
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Seismic velocity estimation from time migration

Permalink
https://escholarship.org/uc/item/0nm3p876

Author
Cameron, Maria Kourkina

Publication Date
2007-05-31

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nm3p876
https://escholarship.org
http://www.cdlib.org/

Seismic Velocity Estimation from Time Migration

by

Maria Kourkina Cameron

Diplom (Moscow Institute of Physics and Technology) 1998

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor James Sethian, Chair
Professor Alexandre Chorin

Professor Dung-Hai Lee

Spring 2007

Seismic Velocity Estimation from Time Migration

Copyright c© 2007

by

Maria Kourkina Cameron

Abstract

Seismic Velocity Estimation from Time Migration

by

Maria Kourkina Cameron

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James Sethian, Chair

This is concerned with imaging and wave propagation in nonhomogeneous media, and

includes a collection of computational techniques, such as level set methods with mate-

rial transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and

techniques for data smoothing. The theoretical components include aspects of seismic ray

theory, and the results rely on careful comparison with experiment and incorporation as

input into large production-style geophysical processing codes.

Producing an accurate image of the Earth’s interior is a challenging aspect of oil recovery

and earthquake analysis. The ultimate computational goal, which is to accurately produce

a detailed interior map of the Earth’s makeup on the basis of external soundings and

measurements, is currently out of reach for several reasons. First, although vast amounts

1

of data have been obtained in some regions, this has not been done uniformly, and the data

contain noise and artifacts. Simply sifting through the data is a massive computational

job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of

the earth that give rise to measured reflected signals, is exceedingly difficult: shadow zones

and complex structures can make for ill-posed problems, and require vast computational

resources.

Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically,

one makes assumptions about the earth’s substructure (such as laterally homogeneous lay-

ering), and then uses this model as input to an iterative procedure to build perturbations

that more closely satisfy the measured data. Such models often break down when the ma-

terial substructure is significantly complex: not surprisingly, this is often where the most

interesting geological features lie.

Data often come in a particular, somewhat non-physical coordinate system, known as

time migration coordinates. The construction of substructure models from these data is less

and less reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity

variations can significantly distort subsurface structures on the time migrated images. Con-

versely, depth migration provides the potential for more accurate reconstructions, since it

can handle significant lateral variations. However, this approach requires good input data,

known as a ”velocity model”.

We address the problem of estimating seismic velocities inside the earth, i.e., the problem

of constructing a velocity model, which is necessary for obtaining seismic images in regular

Cartesian coordinates. The main goals are to develop algorithms to convert time-migration

velocities to true seismic velocities, and to convert time-migrated images to depth images

in regular Cartesian coordinates.

Our main results are three-fold. First, we establish a theoretical relation between the

true seismic velocities and the ”time migration velocities” using the paraxial ray tracing.

Second, we formulate an appropriate inverse problem describing the relation between time

2

migration velocities and depth velocities, and show that this problem is mathematically

ill-posed, i.e., unstable to small perturbations.

Third, we develop numerical algorithms to solve regularized versions of these equations

which can be used to recover smoothed velocity variations. Our algorithms consist of effi-

cient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods,

as well as level set and ray tracing algorithms for transforming Dix velocities into seis-

mic velocities. Our algorithms are applied to both two-dimensional and three-dimensional

problems, and we test them on a collection of both synthetic examples and field data.

Professor James Sethian
Dissertation Committee Chair

3

Contents

Contents i

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Overview and summary of the goals and results 1

1.2 Background: settings and terminology . 4

1.2.1 Seismic images . 4

1.2.2 High frequency approximation . 8

1.3 Time migration coordinates and image rays 9

1.4 Travel time approximation . 11

1.5 Emerging wave front . 12

1.5.1 General 3D case . 12

1.5.2 2D simplification . 13

1.6 Dix inversion . 14

2 Forward modeling of time migration velocities 16

2.1 Paraxial ray tracing . 16

2.2 Relation between the matrix K and the true seismic velocities in 3D 19

2.3 Relation between the Dix velocities and the true seismic velocities in 2D . . 23

2.4 Analytical example . 24

2.5 Statement of the inverse problem . 32

i

2.5.1 The inverse problem in 2D . 33

2.5.2 The inverse problem in 3D . 36

3 Numerical algorithms in 2D 38

3.1 Efficient time-to-depth conversion algorithm 38

3.1.1 Eulerian formulation of the boundary value problem 39

3.1.2 Numerical algorithm . 40

3.1.3 Causality . 44

3.1.4 Boundary effects . 45

3.1.5 Synthetic data examples . 46

3.2 Algorithms producing the seismic velocities from the migration velocities . . 52

3.2.1 Ray tracing approach . 52

3.2.2 Level set approach . 55

4 Synthetic data examples in 2D 58

4.1 Example 1 . 58

4.2 Example 2 . 60

4.3 Example 3 . 61

5 Field data examples 63

6 Numerical algorithms in 3D 67

6.1 Step 1: Ray tracing algorithm . 68

6.1.1 The ray equation in the spherical coordinates 68

6.1.2 The ray tracing algorithm . 71

6.2 Step 2: Recomputation of the velocity using the found image rays 74

6.3 Step 3: Time-to-depth conversion algorithm 74

7 Synthetic data examples in 3D 77

7.0.1 Example 1 . 77

7.0.2 Example 2 . 80

7.1 Example 3 . 80

8 Summary and future work 84

8.1 Summary . 84

8.2 Future work . 85

ii

8.2.1 Causality issue in the time-to-depth conversion algorithm 85

8.2.2 Field data example in 3D . 86

8.2.3 Level set approach in 3D . 86

8.2.4 First and second derivatives estimation for noisy data 86

Bibliography 87

iii

List of Figures

1.1 The main idea of this work. 2

1.2 The approaches and the algorithms: (a) 2D, (b) 3D. 4

1.3 The time coordinates (left), and the depth coordinates (right). 5

1.4 An example of a time migrated image. 7

1.5 Image rays and time migration coordinates. 10

1.6 Travel time approximation. 11

1.7 Emerging wave front. 12

1.8 Dix inversion. 14

2.1 Paraxial ray tracing. 17

2.2 Illustration for Theorem 1. 20

2.3 Illustration for the analytical example. 26

2.4 Illustration for the analytical example. 28

2.5 Illustration for the analytical example. 31

3.1 Section 3.1.1. Relation between (x, z), x0 and T 39

3.2 Fast Marching Method. Black, grey and white dots represent ”Accepted”,
”Considered” and ”Unknown” points respectively. 41

3.3 (a): The exact velocity v(x, z) = 1 + 1
2 cos πx3 sin πz

3 ; (b): the input data
v(x0, T); (c): the found velocity v(x, z); (d) the relative error: its maximus
is less than 5 percent. 47

3.4 The image rays computed for the exact velocity. 48

3.5 (a): The exact velocity v(x, z); (b): the input data v(x0, t0); (c): the found
velocity v(x, z); (d) the relative error and the image rays. 49

3.6 (a): The exact velocity v(x, z); (b): the input data v(x0, t0); (c): the found
velocity v(x, z); (d) the relative error and the image rays. 51

iv

4.1 (a): the exact velocity v(x, z); (b) the image rays; (c): the input data
f(x0, t) ≡ vDix(x0, t); (d): the found velocity v(x, z). 59

4.2 (a): the exact velocity v(x, z); (b) the Dix velocity converted to depth by
”vertical stretch”; (c): the found velocity v(x, z) and the image rays. . . . 61

4.3 (a): The exact velocity v(x, z); (b): the Dix velocity converted to depth; (c):
the found velocity v(x, z) and the image rays. 62

5.1 Left: seismic image from North Sea obtained by prestack time migration
using velocity continuation Fomel [2003]. Right: the corresponding time
migration velocity. 63

5.2 The found seismic velocity v(x, z) and the image rays computed from it. . 64

5.3 The smoothed Dix velocity vDix(x0, t0) (left) vs the found seismic velocity
v(x, z) (right). 64

5.4 (a) The poststack depth migrated image obtained with the found v(x, z); (b)
The prestack time migrated image converted to depth. 65

5.5 The poststack depth migration using the Dix velocities (left) vs the poststack
depth migration using the estimated seismic velocities (right). 66

7.1 Example 1. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion,
converted to depth; (d) the image rays projected onto the earth surface. . 79

7.2 Example 2. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion,
converted to depth; (d) the image rays projected onto the earth surface. . 81

7.3 Example 3. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion,
converted to depth; (d) the image rays projected onto the earth surface. . 83

v

List of Tables

1.1 Comparison of time migration and depth migration 6

4.1 The maximal relative errors produced by the time-to-depth conversion, the
ray tracing and the level set algorithms on the data from the velocity field
(4.1). 60

vi

Acknowledgements

First of all, I want to express my deepest gratitude to Professor Alexandre Chorin who

made the most important events in my life my possible. First, he got me admitted to UC

Berkeley, by going somewhere at the crucial moment and yelling at someone important to

convince that my English would not be a problem. Second, he raised for me a very kind,

smart and handsome guy Chris Cameron (truly a prince!) and kept him in the graduate

school long enough so that our terms here overlapped for one year.

I want to express my deepest gratitude to my advisor Professor James Sethian for being

the best thesis advisor I can fantasize. He always was very encouraging, gave me very

valuable advice about how to deal with difficulties and had a lot of patience to correct my

writings. Doing research with him was always very enjoyable.

I am very grateful to Dr. Sergey Fomel, who contributed a lot to the present work.

I am cordially thanking my grandmother Lidia Bashlykova who helped me to take care

of my first one, and then two children and made me able to do research and write thesis.

I am very grateful to my mother, Dr. Elena Kurkina, who twice saved me by coming in

critical situations from Russia to US (one time in three days upon my request) to help me

with my daughter and let me work.

I am very grateful to my husband Dr. Chris Cameron for always being very supportive

and understanding. Who had patience to listen to my talk rehearsals as many times as

necessary, to read and correct my mathematical compositions written in English, to solve

my numerous problems with software and always stay nice and sweet.

vii

Curriculum Vitæ

Maria Kourkina Cameron

Personal

Born April 25, 1976, Moscow, Russia

Education

2007 University of California, Berkeley

Ph.D., Applied Mathematics

1998 Moscow Institute of Physics and Technology, Russia

M.S., Applied Mathematics

Research Interests

Scientific Computing, PDE, Computational Physics, Geophysics,

Numerical Analysis

Publications

1 Seismic velocity estimation and time-to-depth conversion of time-

migrated images,

Maria Cameron*, UC Berkeley; Sergey Fomel, UT Austin; James

Sethian, UC Berkeley,

SEG/New Orleans 2006 Technical Program Online (SVIP 1.7)

http://abstracts.seg.org/techprog.cfm?pMeetingID=3

2 Seismic Velocity Estimation from Time Migrated Velocities,

Cameron, M. K., Fomel, S. B., Sethian, J. A., Inverse Problems,

2006, Submitted

viii

3 Time to depth conversion and seismic velocity estimation using time

migration velocities, Maria Cameron, Sergey Fomel, James Sethian.,

Geophysics, Letters, 2007, Submitted.

ix

x

Chapter 1

Introduction

1.1 Overview and summary of the goals and results

Seismic data are the records of the sound wave amplitudes P described by the wave

equation

∆P (x, y, z; t) =
1

v2(x, y, z)
∂2

∂t2
P (x, y, z; t). (1.1)

where v(x, y, z) is speed of propagation of the waves in the earth. In this work, we consider

only the seismic data coming from the acoustic P waves and refer to v(x, y, z) as the seismic

velocity. This velocity is typically unknown, and its determination is the subject of the

present work.

One common fast and robust process of obtaining seismic images is called time migration

(see e.g. Yilmaz [2001]). This process is considered adequate for the areas with mild lateral

velocity variation, i.e. where v depends mostly on z and only slightly on x and y. However,

even mild lateral velocity variations can significantly distort subsurface structures on the

time migrated images. Moreover, time migration produces images in very specific time

migration coordinates (x0, t0) (explained below), and the relation between them and the

Cartesian coordinates can be nontrivial if the velocity varies laterally.

One ”side product” of time migration is mean velocities vm(x0, t0), known as time

migration velocities. We will refer to them as migration velocities for brevity. In the case

1

where the seismic velocity depends only on the depth, these velocities are close to the root-

mean-square (RMS) velocities Dix [1955]. In the general case, these velocities relate to the

radius of curvature of the emerging wave front Hubral and Krey [1980].

An alternative approach to obtaining seismic images is called depth migration Yilmaz

[2001]. This approach is adequate for areas with lateral velocity variation, and produces

seismic images in regular Cartesian coordinates. The major problem with this approach is

that its implementation requires the construction of a velocity model for the seismic velocity

v(x, y, z). It can be both difficult and time consuming to construct an adequate velocity

model: an iterative approach of guesswork followed by correction is often employed.

The main idea of this work is to construct a velocity model v(x) from the migration

velocities given in the time migration coordinates (x0, t0) (see a block-scheme in Fig. 1.1) .

Using these velocities one can then perform depth migration to obtain an improved seismic

image in the Cartesian coordinates x. As an alternative to depth migration, one can instead

directly convert a time migrated image to ”depth” (regular Cartesian coordinates) using

the additional outputs of our construction x0(x) and t0(x).

Figure 1.1. The main idea of this work.

Thus, our goals are to create fast and robust algorithms to:

2

1. Convert the migration velocities vm(x0, t0) to the true seismic velocities v(x);

2. Convert time migrated images (in (x0, t0) coordinates) to ”depth” (to images in regular

Cartesian coordinates x).

The end result is to construct more accurate seismic images cheaply and routinely. Our

results are the following:

1. We begin by producing theoretical relations between the migration velocity and the

true seismic velocity in 2D and 3D.

• In 2D the Dix velocities vDix(x0, t0) which are a conventional estimate of true

seismic velocities from the migration velocities, can be used instead of the mi-

gration velocities as a more convenient input.

• The input data in the 3D case are a bit different. Time migration can be per-

formed in such a way that a set of certain 2 × 2 matrices K(x0, y0, t0) is de-

termined. These matrices divided by the time t0 have dimension of the velocity

squared, and we can call the entry-wise square roots of them migration velocities.

They can be converted into matrices F(x0, y0, t0) which we use as an input for

our 3D numerics.

2. Next, we formulate an appropriate inverse problem describing the relation between

time migration velocities and seismic velocities, and show that this problem is math-

ematically ill-posed, i.e., unstable to small perturbations.

3. We develop numerical algorithms to solve the regularized versions of this problem in

2D and 3D which can be used to recover smoothed velocity variations. Our algorithms

consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast

Marching Methods, as well as level set and ray tracing algorithms. The relation

between the approaches and the algorithms in 2D and 3D are outlined in Fig. 1.2 (a)

and (b) respectively.

4. Finally, we test our algorithms in 2D and 3D on a collection of examples.

3

(a) (b)

Figure 1.2. The approaches and the algorithms: (a) 2D, (b) 3D.

1.2 Background: settings and terminology

1.2.1 Seismic images

Seismic images are the images of the interior of the earth. They are crucial for the oil

and gas industry. Obtaining seismic images of the subsurface structures where the layers

are non-horizontal and the speed of propagation of the sound waves changes laterally is a

very challenging and important problem: oil and gas tends to accumulate in such places.

In particular, oil traps often occur around salt bodies. Salt bodies may have complicated

shapes, and the sound speed inside them is typically high in comparison with that in the

surrounding rock.

Seismic data, or the input data for seismic images, are collected as follows (see J.

Claerbout [2000]). The basic equipment for reflection seismic prospecting is a source for

impulsive sound waves, a receiver, and a multichannel waveform display system. A survey

line is defined along the earth surface. For example, one might have a ship pulling a receiver

cable behind it and activating the source every 25 meters. The waves sent by the source

split at every medium discontinuity they encounter into reflected and deflected waves. The

4

first discontinuity the waves reach is the sea bed. The receivers record the amplitudes of

the upcoming reflected waves. These records are the seismic data.

In geophysics, there are two commonly used coordinate systems: one is called time

coordinates (or time migration coordinates), and the second is called depth coordinates

(see Fig. 1.3, left and right respectively). Let A be a subsurface point. Suppose the point

A explodes at time t = 0. Let the sound wave first reach the surface at a point x0 at time

t = t0. Then (x0, t0) are its time coordinates. Its depth coordinates (x, z) are the location

x of its projection onto the surface and its depth z.

Figure 1.3. The time coordinates (left), and the depth coordinates (right).

