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REVIEW Open Access

Environmental exposures during windows
of susceptibility for breast cancer: a
framework for prevention research
Mary Beth Terry1†, Karin B. Michels2†, Julia Green Brody3, Celia Byrne4, Shiuan Chen5, D. Joseph Jerry6,
Kristen M. C. Malecki7, Mary Beth Martin8, Rachel L. Miller9, Susan L. Neuhausen10, Kami Silk11,
Amy Trentham-Dietz12* and on behalf of Breast Cancer and the Environment Research Program (BCERP)

Abstract

Background: The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses
challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence
from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine
disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be
greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty,
pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility
for breast cancer because significant structural and functional changes occur in the mammary gland, as well as
alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer
research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention.

Main text: Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer
risk during time periods of change in the mammary gland’s structure and function, most human studies of
environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few
decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk
during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we
include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which
included population-based and basic science research focused on specific WOS to evaluate associations between
breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic
hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline
ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic
studies in close partnership with community organizations and communication scientists to identify research
priorities and effectively translate evidence-based findings to the public and policy makers.

Conclusions: An integrative model of breast cancer research is needed to determine the impact and mechanisms
of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific
WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
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Background
Despite the considerable personal and societal burden
from breast cancer, primary prevention efforts encounter
challenges. Unlike other cancers that are linked to a pre-
dominant risk factor (e.g., smoking and lung cancer [1],
human papillomavirus, and cervical cancer [2]), most
established breast cancer risk factors have modest asso-
ciations; moreover, many risk factors are not conducive
to population-level intervention. The American Cancer
Society guidelines for breast cancer prevention include
limiting alcohol intake, avoiding post-menopausal hor-
mone use, increasing physical activity, and maintaining a
healthy body weight [3]. Yet even considering these fac-
tors, estimates indicate that a substantial proportion of
breast cancer risk remains unexplained [4, 5].
Migrant studies, atomic bomb survivor studies, and

experimental model studies reinforce the concept that
exposures during certain periods in a woman’s life are
important to later breast cancer risk [6–9]. These time
intervals represent windows of susceptibility (WOS) and
coincide with landmark events when a woman’s breast
tissue changes in structure and function including the
prenatal, pubertal, pregnancy, and menopausal WOS.
Epidemiologic data support that both medications [10]
and medical conditions [11, 12] during these WOS may
affect breast cancer risk; more limited evidence ad-
dresses specific environmental chemicals and metals
during these same WOS. In 2003, the National Institute
for Environmental Health Sciences (NIEHS) initiated the
Breast Cancer and the Environment Research Program
(BCERP) with support from the National Cancer
Institute (NCI) to specifically examine whether environ-
mental exposures during the pubertal WOS affect the

timing of puberty, a risk factor for breast cancer. Since
2009, BCERP expanded the WOS to include the pre-
natal, pregnancy, and menopausal transition WOS. In
addition, studies of mammographic breast density
(MBD), breast tissue measurements, and other inter-
mediate biomarkers of the effects of environmental ex-
posures were included. The BCERP consortium unites
basic and population scientists in advancing our under-
standing of the role of environmental chemicals during
WOS in breast cancer risk. Scientific research in BCERP
also builds from community partnerships and collabora-
tions with communication scientists within the consor-
tium to facilitate direct translation to the public (Fig. 1).
Numerous previous studies examined environmental

chemical exposure and breast cancer risk; however, most
research in humans has not specifically focused on
measuring environmental chemical exposures during
WOS (for review, see [13, 14]). For example, of the 146
epidemiologic reports published in 2006–2016 on envir-
onmental chemicals and incident breast cancer, only 16
(11%) report on exposures measured during a specific
WOS [14]. In this review, we outline the scientific evi-
dence generated by experimental and epidemiologic
scientists including (but not limited to) those in BCERP
addressing the link between breast cancer risk and
environmental chemicals and metals within four WOS—
prenatal, puberty, pregnancy, and the menopausal transi-
tion—to inform breast cancer etiology and future
interventions.

Windows of susceptibility (WOS)
Breast cancer etiology appears to be driven in part by
perturbations to breast tissue as well as alterations of the

Fig. 1 BCERP framework. A model of transdisciplinary community-engaged research by epidemiologists, basic scientists, communication
researchers, and advocates to examine environmental causes of breast cancer, as conducted by the Breast Cancer and the Environment Research
Program (BCERP)
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mammary gland micro-environment during critical win-
dows. Here we briefly summarize breast tissue changes
occurring during each WOS, review evidence that ad-
dresses environmental carcinogenesis during each WOS,
and outline the motivation for ongoing research on the
chemicals and metals targeted in BCERP.

