystal concentration and surface halide vacancy 
concentration are inversely related due to weak binding 
of oleylammonium halide ligand pairs. This allows the 
relationship between PLQY and halide vacancy 
concentration to be investigated. Surface halide 
vacancies are observed to have a negligible effect on 
CsPbI3 nanocrystals, a moderate effect on CsPbBr3 
nanocrystals, and a significant effect on CsPbBr1.5Cl1.5 
nanocrystals. The data can be fit with a simple trapping 
model, which offers insight into the relative defect 
tolerance of each material by allowing the 
determination of kr/knr,trap. 

	



is observed to have a negligible effect on CsPbI3, a small to moderate effect on CsPbBr3, and a 

significant effect on CsPbBr1.5Cl1.5, as shown in Figure 1. We did not investigate pure CsPbCl3 

due to instrument limitations at the CsPbCl3 bandgap, but we find homogenous CsPbBr3-xClx 

alloys83 to be a suitable substitute for examining PLQY as a function of halide composition. 

Although CsPbI3 nanocrystal photophysics appear unchanged upon dilution, 1H NMR 

spectroscopy experiments were used to confirm that dilution does in fact result in significant ligand 

pair desorption. The oleylammonium iodide 1H NMR linewidth decreased significantly as the 

sample was diluted (Figure S3). The linewidth of a ligand pair in fast exchange is a population-

weighted average of free and bound signals,84 as described by eq 2: 

𝜆678 =
𝑁:;<<
𝑁=6=>?

𝜆:;<< +
𝑁76@AB
𝑁=6=>?

𝜆76@AB																																											(2) 

 

where λ is the linewidth and N is the number of ligand pairs per nanocrystal. Ntotal, λfree, 

and λbound are unchanged by dilution, therefore a narrowing of the observed linewidth must be 

caused by a decrease in Nbound and a concomitant increase in Nfree. This directly demonstrates that 

the equilibrium in eq 1 is shifting towards free species in these experiments.  

The plot of PLQY vs. nanocrystal concentration was analyzed within the context of a 

simple trapping model, eq 3-4. 

 

𝑃𝐿𝑄𝑌 = 1 −
𝑁=;>H

𝑘;
𝑘A;,=;>H

+ 𝑁=;>H
	,																																																		(3) 

 

𝑁=;>H =
𝑁L>M

1+𝐾<O 𝑅𝑁𝐻$%𝑋'
																																																(4) 



 

where kr is the radiative rate, knr,trap is the effective nonradiative rate per trap, Ntrap is the 

number of surface traps per nanocrystal, Nmax is the maximum number of surface traps per 

nanocrystal, Keq is the free vs. bound equilibrium constant for oleylammonium halide ligand pairs, 

and [RNH3
+X–] is the concentration of oleylammonium halide ligands pairs free in solution. The 

determination of all variables other than kr and knr,trap (Figure S4) leaves kr/knr,trap as the sole fitting 

parameter. This model offers close fits for CsPbBr3 and CsPbI3, and although it fails to accurately 

capture the complex sigmoidal shape of the CsPbBr1.5Cl1.5 data, valuable insight into the 

underlying photophysics of these systems can still be gained. It should be noted that this sigmoidal 

shape is similar in nature to the dramatic step-like decrease in PLQY that was observed during the 

displacement of cadmium carboxylate complexes from the surface of cadmium selenide 

nanocrystals.64 These observations suggest that in the mixed halide case there appears to be a 

cooperative effect in ligand dissociation, and highlight the need for additional investigations of the 

relationship between nanocrystal surface structure and optical properties.22 

Defect tolerance, which we define here as arising through very large values of kr/knr,trap, 

varies significantly between the different halide compositions (Figure 1). kr/knr,trap = 20,000 allows 

