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Abstract 

Recent research (Pilditch, Fenton, & Lagnado, 2019) shows 
that people are susceptible to zero-sum thinking in evidence 
evaluation, where they dismiss or underweight the probative 
value of evidence that is equally predicted by multiple 
independent hypotheses. But such an assumption is only valid 
when explanations are mutually exclusive and exhaustive. 
The present work extends these findings by looking at the 
context of information selection, and the decisional 
consequences of the zero-sum fallacy. It uses an information 
metric to quantify the cost of the error in terms of overlooked 
information. 

Keywords: zero-sum; evidential reasoning; probabilistic 
reasoning; Bayesian Networks; belief updating 

Introduction 

When reasoning under uncertainty, the search and 

selection of evidence is fundamental to accurate and 

efficient prediction and diagnosis. Whether in formal 

investigative domains such as medical diagnosis, forensics, 

or intelligence gathering, or in everyday reasoning, we often 

have to search out information to make inferences about a 

target hypothesis (e.g. which test to conduct? Which source 

to query? Etc.). To address these questions, reasoners must 

consider the prospective “value” or information provided by 

new evidence. These estimates are often fraught with biases 

and errors (e.g. Jones & Sugden, 2001; Nelson, McKenzie, 

Cottrell & Sejnowski, 2010; Slowiaczek, Klayman, 

Sherman & Skov, 1992) making accurate choice of what 

evidence to gather a non-trivial task for lay reasoners. 

In the present work, we explore the question of evidence 

selection in the context of a novel evidential reasoning 

fallacy, the zero-sum error (Pilditch, Fenton, & Lagnado, 

2019), where reasoners assume that evidence which is 

equally predicted by multiple alternative hypotheses is non-

probative.  We explore whether this error also drives similar 

errors in information choice, in particular whether it leads to 

people overlooking the most useful evidential tests. We 

explore the mechanisms that might underpin this reasoning 

fallacy. Furthermore, we highlight the methodological and 

theoretical value of incorporating information measures into 

our understanding of how reasoners navigate more complex 

reasoning structures. 

The Zero-sum fallacy 

When reasoning about evidence that is equally predicted 

by two independent explanations, lay reasoners tend to 

assume that this evidence offers no support to either 

hypothesis, because it does not discriminate between them 

(Pilditch, Fenton, & Lagnado, 2019). However, this 

assumption is only applicable when the explanations are 

both mutually exclusive and exhaustive (i.e. exactly one of 

the explanations is true). In fact, given positive evidence, 

both explanations become more probable. Across a number 

of experiments, reasoners judged such evidence irrelevant to 

a target hypothesis, even when the inappropriateness of 

applying the assumptions of exclusivity and exhaustiveness 

was highlighted. 

The posited mechanism behind this error was a fallacy of 

considering evidential support between hypotheses to be a 

“zero-sum” situation: one hypothesis may only gain support 

(i.e. become more probable) at the detriment of another. To 

elucidate, reasoners were inclined to dismiss a medical test 

that could not distinguish between 2 diseases – failing to 

consider that the positive test result could in fact make the 

patient having both diseases more probable. 

Work on the zero-sum fallacy has so far looked at 

qualitative judgments of support. In building on this work, 

via the incorporation of alternative evidence options and a 

measure of the amount of overlooked information given a 

preference, we seek to quantify the cost of this error, and 

further uncover the mechanism underpinning it. 

 

A Bayesian Framework 

To further elucidate the nature of the zero-sum fallacy, 

and outline the foundational formalism upon which 

information in the context of reasoning under uncertainty 

may be built, we briefly highlight the role of Bayesian 

Networks (BNs; Pearl, 1988; 2009) in evidential reasoning. 

BNs are directed acyclic graphs (DAGs) that provide a 

computational framework for modelling the strength of 

inferential relationships when reasoning under uncertainty. 

