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ABSTRACT OF THE DISSERTATION

Optimization of Heterogeneous NoC for Fused CPU-GPU Architecture

By

Lulwah Alhubail

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2019

Professor Nader Bagherzadeh, Chair

Heterogeneous computing architectures that utilize both CPU and GPU have been the trend

nowadays. Several products from AMD, Intel, and NVIDIA have emerged that fused CPU

and GPU on the same chip. In such architectures, different processing elements (PEs),

including many CPU cores, GPU cores, memory controllers (MCs), and caches, are connected

through a common interconnection. CPU and GPU exhibit different network behaviors; CPU

tends to be latency-sensitive and GPU, with its high thread level parallelism (TLP), tends to

be throughput hungry. Using homogeneous interconnect for such heterogeneous processors

can result in performance degradation and power increase. This dissertation focused on

designing a heterogeneous mesh-style network-on-chip (NoC) to connect heterogeneous CPU-

GPU processors while considering their diametric network demands.

There are many aspects to consider when designing a 2D mesh NoC. Firstly, the placement

of the PEs within the mesh. Secondly, setting the NoC parameters: the size of the router’s

buffer, the number of virtual channels, and the bandwidth of the links. This dissertation

tackled all these problems simultaneously. Moreover, to design a heterogeneous NoC, het-

erogeneity was explored at the router’s port and link level, where each port of each router

can have different buffer size and number of virtual channels, and each link can have dif-

ferent bandwidth. This explodes the design space and makes exploring all possible design

xv



combinations using simulation very difficult.

In this dissertation, heuristic-based optimization methods were proposed to obtain a near-

optimal heterogeneous NoC design. Firstly, a method based on Genetic Algorithm (GA)

to get a design with optimal performance in terms of the average network latency. An

analytical model based on queueing theory that supports virtual channels was proposed to

get a performance measure of the design. Secondly, a multi-objective method based on the

Strength Pareto Evolutionary Algorithm 2 (SPEA2) to get an optimal design in terms of the

performance and the power of NoC. Also, an activity based power model was proposed to get

the power of the design. The optimal designs were validated using a full-system simulator.

xvi



Chapter 1

Introduction

Heterogeneous Systems Architectures (HSA) are the trend nowadays. These systems do

not depend only on adding more cores of the same type but also use more than one kind

of processor to enhance performance and power. Graphics Processing Units (GPUs) are

attractive processing cores for high performance and energy-efficient computing systems,

so current high-performance computers, servers, and supercomputers heavily utilize them

to scale up the throughput [1]. While conventional CPUs are based on instruction level

parallelism, GPUs are designed to exploit data and thread level parallelisms for performance

enhancements [36][17].

Using GPU as a standalone is promising, but combining it with CPU in heterogeneous

computing systems is more awarding in terms of utilizing the unique architectural strengths

of each core [34][41]. Modern CPUs are typically out-of-order cores that run at high frequency

and use a hierarchy of large-sized caches to tolerate latency, see Figure 1.1a; hence they are

the best match for latency-sensitive and irregular applications. GPUs, on the other hand,

use a large number of in-order cores that share their control unit and operate at lower

frequency and smaller sized-caches, see Figure 1.1b, so they are most suited for throughput-

1



(a) CPU (b) GPU

Figure 1.1: CPU vs. GPU architecture.

critical and regular applications. This same difference in their architectural that makes it

appealing to combine them, imposes different challenges in totally exploiting their potentials

[30]. Most importantly, how to maximize the utilization of this architecture while optimizing

performance and power consumption.

1.1 Heterogeneous CPU-GPU Architecture

Heterogeneous CPU-GPU Architectures can be either discrete or fused, see Figure 1.2. In

discrete architectures, CPU and GPU lie on a different chip, and they are connected through

the PCIe. When running a program on GPU, the data need to be copied between the CPU

(host) memory and GPU (device) memory through the PCIe. This imposes a burden on the

PCIe and makes it a bottleneck, especially for applications that require co-computing.

Another design choice is to fuse both CPU and GPU on the same chip, eliminating the PCIe

bottleneck. Several products from AMD [37][42], Intel [22][23], and NVIDIA [3][14] have

adopted this design choice. In this architecture, two memory schemes are available. Firstly,

the main memory is divided into a CPU part and a GPU part. In this case, the data still need

to be copied between the two parts, but this is done by high-speed block transfer engines
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(a) Discrete (b) Fused

Figure 1.2: Discrete vs. fused CPU-GPU architecture. 1

mitigating the slow effect of PCIe. The effectiveness of this approach compared to discrete

CPU-GPU architecture has been investigated by [13]. Their study shows that the costs of

data transfer can be reduced by six-fold resulting in application’s performance improvement

of three-fold. In the second scheme, the main memory is shared and can be accessed by both

the CPU and GPU, avoiding data transfer penalty between the host memory and the device

memory. This dissertation adopted the second memory scheme.

A closer look at the fused CPU-GPU architecture is shown in Figure 1.3. It consists of many

CPU cores and many GPU cores (Streaming Multiprocessor (SM) in NVIDIA’s term), each

with its private L1 cache. Both CPU and GPU utilize a common interconnection network to

the shared L2 cache, memory controllers (MCs), and fully shared physical memory leading

to other resources sharing challenges. The difference between the CPU and GPU intensifies

the shared resource contention. Especially, the high degree of thread level parallelism (TLP)

nature of GPU which leads to frequent network injections.

Since the interconnection network connects all the components and all the communications

traverse through it, this dissertation focused on designing an efficient interconnection that

takes the difference in architecture and the varying needs of the CPU and GPU into con-

sideration. Industry fused architectures such as Intel Sandy [22] and Ivy [23] bridge use a

1Source: https://sites.google.com/site/fusionsimulator/
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Figure 1.3: Fused CPU-GPU architecture with many CPU cores and GPU cores sharing an
interconnection to the shared L2 cache, MCs and physical memory.

bi-directional ring style bus interconnection while AMD Fusion [42] and NVIDIA’s Project

Denver [14] adopt a crossbar interconnection. While these interconnections may provide

satisfactory performance, they might not be as scalable as a mesh style Network-on-Chip

(NoC), which is known for its reliability and scalability.

1.2 Network-on-Chip

A 2D mesh NoC is composed of a network of routers; each is connected to a PE that can

be a computational processor or a memory, see Figure 1.4. The router can have up to five

ports, depending on its position in the mesh, each with n virtual channels (VCs) with a fixed

buffer (BS) size b, that is used to transmit the packet over a link of bandwidth (BW) w.

Designing a 2D mesh NoC involves solving different sub-problems. Firstly, processing ele-
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Figure 1.4: A 4 x 4 2D mesh NoC.

ments (PEs) mapping to the routers of the mesh. Mapping problem is considered to be an

NP-hard problem. The placement (mapping) of PEs within the mesh significantly affects the

performance and power of the system. Secondly, configuring the NoC. The configurations

can include route allocation, setting links’ latency, choosing the buffer size, choosing the

number of virtual channels, and the links’ bandwidth, etc.

While designing homogeneous 2D NoC with identical n, b, and w values for all the routers

and links is relatively easy, using a homogeneous NoC to connect heterogeneous cores with

different communication demands can affect the performance and power of the system. When

running applications simultaneously on CPU and GPU cores, interference between the ap-

plications is highly expected [27]. CPU tends to be latency sensitive and GPU bandwidth

hungry, and with its high level of TLP, it generates massive traffic that can interfere with

the CPU traffic.

Designing a heterogeneous mesh can be challenging and can be considered on different levels:
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the router level and the port level. On the router level, n and b values could be different from

one router to another, while the same within all ports of the same router. On the port level,

even within the same router n and b values could be different for each port. Commonly,

increasing the number of VCs enhances performance but consumes more power especially

when the buffers consume about 35% of the router power [29].

1.3 Dissertation Contribution

The focus of this dissertation is to provide a design methodology of heterogeneous 2D mesh

NoC which targets a fused heterogeneous CPU-GPU architecture. The design must consider

the diametric network demands of the CPU and GPU and aim to improve the performance

and power of the system. Designing a 2D NoC involves solving different sub-problems:

mapping PEs to the routers of the mesh, finding the number of virtual channels and the

buffer size for each port of each router, and finding the bandwidth of each link in the mesh.

There could be two approaches to solve these problems, iteratively or simultaneously, see

Figure 1.5. The iterative method is more straightforward than the simultaneous method.

Though, it limits the search space by solving a problem depending on the solution of the

previous; This dissertation adopted a simultaneous approach.

Mapping is an NP-hard problem, and considering different NoC configurations (virtual chan-

nels, buffer size, and links’ bandwidth) on the port level at the same time, expands the search

space. Moreover, obtaining a design that satisfies two contradicting objectives, performance

and power, complicates the problem. This complexity and scope proliferate as the size of the

mesh increases. Usually, designers rely on simulation to explore different design possibilities.

For the proposed design problem, exploring all the possible design combinations using sim-

ulation is time-consuming and not practical. Alternatively, analytical models can be used

to evaluate multiple design choices faster and accurate enough. Moreover, combining the
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analytical models with a heuristic method can help explore many if not all possible design

choices and obtain a near-optimal design choice that satisfies the intended objectives.

In this dissertation, the performance of the NoC is represented as the average packet latency.

An analytical model that supports different buffer size per port is presented to get a measure

of the performance of NoC design. The model is extended to support varying virtual channels

per port. This model is used within an optimization method that is based on GA to get

a heterogeneous NoC design with optimal performance. This design aims to solve three

sub-problems simultaneously, PE placement, buffer size, and virtual channels configuration

per router’s ports. While the objective of this design is only the performance of the NoC,

the power is considered indirectly by considering the NoC area within the optimization. The

NoC area is represented as the total number of buffers in the design since the buffers of the

routers in NoC represent over 75% of the total area of the interconnect [29].

A multi-objective optimization method based on SPEA2 is proposed to solve the same three

sub-problems and get a Pareto-optimal heterogeneous NoC design set that satisfies perfor-

mance and power. An activity-based power model is proposed to get a measure of the NoC

power and is used within the optimization method.

The optimization method based on SPEA2 is extended to solve the heterogeneous bandwidth

sub-problem in addition to the other three sub-problems. Both, the performance and power

models are extended to support the heterogeneous bandwidth in the evaluation of the design.

Finally, the proposed methods are evaluated using full system simulator. The obtained

optimal designs are validated and compared against other NoC design strategies.

The contribution of this dissertation can be summarized as follows:

• Present and develop a G/G/1 queueing theory-based model that supports arbitrary

buffers per router’s ports of [24] to estimate the average packet latency of NoC.
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• Adjust the inaccuracy of the presented model.

• Extend the model to support arbitrary virtual channels per router’s ports.

• Extend the model to support heterogeneous links’ bandwidth.

• Propose an activity-based power model to estimate the power of NoC.

• Propose a method based on GA to get an optimal performance heterogeneous NoC

design that solves three sub-problems, PE placement, buffer size, and virtual channels

assignments per port.

• Propose a method based on SPEA2 to get an optimal heterogeneous NoC design Pareto

set that satisfies two objectives: performance and power of NoC. Each NoC design

solves three sub-problems, PE placement, buffer size and virtual channels assignment

per port.

• Extend the SPEA2-based method to get an optimal Pareto-set for heterogeneous NoC

design that solves four sub-problems: PE placement, buffer size per port configuration,

virtual channels per port configuration, and bandwidth assignment per link.

• Evaluate the proposed methods using full system simulator and compare them with

other design strategies.

1.4 Dissertation Organization

This dissertation is organized as follows, Chapter 2 summarizes the different NoC design

approaches available in the literature. These approaches are categorized according to the

type of NoC design, homogeneous or heterogeneous, and the targeted architecture, CMP or

CPU-GPU architecture.
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Chapter 3 aims to explain the proposed analytical model that is used to get the performance

of the NoC. It starts by comparing different analytical models in the literature that estimates

the average packet latency of NoC. Next, it presents the chosen model that supports arbitrary

buffers. It shows how the inaccuracy of the model is adjusted and further extended to support

random virtual channels and link’s bandwidth. Finally, it concludes with a discussion of the

accuracy of the proposed model against simulation.

Chapter 4 explains the activity-based power model that is used to get the power of NoC. This

model supports heterogeneous routers with heterogeneous buffer size and virtual channels

per port. It also shows how this model is extended so that each link can have a heterogeneous

bandwidth.

A detail description of the proposed optimization methods is presented in Chapter 5. It

starts with a description of the problem and a discussion of different approaches to tackle

complex problems with large design space. Next, it explains the GA-based method by first

presenting a description of the targeted NoC design that includes three sub-problems. Then,

it provides a detailed description of how GA with its different operators is adopted to solve

the NoC design problem. It introduces the SPEA2-based method used to solve the same

problem, next, showing in details the implementation of its different operators. Finally, it

describes the SPEA2-BW based approach, which is the extended version of the SPEA2-based

method that solves four sub-problems. It explains in detail the addition of bandwidth as a

target in the design and how the SPEA2 operators are modified to include its effect.

