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Abstract

The problem of constructing a plane polynomial curve with given end
points and end tangents, and a specified arc length, is addressed. The
solution employs planar quintic Pythagorean–hodograph (PH) curves
with equal–magnitude end derivatives. By reduction to canonical form
it is shown that, in this context, the problem can be expressed in terms
of finding the real solutions to a system of three quadratic equations in
three variables. This system admits further reduction to just a single
univariate biquadratic equation, which always has positive roots. It
is found that this construction of G1 Hermite interpolants of specified
arc length admits two formal solutions — of which one has attractive
shape properties, and the other must be discarded due to undesired
looping behavior. The algorithm developed herein offers a simple and
efficient closed–form solution to a fundamental constructive geometry
problem that avoids the need for iterative numerical methods.
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1 Introduction

It is, in general, impossible to exactly specify or compute the arc length of a
free–form curve segment. Whereas most curve construction methods rely on
the interpolation of discrete data — points, tangents, curvatures, etc. — the
imposition of a desired total arc length is an integral or “global” constraint,
that generally necessitates the use of iterative approximate methods.

The Pythagorean–hodograph (PH) curves are unique, among polynomial
curves, in having arc lengths that are exactly determined by simple algebraic
expressions in their coefficients [8]. Although this property has been exploited
in real–time motion control applications [11, 12, 15] for PH curve paths, there
has been little investigation thus far of the construction of smooth paths with
specified arc lengths. One application arises [20] in the shape reconstruction
of smooth surfaces using the Morphosense, a ribbon–like device incorporating
orientation sensors at known distances along its length. Iterative numerical
methods were employed, in this context, to construct a spatial C2 PH quintic
spline with prescribed arc lengths between nodal points. Other contexts in
which precise control over path arc lengths may be desired include the layout
of carbon fiber in composite materials manufacturing, and in the deposition,
curing, or sintering of materials in layered manufacturing processes.

The aim of this paper is to formulate a comprehensive solution procedure
for the problem of interpolating G1 data (end points and tangents) by planar
PH quintics of a prescribed arc length. It is known [13] that, in general, the
C1 planar PH quintic interpolation problem admits four distinct solutions.
Relaxing from C1 to G1 end conditions yields two free scalar parameters, of
which one is used to achieve the desired arc length, and the other is fixed by
imposing end derivatives of equal magnitude (with the desirable consequence
that symmetric G1 data yield symmetric interpolants). It is shown below that
this problem admits an attractively simple and efficient closed–form solution,
requiring little more than the solution of a quadratic equation.

The counterpart problem of interpolating spatial G1 data by PH curves
of prescribed arc length is deferred to a future study. It is known that
spatial PH quintic interpolants to C1 data incorporate two free parameters,
of which one can be used to fix the arc length within a certain range [9, 10].
Relaxing to G1 data will yield a total of four free parameters (or three if the
end derivatives are again assumed to be of equal magnitude), and careful
consideration must be made of their use in optimizing the interpolant shape.

Although geometric Hermite interpolation has been investigated by many
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authors — e.g., [4, 6, 16, 17, 18, 19, 21, 26, 28, 29, 30, 31] — the problems
considered typically address only discrete local data. Satisfaction of global
(integral) geometrical constraints poses a much more challenging task, if only
because of the lack of simple closed–form expressions for the curve integral
properties under consideration. For example [32] addresses the construction
of planar cubic G1 interpolants that minimize the elastic strain energy (i.e.,
the integral of the squared curvature with respect to arc length) by varying
the end derivative magnitudes. To make the problem tractable, however, the
energy integral is replaced by an approximation that is only valid in the weak
curvature limit. Similarly [23] presents a method to construct planar quintic
interpolants to G2 Hermite data that minimize the energy integral, but this
integral is again approximated, and an iterative numerical method is required
to determine the solutions. The problem considered herein is distinguished by
the fact that the integral constraint admits an exact closed–form expression,
and the solutions are obtained by a simple closed–form algorithm.

The plan for the remainder of this paper is as follows. Section 2 reviews
basic properties of planar PH curves, and the complex representation used in
their construction. The interpolation of G1 data, subject to the constraint of
a specified interpolant arc length, is then thoroughly analyzed in Section 3.
An algorithm that summarizes the solution procedure is outlined in Section 4,
and several computed examples are presented to illustrate its performance.
Finally, Section 5 briefly summarizes the contributions of the present study,
and identifies possible directions for further investigation.