A BN is made up of nodes that represent the variables of 

interest, and directed arrows capturing probabilistic 

dependency relations between variables, quantified by 

conditional probability tables. The probabilities of the 

unknown nodes are normatively updated given new 

evidence using Bayes rule (Pearl, 1988). Consequently, BNs 

are used as a normative comparison against which human 

reasoning can be compared (e.g. Pilditch, Fenton, & 

Lagnado, 2019). 

To explain in the zero-sum case, two possible hypotheses, 

each with their own prior probabilities are represented by 

separate, independent nodes (see H1 and H2 in Fig. 1). This 

reflects the acknowledged assumptions that the two 

hypotheses are neither mutually exclusive (i.e. both could be 

true) nor exhaustive (i.e. both could be false), and there are 

no direct causal links between them. Critical to the fallacy, 
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however, is the conditional probability table (CPT) of the 

evidence that depends on both hypotheses (E1 in Fig. 1). 

Table 1 below provides an example of how likely the 

evidence is to be observed, given the possible states of the 

two hypotheses. 

 

Table 1: Example conditional probability table for “common 

effect” evidence, given two possible causes, H1 and H2. 

E ¬H1, ¬H2 H1, ¬H2 ¬H1, H2 H1, H2 

E = T 0.01 0.9 0.9 0.99 

E = F 0.99 0.1 0.1 0.01 

 

The two central columns of Table 1 represent the 

possibilities that participants making the zero-sum fallacy 

arguably focus on. More precisely, if one (falsely) assumes 

that only one of the two hypotheses is true (i.e. they are 

exclusive and exhaustive), then one is only considering two 

possibilities: the probability of E given H1 being true 

(P(E|H1,¬H2); center-left column) or given H2 being true 

(P(E|¬H1,H2); center-right column). Consequently, by 

adopting this narrow focus, the evidence appears to be 

equally predicted by each possibility (P(E|H1,¬H2) = 

P(E|¬H1,H2) = 0.9) suggests the evidence is non-probative. 

Critically, this reasoning neglects two important 

possibilities: first, the fact that evidence could still occur 

when neither hypothesis is true (P(E|¬H1,¬H2) > 0) – i.e. 

the hypotheses are not exhaustive explanations of the 

evidence. Second, that not only is there the possibility that 

both hypotheses are true i.e. the hypotheses are not 

exclusive, but that when both are in fact true, this results in 

an even greater probability of observing the evidence (i.e. 

P(E|H1,H2) > (P(E|H1,¬H2) | P(E|¬H1,H2))). Thus, when 

making the diagnostic inference from observed evidence to 

probable hypotheses, both H1 and H2 become more 

probable, given E. 

Information Search 

In the real world people are habitually required to actively 

seek and acquire information in order to make a decision, 

causal inference or judgement, and do not merely act as 

passive observers of their surroundings. Within the 

psychological literature, measures have been proposed to 

quantify the informative value of a piece of evidence and 

the exploration of people’s information search behaviour in 

a variety of contexts (for an overview, see Nelson, 2008). 

Here we adopt the Kullback-Liebler Divergence (KL-D; 

Kullback & Liebler, 1951) as a quantitative measure of the 

expected informative value of different pieces of evidence 

given a defined probabilistic environment. KL-D is a form 

of relative entropy and assigns high informative value to 

evidence that reduces uncertainty the most, entailing the 

largest divergence between prior and posterior probability 

distributions (Nelson, 2008).  Formally, it quantifies the 

subjective expected usefulness of evidence before the state 

of the evidence is known as: 

 

 
 

Where Ei is an item of evidence within a set {E1, E2…Ei}, 

H is a set of hypotheses, {H1, H2…Hj} and ai is a set of 

possible states of the evidence, {a1, a2, ai}. This 

quantification enables not only the evaluation of whether 

people have a preference for evidence with the highest 

information value, but also allows for a quantitative measure 

of the amount of overlooked information (as a consequence 

of sub-optimal search behaviour). This approach directly 

addresses how violations of normative measures of the 

value of information relate to known violations of normative 

models of evidence evaluation such as the zero-sum fallacy. 