The goal of Chapter 6 is to evaluate the proposed method and validate them against other

NoC design approaches. It starts by describing the evaluation methodology that follows

different stages, the evaluation environment including the simulators and benchmarks, the

evaluation criteria, and different NoC design approaches for comparison. It provides the

evaluation of each proposed method. It concludes by comparing all the proposed methods,

GA, SPEA2, SPEA2-BW, and shows the improvement in different evaluation criteria that
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each provides.

Chapter 7 concludes this dissertation summarizing all the contribution achieved. It, also,

provides possible directions to extend this work.
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Chapter 2

Related Work

In NoC design, an NoC can either be heterogeneous with heterogeneous routers and links

or homogeneous where all the routers and the links have the same configurations. More-

over, the cores connected through the NoC can be homogeneous, that is of the same type

or heterogeneous. The research in the NoC design can be classified into three categories: 1)

Research that focuses on designing a homogeneous NoC, 2) Research that focuses on het-

erogeneous NoC design for CMP, and 3) Research that concentrates on heterogeneous NoC

design connecting heterogeneous cores, specifically CPU and GPU.

2.1 Homogeneous NoC Design

In the homogeneous NoC domain, many works focused on PE or IP mapping sub-problem;

IP can be homogeneous cores or CPU cores and special accelerator like DSP.

Ascia et al. [6] proposed an optimization method based on SPEA to solve the problem

of mapping IP to mesh NoC. This method finds the Pareto optimal mapping in terms of

performance and power.
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Tei et al. [39] solved the IP mapping problem by using a GA-based technique. Their

technique combines network partitioning and a heuristic crossover. The objective of their

method is to minimize communication cost.

Jena et al. [21] considered using GA in two sequential phases optimization. The purpose of

the first phase is to find an optimal task mapping to cores while the goal of the second phase

is to obtain an optimal IP mapping to NoC. The objective of both stages is to optimize

energy consumption and maximum link bandwidth.

Shin et al. [35] used GA to solve four design stages iteratively. The first stage is task mapping

to IP, then mapping the IPs to tiles, choosing the routing path between communicating tiles,

and finally optimizing link speed assignment. The ultimate objective of their method was

to optimize energy consumption.

But all these works were on homogeneous NoC and did not consider fused CPU and GPU

architectures.

2.2 Heterogeneous NoC for Homogeneous CMP

Some works considered heterogeneous NoC for homogeneous CMPs. For example, Mishra

et al. [29] proposed a heterogeneous NoC that incorporates two types of routers, big and

small. The big router has more VCs and wider links while the small router has less VCs and

narrower links. They compared six different layouts for the placement of these two types of

routers on homogeneous CMP, in terms of throughput, latency, and power. They also used

a fixed buffer size for all the virtual channels.

Zhao et al. [43] considered using buffered and bufferless routers and compared eight different

placements of these two types of routers on homogeneous CMP with all the buffered routers
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having the same size. They also proposed buffered-router aware mapping to map application

threads near the buffered routers and buffered-router aware routing algorithm to move data

between the buffered routers.

While these two works were based on empirical studies to compare the NoC under different

configurations, Ben-Itzhak et al. [8] proposed a design methodology to optimize the area

of NoC under end-to-end latency constraints. They employed simulated annealing (SA) to

optimize the capacity of each link of each router and the number of virtual channels. They

designed a new router that can be adjustable based on how much bandwidth each port needs.

They didn’t consider the effect of the buffer size.

2.3 Heterogeneous NoC for CPU-GPU Architecture

There are not so many works in the literature that studied heterogeneous NoC design for

fused CPU-GPU architecture. Lee et al. presented in [26] an adaptive virtual channel

partitioning for heterogeneous architecture. Their design assumed a homogeneous 2D mesh

connecting CPU and GPU with separate injection queues for CPU packets and GPU packets.

They proposed a feedback-directed virtual channel partitioning mechanism between the CPU

traffic and GPU traffic to balance on-chip network bandwidth. The NoC in their work was

homogeneous, and the placement of the cores within the mesh was not studied. In other work,

[27], they surveyed the behavior of ring NoC when running CPU and GPU simultaneously.

They investigated the effect of different design choices such as the number of VCs and

physical channels, arbitration policy, and link configurations under four different placement

of the PEs. Based on their findings they proposed an optimal ring network for heterogeneous

CPU-GPU platforms. Their work focused on ring interconnection, which is not scalable, also

didn’t consider the effect of buffer size.
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Fang et al. [16] studied the placement of two types of routers, buffered and bufferless, in

CPU-GPU architecture connected with a mesh NoC. Based on the type of PE connected

to the router (CPU, GPU, or MC), they classified the routers in NoC into three categories.

Then, they compared the NoC speedup and energy of all the possible eight buffer’s placement

combinations. They also, proposed a unidirectional control flow to control the flow between

buffered and bufferless routers to guarantee the elimination of flits deflection. However,

they didn’t evaluate the placement of PEs, and they just considered one aspect of router

heterogeneity; that is the buffer size. Even for buffered routers, they used a fixed buffer size

among all the routers and within the ports of the routers.

Li et al. [28] implemented a network within an area budget for CPU-GPU heterogeneous

computing architecture. They proposed a 2D mesh-style on-chip heterogeneous communica-

tion infrastructure, iConn, that uses non-uniform on-chip routers with different buffer size

per port. They implemented a queuing-theory based heuristic algorithm to statically re-

allocate the buffers to different router ports to minimize the variation of the average waiting

time of each port. They also proposed to adaptively assign the buffers across all VCs at

the same input port depending on the traffic. However, they only considered four different

PEs’ placements and a fixed number of virtual channels among all routers. Although they

evaluated the proposed design in terms of power, the power was not part of the optimization

process.

2.4 Summary

Although many works in the literature tackled the homogeneous NoC design problem, using

homogeneous NoC is not suitable for fused CPU-GPU architecture because of the diametric

network demands of these cores [27].
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By comparing the related work that tackled the heterogeneous NoC design as in Table 2.1,

most of them only considered one or two aspects of NoC heterogeneity, such as BS, VC,

or BW. Moreover, the heterogeneity was mostly explored on the router level than on the

port level; meaning all ports of the same router have the same configuration, but different

routers can have a different configuration. The placement of PE either was not considered

or evaluated from a predefined set of possible placements. Some of them targeted CMP

architecture which is different than fused CPU-GPU architecture. Even for the works that

aimed for CPU-GPU architecture, they relied on a design process of NoC that depends

mostly on empirical studies. In which different predefined network configurations for a given

PEs’ placement were compared. This design approach limits the search space for NoC design

that can be considered. Some works utilized heuristic approaches to get an optimal NoC

design but mostly focus on NoC performance in their design objective neglecting the power.

Table 2.1: Comparison of Heterogeneous NoC Design Approaches in Literature

Work Cores type Method
PE

placement

Hetro

BS

Hetro

VC

Hetro

BW

[29] CMP Empirical studies 1 N Y Y

[43] CMP Empirical studies 1 Y N N

[8] CMP SA 1 N Y Y

[26] CPU-GPU
Adaptive VC

partitioning
5 N N N

[27] CPU-GPU Empirical studies 4 N N Y

[16] CPU-GPU Empirical studies 1 Y N N

[28] CPU-GPU
Queueing theory

based heuristic
4 Y N N
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Chapter 3

Performance Model

Nowadays, most NoC performance models are based on simulations. However, the use of

simulation for design optimization is not efficient. Exploring the search space of design

parameters can take a long time especially when network size increases or several design pa-

rameters are considered [24]. The alternative method is to use an estimation of performance,

modeled by analytical equations. With these equations, the performance of NoC designs can

be obtained efficiently and can be applied easily within an optimization loop.

There are many proposed analytical models for NoC in the literature. Each varies in the

degree of the complexity of their equations and the accuracy. For example, Arjomand et al.

[5] proposed a power-performance model for NoCs, with arbitrary topology, buffering struc-

ture, and routing algorithm. Message generation was assumed to have Poisson distribution,

and many complex equations were developed to find the effect of buffer size and virtual

channels on performance and power consumption. Hu et al. [20] proposed a sophisticated

model based on M/G/1/K for obtaining the average packet latency for a wormhole switching

network with finite buffers. Kiasari et al. [24] proposed a performance queuing model using

G/G/1. The equations modeled arbitrary topology and channel buffer size, however, the
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effect of virtual channels was not modeled. Ogras et al. [31] presented a formal approach

for NoC performance analysis that relies on a new router description based on FIFO buffers

interconnected by switches, and it was based on M/G/1 queueing model. These approaches

are summarized in Table 3.1.

Table 3.1: Comparison of Four Performance Models and Their Accuracy

Related

work

Queueing

model

BS

support

VC

support

Model

inaccuracy (%)

Equations

complexity

[5] M/G/1/k Yes Yes 4 ∼ 10 Complex

[20] M/G/1/k Yes No 10 Complex

[24] G/G/1 Yes No 7.5 Simple

[31] M/G/1 Yes No 9
Moderately

complex

In this dissertation the performance model proposed by Kiasari et al. [24] is used for the

following reasons:

• This model assumes a general distribution for packet arrival and service, which is

suitable for the bursty nature of GPU traffic [40].

• Equations used in this model are more refined and simpler than other similar works.

• It shows more accuracy compared to other models.

• It supports having different buffer size for each channel of a router in heterogeneous

NoCs.

The model, however, suffers from some inaccuracy with full system simulations, as shown

after further evaluation in Section 3.5. Nevertheless, following the same approach, the inac-

curacy is adjusted, and the support for arbitrary virtual channels per port is added. All the

parameters’ notations used in the model are described in Table 3.2.
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Figure 3.1: Five-ports output-buffered router model with different pipeline-stages.

3.1 Router Model

The targeted design adopts output-only buffered routers, see Figure 3.1. Two different

pipeline schemes were explored. Firstly, five pipeline stages; route compute (RC), virtual

channel allocation (VCA), switch allocation (SA), switch traversal (ST), and link traversal

(LT). Secondly, three pipeline stages; routing and arbitration (RC + VCA), switching and

crossbar traversal (SA + ST), and link traversal (LT). Each stage takes one cycle, and the

flow control is implemented by monitoring the availability of buffers at each output port in

the downstream router before sending.
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3.2 Improving Accuracy of the Performance Model

Average message latency of a packet in the network can be given by:

LNoC =
∑
∀S,D

P S→D LS→D (3.1)

where P S→D is the probability that source S sends a packet to destination D, and LS→D is

the packet latency between the source and destination nodes. It consists of two parts, the

header latency (LS→D
h ) and the body latency (Lb):

LS→D = LS→D
h + Lb (3.2)

The header latency is the time when a packet is created in the source PE until the header flit

reaches the destination PE. This includes the number of cycles to inject the flit from source

PE to source router tinj, obtain the routing decision tr, switch the flit within the ports of the

router ts, traverse the link between two routers tw, eject the flit from destination router to

destination PE tej, and the waiting time W spent at the source and all intermediate routers

(M).

LS→D
h = (tinj + tr +W S

inj→out + ts)

+
∑
∀M

(tw + tr +WM
in→out + ts) (3.3)

+ (tw + tr +WD
in→ej + ts + tej)

The body flits will follow the same route; The latency can be found by multiplying the

average message size in flits (m), excluding the header flit, by the sum of cycles of switching

and link traversing:
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Lb = (m− 1)(ts + tw) (3.4)

To find the queuing time (wait), [24] models the router based on non-preemptive priority

queuing system where each output channel is a server:

WN
i→j =



ρNj

(
C2

A + C2
SN
j

)
2
(
µN
j − λNi→j

) i = 1

λNj

(
C2

A + C2
SN
j

)
2
(
µN
j −

∑i−1
k=1 λ

N
k→j

)2 2 ≤ i ≤ p

(3.5)

where p is the total number of ports, λNi→j is the arrival rate from input port i to output port

j of router N , λNj is the arrival rate, µN
j is the service rate, and ρNj is the occupation rate

of output channel j of router N . C2
A is the coefficient of variation of the arrival process to

network and C2
SN
j

is the coefficient of variation of service time of output channel j of router

N . The occupation rate can be found by:

ρNj =
λNj
µN
j

(3.6)

To find the arrival rate form inport ICi to outport OCj of router N , [24] used:

λNi→j =
∑
∀S,D

λS P S→D R(S → D, ICN
i → OCN

j ) (3.7)

where R is a routing function that returns 1 when a packet from source S to destination D

passes from inport ICN
i to outport OCN

j , 0 otherwise. λS is the injection rate of the source

router in packet/cycle.
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However, using the same probability P S→D used in (3.1) is not correct. The injected traffic

from the source router will be delivered to its destinations, so basically the probability needed

is the probability that there is a flow from that specific source S to a destination D among all

the source flows (F S→D
p ), as in (3.8). On the other hand, P S→D is the probability that there is

a flow or a communication between source S and destination D among all source-destination

communications, as in (3.9).