CsPbI3 nanocrystals to maintain near-unity PLQY despite the presence of several hundred surface 

halide vacancies. Within the lead halide perovskite family, the iodide materials appear to be the 

closest to defect impervious. kr/knr,trap = 333 for CsPbBr3 nanocrystals indicates these materials are 

also relatively tolerant of defects, although the effects of surface halide vacancies clearly cannot 

be ignored in this system. kr/knr,trap = 40 for CsPbBr1.5Cl1.5 nanocrystals is the most analogous to 

defect-intolerant metal chalcogenide nanocrystals, where even a small number (<5% of the 

surface) of traps will yield PLQY values <20%. As a final comment in support of halide-deficient 



surfaces, it should be noted that if under-coordinated lead in a form other than that created by 

halide vacancies was the predominant source of charge trapping, no variation in kr/knr,trap and 

PLQY between different halide compositions would be expected. Ab initio calculations have 

shown that these defects form deep mid-gap states that would affect all halide compositions 

equally.69 

Ab Initio Calculations of Halide-Deficient CsPbX3 Surfaces. Ab initio calculations were used 

to further investigate halide-deficient surfaces as the suspected source of charge trapping. A single 

	
 
Figure 2. Electronic structure and charge density calculations at the HSE+SOC level of theory for (A) CsPbCl3 with a 
surface chloride vacancy (CsPbCl3+VCl), (B) CsPbBr3 with a surface bromide vacancy (CsPbBr3+VBr), and (C) CsPbI3 
with a surface iodide vacancy (CsPbI3+VI). The top surface of the crystal slab is halide-deficient while the bottom 
surface is pristine. Absolute CBM energies are set according to electrochemically measured values, and relative 
energies are given by the calculations. Cs, Pb, Cl, Br, and I atoms are shown as blue-green, gray, green, orange, and 
purple, respectively. 

	



halide vacancy (VCl, VBr, or VI) was created on the surface of each crystal slab to model a halide-

deficient surface. Native oleylammonium surface ligands are excluded because pristine CsPbX3 

crystals terminated by CsX facets exhibit fully delocalized, trap-free band structures without the 

need for passivating ligands (Figure S1). As such, differences in electronic structure between 

pristine and halide-deficient surfaces can be directly attributed to surface halide vacancies. 

 CsPbCl3+VCl is readily recognized as a three-level system, with a highly localized trap 

state deep within the bandgap in addition to the fully delocalized valence band maximum (VBM) 

and conduction band minimum (CBM), as shown in Figure 2A. The mid-gap state exhibits 

significant atomic character; ~80% of this state is comprised of 6p orbitals of the lead atom that is 

left under-coordinated by the surface chloride vacancy. CsPbBr3+VBr and CsPbI3+VI also appear 

as three-level systems (Figure 2B-C). However, the nature of the mid-gap defect levels differs 

significantly from the defect level in CsPbCl3+VCl. Rather than being highly localized and deep 

within the bandgap, these states are shallow and only weakly localized towards the halide-deficient 

surface. In these two systems, the under-coordinated lead atoms only contribute ~3% to the defect 

states. It should be noted that the HSE+SOC level of theory is required to observe the shallow 

levels in CsPbBr3+VBr and CsPbI3+VI.85, 86 Calculations with GGA–PBE+SOC, which 

underestimated the bandgap by ~1 eV,87 produced nominally trap-free systems (Figure S5). 

However, sub-unity experimental PLQY values indicate that these systems are not trap-free. 

 It is particularly insightful to interpret these calculations of halide-deficient CsPbX3 

surfaces in light of experimental results. The calculated position of these defect levels relative to 

the CBM is highly consistent with the kr/knr,trap ratios determined in Figure 1. Nanocrystals can 

sustain a high charge transfer rate at high driving force,88 and with the CsPbCl3+VCl defect state 

located directly in the middle of the bandgap, efficient trapping of charges would be expected.89 



Additionally, the highly localized nature of this mid-gap state should result in significant 

nonradiative recombination, thereby yielding a relatively low kr/knr,trap as well as relatively poor 