Or more informally, puts an explicit value on the cost of the 

error. 

Present Work 

As mentioned above, the goal of the present work is to 

investigate the zero-sum fallacy further, via the inclusion of 

information search. To do this we expand the previous zero-

sum fallacy model (two hypotheses, H1 and H2, with a 

single, shared piece of evidence, E1) to include an 

alternative evidence option (E2) – only explainable by the 

target hypothesis. 

In this way, the reasoning probe shifts from an explicit 

evaluation of whether E1 provides any support for H1, to a 

decision-making preference between two evidence items: 

E1, which has an alternative explanation H2 (and thus 

invites the zero-sum error), and E2, with no alternative 

cause represented in the model. To explore the possible 

influence of zero-sum thinking, and to quantify overlooked 

information costs, the general structure illustrated in Fig. 1 

required populating with several different sets of 

parameters. 

 

 
Figure 1. Graphical representation of BN Model.  

 

Four sets of parameters were created (shown in Table 2), 

each incrementally differing from another, so as to 

determine the influence of various reasoning components. 

The prior probabilities of each hypothesis were manipulated 

as either both rare (P(H1) = P(H2) = .1), both common 

(P(H1) = P(H2) = .5), or unequal (P(H1) = .5, P(H2) = .1). 

In this way, the degree to which H2 is providing a “false 

positive” for E1 (i.e. another explanation for a positive, that 

is not the hypothesis of interest, H1) is manipulated. This is 
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of interest to determine whether the zero-sum fallacy is 

based on the integration of this “false positive” probability 

(i.e. when H2 is more probable, the zero-sum fallacy is more 

prevalent), or solely on the presence of a possible 

alternative explanation. Further, the manipulation of 50/50 

(or “common”) priors can be used to assess whether 

participants will be more inclined to apply the false 

assumptions of mutual exclusivity and exhaustiveness that 

underpin the zero-sum fallacy. Lastly, if the manipulation of 

unequal priors (P(H1) = .5, P(H2) = .1) resulted in a 

reduction of zero-sum fallacy errors, it would be suggestive 

of participants using the relative rarity of H2 to discount it 

as an explanation of E1. 

In addition, across these three sets, the likelihoods of E1 

and E2 were held as unequal, in that E1 was more 

diagnostic of H1 than E2 (P(E1|H1,¬H2) = .9, vs P(E2|H1) 

= .6). However, one final parameter set was added in which 

(along with rare priors) these values were equal across E1 

and E2 (P(E1|H1,¬H2) =  P(E2|H1) = .8). It should be noted 

that in all these parameter sets, this results in E1 being the 

more informative evidence for determining H1, and thus 

selecting E2 comes at a cost of overlooked information. 

However, by manipulating the false positive rate of E2 as 

either high (P(E2|¬H1) = .2/.4), or low (P(E2|¬H1) = .01), 

we can manipulate between subjects a condition in which 

E1 is superior (the former), or inferior (the latter), to further 

determine sensitivity to the parameters underlying the 

fallacy. 

This leads to several predictions: Firstly, there will be a 

general aversion to selecting E1 (i.e. the decision analogue 

of a zero-sum fallacy). Secondly, participants will be 

sensitive to parameter manipulations, such that when E2 is 

manipulated as more diagnostic (e.g. P(E2|¬H1) = .01 

condition), aversion to E1 / preference for E2 will (correctly 

in this instance) increase. Conversely, when parameter 

manipulations in fact favour E1 (e.g. equal likelihoods 

parameter set) participants will (falsely) remain aversive to 

it. 

Method 

Participants 180 US participants were recruited and 

participated online through the Amazon Mechanical Turk 

platform. Participants were native English speakers (leading 

to 2 exclusions), with a mean age of 35.88 (SD = 10.5), and 

90 participants identified as female. All participants gave 

informed consent, and were paid $1.20 for their time 

(Median = 12.75 minutes, SD = 9.62). 