F S→D
p =

CS→D∑
D CS→D

(3.8)

P S→D=
CS→D∑
∀S,D CS→D

(3.9)

where CS→D is the communication rate between source S and destination D. Equation (3.7)

is replaced with (3.10):

λNi→j =
∑
∀S,D

λS F S→D
p R(S → D, ICN

i → OCN
j ) (3.10)

Then, the arrival rate to outport j of router N :

λNj =

p∑
i=1

λNi→j (3.11)

To compute the first and second moment of the service time of an output channel, [24] gives

an index to each output channel that is equal to the maximum distance between its router

and other destinations. Then, it calculates the service time for the output channel in an

iterative manner starting from the channels with the smallest index (the ejection channels

with index = 0) to the other channels in ascending order of their index value. The service

time of the ejection channel is:
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S
N

1 = ts + tw + Lb (3.12)

Given the standard deviation of the packet size σm, the coefficient of variation (CV 2) of the

service time of the ejection channel of router N can be found by:

CV 2

S
N
1

=
(ts + tw)2 σ2

m

(S
N

1 )2
(3.13)

The effect of buffers at the output channel is included in the service time. To illustrate,

assume that the service time of the output channels with index x, S
N

k , is already calculated.

To find the service time of the output channel with index x+ 1, of the connected router M ,

see Figure 3.2, [24] used:

S
M

i =

q∑
k=1

PN
j→k

(
ts + tw + tr + S

N

k +WN
j→k −BN

k (ts + tw)
)

(3.14)

where BN
k is the output-buffer size at channel k of router N , and q is the total number of

possible output ports of router N . PN
j→k is the probability that a packet is sent from input

port j to output port k of router N and it is given by [24] as:

PN
j→k =

λNj→k

λNk
(3.15)

where λNj→k is the arrival rate from input port j to output port k of router N , and λNk is the

arrival rate of output port k of router N .

The problem with (3.14) is that it does not reflect the case when the average packet size is

smaller than the buffer size. Therefore, the time spent in the buffer would be larger than it

is supposed to be, causing the service time to be negative. Equation (3.14) is replaced by
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Figure 3.2: ”(a) Passing flow from RM , RN and RO. (b) Some possible path for an entering
flow to RN .” 1

(3.16), where B factor is added to ensure the effect of arbitrary buffer is correctly included

when used later in the optimization.

S
M

i =

q∑
k=1

PN
j→k

(
ts + tw + tr + S

N

k +WN
j→k −B(ts + tw)

)
(3.16)

B =


BN

k m ≥ BN
k

m otherwise

(3.17)

Another problem with [24] is the sum of probabilities according to (3.15) would not be equal

to 1. Mainly because the incoming traffic to the input port will be distributed among different

output ports. When calculating the probability of a flow from input port j to output port

1Source: [24]
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k, the arrival rate from this input port to the output port relative to all the arrival rates of

the input port, not the output port, should be used. Therefore, (3.15) was corrected and

replaced by (3.18):

PN
j→k =

λNj→k

λMi
(3.18)

Where λMi is the arrival rate of output port i of router M (which is the same channel con-

nected to input port j of router N). This correction ensures that the sum of the probabilities

from input j to all output k is equal to 1.

Similarly, (3.19) used by [24] to compute the second moment of the output channel service

time is replaced by (3.20) as:

(SM
i )2 =

q∑
k=1

PN
j→k

(
ts + tw + tr + S

N

k +WN
j→k −BN

k (ts + tw)
)2

(3.19)

(SM
i )2 =

q∑
k=1

PN
j→k

(
ts + tw + tr + S

N

k +WN
j→k −B(ts + tw)

)2
(3.20)

Then, the coefficient of variation for the output channel can be calculated as:

C2
SM
i

=
(SM

i )2

(S
M

i )2
− 1 (3.21)

3.3 Adding Virtual Channel to Performance Model

For the case of having virtual channels in a network, the bandwidth of the physical channel

is shared among the virtual channels. The average degree of virtual channel multiplexing for

every pair of source and destination need to be calculated and included in the average packet
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latency. If there are V virtual channels that share the bandwidth of a physical channel, all

the incoming traffic rate will be uniformly distributed among them. Therefore, the incoming

traffic rate into an output channel j of router N that has V virtual channels:

λNj,vc =
λNj
V N
j

(3.22)

For each pair of source S and destination D, the average message latency should be scaled

by the average degree of virtual channel multiplexing, as in [15]. So, (3.2) is replaced by

(3.23) as:

LS→D = (LS→D
h + Lb)× V S→D (3.23)

where V S→D is the average of virtual channel multiplexing of all intermediate channels,

therefore, it can be calculated as:

V S→D =

∑HS→D

i=1 V (ai,bi)

HS→D
(3.24)

where HS→D is the hop count of the path between source S and destination D, and V (ai,bi)

is the average virtual channel multiplexing degree of channel (ai, bi) at the i-th hop of the

path between S and D.

To calculate V (ai,bi), based on the analysis done in [15]:

V (ai,bi) =

∑V
v=1

(
v2P(ai,bi)(v)

)
∑V

v=1

(
vP(ai,bi)(v)

) (3.25)

where P(ai,bi)(v) is the probability of having v busy virtual channels at physical channel

(ai, bi). To find this probability, all flows that use the physical channel (ai, bi) should be

determined.
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Let F(ai,bi) = {F1, F2, · · · , Fn} denote all flows that use the physical channel (ai, bi) to deliver

a message from any source to any destination. The probability that exactly v virtual channels

are busy is the probability that v flows of set F(ai,bi) are active, and the others are not.

Therefore, it can be given by:

P(ai,bi)(v) =



∑
∀F v

(a,b)

[ ∏
i∈F v

(a,b)

CFi:Si→Di
×

∏
i/∈F v

(a,b)

(1− CFi:Si→Di
)

]
v ≤ n

0 v > n

(3.26)

where F v
(a,b) is any member of the exponential set of set F(ai,bi) with v elements, and CFi:Si→Di

is the communication rate between source S and destination D of Flow i.

Based on this analysis, (3.5) and (3.18) are replaced by (3.27) and (3.28), respectively, to

support virtual channels:

WN
i→j =



ρNj

(
C2

A + C2
SN
j

)
2
(
µN
j − (λNi→j/V

N
j )
) i = 1

λNj

(
C2

A + C2
SN
j

)
2
(
µN
j − (

∑i−1
k=1 λ

N
k→j/V

N
j )
)2 2 ≤ i ≤ p

(3.27)

PN
j→k =

(λNj→k

λMj

)/
V M
j (3.28)

where V N
j is the number of virtual channels of physical channel j of router N .
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3.4 Adding Heterogeneous Bandwidth Support

The link bandwidth determines the rate at which the data are transferred. It can be con-

trolled by two parameters: the link width and the link latency. As explained later in Chapter

6, the simulator used to evaluate the proposed NoC design methods does not support het-

erogeneous bandwidth in terms of different link widths. Alternatively, the heterogeneous

bandwidth of the links is represented as a heterogeneous links latency, that is a heteroge-

neous number of cycles to traverse a flit. To include this in the performance model some

equations need to be changed.

Equation (3.3) need to be replaced by:

LS→D
h = (tinj + tr +W S

inj→out + ts)

+
∑
∀M

(twl + tr +WM
in→out + ts) (3.29)

+ (twl + tr +WD
in→ej + ts + tej)

where twl is the latency of the link attached to the input port of the respective router (M

or D).

Also, (3.16) that is used to find the service time of the output channel needs to be replaced

by:

S
M

i =

q∑
k=1

PN
j→k

(
ts + twi + tr + S

N

k +WN
j→k −B(ts + twi)

)
(3.30)

Where twi is the link latency of channel i. Similarly, the second moment of service time as

in (3.20) is replaced by:

(SM
i )2 =

q∑
k=1

PN
j→k

(
ts + twi + tr + S

N

k +WN
j→k −B(ts + twi)

)2
(3.31)
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Table 3.2: Performance Model Parameters’ Notations

Notation Description

BN
j Buffer size of outport j of router N in flits

C2
A Coefficient of variation of the arrival process to the network

C2
SN
j

Coefficient of variation of service time of outport j of router N

CS→D Communication rate between source S and destination D

CFi:Si→Di
Communication rate between source S and destination D of Flow i

HS→D Hop count of the path between source S and destination D

F S→D
p Flow probability from source S to destination D

λNi→j Arrival rate from inport i to outport j of router N

λNj,vc Arrival rate to the virtual channels of outport j of router N

λNj Arrival rate of outport j of router N

λN Injection rate of router N in packet/cycle

LS→D Latency between source S and destination D

LS→D
h Header latency from source S to destination D

Lb Body latency

LNoC Average packet latency

m Average packet size in flits

µN
j Service rate of outport j of router N

PN
j→k Probability of a packet sent from inport j to outport k of router N

P S→D Probability that source S sends a packet to destination D

P(ai,bi)(v) Probability of having v busy virtual channels at physical channel (ai, bi)

σm Standard deviation of packet size

ρNj Occupation rate of outport j of router N

S
N

j First moment of service time of outport j of router N

(SN
j )2 Second moment of service time of outport j of router N

tej Number of cycles to eject a flit from destination router to its PE

tinj Number of cycles to inject a flit by source PE to its router

tr Number of cycles to obtain routing decision

ts Number of cycles to switch a flit between router’s ports

tw Number of cycles to traverse a flit between two routers

twi Number of cycles to traverse a flit between two routers on link i

WN
i→j Waiting time from inport i to outport j of router N

V S→D Average degree of virtual channel multiplexing between S and D

V (ai,bi) Average virtual channel multiplexing degree of channel (ai, bi)
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3.5 Model Accuracy

The proposed model was evaluated using the Garnet Network test in gem5-gpu [32]. Six

experiments were conducted. The first experiment aims to evaluate the improved model

after adjusting the equations of [24]. The second experiment aims to establish the accuracy

of the model after adding the support for virtual channels. The third experiment aims

at establishing the accuracy of the model for handling heterogeneous buffer and virtual

channels. The fourth experiment aims to validate the use of link latency to control the

bandwidth instead of the link width. The purpose of the fifth experiment is to establish the

accuracy of the model after adding the bandwidth support. The sixth and last experiment

aims to establish the accuracy of the final model with buffer, virtual channel, and bandwidth

support for heterogeneous configurations.

For the first two experiments and the fourth experiment, uniform synthetic traffic was in-

jected into a 2D mesh of 16 CPUs with homogeneous buffer, virtual channels, and links

bandwidth for a fixed number of cycles. The test was repeated for different packet injection

rates (same for all the nodes). For the third experiment, real traffic trace was obtained from

running workloads of a combination of Parsec and Rodinia benchmarks, see Table 6.4, on

arbitrary buffer and virtual channels configurations. A similar approach was used to con-

duct the fifth experiment but using homogeneous buffer, virtual channels, and bandwidth.

While the last experiment use the real traffic on arbitrary buffer, virtual channels, and links

latencies (bandwidths) configurations.
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3.5.1 Evaluating the Improved Buffer Model

By setting the number of virtual channels to one with four buffers, the average latency of

the proposed model was compared with the simulator and the original unmodified model

of [24] for three different average packet sizes (m). As shown in Figure 3.3, the results of

the proposed model is near to the simulated result and saturate a little further than the

simulator. The results of [24] on the other hand, is very far and saturate at higher injection

rates. The average percentage of error in the proposed model is 12.9%, while [24] is 22.6%.
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Figure 3.3: Comparison of average packet latency against simulation and [24] model for
homogeneous NoC with 1 VC and 4 BS under different average message (packet) sizes (M).
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3.5.2 Evaluating the Added Virtual Channels

By fixing the buffer size to four, the average latency of the proposed model was compared

with the simulator using a different number of virtual channels. As seen in Figure 3.4, the

accuracy of the model is improved even further with an average percentage of error of 7.7%.
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Figure 3.4: Average packet latency of proposed model against simulation for homogeneous
NoC with 4 BS under different number of VCs.

3.5.3 Evaluating the Heterogeneity of the Model (BS and VC)

After running the different workloads on gem5-gpu under different buffer and virtual channels

configurations, the output real traffic trace of each arbitrary configuration was fed to the

model to obtain the average packet latency. Figure 3.5 compares the average packet latency

obtained using the simulator and the model for 24 random NoC configurations. The average

percentage of error is 5%.
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Figure 3.5: Average packet latency of proposed model (BS, VC) against simulation of real
traffic for different heterogeneous NoC configurations.

3.5.4 Comparing Link Latency and Link Width

By fixing the virtual channels to 1 with 16 buffers, the network test was run on the simulator

for two links settings, and the average packet latency was obtained for different injection

rates. The first experiment was conducted after setting the width of the links to 16B and

the latency of the links to 1 cycle. The same experiment was repeated for links’ width of

32B and links’ latency of 2 cycles. The results of both experiments are compared in Figure

3.6. As the injection rate increases, the difference between the two configurations increases,

but the average error is about 9.92%.
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Figure 3.6: Comparison of average packet latency of model and simulation for homogeneous
NoC with 1 VC and 16 BS under different links’ settings.

3.5.5 Evaluating the Added Bandwidth Support

Twenty different workloads were run on gem5-gpu using homogeneous four virtual channels

each with eight buffers for two different homogeneous links settings. Firstly, a link width of

16B and link latency of 1 cycle. Secondly, a link width of 32B and link latency of 2 cycles.