PLQY values for CsPbCl3 nanocrystals. In contrast to highly localized charges in CsPbCl3+VCl, 

these calculations suggest that electrons in halide-deficient CsPbBr3 and CsPbI3 are only weakly 

localized while holes remain fully delocalized, and thus trap-assisted nonradiative recombination 

is therefore expected to be relatively ineffective in CsPbBr3 and CsPbI3.90-92 This allows kr/knr,trap 

to become quite large in these two systems, even though kr is decreased relative to CsPbCl3.10, 93  

We sought to use ab initio calculations not only to investigate the predominant source of 

charge trapping, but also to identify a potential surface passivation mechanism. Oleate was 

investigated as a passivating ligand, as it has the potential to bind the under-coordinated lead atoms 

that have been implicated in charge trapping. X-type CH3COO– moieties, truncated computational 

models for oleate, were substituted into surface halide vacancies of the structures studied in Figure 

2. These structures produce trap-free bandgaps with fully delocalized VBM and CBM states for 

each halide composition, indicating that anionic surface ligands can effectively alter the energetics 

of lead-based defect levels, removing them from within the bandgap (Figure 3). However, several 

reports have demonstrated that oleate is not present on the surface of as-synthesized CsPbBr3 

nanocrystals,40-42 which we ascribe to a hard-soft mismatch between hard carboxylates and soft 

lead binding sites.22, 94 This motivates a search for new, softer ligands that can bind deleterious 

under-coordinated lead. 

A Versatile Ligand Exchange and Purification Method. Investigations into the effects of new 

ligand shells would be greatly enhanced by a versatile ligand exchange method.64, 95 However, to 

the best of our knowledge, no versatile colloidal ligand exchange method has yet been reported for 

CsPbX3 nanocrystals. As such, precise manipulations of CsPbX3 nanocrystal surfaces and entire 



ligand shells are not readily available. Here, we introduce a colloidal ligand exchange method that 

can exchange native oleylammonium halide ligand pairs for a mixture of alkylammonium halide 

and alkylammonium-alkylcarboxylate/alkylphosphonate ligand pairs (Figure S6). This is 

accomplished by directly exploiting the weak bonding between native ligand pairs and the CsPbX3 

surface (Figure S7). Stock solutions of nanocrystals (~1-2 µM) are precipitated with the addition 

of antisolvent, separated from the supernatant via centrifugation, and resuspended in ~1-10 mM 

	
 

Figure 3. Charge density calculations at the HSE+SOC level of theory for (A) CsPbCl3 with a surface chloride vacancy 
(CsPbCl3+VCl), (B) CsPbBr3 with a surface bromide vacancy (CsPbBr3+VBr), (C) CsPbI3 with a surface iodide vacancy 
(CsPbI3+VI), (D) CsPbCl3+VCl from (A) with a CH3COO– X-type passivating ligand, (E) CsPbBr3+VBr from (B) with 
a CH3COO– X-type passivating ligand, (F) CsPbI3+VI from (C) with a CH3COO– X-type passivating ligand. VBM and 
CBM states are unaffected by surface halide vacancies in (A), (B), and (C), and thus are excluded. In all cases, X-type 
passivation of halide-deficient surfaces yields a trap-free bandgap with fully delocalized VBM and CBM states. Cs, 
Pb, Cl, Br, I, O, C, and H atoms are shown as blue-green, gray, green, orange, purple, red, brown, and white, 
respectively. 
 



solutions of new ligand pairs. Given the ionicity of perovskite nanocrystals, the use of molecular 

combinations that can form ion pairs is highly beneficial. Performing this exchange process on 

CsPbBr3 nanocrystals with a dilute solution of alkylamine or alkylcarboxylic/alkylphosphonic acid 

alone, but not both species, yielded a weakly fluorescent, off-white precipitate. X-ray diffraction 

determined the precipitate to be comprised primarily of CsBr and Cs4PbBr6 phases (Figure S8). 