 

Procedure & Design Participants were shown 4 scenarios 

in a randomized order. These scenarios all originated from 

the model structure of Fig. 1, to include a target hypothesis 

(H1), evidence that may inform on the hypothesis (E1), but 

may also be explainable by an alternative hypothesis (H2), 

and finally an alternative evidence item only dependent on 

H1, and not H2 (E2). The scenario contexts were an arson 

case (identifying an accelerant), a conservation case 

(tracking a target species), a medical diagnosis case 

(confirming a brain tumor), and a digital forensics case 

(identifying a cyberattack culprit). 

Crucially, along with the structure of Fig. 1, contexts were 

also furnished within the text with sufficient parameter 

details to fully populate a Bayesian Network model of the 

scenario. These included the priors for each hypothesis 

(P(H1) and P(H2), the likelihoods for each evidence-

hypothesis relationship (P(E1|H1,¬H2), P(E1|¬H1,H2), and 

P(E2|H1)), and false positives - P(E1|¬H1,¬H2) and 

P(E2|¬H1). The latter of these parameters (E2 false positive) 

was manipulated between subjects, as a method of shifting 

the balance of expected information between E1 and E2. 

The remaining parameters were deployed as 4 “sets” (see 

Table 1 below), each designed to test particular parameters 

trade-offs, and randomly allocated to scenario contexts.
1
  

 
Table 2. Parameter sets, allocated across scenario contexts. 

 Parameter Sets 

RareP. 

EqL 

RareP. 

UneqL 

UneqP. 

UneqL 

ComP. 

UneqL 

P(H1) .1 .1 .5 .5 

P(H2) .1 .1 .1 .5 

P(E1|H1,¬H2) .8 .9 .9 .9 

P(E1|¬H1,H2) .8 .9 .9 .9 

P(E1|¬H1,¬H2) .01 .01 .01 .01 

P(E2|H1) .8 .6 .6 .6 

P(E2|¬H1) .01 / .2 .01 / .4 .01 / .4 .01 / .4 

Information     

KL(E1)* 0.12 0.135 0.27 0.06 

KL(E2) 0.22/0.06 0.16/0.005 0.268/0.01 0.268/0.01 

KL(E1 – E2) -0.1/0.06 -0.026/0.13 0.002/0.25 -0.205/0.05 
*Only takes into account H1 

 

For each scenario, participants answered the following 

questions: 

 

Priors: Participants were asked to provide the prior 

probabilities of H1 and H2 (i.e. before observing any 

evidence). Although participants had already been provided 

with prior probabilities for H1 and H2, by also eliciting 

these prior probabilities any participant-based assumptions 

could be incorporated into the models used for normative 

comparisons. More precisely, for each participant, elicited 

priors were used to outfit a Bayesian Network fitting the 

structure of Fig. 1 (and the remaining parameters drawn 

from the parameter set being tested), using the gRain 

package in R (Højsgaard, 2012). These individually fitted 

BNs (hereafter termed Behaviorally Informed Bayesian 

Networks; BIBNs) thus provided a fitted normative 

comparison for participant inferences on the participant by 

parameter set level. BIBNs were not only then used to 

generate predicted responses, but also to calculate the 

informative value (KL-D) of each item of evidence, given 

                                                           
1 P(E|H1, H2), though not provided explicitly to participants, is 

based on an assumption of a noisyOR function (see Pearl, 1988), 

which is based on the reasonable assumption that causes H1 and 

H2 are independent. 
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that model – essential for calculating any forgone 

information. 

 

Preference: Participants were then asked “Which test 

(evidence item) would you prefer, so as to best determine 

[H1]?” This qualitative judgment was forced choice [E1 / 

E2 / “They are the same.”] 

 

Confidence in preference: Following the qualitative 

evidence preference, participants were asked to provide a 

confidence in that preference (“How confident are you that 

your response is correct?” 0-100%). 