The output real traffic trace of each experiment was fed to the model, and the average packet

latency computed by the model was compared to the average packet latency obtained from

the simulator as in Figure 3.7. A general notice is that the trend of the second link settings

(32B, 2 Cycles) of model and simulator is more accurate than the first link setting (16B, 1

Cycle). When comparing the model results of the second link setting (32B, 2 Cycles) to the

simulator results of the first link setting (16B, 1 Cycles) the average error rate is about 9%.

This indicates that using link latency as a way to control the link bandwidth is justifiable

since it is near to the results of changing the link width in simulation.
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3.5.6 Evaluating the Heterogeneity of the Final Model

Different workloads were run on gem5-gpu under different buffer, virtual channels, and links

configurations, and the output real traffic trace of each arbitrary configuration was fed to the

model to obtain the average packet latency. Figure 3.8 compares the average packet latency

obtained using the simulator and the model for 40 random NoC configurations. The average

percentage of error is 25%.
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Figure 3.8: Average packet latency of the final proposed model against simulation of real
traffic for different heterogeneous NoC configurations.

36



Chapter 4

Power Model

The model has been proposed in [4] and all model’s parameters are described in Table 4.1.

The total power consumption of the NoC includes the power consumed in the routers and

the links. Following the analysis in [5], the power consumed in a router N consists of the

power consumed in the routing and arbitration unit, the power consumed in the crossbars,

and the total power consumed in the router’s links as:

PRouter
N = PR&A

N + PXB
N +

p∑
j=1

P TotalLink
N,j (4.1)

The power consumed in the arbitration and routing unit is:

PR&A
N = PR&A

Header

p∑
j=1

λNj (4.2)

where PR&A
Header is the power consumed in arbitrating and routing a header flit.
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The crossbar power consumption is:

PXB
N = PXB

bit Km

p∑
j=1

(λNj )2 (4.3)

where PXB
bit is the dynamic power consumed when a flit traverses the crossbar and Km is

the average size of the packets in bits.

The total power consumed by the router’s link consists of the power consumed by the link,

the dynamic, and the leakage power of the buffers:

P TotalLink
N,j = PLink

N,j + PBufferD
N,j + PBufferL

N,j (4.4)

To find the link power of an L-millimeter channel j with W bits width connected to a router

N that has fclk frequency and VDD supply voltage:

PLink
N,j =

1

2
λNj m

(
αLW C0

L + αC (W − 1)C0
C

)
Lfclk V

2
DD (4.5)

where αL and αC are the probabilities that different bit values cross over a single and adjacent

links, respectively. C0
L and C0

C are the link and the crosstalk capacities per millimeter,

respectively.

The dynamic power of the buffers is the power consumed in reading/writing a flit from/to

the buffer calculated as:

PBufferD
N,j = mk V N

j (λNj,vc P
W
bit + µN

j P
R
bit +QN

j P
clk
bit ) (4.6)

where PW
bit and PR

bit are the power consumed in writing and reading a bit to/from the buffer,

respectively. P clk
bit is the average power consumed when a one-bit memory element receives

a clock switch. QN
j is the average number of packets in the output buffer j of router N and
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calculated based on Little’s Theorem as:

QN
j = λNj W

N
j (4.7)

where WN
j is the waiting time of outport j of router N :

WN
j =

p∑
i=1

WN
i→j (4.8)

The leakage power of the output buffer j of router N :

PBufferL
N,j = BN

j W PL
bit (4.9)

where BN
j is the buffer size in flits, and PL

bit is the average leakage power of one-bit memory

element. Then, the total power consumption of the NoC can be found by:

PNoC =
∑
R

PRouter
R (4.10)

4.1 Adding Heterogeneous Bandwidth Support

Some equations need to be changed to include the effect of heterogeneous links bandwidth.

The dynamic link power of (4.5) is replaced by:

PLink
N,j =

1

2
λNj m

(
αLWj C

0
L + αC (Wj − 1)C0

C

)
Lfclk V

2
DD (4.11)

Where Wj is the width in bits of channel j. The leakage power of the buffer as in (4.9) is

replaced by:

PBufferL
N,j = BN

j Wj P
L
bit (4.12)
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Table 4.1: Power Model Parameters’ Notations

Notation Description

αC Probability that different bit values cross over adjacent links

αL Probability that different bit values cross over single links

BN
j Size of buffer of outport j of router N in flits

C0
C Crosstalk capacity per millimeter

C0
L Link capacity per millimeter

fclk Frequency in hertz

K Size of a flit in bits

L Link length in millimeters

λNj Arrival rate of outport j of router N

λNj,vc Arrival rate to the virtual channels of outport j of router N

m Average packet size in flits

µN
j Service rate of outport j of router N

P clk
bit Average power when a one-bit memory element receives a clock switch

PL
bit Average leakage power of one-bit memory element

PR
bit Power consumed in reading a bit from the buffer

PW
bit Power consumed in writing a bit to the buffer

PXB
bit Dynamic power consumed when a flit traverses the crossbar

PR&A
Header Power consumed in arbitrating and routing a header flit

PBufferD
N,j Dynamic power consumed in buffers of outport j of router N

PBufferL
N,j Leakage power consumed in buffers of outport j of router N

PLink
N,j Dynamic power of link j of router N

P TotalLink
N,j Total power consumed in link j of router N

PNoC Total power of NoC

PR&A
N Power consumed in the arbitration and routing unit of router N

PRouter
N Power consumed in a router N

PXB
N Power consumed in the crossbars of router N

QN
j Average number of packets in the buffer of outport j of router N

VDD Supply Voltage in volts

V N
j Number of virtual channels at outport j of router N

W Link width in bits

Wj Width of link j in bits

WN
i→j Waiting time from inport i to outport j of router N

WN
j Waiting time of output port j of router N
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Chapter 5

Optimization Methodology

The problem of designing a heterogeneous NoC involves solving different sub-problems: plac-

ing the PEs within the NoC; assigning the buffer size and number of virtual channels for each

port of each router in the NoC; choosing the bandwidth for each link in the NoC. Each of

these sub-problems has a large and complex design space. Combining them in one-problem

enlarges the design space even further.

The inputs to the problem are: a set of PEs, routers connected in 2D mesh style NoC, a

communication rate matrix between the PEs, and the injection rate of each PE. The aim is

to: (1) map the PEs into the routers of the NoC, (2) configure the number of virtual channels

for each router’s port, (3) configure the buffer size for each router’s port, and (4) configure

the bandwidth for each link of the NoC. This design problem can be solved to satisfy one of

many objectives, such as performance and power.

Many optimization techniques are available to solve complex problems with large design

space. Some are efficient for single objective problems, and others can handle multi-objective

problems. The optimization techniques can be classified into single-solution based and

population-based, depending on the number of solutions that they work with [18].
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Single-solution based techniques focus on modifying and improving a single solution. Dif-

ferent techniques vary in the way they modify the solution and accept a new one. Descent

method or hill climbing is one of the simplest methods. It starts with a random solution and

then either select the first feasible solution in the neighborhood that improves the objective

function of the current solution or the best feasible solution of the entire neighborhood. The

main drawback of this technique is that it can get stuck in a local optimum. Two other tech-

niques that can escape local optimum are Simulated Annealing (SA) and Tabu Search (TS).

SA is inspired by the annealing process, which consists of melting metal at high temperature

to be then cooled to a stable condition. It starts with a random solution and then accepts

a new solution based on a probability function of the temperature parameter exp(−∆f/T ).

This probability makes it possible to accept a worse solution allowing exploration of the

search space. The temperature is updated each iteration following a decreasing function

making exploitation of the search space favorable as iterations increase. TS is based on the

principle of human memory, and it memorizes previously encountered solutions by storing

them in a ”tabu” list. It starts with a random solution and accepts the best solution of the

neighborhood as long as it is not in the tabu list. It is possible to move to a worse solution,

escaping local optimum. Moreover, prohibiting already explored best solutions avoids falling

back into local optima.

Population-based techniques work with a set of solutions and improve these solutions usually

using population characteristics. Population-based techniques can be further classified into

evolutionary algorithms and swarm intelligence based algorithms. Evolutionary algorithms

are inspired by biological evolution, which is based on the natural selection and the modi-

fication of some genetic characteristics according to a certain probability. There are many

evolutionary algorithms such as Genetic Algorithm, Differential Evolution, and Bayesian

approach. Swarm intelligence based techniques are inspired by natural phenomena and the

behavior of a group of agents that communicate with each other and interact with their en-

vironment to survive. Examples of swarm intelligence based techniques are Particle Swarm
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Optimization and Ant Colony Optimization.

Single-solution based techniques and population-based techniques differ in their way of navi-

gating the search space. Single-solution methods focus more on exploitation, that is visiting

solutions in the neighborhood, with a little exploration. Population-based methods, on the

other hand, allows more exploration of the search space by working with many solutions at

the same time and visiting new regions of the search space. Both exploration and exploita-

tion are necessary to find the optimal solution. Evolutionary algorithms are known to have

a good balance between exploration and exploitation [12].

This dissertation adopts the Genetic Algorithm (GA) to find a heterogeneous NoC design

that optimizes a single objective; performance of the NoC. GA [19] is an evolutionary al-

gorithm that falls under the class of guided random search techniques and works with a

population of chromosomes. Each chromosome represents a possible solution to the problem

and is evaluated according to a fitness function that gives the quality of the solution. To

evolve, GA applies different evolutionary operators such as selection, crossover, and muta-

tion. Since GA is based on the survival of the fittest theory, chromosomes with better fitness

most probably survive and evolve to even better chromosomes. A general flow of GA is

shown in Figure 5.1. The main stages of GA are:

• Initialization: Generate a population of chromosomes randomly.

• Evaluation: Assign a fitness according to the objective for each chromosome.

• Termination: Check the termination criteria; this can be a specific number of gener-

ations or if the solutions stopped improving.

• Selection: A selection method is applied to select candidate parents. There are many

variations of the selection operator, such as roulette wheel selection, tournament selec-

tion, rank selection, and random selection. The selection methods select the parents
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Figure 5.1: A general flow of Genetic Algorithm showing the evolution process.
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according to their fitness, based on the idea that good parents most probably generate

better children.

• Crossover: The selected parents are mate by crossing over their genes; the purpose of

crossover is to exploit the good regions of the search space. There are many variations of

crossover that can be applied to a traditional or ordered chromosome. Some examples

of traditional crossover include one-point crossover, k-point crossover, and uniform

crossover. Examples of ordered crossover methods include partially mapped crossover

(PMX), cycle crossover, and position-based operator.

• Mutation: This operator is used to explore the search space further and avoid local

optimum. The mutation works on a single solution and changes it by randomly altering

one or more of its genes. Some mutation operators include random change, swap,

scramble, and inversion.

• Replacement: This phase will generate the next generation by selecting the survivors

among the parent and children populations. Two widely strategies are used. Firstly,

age-based selection, where the oldest members of the populations are dropped. Sec-

ondly, fitness-based selection, where any of the selection methods can be used to select

the survivors among the parent and children populations.

Multi-objective optimization methodologies that are based on genetic algorithms can be

classified according to the way of handling the fitness function into three main categories

[25]: weighted sum approaches, altering objective functions approaches, and Pareto-ranking

approaches. The weighted sum approaches assign a weight wi to each normalized objective

function f ′i(x) to convert the problem into a single objective problem as follows: min f =

w1f
′
1(x) + w2f

′
2(x) + ... + wnf

′
n(x). This method is simple but choosing the weights is a

challenge. The altering objective approaches use only a single objective randomly chosen

at the parent selection phase. This method is straightforward, but the population tends
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to converge to solutions that are excellent in one objective and bad at others. The third

approach, explicitly utilize the concept of Pareto dominance in fitness evaluation or the

selection phase. The solution is called dominate if it is better in at least one of the objective

functions and is not worse in any of the objective functions. The advantage of this approach

is that it provides the designer with a set of solutions ”Pareto-set” to further investigate and

choose the appropriate design from it.

This dissertation adopts Strength Pareto Evolutionary Algorithm2 (SPEA2) to find a het-

erogeneous NoC that optimizes two objectives; performance and power of NoC. Two versions

of SPEA2 are proposed. Firstly, SPEA2-based method to find an NoC design while solving

three sub-problems (PE mapping, BS, and VC configurations). Secondly, a method to get an

NoC design that solves four sub-problems (PE mapping, BS, VC, and BW configurations),

SPEA2-BW.

SPEA2 [44] is an evolutionary algorithm that is efficient for finding the Pareto optimal set

for multi-objective problems. It is based on SPEA [45] and works with two populations each

with a fixed size, a regular population of solutions (chromosomes) and an archive which is an

external set that keeps the non-dominated solutions. A solution is a non-dominated when

there is no other feasible solution better than it in some objective function without worsening

other objective functions. Environmental selection is applied to the combined regular and

archive populations to select the new archive. Reproduction operators, including selection,

crossover, and mutation, are applied to the new archive to generate the children population.

A general flow of SPEA2 in shown in Figure 5.2. The main stages of SPEA2 are:

• Initialization: Generate a regular population of chromosomes randomly and an empty

archive.