To gain insight into the step-by-step evolution of this method, an exchange from as-

synthesized, unsaturated ligand pairs (oleylammonium and oleate) to saturated ligand pairs 

(decylammonium and myristate) was studied via quantitative 1H NMR for CsPbBr3 nanocrystals 

(Figure 4, Figure S9). Unsaturated ligand pairs and 1-octadecene (ODE) both have alkene 

resonances in the 4-6 ppm range, which are useful for quantitative studies since they are located 

downfield from the many overlapping alkyl resonances in the 0-3 ppm region. Exchanging for 

saturated ligand pairs, which have no alkene resonances, allows the region of interest to be studied 

	
 

Figure 4. (A) 1H NMR spectra for each step of a ligand exchange from native (blue) unsaturated ligand pairs 
(oleylammonium and oleate) to new (red) saturated ligand pairs (decylammonium and myristate). Resonances 
denoted by X are impurities. Concentration of CsPbBr3 nanocrystals: 1.6 µM in toluene-d8. (B) The 4-6 ppm region 
of interest from (A). This region contains resonances from native oleyl vinyl protons (5), 1-octadecene (ODE), and 
unknown impurities (X). All native species are reduced to <0.5% of their original concentration, demonstrating a 
complete ligand exchange.	



for the removal of alkene-containing species, all of which should be removed to constitute a 

complete ligand exchange and purification (Figure 4B). 

The exchange is observed to reach >99% exchange after three precipitation and 

resuspension steps, i.e. three exchange cycles. Appearance of decylammonium and myristate 

resonances and disappearance of alkene resonances confirms that native unsaturated ligand pairs 

are exchanged for non-native saturated ligand pairs (Figure 4). All native organic species being 

reduced to <0.5% of their original concentration confirms a complete ligand exchange. This is 

explicitly demonstrated by exchanging to ligand pairs such as benzylammonium-oleate, 

oleylammonium-benzoate, and oleylammonium-difluoroacetate, which have spectrally isolated 

resonances that grow in downfield of the overlapping alkyl region as the exchange progresses 

(Figure S10-S12). Each of these resonances shows a broadened peak that is characteristic of 

interaction with nanocrystal surfaces.36, 64, 88, 96 

This exchange method also serves to purify nanocrystals of ODE, impurities, and synthesis 

byproducts such as lead oleate (Figure S13). As such, a resuspension solution of dilute oleylamine 

and oleic acid can be used to purify as-synthesized nanocrystals without compromising high PLQY 

or colloidal stability. X-ray diffraction, absorbance, photoluminescence, TEM, and integrating 

sphere PLQY measurements confirm that the inorganic nanocrystalline core remains unchanged, 

indicating that purification induces no macroscopic changes to the ensemble of particles (Figures 

S14-S16). 

Softer Lewis Bases Bind to Nanocrystal Surface. With control over entire ligand shells 

established, new passivating ligand pairs were investigated. In light of the proposed hard-soft 



mismatch between hard oleate and soft lead, softer carboxylates were targeted by exploring tail 

groups that decrease electron density on the binding head (Figure S17, Table S5). This can be 

accomplished through resonance and/or induction.97, 98 Following a ligand exchange to 

oleylammonium–R-COO– pairs, where R-COO– is benzoate, fluoroacetate, and difluoroacetate, 

Nuclear Overhauser Effect (NOESY) NMR spectroscopy confirms that these softer carboxylates 

bind to the nanocrystal together with oleylammonium (Figure 5A-5B). Each ligand pair features 

negative (black) cross peaks in the presence of nanocrystals, in contrast to positive (red) cross 

peaks when no nanocrystals are present (Figure S18).40, 99 A change in the sign of the cross peak 

demonstrates that the tumbling frequency of these ligand pairs decreases significantly in the 

presence of nanocrystals, thereby confirming their interaction with the nanocrystal surface.100 By 

utilizing the tail group to modulate electron density on the binding group, one can selectively 

coordinate or dissociate carboxylates in this system. The affinity of softer X-type ligands for the 

nanocrystal surface is further supported by the negative (black) NOE of oleylammonium- 

	
 
Figure 5. 1H NOESY NMR spectra of CsPbBr3 nanocrystal samples exchanged to ligand pairs of oleylammonium 
and (A) benzoate, (B) difluoroacetate, and (C) hexylphosphonate. All ligand pairs feature negative (black) NOE 
signals rather than positive (red) NOE signals, thereby corroborating their interaction with the nanocrystal surface. 
A small amount of red coloring is also present, but this is due to t1 noise rather than a positive NOE signal. 
 	