Traditionally, seismic imaging is called migration. This name comes from the pre-

computer era, when seismic images were obtained in a very simple and cheap way. Those

who performed seismic imaging observed that the dipping (having a slope) reflectors on

the recording plane moved to different locations (migrated) and changed their slope on the

image plane.

There are two types of seismic imaging: time migration and depth migration. Time

migration is fast and efficient but:

• it is adequate only for places where the seismic velocity depends primarily on the

5

depth, while oil tends to lie, and all interesting phenomena tend to occur, in the areas

where the flat horizontal structures inside the earth are distorted;

• it produces images in the time coordinates which relate to the depth coordinates in a

very subtle way if the velocity varies laterally.

Depth migration produces images in the depth coordinates and it is adequate for arbitrary

places. But one needs to know the seismic velocity to implement it. Naturally, the seismic

velocity is never known. Typically, it is found by ”guessing and trying”. The pros and cons

of these two types of seismic imaging are summarized in Table 1.1.

Table 1.1. Comparison of time migration and depth migration

Time migration Depth migration
Adequate for mild lateral velocity variation arbitrary lateral velocity variation
Implementation requires seismic data seismic data and seismic velocity
Produces images in time coordinates depth coordinates

An example of a time migrated image1 is shown in Fig. 1.4. This is an image of a

section from the Gulf of Mexico. Note that it is in the time coordinates. The black and

white stripes (the color depends of the phase of the waves at which they reach the receivers)

represent the reflectors - the layers inside the earth. The gray area at the top indicates an

absence of reflectors there. We can conclude that this area corresponds to the water of the

Gulf of Mexico. The messy area at the bottom right corner indicates a failure to image

correctly the reflectors located there. This is probably due to the fact that the signals from

those reflectors first reach the surface beyond the area equipped with receivers.

Seismic imaging is based on the Huygens principle (see e.g. Yilmaz [2001]). Each

point of a reflector is considered as a secondary source. The recorded seismic data are a

superposition of the spherical waves coming from each reflecting point. Hence, if one were

able to extract the responses coming from each reflecting point from the set of the recorded

data, sum them with appropriate weights, and put the results into the appropriate point in
1Courtesy of Dr. S. Fomel.

6

Figure 1.4. An example of a time migrated image.

the image, one would get the image of the earth. Naturally, in order to be able to find the

response shapes from each reflecting point, one needs to have a guess about the propagation

speed of the waves - the seismic velocities.

Time migration is based on a strong assumption about the responses in the recording

plane coming from each point of the reflectors: they are assumed to have the same shape

as they do in the case of constant velocity. The width of these shapes is defined by the

time migration velocities, which are routinely determined in the process of time migration.

On the one hand, this assumption allows one to obtain seismic images without a priori

knowledge of the seismic velocity. On the other hand, it makes this type of imaging accurate

only for mild lateral velocity variation.

Depth migration makes no assumption about the response shapes. As a result, on

the one hand, one needs to know a priori the seismic velocities. On the other hand, once

a velocity model is built, one can accurately image the earth with arbitrarily complex

structures inside it and severe lateral velocity variation.

7

1.2.2 High frequency approximation

The seismic ray theory (see e.g. Červený [2001]; Popov [2002]), underlying this thesis,

is based on the high frequency approximation of the wave equation. In this section, we will

explain the connection between the Eikonal equation and the high frequency approximation

to the wave equation, following the discussion in (Popov [2002]).

Consider the wave equation

∆P (x, y, z; t) =
1
v2

∂2

∂t2
P (x, y, z; t). (1.2)

First suppose that the velocity v is constant. Let us seek a solution in the form of a plane

wave

P = Aeiφ, i2 = −1, φ = −ωt+ k1x+ k2y + k3z, (1.3)

where A, ω, k1, k2, k3 are constants. The plane wave given by equation (1.3) with a nonzero

amplitude A satisfies the wave equation (1.2) if and only if the following dispersion relation

holds
ω2

v2
= k2

1 + k2
2 + k2

3. (1.4)

Plane wave solutions play a remarkable role in mathematical physics because many types

of solutions can be presented as a superposition of plane waves. Obviously, a plane wave

solution does not exist if the velocity varies. But suppose that the velocity varies slowly.

In this case, it is natural to seek a solution for the wave equation in a form of the so-called

deformed plane wave

P = A(x, y, z)eiφ(x,y,z,t), (1.5)

where the amplitude A is no longer constant but depends on coordinates, and φ is no longer

a linear function. Furthermore, we will consider a wave field harmonic in time, i.e.,

P (x, y, z, t) = e−iωtU(x, y, z). (1.6)

Inserting equation (1.6) into wave equation (1.2) we get for U the Helmholtz equation(
∆ +

ω2

v2

)
U = 0. (1.7)

8

Let us derive the Eikonal and transport equations. Now v = v(x, y, z) and we seek a

solution of the form

U = eiωT (x,y,z)A(x, y, z), (1.8)

where T is called eikonal, A is the amplitude, and the circular frequency ω is supposed to be

a large parameter. Substituting equation (1.8) into the Helmholtz equation (1.7) we obtain

(
∆ +

ω2

v2

)
U = eiωT

(
ω2

(
1
v2
− (∇T)2

)
A+ iω(2∇T · ∇A+A∆T) + ∆A

)
. (1.9)

We suppose that ω is a large parameter of the problem and impose the following equations

(∇T)2 =
1
v2

(Eikonal equation); (1.10)

2∇T · ∇A+A∆T = 0 (Transport equation), (1.11)

in order to eliminate larger terms. But ∆A remains and we have no chance to eliminate it.

Thus, in this case, we are not able to satisfy the equation exactly!

Thus, if the circular frequency ω is large, the solution of the form

P (x, y, z, t) = A(x, y, z)e−iωteiωT (x,y,z), (1.12)

where the eikonal T (x, y, z) is a solution of Eikonal equation (1.10) and the amplitude

A(x, y, z) is a solution of transport equation (1.11), is an approximate solution of the wave

equation (1.2). This approximation is called the high frequency approximation.

1.3 Time migration coordinates and image rays

For many decades, imaging of the earth interior was based on the assumption that the

velocity inside the earth depends only on the depth and that the subsurface structures

are horizontal or, at worst, planar with the same dipping angle. To obtain more complex

structure distortions, Hubral Hubral [1977] introduced the concept of the image ray, which

gives the connection between the time migration coordinates and the regular Cartesian

coordinates.

9

Figure 1.5. Image rays and time migration coordinates.

To explain this idea, we begin with the high frequency approximation applied to the

wave equation (1.1), in which the wave front T (x, y, z) propagates according to the Eikonal

equation (see e.g. Popov [2002]):

|∇T (x, y, z)|2 =
1

v2(x, y, z)
. (1.13)

The characteristics of the Eikonal equation can be viewed as rays. Among all rays

starting at a subsurface point R and reaching earth’s surface (Fig. 1.5), some have minimal

travel time. These rays are called image rays, and it is easy to see that they must arrive

perpendicular to the surface. The ray RI in Fig. 1.5 is one such image ray. Thus, we may

characterize the point R in one of two coordinate systems: either (1) its natural Cartesian

coordinates x or (2) the point on the surface such that an image ray leaving x0 and traveling

for a given time reaches the point R. The former given are called depth coordinates, while

the latter are called time migration coordinates.

The conventional time migration coordinates are (x0, t0) where x0 is the escape location

of the image ray, and t0 is the doubled (two-way) travel time along it. Note that the lateral

position of the point R in the time migrated image is determined namely by the escape

location of the image ray I rather than by its projection Q to the surface (Fig. 1.5).

10

1.4 Travel time approximation

Figure 1.6. Travel time approximation.

Let S be a source and G be a receiver (Fig. 1.6), and let R be the reflection point. In

the simplest case, we assume that the velocity v inside the earth is constant. Then the total

travel time from S to R and from R to G is:

tSR + tRG =

√
t20
4

+
|x0 − S|2

v2
+

√
t20
4

+
|x0 −G|2

v2
. (1.14)

The ellipse in Fig. 1.6 is the locus of the reflection points A such that the total travel time

tSA + tAG is the same as tSR + tRG.

In the general case where the velocity inside the earth is arbitrary, formula (1.14) serves

as a starting point for a travel time approximation for time migration (namely its modern

variant called ”prestack time migration”) (see Yilmaz [2001]). In this approximation, x0 is

the escape location of an image ray from the reflection point R, and t0 is the two-way travel

time along it. The velocity v present in formula (1.14) is replaced with parameters with

dimensions of velocity that depend on x0 and t0. These parameters are called the migration

velocities and denoted by vm(x0, t0). They are chosen to provide the best fit to formula

(1.14) in the process of time migration. Thus, formula (1.14) suggests the approximation

t(S,G,x0, t0) =

√
t20
4

+
|x0 − S|2
v2
m(x0, t0)

+

√
t20
4

+
|x0 −G|2
v2
m(x0, t0)

. (1.15)

In the case where the velocity inside the earth depends only on the depth and the distance

11

between the source and the receiver is small, the migration velocity vm(x0, t0) is the root-

mean-square (RMS) velocity (Dix [1955]), given by

vm(t0) =

√
1
t0

∫ t0

0
v2(z(τ))dτ. (1.16)

1.5 Emerging wave front

In this section, our aim is to justify the travel time approximation given by formula

(1.15).

1.5.1 General 3D case

Figure 1.7. Emerging wave front.

Consider an emerging wave front from a point source A (Fig. 1.7) (see Hubral and

Krey [1980]). Let the image ray arrive at the surface point (x0, y0) at time t0 (here t0 is

the one-way travel time along the image ray). The travel time from A to the surface along

some other ray close to the image ray, arriving at the surface point (x, y), is given by the

Taylor expansion

t(x, y) = t0 +
1
2

∆xTΓ∆x +O(δ3), (1.17)

12

where ∆x =

 x− x0

y − y0

, Γ is the matrix of the second derivatives of t(x, y) evaluated at

the point (x0, y0) and δ =
√

(x− x0)2 + (y − y0)2. From geometrical considerations, one

can obtain (see Hubral and Krey [1980]) a relation between the matrix Γ and the matrix

R of the radii of curvature of the emerging wave front, namely

Γ−1 = Rv(x0, y0), (1.18)

where v(x0, y0) = v(x = x0, y = y0, z = 0) is the velocity at the surface point (x0, y0). For

convenience, we will work with the inverse of the matrix Γ which we denote by K:

K = Γ−1 = Rv(x0, y0). (1.19)

1.5.2 2D simplification

In the case where sources and receivers are arranged along some straight line, seismic

imaging becomes a 2D problem, and equation (1.17) can be simplified to

t(x) = t0 +
1
2

(x− x0)2txx(x = x0) +O(δ3) = t0 +
(x− x0)2

2Rv(x0)
+O(δ3), (1.20)

where v(x0) ≡ v(x = x0, z = 0). By squaring both sides of equation (1.20) we get:

t2(x) = t20 + (x− x0)2t0txx(x = x0) +O(δ3) = t20 + (x− x0)2
t0

Rv(x0)
+O(δ3). (1.21)

Suppose we want to compute the total travel time from a source S to the reflection point

A and from A to a receiver G. Using equation (1.21) we obtain:

t(x0, t0, S,G) = tSA + tAG =

√
t20 + (S − x0)2

t0
Rv(x0)

+

√
t20 + (G− x0)2

t0
Rv(x0)

+O(δ3).

(1.22)

Comparing equations (1.22) and (1.15) we see that the travel time approximation given by

formula (1.15) follows from the Taylor expansion in 2D. Moreover, the migration velocity

and the radius of curvature of the emerging wave front are converted through the relation

t0v
2
m(x0, t0) = v(x0)R(x0, t0). (1.23)

13

On the other hand, in 3D the travel time approximation given by formula (1.15) is not

as straightforward. Instead, one can easily derive the following travel time formula from

equations (1.17) and (1.18):

t(x0, t0, S,G) =
√
t20 + t0(S − x0)TK(x0, t0)−1(S − x0) (1.24)

+
√
t20 + t0(G− x0)TK(x0, t0)−1(G− x0).

However note that if the velocity depends only on the depth, the matrix K is a multiple

of the identity matrix, and hence formula (1.15) is the consequence of the Taylor expansion.

1.6 Dix inversion

Dix (Dix [1955]) established the first connection between the migration velocities and

the seismic velocities for the case where the velocity depends only on the depth. He showed

that the migration velocities are the root-mean-square (RMS) velocities if the distances be-

tween the sources and the receivers are small and developed the following inversion method.

Consider an earth model as in Fig. 1.8. Let the layers be flat and horizontal, and the ve-

Figure 1.8. Dix inversion.

locity be constant within each layer. We are given the RMS velocities Vi and the travel

times ti, i = 1, 2, ..., n, where Vi is the RMS velocity of the first i layers with respect to the

14

time, and ti is the two-way vertical travel time from the earth surface to the bottom of the

i-th layer. Then the layer velocities (typically called ”interval velocities”) vi can be found

successively from i = 2 to n:

vi =

√
V 2
i ti − V 2

i−1ti−1

ti − ti−1
. (1.25)

The depths of the lower boundaries of the layers are:

zi = zi−1 + vi
ti − ti−1

2
. (1.26)

Although it is derived for the cases in which the velocities are horizontally constant,

in practice this Dix inversion is sometimes applied to find the interval velocities from the

migration velocities in the case where the velocity varies laterally. For such cases, for the

continuously changing velocity in 2D the Dix velocities are given by:

v(x0, t0) =
√

∂

∂t0
(t0v2

m(x0, t0)). (1.27)

15

Chapter 2

Forward modeling of time

migration velocities

In this section we derive our main theoretical result: the relation between the migration

velocities and the true seismic velocities in 2D and between the matrix K in formula (1.17)

in 3D. The result in 2D was established by mutual efforts of Sergey Fomel and the author,

and then was extended to 3D by the author. We will also establish the stability of both the

forward and the backward construction problem.

2.1 Paraxial ray tracing

For any ray propagating in a 3D medium with a smooth velocity (Fig. 2.1), we can

call this ray central and attach a coordinate system (t, q1, q2) around it (see Popov [2002],

Červený [2001]). Let t be the travel time along the central ray. For each moment of time t,

we can draw a plane perpendicular to the central ray at the point which it reaches at time

t. Pick two mutually orthogonal directions in this plane and call them ~e1 and ~e2. Then the

location of any point M in the space can be expressed as

~rM = ~r0(t) + q1~e1 + q2~e2

16

for some t, q1 and q2, where ~r0(t) gives the point reached by the central ray at time t. If

M is close enough to the ray, its location can be described by (t, q1, q2) uniquely.

Figure 2.1. Paraxial ray tracing.

Suppose that the central ray is surrounded by a family of close rays and we want to

write equations of those rays in terms of q1(t) and q2(t) (Fig. 2.1). In order to apply

the Hamiltonian formalism, we need to introduce the generalized momentums p1 and p2

corresponding to the generalized coordinates q1 and q2. We first note the fact that the

central ray is a ray itself, and this imposes the following requirements on the evolution of

~e1 and ~e2:
d~e1
dt

=
∂v(t, q1, q2)

∂q1 q1=q2=0

~τ ,
d~e2
dt

=
∂v(t, q1, q2)

∂q2 q1=q2=0

~τ ,

where ~τ is the unit tangent vector to the central ray (Popov [2002]). The ray equations in

the Hamiltonian form are (Popov [2002], Popov and Pšenčik [1978],Červený [2001]):

d

dt

 q

p

 =

 0 v2
0I2

− 1
v0

V 0


 q

p

 . (2.1)

Here v0 is the velocity along the central ray, I2 is the 2×2 identity matrix, and V is a 2×2

17

matrix of the second derivatives of the velocity:

Vij =
∂2v(t, q1, q2)
∂qi∂qj

, i, j = 1, 2.

Suppose that the family of rays depends upon two parameters (α1, α2). There are two

important cases (see Fig. 2.2):

• All rays start perpendicular to the same plane. Then (α1, α2) can be chosen to be the

initial coordinates (x0, y0) of the rays at this plane. We will call such a family of rays

telescopic.

• All rays start at the same point, but in different directions. Then (α1, α2) can be

chosen to be the initial momentums (p1(0), p2(0)) of the rays. We will call such a

family the point source family.