• Fitness assignment: Assign a fitness value for each chromosome taking into account

both dominating and dominated solutions. The objective functions determine the
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domination.

• Environmental selection: This stage is responsible for updating the archive. It

starts by copying the non-dominated solutions from the regular population and the cur-

rent archive. Since the size of the archive is constant, if the number of non-dominated

solutions is less than the archive size, it will be filled with the best dominated solu-

tions. On the other hand, if the number of non-dominated solution exceeds the archive

size, a truncation operation is applied to remove the non-dominated solutions based

on their k-th distance. This truncation operation prevents boundary solutions from

being removed.

• Termination: If the termination criterion, such as a maximum number of generations,

is met, the algorithm will terminate.

• Selection: Similar to GA, the selection is applied to choose the parents, but in SPEA2

selection is applied to the archive. That is non-dominated solutions are more probably

generate better children.

• Crossover: Crossover is applied to mix the genetic materials of the selected parents

and exploit the search space.

• Mutation: Mutation is applied to introduce randomness to the genes of a single

solution and allow further exploration of the search space.

• Replacement: This phase will replace the regular population with the generated

children and copy the current archive to the next generation.
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Figure 5.2: A general flow of SPEA2 showing the evolution process.
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5.1 GA NoC Design for Three Sub-Problems

The objective of GA is to minimize network delay (average packet latency). Since the search

space is huge, depending on simulation to get the average packet latency of the design,

even though it is most accurate, is not possible. Instead, a queueing-theory-based model to

estimate the average packet latency explained in Chapter 3 is used as the evaluation function

where the dynamic part of the network caused by traffic is included. The buffer size and

number of virtual channels are bounded:

Minimize

∑
∀S,D

P S→D LS→D

Subject to:

1 ≤ BR
p ≤ BMAX ∀ Router R, outport p

2 ≤ V R
p ≤ VMAX ∀ Router R, outport p

The proposed GA to find the best NoC configuration among many generated populations is

presented in Algorithm 1. The algorithm, takes the network dimensions, maximum buffer

size per port, maximum virtual channels per port, and the set of PEs to be placed along with

their injection rates and communication rates as inputs. The output of this algorithm is a

network configuration with the best average message latency. This optimized configuration

determines the position of PEs in the network and specifies the buffer size and the number

of needed virtual channels for each port of every router.
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Algorithm 1 Pseudo-code of the proposed heterogeneous NoC optimization based on GA

1: P = GENERATE initial population
2: g = 1 //generation counter
3: while g ≤ max generation do
4: EVALUATE(P ) and FIND the best solution
5: C = {}
6: while size(C) < size(P ) do
7: if rand() ≤ CR then
8: {Dad,Mom} = SELECT two parents from P
9: {child1, child2} = CROSSOVER ON{Dad,Mom}

10: else
11: {child1, child2} = {Dad,Mom}
12: end if
13: {child1} = MUTATION ON{child1}
14: {child2} = MUTATION ON{child2}
15: C = C ∪ {child1, child2}
16: end while
17: EVALUATE(C) and UPDATE the best solution
18: P = REPLACE using TOURNAMENT SELECTION on P and C
19: end while

5.1.1 Chromosome Representation

The chromosome, as shown in Figure 5.3, is represented as an array of the 2D mesh routers,

where the index of the array determines the position of the router in the mesh NoC. Each

router is represented as an object that has a PE and an array of port objects. The PE has

a unique id and a type. Each port has a buffer size and number of virtual channels. In this

representation, the PE assignment determines the placement, and the ports array adds the

heterogeneity to the NoC and specifies its configuration.

5.1.2 Initial Population and Fitness Function

The algorithm starts with a fixed-size population of chromosomes generated randomly, such

that each PE is assigned to a unique router and each output port is assigned a random buffer
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Figure 5.3: Chromosome representation of NoC design for three sub-problems.

size and virtual channels within the boundaries. The objective is to minimize the average

message latency; Equation (3.1) is used to evaluate the chromosomes. Additionally, the area

of the design is calculated as the total size of buffers in NoC:

Area =
∑

∀ Router R,outport p

V R
p ∗BR

p (5.1)

When more than one chromosomes are equal in their fitness, the chromosome with the least

area is preferred. During the evolution process, two types of populations with the same

size are maintained: parents population and children population. Whenever a generation is

evaluated, the global best found so far is updated.

5.1.3 Selection

A k-Tournament selection is applied to the parents’ population to select the parents. First,

k random chromosomes are chosen from the population to compete to be a parent. The

chromosome with the best fitness among them is chosen as the first parent (Dad). The

process is repeated to select the second parent (Mom).
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Algorithm 2 CROSSOVER

Input: Dad,Mom
Output: Child1, Child2

1: Child1, Child2 = Port Crossover(Dad,Mom)
2: Child1, Child2 = Placement Crossover(Dad,Mom)

5.1.4 Crossover Operator

Two types of crossover operators are applied to the selected parents according to a crossover

rate (CR) as in Algorithm 2; otherwise, the parents are copied to the children population.

One-point crossover is applied to change the buffer size and virtual channels of router’s

ports. For the placement of the PEs, partially mapped crossover (PMX) is applied to ensure

a one-to-one mapping between the PEs and the routers.

Figure 5.4a shows an example of one-point crossover; first, a random point is chosen. Then,

the port settings (BS and VC) of routers from the start of the dad chromosome to the random

point are copied to child1 while the rest is copied from the mom chromosome. Similarly,

the port settings of routers from the start of the mom chromosome to the random point are

copied to child2 while the rest is copied from the dad chromosome.

Figure 5.4b shows one example of PMX crossover. First, two different points are chosen ran-

domly. The PEs of the routers between the two points are copied from the dad chromosome

to the beginning of child1. The rest unassigned PEs are copied in the order they appear

in the mom chromosome beginning from the second random point to the end of the mom

chromosome and starting over till the second point. Child2 is produced similarly.
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(a) One-point crossover for ports configurations.
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(b) Partially mapped crossover (PMX) for PEs placement.

Figure 5.4: Crossover operators applied on parents chromosomes to generate two children.

53



5.1.5 Mutation Operator

As in Algorithm 3, one of four design choices of mutation is applied randomly on routers of

the child chromosome according to a mutation rate (MR): 1) change placement, 2) change

buffer size, 3) change virtual channels, and 4) change all.

Figure 5.5, shows an example of mutation operators. To change the placement, the PE of

the current router is swapped with the PE assigned to a random router as in Figure 5.5a.

One of three design choices is applied randomly to change the buffer size, Figure 5.5b. The

first choice is to just randomly change the value of the buffer size of a randomly selected port

from the current router. The second choice is to scramble the buffer sizes of three random

ports of the current router. The third choice is to apply both the first and second design

choices. The number of virtual channels of the current router is changed similarly, as shown

in Figure 5.5c.

Algorithm 3 MUTATION

Input: Child
Output: Child

1: for r = 0 to NoC SIZE− 1 do
2: if RAND() ≤MR then
3: switch (RAND()%4)
4: case 0:
5: Child = Placement Mutation(Child)
6: case 1:
7: Child = BS Mutation(Child)
8: case 2:
9: Child = V C Mutation(Child)

10: default:
11: Child = Placement Mutation(Child)
12: Child = BS Mutation(Child)
13: Child = V C Mutation(Child)
14: end switch
15: end if
16: end for
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Figure 5.5: Mutation operators applied on the routers of child chromosome.
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5.1.6 Replacement and Termination Criteria

The two populations, parents and children, are combined in one population. K-tournament

selection is applied to the combined population to select the survivors for the next generation.

K chromosomes are selected randomly, and the one with the best fitness is copied to the

parent population of the next generation. The process is repeated until the new parent

population has the same size as the original population. Elitism is used such that the global

best is always copied into the new generation.

The evolution process is repeated until either a maximum number of generations is reached,

or the best solution found so far stooped improving for a predefined number of generations.

Then, the algorithm returns the global best with the best PEs mapping, NoC buffer size,

and virtual channels configurations.
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5.2 SPEA2 NoC Design for Three Sub-Problems

The objectives of the proposed SPEA2 [4] is to minimize network delay (average packet

latency) and the total power consumption of the NoC. The models in Chapter 3 and Chapter

4 are used as a measure of performance and power, respectively. The optimization problem

can be described as follows:

Minimize

∑
∀S,D

P S→D LS→D

∑
R

PRouter
R

Subject to:

1 ≤ BR
p ≤ BMAX ∀ Router R, outport p

2 ≤ V R
p ≤ VMAX ∀ Router R, outport p

An Pseudo-code of the proposed method is shown in Algorithm 4. The algorithm, takes

the network dimensions, maximum buffer size per port, maximum virtual channels per port,

and the set of PEs to be placed along with their injection rates and communication rates as

inputs. The output of this algorithm is a Pareto optimal set. The optimized configurations

determine the position of PEs in the network, specify the buffer size, and the number of

needed virtual channels for each port of every router.

5.2.1 Chromosome Representation

The chromosome representation explained in Section 5.1.1 is used to model the problem.
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Algorithm 4 Pseudo-code of the proposed multi-objective heterogeneous NoC optimization
based on SPEA2

1: P = GENERATE initial population
2: A = {}
3: g = 0 //generation counter
4: loop
5: ASSIGN FITNESS(P,A)
6: Ag+1 = Environmental Selection(P ∪ A)
7: if g ≥MAX GENERATIONS then
8: A = Ag+1

9: return A
10: end if
11: C = {}
12: while SIZE(C) < POPULATION SIZE do
13: {Dad,Mom} = SELECTION(Ag+1)
14: if RAND() ≤ CR then
15: {child1, child2} = CROSSOVER(Dad,Mom)
16: else
17: {child1, child2} = {Dad,Mom}
18: end if
19: {child1} = MUTATION(child1[r])
20: {child2} = MUTATION(child2[r])
21: C = C ∪ {child1, child2}
22: end while
23: P = C
24: A = Ag+1

25: g = g + 1
26: end loop
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5.2.2 Initial Population

The algorithm starts with a random population of solutions P , an empty archive A, and an

empty children population C. In each random solution, each router is assigned to a unique

PE and each output port is assigned a random buffer size and virtual channels within the

boundaries.

5.2.3 Dominate Solution

A solution i dominates (�) solution j if it is better than solution j in at least one of the

objective functions and is not worse than solution j in any objective function, see Algorithm

5. The first objective is the performance, calculated as in (3.1). The second objective is the

power of NoC as in (4.10).

Algorithm 5 Dominate

Input: S1, S2

Output: S1 � S2?
1: if

(
AVG Latency(S1) > AVG Latency(S2)

)
||
(
Power(S1) > Power(S2)

)
then

2: return FALSE
3: end if
4: if

(
AVG Latency(S1) < AVG Latency(S2)

)
||
(
Power(S1) < Power(S2)

)
then

5: return TRUE
6: end if
7: return FALSE

5.2.4 Fitness Function

A fitness is assigned to each solution in P and A using two measures: the solution’s raw

fitness and its density.

Fitness(S) = Raw Fitness(S) +Density(S) (5.2)
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The raw fitness of the solution is computed based on a strength measure of the solutions.

The strength of a solution represents the number of solutions it dominates, see Algorithm 6.

Then, the raw fitness of a solution is calculated as the sum of the strength value of all the

solutions that dominate it, see Algorithm 7.

The density of a solution is a decreasing function of the distance, in the objectives space, to

the k-th nearest neighbor solution (σk), where k is commonly the square root of the sum of

the population size and the archive size.

Density(S) =
1

σk
S + 2

(5.3)

Algorithm 6 Strength

Input: P ∪ A, S
Output: Strength of S

1: num dominate = 0
2: for s1 = 0 to s1 < SIZE(P ∪ A)− 1 do
3: if Dominate(S, s1) then
4: num dominate++
5: end if
6: end for
7: return num dominate

Algorithm 7 Raw Fitness

Input: P ∪ A, S
Output: Raw Fitness of S

1: strength dominate = 0
2: for s1 = 0 to s1 < SIZE(P ∪ A)− 1 do
3: if Dominate(s1, S) then
4: strength dominate += Strength(s1)
5: end if
6: end for
7: return strength dominate
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5.2.5 Environmental Selection

The non-dominated solutions (with fitness < 1) of the combined regular population P and

archive A of the current generation are copied to a new archive Ag+1. If the non-dominated

solutions fit exactly in the fixed size of the archive, the environmental selection step is done.

Otherwise, there are two possibilities, the size of the new archive is less than the fixed size,

or it exceeds the fixed size, see Algorithm 8. In the first case, the dominated solutions of

the combined populations with the best fitness are added to the next archive until the new

archive size reaches the fixed size. In the second case, a truncation operation is applied to

the new archive, where solutions are removed iteratively from the new archive until its size

is equal to the fixed archive size. In each iteration, the solution with the minimum distance

to another solution is chosen for removal. In case of a tie, the second smallest distances are

considered and so forth.