hexylphosphonate (Figure 5C, Figure S19), which corroborates binding of these ligand pairs.101 

Although X-type Lewis bases such as these could presumably also bind to surface cesium, this is 

thermodynamically unfavorable,41 and therefore these new anionic ligands are likely binding 

entirely to surface lead by substituting into halide vacancies. Experimental evidence in support of 

this was provided by additional 1H NMR and optical experiments (vide infra). 

 Analysis of the NMR linewidth of new surface-bound carboxylates provides valuable 

evidence for lead as the binding site for these ligands. Eq 2 can be rearranged to solve for the 

number of bound ligands: 

𝑁76@AB = 𝑁=6=>?
𝜆678 − 𝜆:;<<
𝜆76@AB − 𝜆:;<<

																																													(5) 

 

By preparing purified samples at the upper limits of colloidal stability so that an initially saturated 

nanocrystal surface can be assumed, λbound was determined to be 290±30 Hz for protons directly 

adjacent to the binding head (Figure S20). A saturated solution of the same nanocrystals following 

a ligand exchange to oleylammonium-difluoroacetate pairs displayed a linewidth of 10.7±0.2 Hz 

for the difluoroacetate proton, which corresponds to the formation of 180±20 new lead–

difluoroacetate bonds for a fully passivated surface. The determination of 180±20 new bonds to 

lead is supported by the simple trapping model used in Figure 1. These CsPbBr3 nanocrystals, 

which displayed a PLQY value of 62±3% before the ligand exchange, are expected to have 190±20 

surface halide vacancies. These values indicate that new anionic X-type ligands access ~12% of 

the nanocrystal surface, which is in close agreement with a previous report from our group.3 

Anionic X-type Ligands Can Produce Essentially Trap-Free Surfaces. Ab initio calculations 

suggested that formation of new lead–ligand bonds is expected to be accompanied by a significant 



increase in optoelectronic performance. As such, the effect of softer, X-type ligands on 

photoluminescence was investigated. Moderate 60-65% PLQY CsPbBr3 nanocrystals were 

selected to maximize the presence of under-coordinated lead atoms. A fraction was exchanged 

with an oleylammonium-hexylphosphonate solution using the method described above, and a 

second fraction was purified with an oleylammonium-oleate solution of identical concentration as 

a control. Excited state lifetimes under 407 nm pulsed excitation are shown in Figure 6A. Lifetime 

values were determined by fitting each decay curve to a single-exponential over the first two 

decades. The purified oleylammonium-oleate sample (blue) shows a decay characteristic of an 

emitter with a distribution of trap states,25, 32, 102-104 whereas the oleylammonium-

hexylphosphonate exchanged sample (red) shows a decay that closely resembles that of a two-

level emitter, indicating that deleterious trap states are almost completely passivated. Removal of 

trap states should be accompanied by a significant increase in PLQY, which was confirmed by 

integrating sphere measurements of PLQY=0.76±0.03 for oleylammonium-oleate (blue) and 

	
Figure 6. (A) Time-resolved photoluminescence lifetimes under pulsed 407.7 nm excitation (10 MHz) at room 
temperature for CsPbBr3 nanocrystal samples in hexanes. Samples were exchanged to identical concentrations of 
oleylammonium-oleate (blue) and oleylammonium-hexylphosphonate (red). (B) Normalized steady-state 
photoluminescence spectra and absolute PLQY values for the same samples as in (A) under 437 nm excitation in 
hexanes. Nanocrystal and ligand pair concentration are identical for samples compared in (A) and (B), which is 
required for a meaningful PLQY comparison (Figure S21). 
	