Prenatal WOS
The prenatal period is a particularly vulnerable WOS be-
cause breast tissue begins to develop in the embryonic
stage when epidermal cells in concert with embryonic
mesenchyme become breast buds [15–18]. Faster fetal
growth and greater birth-weight increase breast cancer
risk later in life [19–21]. Proposed mechanisms by which
chemicals can alter normal mammary development tra-
jectories [15, 18, 19, 22, 23] include changes in maternal
hormone levels regulating development and sex differen-
tiation, high levels of growth factors, potential DNA
damage and mutations in germ cells, and other genetic
or epigenetic processes [24].
Pregnancy and birth cohorts reveal possible associations

between environmental chemicals during the prenatal
period and breast cancer. The Child Health and Develop-
ment Studies (CHDS) found high levels of maternal ex-
posure to dichlorodiphenyltrichloroethane (DDT) during
pregnancy increased the daughters’ later breast cancer risk
to age 52 nearly fourfold compared to daughters of
women with low levels of exposure (Table 1) [25]. Al-
though production of many of the organochlorine chemi-
cals—including dioxins, polychlorinated biphenyls (PCBs),
and pesticides such as DDT—stopped in the 1970s, there
is continued exposure to these complex mixtures with di-
verse biological activity. Animal fats and fish from con-
taminated waters are on-going sources of human
exposure as a result of bioaccumulation [26]; PCB expos-
ure also persists through inhalation both outdoors and of
indoor air and dust from caulk, building materials, and
floor finishes [27]. Organochlorines are hormonally active
and may contribute to breast cancer by altering mammary
gland development or hormone responsiveness early in
life, or by promoting tumor growth [25]. Epidemiologic
studies of DDT exposure measured outside of a WOS and
breast cancer risk were less likely to report consistent
findings [14, 19].
Another class of chemical exposures of concern during

the prenatal WOS is polycyclic aromatic hydrocarbons
(PAH). PAH are produced as a result of combustion of
hydrocarbons. Some of the common sources of PAH ex-
posure include consuming grilled meats and certain
other food items [28], inhaling cigarette smoke and
motor vehicle exhaust [29], and exposure to industrial
processes [29–31]. PAH are widespread and enter the
body largely through ingestion and inhalation of sus-
pended particulate matter [32, 33]. The International

Agency for Research on Cancer classifies PAH as
probable carcinogens; the US Environmental Protection
Agency lists PAH as possible carcinogens [34, 35].
Like DDT and other organochlorines, PAH are lipo-

philic and stored in fat tissue including breast tissue
[36]. Most PAH compounds are weakly estrogenic
and may induce cell proliferation via activation of the
estrogen receptor (ER) [37]. Exposure to PAH was
linked to mammary cancer in rodents [38]. PAH ex-
posure has been measured directly in both blood [39]
and breast tissue [40], and higher levels of PAH-DNA
adducts have been found in breast cancer cases com-
pared with women without breast cancer [41]. Simi-
larly, breast cancer cases reported higher levels of
PAH exposures than controls based on questionnaire
assessments of indirect exposure [42–46]. For all
these epidemiologic studies, specific WOS were not
investigated. Because experimental and epidemiologic
associations implicate prenatal PAH exposure in mul-
tiple adverse health effects including obesity [47–49],
one focus of BCERP is the impact of PAH exposure
during the prenatal WOS. BCERP research specifically
addresses how exposure to PAH during the prenatal
and pregnancy WOS may increase the development
of mammary tumors in mice. Concurrent human
studies within BCERP evaluate how prenatal PAH ex-
posure alters breast tissue development and tissue
composition in adolescent girls.