Algorithm 8 Environmental Selection

Input: P ∪ A, S
Output: new archive Ag+1

1: T = SORT Ascending(P ∪ A,F itness)
2: Ag+1 = {}
3: while Fitness(T [i]) < 1 do
4: Ag+1 = Ag+1 ∪ T [i]
5: end while
6: if SIZE(Ag+1) < ARCHIVE SIZE then
7: repeat
8: if Fitness(T [i]) ≥ 1 then
9: Ag+1 = Ag+1 ∪ T [i]

10: end if
11: until SIZE(Ag+1) == ARCHIVE SIZE
12: else if SIZE(Ag+1) > ARCHIVE SIZE then
13: TRUNCATE(Ag+1)
14: end if
15: return Ag+1
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5.2.6 Selection

Binary tournament selection is applied to the new archive to select the parents. Two solutions

are selected randomly from the new archive, and the solution that dominates the other is

chosen as a parent. The process is repeated to select the second parent.

5.2.7 Crossover Operator

Two types of crossover are applied to the selected parents according to a crossover rate

(CR); otherwise, the parents are copied to the children population, see Algorithm 2. The

placement of the PEs and the port’s configurations (BS and VC) are changed using PMX

and one-point crossover, respectively, as explained in Section 5.1.4.

5.2.8 Mutation Operator

Three types of mutation are applied according to a mutation rate, as in Algorithm 3, to

change 1) placements of PE, 2) buffer size, and 3) virtual channels. These three types of

mutation are applied randomly to each router of the child chromosome, as explained in

Section 5.1.5.

5.2.9 Replacement and Termination Criteria

After the reproduction process, the regular population is replaced by the generated children

population and the archive is replaced by the new archive. The process is repeated for a

maximum number of generations. Then, the algorithm returns the archive as the optimal

Pareto set with the best PEs mapping, NoC buffer size, and virtual channels configurations.

62



5.3 SPEA2-BW NoC Design for Four Sub-Problems

The objectives of the proposed SPEA2-BW are the same as the proposed SPEA2-based

method, explained in the previous Section; minimize network delay (average packet latency)

and the total power consumption of the NoC. The models in Chapter 3 and Chapter 4 are

used as a measure of performance and power, respectively. The heterogeneous bandwidth is

added as a target for the final NoC design. The optimization problem can be described as

follows:

Minimize

∑
∀S,D

P S→D LS→D

∑
R

PRouter
R

Subject to:

1 ≤ BR
p ≤ BMAX ∀ Router R, outport p

2 ≤ V R
p ≤ VMAX ∀ Router R, outport p

WL ∈ {W1,W2, ...,Wn} ∀ Link L

The same Pseudo-code shown in Algorithm 4 is used. In addition to the previous explained

inputs, the algorithm takes the set of available link bandwidths. The output of this algorithm

is a Pareto optimal set. The optimized configurations determine the position of PEs in the

network, specify the buffer size and the number of needed virtual channels for each port of

every router, and specify the bandwidth of each link in NoC.
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5.3.1 Chromosome Representation

The chromosome representation explained in Section 5.1.1 is used to model the problem.

Moreover, an array of link’s bandwidth is used to represent the bandwidth of the NoC . The

index of the array is the link id in the NoC, and its value is the bandwidth assigned to it,

see Figure 5.6.
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(b) Chromosome

Figure 5.6: Chromosome representation of NoC design for four sub-problems.

5.3.2 Initial Population

The algorithm starts with a random population of solutions P , an empty archive A, and an

empty children population C. In each random solution, each router is assigned to a different

PE and each output port is assigned a random buffer size and virtual channels within the

boundaries. Moreover, each link is assigned a random bandwidth from the set of available

bandwidths.
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5.3.3 Crossover Operator

Three types of crossover, as in Algorithm 9, are applied to the selected parents according

to a crossover rate (CR); otherwise, the parents are copied to the children population. The

placement of the PEs and the port’s configurations (BS and VC) are changed using PMX

and one-point crossover, respectively, as explained in Section 5.1.4.

The bandwidth of the links is changed using one-point crossover as in Figure 5.7. One point

is chosen randomly, and the bandwidth of the two parents are swapped after this point to

generate two children.

Algorithm 9 CROSSOVER

Input: Dad,Mom
Output: Child1, Child2

1: Child1, Child2 = Port Crossover(Dad,Mom)
2: Child1, Child2 = Placement Crossover(Dad,Mom)
3: Child1, Child2 = BW Crossover(Dad,Mom)

Dad

Mom

One‐point

Child1

Child2

16 32 32 32 16 16 1616 16 16 32 32 16 16 16 16 16 16 1616 32 16 16 16

0 1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17 1918 20 21 22 23L

32 32 32 32 16 16 3216 16 16 16 16 16 16 16 32 16 32 1616 32 16 32 32

0 1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17 1918 20 21 22 23L

16 32 32 32 16 16 1616 16 16 32 32 16 16 16 32 16 32 1616 32 16 32 32

0 1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17 1918 20 21 22 23L

32 32 32 32 16 16 3216 16 16 16 16 16 16 16 16 16 16 1616 32 16 16 16

0 1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17 1918 20 21 22 23L

Figure 5.7: One-point crossover to change the links’ bandwidth.
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5.3.4 Mutation Operator

Four types of mutations are applied according to a mutation rate, as in Algorithm 10, to

change 1) placements of PE, 2) buffer size, 3) virtual channels, and 4) links’ bandwidth. The

first three types of mutations are applied randomly to each router of the child chromosome,

as explained in Section 5.1.5. The last type is applied to each link of the child chromosome

to change the bandwidth randomly, as in Figure 5.8.

Algorithm 10 MUTATION

Input: Child
Output: Child

1: for r = 0 to NoC SIZE− 1 do
2: if RAND() ≤MR then
3: switch (RAND%4)
4: case 0:
5: Child = Placement Mutation(Child)
6: case 1:
7: Child = BS Mutation(Child)
8: case 2:
9: Child = V C Mutation(Child)

10: default:
11: Child = Placement Mutation(Child)
12: Child = BS Mutation(Child)
13: Child = V C Mutation(Child)
14: end switch
15: end if
16: end for
17: for l = 0 to LINKS SIZE− 1 do
18: if RAND() ≤MR then
19: Child = BW Mutation(Child)
20: end if
21: end for
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Figure 5.8: Mutation operator to change the links’ bandwidth.

5.3.5 Replacement and Termination Criteria

After the reproduction process, the regular population is replaced by the generated children

population and the archive is replaced by the new archive. The process is repeated for

a maximum number of generations. Then, the algorithm returns the optimal Pareto set

with the best PEs mapping, NoC buffer size and virtual channels configurations, and NoC

bandwidth.
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Chapter 6

Results

A full-system CPU-GPU simulator gem5-gpu [32] was used to obtain processor and network-

level information. This simulator is based on gem5 [10] and gpgpu-sim [7]. It can model

tightly integrated CPU-GPU systems under different interconnections and coherency proto-

cols. The interconnection network is modeled using GARNET [2], a flit-level NoC model.

For simulating heterogeneous NoCs for different hardware configurations, some modifications

to gem5-gpu simulator were needed. Firstly, adding support to connect CPU cores and GPU

cores in a 2D mesh style NoC. Moreover, adding support for different buffer sizes and virtual

channels, not only for each router but also for each port of each router.

This chapter shows the evaluation of three NoC design methodologies:

• GA for performance optimal NoC design considering three sub-problems simultane-

ously; PE mapping, BS, VC.

• SPEA2 for performance and power optimal NoC design considering three sub-

problems simultaneously; PE mapping, BS, VC.

• SPEA2 for performance and power optimal NoC design considering four sub-
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problems simultaneously; PE mapping, BS, VC, BW.

The parameters used for GA and SPEA2 are shown in Table 6.1, and were chosen after

extensive parameter tuning experiments.

Table 6.1: GA and SPEA2 Parameters Used in NoC Optimization

Parameter GA SPEA2
Population size 32 32

Archive size NA 32
Crossover rate (CR) 0.7 0.7
Mutation rate (MR) 0.5 0.5

Tournament Selection size (k) 8 2
Max Generations 10000 10000

The proposed NoC design methodologies were evaluated following three steps, as shown in

Figure 6.1. The first step is to gather the traffic trace by running different workloads on the

baseline architecture using gem5-gpu simulator. The second step is to feed the traffic trace

as an input to the NoC design optimizer to get near optimal design. The last step is to

run the optimal design on gem5-gpu and compare it with other NoC design methodologies.

The NoC power was obtained by feeding the output of the simulator to DSENT [38]; a

Design Space Exploration for Network Tool that supports Garnet Network within gem5-

gpu. After modifying it to support heterogeneous buffers and virtual channels per port,

a 22nm technology node was used to obtain NoC power. The criteria that were used to

evaluate the different NoC designs are:

• Total area: The area was obtained from DSENT tool using 22nm technology node.

• Average network latency: The average network latency was obtained from gem5-

gpu and in packets/cycle.

• Percentage of non-blocking: The average percentage of non-blocking for buffers

was computed by finding the number of times the buffers of the whole NoC are not

full out of the total number of times they are needed.
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Figure 6.1: A 3-steps evaluation methodology of the proposed NoC design methods.
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• NoC power: The NoC power was obtained from DSENT tool using 22nm technology

node.

• NoC throughput: The throughput of the NoC was measured as the average packets

injected per cycle.

• Average speedup: The speedup in instructions per cycle (IPC) is calculated by find-

ing the speedup of each benchmark with a configuration over the baseline configuration

as in (6.1). Then, the geometric mean speedup for all CPU cores and SMs was com-

puted as in (6.2) and (6.3), respectively. The overall system speedup was computed

by taking the geometric mean of CPU and GPU speedups as in (6.4).

Speedupi = IPCi/IPC
Baseline
i (6.1)

SpeedupCPU = geomean(Speedupi); i is a CPU core (6.2)

SpeedupGPU = geomean(Speedupi); i is a GPU core (6.3)

Speedupsystem = geomean(SpeedupCPU , SpeedupGPU); (6.4)

6.1 Baseline Architecture

For the purpose of testing, the system and network configurations shown in Table 6.2 and

Table 6.3 were adopted, respectively. The architecture of the system consists of many x86

CPU cores fused with GPU on the same chip and connected through a 2D mesh NoC. Each

CPU core has a private L1 cache. The GPU consists of multiple streaming multiprocessor

cores (SM) each one with a private L1 cache. Moreover, to support 100s lanes of address

translation [33], gem5-gpu provides the option of using a shared page walk cache (PW) that

is accessed upon a miss in the SM’s L1 TLBs to decrease the number of accesses to L2 cache

and DRAM. The CPU cores and the SMs share the L2 cache. Both CPU and GPU share

a virtual address space where MESI-Two-Level cache coherence protocol is used to ensure
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coherency. A baseline homogeneous architecture is shown in Figure 6.2. Based on the

observations in [28], simple placement of the PEs was adopted by grouping the CPU cores,

grouping the SMs, and placing the shared caches and MCs in the middle. This architecture

was just chosen for testing, and the use of PW is optional, and the validation of the proposed

methods does not depend on it.

Table 6.2: System Configuration for Gem5-gpu Simulation

PE type Parameter Value

GPU

Number of cores 6

Core Clock 1.4 GHz

Private L1 cache 4-way 32 kB

CPU

Number of cores 4

Core Clock 2 GHz

Private L1 I cache 2-way 32 kB

Private L1 D cache 2-way 32 kB

Memory

Shared L2 cache 8-way 2 MB

MC

4 (each 8 banks, 4 channels)

3.006 GHz, 1kB row-buffer

FR-FCFS scheduler

DRAM DDR3-1600 16GB

Table 6.3: Baseline NoC Configurations

Configuration Value

Topology 4 x 4 2D Mesh

Pipeline 5-stage (GA)/ 3-stage (SPEA2)

Routing x-y Routing

Link width 16 B

Link latency 1 cycle

VC(Homog) 4 per port (8-flit buffer)

VC(Dual)
Big: 7 per port (8-flit buffer)

Small: 3 per port (8-flit buffer)
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For comparison with other buffer and virtual channel allocation schemes, the homogeneous

baseline configuration (Homog) and DUAL approach, proposed by [29] for homogeneous

CMPs, were considered, see Table 6.3. Both configurations use the PEs’ placements shown

in Fig 6.2. The baseline uses a homogeneous number of buffers and virtual channels for all

ports of all routers. DUAL is based on using two types of routers, big and small. The big

router has more VCs than the small router, but the number of VCs is homogeneous within

all ports of the same router. Also, the buffer size is homogeneous through all ports of all

routers. Their concept was applied based on the traffic generated using the homogeneous

baseline; four out of the sixteen routers with higher injection rate were set to be big, and

the rest were small. Seven virtual channels were used for the big router and three virtual

channels for the small router to keep the total number of virtual channels, hence the area,

less than or equal to the baseline.

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

CPU MC PW L2 SM

Figure 6.2: PEs’ placement in the baseline architecture.
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6.2 Benchmarks

Benchmarks from Rodinia [11] for GPU and Parsec [9] for CPU, as shown in Table 6.4, were

used to obtain the traffic trace. The benchmarks were grouped into seven TestSets, see Table

6.5, each one is a workload composed of one GPU benchmark and three independent CPU

benchmarks. Each benchmark is pinned to one CPU.