 

Other DVs: Although posterior probability estimates for 

each evidence item (“Probability of [H1] only given a 

positive [E1]” 0 - 100%; “Probability of [H1] only given a 

positive [E2]” 0 - 100%), and open text reasoning responses 

were collected, for the sake of brevity, these results are not 

reported here. 

Results 

Using the JASP statistical software (JASP Team, 2018), 

Bayesian statistics were employed throughout
2
. 

 

Evidence Preferences 

Overall, binomial tests comparing evidence preferences to 

chance (.33) found the evidence with a single possible cause 

(E2) to be preferred at a rate decisively greater than chance 

(.54, N = 712), BF10 = 3.06 * 10
26

, whilst preferences for the 

evidence with two potential cause (E1) were no different 

than chance, (.35, N = 712), BF10 = 0.083, and preferences 

for “They are the same.” occurred decisively less often than 

expected by chance (.11, N = 712), BF10 = 4.59 * 10
37

. 

Further, a contingency table comparing observed to 

predicted preferences found decisive evidence for these 

preferences deviating from normative expectation (N = 

1424), BF10 = 1.196 * 10
25

. Importantly, there was a null 

influence of the potential confounds of scenario order (N = 

712), BF10 = 0.109 , or scenario context (N = 712), BF10 = 

5.087 * 10
-5

. 

In line with expectations, when the false positive rate of 

E2 was low (.01), and thus sensitivity was higher, then E2 

was preferred substantially more often (and E1 less often) 

than when the false positive of E2 was high (N = 712), BF10 

= 4.068. 

Turning next to parameter sets (rows of Fig. 2), we break 

down the analysis for each set to determine a) the dominant 

participant preference, and b) whether this deviates from the 

normative predictions for that set. This split by parameter 

set is motivated by the potential sensitivity of participants to 

particular combinations of parameters (e.g. equal 

likelihoods, or unequal priors). 

                                                           
2All analyses assumed an uninformed prior. Bayes Factors 

(BFs), are interpreted as: 1 – 3 = anecdotal support; 3-10 = 

substantial; 10-30 = strong; 30-100 = very strong; >100 = decisive 

(Jeffreys, 1961). Conversely, Bayes Factors < .33 are considered 

substantial support for the null (Dienes, 2014).  

 

Rare Priors, Equal Likelihoods. When both H1 and H2 

priors were rare, and evidence likelihoods were equal, 

participants chose E2 at levels decisively above chance 

(.612, N = 178), BF10 = 6.729 * 10
11

, and E1 significantly 

less than chance (.23, N = 178), BF10 = 5.565. This runs 

contrary to model predictions, where E1 is preferred 

decisively above chance level (.674, N = 178), BF10 = 1.035 

* 10
18

, and E2 at no different than chance (.326, N = 178), 

BF10 = 0.088. This is further corroborated by a contingency 

table analysis which finds decisive evidence for a deviation 

of participant choices from normative expectation (N = 

356), BF10 = 6.729 * 10
11

. 

 

 
Figure 2. Evidence choice frequencies across parameter sets 

(rows) and condition (columns). 

 

Rare Priors, Unequal Likelihoods. When priors are rare, 

and evidence likelihoods are unequal (E2 at .6, and E1 at 

.9), we again find the same pattern. Participants choose E2 

at above chance levels (.466, N = 178), BF10 = 111.88, and 

E1 no different than chance (.41, N = 178), BF10 = 1.115. 

Once again, however, model predictions show the opposite 

pattern, with E1 choices above chance level (.663, N = 178), 

BF10 = 6.223 * 10
16

, and E2 choices no different than 

chance, (.337, N = 178), BF10 = 0.09. This is again 
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corroborated by the decisive deviation between participants 

and their model predictions found by contingency table 

analysis (N = 356), BF10 = 1.473 * 10
7
.  