Consider the following 2× 2 matrices (Popov [2002], Červený [2001]):

Qij ≡
∂qi
∂αj

, Pij ≡
∂pi
∂αj

, i, j = 1, 2. (2.2)

The equations of time evolution for Q and P are the equations in variations for equation

(2.1):

d

dt

 Q

P

 =

 0 v2
0I2

− 1
v0

V 0


 Q

P

 . (2.3)

The initial conditions for the telescopic family of rays are

Q(0) = I2, P(0) = 0, (2.4)

and for the point source family they are

Q(0) = 0, P(0) =
1

v0(0)
I2, (2.5)

where v0(0) is the velocity at the source point. The absolute value of the determinant of

the matrix Q has a nice geometrical sense (Popov [2002]):

| det Q| is the geometrical spreading of the family of rays.

18

Let the central ray arrive orthogonal to some plane at a point (x0, y0). Consider the

matrix Γ of the second derivatives of the travel times of the family of rays around the central

ray, evaluated at the point (x0, y0). E.g., the central ray can be the image ray arriving to

the earth surface. Then the matrix Γ is defined by formula (1.17) for the source point

family of rays from the source point A as in Fig. 1.7. In Popov [2002], Červený [2001] it

was shown that

Γ = PQ−1 (2.6)

and
d

dt
Γ = −v2

0Γ2 − 1
v0

V. (2.7)

For convenience, in the present work we will deal with the matrix K = Γ−1, which is the

matrix of radii of curvature of the wave front scaled by the velocity at the image ray, namely

K = v0R = QP−1. (2.8)

One can easily derive from equation (2.7) that the time evolution of K is given by:

d

dt
K = v2

0I2 +
1
v0

KVK. (2.9)

For the point source family of rays the initial conditions for the matrix K are:

K(0) = 0. (2.10)

2.2 Relation between the matrix K and the true seismic ve-

locities in 3D

We have established the relation between the matrices K and the seismic velocities in 3D

formulated in Theorem 1 below. The matrix K in formula (1.24) is a matrix of parameters

depending on x0 and t0, which can be estimated from the measurements. Theorem 1

provides a connection between the matrix K and the true seismic velocity at the subsurface

point x reached by the image ray arriving at x0 and traced backwards for time t0 (Fig. 2.2).

19

Theorem 1 Let an image ray starting from a subsurface point x (Fig. 2.2) arrive at the

earth surface point x0 at time t0. Designate this ray to be central. Let the matrix K(x0, t0)

be evaluated at the surface for a point source family of rays around the image ray, starting

at the same point x. Suppose there is also a telescopic family of rays around the image

ray starting perpendicular to the earth surface which we trace backwards w.r.t. the image

ray for time t0 and compute the matrices Q and P. Let Q(x0, t0) be the matrix Q for the

telescopic family of rays evaluated at the time t0 (i.e., at the subsurface point x) in this

backward tracing. Then

∂

∂t0
K(x0, t0) = v2(x(x0, t0))

(
Q(x0, t0)TQ(x0, t0)

)−1
. (2.11)

Figure 2.2. Illustration for Theorem 1.

Proof Let an image ray arrive at the surface point x0 at time t1. Fix a moment of time

t0 < t1 and consider a point source family of rays starting at the subsurface point x(x0, t0)

20

which the image ray passes at time t0. Introduce the following notations:

X =

 Q

P

 =



Q11 Q12

Q21 Q22

P11 P12

P21 P22


, A(t) =

 0 v2
0I2

− 1
v0

V 0

 .

Let X∗ be the 4× 4 matrix of derivatives of X with respect to the initial conditions:

X(t0) =



Q110 Q120

Q210 Q220

P110 P120

P210 P220


:

X∗ =



∂Q11

∂Q110

∂Q11

∂Q210

∂Q12

∂Q120

∂Q12

∂Q220

∂Q21

∂Q110

∂Q21

∂Q210

∂Q22

∂Q120

∂Q22

∂Q220

∂P11
∂P110

∂P11
∂P210

∂P12
∂P120

∂P12
∂P220

∂P21
∂P110

∂P21
∂P210

∂P22
∂P120

∂P22
∂P220


.

Note that since each of the columns of X is a linear independent solution of equation (2.1)

the derivatives not included into X∗ are zeros. X(t) and X∗(t) are solutions of the following

initial value problems:

dX
dt

= A(t)X, X(t0) =
1

v(t0)

 0

I2

 , (2.12)

where v(t0) = v(x(x0, t0)), and

dX∗
dt

= A(t)X∗, X∗(t0) = I4. (2.13)

Denote the solution of equation (2.13) by B(t0; t1) as it is done in Červený [2001]:

B(t0; t1) =

 Q1 Q2

P1 P2

 ,

where Qi, Pi, i = 1, 2 are 2 × 2 matrices.

 Q1

P1

 satisfies the initial conditions corre-

sponding to a telescopic point, and

 Q2

P2

 satisfies the initial conditions corresponding

21

to a normalized point source. B(t0, t1) is called the propagator matrix. Then the solution

of (2.12) is:

X(t) =
1

v(t0)

 Q2

P2

 . (2.14)

Now turn to the matrix K: K(t0; t1) = Q(t0; t1)P(t0; t1)−1 = Q2P−1
2 .

Shift the initial time t0 by −∆t. Then, according to equation (2.12) at time t0

Q(t0 −∆t; t0) = 0 + ∆tv2(t0)
1

v(t0)
I2 +O((∆t)2),

P(t0 −∆t; t0) =
1

v(t0)
I2 +O((∆t)2).

Hence the change in the initial conditions for equation (2.12) is:

∆Q0 = v0∆tI2 +O((∆t)2), ∆P0 = 0 +O((∆t)2). (2.15)

Then

K(t0 −∆t; t1) = K(t0; t1) +
2∑

i,j=1

∂K
∂Qij0

∆Qij0 +
2∑

i,j=1

∂K
∂Pij0

∆Pij0 +O((∆t)2) (2.16)

= K(t0; t1) +
(

∂K
∂Q110

+
∂K
∂Q220

)
v(t0)∆t+O((∆t)2).

Let us find the partial derivatives in the expression above:

∂K
∂Qii0

=
∂Q
∂Qii0

P−1 −QP−1 ∂P
∂Qii0

P−1, i = 1, 2. (2.17)

In terms of the entries of the matrix B(t0; t1)

∂K
∂Q110

+
∂K
∂Q220

= v0(Q1P−1
2 −Q2P−1

2 P1P−1
2). (2.18)

In Červený [2001] the symplectic property of the matrix B(t0; t1) was proved:

BTJB = J, (2.19)

where J is the 4× 4 matrix

J =

 0 I2

−I2 0

 .

22

To simplify formula (2.18) we will use the following consequences of the symplectic property

(2.19):

PT
2 Q1 −QT

2 P1 = I2, PT
2 Q2 = QT

2 P2. (2.20)

Then the matrix expression in equation (2.18) simplifies to:

Q1P−1
2 −Q2P−1

2 P1P−1
2 =

(PT
2)−1PT

2 Q1P−1
2 − (PT

2)−1PT
2 Q2P−1

2 P1P−1
2 =

(PT
2)−1(PT

2 Q1 −PT
2 Q2P−1

2 P1)P−1
2 =

(PT
2)−1(PT

2 Q1 −QT
2 P2P−1

2 P1)P−1
2 =

(PT
2)−1(PT

2 Q1 −QT
2 P1)P−1

2 =

(PT
2)−1P−1

2 . (2.21)

Substituting Eqn. (2.21) to Eqn. (2.18) and then to Eqn. (2.16) we get:

K(t0 −∆t; t1) = K(t0; t1) + ∆tv2(t0)(PT
2)−1P−1

2 +O((∆t)2). (2.22)

Then the derivative of K with respect to the initial time is:

−∂K(t0; t1)
∂t0

= v2(t0)(PT
2)−1P−1

2 . (2.23)

In Červený [2001] the following reciprocity property was proved:

PT
2 (x1,x2) = Q1(x2,x1), (2.24)

where x1, x2 are the end points of the central ray. Applying it to equation (2.23) and taking

the time reverse into account we obtain formula (2.11).

2.3 Relation between the Dix velocities and the true seismic

velocities in 2D

In 2D the matrices Q, P and K become scalars which we denote by Q, P and K

respectively. K is the radius of curvature of the wave front scaled by the velocity at the

23

central ray: K = vR. The time evolution of Q, P and K are given by:

d

dt

 Q

P

 =

 0 v2
0

−vqq

v0
0


 Q

P

 ,
dK

dt
= v2 +

vqq
v
K2. (2.25)

In a similar way as it was done in 3D, it can be proven that

∂

∂t0
K(x0, t0) =

v2(x(x0, t0), z(x0, t0))
Q2(x0, t0)

. (2.26)

Then taking into account the definition of the Dix velocity (1.27) and the relation (1.23)

between the migration velocities and the radius of curvature of the emerging wave front we

have the following:

Theorem 2 Let an image ray arrive to the earth surface point x0 at time t0 from a subsur-

face point (x, z). Suppose there is a telescopic family of rays around the image ray starting

perpendicular to the earth surface which we trace backwards w.r.t. the image ray for time

t0 and compute the quantities Q and P . Let Q(x0, t0) be the quantity Q for the telescopic

family of rays evaluated at the time t0 (i.e., at the subsurface point (x, z)) in this backward

tracing. Then the Dix velocity vDix(x0, t0) is the ratio of the true seismic velocity v(x, z)

and the absolute value of Q(x0, t0):

vDix(x0, t0) =
v(x(x0, t0), z(x0, t0))

|Q(x0, t0)|
. (2.27)

Note that here, t0 is the one-way travel time along the image ray and that we denote

the depth direction by z.

2.4 Analytical example

Take a velocity field with a constant gradient of slowness squared1:

1
v2(x, z)

= s2(x, z) = s20 + 2gx. (2.28)

In such a medium, an analytic result can be produced by ray tracing. We will demonstrate

that
1We thank Dr. S. Fomel for this example.

24

(i) dQ
dt = v2P , dP

dt = −vqq

v Q;

(ii) K = Q/P ;

(iii) Theorem 2 holds, i.e.,
∂K

∂t0
=

1
P 2

=
v2

Q2
,

where P relates to the point source family traced toward the surface, and Q relates

to the telescopic family traced from the surface.

We begin by noting that the rays are parabolic trajectories (there is an analogy with

particles moving in constant gravitational field):

H =
1
2
|~p|2 − 1

2
s2(x, z),

dx

dσ
= px,

dz

dσ
= pz, (2.29)

dpx
dσ

= g,
dpz
dσ

= 0.

Hence,

x(σ) =
gσ2

2
+Aσ +B, z(σ) = Cσ +D, (2.30)

where (x′)2 + (z′)2 = p2
x + p2

z = s20 + 2gx. Consider a ray
−−→
MO arriving normally to the

surface (z = 0) at the origin at σ = σ0 (Fig 2.3). It is easy to see that this ray is given by

x(σ) =
g

2
(σ0 − σ)2, (2.31)

z(σ) = s0(σ0 − σ).. (2.32)

The slowness along this ray is

p2
x + p2

z = (x′(σ))2 + (z′(σ))2 = g2(σ0 − σ)2 + s20 ≡ s(σ). (2.33)

(i) Let us compute Q and P for a point source family of rays at the surface by their defi-

nitions, i.e., from the geometrical considerations. The ray
−−→
MO is an image ray. Designate it

to be central and consider a narrow point source family of rays starting at (x = gσ2
0

2 , z = sσ0).

Pick one ray, the ray
−−→
MA (Fig. 2.3) from this family, and find its equations. Let the initial

momentum of the ray
−−→
MA differs from the one of the ray

−−→
MO by a small angle α. We will

25

Figure 2.3. Illustration for the analytical example.

denote by letters with tilde (̃) the quantities related to the ray
−−→
MA. At the initial point,

the absolute value of momentum

|~̃p(0)| =
√
s20 + g2σ2

0 ≡ s(0). (2.34)

Hence,

p̃x = s(0) sin(θ + α) = s(0)(sin θ + α cos θ +O(α2)

= s(0)(− gσ0

s(0)
− α s0

s(0)
+ ...)

= −gσ0 − αs0 +O(α2), (2.35)

p̃z = s(0) cos(θ + α) = s(0)(cos θ − α sin θ +O(α2)

= s(0)(− s0
s(0)

+ α
gσ0

s(0)
+ ...)

= −s0 + αgσ0 +O(α2). (2.36)

26

Using equations 2.30, 2.34 and 2.35 we obtain

x̃(σ) =
g

2
(σ0 − σ)2 − αs0σ +O(α2), (2.37)

z̃(σ) = s0(σ0 − σ) + αgσ0σ +O(α2). (2.38)

The ray
−−→
MA hits the surface at σ = σ∗ which can be found from the following equation:

z̃(σ∗) = s0(σ0 − σ∗) + αgσ0σ∗ +O(α2) = 0.

Hence,

σ∗ =
s0σ0

s0 − gσ0α
+O(α2) = σ0 +

gσ2
0

s0
α+O(α2). (2.39)

Plugging equation (2.39) into equation (2.37) we find the location where the ray
−−→
MA hits

the surface:

x̃(σ∗) = −s0σ0α+O(α2). (2.40)

Choosing the direction of the axis q in the ray coordinates opposite to the direction of the

x-axis, we find

q = s0σ0α.

Now we can find Q at the point O by its definition:

Q ≡ dq

dα α=0
= s0σ0. (2.41)

The momentum p corresponding to the ray coordinate q is the projection of the mo-

mentum of a ray onto the axis q which is orthogonal to the momentum of the central ray.

At the surface, the central ray
−−→
MO has a vertical momentum. Hence, for the ray

−−→
MA,

p=−px(σ∗):

p = −p̃x(σ∗) = −x′(σ∗) = g(σ0 − σ∗) + αs0 +O(α2) = α
s20 − g2σ2

0

s0
+O(α2). (2.42)

By definition, P at the point O is given by

P ≡ dp

dα α=0
=
s20 − g2σ2

0

s0
. (2.43)

Now let us check that Q and P satisfy equations (2.25) (Claim (iii)). Draw a line normal

to the ray
−−→
MO at the location (x(σ) = g

2(σ0 − σ)2, z(σ) = s0(σ0 − σ) (Fig. 2.5). This line

27

Figure 2.4. Illustration for the analytical example.

is given by

x(q) =
g

2
(σ0 − σ)2 − s0

s(σ)
q, (2.44)

z(q) = s0(σ0 − σ) +
g(σ0 − σ)
s(σ)

q,

where q is the signed distance from the central ray, the q in the ray coordinates in the

paraxial ray tracing. Find the distance between the rays
−−→
MA and

−−→
MO along this line:

x̃(σ∗) =
g

2
(σ0 − σ∗)2 − αs0σ∗ +O(α2) =

g

2
(σ0 − σ)2 − s0

s(σ)
q, (2.45)

z̃(σ∗) = s0(σ0 − σ∗) + αgσ0σ∗ +O(α2) = s0(σ0 − σ) +
g(σ0 − σ)
s(σ)

q. (2.46)

We find σ∗ from equation (2.46):

σ∗ =
−sσ + g(σ0−σ)

s(σ) q

−s0 + αgσ0
+O(α2) = σ +

qσσ0

s0
α− g(σ0 − σ)

s(σ)s0
q +O(α2) +O(αq). (2.47)

28

Substitute it into equation (2.45):

g

2
(σ0 − σ)2 − s0

s(σ)
q =

g

2
(σ0 − σ −

qσσ0

s0
α+

g(σ0 − σ)
s(σ)s0

q)2 − αs0σ +O(α2) +O(αq),

− s0
s(σ)

q = −g
2(σ0 − σ)σσ0

s0
α+

g2(σ0 − σ)2

s(σ)s0
q +O(α2) +O(αq) +O(q2),

q(
s0
s(σ)

+
g2(σ0 − σ)2

s(σ)s0
+O(α)) = α(s0σ +

g2(σ0 − σ)σσ0

s0
) +O(α2) +O(q2),

q
s(σ)
s0

= α
s20 + g2(σ0 − σ)σ0

s0
σ +O(α2) +O(q2).

Hence,

q = α
s20 + g2(σ0 − σ)σ0

s(σ)
σ +O(α2). (2.48)

Thus,

Q ≡ dq

dα α=0
=
s20 + g2(σ0 − σ)σ0

s(σ)
σ. (2.49)

According to equation (2.25),
dQ

dt
= v2P.

Using the fact that dt
dσ = s2 and equation (2.49) we compute

P =
s40 + g4σ(σ0 − σ)3 + s20g

2σ0(2σ0 − 3σ)
s3(σ)

. (2.50)

At the surface we have

Q(σ0) = s0σ0, (2.51)

P (σ0) =
s20 − g2σ2

0

s0
. (2.52)

We see that they coincide with the ones computed by the definitions (equations (2.41) and

(2.43)).