2 Planar Pythagorean-hodograph curves

A planar polynomial Pythagorean–hodograph (PH) curve r(ξ) = (x(ξ), y(ξ)),
ξ ∈ [ 0, 1 ] has derivative components x′(ξ), y′(ξ) satisfying [14] the condition

x′2(ξ) + y′2(ξ) = σ2(ξ) (1)

for some polynomial σ(ξ), which specifies the parametric speed of r(ξ), i.e.,
the derivative of the arc length s with respect to the curve parameter ξ. This
feature endows PH curves with many attractive computational properties —
they have rational unit tangents and normals, curvatures, and offset curves;
their arc lengths are exactly computable; and they are ideally suited to real–
time precision motion control applications [8].
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For a primitive curve, with gcd(x′(ξ), y′(ξ)) = constant, a sufficient and
necessary condition for the satisfaction of (1) is that x′(ξ), y′(ξ) should be
expressible in terms of polynomials u(ξ), v(ξ) in the form

x′(ξ) = u2(ξ) − v2(ξ) , y′(ξ) = 2 u(ξ)v(ξ) .

This structure is embodied in the complex representation [7], in which a PH
curve of degree n = 2m+1 is generated from a degree–m complex polynomial

w(ξ) = u(ξ) + i v(ξ) =

m
∑

k=0

wk

(

m

k

)

(1 − ξ)m−kξk

with Bernstein coefficients wk = uk + i vk by integration of the expression

r′(ξ) = w2(ξ) . (2)

The parametric speed, unit tangent, and curvature of r(ξ) may be formulated
[7] in terms of w(ξ) as

σ(ξ) = |w(ξ)|2 , t(ξ) =
w2(ξ)

σ(ξ)
, κ(ξ) = 2

Im(w(ξ)w′(ξ))

σ2(ξ)
. (3)

Since σ(ξ) is a polynomial of degree 2m, the cumulative arc length function

s(ξ) =

∫ ξ

0

σ(t) dt

is likewise just a polynomial in ξ, of degree 2m + 1.
A planar PH quintic is obtained by choosing a quadratic polynomial w(ξ),

with Bernstein coefficients w0,w1,w2. On integrating (2), the Bézier control
points pk = xk + i yk of the resulting PH quintic

r(ξ) =

5
∑

k=0

pk

(

5

k

)

(1 − ξ)5−kξk
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may be expressed [7] as

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 , (4)

where p0 is a free integration constant. The parametric speed polynomial

σ(ξ) =

4
∑

k=0

σk

(

4

k

)

(1 − ξ)4−kξk

has the Bernstein coefficients

σ0 = |w0|2 , σ1 = Re(w0w1) ,

σ2 =
2|w1|2 + Re(w0w2)

3
,

σ3 = Re(w1w2) , σ4 = |w2|2 , (5)

and the total arc length is

L = s(1) =
σ0 + σ1 + σ2 + σ3 + σ4

5
. (6)

3 The interpolation problem

Consider the construction of a planar PH quintic r(ξ), ξ ∈ [ 0, 1 ] with given
end points q0,q1, end tangents t0 = exp(i θ0), t1 = exp(i θ1) where θ0, θ1 ∈
(−π, +π ], and arc length L. To facilitate the analysis, it is convenient to use
“canonical form” data with q0 = 0, q1 = 1. Upon setting ∆q = q1−q0 with
ℓ = |∆q| and α = arg(∆q), a transformation of given data to canonical form
is achieved by (1) subtracting q0 from q0, q1; (2) dividing q1 by ℓ exp(i α);
(3) multiplying t0, t1 by exp(−i α); and (4) dividing L by ℓ.
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The canonical form reduction adopted here has been previously used [13]
in the context of first–order Hermite interpolation by planar PH quintics. It
amounts to adoption of new coordinates (specified by a translation, scaling,
and rotation of the original coordinates), that eliminates the end points q0,q1

as input variables, leaving only the transformed tangent angles θ0, θ1 and arc
length L as free parameters. It should be noted that other transformations —
e.g., a mapping that makes t0 and t1 symmetric relative to the real axis, but
maintains a general orientation for ∆q — are possible, yielding formulations
different from but essentially equivalent to those in Proposition 1 below.