Using the baseline configurations, each TestSet was run on gem5-gpu until the GPU bench-

mark finished. Then, the benchmarks within the workload were rotated to different CPUs

and reran, repeating this process for two more times. Finally, the four-generated injection

rates and traffic traces were averaged and fed into the optimizer to obtain the optimal NoC

design.

Table 6.4: Rodinia GPU Benchmarks and Parsec CPU Benchmarks

PE Benchmark Configurations

GPU

Backprop (BC) 1,048,576 layers

Gaussian (G) 208 × 208 matrix

HotSpot (HS) 1,024 rows, 2 height, 2 iterations, 1024 input

LU Decomposition (LUD) 512 × 512 matrix

Nearest Neighbor (NN) 5120k input, 5 records, 30 latitude, 90 longitude

Needleman-Wunsch (NW) 16,384 maximum rows, 10 penalty

Path Finder (PF) 100,000 rows, 100 columns, 20 pyramid height

CPU

Blackscholes (BS) 65,536 options

Bodytrack (BT) 2 frames, 2,000 particles

Canneal (C) 200,000 elements

Dedup (D) 32.2 MB data

Fluidanimate (FA) 5 frames, 300,000 particles

Freqmine (FM) 990,000 transactions

Streamcluster (SC) 16,384 points per block, 1 block

Swaption (S) 16 swaptions, 20,000 simulations

X264 128 frames, 640 × 360 pixels
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Table 6.5: Workloads Combination of GPU and CPU Benchmarks

TestSet Workload

1 BC, BT, C, D

2 G, C, S, SC

3 PF, x264, D, SC

4 HS, BS, S, C

5 NN, S, BT, FM

6 NW, SC, BS, FA

7 LUD, C, FM, x264

6.3 GA NoC Design for Three Sub-Problems

The generated traffic trace was fed to the proposed GA-based optimizer, and the optimal

NoC design, that specifies the PEs placement and the buffer size and virtual channels for

each port of each router, was obtained. The TestSets were rerun on gem5-gpu using the

optimal design configuration and compared with Homog and DUAL configurations.

6.3.1 Total Area

The improvements in the area compared to the baseline is shown in Figure 6.3. There are

no improvements in the area in the Dual configurations, which is expected since the concept

is to choose big and small routers such that the total number of virtual channels is the same

as the baseline. On the other hand, GA provides 34% improvements on average in the area.
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Figure 6.3: Improvement of NoC area of Dual and GA configurations normalized to the
homogeneous baseline configuration.

6.3.2 Average Network Latency

Figure 6.4 shows the improvements in the average network latency normalized to the baseline.

GA is better than the homogeneous baseline in all TestSets except for TestSet2. Moreover,

GA gives better improvement than the Dual configurations for most of the TestSets, except

TestSet2 and TestSet6. This is because the GPU benchmark in both TestSet2 and TestSet6

has a higher injection rate compared to the other. On average, GA provides about 19%

improvement in the average network latency whereas Dual shows only 1%. In general, GA

can reduce the average network latency while decreasing the area.
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Figure 6.4: Improvement of average network latency of Dual and GA configurations nor-
malized to the homogeneous baseline configuration.

6.3.3 Percentage of Non-Blocking

According to Figure 6.5, both the homogeneous and dual configurations have almost 100%

of average non-blocking percentage; this can either means there are just enough buffers for

the traffic, or there are extra buffers. Since GA has better average network latency while

having an average percentage of non-blocking buffers of about 77%, this indicates that there

are excess buffers in the baseline and Dual configurations.
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Figure 6.5: Comparison of average percentage of buffers’ non-blocking for Homog, Dual,
and GA configurations.

6.3.4 NoC Power

As shown in Figure 6.6, contrary to Dual, GA provides power savings in all of the TestSets

compared to the homogeneous baseline configuration, and on average the savings reaches

37%. The NoC power consumption can be broken down into different components: buffer,

clock, crossbar, switch, and link power consumption. Figure 6.7, shows the NoC power

consumption break down under different configurations for the average of the seven TestSets.

In all the configurations, the buffer is the component that contributes the most to the NoC

power consumption. It contributes 91.95%, 92.02%, and 89.04% using Homog, Dual, and GA

configurations respectively. Since the area, represented by the total buffer size, is considered

in the proposed optimizer, the contribution of the buffer to the NoC power is decreased

compared to other configurations.
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Figure 6.6: NoC power savings of Dual and GA configurations normalized to the homoge-
neous baseline configuration.
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Figure 6.7: Comparison of NoC power consumption break-down for the average of TestSets
under different NoC configurations.
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6.3.5 NoC Throughput

Figure 6.8 shows the improvement of NoC throughput provided by both Dual and GA

compared to the homogeneous baseline configuration. GA improves the NoC throughput

compared to the baseline in all the TestSets, except TestSets 2 and 7, and on average has

2% improvement. Dual, on the other hand, degrades the NoC throughput or provides slight

improvement and on average degrades the NoC throughput by 0.7%.
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Figure 6.8: Improvement of NoC throughput of Dual and GA configurations normalized to
the homogeneous baseline configuration.

6.3.6 Average Speedup

As shown in Figure 6.9, generally Dual and GA maintain the CPU speedup among TestSets,

and GA slightly improves it by 1% on average while Dual slightly decreases it. However,

in all TestSets GA provides better CPU speedup than Dual. On the other hand, there

is a variation in the GPU speedup, Figure 6.10. While Dual improves the GPU speedup

compared to the baseline in all TestSets and on average can reach up to 13%, GA provides

80



slightly better improvement than the Dual for TestSets 1, 2, and 4 and on average the

improvement over the baseline can reach up to 5.15%. On average, GA provides 3% overall

system speedup and Dual provides 6%, as shown in Figure 6.11.
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Figure 6.9: Average CPU speedup of Dual and GA configurations normalized to the homo-
geneous baseline configuration.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

No
rm

ali
ze

d 
GP

U 
Sp

ee
du

p

Dual GA

Figure 6.10: Average GPU speedup of Dual and GA configurations normalized to the
homogeneous baseline configuration.
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Figure 6.11: Overall speedup of the system of Dual and GA configurations normalized to
the homogeneous baseline configuration.

6.3.7 Placement

The optimal configurations obtained from GA provide the placement of the PEs in the NoC.

The TestSets were rerun using this placement for both the homogeneous configuration and

the Dual configuration, then compared based on the average buffer occupation of the NoC.

The average buffer occupation of the NoC is calculated as the total number of writes to all

the buffers in NoC per cycle divided by the total number of buffers in NoC. Figure 6.12 shows

the average buffer occupation of GA and Dual normalized to the homogeneous configuration.

While Dual does not provide any improvement in the average buffer occupation, GA provides

about 38% improvement on average. This indicates that GA improves the utilization of the

buffers in the NoC.
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Figure 6.12: Average buffers occupation obtained by running the homogeneous and Dual
configurations using GA optimal PEs’ placement, normalized to the homogeneous configu-
ration.

6.4 SPEA2 NoC Design for Three Sub-Problems

By running the proposed optimizer based on SPEA2 [4] on the traffic trace, a non-dominated

Pareto optimal set of solutions is generated; each represents an NoC design with optimal

mapping of PE and optimal assignment of buffer size and virtual channels per outport. Three

solutions out of the Pareto-optimal set are considered for comparison: 1) The solution with

the best performance (SPEA2-Latency), 2) The solution with the best power consumption

(SPEA2-Power), and 3) The solution with the best fitness as in (5.2) (SPEA2-Fitness).

6.4.1 Total Area

Figure 6.13 shows the improvements in the area of all configurations compared to the base-

line. As expected, Dual does not provide any improvement in the area. All SPEA2 optimal
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configurations improve the area, but they vary in the amount of improvement. Generally,

power and fitness optimal configurations provide better area improvement than latency opti-

mal configuration, except for TestSet5. In this TestSet, the fitness optimal solution happens

to be the latency optimal solution. On average the improvement in the area are 4x, 2x,

4.33x, for the fitness, latency, and power optimal configurations, respectively.
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Figure 6.13: Improvement of NoC area of Dual and SPEA2 optimal configurations normal-
ized to the homogeneous baseline configuration.

6.4.2 Average Network Latency

Figure 6.14 shows the improvements in NoC average packet latency of all the configurations

normalized to the homogeneous baseline configuration. Regarding the optimal configurations

obtained from SPEA2, the configuration with the best latency provides better improvement

than other configurations, except for TestSet2, and on average provides 18% improvement.

Generally, the configuration with optimal power does not provide any improvement, while

the configuration with the best fitness improves the performance of the NoC, except for
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TestSet2, TestSet6, and TestSet7. In both TestSet2 and TestSet6, the GPU benchmark has

a higher injection rate compared to the other. For TestSet7, the optimal fitness configuration

is the same as the optimal power configuration; hence it does not improve the latency. On

the other hand, Dual configuration slightly improves the latency for all except three TestSets,

2, 4, and 7, but has less improvement than the SPEA2 optimal fitness and optimal latency

configurations.
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Figure 6.14: Improvements in NoC latency using Dual and SPEA2 optimal configurations
normalized to the baseline.

6.4.3 Percentage of Non-Blocking

According to Figure 6.15, both Homog and Dual configurations have 100% of average buffer

non-blocking, while SPEA2 optimal configurations vary. Generally, the SPEA2 optimal

latency has a higher percentage than other SPEA2 optimal configurations. On average,

the percentage of buffer non-blocking is 72%, 84%, and 70% under SPEA2 optimal fitness,

latency, and power configurations, respectively. This again indicates that there are excess
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buffers in both Homog and Dual configurations since SPEA2 configurations improve the NoC

latency while having less percentage of buffer non-blocking.
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Figure 6.15: Comparison of average percentage of buffers’ non-blocking for Homog, Dual,
and SPEA2 optimal configurations.

6.4.4 NoC Power

For the NoC power savings, as in Figure 6.16, all the SPEA2 configurations save more power

than the baseline. The savings is up to 4.64x, 2.17x, and 5.04x on average using fitness,

latency, and power optimal SPEA2 configuration, respectively. Generally, fitness and power

optimal configurations save more power than the latency optimal configuration, except for

TestSte5 where the optimal fitness solution is the same as the optimal latency. However, Dual

configuration does not provide any power savings. This is mainly due to the considerable

reduction in NoC area obtained from the proposed method, represented as the buffers of the

NoC. As shown in Figure 6.17, the percentage of power consumed in the buffer reaches 92%

in Homog and Dual configurations while it is decreased to 66%, 83%, and 61% using SPEA2
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optimal fitness, latency, and power configurations, respectively.
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Figure 6.16: NoC power consumption savings using Dual and SPEA2 optimal configurations
normalized to the baseline.
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Figure 6.17: Comparison of NoC power consumption break-down for the average of TestSets
under different NoC configurations.
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6.4.5 NoC Throughput

The improvement in NoC throughput provided by the different configurations compared to

the baseline is shown in Figure 6.18. Generally, SPEA2 optimal latency configuration has

better throughput than other SPEA2 optimal configurations. It is, also, better than the ho-

mogeneous baseline configuration except for TestSet1 and TestSet2, where Dual outperforms

it. On average, SPEA2 optimal latency provides 2.7% improvement in NoC throughput com-

pared to the baseline, and Dual provides 1.5% improvement. SPEA2 optimal power generally

degrades the throughput except for TestSet7. The effect of SPEA2 optimal fitness on the

NoC throughput varies across the TestSets.
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Figure 6.18: Improvement of NoC throughput of Dual and SPEA2 optimal configurations
normalized to the homogeneous baseline configuration.

6.4.6 Average Speedup

As shown in Figure 6.19, both Dual and SPEA2 optimal latency configurations slightly

improve the CPU speedup for all TestSets, except TestSet2 for the optimal latency, and on
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average has 0.3% and 1% improvement compared to the baseline, respectively. Similarly,

SPEA2 optimal fitness slightly improves the CPU speedup compared to the baseline except

for TestSets 2 and 6. SPEA2 optimal power, on the other hand, degrades the CPU speedup

compared to the baseline except for TestSets 1, and 7. In these TestSets, the optimal fitness

configuration happens to be the same as the optimal power configuration. For the GPU

speedup, shown in Figure 6.20, Dual slightly improves the GPU speedup by an average

of 3.9%. Both, SPEA2 optimal fitness and power degrades the GPU speedup for all the

TestSets, except TestSet5 where the fitness and the latency optimal configurations are the

same. SPEA2 optimal latency configuration, on the other hand, improves the GPU speedup

for all except two TestSets, 6 and 7, and on average has 2.34% improvement. As shown

in Figure 6.21, Dual configuration slightly improves the overall system speedup with an

average of 2%. While SPEA2 optimal latency configuration has an average improvement of

1.6%, both the SPEA2 optimal fitness and power configurations degrade the overall system

speedup.
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Figure 6.19: Average CPU speedup of Dual and SPEA2 optimal configurations normalized
to the homogeneous baseline configuration.
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Figure 6.20: Average GPU speedup of Dual and SPEA2 optimal configurations normalized
to the homogeneous baseline configuration.
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Figure 6.21: Overall speedup of the system gained by using Dual and SPEA2 optimal
configurations normalized to the baseline.
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6.5 SPEA2-BW NoC Design for Four Sub-Problems

The gem5-gpu simulator does not support heterogeneous bandwidth NoC. Alternatively, the

latency of the links was adjusted to reflect the different bandwidths and simulate an NoC

with heterogeneous bandwidths. The initial traffic trace was obtained as explained in Section

6.2 using the baseline network configurations in Table 6.3. After feeding the traffic trace to

the proposed optimizer based on SPEA2 that supports bandwidth optimization (SPEA2-

BW), a non-dominated Pareto optimal set of solutions is generated. Each of these solutions

represents an NoC design with optimal mapping of PE, optimal assignment of buffer size

and virtual channels per outport, and optimal bandwidth for each link. Three solutions out

of the Pareto-optimal set were considered for comparison: 1) The solution with the best

performance (S-BW - Latency), 2) The solution with the best power consumption (S-BW -

Power), and 3) The solution with the best fitness as in (5.2) (S-BW - Fitness).