The velocity given by equation (2.28) can be rewritten in terms of the ray coordinates

{σ, q} as follows:

1
v2(σ, q)

= s2(σ, q) = s20 + 2g(x(σ)− q cos θ(σ)) = s20 + 2gx(σ) + 2g
s0q

s(σ)
= s2(σ) + 2gq

s0
s(σ)

.

(2.53)

Differentiating v(σ, q) twice w.r.t. q we get:

vqq =
3g2s20
s7(σ)

. (2.54)

29

Using equation (2.50) we compute:

dP

dt
=

1
s2(σ)

dP

dσ

= −3g4σ0(σ0 − σ)2

s5(σ)
− 3s20g

2σ0

s5(σ)
+ 3g2(σ0 − σ)

s40 + g4σ0(σ0 − σ)3 + s20g
2σ0(2σ0 − 3σ)

s7(σ)

=
−3g4s20σ0(σ0 − σ)2 − 3g6σ0(σ0 − σ)4 − 3s40g

2σ0 − 3s20g
4σ0(σ0 − σ)2

s7(σ)

+
3s40g

2(σ0 − σ) + 3g6σ0(σ0 − σ)4 + 6s20g
4σ2

0(σ0 − σ)− 9s20g
4σ0σ(σ0 − σ)

s7(σ)

=
−6g4s20σ0(σ0 − σ)2 − 3s40g

2σ + 6s20g
4σ2

0(σ0 − σ)− 9s20g
4σ0σ(σ0 − σ)

s7(σ)

=
g4s20σ0(−6σ2

0 + 12σ0σ − 6σ2 + 6σ2
0 − 6σ0σ − 9σ0σ + 9σ2)− 3s40g

2σ

s7(σ)

=
g4s20σ0(3σ2 − 3σ0σ)− 3s40g

2σ

s7(σ)

= −3g2s20(g2σ0(σ0 − σ) + s20)
s7(σ)

(2.55)

Comparing equations (2.55) and (2.49) we see that

dP

dt
= −3g2s20

s7
Qs0 = −vqq

v
Q.

Thus, we have demonstrated that Q and P satisfy equation (2.25) (Claim (i)).

(ii) Now we will show that K = Q/P (Claim (ii)). Let us first compute K at the surface

from its definition: K = vR where R is the radius of curvature of the emerging wave front:

K = vR =
1
s0

lim
α→0

q

arg(~p(σ∗), ~̃p(σ∗)
=

1
s0
s0σ0α lim

α→0

p̃z(σ∗)
p̃x(σ∗)

= σ0α lim
α→0

s0 − αgσ2
0

α
s20−g2σ2

0
s0

s20σ0

s20 − g2σ2
0

. (2.56)

Computing the ratio of Q and P at the surface we find

K(σ0) =
Q(σ0)
Pσ0)

=
s20σ0

s20 − g2σ2
0

(2.57)

which coincides with the result given by equation (2.56).

(iii) Check equation (2.23).

t0 =
∫ σ0

0
((s20 + g2(σ0 − σ)2)dσ. (2.58)

30

Hence,
dt0
dσ0

= s20 +
∫ σ0

0
2g2(σ0 − σ)dσ = s20 + .g2σ2

0 ≡ s2(0). (2.59)

Therefore,

∂K

∂t0
=
∂K

∂σ0

1
s2(0)

=
(

s20
s20 − g2σ2

0

+
2g2s20σ

2
0

(s20 − g2σ2
0)2

)
1

s2(0)

=
s20s

2(0)
(s20 − g2σ2

0)2
1

s2(0)
=

s20
(s20 − g2σ2

0)2
≡ 1
P 2

. (2.60)

We did not get minus here due to the fact that we made σ0 a varying parameter, while the

initial σ was fixed to be 0 rather than the other way around as in the proof of Theorem 1.

Figure 2.5. Illustration for the analytical example.

Now let us show that equation (2.26) holds, i.e. Theorem 2. Trace the ray
−−→
MO backward

till σ = σ0. Then the ray
−−→
OM is given by

x(σ) =
g

2
σ2, (2.61)

z(σ) = s0σ. (2.62)

Along with this ray, consider a telescopic family of ray starting normal to the surface. Pick

a ray
−−→
AN from this family. Let this ray starts at the location x0 = δ (Fig. 2.5). One can

31

easily find that the ray
−−→
AN is given by

x̃(σ) =
g

2
σ2 + δ, (2.63)

z̃(σ) = σ
√
s20 + 2gδ. (2.64)

Compute Q for the ray
−−→
OM at the point (x = g

2σ
2
0, z = s0σ0). The equations of a line

passing through this point and orthogonal to the ray
−−→
OM are

x(q) =
gσ2

0

2
− s0
s(σ0)

q, (2.65)

z(q) = s0σ0 +
gσ0

s(σ0)
q,

where s(σ0) =
√
s20 + g2σ2

0, and q is the signed distance from the ray
−−→
OM along this line.

Find q corresponding to the intersection of this line with the ray
−−→
AN :

gσ2
0

2
− s0
s(σ0)

q =
g

2
σ2
∗ + δ, (2.66)

s0σ0 +
gσ0

s(σ0)
q = σ∗

√
s20 + 2gδ. (2.67)

We express σ∗ from equation (2.67) and plug it into equation (2.66):

g

2

s20σ2
0 + g2σ2

0
s2(σ0)

q2 + 2s0σ2
0g

s(σ0) q

s20 + 2gδ

+ δ =
gσ2

0

2
− s0
s(σ0)

q.

Hence,

q =

gσ2
0

2

(
s20+2gδ−s20
s20+2gδ

)
− δ

s0
s(σ0)

g20σ
2
0+s20+2gδ

s20+2gδ

+O(δ2) =
g2σ2

0δ − s20δ
s20 + g2σ2

0 + 2gδ
s0

s(σ0)
+O(δ2). (2.68)

Then,

Q ≡ dq

dδ
δ=0 =

g2σ2
0 − s20

s2(σ0)
s(σ0)
s0

=
g2σ

2
0 − s20

s(σ0)s0
. (2.69)

Comparing equations (2.60) and (2.69) we get

∂K

∂t0
=

s20
(s20 − g2σ2

0)2
≡ v2(M)

Q2
. (2.70)

2.5 Statement of the inverse problem

We state an inverse problem both in 2D and in 3D. Here, t0 will denote the one-way

travel time along the image ray.

32

2.5.1 The inverse problem in 2D

Suppose there is an image ray arriving at each surface point x0, xmin ≤ x0 ≤ xmax.

For any 0 ≤ t0 ≤ tmax, trace the image ray backward for time t0 together with a small

telescopic family of rays. Let the image ray being traced backward reach a subsurface point

(x, z) at time t0. Denote by v(x0, t0) the velocity at the point (x, z), and by Q(x0, t0)

the quantity Q for the corresponding telescopic family at the point (x, z). We are given

vDix(x0, t0) = v(x(x0,t0),z(x0,t0))
|Q(x0,t0)| ≡ f(x0, t0), xmin ≤ x0 ≤ xmax, 0 ≤ t0 ≤ tmax. We need

to find v(x, z), the velocity inside the domain covered with the image rays arriving to the

surface in the interval [xmin, xmax].

The first question is whether this problem is well-posed. In the next sections, we will

show that both the direct problem (given v(x, z) find f(x0, t0)) and the inverse prob-

lem (given f(x0, t0) find v(x, z)) are ill-posed. We will use the notation f(x0, t0) ≡
v(x(x0,t0),z(x0,t0))

|Q(x0,t0)| rather than vDix(x0, t0) to emphasize that f is computed as the ratio v/|Q|

rather than from the optimal migration velocities.

Ill-posedness of the direct problem

Direct Problem: Given v(x, z), xmin ≤ x ≤ xmax, xmin < 0, xmax > 0, z ≥ 0 and

tmax find f(x0, t0) = v(x0,t0)
|Q(x0,t0)| , xmin ≤ x0 ≤ xmax, 0 ≤ t0 ≤ tmax.

We shall show that small changes in v(x, z) can lead to large changes in f(x0, t0). Take

v(x, z) = 1 and ṽ(x, z) = 1 + a cos(kx), −1 ≤ x ≤ 1. Then

||ṽ − v||∞ = a.

Obviously, f(x0, t0) = 1 for v(x, z) = 1. Compute f̃(x0, t0) for ṽ(x, z) at x0 = 0. As the

image ray arriving at x0 = 0 is straight, we have that

vqq = vxx(x = 0) = −ak2.

33

Then we have:

dQ

dt0
= (1 + a2)P,

dP

dt0
=

ak2

1 + a
Q, Q(0) = 1, P (0) = 0.

Therefore,
d2Q

dt20
=
ak2(1 + a2)

1 + a
Q, Q(0) = 1,

dQ

dt0
= 0.

Hence,

Q(t0) = coshωt0, ω =

√
ak2(1 + a2)

1 + a
.

Pick k = 1
a and let a tend to zero. Then 1√

2a
< ω <

√
2
a , and

f(x0 = 0, t0) =
1

coshωt0
<

1
cosh t0√

2a

.

Hence

||f̃(x0, t0)− f(x0, t0)||∞ > 1− 1
cosh tmax√

2a

>
1
2

for a small enough. Thus, we have shown that arbitrarily small changes in the velocity

v(x, y) may lead to significant changes in f(x0, t0), i.e., the direct problem is physically

unstable in the max norm.

Ill-posedness of the inverse problem

Inverse Problem: Given f(x0, t0) = v(x0,t0)
|Q(x0,t0)| , xmin ≤ x0 ≤ xmax, 0 ≤ t0 ≤ tmax, find

v(x, z), the velocity inside the domain covered with the image rays arriving to the surface

in the interval [xmin, xmax].

Here we shall prove that the corresponding discrete problem is ill-posed: Given f(x0i, tk),

i = 0, 1, ..., n − 1, k = 0, 1, ..., p − 1, x0i = xmin + i∆x, tk = k∆t, where ∆x = (xmax −

xmin)/(n−1), ∆t = tmax/(p−1) respectively, find v(xi, zj), i = 0, 1, ..., n−1, j = 0, 1, ...,m−

1.

Let xmin = −L and xmax = L and n be odd so that x = 0 is one of the grid lines. Suppose

we are given the following two discrete arrays: (1) f(x0i, tk) = 1 and (2) f̃(x0i, tk) = 1 if

x0i 6= 0 and f̃(x0i, tk) = b > 1 if x0i = 0. Then

||f(x0i, tk)− f̃(x0i, tk)||∞ = b− 1. (2.71)

34

For f(x0i, tk) = 1 v(x, y) = 1. Let us find a velocity ṽ(x, z) such that the exact values of f̃

for it coincides with f̃(x0i, tk) on the mesh. Let the mesh step in x0 be ∆x. We will look

for ṽ(x, z) in the following form: pick 0 < α ≤ ∆x and set ṽ(x, z) = 1 if |x| ≥ α, and

ṽ(x, z) = v(x, t0(z)) = 1 + (ṽ(0, t0)− 1) exp

(
1− 1

1−
(
x
α

)2
)

if |x| < α. Here v(0, t0) is to be found. Note that

ṽxx(0, t0) = − 2
α2

(ṽ(0, t0)− 1). (2.72)

Since f̃(0, tk) = ṽ(0,t0)
Q(0,t0) = b,

Q(0, t0) =
ṽ(0, t0)

b
. (2.73)

Due to the symmetry of our v(x, z), the ray starting at x0 = 0 perpendicular to the surface

is straight. Let us write the IVP for Q and P for this ray:

dQ

dt0
= v2P, Q(T = 0) = 1,

dP

dt0
= −vxx

v
Q, P (T = 0) = 0.

Here v(t0) ≡ ṽ(0, t0). Taking into account relation (2.73) and using Eqn. (2.72) we get:

dv

dt0
= bv2P, v(t0 = 0) = b, (2.74)

dP

dt0
=

2
α2b

(v − 1), P (t0 = 0) = 0

Along with IVP (2.74) consider the following IVP:

dw

dt0
= bu, w(t0 = 0) = b, (2.75)

du

dt0
=

2
α2b

(w − 1), u(t0 = 0) = 0.

Solving IVP (2.75) we find:

w(t0) = 1 + (b− 1) cosh

(
t0
√

2
α

)
.

Then by a variant of a comparison theorem, on the interval [0, T∗) where the solution to

IVP (2.74) exists, v(t0) > w(t0). Hence, ṽ(0, t0) either blows up, or reaches its maximum

at tmax. Hence we conclude that

||v(x, z)− ṽ(x, z)||∞ > (b− 1) cosh

(
tmax
√

2
α

)
. (2.76)

35

Comparing formulae (2.71) and (2.76) we see that for any b we can pick α =

min{∆x, (b−1)tmax

√
2

3 } and hence make the left-hand side of Eqn. (2.76) greater than 1.

Thus we have shown that the inverse problem is numerically unstable in the max norm.

Eulerian formulation of the inverse problem

The inverse problem stated in Section 2.5 can be formulated in a different, Eulerian way.

Consider the mapping between the Cartesian coordinates (x, z) and the time migration

coordinates (x0, t0). The functions x0(x, z) and t0(x, z) satisfy the following system of

equations:

|∇x0|2 =
(
∂x0

∂x

)2

+
(
∂x0

∂z

)2

=
1

Q2(x, z)
, (2.77)

∇x0 · ∇t0 =
∂x0

∂x

∂t0
∂x

+
∂x0

∂z

∂t0
∂z

= 0, (2.78)

|∇t0|2 =
(
∂t0
∂x

)2

+
(
∂t0
∂z

)2

=
1

v2(x, z)
. (2.79)

Equation (2.77) follows from the definition of Q. Equation (2.78) indicates that the curves

t0=const are orthogonal to the image rays, and will be derived in Section 3.1.1 below.

Equation (2.79) is the Eikonal equation.

The input data are

v2
Dix(x0, t0) =

v2(x(x0, t0), z(x0, t0))
Q2(x(x0, t0), z(x0, t0))

. (2.80)

The boundary conditions are:

x0(x, 0) = x, t0(x, 0) = 0, Q(x, 0) = 1, v(x, 0) = vDix(x0 = x, t0 = 0). (2.81)

2.5.2 The inverse problem in 3D

Suppose there is an image ray arriving at each surface point (x0, y0), xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax. For any 0 ≤ t0 ≤ tmax, trace the image ray backward for time t0 together

with a small telescopic family of rays. Let the image ray reach a subsurface point (x, y, z)

after being traced backward for time t0. Let v(x, y, z) be the velocity at the point (x, y, z)

36

, and Q(x0, y0, t0) be the matrix Q for the small telescopic family at the point (x, y, z). We

are given

∂K(x0, y0, t0)
∂t0

= v2(x, y, z)(QT (x0, y0, t0)Q(x0, y0, t0))−1 ≡ F (x0, y0, t0),

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, 0 ≤ t0 ≤ tmax. We need to find v(x, y, z), the velocity

inside the earth in the domain covered with the image rays arriving to the surface to the

rectangle [xmin, xmax]× [ymin, ymax].

37

Chapter 3

Numerical algorithms in 2D

In this section we propose three numerical algorithms. We will start with an efficient

time-to-depth conversion algorithm. The input for it is v(x0, t0) ≡ v(x(x0, t0), z(x0, t0)).

The output is v(x, z), x0(x, z) and t0(x, z). This algorithm is an essential part of our other

two algorithms which produce v(x, z) from vDix(x0, t0). The first of these two, based on

a ray tracing approach, creates v(x0, t0), the input for the time-to-depth algorithm. The

second, based on a level set approach, uses it as a part of its time cycle. Also, if nothing

else is available, Dix velocities can be used as the input for our time-to-depth conversion.

The main advantage of our time-to-depth conversion algorithm is that it is very fast and

robust.

3.1 Efficient time-to-depth conversion algorithm

In this section we will use notation T for t0 to be consistent with the notations in the

Eikonal equation (1.13). Also, we will deal with the reciprocal of the velocity s(x, z) which

we call slowness for convenience.

38

3.1.1 Eulerian formulation of the boundary value problem

Let (x, z) be a subsurface point (Fig. 3.1). Let s(x, z) be the slowness at the point

(x, z). Let the image ray from (x, z) reach the surface at some point x0 and let T be the

one-way travel time from (x, z) to the surface point x0.

Figure 3.1. Section 3.1.1. Relation between (x, z), x0 and T .