Pubertal window of susceptibility
The female breast undergoes rapid changes and growth
during puberty. The highest density of proliferating ter-
minal end buds that mediate ductal elongation and
establishment of the ductal tree and primitive lobular
structures form during puberty [50, 51]. This time
period is considered highly estrogen sensitive based on
evidence in mice where pubertal growth is almost
completely stunted in mice lacking ERα [52, 53]. The
profound hormonal changes, including a dramatic in-
crease in endogenous estrogen biosynthesis by stimulat-
ing hormones from the hypothalamus and pituitary
gland, culminate in the onset of menarche. Endocrine-
disrupting chemicals (EDC) in the environment may
affect the interaction of endogenous estrogens and pro-
gestogens with their receptors and together have car-
cinogenic impact. Exposure to EDC may reprogram
normal stem cells which are subsequently transformed
by additional estrogen exposures [54]. The number of
mammary stem cells expands during this period of pro-
liferation, and these cells distribute throughout the
ductal tree [55]. Three previous BCERP puberty cohorts
examined exposure to several environmental chemicals in
relation to pubertal timing as endpoints and reported that
higher levels of some (but not all) chemicals, including
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various phenols (including bisphenol A [BPA]), parabens,
phthalates, and persistent organohalogenated com-
pounds, were associated with delayed median puberty
endpoints by 5–11 months when comparing extreme
categories of exposure (Table 1) [56–60].
Epidemiologic and experimental evidence from investi-

gators outside of BCERP suggest environmental expo-
sures during the pubertal WOS are associated with an
increase in breast cancer risk. Human studies have
examined high doses of radiation from medical treat-
ment or atomic bomb exposure [61, 62] and nutritional
exposures during puberty and adolescence [63–66].
DDT exposure during infancy and puberty was associ-
ated with increased breast cancer risk [67, 68]. In experi-
mental studies of rats, exposure to a carcinogen
(dimethylbenz [a] anthracene, DMBA) resulted in the
highest number of tumors when administered to rodents
during “puberty” possibly through induction of proin-
flammatory responses [50, 51, 69–74]. Excessive signal-
ing through the ER appears to be another primary
mechanism for mammary carcinogenesis as modest
overexpression of ERα in response to endogenous estro-
gen during puberty in transgenic mice resulted in mam-
mary hyperplasia and tumors [75, 76].
BCERP members are studying the effect of pubertal

levels of perfluorooctanoic acid (PFOA) and per- and
polyfluoralkyl substances (PFAS) on breast development
and breast density. PFAS are used in many commercial
products because of their non-stick, stain-resistant, and
waterproof characteristics. Sources of human exposure
include production facilities, firefighting training, con-
sumer products, diet, and drinking water. Dietary
sources include seafood [77] and food packaging [78].
PFAS enhance the estrogenic effects of 17β-estradiol in
T47D human breast cancer cells [79] and promote the
proliferation, migration and invasion potential of human
breast epithelial cells [80]. Animal studies provide evi-
dence that PFOA affects the developing mammary gland
[81], although limited human epidemiologic data have
been less conclusive when PFOA and PFAS exposure
was examined in relation to intermediate breast cancer
markers (hormone levels) [82] or measured during
adulthood [83]. Because environmental chemicals may
influence the timing and duration of the pubertal trajec-
tory, studies including breast tissue biomarkers that can
be reliably measured to provide greater information than
a single event in time, such as age at menarche, are crit-
ical to move the field forward.

Pregnancy window of susceptibility
Pregnancy is another period of rapid breast tissue and
micro-environmental changes during which susceptibil-
ity to environmental exposures may increase the risk of
breast cancer [8]. During pregnancy, breast tissue

changes rapidly in size and function to prepare for lacta-
tion. Estrogen, progesterone, and prolactin are the major
drivers of branching and development of the lobuloal-
veolar structures’ characteristic of the mature breast
[84]. Pregnancy also decreases the number of mammary
stem cells [85, 86]. However, the protective pathways acti-
vated during pregnancy can be eroded by prolonged expos-
ure to exogenous 17β-estradiol which restores sensitivity to
carcinogen-induced mammary tumors [87–89]. These
observations may explain why pregnancy is accompanied
by a short-term increase in breast cancer risk [12, 90];
“pregnancy-associated breast cancer” has poorer overall
survival [91, 92]. However, in the long term after a preg-
nancy, breast cells are less sensitive to carcinogenesis with
the lifetime risk of breast cancer reduced by up to 50%
[93–96]. Thus, the mechanisms mediating the competition
between tumor-promoting and tumor-suppressive effects
of estrogens in the breast provide fundamental insights into
mechanisms underlying risk and resistance in the presence
of environmental chemicals.
In mice, there is a greater than 100-fold increase in the