The chosen SPEA2-BW solutions were rerun on gem5-gpu while fixing the bandwidth of

the links to 32B and setting the latency of each link to reflect the intended bandwidth. For

example, if the link bandwidth according to the configuration should be 16B, then the link

latency is set to 2 cycles. Similarly, if the link bandwidth is supposed to be 32B, the latency

is set to 1 cycle. This approach was also used for the DSENT power tool to get the power

of the simulated NoC.

A distribution of the heterogeneous bandwidth in the different SPEA2-BW optimal config-

urations of the different TestSets is shown in Figure 6.22. Generally, the optimal latency

configuration has a higher percentage of the higher bandwidth links than the other optimal

configurations. Similarly, the optimal power configuration has the least percentage of the

higher bandwidth links compared to the other optimal configurations.
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Figure 6.22: Links’ bandwidth distribution using different SPEA2-BW optimal configura-
tions for the different TestSets.

6.5.1 Total Area

As shown in Figure 6.23, Dual does not provide any improvement in the area, as expected.

Fitness and power optimal configurations improve the area in all TestSets and on average

provide 53% and 55% area savings, respectively. On the other hand, the latency optimal

configuration vary, it provides improvement for some TestSets while degrades the others,

and on average provides only 4% improvement in the area.
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Figure 6.23: Improvement of NoC area of Dual and SPEA2-BW optimal configurations
normalized to the homogeneous baseline configuration.

6.5.2 Average Network Latency

The improvements in NoC average packet latency of all the configurations normalized to

the homogeneous baseline configuration is shown in Figure 6.24. Dual improves all but

three TestSets, 2, 4, and 7, with an average improvement of 0.08% only. SPEA2 optimal

latency configuration improves the NoC latency in all the TestSets and on average has 54%

improvement. SPEA2 optimal fitness configuration improves all except three TestSets 5,

6, and 7, but on average degrades the NoC performance by 2.7%. SPEA2 optimal power

configuration degrades all except TestSets 1 and 4. For all the TestSets except TestSet2 and

TestSet3, the SPEA2 optimal fitness and power configurations happen to be the same.
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Figure 6.24: Improvements in NoC latency using Dual and SPEA2-BW optimal configura-
tions normalized to the baseline.

6.5.3 Percentage of Non-Blocking

According to Figure 6.25, both Homog and Dual have almost 100% of average buffers non-

blocking. SPEA2 optimal configurations vary with an average of 80%, 86%, 80% for the

optimal fitness, latency, and power, respectively. While SPEA2 optimal latency manages to

improve the network latency while decreasing the percentage of buffers non-blocking, this

indicates there are excess buffers in the Homog and Dual configurations.
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Figure 6.25: Comparison of average percentage of buffers’ non-blocking for Homog, Dual,
and SPEA2-BW optimal configurations.

6.5.4 NoC Power

For the NoC power savings, as in Figure 6.26, Dual provides no power savings. Both SPEA2

optimal fitness and power provides power savings for all the TestSets compared to the ho-

mogeneous baseline configuration with an average of 2.5x and 2.55x, respectively. SPEA2

optimal latency improves the power savings for all except TestSet 4 and 7 and has an average

improvement of 45%. As shown in Figure 6.27, the contribution of the buffer to the total

NoC power is reduced from 92% in Homog and Dual configurations to 63%, 82%, and 63%

in SPEA2 optimal fitness, latency and power configurations.
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Figure 6.26: NoC power consumption savings using Dual and SPEA2-BW optimal config-
urations normalized to the baseline.
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Figure 6.27: Comparison of NoC power consumption break-down for the average of TestSets
under different NoC configurations.
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6.5.5 NoC Throughput

The improvement in NoC throughput provided by the different configurations compared to

the baseline is shown in Figure 6.28. Generally, SPEA2 optimal latency improves the NoC

throughput in all TestSets except TestSet2 with an average improvement of 6%. On the

other hand, SPEA2 optimal power slightly degrades the NoC throughput in all TestSets,

except TestSet1 and 4, with an average degradation of 1%. Similarly, SPEA2 optimal fitness

degrades all except TestSets 1, 3, and 4 with average NoC throughput degradation of 0.5%.

Dual configuration effect on NoC throughput varies through the TestSets and has an average

improvement of 0.43%.
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Figure 6.28: Improvement of NoC throughput of Dual and SPEA2-BW optimal configura-
tions normalized to the homogeneous baseline configuration.
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6.5.6 Average Speedup

As shown in Figure 6.29, Dual maintains the CPU speedup with an average improvement of

0.35%. SPEA2 optimal latency improves the CPU speedup compared to the homogeneous

baseline for all except TestSet2 and has an average improvement of 1.7%. SPEA2 optimal

fitness and power only improve the CPU speedup of TestSets 1,3, and 4, with an average

degradation of 1%. Similarly, For the GPU speedup, shown in Figure 6.30, Dual maintains

the GPU speedup and slightly improves it on average by 4%. SPEA2 optimal latency im-

proves the GPU speedup for all the TestSets with an average improvement of 25%. Both

SPEA2 optimal fitness and power generally degrade the GPU speedup compared to the ho-

mogeneous baseline with an average degradation of 9.6% and 21%, respectively. On average,

both Dual and SPEA2 optimal latency improve the overall system speedup, as shown in Fig-

ure 6.31, by 2.1% and 12.2%, respectively. On the other hand, SPEA2 optimal fitness and

power degrade the overall system speedup by an average of 6.2% and 12.2%, respectively.
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Figure 6.29: Average CPU speedup of Dual and SPEA2-BW optimal configurations nor-
malized to the homogeneous baseline configuration.
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Figure 6.30: Average GPU speedup of Dual and SPEA-BW optimal configurations normal-
ized to the homogeneous baseline configuration.
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Figure 6.31: Overall speedup of the system gained by using Dual and SPEA2-BW optimal
configurations normalized to the baseline.
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6.6 Summary

The improvement gained by the different proposed methods, GA, SPEA2, and SPEA2-BW,

is shown in Figure 6.32, and summarized in Table 6.6. Since the proposed GA provides NoC

design that optimizes NoC performance, the optimal latency configurations obtained from

SPEA2 and SPEA2-BW are used for comparison. The comparison includes the effect of each

method on different criteria averaged over the seven TestSets.

The first observation is that when power is included in the optimization as in SPEA2 and

SPEA-BW, the power and area are improved more than GA. When comparing GA and

SPEA2, the general notice is that GA outperforms SPEA2 in other criteria like network

latency and speedups. While including the heterogeneous bandwidth in NoC design as in

SPEA2-BW further improves all other criteria compared to GA. The GPU in particular

benefits from the heterogeneous BW, hence implicitly enhances the overall system speedup.
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Figure 6.32: Comparison of the average normalized improvement for different criteria gained
by GA and the latency optimal configuration of SPEA2 and SPEA2-BW.
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Similarly, SPEA2-BW outperforms SPEA2 when comparing the obtained power optimal

configurations, as in Figure 6.33, in all criteria except the power and area.

Table 6.6: Comparison of the Proposed Methods

SPEA2 SPEA2-BW
Improvement GA

Fitness Latency Power Fitness Latency Power

NoC Latency 19% 2.6% 18% -12.5% -2.7% 54% -7.5%

NoC Throughput 2% -0.5% 2.7% -3.4% -0.5% 6% -1%

CPU Speedup 1% -0.1% 1% -0.9% -0.9% 1.7% -0.8%

GPU Speedup 5.15% -18.4% 2.34% -32% -9.6 % 25% -21%

System Speedup 3% -10.2% 1.6% -19% -6.2% 12.2% -12.2%

NoC Area 34% 4.03x 2.06x 4.33x 53% 4% 55%

NoC Power 37% 4.64x 2.17x 5.04x 2.5x 45% 2.55x
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Figure 6.33: Comparison of the average normalized improvement for different criteria gained
by the power optimal configuration of SPEA2 and SPEA2-BW.
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Chapter 7

Conclusion and Future Work

As GPU becomes a powerful processor that can be used for scientific and general compu-

tations, the movement from CPU vs. GPU era to combining the powerful features of both

processors becomes a necessity. Many HSA, fused the CPU and GPU on the same chip

to utilize both processors. However, combining different processors with diametric network

demands places a burden on the common interconnection network along with other different

shared resources problem.

This dissertation focused on designing a heterogeneous 2D mesh style NoC for fused CPU-

GPU architecture. In this regards, heterogeneity was explored on routers and links of the

NoC. The heterogeneity was investigated on the port level of the NoC’s routers, where arbi-

trary virtual channels and arbitrary buffer sizes were considered for each port of each router.

Also, different bandwidth of each link of the NoC was considered. Moreover, the placement

or the mapping of the heterogeneous processing elements (CPU cores, GPU cores, MC, and

shared caches) to the mesh NoC was explored. All these sub-problems of heterogeneous NoC

design were considered simultaneously as one optimization problem.

A performance model which supports arbitrary buffers based on G/G/1 queuing theory
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model was presented. This model was extended to support different virtual channels per port.

Also, an approximation of link bandwidth in terms of link latency was added. Moreover, an

activity-based power model was proposed using the same queueing model. These analytical

models were used to obtain a measure of the NoC performance and power within the proposed

optimization methods.

First, this multi-dimensional heterogeneous NoC design was tackled with a method based on

GA. The objective was to get a design with optimal performance (average packet latency)

that determines the placement of the PEs within the mesh, the buffer size, and virtual

channels configurations. The results demonstrate that this method can increase network

performance by 19% on average and reduce the area by 34% on average while enhancing the

overall speedup of the system on average by 3%.

Second, an optimization method based on SPEA2 to explore the design space of PEs place-

ments and NoC configurations (the buffer size and the number of virtual channels) was

proposed. This method produces Pareto-optimal designs that satisfy two objectives; perfor-

mance and power of NoC. When simulating the optimal configurations, results show that

the NoC performance can be improved by 18% while minimizing the power consumption by

at least 2.17x and maintaining the overall system performance.

Finally, the optimization method based on SPEA2 was extended to include the heterogeneous

link bandwidth and obtaining a Pareto-optimal set. The results show that including hetero-

geneous bandwidth enhances the performance of the NoC and the overall system speedup

in particular the GPU speedup. On average, the improvement in NoC performance reaches

up to 54%, GPU speedup 25%, and overall system speedup 12.2%. Compared to the former

SPEA2 based method, the improvement in power savings and area was less. Nevertheless,

the power savings reached at least 45% on average.

Instead of relying on simulation to explore a limited set of designs, the proposed optimiza-
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tion methods help explore the large design space of heterogeneous NoC, solving different

sub-problems simultaneously. Also, the SPEA2 based optimization methods give the NoC

designer a set of design choices to choose from depending on the target architecture goals;

power or performance.

7.1 Future Work

The work in this dissertation can be extended in different directions. First, 3D NoCs become

popular for their performance, flexibility, and throughput. This work can be extended to

design a 3D style mesh NoC. Thermal considerations should be added as a third objective

of the optimization methods. Moreover, different multi-objective optimization methods can

be considered. Machine learning can be used to evaluate NoC design as an alternative for

the analytical models.

Utilizing the CPU and GPU core can be further improved by proper mapping of different

benchmarks to the appropriate core type. This mapping is dependent on the nature of the

benchmarks along with the capabilities of the processing cores. Also, the heterogeneous

NoC design plays a key factor in benchmarks mapping that can be further investigated.

Furthermore, partitioning of the tasks within the benchmark to the appropriate core type

can be considered. Including the benchmarks or application mapping and partitioning in the

NoC design means adding the performance and power of the processing cores as measures

to the heterogeneous NoC design.

The focus of this dissertation was on the design time of the NoC. Adaptivity of the design

during run-time is another dimension that can be pursued. This can include a virtual

channels partitioning technique between the CPU and GPU traffic, buffer re-distribution

between the ports according to the traffic. Even considering different routing paths between
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the CPU and GPU traffic is worth exploring.

This dissertation concentrated on the common interconnection network in the fused CPU-

GPU architecture. Additional shared resources can be considered. For example, a heteroge-

neous memory architecture can be investigated.
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