PLQY=0.98±0.03 for oleylammonium-hexylphosphonate (red), as shown in Figure 6B. Both 

samples were prepared with 4 ligand pairs per available binding site and measured at a nanocrystal 

concentration of 0.1 µM; identical nanocrystal and ligand pair concentrations are required for a 

meaningful PLQY comparison (Figure S21). Importantly, the demonstration of near-unity PLQY 

in CsPbBr3 nanocrystals is not unique to hexylphosphonate. We demonstrate significantly 

improved photoluminescence with a wide variety of chemical functionalities, including fluorinated 

carboxylates, sulfonates, and phosphines (Figure S22-S23). 

 We have focused entirely on the coordination chemistry between surface lead and 

passivating ligands to explain the coordination and dissociation of various species, but solubility 

may also play a role. For example, small fluorinated carboxylates will be less soluble in toluene 

than oleate and therefore could be driven to the surface by solubility effects rather than binding 

affinity for surface lead. To address this issue directly, a long chain analogue to difluoroacetic acid 

was synthesized, namely 2,2-difluorononanoic acid. In an optical comparison between 

oleylammonium-difluoroacetate and oleylammonium-2,2-difluorononanoate, both ligand pairs 

were observed to increase CsPbBr3 PLQY by ~120% (Figure S24). No significant difference in 

surface passivation is observed at lower concentrations, indicating that solubility plays a minimal 

role. At higher concentrations, difluoroacetate yields a slightly higher PLQY, indicating that the 

long alkyl chain of 2,2-difluorononanoate hinders packing efficiency as coverage of the 

nanocrystal surface approaches saturation. 

This demonstration of X-type ligand pairs as effective passivating ligands for CsPbBr3 

nanocrystals stands in contrast to metal chalcogenide nanocrystals, where Z-type ligands such as 

Cd(O2CR)2 have been shown to play a critical role in surface passivation.21, 64 In our exploration 

of Z-type ligands for CsPbBr3 nanocrystals, namely lead oleate, we observed a negative effect on 



PLQY (Figure S25) that is consistent with our arguments about under-coordinated surface lead. 

Although this is not an exhaustive study of CsPbX3 Z-type ligands, this result indicates that while 

the well-developed toolbox for metal chalcogenide nanocrystals can be readily applied to CsPbX3 

nanocrystals, differences in the nature of the bonding dictate different surface modification 

strategies. 

A General Mechanism for CsPbX3 Surface Passivation. CsPbX3 nanocrystals spontaneously 

move towards simple cubic shapes with nearly perfect low-index CsX facets. The healing of point 

defects on these surfaces is essential for the realization of trap-free CsPbX3 nanocrystals. Despite 

a growing body of literature on surface passivation of lead halide perovskite materials, a general 

understanding that can unify these reports does not yet exist. We propose that these findings can 

	
 
Figure 7. Schematic representation of a cesium- and halide-deficient surface terminated by CsX facets, 
consistent with experimental results. Approximately half of surface cesium is substituted by oleylammonium 
ions, and ~12% of surface halide sites are vacant. Halide vacancies create under-coordinated lead atoms, which 
can either be left unpassivated or passivated depending on the hardness or softness of the Lewis base that is 
available to coordinate lead. 

	



all be explained by the mechanism we present here. Lewis bases, which can be ionic halide sources 

such as quaternary ammonium bromide salts or CH3NH3Br,47, 54 neutral molecules such as 

thiophene or pyridine,53 or anionic X-type ligands such as alkylphosphonates or S2–,45, 52 substitute 

into surface halide vacancies and bind under-coordinated lead. These ligands raise the energy of 

lead 6p states to where they are no longer energetically accessible by photoexcited electrons in the 

conduction band, thereby increasing optoelectronic performance. This general surface passivation 

mechanism is depicted schematically in Figure 7. The crystal terminates with the CsX facet, with 

both cesium and halide vacancies present. Halide vacancies expose underlying lead atoms, which 

can be unpassivated or passivated depending on the hardness of softness of the X-type Lewis base 

that is present. 

Proposed Design Principles for Trap-Free CsPbX3 Nanocrystals. Knowledge of CsPbX3 

surface chemistry and its role in charge trapping can be used to propose design principles for the 

preparation of trap-free CsPbX3 nanocrystals. With strong evidence for surface halide vacancies 

as the predominant source of charge trapping, design principles should focus on eliminating the 

presence and/or effects of these defects.  