number of mammary epithelial cells during pregnancy
demonstrating the rapid changes that occur in mammary
tissue. Despite the rapid proliferation, a full-term preg-
nancy renders the mammary epithelium resistant to
tumorigenesis subsequent to the pregnancy. This is ob-
served in studies of exposure to carcinogens [70, 97–99]
as well as inherited genetic risk alleles [100–103]. Admin-
istering exogenous estrogen, either alone or in combin-
ation with progesterone to rodents at an early age,
sufficiently mimics the effect of pregnancy in reducing tu-
mors in rodents [104–106]. Lobuloalveolar structures may
be less susceptible to carcinogens [107, 108], in part,
through more robust p53-dependent responses to DNA
damage [109].
Epidemiologic evidence directly linking environmental

exposures during pregnancy and breast cancer risk
arises from the previously mentioned prospective CHDS
which measured PCB and DDT soon after pregnancy
and confirmed breast cancer diagnoses with medical re-
cords. Relative risk estimates for breast cancer compar-
ing upper to lower quartiles of 16 individual PCB
congeners ranged from 0.2 to 6.3; a composite score of
exposure was associated with an odds ratio of 2.8 (95%
CI 1.1–7.1) (Table 1) [110]. Other epidemiologic studies
suggest no association between breast cancer and or-
ganochlorine pesticide residues in blood collected near
the time of diagnosis [111, 112], but these measure-
ments may not be representative of exposure to the
parent chemical during the relevant WOS [113].
The BCERP consortium is studying the effects of ex-

posure during pregnancy on maternal breast cancer risk
by examining breast tissue changes in the mothers of
daughters participating in studies at the Columbia’s
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Children Center for Environmental Health [32, 114].
The design of this mother-daughter cohort, similar to
CHDS, facilitates efficient examination of exposure to
PAH during two WOS (pregnancy and prenatal) in
the two generations [115]. As a complement to this
epidemiologic study, other BCERP members aim to
elucidate the mechanisms for the dual effect of preg-
nancy on breast cancer risk by examining chemicals
that are found in higher levels among pregnant
women [116, 117] and their potential to impair the
protective pathways associated with breast develop-
ment during pregnancy. These pathways include the
activity of p53 [109] and limiting the stem cell popu-
lations [118].

Menopausal transition window of susceptibility
Although menopause is often defined as the cessation of
menstrual periods for at least 1 year, the menopausal
transition begins a number of years prior to menopause.
During the menopausal transition, micro-environment
changes occur in the breast tissue along with declining
systemic levels of endogenous estrogen and progesterone
[119]. As the majority of breast cancers are responsive to
these two sex steroid hormones, their decline explains
the leveling-off of the age-specific rate curve of breast
cancer after menopause [120]. Later age at menopause is
associated with a higher risk of developing breast cancer
due to a longer period of exposure to higher levels of
sex steroid hormones [121]. Despite the leveling in the
age-specific rate curve of breast cancer, the vast majority
of breast cancers are diagnosed after menopause, in part
through enhanced hormone receptor sensitivity during
the menopausal transition. Mammary tissue may be more
responsive to lower levels of estrogen and progesterone, as
well as to hormone mimics, by adapting to the abrupt re-
duced production of ovarian hormones [122, 123].
Analyses of data from the Women’s Health Initiative

(WHI) showed that the increased incidence of breast
cancer with use of exogenous estrogen and progesterone
[124–127] was mediated through the change in mam-
mographic breast density that occurred in the first year
of use [128]. A biologically based breast tumor growth
rate model [129] suggests that hormone therapy pro-
motes growth of pre-existing occult lesions and minim-
ally initiated de novo tumors. EDCs with estrogen-like
and/or progesterone-like activities or those modifying
aromatase expression/activity including polybrominated
diphenyl ethers (PBDE), BPA, or selected metals may act
in a similar manner and promote the growth of occult
disease to clinically detectable tumors during the meno-
pausal transition.
PBDE are a class of over 200 organohalogenated

compounds widely used as flame retardants and may

modulate steroidogenesis including expression of aro-
matase [130–136]. BPA is an industrial chemical
found in polycarbonate plastics, epoxy resins, dental
sealants, and thermal paper [137, 138]. Both PBDE
[136] and BPA [139] have been shown to act as li-
gands of ERα. While experimental studies suggest that
PBDE and BPA cause breast cancer and biomonitor-
ing studies confirm that women are exposed, epidemi-
ologic studies have not to-date measured exposure
during relevant WOS, used methods that reflect long-
term exposure, or included measures of mammo-
graphic density or other intermediate markers of
breast cancer risk [138, 140, 141].
Metalloestrogens are metals that activate the ER, lead-