Let xmin ≤ x0 ≤ xmax, 0 ≤ T ≤ Tmax, xmin ≤ x ≤ xmax, 0 ≤ z ≤ zmax. Given

s(x0, T), our goal is to find s(x, z), x0(x, z) and T (x, z), i.e., the slowness at each subsurface

point (x, z), the escape location of the image ray from each subsurface point (x, z), and the

one-way travel time along each image ray. Thus, the input for this algorithm is given in the

time domain (x0, T), and the desired output is in the depth domain (x, z).

The functions x0(x, z) and T (x, z) are well-defined in the case if the image rays do not

intersect inside the domain in hand. If the image rays intersect, our algorithm will follow

the first arrivals to the surface.

The functions s(x0, T), x0(x, z) and T (x, z) are related according to the following system

of PDE’s:

39

|∇T |2 = s2(x0, T) ≡ s(x0(x, z), T (x, z)), (3.1)

∇T · ∇x0 = 0. (3.2)

Equation (3.1) is the Eikonal equation with an unknown right-hand side. Equation (3.2)

gives a connection between x0 and T , and indicates that the curves T=const are orthogonal

to the image rays. We may derive this relation as follows:

We first note that the escape location x0 is constant along each image ray. Hence the

time derivative of x0 along each image ray must be zero:

dx0

dT
=
∂x0

∂x

dx

dT
+
∂x0

∂z

dz

dT
= 0. (3.3)

Writing the equations of the phase trajectories for the Hamiltonian

H =
1
2
|∇T |2 − 1

2
s2(x, z) = 0

given by the Eikonal equation, we have that

dx

dT
=
∂T

∂x

1
s2
,

dz

dT
=
∂T

∂z

1
s2
.

Substituting this into equation (3.3) we get:

∂x0

∂x

dx

dT
+
∂x0

∂z

dz

dT
=

1
s2
∇x0 · ∇T = 0.

Hence, ∇x0 · ∇T = 0 as desired.

We also have boundary conditions for the system (3.2):

x0(x, 0) = x, T (x, 0) = 0, s(x, 0) = s(x0 = x, T = 0). (3.4)

3.1.2 Numerical algorithm

The motivation and the main building block or this algorithm is Sethian’s Fast Marching

Method (Sethian [1996]) designed for solving a boundary value problem for the Eikonal

equation with known right-hand-side. This method is a Dijkstra-type method, in that it

40

Figure 3.2. Fast Marching Method. Black, grey and white dots represent ”Accepted”,
”Considered” and ”Unknown” points respectively.

systematically advances the solution to the desired equation from known values to unknown

values without iteration. Dijkstra’s method, first developed in the context of computing

a shortest path on a network, computes the solution in order N logN , where N is the

total number of points in the domain. The first extension of this approach to an Eikonal

equation is due to Tsitsiklis (Tsitsiklis [1995]), who obtains a control-theoretic discretization

of the Eikonal equation, which then leads to a causality relationship based on the optimality

criterion. Tsitsiklis’ algorithm evolved from studying isotropic min-time optimal trajectory

problems, and involves solving a minimization problem to update the solution. A more

recent, finite difference approach, based again on Dijkstra-like ordering and updating, was

developed by Sethian (Sethian [1996, 1999A]) for solving the Eikonal equation. Sethian’s

Fast Marching Method evolved from studying isotropic front propagation problems, and

involves an upwind finite difference formulation to update the solution. Both Tsitskilis’

method and the Fast Marching Method start with a particular (and different) coupled

discretization and each shows that the resulting system can be decoupled through a causality

property. In the particular case of a first order scheme on a square mesh, the resulting

quadratic update equation at each grid point is the same for both methods. We refer the

reader to these references for details on ordered upwind methods for Eikonal equations, as

well as (Sethian and Vladimirsky [2003]) for a detailed discussion about the similarities and

41

differences between the two techniques. More recently, Sethian and Vladimirsky have built

versions of a class of Ordered Upwind Methods, based on Dijkstra-like methodology, for

solving the more general class of optimal control problems in which the speed/cost function

depends on both position and direction, which leads to a convex Hamilton-Jacobi equation.

See (Sethian and Vladimirsky [2003]) for details.

We now discuss the Fast Marching Method in more detail, since it will serve as a build-

ing block to our algorithm. In order to follow the physical propagation of information, an

upwind scheme is used, and the solution is computed at points in order of increase of T . In

order to achieve it, the points are divided into ”Accepted”, where T is computed and no

longer can be updated and can be used for estimation of T at its neighbors; ”Considered”,

where T is computed but may be updated in future and cannot be used for estimation of T

at other points; ”Unknown”, where no value of T has been computed yet. At each time step

a ”Considered” point with the smallest value of T , determined by the heap sort, becomes

”Accepted”. Sethian used this approach to compute the solution of the Eikonal equation

with known right-hand-side in a variety of settings including semiconductor processing, im-

age segmentation, seismic wave propagation and robotic navigation: for details, see Sethian

[1996, 1999A, 1999B].

In our case, the principal difference between previous work and our problem is that here,

the right-hand side of the Eikonal equation is unknown. In terms of our numerical algorithm,

we do not know the direction of propagation of information. This creates an issue which we

will discuss in Section 3.1.3 below, however, we first outline the time-to-depth conversion

algorithm.

Let us discretize and solve the system (3.1), (3.2) with boundary conditions (3.4). The

input for the numerical algorithm is the matrix s(x0i, Tk), i = 0, 1, ..., n−1, k = 0, 1, ..., p−1.

Denote the mesh steps in x0 and T by hx and ∆T respectively. The mesh steps in x and

z are hx and hz respectively. We define s(x0, T) beyond the mesh points by the bilinear

interpolation. The output of the numerical algorithm are the matrices s(xi, zj), x0(xi, zj)

and T (xi, zj), i = 0, 1, ..., n− 1, j = 0, 1, ...,m− 1. The algorithm is the following:

42

1. Mark the boundary (surface) points (xi = x0i, z = 0) as ”Accepted”. Set s(xi, z0 =

0) = s(x0 = xi, T = 0), x0(x, z = 0) = x0, T (x, z = 0) = 0 according to the boundary

conditions. Mark the rest of the mesh points (xi, zj) as “Unknown”.

2. Mark the ”Unknown”points adjacent to the ”Accepted” points as ”Considered”. We

call two points adjacent (or nearest neighbors) if they are separated by one edge.

3. Compute or update tentative values of s(xi, zj), x0(xi, zj) and T (xi, zj) at the ”Con-

sidered” points.

(a) If a ”Considered” point E has only one ”Accepted” nearest neighbor D as in

Fig. 3.2, then the values at E are found from the 1-point-update system:

x0(E) = x0(D),

T (E)− T (D) = hs(x0(D), T (E)),

s(E) = s(x0(E), T (E)),

T (E) > T (D).

(3.5)

Here H is either hx or hz depending on the arrangement of E and D.

(b) If a ”Considered” point has only two ”Accepted” nearest neighbors and they are

located so that it lies linearly between them, then we compute triplets of tentative

values of s, x0 and T for each of the two ”Accepted” points and the ”Considered”

point from system (3.5), and then choose the triplet with the smallest value of T .

(c) If a ”Considered” point C has only two ”Accepted” neighbors A and B not lying

on the same grid line, as in Fig. 3.2, then the tentative values at C are found

43

from the 2-point-update system:

(T (C)− T (A))2

hx2
+

(T (C)− T (B))2

hz2
= s2(x0(C), T (C)), (3.6)

(T (C)− T (A))(x0(C)− x0(A))
hx2

+
(T (C)− T (B))(x0(C)− x0(B))

hz2
= 0,

s(C) = s(x0(C), T (C)),

x0(A) ≤ x0(C) ≤ x0(B),

T (C) ≥ max{T (A), T (B)}.

We solve the first two equations in system (3.6) using a Newton solver.

(d) If a ”Considered” point has three or more ”Accepted” nearest neighbors then

we compute a triplet of tentative values for each possible couple of ”Accepted”

points forming a right triangle together with the ”Considered” point such that

the ”Considered” point lies at its right angle, and choose the triplet with the

smallest value of T .

4. Find a ”Considered” point with the smallest tentative value of ”T” and mark it as

”Accepted”. We use a heap sort to keep track of the tentative T values.

5. If the set of ”Considered” points is not empty, return to 2.

3.1.3 Causality

At T = 0 the wave front is a segment of the straight line from (x0, 0) to (xn−1, 0). In

order to propagate it correctly, we must compute the points in order of increase of T as

given in Sethian’s Fast Marching Method.

In the above our update principle, the 1-point update (3.5) artificially puts point E on

the image ray passing through D (Fig. 3.2) prescribing x0(E) = x0(D), while the 2-point-

update looks for the correct image ray (the correct value of x0).

At the moment when some ”Unknown” point becomes ”Considered”, it has only one

“Accepted” nearest neighbor. Therefore the tentative values at it are found from the 1-

44

point update system (3.5). Then, if it does not become “Accepted” by that time, it gets

two “Accepted” neighbors lying on different grid lines. Then the values at it are found from

the 2-point-update system (3.6). We emphasize that we design our algorithm so that the

2-point-update values replace the 1-point-update values whenever it is possible independently

of whether the new tentative value of T is smaller or larger. Note that in the Fast Marching

Method, the 2-point-update value never exceeds the 1-point-update value due to the fact

that the slowness is known at each point. In our formulae (3.5) and (3.6) for 1- and 2-

point-update respectively the slowness s in the right-hand side depends on T . Because of

this, we cannot eliminate the situation where the value of T given by 1-point-update is

smaller than the one given by 2-point-update. Such a situation is dangerous because the

1-point-update’s setting x0(E) = x0(D) is correct only if the true velocity (slowness) at E

is larger (smaller) then at both of its nearest neighbors in the direction perpendicular to the

segment DE (Fig. 3.2). Thus, in the case where this setting is incorrect, the 1-point-update

values must be replaced by 2-point update values before the point gets ”Accepted” in order

to propagate the front in order of increase of the true values of T . The question is whether

we can guarantee it.

We found examples where indeed a smaller tentative value of T from the 1-point-update

was replaced by a larger one from the 2-point-update in a small subset of points. However,

numerous numerical experiments showed that such points disappear as we refine the mesh

of the input data s(x0i, Tk), i = 0, 1, ..., n− 1, k = 0, 1, ..., p− 1. Moreover, we did not find

any example where the points with 1-point-update values got accepted when they should

not be. Thus, although the upwind principle may be violated in theory, we have not found

any such example in practice.

3.1.4 Boundary effects

We have input data in the rectangular time domain (x0, T), and we look for the output

in the rectangular depth domain (x, z). We will call the image rays arriving at the end

points of the ”earth surface” segment of the domain the boundary image rays. There are

three possible behavior of a boundary image ray:

45

1. the ray is straight, i.e, lies strictly on the boundary of the domain;

2. the ray escapes from the domain;

3. the ray enters the interior of the domain.

If the boundary image ray is either straight or escapes from the domain, then our numerical

algorithm computes the values at the boundary mesh points correctly, as the physical do-

main of dependence of each boundary point lies inside the numerical domain of dependence

in these cases. If the boundary ray enters the interior of the domain, then the values at the

boundary points are computed by 1-point-updates. The physical domain of dependence for

each boundary point lies outside the domain, and hence, cannot be inside the numerical

domain of dependence. In this case, our algorithm does not converge in the cone of influence

of the boundary points.

3.1.5 Synthetic data examples

Example 1

As a first example, we took the velocity field

v(x, z) = 1 +
1
2

cos
πx

3
sin

πz

3
,

and generated the input data v(x0, T), 0 ≤ x0 ≤ 12, 0 ≤ T ≤ 5 for our time-to-depth

conversion algorithm on a 200 × 200 nx0 × nT mesh by shooting characteristics. We then

applied the algorithm to these data and computed the velocity v(x, z) on the 200 × 400

nx × nz mesh. The results are presented in Fig. 3.3-3.4. The exact velocity is shown in

Fig. 3.3(a); the input data are shown in Fig. 3.3(b). The velocity found by the algorithm is

shown in Fig. 3.3(c). The relative error, i.e., (vfound−vexact)/vexact is shown in Fig. 3.3(d).

The maximal relative error is less than 5 percent and is achieved at the points where the

image rays collapse. The image rays computed for the exact velocities are shown in Fig.

3.4. Note that 1) the image rays severely bend, diverge and intersect, and 2) the boundary

image rays are straight, which eliminates the errors from the boundary effects.

46

(a) (b)

(c) (d)

Figure 3.3. (a): The exact velocity v(x, z) = 1+ 1
2 cos πx3 sin πz

3 ; (b): the input data v(x0, T);
(c): the found velocity v(x, z); (d) the relative error: its maximus is less than 5 percent.

47

Figure 3.4. The image rays computed for the exact velocity.

Example 2: ”Star”

In this section, we consider a velocity field shown in Fig. 3.5 (a). The level sets are shaped

as a star with 3 asymmetric tips and there is a Gaussian decay along straight half lines

radiating from the geometrical center of the level sets.

More precisely, this velocity field was generated by the construction

v(x, z) = 2 + 2 exp

(
−0.05

(
d

r(α)

)2
)
.

Here d is the distance from the geometrical center located at (xc = 5, zc = 5). With

α = arg(x− xc, z− zc), r(α) is an implicitly defined normalizing function which shapes the

level sets of v(x, z):

α(φ) = φ− 0.25 cos 3φ;

r(φ) = 1− 0.5 cos 3φ.

We obtained the input data v(x0, t0) shown in Fig. 3.5 (b) for 0 ≤ x0 ≤ 10 and

0 ≤ t0 ≤ 5 on 1000 × 1000 mesh by shooting characteristics. Then we applied the time-

to-depth algorithm to restore the velocity field v(x, z). The restored velocity is shown in

Fig. 3.5 (c). We see that it is very close to the exact velocity. The visible inexactness

occurs only within two small areas. The relative error and the image rays are shown in Fig.

48

(a) (b)

(c) (d)

Figure 3.5. (a): The exact velocity v(x, z); (b): the input data v(x0, t0); (c): the found
velocity v(x, z); (d) the relative error and the image rays.

49

3.5 (d). Dark red color there corresponds to the areas where the relative error exceeds 1

percent. Such areas are where the image rays either diverge significantly (order of 10) and

the gradient of the velocity is large, or along the curve where the image rays coming from

different surface points reach at the same time.

Example 3: ”Spiral”

Here we consider a modification of the field from the previous example: the Gaussian decay

takes place along spiral lines radiating from the geometrical center of the three tip star

shaped level sets (Fig. 3.6 (a)).

More precisely, this velocity field is generated as follows. We take a closed curve shaped

as a three-tip star given by

α0 = φ− 0.2 cos(3φ); (3.7)

r0 = 1− 0.4 cos(3φ).

Then, for every point (r0, α0) of this curve, consider a spiral line defined by

r = r0 + σ; (3.8)

α = α0 + 0.11σ.

The velocity at every point (x, z) is defined by

v(x, z) = 2 + 2 exp

(
−0.1

(
d

r0

)2
)
.

d is the distance from the geometrical center of the level sets located at (xc = 5, zc = 5).

r0 is the normalizing factor which is found from equations 7.8,7.9. We equate r = d and

α = arg(x− xc, z − zc) and solve for r0, α0, φ and σ.

The results are shown in Fig. 3.6. The areas where the relative error exceeds one per

cent (Fig. 3.6(d)) correspond to the dark red color. They occur under the same conditions

as they do in the previous example. Once again, the dark red stripe at the right boundary

of the domain is due the fact that this area is not covered by the image rays coming from

the segment of the surface in hand.

50

(a) (b)

(c) (d)

Figure 3.6. (a): The exact velocity v(x, z); (b): the input data v(x0, t0); (c): the found
velocity v(x, z); (d) the relative error and the image rays.

51

3.2 Algorithms producing the seismic velocities from the mi-

gration velocities

The algorithm introduced in Section 3.1.2 requires the velocities v(x0, T) as the input:

one can use the Dix velocities vDix(x0, T) as input. However, as discussed earlier, Dix

velocities are obtained with the assumption that the subsurface structures are horizontal

and the velocity depends only on the depth. Theorem 2 gave the relation between the Dix

velocities and the true seismic velocities. In this section, we introduce two algorithms which

try to construct the true seismic velocities from the Dix velocities and use the algorithm in

Section 3.1.2 as their essential part.