Synthetic control over the surface halide vacancy concentration can be achieved by 

exploring alternative precursors to lead halide salts, which are intrinsically halide-deficient relative 

to the final CsPbX3 nanocrystalline product. We find a recent report that decouples lead and halide 

stoichiometry by employing benzoyl halide precursors to be particularly promising.105 When 

synthesizing CsPbCl3, weak (PLQY <10%) luminescence was observed for a stoichiometric 

injection of chloride precursor, which stands in stark contrast to a record high PLQY of ~65% 

when an excess of chloride precursor was injected. XPS determined the highest X:Pb ratio for the 

product of this synthesis, suggesting that excess halide precursor can increase PLQY by 



minimizing surface halide vacancy concentrations.49 From a post-synthetic perspective, we have 

demonstrated the importance of coordination chemistry in designing the optimal passivating ligand 

shell for CsPbX3 nanocrystals. Under-coordinated lead atoms are the predominant source of charge 

trapping, and with lead as a relatively soft Lewis acid, the hardness or softness of Lewis bases 

must also be considered. Harder species such as alkylcarboxylates, carbonates, and nitrates are 

ineffective passivating ligands, while softer species such as alkylphosphonates, fluorinated 

carboxylates, and sulfonates were found to be effective passivating ligands, as summarized in 

Table 1 with the relevant counterion in parentheses. In summary, synthetic design of trap-free 

CsPbX3 nanocrystals should include decoupled tunability of cesium, lead, and halide precursors, 

and post-synthetic design of ligand shells should employ ionic X-type Lewis acid-base pairs, 

where the softness of the Lewis base is well-matched to the softness of under-coordinated lead in 

the nanocrystal. 

While the work presented here has focused entirely on CsPbX3 nanocubes, we expect these 

findings to extend to nanoplates, nanowires, and other morphologies. Indeed, experiments on 

nanoplates and nanowires demonstrate similar trends, namely PLQY that is lowest in CsPbCl3 and 

highest in CsPbI3 (Figure S26), as well as significant increases in PLQY of CsPbBr3 materials 

when softer, X-type Lewis bases are employed. This work provides a rational framework for 

Table 1. Effect of Various Chemical Functionalities on CsPbX3 Nanocrystal PLQY 

	



highly luminescent lead halide perovskite nanocrystals of variable compositions and 

dimensionalities, which we anticipate will increase the performance of these materials in photonic 

and optoelectronic applications. 

 

CONCLUSION 

We have developed a systematic route to highly luminescent CsPbX3 nanocrystals by 

carefully investigating their surface chemistry through a combined experimental and theoretical 

study. Strong evidence was presented for surface halide vacancies as the predominant source of 

charge trapping. The number of trap states was quantified by 1H NMR spectroscopy, and is broadly 

consistent with a simple trapping model. Trap depth varies with halide composition, thus 

explaining the relatively low PLQY of CsPbCl3 along with the high PLQY of CsPbBr3 and CsPbI3. 

We utilized hard-soft acid base theory to develop a general X-type ligand passivation scheme that 

is grounded in established principles of coordination chemistry, and we showed that the tail group 

of carboxylates can be used to selectively coordinate or dissociate these ligands. We used these 

findings to prepare essentially trap-free CsPbBr3 and CsPbI3 nanocrystals, and although we were 

unable to produce near-unity PLQY CsPbCl3, we identified several promising routes to be pursued. 

Our findings are able to unify a wide variety of reports on improved luminescence in CsPbX3 

materials, thereby establishing a general mechanism for the passivation of lead halide perovskite 

surfaces. This work not only informs future post-synthetic efforts, but synthetic efforts as well. By 

providing both a general passivation mechanism and the ligand exchange tools required for precise 

manipulations of the surface, this work opens the door to future surface investigations as well as 

rational improvements of photonic and optoelectronic applications based on lead halide perovskite 

materials. 
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