ing to estrogen-like changes. Metalloestrogens are preva-
lent environmental contaminants with multiple routes of
human exposure. They often accumulate in tissues and
organs (reviewed in [142, 143]). Most breast cancer
studies have focused on cadmium which induces the
proliferation of estrogen-dependent breast cancer cells
[144–147], increases the transcription and expression
of estrogen-regulated genes such as the PR [144, 148],
activates ERα in transfection assays [144–146, 149, 150],
and increases signaling through the ERK1/2 and Akt path-
ways [148, 151, 152]. The reported associations between
metalloestrogen exposures and breast cancer risk to date
have been inconsistent in part due to the variety of tech-
niques used to assess exposure. Studies of dietary cad-
mium measured from self-reported dietary assessments
and breast cancer risk have on the most part found min-
imal if any associations due in part to the difficulty in
determining exposure [153–159]. The studies of neighbor-
hood airborne levels did not distinguish differences be-
tween breast cancer cases and controls [160, 161]. The
studies measuring individual cadmium levels from blood,
urine, or toenails are not necessarily measuring the same
timing of exposure. Most [153–155, 159, 162, 163], but
not all [158, 164], epidemiologic studies of postmeno-
pausal women or all ages combined show risk estimates in
the 0.73 to 1.01 range (Table 2). Two studies show greater
risk associated with cadmium exposure for premenopausal
women than for postmenopausal women [156, 165],
whereas two other studies show the reverse [157, 166],
with additional studies describing generally null associa-
tions for both groups [160, 161, 167, 168]. Stratification by
estrogen receptor status does not reveal a consistent pat-
tern. Studies of cadmium and mammographic breast
density as an intermediate marker of breast cancer risk
also have mixed findings possibly due to differences in as-
sessment of cadmium or breast density in terms of
methods and in timing relative to WOS [168–171]. Expos-
ure to cadmium or other metalloestrogens during any of
the WOS may impact a woman’s risk of breast cancer by
activation of the hormone receptors; however, no studies
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as of yet have carefully examined whether metalloestro-
gens may have the greatest impact during the menopausal
transition when endogenous hormone levels are declining.
BCERP members are examining whether exposure to

PBDEs, BPA, or selected metals during the menopausal
transition is associated with breast cancer risk in
humans, and evaluating potential mechanisms to explain
these associations in rodent models.

Strategies to address long latency
The long time between exposures during the early WOS
(prenatal, puberty, pregnancy) and breast cancer occur-
rence has multiple implications for breast cancer re-
search. First, because many environmental exposures are
stored long-term in adipose tissue, even compounds
now banned, such as DDT and PBDE, may continue to
be relevant for breast cancer risk. Bioaccumulation of
lipophilic chemicals and their long-term storage also
means studies incorporating biomarkers in breast tissue
need to consider both the effects on adipose tissue as
well as epithelial and stromal tissues.
Second, because it may be decades after the relevant

windows of exposure before breast cancer is diagnosed,
the examination and validation of intermediate bio-
markers of response, apparent closer to the timing of ex-
posure and before diagnosis, are imperative, particularly
in prospective human studies. BCERP first started as a
cohort study of the environmental exposures that may
accelerate puberty. The main outcome of the cohort
study was based on Tanner Stages [172]. As BCERP ex-
panded to include other WOS, additional measures of
breast tissue composition and breast density were added.
BCERP investigators are now using a variety of inter-
mediate markers—as both outcomes in relation to
chemical exposures and as predictors of breast and
mammary cancers—conducted in parallel human and
rodent studies including epigenetic biomarkers, altered
tumor suppression and induction, and altered estrogen
signaling and biosynthesis (Fig. 1) [173].
One intermediate outcome is mammographic breast

density (MBD), defined as the fraction of connective and
glandular tissue to adipose tissue on a mammogram
[174–181]. MBD is one of the strongest predictors of
breast cancer risk with a four- to sixfold elevation in risk
comparing ≥ 75% MBD to < 5% [182], but the mechanisms
explaining how environmental chemicals affect the overall
level and rate of change of MBD are uncertain. While
MBD declines with age in many women, particularly
around the time of menopause [183–185], this pattern
does not occur uniformly for all women [8, 186, 187].
Little is known of the drivers of breast tissue changes

across adolescence, early adulthood, and the menopausal
transition and thus the contributors to breast density.