Once the canonical form interpolation problem is solved, the solution can
be mapped to the original coordinate system by multiplying the w0,w1,w2

coefficients, as computed below, by the factor
√

ℓ exp(i 1

2
α) and taking p0 =

q0 in (4). For brevity, we focus on the generic case with θ1 6= ± θ0 — the
cases of parallel end tangents (θ1 = θ0) and symmetric tangents (θ1 = − θ0)
are treated separately in Remarks 4 and 5 below.

Remark 1. For canonical–form data, there is obviously no solution if L < 1,
and a trivial straight–line solution if L = 1 and θ0 = θ1 = 0 or θ0 = θ1 = π.
It is assumed henceforth that L > 1 and θ0, θ1 are not both 0 or π.

From expressions (3), the end–point tangents of r(ξ) are

t(0) =
w2

0

|w0|2
= exp(i θ0) , t(1) =

w2
2

|w2|2
= exp(i θ1) . (7)

As previously stated, the condition |r′(0)| = |r′(1)| is imposed here to ensure
symmetric solutions for symmetric data. Hence, writing

w0 = w exp(i1
2
θ0) , w1 = u + i v , w2 = w exp(i1

2
θ1) , (8)

with w 6= 0, the tangent constraints (7) are satisfied. Now for canonical–form
data, with r(0) = 0 and r(1) = 1, interpolation of the end points yields the
condition

∫ 1

0

r′(ξ) dξ =
1

5

[

w2

0 + w0w1 +
2w2

1 + w0w2

3
+ w1w2 + w2

2

]

= 1 ,

or equivalently

2w2

1 + 3(w0 + w2)w1 + 3w2

0 + 3w2

2 + w0w2 = 15 . (9)
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Also, from (5) and (6), requiring the interpolant to have a specified arc length
L yields the condition

2|w1|2 + 3 Re((w0 + w2)w1) + 3 |w0|2 + 3 |w2|2 + Re(w0w2) = 15L . (10)

It is convenient to introduce the notations

(c0, s0) := (cos 1

2
θ0, sin

1

2
θ0) and (c1, s1) := (cos 1

2
θ1, sin

1

2
θ1) ,

and to set θ0 = θm − δθ and θ1 = θm + δθ, where

θm := 1

2
(θ0 + θ1) and δθ := 1

2
(θ1 − θ0) , (11)

so that θm ∈ (−π, +π ] and δθ ∈ (−π, +π) when θ0, θ1 ∈ (−π, +π ].

Proposition 1. In canonical form, the interpolants to the prescribed data

θ0, θ1 and L are specified by the coefficients (8), where the values u, v, w are

the real solutions to the system of quadratic equations

4u2 + 6(c0 + c1)uw + (6c2

0 + 6c2

1 + 2c0c1)w
2 − 15(L + 1) = 0 ,

4uv + 3(s0 + s1)uw + 3(c0 + c1)vw + (6c0s0 + 6c1s1 + c0s1 + c1s0)w
2 = 0 ,

4v2 + 6(s0 + s1)vw + (6s2

0 + 6s2

1 + 2s0s1)w
2 − 15(L − 1) = 0 .

Proof. Substituting (8) into (9) and (10), and taking the real and imaginary
parts of the former, yields the system of real equations

2(u2 − v2) + 3(c0u − s0v)w + 3(c1u − s1v)w

+ 3(c2
0 − s2

0)w
2 + 3(c2

1 − s2
1)w

2 + (c0c1 − s0s1)w
2 = 15 ,

4uv + 3(s0u + c0v)w + 3(s1u + c1v)w

+ 6c0s0w
2 + 6c1s1w

2 + (c0s1 + c1s0)w
2 = 0 ,

2(u2 + v2) + 3(c0u + s0v)w + 3(c1u + s1v)w

+ 6w2 + (c0c1 + s0s1)w
2 = 15L .