To be sure, we have just proven that this problem is ill-posed; nonetheless we can

develop algorithms which attempt the smoothed reconstruction. The first one is based on

the ray tracing approach, and the second one is based on the level set approach. This is

a worthwhile endeavor: our numerical examples below demonstrate that the Dix velocities

and the true seismic velocities may significantly differ in the case of lateral velocity variation.

3.2.1 Ray tracing approach

The ray tracing algorithm consists of three steps.

Step 1. Find the image rays.

Step 2. Compute the geometrical spreading |Q| = | dldx0
| on the image rays and find

v(x0i, Tk). Here l is the length of the front.

Step 3. Apply the time-to-depth conversion algorithm from Section 3.1.2 to get

v(xi, zj), x0(xi, zj) and t0(xi, zj) from v(x0i, Tk).

Let us describe Step 1 in more details. The boundary conditions are v(x0i, T = 0) =

f(x0i, T = 0), Q(x0i, T = 0) = 1, P (x0i, T = 0) = 0. The ray tracing system for the i-th

52

ray is the following:

xT = v sin θ, x(0) = x0i,

zT = v cos θ, z(0) = 0,

θT = −vn = −vl, θ(0) = 0, (3.9)

QT = v2P, ,Q(0) = 1,

PT = −vnn
v
Q = −

(vll
v

+
κvT
v2

)
Q, P (0) = 0.

Here vn = vx cos θ − vz sin θ is the derivative of v in the direction normal to the ray (note:

vn ≡ vq); vl is the derivative of v with respect to the arc length of the front; vnn =

vxx cos2 θ − 2vxz cos θ sin θ + vzz sin2 θ is the second derivative of v in the direction normal

to the ray (vnn ≡ vqq); vll is the second derivative of v with respect to the arc length of

the front; κ is the curvature of the front. Adalsteinsson and Sethian (Adalsteinsson and

Sethian [2002]) derived the following relation between the second derivative of some physical

quantity with respect to the arc length of the front and its second derivative along the line

tangent to the front:

gll = gzz − (gxnx + gznz)κ,

where n is the unit vector normal to the front. Replacing g with v and noticing that

vxnx + vznz = vτ =
vT
v

is the derivative of v with respect to the arc length of the ray, we get the last equation in

(3.9).

We solve system (3.9) for all of the rays simultaneously by the forward Euler method

as follows.

For k = 0 to k = p− 1 do:

1. Find the least squares polynomials for the set of points (li, vi(Tk)) where li is the arc

length of the front between ray 0 and ray i at the time Tk, and vi(Tk) is the value of

the velocity on the i-th ray at time Tk. Evaluate vl(Tk) and vll(Tk) taking the first and

the second derivatives of this polynomial. Moreover, replace the values of the velocity

53

vi(Tk) by the values of this polynomial. Evaluate the curvature κ(Tk) as follows. Find

the least squares polynomials for the sets of points (i, xi(Tk)) and (i, zi(Tk)) where i

is the index of the ray, and xi and zi are the x- and z-coordinates of the i-th ray at

time Tk. Take the first and the second derivatives of these polynomials px and pz and

find

κ =
p′xp
′′
z − p′zp′′x

(p′2x + p′2z)3/2
.

Approximate vT (Tk) by

vt(Tk) =
v(Tk)− v(Tk−1)

∆T

if k > 0, and we set vT (T0 = 0) = 0, since the curvature of the front is zero at T = 0.

2. Perform one forward Euler step for each of the rays.

3. For each of the rays find vi(Tk+1) = fi(Tk+1)Q(Tk+1), where fi(tk+1) ≡ f(x0i, Tk+1),

i = 0, 1, ..., n− 1.

Remarks.

• One can see that we find v(x0i, Tk), i = 0, 1, ..., n − 1, k = 0, 1, ..., p − 1 in the

step 1. Hence it is possible immediately go to step 3 to find v(xi, zj). How-

ever, numerous numerical experiments showed that step 1 computes the image rays

(x(x0i, Tk), z(x0i, Tk)) significantly more accurately than the velocity v(x0i, Tk). And

Step 2 which is very simple, significantly improves the accuracy of v(x0i, Tk).

• As we have shown in Section 2.5.1 the inverse problem is numerically unstable. The

use of the least squares polynomials suppresses the growth of the small bumps which

naturally appear in result of computations, and hence, stabilizes the algorithm.

• The main limitation of this algorithm is that it blows up as the image rays come too

close to each other or diverge too much.

• One can use the additional output x0(xi, zj) and t0(xi, zj) to convert a time-migrated

image to depth rather than perform depth migration with the found velocities v(xi, zj).

54

3.2.2 Level set approach

As an alternative to ray tracing, we can formulate a level set approach. The main

advantage of this approach, unlike the ray tracing approach, is that it works beyond the

first intersection of the image rays, since it tracks the first arrival front.

Level set methods, introduced by Osher and Sethian (Osher and Sethian [1988]), are

numerical methods for tracking moving interfaces: they rely in part on the theory of curve

and surface evolution given by Sethian (Sethian [1982, 1985]) and on the link between front

propagation and hyperbolic conservation laws discussed by Sethian (Sethian [1987]). These

techniques recast interface motion as a time-dependent Eulerian initial value partial differ-

ential equation. For a general introduction and overview, see Sethian (Sethian [1999B]).

The main idea of a level set method is the representation of a front as the zero level set

of some higher dimensional function. In our context, we want to propagate the wave front

coinciding with the flat surface at t = 0 downward the earth. We embed the wave front

into a 2D function φ(x, z) so that the front is its zero level set. Furthermore, we embed

the quantities Q and P defined on the front into 2D functions q(x, z) and p(x, z) so that at

each moment of time Q = q(x, z){(x,z)|φ(x,z)=0} and P = p(x, z){(x,z)|φ(x,z)=0}, i.e., Q and P

coincide with q and p on the zero level set of φ(x, z). Let

gx =
φx
|∇φ|

, gz =
φz
|∇φ|

.

Let us find the system of equations for q and p. First note that

vnn = vxx cos2 θ − 2vxz cos θ sin θ + vzz sin2 θ.

Second, at each point of the the zero level set of φ, i.e. at each front point,

gx = cos θ, gz = sin θ.

Then we get the following equations for q and p:

qt = v2p, pt = −vxxg
2
x − 2vxzgxgz + vzzg

2
z

v
q. (3.10)

These equations coincide with the equations for Q and P on the front. Here, we switch the

notation for time from T to t. We will reserve the notation T for auxiliary times in the fast

marching parts of our level set algorithm.

55

Thus, we have to solve the following system of PDE’s:

φt + v(x, z)|∇φ| = 0,

qt = v2(x, z)p, (3.11)

pt = −vxxg
2
x − 2vxzgxgz + vzzg

2
z

v(x, z)
q.

As before, we have the input data f(x0, t) = v(x0,t)
|Q(x0,t)| given in (x0, t) space on a n × k

mesh, and we need to obtain v(x, z) in (x, z) space on a n×m mesh.

Initialization: Set q(x, z) = 1, p(x, z) = 0, which is correct for the front at t = 0. Set

v(x, 0) = f(x0, 0) and attach labels ”x” to the surface points. Set φ(x, z) = z, i.e., make

the level set function a signed distance function.

We solve system (3.11) in the following time cycle: for k = 0 to p− 1 do:

1. Starting with the current ”x” points, solve the system

q(x, z)|∇T | = 1
f(x0, T)

, ∇x0 · ∇T = 0

using the Fast Marching time-to-depth conversion algorithm introduced in Section

3.1.2 to find v(x, z) = f(x, z)q(x, z) for the current q(x, z).

2. Attach labels ”x” to the accepted points for which T is not greater than the current

value of time tk.

3. Detect the zero level set of φ. Find the velocity v at the zero level set of φ and build

an extension of v solving the system

|∇d| = 1, ∇d · ∇vext = 0,

with the boundary conditions d = 0 and vext = v at the zero level set of φ, using the

Fast Marching Method, as it is suggested in Sethian [1996, 1999A]. If the extended

velocity is built this way, an initial signed distance function φ remains so as it evolves.

4. Perform a time step: Compute the quantities gx and gz for the current φ. Find vxx,

vxz and vzz by finding least square polynomials for each grid line x = xi and z = zj

56

and evaluating their derivatives. Make one forward Euler step for equations (3.10) to

find new q and p. Solve the level set equation

φt + vext|∇φ| = 0

from t = k∆t to t = (k+1)∆t by the forward Euler method with a time step satisfying

the CFL condition.

We stress that the main advantage of this algorithm in comparison with the ray tracing

algorithm is that it can work even if the image rays intersect, since it tracks the first arrival

front.

Having obtained the true seismic velocities v(xi, zj) one can perform depth migration

to obtain an improved seismic image in the Cartesian coordinates. Alternatively, knowing

the velocity v(xi, zj) one can apply Sethian’s fast marching method Sethian [1996] to obtain

t0(xi, zi) and x0(xi, zi) to convert the time migrated image to depth.

57

Chapter 4

Synthetic data examples in 2D

4.1 Example 1

The example in this section allows us to compare performances of the ray tracing al-

gorithm and level set algorithm with a somewhat typical approach. One typical approach

to seismic velocity estimation is to compute the Dix velocities and then apply image ray

tracing. Here we will replace the image ray tracing with our time-to-depth conversion

algorithm.

We considered the velocity fields of the form:

v(x, z) = 1 + exp
(
−c(x2 + (z − 1)2)

)
, x0 ∈ [−2, 2], t ∈ [0, 0.7]. (4.1)

We took c = 0.5, c = 1 and c = 1.5. The larger c, the sharper the Gaussian anomaly. For

each of these fields we created the input data f(x0, t) on a 200×200 x0×t mesh and applied

each of the three algorithms to them: the time-to-depth conversion, the ray tracing, and

the level set. The output v(x, z) is given on 200× 200 x× z mesh.

The exact velocity, the input data (the Dix velocity), the found velocity and the image

rays for the sharpest Gaussian anomaly corresponding c = 1.5 are shown in Fig. 4.1. We

see that the Dix velocity qualitatively differs from the exact velocity and the found velocity

resembles the exact velocity much more closely than the Dix velocity.

58

(a) (b)

(c) (d)

Figure 4.1. (a): the exact velocity v(x, z); (b) the image rays; (c): the input data f(x0, t) ≡
vDix(x0, t); (d): the found velocity v(x, z).

59

The results are summarized in Table (4.1). We see that

Table 4.1. The maximal relative errors produced by the time-to-depth conversion, the ray
tracing and the level set algorithms on the data from the velocity field (4.1).

Algorithm Time-to-depth Ray tracing Level set
c = 0.5 0.31 0.023 0.078
c = 1 0.44 0.11 0.079
c = 1.5 0.49 0.29 0.20

• the ray tracing and the level set produce significantly more accurate results than the

typical approach;

• the ray tracing approach is more accurate than the level set where the image rays

diverge moderately, while it becomes less accurate as the divergence of the image rays

increases.

Note that if the image rays diverge severely so that the derivative vnn (or, in different

notations, vqq) becomes large, both our ray tracing and level set algorithms blow up, while

the time-to-depth convergence algorithm produces inaccurate but stable results.

4.2 Example 2

In this section we also consider an example with a Gaussian anomaly, but with numbers

closer to real seismic data:

v(x, z) = 2 + 2 exp
(
−(x2 + (z − 2)2)

)
,

x0 ∈ [−3, 3], t ∈ [0, 1],

The center of the anomaly lies at the depth of 2 km and the background velocity is 2 km/sec.

The results (Fig. 4.2) are produced by the level set algorithm. The found velocity resembles

the exact velocity while the Dix velocity and the found velocity differ qualitatively.

60

(a)

(b)

(c)

Figure 4.2. (a): the exact velocity v(x, z); (b) the Dix velocity converted to depth by
”vertical stretch”; (c): the found velocity v(x, z) and the image rays.

4.3 Example 3

In this section, we consider the upper part of the velocity field of the type as in Example

2: ”Star” in Section 3.1.5. This velocity field was generated as follows:

v(x, z) = 2 + 2 exp

(
−0.1

(
d

r(α)

)2
)
.

Here d is the distance from the geometrical center located at (xc = 5, zc = 5). α =

arg(x− xc, z − zc), and r(α) is an implicitly defined normalizing function which shapes the

level sets of v(x, z):

α(φ) = φ− 0.1 cos 3φ;

r(φ) = 1− 0.2 cos 3φ.

The input data were generated on 150× 150 (x0, t0) mesh for 0 ≤ x0 ≤ 10 km, 0 ≤ t0 ≤

1.5 sec. The output is shown on a 150× 75 (x, z) mesh up to 2.33 km in depth.

The exact velocity, the Dix velocity converted to depth by our time-to-depth algorithm,

the recovered velocity and the image rays are shown in Fig. 4.3 (a), (b), (c) respectively.

Comparing the differences between Figures 4.3 (a) and (b) and between Figures 4.3 (a)

61

(a)

(b)

(c)

Figure 4.3. (a): The exact velocity v(x, z); (b): the Dix velocity converted to depth; (c):
the found velocity v(x, z) and the image rays.

and (c) we see that the velocity recovered using our level set algorithm is close to the exact

velocity while the Dix velocity converted to depth differs qualitatively from it.

62

Chapter 5

Field data examples

Figure 5.1. Left: seismic image from North Sea obtained by prestack time migration using
velocity continuation Fomel [2003]. Right: the corresponding time migration velocity.

In this section we consider a field data example coming from the North Sea (Fig. 5.1,

left). The main feature in this image is the salt dome. Typically, the velocity inside the

salt is higher than it is in the surrounding rock. Salt is light and it pushes the layers up

as it comes from inside the earth. The lateral velocity variation here is severe according

to typical geophysical situations. Note rapidly changing values inside the salt dome, which

indicate that the lateral velocity variation is too large for the time migration.

In Fig. 5.1, right, the time migration velocities chosen in the process of making this im-

63

age are shown. Using these time migration velocities, the Dix velocities were then obtained

and smoothed. The level set algorithm was then applied to these Dix velocities to estimate

seismic velocities v(x, z). These seismic velocities together with the image rays computed

from the by shooting characteristics are shown in Fig. 5.2). The depth domain (x, z) was

cut at 3.3 km to make the found v(x, z) into a rectangular matrix.

One can compare the smoothed Dix velocities and the found seismic velocities (Fig. 5.3)

and see that they differ significantly starting from about 1 km in depth.

Figure 5.2. The found seismic velocity v(x, z) and the image rays computed from it.

Figure 5.3. The smoothed Dix velocity vDix(x0, t0) (left) vs the found seismic velocity
v(x, z) (right).

The depth migrated image, built using the calculated v(x, z), is shown in Fig. 5.4 (a).

64

The image is in the regular Cartesian coordinates. It shows subsurface structures up to

3.3 km in depth which is quite deep according to geophysical standards. There is a noisy

reconstruction inside the salt dome but the surrounding layers are resolved well. Overall,

this image looks reasonable.

We applied Sethian’s Fast Marching Method to solve the Eikonal Equation with the

found velocity v(x, z) and found the matrices t0(x, z) and x0(x, z). Then we converted the

time migrated image in Fig. 5.1, (left) to depth values using these matrices. The resulting

image is shown in Fig. 5.4 (b). Comparing the two images in depth in Fig. 5.4 obtained in

these two alternative ways, we see a good agreement between them.

(a) (b)

Figure 5.4. (a) The poststack depth migrated image obtained with the found v(x, z); (b)
The prestack time migrated image converted to depth.

For comparison, we also used the Dix velocities to perform the depth migration. The

resulting image is shown in Fig. 5.5, left, while the results of the depth migration with the

velocities found by our level set algorithm are shown in Fig. 5.5, right. There is a visible

change in the lower part of the image and several indications that the change is in the right

direction.

65

Figure 5.5. The poststack depth migration using the Dix velocities (left) vs the poststack
depth migration using the estimated seismic velocities (right).

66

Chapter 6

Numerical algorithms in 3D

In this section, we present 3D versions of our algorithms. We present a 3D Dijkstra-like

fast method for time-to-depth conversion, and a 3D Ray tracing approach for the inverse

problem. A 3D level set version is underway.