  

Unequal Priors, Unequal Likelihoods. When both priors 

(P(H1) = .5; P(H2) = .1) and likelihoods are unequal, we 

find the same general trend, albeit to a lesser degree. More 

precisely, although participant choices for E2 are again 

greater than chance (.478, N = 178), BF10 = 368.73, choices 

for E1 are also just above chance level (.427, N = 178), BF10 

= 3.499. However, model predictions again show a decisive 

preference for E1 (.612, N = 178), BF10 = 6.729 * 10
11

, 

whilst E2 should be preferred no more often than chance 

(.388, N = 178), BF10 = 0.335. This insufficiency of E1 

choices is again captured by the decisive difference in 

judgment proportions when comparing participants and 

model predictions in a contingency table (N = 356), BF10 = 

15735.87. 

 

Common Priors, Unequal Likelihoods. Turning finally to 

when priors are both common (.5) and likelihoods are 

unequal, we see the same behavioral pattern of a preference 

for E2 above chance level (.59, N = 178), BF10 = 7.748 * 

10
9
, and E1 no different than chance (.331, N = 178), BF10 = 

0.088. However, unlike the preceding parameter sets, E2 is 

also chosen above chance level by model predictions (.961, 

N = 178), BF10 = 1.996 * 10
69

, whilst E1 is in fact chosen 

decisively less than chance (.039, N = 178), BF10 = 7.246 * 

10
18

. Further, participant choices for E2 are shown to be 

insufficient compared to model predictions (N = 356), BF10 

= 9.44 * 10
14

. This is likely due to the high E1 “false 

positive” due to marginalization over high H2 probability, 

making E1 comparatively less diagnostic of H1. 

 

Confidence in evidence preferences. Confidence was 

generally high across all preferences (M = 66.00, SD = 

23.96). Although a Bayesian repeated measures ANOVA 

revealed confidence to be unaffected by preference, 

BFInclusion = 0.781, or parameters, BFInclusion = 1.064, but 

there was strong evidence for confidence being higher in the 

E2 false positive rate = low condition (M = 68.98, SD = 

23.39), rather than high (M = 62.95, SD = 24.18), BFInclusion 

= 11.377. This finding fits with an easier E2 preference 

when it is a more sensitive test. 

 

Overlooked information 

To elucidate the information cost of the above deviations 

from normative expectation, for each BIBN model (i.e. each 

participant-fitted model) the expected informative value (in 

KL-D) was calculated for E1 and E2. In this way, if a 

participant selected the evidence with the highest KL-D as 

predicted by their model, they had not overlooked any 

information, and thus scored 0. However, if participants 

selected the less informative evidence, then the overlooked 

information was the difference (in KL-D) between the 

optimal (i.e. most informative) evidence and their selected 

option.
3
 

As Table 3 indicates, across all break-downs of evidence 

choices (overall, by condition, and by parameter set), there 

was a decisive amount of information overlooked – 

calculated via Bayesian one sample t-tests (test value = 0). 

This significant amount of overlooked information can be 

attributed to the sub-optimal undervaluing of E1 (i.e. the 

zero-sum fallacy) in all cases barring common priors, 

unequal likelihoods (bottom row, Table 3). In this latter 

parameter set, E2 in fact yielded the most information, but 

was not chosen sufficiently often across participants.  

 

Table 3. Overlooked information; overall, split by condition, 

and split by parameter sets. 

 M SD N >0 (BF10) δ δ 95% CI 

Overall .045 .048 712 5.79*10
95

 0.934 .847, 1.021 

P(E2|¬H1) = L .042 .047 360 1.23*10
44

 0.886 .766, 0.999 

P(E2|¬H1) = H .048 .049 352 2.33*10
50

 0.980 .849, 1.113 

       