Upon replacing the first and third equations by their sum and difference, and
invoking some basic trigonometric relations, these equations simplify to the
form specified in Proposition 1.
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Remark 2. The equations in Proposition 1 define three quadric surfaces (of
which two are cylindrical) with at most eight distinct real intersection points
corresponding to their solutions (u, v, w). However, these solutions define at
most four distinct planar PH quintics satisfying the data θ0, θ1 and L — since
each real solution (u, v, w) has a counterpart (−u,−v,−w) that defines the
same curve. Thus, it suffices to consider only those solutions with w > 0.

The homotopy method [2, 3, 24, 25] is one possible approach to solving the
equations in Proposition 1. If f1(u, v, w) = 0, g1(u, v, w) = 0, h1(u, v, w) = 0
denote these equations, and f0(u, v, w) = 0, g0(u, v, w) = 0, h0(u, v, w) = 0 is
a set of simplified “initial” equations with known distinct roots, a homotopy
parameter λ ∈ [ 0, 1 ] is introduced, and the roots of the system

fλ(u, v, w) := (1 − λ) f0(u, v, w) + λ f1(u, v, w) = 0 ,

gλ(u, v, w) := (1 − λ) g0(u, v, w) + λ g1(u, v, w) = 0 ,

hλ(u, v, w) := (1 − λ) h0(u, v, w) + λ h1(u, v, w) = 0 ,

are tracked from their initial values (λ = 0) to the desired final values (λ = 1)
using a numerical (e.g., predictor–corrector) method to increment λ.

However, the homotopy method is computationally expensive, and entails
tracking all (real and complex) solutions. The following results demonstrate
that the problem of determining just the real solutions can be reduced to the
elementary task of solving a univariate quadratic equation.

Proposition 2. Interpolants to the data θ0, θ1 and L are identified by values

w = ±√
z, where z is a non–negative real root of the quadratic equation

h(z) = a2z
2 + a1z + a0 = 0 , (12)

with coefficients

a2 = 2(c0s1 − c1s0)
2 ,

a1 = 3 [ 2(c0c1 + s0s1 − 3)L + 3(c2

0 − s2

0 + c2

1 − s2

1) − 2(c0c1 − s0s1) ] ,

a0 = 36(L2 − 1) . (13)

Proof. The first and third equations in Proposition 1 can be solved to express
u and v in terms of w as

u =
−3(c0 + c1)w + µ

√

p(z)

4
and v =

−3(s0 + s1)w + ν
√

q(z)

4
(14)
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where µ, ν = ±1 and we define

z := w2 ,

p(z) = 60(L + 1) − (15c2

0 + 15c2

1 − 10c0c1)z , (15)

q(z) = 60(L − 1) − (15s2

0 + 15s2

1 − 10s0s1)z . (16)

Substituting from (14) into the second equation and simplifying then gives

µν
√

p(z)
√

q(z) = 5(c0s1 + c1s0 − 3c0s0 − 3c1s1)z , (17)

or
p(z)q(z) = 25(c0s1 + c1s0 − 3c0s0 − 3c1s1)

2z2 (18)

on squaring both sides to eliminate the indeterminate signs µ and ν. Finally,
substituting for p(z) and q(z) and simplifying yields the quadratic equation
(12) with the indicated coefficients.

For given values of θ0, θ1 ∈ (−π, +π ] and L > 1, it is clearly a trivial task
to compute the roots z of equation (12). In fact, the following results serve
to show that the two roots of (12) are always real and positive.

Lemma 1. When θ1 6= θ0, the coefficients (13) satisfy a2 > 0, a1 < 0, a0 > 0.

Proof : The condition θ1 6= θ0, i.e., δθ 6= 0, ensures that a2 > 0. Likewise,
a0 > 0 from the assumption that L > 1. Finally, setting

f := (c0 − c1)
2 + 2(c2

0 + c2
1) , g := (s0 − s1)

2 + 2(s2
0 + s2

1) , (19)

we can re–write a1 as

a1 = − 3 [ f(L − 1) + g(L + 1) ] , (20)

which is clearly non–positive. In fact a1 is strictly negative, since L > 1 and
f = g = 0 ⇒ c0 = s0 = c1 = s1 = 0, which is impossible.

Lemma 2. When θ1 6= θ0, the roots z of the quadratic equation (12) are real.