In more detail, we present a ray tracing approach for solving the inverse problem in 3D

(see Section 2.5.2). This approach is the extension of the ray tracing approach for 2D (see

Section 3.2.1). The input data are the set of matrices

F(x0, y0, t0) ≡ ∂K(x0, y0, t0)
∂t0

= v2(x, y, z)(QT (x0, y0, t0)Q(x0, y0, t0))−1. (6.1)

Here v(x, y, z) is the seismic velocity at the location reached by the image being traced

backwards for time t0 starting from the surface point (x0, y0), and Q(x0, y0, t0) corresponds

to the telescopic family of rays traced along with the image ray for time t0. The input data

are given on the 3D time domain mesh (x0i, y0j , t0k), i = 0, ..., nx − 1, j = 0, ..., ny − 1,

k = 0, ..., nt − 1, xmin = x00 ≤ x0i ≤ x0,nx−1 = xmax, ymin = y00 ≤ y0j ≤ y0,ny−1 = ymax,

0 = t0 ≤ tk ≤ tnt−1 = tmax. The output is the four sets of data v(x, y, z), t0(x, y, z),

x0(x, y, z) and y0(x, y, z) given on the 3D depth domain mesh (xi, yy, zk), i = 0, ..., nx − 1,

j = 0, ..., ny − 1, k = 0, ..., nz − 1, xmin = x0 ≤ xi ≤ xnx−1 = xmax, ymin = y0 ≤ yj ≤

yny−1 = ymax, 0 = z0 ≤ zk ≤ znz−1 = zmax.

This approach consists of the following three steps.

67

Step 1. Ray tracing algorithm which computes the image rays the image rays.

Step 2. Using the image rays found in Step 1 compute the geometrical spreading which

equals |detQ| (Popov [2002]) and determine the velocity v(x0, y0, t0) from the input data

6.1.

Step 3. Convert the velocities v(x0, y0, t0) given in the time coordinates (x0, y0, t0) to

depth: find v(x, y, z).

Now let us describe each of these three steps in details.

6.1 Step 1: Ray tracing algorithm

6.1.1 The ray equation in the spherical coordinates

At each moment of time t, we will describe a ray by the following five coordinates: x(t),

y(t), z(t), θ(t), φ(t), where θ is the angle between the direction of the ray and the x-axis,

and φ is the angle between the projection of the ray onto yz-plane and the positive direction

of the y-axis. We start to trace the image rays from the surface normal to it. Our choice

of angles allows us to avoid (or, at least, substantially postpone) the problem of φ being

undefined where θ = 0. As before, define the Hamiltonian by

H =
1
2
(
|∇t|2 − s2(x, y, z)

)
≡ 1

2
(
|~p|2 − s2(x, y, z)

)
≡ 0, (6.2)

where s is the slowness - the reciprocal of the velocity. Then the ray equations in the

Hamiltonian form are

dx

dσ
= px,

dpx
dσ

= ssx,

dy

dσ
= py,

dpy
dσ

= ssy, (6.3)

dz

dσ
= pz,

dpz
dσ

= ssz.

Then we introduce

θ = arctan

√
p2
y + p2

z

px
, φ = arctan

pz
py
, (6.4)

68

and perform the variable change in system 6.3.

dθ

dσ
=

dθ

dpx

dpx
dσ

+
dθ

dpy

dpy
dσ

+
dθ

dpz

dpz
dσ

(6.5)

=
1

1 + p2y+p2z
p2x

−
√
p2
y + p2

z

p2
x

ssx +
py

px
√
p2
y + p2

z

ssy +
pz

px
√
p2
y + p2

z

ssz

 .

Then, using the relations

px = s cos θ, py = s sin θ cosφ, pz = s sin θ sinφ, p2
y + p2

z = s sin θ, (6.6)

we proceed with equation 6.5:

dθ

dσ
= cos2 θ

(
− sin θ

cos2 θ
sx +

sin θ cosφ
cos θ sin θ

sy +
sin θ sinφ
cos θ sin θ

sz

)
= −sx sin θ + sy cos θ cosφ+ sz cos θ sinφ. (6.7)

Compute the derivative of φ.

dφ

dσ
=

dφ

dpy

dpy
dσ

+
dφ

dpz
dpzdσ

=
1

1 + p2z
p2y

(
−pz
p2
y

ssy +
1
py
ssz

)

= cos2 φ

(
− sin θ sinφ

sin2 θ cos2 φ
sy +

1
sin θ cosφ

sz

)
=
−sy sinφ+ sz cosφ

sin θ
.. (6.8)

Now recall that dt
dσ = s2 = 1

v2
and ds

dα = − 1
v2

dv
dα and switch to t as an independent variable.

Then the ray tracing system is:

dx

dt
= v cos θ,

dy

dt
= v sin θ cosφ,

dz

dt
= v sin θ sinφ, (6.9)

dθ

dt
= vx sin θ − vy cos θ cosφ− vz cos θ sinφ ≡ ∇v ·~l1,

dφ

dt
=

1
sin θ

(vy sinφ− vz cosφ) ≡ 1
sin θ

(
∇v ·~l2

)
,

where

~l1 ≡


sin θ

− cos θ cosφ

− cos θ sinφ

 , ~l2 ≡


0

sinφ

− cosφ

 . (6.10)

69

Along with the rays themselves we need to trace the 2 × 2 matrices Q and P for the

telescopic families of rays around each of the image rays. As if was shown in Popov [2002],

Červený [2001], these matrices evolve according to

dQ
dt

= v2P,
dP
dt

= −1
v
VP. (6.11)

The matrix V =
(
vqiqj

)
i,j=1,2

s the matrix of the second derivatives of v(x, y, z) along the

directions ~e1 and ~e2, normal to the central rays (the image rays in our case), which evolve

as follows:
d~e1
dt

= vq1 q1 = 0

q2 = 0

~τ ,
d~e2
dt

= vq2 q1 = 0

q2 = 0

~τ , (6.12)

where ~τ is a unit vector tangent to the image ray.

Thus, for each image ray we need to trace the following system of 19 equations

dx

dt
= v cos θ,

dy

dt
= v sin θ cosφ,

dz

dt
= v sin θ sinφ,

dθ

dt
= ∇v ·~l1,

dφ

dt
=

1
sin θ

(
∇v ·~l2

)
, (6.13)

dQ11

dt
= v2P11,

dQ12

dt
= v2P12,

dQ21

dt
= v2P11,

dQ22

dt
= v2P22,

dP11

dt
= −1

v
(vq1q1Q11 + vq1q2Q21),

dP12

dt
= −1

v
(vq1q1Q12 + vq1q2Q22),

dP21

dt
= −1

v
(vq2q1Q11 + vq2q2Q21),

dP22

dt
= −1

v
(vq2q1Q12 + vq2q2Q22),

de1x
dt

= vq1 q1 = 0

q2 = 0

cos θ,
de2x
dt

= vq2 q1 = 0

q2 = 0

cos θ,

de2y
dt

= vq1 q1 = 0

q2 = 0

sin θ cosφ,
de2y
dt

= vq2 q1 = 0

q2 = 0

sin θ cosφ,

de1z
dt

= vq1 q1 = 0

q2 = 0

sin θ sinφ,
de2z
dt

= vq2 q1 = 0

q2 = 0

sin θ sinφ

70

where ~l1 and ~l2 are defined by equation (6.10). The initial conditions are

x(0) = x0i, y(0) = y0j , z(0) = 0, θ(0) =
π

2
, φ(0) =

π

2
,

Q(0) = I2, P(0) = 0, (6.14)

~e1(0) = (1, 0, 0)T , ~e2(0) = (0, 1, 0)T .

6.1.2 The ray tracing algorithm

We need to solve system (6.13) under the circumstance that the velocity v(x, y, z) is

unknown; instead, we are given the input data F (x0, y0, t0), equation (6.1) given on the

time domain mesh. First note that since the vectors ~e1 and ~e2 are orthogonal to the image

rays, the directions along which the derivatives vqiqj and vqi , i, j = 1, 2 are evaluated, are

tangent to the front. We can easily show that the vectors ~l1, and ~l2 are also orthogonal to

the image rays and hence tangent to the front. Indeed,

~l1 · ~τ =


sin θ

− cos θ cosφ

− cos θ sinφ

 ·


cos θ

sin θ cosφ

sin θ sinφ

 = 0,

~l2 · ~τ =


0

sinφ

− cosφ

 ·


cos θ

sin θ cosφ

sin θ sinφ

 = 0.

Thus, all of the directions along which we need to evaluate the derivatives of the velocity

are tangent to the front.

It was shown by Adalsteinsson and Sethian [2002] that for a flat curve the following

relation takes place:

vss = vqq − vτκ, (6.15)

where vss is the second derivative along the curve, vqq is the second derivative along the

tangent line, vτ is the derivative along the normal direction to the curve, and κ is the

curvature of the curve. The relation (6.15) is valid for a nonflat curve as well, and the proof

is identical:

71

Proof Let (x(s), y(s), z(s)) be a curve, and l be the natural parameter along it - the arc

length. Let ~e =
(
dx
ds ,

dy
ds ,

dz
ds

)
be its velocity vector, which is the unit vector tangent to it.

Then the curvature κ is
(
d2x
ds2
, d

2y
ds2
, d

2z
ds2

)
. Differentiate v twice with respect to the arc length:

vss =
∂

∂s

(
∂

∂s
v(x(s), y(s), z(s))

)
=

∂

∂s
(vxex + vyey + vzez)

=
∂

∂s
(∇v · ~e) =

(
∂

∂s
∇v
)
· ~e+∇v · ∂~e

∂s

=(~e)TD2v~e− κ∇v · ~n = vqq − vτκ,

as we wanted to prove. Here D2v is the matrix of the second derivatives of v.

Now we are ready to present the ray tracing algorithm. Since the matrix Q at the

surface is the identity matrix, F(x0, y0, 0) =

 v2 0

0 v2

, we can evaluate the velocity at

the surface by

v(x0, y0, 0) = 4
√

F11F22. (6.16)

Then we make the first forward Euler time step for system (6.13) using the initial conditions

(6.14) and taking into account that x ≡ q1 and y ≡ q2 at the surface. We then find the

velocity at the next moment of time t1 by

v(x0, y0, t1) = 4
√

det F(x0, y0, t1)(det Q(x0, y0, t1)2.

The further time steps are given by the following:

For k = 1 to nt − 2 do

1. Estimate the curvatures of the grid curves (x0, y0j , tk), j = const, and (x0i, y0, tk), i =

const and estimate the first and the second derivatives of the velocity along the tangent

lines to these curves. We first approximate the functions x(x0, y0j , tk), y(x0, y0j , tk)

and z(x0, y0j , tk) by a least squares polynomial and find its second derivatives with

respect to the arc length s1. Then approximate the velocity along these lines using

a least squares polynomial and evaluate its the first and the second derivatives with

respect to the arc length s1. Correct the second derivatives using formula (6.15).

72

Repeat this procedure for the grid curves (x0i, y0, tk) and also find the mixed second

derivative of v ∂2v
∂s1∂s2

.

2. We have estimated the first and the second derivatives of v along the tangent lines

to the grid curves: vs1 , vs2 , vs1s1 , vs2s2 and vs1s2 . We need to find the derivatives

of the velocity along the directions ~e1, ~e2, ~l1 and ~l2. As we have shown, all of these

directions are tangent to the front, hence they lie in the same plane as the directions

s1 and s2. We express these directions in terms of s1 and s2 using the least squares

and then find the needed derivatives. Let ~s1 and ~s2 be unit vectors in the directions

s1 and s2. Let

~e1 = b11~s1 + b12~s2, (6.17)

~e2 = b21 ~s1 + b22~s2,

therefore,

vq1 = ~e1 · ∇v = (b11~s1 + b12~s2) · ∇v = b11vs1 + b12vs2 , (6.18)

vq2 = ~e2 · ∇v = (b21~s1 + b22~s2) · ∇v = b21vs1 + b22vs2 .

Similarly we find ~li · ∇v, i = 1, 2. We compute the matrix (vqiqj)i,j=1,2 as follows.

vqiqj = (~ei)TD2v~ej = (bi1~s1 + bi2~s2)TD2v(bj1~s1 + bj2~s2) (6.19)

= (bi1bi2)

 (~s1)T

(~s2)T

D2v(~s1~s2)

 bj1

bj2

 .

Therefore,

V ≡
(

∂2v

∂qi∂qj

)
i,j=1,2

= B

(
∂v

∂si∂sj

)
BT , (6.20)

where B =

 b11 b12

b21 b22

.

3. Perform the Euler step for system (6.13).

4. Using the matrices Q(x0, y0, tk+1) find v(x0, y0, tk+1):

v(x0, y0, tk+1) = 4
√

det F(x0, y0, tk+1)(det Q(x0, y0, tk+1))2. (6.21)

73

6.2 Step 2: Recomputation of the velocity using the found

image rays

The ray tracing algorithm outlined in the previous section computes the image rays

significantly more accurately than it estimates the velocity v(x0, y0, t0). This gives us an

opportunity to recompute the velocity more accurately using the found image rays. It

was shown in Popov [2002] that the geometrical spreading of the rays equals |det Q|. We

estimate the it as the ratio of the areas of the grid cells at time t = tk and at t = 0 and

then compute the velocity by formula (6.21).

6.3 Step 3: Time-to-depth conversion algorithm

The motivation and the main building block for this algorithm is Sethian’s fast marching

method (see Sethian [1996]). It is a 3D upgrade of the time-to-depth conversion algorithm

presented in Section 3.1. In this section, we will work with the slowness s, the reciprocal

of the velocity v, for convenience. Also we switch the notation for time from t0 to T to be

consistent with the notations in the Eikonal equation and Section 3.1.

We are given s(x0, y0, T). We want to find s(x, y, z), x0(x, y, z), y0(x, y, z), T (x, y, z).

These functions relate according to the following system of PDE’s:

|∇T |2 = s2(x0(x, y, z), y0(x, y, z), T (x, y, z)),

∇x0 · ∇T = 0, (6.22)

∇y0 · ∇T = 0.

The first equation is the Eikonal equation with an unknown right-hand-side. The other two

are the orthogonality relations reflecting that the image rays are orthogonal to the equi-

time surfaces. The derivation of these orthogonality relations is based on the fact that x0

and y0 remain unchanged along the image rays and is very similar to the derivation of the

orthogonality relation (3.2) in Section 3.1.1 for the 2D case.

The numerical algorithm for solving system (6.22) is very similar to the one described

74

in Section 3.1.2, except for the 3-point update is added in the 3D case. The computa-

tional cost is O(N3 logN) as for the 3D fast marching method. The equations for 1-, 2-

and 3-point update are the following. Suppose we need to find s, x0,y0 and T at the point P .

1. 1-point-update. Let A be the a known nearest neighbor of P , and there are no known

neighbors of P lying on the other grid lines. ha can be any of hx, hy, hz, depending

on which grid line the points P and A lie on.

T (P)− T (A)
ha

= s(x0(A), y0(A), T (P)). (6.23)

2. 2-point-update. Let A and B be two known nearest neighbors of P lying on different

grid lines, and there is no known nearest neighbor lying on the other grid line. ha and

hb can be any pair of different symbols of hx, hy, hz, depending on the arrangement

of the points P , A and B.

(T (P)− T (A))2

h2
a

+
(T (P)− T (B))2

h2
b

= s2(x0(P), y0(P), T (P)),

(T (P)− T (A))(x0(P)− x0(A))
h2
a

+
(T (P)− T (B))(x0(P)− x0(B))

h2
b

= 0,

(T (P)− T (A))(y0(P)− y0(A))
h2
a

+
(T (P)− T (B))(y0(P)− y0(B))

h2
b

= 0, (6.24)

s(P) = s(x0(P), y0(P), T (P)), ,

T (P) ≥ max{T (A), T (B)}, x1 ≤ x0(P) ≤ x2, y1 ≤ y0(P) ≤ y2,

where x1 = min{x0(A), x0(B)}, x2 = max{x0(A), x0(B)}, y1 = min{y0(A), y0(B)},

y2 = max{y0(A), y0(B)}.

3. 3-point-update. Let A, B and C be three known neighbors of P all lying on different

75

grid lines. ha, hb, hc is any permutation of hx, hy, hz.

(T (P)− T (A))2

h2
a

+
(T (P)− T (B))2

h2
b

+
(T (P)− T (C))2

h2
c

= s2(x0(P), y0(P), T (P)),

(T (P)− T (A))(x0(P)− x0(A))
h2
a

+
(T (P)− T (B))(x0(P)− x0(B))

h2
b

+
(T (P)− T (C))(x0(P)− x0(C))

h2
c

= 0, (6.25)

(T (P)− T (A))(y0(P)− y0(A))
h2
a

+
(T (P)− T (B))(y0(P)− y0(B))

h2
b

+
(T (P)− T (C))(y0(P)− y0(C))

h2
c

= 0.

s(P) = s(x0(P), y0(P), T (P)), ,

T (P) ≥ max{T (A), T (B, T (C))}, x1 ≤ x0(P) ≤ x2, y1 ≤ y0(P) ≤ y2,

where x1 = min{x0(A), x0(B, x0(C))}, x2 = max{x0(A), x0(B), x0(C)}, y1 =

min{y0(A), y0(B), y0(C)}, y2 = max{y0(A), y0(B), y0(C)}.