Most of what is known about normal breast tissue charac-
teristics is from mammography data in women over 40
years of age. In women under 40 years, two alternative im-
aging methods have been used to assess breast compos-
ition including three studies of magnetic resonance
imaging (MRI) in women aged 15–30 years [188–190] and
two of dual X-ray absorptiometry (DXA) in girls aged
10–16 years [191, 192]. In addition, optical spectroscopy
(OS) provides a compositional view of the breast captur-
ing variation in the amount of water, lipid, hemoglobin,
and collagen, as well as overall cellular and connective tis-
sue density [174–176]. Collagen density may promote epi-
thelial cell proliferation and increase tumor mobility and
invasion, while hemoglobin is associated with angiogenesis
[193–195]. OS has been used to measure differences in
adolescent breast tissue across developmental stages as
assessed by Tanner stage [196]. Thus, MRI, DXA, and OS
provide novel intermediate outcomes to measure breast
tissue changes across the developmental trajectory of
adolescence and early adulthood and may be important
tools for examining environmental effects during these life
stages. Mammography techniques now include digital
breast tomosynthesis measures as well as the use of ultra-
sound in measuring breast density without radiation ex-
posure [181]. While density of the adult breast is highly
correlated with breast cancer risk, longitudinal measures
of pubertal density are currently lacking but are being col-
lected in BCERP.

Conclusions
Given the changes in mammary tissue architecture and
hormone signaling during the prenatal, pubertal, preg-
nancy, and menopausal transition windows, these critical
time periods may reflect windows of heightened risk.
Thus, measuring the impact of environmental chemical
and metal exposures during these WOS is essential to
understand their roles in breast cancer risk; these issues
have not been addressed by the majority of epidemio-
logic studies to date.
Experimental studies in cell lines and animals are pro-

viding causative mechanistic links between environmen-
tal exposures and altered mammary carcinogenesis,
particularly during key WOS. Increasingly, epidemio-
logic studies are able to link the human exposure of che-
micals and metals during relevant WOS through the use
of intermediate breast outcomes including specific breast
tissue characteristics and breast density in adolescence
and adulthood to address the challenge of long latency
time posed in cancer research.
For many of the studies described here, community

engagement strengthens the research design as well as
the dissemination and implementation of study findings.
To address knowledge gaps and accelerate translation of
environmental breast cancer research findings related to
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WOS, BCERP integrates basic and population researchers
with communication scientists and representatives of
community-based organizations (Fig. 1). Community part-
nerships are vital, because both the sources and the rem-
edies for environmental exposures are outside of clinical
settings. Community input also can identify issues of con-
cern to the community, motivate participation in studies,
and translate findings to public audiences. Scientists need
to disseminate research findings to the public to enable
people to make informed choices in their personal lives
and workplaces, and to influence health policies as voters
and community leaders. For example, participation of
community partners in BCERP has led to the development
of strategies to provide reports of personal chemical expo-
sures to individuals who donated biological samples, so
they can learn about environmental health and make in-
formed decisions regarding possible behavioral modifica-
tion in general and with particular reference to WOS
[197, 198]. Digital methods using libraries of vetted expos-
ure and health information and decision rules, set by the
study team, make personalized results practical [199]. In
addition, communication scientists within BCERP are test-
ing different messages and channels for future outreach
efforts [200]. Scholarship about community-engaged re-
search shows that this approach improves the “rigor, rele-
vance, and reach” of research [201].
Although the median age when women are diagnosed

with breast cancer is 62 years [202], primary prevention of
potentially hazardous environmental exposures during
earlier WOS is critical [13], particularly when considering
that exposure to environmental chemicals may contribute
to cancer health disparities [203–206]. Furthermore, just
as family-based studies facilitated the discovery of breast
cancer genes relevant to all women, studies during specific
WOS will facilitate the assessment of the effects from en-
vironmental exposures that will be relevant outside of
these WOS. As evidence from WOS accumulates, the
paradigm for breast cancer needs to expand beyond the
secondary prevention efforts of screening and mid-life risk
assessment to primary prevention efforts with involve-
ment of community partners, educators and school dis-
tricts, families, and primary care providers including
pediatricians for lifelong impact [207].
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