Proof : Using the definitions (11) and the trigonometric identity

cos θ0 + cos θ1 = 2 cos θm cos δθ ,
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the coefficients of (12) can be expressed as

a2 = 2 sin2 δθ ,

a1 = 6 [ (cos δθ − 3)L + (3 cos δθ − 1) cos θm ] ,

a0 = 36 (L2 − 1) . (21)

Note that a2 vanishes only if sin δθ = 0, which corresponds to the excluded
case θ1 = θ0. By routine manipulations, the discriminant ∆ = a2

1 − 4a0a2 of
equation (12) can be re–formulated as the non–negative expression

∆ = 36 [ (3 cos δθ − 1)L + (cos δθ − 3) cos θm ]2 + 288 sin2 δθ sin2 θm . (22)

Thus, since ∆ is evidently non–negative, the roots of (12) are real.

Lemma 3. When θ1 6= θ0, the roots z of equation (12) are distinct except in

the singular case identified by the conditions1

sin θm = 0 and cos δθ =
L ± 3

3L ± 1
, (23)

in which equation (12) has the double root

z =
3

2
(3L ± 1) . (24)

Proof : The roots of (12) are coincident when ∆ = 0. For this to occur, both
terms on the right in (22) must vanish. Since sin δθ 6= 0 by assumption, we
must have sin θm = 0 and hence cos θm = ±1. Substituting for cos θm into the
first term then gives the second condition in (23). Under these conditions,
equation (12) reduces to

4(L2 − 1)

[

2 z

3L ± 1
− 3

]2

= 0 ,

and therefore has the value (24) as a double root.

Note that the condition sin θm = 0 in (23) implies that the end–tangents
are symmetrically disposed about the line segment [ 0, 1 ] — i.e., θ1 = − θ0

(this special case is dealt with in Remark 5 below). Also, when θm = 0, the
second condition in (23) defines a valid cos δθ value for all L > 1.

1The same choice of sign must used in equations (23) and (24).

9



Remark 3. When θ1 6= θ0, the roots

z± =
− a1 ±

√

a2
1 − 4a2a0

2a2

(25)

of equation (12) are both positive. Since a2,−a1, a0 > 0 by Lemma 1, when
∆ = a2

1 − 4a2a0 6= 0 we have
√

∆ < − a1, so z− and z+ are both positive,
with z− < z+. When ∆ = 0, on the other hand, z− = z+ = − a0/a1 > 0.

Lemma 4. Among the solutions (25) of equation (12), only the smaller root

z− yields real solutions to the system of equations in Proposition 1.

Proof : Although equation (12) is satisfied by two distinct positive real values
of z = w2 (distinct when ∆ 6= 0), the expressions (15) and (16) must be non–
negative to yield real u, v values from (14). These expressions can be written
in terms of the quantities (19) as

p(z) = 60(L + 1) − 5fz , q(z) = 60(L − 1) − 5gz ,

and they define decreasing linear functions whose values change from positive
to negative at the points

zp =
12(L + 1)

f
and zq =

12(L − 1)

g
, (26)

respectively. Because a2, a0 > 0 and a1 < 0, the graph of (12) is positive for
z < z− and z > z+ and negative for z− < z < z+, where the roots z± are
specified by (25). Then if h(zp) and h(zq) are both non–positive, p(z−) and
q(z−) are both non-negative, while p(z+) and q(z+) are both non-positive, as
seen in Figure 1. With a2 = 2(c0s1 − c1s0)

2, a1 = − 3 [ f(L− 1) + g(L + 1) ],
a0 = 36(L2 − 1), evaluating (12) at zp and zq and simplifying gives

h(zp) =
36(L + 1)2

f 2
[ 8(c0s1 − c1s0)

2 − fg ] ,

h(zq) =
36(L − 1)2

g2
[ 8(c0s1 − c1s0)

2 − fg ] ,

so h(zp) and h(zq) are non–positive if 8(c0s1 − c1s0)
2 − fg ≤ 0. Substituting

from (19) for f and g and simplifying, this condition can be reduced to

− [ c0s1 + c1s0 − 3(c0s0 + c1s1) ]2 ≤ 0 ,
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zz– z+zp zq

h(z)

p(z)

q(z)

Figure 1: Schematic graphs of the quadratic function h(z) with roots z± and
the linear functions p(z), q(z) with roots zp, zq. The conditions h(zp) < 0,
h(zq) < 0 are equivalent to p(z−) > 0, q(z−) > 0 and p(z+) < 0, q(z+) < 0.

which is obviously satisfied. Hence, only the solution z− ensures non–negative
values for p(z) and q(z).