RareP.EqL .052 .045 178 3.12*10
31

 1.153 .956, 1.348 

RareP.UneqL .047 .042 178 2.543*10
30

 1.121 .938, 1.318 

UneqP.UneqL .046 .057 178 6.600*10
17

 0.795 .623, 0.958 

ComP.UneqL .034 .045 178 2.569*10
16

 0.753 .59, 0.925 

Conclusions 

Previous work has shown that evidence equally predicted 

by multiple explanations is often erroneously dismissed due 

to the misplaced assumption that support for one hypothesis 

(of interest) must come at the detriment of another (the zero-

sum fallacy; Pilditch, Fenton, & Lagnado, 2019). In the 

present work, we show that this fallacy results in poor 

decisions regarding evidence selection, and that such 

selections come at a quantified cost of overlooked 

information. Crucially, we also show that participants are 

sensitive to priors and likelihoods parameters, with different 

evidence preference patterns as a consequence. However, 

the general pattern of overlooked information holds despite 

this sensitivity. 

Foremost, the present work confirms the presence of zero-

sum reasoning, showing that it is active in people’s choice 

of which evidence to examine. It also highlights the 

potential costs of the fallacy, via the quantification of 

(costly) overlooked information. In this way, we argue for 

the inclusion of different question methods and information 

measures when investigating reasoning errors – whether 

across simple or complex structures. This would not only 

contribute to understanding how violations of normative 

frameworks of human information acquisition relate to 

known violations of information evaluation, such as the 

                                                           
3 If evidence items were equally informative, then participants 

were pragmatically correct, in terms of information, with any 

preference (including “They are the same”), and thus scored 0. 

However, if participants erroneously judged the evidence items the 

same, the amount of overlooked information was taken from the 

KL-D of the most informative option. 
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zero-sum fallacy, but it would allow for the exploration of 

how consequential sub-optimal evidence selection choices 

are, in laboratory as well as real-world settings.  

Given that information-seeking is a critical aspect of so 

many areas of decision making – including intelligence 

analysis, legal reasoning, and medical diagnosis – the use of 

zero-sum reasoning is a strong concern. Future work will 

seek ways to alleviate this bias, and shift people towards 

more normative information gathering. 

References  

Dienes, Z. (2014). Using Bayes to get the most out of non-

significant results. Frontiers in psychology, 5, 1-17.  

Højsgaard, S. (2012). Graphical independence networks 

with the gRain package for R. Journal of Statistical 

Software, 46(10), 1-26.  

JASP Team (2018). JASP (Version 0.9.1)[Computer 

software].  
Jeffreys, H. (1961). Theory of probability (3rd Ed.). Oxford, 

UK: Oxford University Press.  

Jones, M., & Sugden, R. (2001). Positive confirmation bias 

in the acquisition of information. Theory and Decision, 

50(1), 59-99. 

Kullback, S., & Leibler, R. A. (1951). On Information and 

Sufficiency. The Annals of Mathematical Statistics. 

Advance online publication. 

Nelson, J. D. (2008). Towards a rational theory of human 

information acquisition. In M. Oaksford & N. Chater 

(Eds.), The probabilistic mind: Prospects for rational 

models of cognition (pp. 143–164). Oxford, United 

Kingdom: Oxford University Press.  

Nelson, J. D., McKenzie, C. R., Cottrell, G. W., & 

Sejnowski, T. J. (2010). Experience matters: Information 

acquisition optimizes probability gain. Psychological 

science, 21(7), 960-969. 

Pearl, J. (1988). Probabilistic reasoning in intelligent 

systems. San Francisco, CA: Morgan Kaufmann.  

Pearl, J. (2009). Causality. Models, reasoning, and 

inference. Second edition. New York: Cambridge 

University Press. 

Pilditch, T. D., Fenton, N., & Lagnado, D. (2019). The zero-

sum fallacy in evidence evaluation. Psychological 

Science, 1-11. DOI: 10.1177/0956797618818484  
Slowiaczek, L. M., Klayman, J., Sherman, S. J., & Skov, R. 

B. (1992). Information selection and use in hypothesis 

testing: What is a good question, and what is a good 

answer? Memory & Cognition, 20(4), 392-405. 

943