Note that whenever we use the 1-point update, we artificially put the point P on the

image ray passing through the point A. Whenever we use the 2-point-update, we artificially

create a symmetry with respect to a plane (ABP). Taking this into account, we accept the

following update rule: 2-point-update replaces 1-point-update and 3-point-update replaces

2-point-update whenever it is possible. This algorithm has the same hypothetical causality

issue as its 2D version (see Section 3.1.3). We have not encounter any causality violation

in our numerical experiments. This causality issue is the subject of our future research.

In order to avoid the boundary effects (see Section 3.1.4), no image ray may enter the

domain [xmin, xmax]× [ymin, ymax]× [0, zmax] through the side faces. That is, the boundary

image rays must be either straight or leave the domain and never re-enter.

76

Chapter 7

Synthetic data examples in 3D

In this section we demonstrate the ray tracing approach in 3D.

7.0.1 Example 1

Consider the following velocity field with the background velocity of 1.5 km/sec and a

Gaussian anomaly centered at the depth of 2 km:

v(x, y, z) = 1.5 + exp (−0.2(x2 + y2)− 0.3(z − 2)2). (7.1)

First we create the input F (x0, y0, t0) (see equation (6.1)), by shooting characteristics and

solving system equation (6.13) in the time domain

xmin = −5 km ≤ x0 ≤ xmax = 5 km, ymin = −5 km ≤ y0 ≤ ymax = 5 km, (7.2)

0 ≤ t0 ≤ tmax = 2 sec

on the 50 × 50 × 50 nx × ny × nt mesh. Then we apply consequently first the ray tracing

algorithm to find the velocities v(x0, y0, t0) from the matrices F(x0, y0, t0) and then the

time-to-depth conversion algorithm to find the velocity in the depth coordinates v(x, y, z)

from the velocity in the time coordinates v(x0, y0, t0). We obtain the output in the depth

77

domain

xmin = −5 km ≤ x ≤ xmax = 5 km, ymin = −5 km ≤ y ≤ ymax = 5 km, (7.3)

0 ≤ z ≤ zmax = 3.409 km

on the 50× 50× 40 nx × ny × nz mesh.

In 2D we compared the results of our approaches with the results of the Dix inversion

converted to the depth domain. The results indicate that the algorithms improve the Dix

inversion and that our approaches can do qualitatively better than the Dix inversion. We

would like to have something to compare the results of our ray tracing approach in 3D as

well. We take the following heuristic estimate of the velocity:

vheur = 4
√

det F, (7.4)

which is a 3D analog of the Dix velocity in 2D, and convert it to depth using our time-to-

depth conversion algorithm.

The results are presented in Fig. 7.1. The velocity v(x, y, z) is shown at the depths of

87.4 m, 262.2 m, 437.0 m, ..., 3408.6 m, the interval between slices is 174.8 m. At each depth,

the dark blue color corresponds to v = 1.5 km/sec, and the dark red color corresponds to

v = 2.5 km/sec. The exact velocity is shown in Fig. 7.1(a). The velocity recovered by our

ray tracing approach is shown in Fig. 7.1(b). The heuristic estimate of the velocity (see.

equation (7.4)) converted to depth is shown in Fig. 7.1(c). The image rays projected onto

the surface are shown in Fig. 7.1(d).

First, we note that we were able to obtain a velocity estimate below the center of the

Gaussian anomaly using our ray tracing approach. Second, up to the depth where the

center of the anomaly lies, our results are quite accurate. Third, throughout all the depth

domain, our velocity is more accurate, and in the medium depths even qualitatively more

accurate than the heuristic estimate analogous to the Dix inversion.

78

(a) (b)

(c) (d)

Figure 7.1. Example 1. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion, converted to
depth; (d) the image rays projected onto the earth surface.

79

7.0.2 Example 2

In this example, we also consider a velocity field with a Gaussian anomaly centered at

the depth of 2 km, but with smaller variances:

v(x, y, z) = 1.5 + exp (−0.5x2 − 0.3 ∗ y2 − 0.3(z − 2)2). (7.5)

The input data are computed in the time domain

xmin = −3 km ≤ x0 ≤ xmax = 3 km, ymin = −3 km ≤ y0 ≤ ymax = 3 km, (7.6)

0 ≤ t0 ≤ tmax = 2 sec

on a 50× 50× 50 nx × ny × nt mesh. The output is computed in the depth domain

xmin = −3 km ≤ x ≤ xmax = 3 km, ymin = −3 km ≤ y ≤ ymax = 3 km, (7.7)

0 ≤ z ≤ zmax = 1.6568 km

on a 50 × 50 × 20 nx × ny × nz mesh. The results are presented in Fig. 7.2. The velocity

is shown at the depths of from 0 to zmax = 1.6568 km at every 87.2 m. At each depth,

the dark blue color corresponds to v = 1.5 km/sec, and the dark red color corresponds to

v = 2.5 km/sec. The exact velocity is shown in Fig. 7.2(a). The velocity recovered by our

ray tracing approach is shown in Fig. 7.2(b). The heuristic estimate of the velocity (see.

equation (7.4)) converted to depth is shown in Fig. 7.2(c). The image rays projected onto

the surface are shown in Fig. 7.2(d).

We see that the velocity recovered by our ray tracing approach is similar to the exact

velocity while the heuristic estimate is qualitatively different.

7.1 Example 3

In this example, we consider a velocity field, Gaussian in z and star shaped in (x, y).

We build this field as follows. We take a closed curve shaped as a three tip star given by

α0 = φ− 0.2 cos(3φ); (7.8)

r0 = 1− 0.1 cos(3φ).

80

(a) (b)

(c) (d)

Figure 7.2. Example 2. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion, converted to
depth; (d) the image rays projected onto the earth surface.

81

Then for every point of this curve with polar coordinates (r0, α0) consider a spiral line

defined by

r = r0 + 4σ; (7.9)

α = α0 + 0.11σ.

The velocity at every point (x, y) is defined by

v(x, y) = 1.5 + exp

(
−0.1

(
d

r0

)2
)
.

d is the distance from the geometrical center of the level sets located at (xc = 0, yc = 0). r0

is the normalizing factor which is found from equations (7.8), (7.9). We equate r = d and

α = arg(x, y) and solve for r0, α0, φ and σ. Then we define v(x, y, z) by

v(x, y, z) = 1.5 + exp

(
−0.1

(
d

r0

)2

− 0.5(z − 2)2
)
. (7.10)

The input data are computed in the time domain

xmin = −8 km ≤ x0 ≤ xmax = 8 km, ymin = −8 km ≤ y0 ≤ ymax = 8 km, (7.11)

0 ≤ t0 ≤ tmax = 1.5 sec

on a 50× 50× 50 nx × ny × nt mesh. The output is computed in the depth domain

xmin = −8 km ≤ x ≤ xmax = 8 km, ymin = −8 km ≤ y ≤ ymax = 8 km, (7.12)

0 ≤ z ≤ zmax = 2.027 km

on a 50 × 50 × 32 nx × ny × nz mesh. The results are presented in Fig. 7.3. The velocity

is shown at depths of 65.4 m, 196.2 m, 327.0 m, ...,2027 m. The interval between the slices

is 130.8 m. At each depth, the dark blue color corresponds to v = 1.5 km/sec, and the

dark red color corresponds to v = 2.5 km/sec. The exact velocity is shown in Fig. 7.3(a).

The velocity recovered by our ray tracing approach is shown in Fig. 7.3(b). The heuristic

estimate of the velocity (see. equation (7.4)) converted to depth is shown in Fig. 7.3(c).

The image rays projected onto the surface are shown in Fig. 7.3(d).

The anomaly in this example has a nontrivial geometry. The velocity found by our ray

tracing approach transfers the geometry qualitatively correctly, while the heuristic estimate

fails to do so.

82

(a) (b)

(c) (d)

Figure 7.3. Example 3. (a) The exact velocity; (b) the velocity found by our ray tracing
approach; (c) the heuristic estimate estimate analogous to the Dix inversion, converted to
depth; (d) the image rays projected onto the earth surface.

83

Chapter 8

Summary and future work

8.1 Summary

We derived a theoretical relation between the Dix velocities in time migration coordi-

nates and the true seismic velocities in the depth coordinates in 2D, and a relation between

the matrices F(x0, y0, t0), which can be determined from the time migration, and the true

seismic velocities in the depth coordinates in 3D.

We stated the corresponding inverse problem in 2D and 3D. We showed that the inverse

problem is ill-posed, i.e. sensitive to small perturbations.

However through regularized reconstruction we were able to develop numerical algo-

rithms in 2D and 3D for obtaining smoothed seismic velocities.

We tested our algorithms on a collection of synthetic 2D and 3D examples and demon-

strated that they recover the seismic velocity significantly more accurately than the Dix

inversion, which is the standard estimate. Moreover, the Dix velocity may qualitatively

differ from the true velocity.

We applied our level set algorithm to a field data with severe lateral velocity variation

and found an estimate of the seismic velocity as well as the transition matrices from time

migration coordinates to depth coordinates up to 3.3 km in depth. We used this velocity to

84

obtain a depth migrated image. We also used these transition matrices to convert the time

migrated image to depth. This produced a good agreement between these two images. We

also used the Dix velocities to produce a depth migrated image. The image obtained using

the velocities estimated by our approach, and the image obtained using the Dix velocities

noticeably differ in their lower part. There are several indications that the application of

our approach improves the images.

8.2 Future work

8.2.1 Causality issue in the time-to-depth conversion algorithm

Our time-to-depth conversion algorithm works very fast both in 2D and 3D and produces

the output in the very convenient form: on a regular rectangular mesh. However, there

remains a question about a hypothetical causality problem we are asking ourselves. We

devoted Section 3.1.3 to the causality issue in the time-to-depth conversion algorithm.

In 2D, we performed a large number of numerical experiments with different velocity

fields trying to find an example with causality violation and did not succeed. This convinced

us that the algorithm can be trusted in the application to geophysics, where the velocity

fields are are not very complicated in comparison with what we invented for our experiments.

However, we have not proven that causality violation is impossible.

In our extension of the ray tracing approach to 3D, the hypothetical causality problem

becomes more complex. We did not encounter any causality violation in 3D in our numerical

experiments. However, we would like to conduct more research on this subject.

Both, in 2D and 3D, the ultimate goal is either to prove that the causality violation is

impossible, or define a set of velocity fields in which the causality violation cannot happen.

85

8.2.2 Field data example in 3D

So far, we tested our ray tracing approach in 3D only on a collection of synthetic

examples. We hope to be able to apply it to a field data. The main problem here is that

we have no 3D field data now.

8.2.3 Level set approach in 3D

We are going to try to extend our level set approach for the 3D case. The main dif-

ficulty and challenge is first to modify the approach in 2D to make it narrow-band (see

Adalsteinsson and Sethian [1995]) and then to extend it for 3D. This would allow to reduce

significantly the computational cost. This project is important, as it would allow to enable

us to estimate the velocity even if the image rays crossed, as we were able to do in 2D.

8.2.4 First and second derivatives estimation for noisy data

In our ray tracing and level set algorithms we needed to estimate the first and the

second derivatives of the unknown velocity. We tried to apply many different techniques

to do it. Least squares polynomial approximation using Chebyshev polynomials as a basis

proved to be working the best. However, we are not completely satisfied with this solution.

In 2D, the choice of the degree of the polynomial is very delicate: if the degree is too low,

we oversmooth the velocity and underestimate the geometrical spreading of the image rays;

if it is too high, the polynomial follows not only the main trend but also the small bumps

which are the noise, and these bumps amplify due to the inheritant ill-posedness of our

inverse problem (see Section 2.5.1). In 3D, we have to apply the polynomial approximation

many times (O(nx× ny)) per time step. In result we observe oversmoothing of the velocity

in our numerical examples.

86

Bibliography

Adalsteinsson, D. and Sethian, J.A., Fast Level Set Method for Propagating Interfaces, J.
Comp. Phys, 118, 2, pp. 269-277, 1995.

Adalsteinsson, D. and Sethian, J.A., Transport and Diffusion of Material Quantities on
Propagating Interfaces via Level Set Methods, J. Comp. Phys, 185, 1, pp. 271-288, 2002.

Červený, V., Seismic Ray Theory: Cambridge University Press, 2001.
Claerbout, J., Basic Earth Imaging, http://sepwww.stanford.edu/sep/prof/index.html
Dix, C. H., Seismic velocities from surface measurements: Geophysics, 20, pp. 68-86, 1955
Fomel, S., Time-migration velocity analysis by velocity continuation: Geophysics, 68, pp.

1662-1672, 2003
Hubral, P., Time migration - Some ray theoretical aspects: Geophys. Prosp., 25, pp. 738-

745, 1977
Hubral, P., Krey, T., Interval velocities from seismic reflection time measurements: SEG,

1980.
Osher S., Sethian, J. A., Front propagating with curvature dependent speed: algorithms

based on Hamilton-Jacobi formulations, J. Comp. Phys., 79, pp. 12-49, 1988.
Popov, M. M., Ray theory and gaussian beam method for geophysicists: Salvador:

EDUFBA, 2002.
Popov, M. M, Pšenčik, I., Computation of ray amplitudes in inhomogeneous media with

curved interfaces: Studia Geoph. et Geod., 22, pp. 248-258, 1978.
Sethian, J. A., An Analysis of Flame Propagation: Ph.D. Dissertation, Department of

Mathematics, University of California, Berkeley, CA, 1982.
Sethian, J. A., Curvature and the Evolution of Fronts: Commun. in Math. Phys., 101, pp.

487-499, 1985.
Sethian, J. A., Numerical methods for propagating fronts in Variational Methods for Free

Surface Interfaces, (eds. P. Concus & R. Finn), Springer-Verlag, NY, 1987.
Sethian , J. A., A Fast Marching Level Set Method for Monotonically Advancing Fronts:

Proceedings of the National Academy of Sciences, 93, 4, 1996.
Sethian, J.A., Fast Marching Methods: SIAM Review, Vol. 41, No. 2, pp. 199-235, 1999.
Sethian, J. A., Level set methods and fast marching methods: Cambridge University Press,

1999.
Sethian, J. A., Vladimirsky, A., Ordered Upwind Methods for Static Hamilton-Jacobi Equa-

tions: Theory and Algorithms: SIAM J. Numer. Anal., 41, 1, pp. 325-363, 2003
Shah, P. M., Use of wavefront curvature to relate seismic data with subsurface parameters:

Geophysics, 38, 812-825, 1973.
Tsitsiklis, J.N., Efficient Algorithms for Globally Optimal Trajectories: IEEE Tran. Auto-

matic Control, 40, pp. 1528-1538, 1995.
Yilmaz, O., Seismic Data Analysis: Soc. of Expl. Geophys., 2001

87

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Overview and summary of the goals and results
	Background: settings and terminology
	Seismic images
	High frequency approximation

	Time migration coordinates and image rays
	Travel time approximation
	Emerging wave front
	General 3D case
	2D simplification

	Dix inversion

	Forward modeling of time migration velocities
	Paraxial ray tracing
	Relation between the matrix K and the true seismic velocities in 3D
	Relation between the Dix velocities and the true seismic velocities in 2D
	Analytical example
	Statement of the inverse problem
	The inverse problem in 2D
	The inverse problem in 3D

	Numerical algorithms in 2D
	Efficient time-to-depth conversion algorithm
	Eulerian formulation of the boundary value problem
	Numerical algorithm
	Causality
	Boundary effects
	Synthetic data examples

	Algorithms producing the seismic velocities from the migration velocities
	Ray tracing approach
	Level set approach

	Synthetic data examples in 2D
	Example 1
	Example 2
	Example 3

	Field data examples
	Numerical algorithms in 3D
	Step 1: Ray tracing algorithm
	The ray equation in the spherical coordinates
	The ray tracing algorithm

	Step 2: Recomputation of the velocity using the found image rays
	Step 3: Time-to-depth conversion algorithm

	Synthetic data examples in 3D
	Example 1
	Example 2

	Example 3

	Summary and future work
	Summary
	Future work
	Causality issue in the time-to-depth conversion algorithm
	Field data example in 3D
	Level set approach in 3D
	First and second derivatives estimation for noisy data

	Bibliography