Once the positive w values satisfying (12) are computed, appropriate signs
µ and ν in (14) must be determined. Now the first and third of the equations
in Proposition 1 are satisfied for any choice of µ and ν, but the second is only
satisfied for those choices that are consistent with the condition (17). Thus,
µ and ν must be of like or unlike sign, according to whether the expression
on the right in (17) is positive or negative.

Proposition 3. When θ0 6= θ1, there are exactly two distinct interpolants to

the canonical–form data θ0, θ1 and L.

Proof : According to Lemma 4, among the two roots (25) of equation (12),
only z− identifies a real solution to the system of equations in Proposition 1.
This yields the two values w = ±√

z−, but from Remark 2 the negative value
is superfluous. For the positive value there are, in general, two sign pairs µ, ν
satisfying (17), and they define distinct interpolants.

In order to complete the analysis, we now address the two singular cases
that arise when θ1 = θ0 and θ1 = − θ0.
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Remark 4. In the case of parallel tangents with θ1 = θ0 (= θ, say) we have
θm = θ and δθ = 0, so a2 = 0 and equation (12) then has the single real root

w =

√

3(L2 − 1)

L − cos θ
. (27)

For this root, the choice of the signs µ, ν in (14) is again based on requiring
their product to be of the same sign as the right–hand side of (17) — namely,
the same sign as − sin θ in this particular case.

Remark 5. In the case of symmetric tangents with θ1 = − θ0 (= θ, say) we
have θm = 0 and δθ = θ. In this case, the coefficient c0s1+c1s0−3c0s0−3c1s1

on the right–hand side of (17) vanishes, so h(z) = p(z)q(z) and its roots are
just the roots of p(z) and q(z), namely z = 12(L+1)/f and z = 12(L−1)/g,
where f and g are defined by (19). For each value w =

√
z, the corresponding

u, v values are again determined by (14) provided that q(z) is non–negative
if p(z) = 0, and vice–versa (only one sign choice arises each case).

Several authors [22, 27] have considered the approximation order of PH
curve interpolants to discrete data, based on rather complicated asymptotic
analyses. Such an analysis may be possible in the present context, although
the presence of an integral constraint is an additional complication. However,
we emphasize that the method described herein is intended as a curve design

scheme, rather than as a means to approximate other given curves. The exact
computational advantages of PH curves are of doubtful value if, in fact, they
arose from the approximation of other prescribed curves.

4 Algorithm and computed examples

The following algorithm outline summarizes the procedure for constructing
planar PH quintic interpolants to given end points q0,q1 and unit tangents
t0, t1 with specified arc lengths L. For brevity, the algorithm considers only
the generic case θ1 6= ± θ0 (branching conditions can easily be incorporated
to accommodate these special cases, as described in Remarks 4 and 5).

Algorithm

input: initial/final points q0,q1, tangents t0, t1, and arc length L.
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1. convert the input data to canonical form by setting ℓ = |q1 − q0| and
α = arg(q1 − q0), and (a) subtracting q0 from q0, q1; (b) dividing q1

by ℓ exp(i α); (c) dividing t0, t1 by exp(i α); and (d) dividing L by ℓ;

2. set θm = 1

2
(θ0+θ1), δθ = 1

2
(θ1−θ0), ci = cos 1

2
θi, si = sin 1

2
θi for i = 0, 1;

3. (a) compute the coefficients (21) of the quadratic equation (12) and its
root z− specified by (25), and set w =

√
z− ;

4. identify whether like or unlike signs µ and ν yield satisfaction of (17);

5. for each combination µ, ν, w thus identified, compute the corresponding
u and v values from expressions (14);

6. for each combination of u, v, w values thus obtained, form the complex
coefficients w0,w1,w2 from expressions (8);

7. map each canonical–form solution to the original coordinate system by
multiplying each of the coefficients (8) with

√
ℓ exp(i 1

2
α), and compute

the control points (4) with p0 = q0.

output: two planar quintic PH curves r(ξ) that satisfy r(0) = q0, r(1) = q1,
r′(0) = w2t0, r′(1) = w2t1, with the prescribed arc length L.

The following examples2 serve to illustrate the above algorithm in operation,
and also the special instances covered by Remarks 4 and 5. The first example
illustrates that, for “reasonable” L values, one of the two solutions yields a
smooth curve while the other exhibits an undesirable looping behavior (but
is still a correct formal solution to the interpolation problem). This behavior
is typical [1, 13] of the multiple solutions to PH curve interpolation problems.
The “good” solution may be identified as the one with the least value for the
absolute rotation index defined by

Rabs =

∫

1

0

|κ(ξ)| σ(ξ) dξ , (28)

which admits closed–form evaluation, as described in [5, 13].

2For simplicity, canonical–form input data will be assumed in the examples, so step 1
of the algorithm is bypassed.
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Example 1. The two formal interpolants to the data θ0 = 60◦, θ1 = − 135◦,
and L = 1.5 are shown in Figure 2. The “good” solution — with the smaller
value of (28) — has a very pleasing shape, while the looping solution must be
rejected. To six decimal places, the good solution corresponds to the values

u = 1.803045 , v = 0.249124 , w = 1.185161 ,

which define through (8) the complex coefficients

w0 = 1.026379 + 0.592580 i ,

w1 = 1.803045 + 0.249124 i ,

w2 = 0.453541 − 1.094946 i ,

and the resulting control points are

p0 = (0.000000, 0.000000) ,

p1 = (0.140461, 0.243285) ,

p2 = (0.481057, 0.508114) ,

p3 = (0.980535, 0.570891) ,

p4 = (1.198641, 0.198641) ,

p5 = (1.00000, 0.0000000) .

The accuracy of the solution is illustrated by noting that, for the computed
u, v, w values, the residuals for the equations in Proposition 1 are

−0.000000000000007 , −0.000000000000001 , −0.000000000000001 ,

and the arc length of the interpolant, computed from (5) and (6), is

L = 1.500000000000000 ,

in agreement with the prescribed value to 15 decimal places.

The next example illustrates the behavior of interpolants with fixed θ0, θ1

and increasing L values. Although formal solutions exist for any L greater
than 1, it is clear that interpolants of reasonable shape cannot be expected
if L is much greater than 1 (even the “good” solution may exhibit loops).

Example 2. For the convex data θ0 = 45◦ and θ1 = − 60◦ and the inflectional
data θ0 = − 30◦ and θ1 = − 60◦ Figure 3 illustrates the interpolants for the
sequence of increasing L values 1.1, 1.2, . . . , 1.6.

14



Figure 2: The two solutions for the data in Example 1. The looping solution
is rejected on the basis of a much higher value for the shape measure (28).

Figure 3: Interpolants for the Example 2 convex and inflectional data, with
increasing arc lengths L = 1.1, . . . , 1.6 (only the good solutions are shown).
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Example 3. As an example of the parallel–tangents case, consider the data
θ1 = θ0 = 45◦ and L = 1.5, for which the two formal solutions are shown in
Figure 4. In this case, equation (27) gives the unique w value

w =

√

15

6 − 2
√

2
,

and (15) and (16) become p(z) = 10(15− z) and q(z) = 10(3− z), which are
both positive for z = w2. Finally, since the right–hand side of (17) becomes
−
√

2 z, opposite signs must be chosen for µ and ν.

Figure 4: The formal solutions for the case of parallel tangents (see Remark 4)
in Example 3 with θ1 = θ0 = 45◦, L = 1.5. The looping solution is discarded.

Figure 5: The formal solutions for the case of symmetric tangents (Remark 5)
in Example 4 (θ0 = − θ1 = 60◦, L = 1.35). The looping solution is discarded.

Example 4. As an example of the symmetric–tangents case, consider the
data θ0 = − θ1 = 60◦ and L = 1.35, for which the two solutions are shown in
Figure 5. In this case, the functions (15) and (16) become p(z) = 141− 15 z
and q(z) = 21 − 10 z, and their roots (26) are

zp = 9.4 and zq = 2.1 .
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Since p(zq) is positive and q(zp) is negative, we take w =
√

zq and exercise
the two choices for the sign µ in (14) to obtain the interpolants in Figure 5.

Figure 6 compares the good PH quintic interpolants in Examples 1 and 3
with the unique “ordinary” cubics having the same end points and derivatives
(note that it is not possible to impose the arc length constraint on the cubics).
As usual with such comparisons, the PH quintics exhibit better overall shape,
with milder curvature variations, for prescribed end data [8].

Figure 6: Comparison of the good interpolants in Examples 1 and 3 (blue)
with the “ordinary” cubics (red) having the same end points and derivatives.

Figure 7: The good interpolants corresponding to the fixed values θ0 = 0◦,
L = 1.25 and successive θ1 values − 60◦,− 90◦,− 120◦,− 150◦ in Example 5.

Example 5. Consider the data θ0 = 0◦ and L = 1.25 with the successive
values − 60◦,− 90◦,− 120◦,− 150◦ of θ1, for which the good interpolants are
plotted in Figure 7. As θ1 → 0◦ in this case (i.e., both end tangents approach
parallelism with the end–point displacment), even the good interpolant is no
longer satisfactory, since the relatively large value of L is incompatible with
parallelism of the end tangents and the displacement vector.
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Figure 8: Left: the good solution for data θ0 = − θ1 = 90◦, L = 1

2
π from a

unit semi–circle — to the scale of the plot, the interpolant is indistinguishable
from the exact semi–circle. Right: curvature variation along the interpolant.

Example 6. Finally, consider the data θ0 = − θ1 = 90◦ and L = 1

2
π from a

semi–circle of unit diameter. Figure 8 shows the good solution in this case,
which is indistinguishable from the exact semi–circle on the scale of the plot.
To six decimal places, this solution is determined by the values

u = 1.539536 , v = 0.000000 , w = 1.308583 ,

with corresponding complex coefficients

w0 = 0.925308 + 0.925308 i ,

w1 = 1.539536 + 0.000000 i ,

w2 = 0.925308 − 0.925308 i ,

and control points

p0 = (0.000000, 0.000000) ,

p1 = (0.000000, 0.342478) ,

p2 = (0.284909, 0.627387) ,

p3 = (0.715091, 0.627387) ,

p4 = (1.000000, 0.342478) ,

p5 = (1.00000, 0.0000000) .

A quantitative analysis of the interpolant shows that the distance of its points
from the center (0.5, 0.0) lie in the range [ 0.499141, 0.500545 ], corresponding
to a deviation of < 0.2% from the exact circle radius r = 0.5. Figure 8 also
shows the curvature plot for the interpolant — the maximum deviation from
the value κ = 2 for the exact circle is < 3%, and occurs at the end–points.
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5 Closure

In free–form curve design, an exact imposition of a prescribed arc length may
be desired to ensure satisfaction of certain geometrical or physical constraints.
Since it is impossible (except in trivial instances) to exactly compute the arc
lengths of general polynomial/rational parametric curves, such a requirement
can only be approximately satisfied, through overtly numerical methods.

Taking advantage of the distinctive properties of Pythagorean–hodograph
(PH) curves, an elementary and exact solution to the problem of constructing
a planar curve with given end points and tangents, and a specified arc length,
has been developed herein. Exploiting the complex PH curve representation,
and a reduction of the given data to canonical form, yields a very simple and
efficient algorithm, that requires only elementary algebraic and trigonometric
computations and the solution of a single quadratic equation. Furthermore,
the computed solutions are found to satisfy the end conditions and arc length
constraint to an accuracy approaching machine precision. By construction,
the interpolants inherit all the advantageous features of PH curves, including
rational tangents and normals, curvatures, and offset curves, and real–time
interpolator algorithms for precision motion control applications.

The present study is only a preliminary investigation into the possibility
of interpolating both local and global geometrical properties, by appealing to
the advantageous features of PH curves. It has the virtue of accommodating
an exact and efficient closed–form solution that admits a very straightforward
implementation. There are several interesting directions in which the present
results may possibly be extended, including: (i) interpolation of higher–order
local data, such as curvature; (ii) the extension from planar to spatial data;
and (iii) the imposition of values for (or minimization of) higher–order global
shape measures, such as the bending energy. However, these are analytically
and computationally more challenging problems, which are unlikely to admit
solutions as simple and exact as obtained in the present context.
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