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Abstract

Landscape Genetics, in 4D: Exploring The Influence of Spatiotemporal Phenomena on
Microevolutionary Dynamics

by

Drew Ellison Terasaki Hart

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Ian J. Wang, Chair

A major goal of landscape genomics is to understand how spatiotemporal variability in complex
environments  influences  evolutionary  dynamics,  and  consequently  geographic  patterns  of
genomic  diversity,  in  natural  populations.  Recent  computational  advances  enable  this
spatiotemporal  complexity  to  be  described  and  analyzed  in  unprecedented  detail.  One  such
advance is the improvement of forward-time landscape genomic simulation, allowing arbitrarily
complex evolutionary scenarios that mimic real-world systems to be created and studied in silico.
In chapter 1, I present Geonomics, a new, user-friendly Python package for performing complex,
spatially explicit, landscape genomic simulations on changing landscapes and with full spatial
pedigrees. I describe the structure and function of Geonomics in detail, show that its results are
consistent  with  expectations  for  a  variety  of  validation  tests  based  on  classical  population
genetics, then demonstrate its utility and flexibility with example scenarios featuring polygenic
selection,  selection  on  multiple  traits,  and  non-stationary  environmental  change  on  realistic
landscapes.  Taken  together,  these  tests  and  demonstrations  establish  Geonomics as  a  robust
platform for population genomic simulations that incorporate complex spatiotemporal dynamics.

In chapter 2, I apply the software developed in chapter 1 to one of the major areas of theoretical
and applied interest in landscape genomics: the evolutionary consequences of climate change. I
model climate change realistically, as the decoupling of historical environmental gradients that
generates novel multivariate selective environments. I then simulate evolutionary responses to
that climate change event across a range of genomic architectures, defined as the full factorial
crossing of discretized levels of three key architectural components: the number of genes per trait
(polygenicity), the recombination rate between neighboring genes (linkage), and the number of
distinct genotypes generating identical phenotypes (genotypic redundancy). I use the results to
test a series of hypotheses about the influence of polygenicity, linkage, and redundancy on gene
flow,  maladaptation,  and  demographic  decline.  Results  show  that  a commonly  assumed
mechanism of evolutionary rescue, adaptive gene flow from populations whose current climates
approximate  future  projection,  can  be  less  effective  than  in  situ adaptation  under some
architectures,  likely  because  of  maladaptive  introgression  caused  by  the  decoupling  of
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environmental  gradients.  I  also  find  that  high  polygenicity  aggravates  maladaptation  and
demographic decline,  a concerning result  given the likely polygenic nature of many climate-
adapted  traits,  but  that  higher  genotypic  redundancy  increases  adaptive  capacity  across  all
scenarios, adding to the growing recognition of its importance. Overall, this chapter shows that
genomic architecture, though it is often ignored, can exert large influence over the effectiveness
and relative magnitudes of adaptive gene flow and  in situ  adaptation in a spatially distributed
population subjected to climate change.

Another  major  computational  advance  facilitating  the  study  of  spatiotemporal  evolutionary
dynamics is the advent of massive and distributed geocomputation. In chapter 3, I use this tool
set to study, in unprecedented detail, global geographic variability in the seasonality of terrestrial
plant productivity – i.e., land surface phenology (LSP). Not only does the geography of LSP
convey critical information about environmental controls on plant function and carbon cycling,
but it has important implications for evolutionary biogeography: spatial asynchrony in LSP can
indicate the potential for spatial asynchrony in reproductive phenology, and thus for increased
genetic  isolation  and  divergence  between  conspecific  populations.  Thus,  whereas  chapter  2
provides  an  example  of  the  spatial  nature  of  an  evolving  system  influencing  its  temporal
dynamics,  this  chapter  provides  an  example  of  the  less-appreciated  inverse  situation:  the
potential for a system’s temporal complexity to influence its evolutionary dynamics.  Despite its
importance, LSP research lacks mapping methodologies that can characterize the full diversity of
terrestrial phenologies, and LSP asynchrony mapping is even less developed. Here, I develop a
multivariate,  generalized, and robustly-validated LSP mapping methodology, based on simple
harmonic  regression,  then  apply  it  to  a  10-year,  0.05° dataset  of  MODIS  near-infrared
reflectance of vegetation (NIRV, a proxy of plant productivity). This produces a global LSP map
that  reveals  surprising  diversity,  including  both  regional  patterns  of  heterogeneity  that  are
corroborated  by  prior  research  and intercontinental  patterns  of  convergence that  recapitulate
major bioclimatic and biogeographic gradients. Next, I calculate and present a global map of
LSP asynchrony, and use machine learning to explore regional variability in its potential climatic
and physiographic drivers. I describe LSP asynchrony hotspots in the world’s five Mediterranean
climate  regions,  where  asynchrony  appears  driven  by  precipitation  asynchrony  and  spatial
variability in vegetation structure, and in tropical montane regions, where minimum temperature
asynchrony  and  precipitation  asynchrony  appear  to  be  interacting  drivers.  Lastly,  I  use  an
ensemble of regressions within global high-asynchrony regions to demonstrate that phenological
asynchrony between climatically similar sites is most frequent at lower latitudes, supporting the
notion  that  phenological  asynchrony  is  most  likely  to  cause  allochrony  and  consequent
evolutionary divergence in the tropics.
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to Mom and Dad, who taught me to walk
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Introduction
In nature, evolving populations consist of individuals that are located and mobile in 

space, yet the fields of population and evolutionary genetics developed around theory and 
mathematical models that are either aspatial or, at best, spatially implicit (Hartl and Clark 2007). 
While this body of theory has been applied quite effectually to real populations, the spatial 
arrangements and movements of individuals, and the spatial patterns of genetic diversity this 
generates, can both modulate the outcomes expected under classical theory and generate 
important phenomena not entirely approachable by aspatial classical theory (Slatkin 1987). This 
realization led to the birth of the field of landscape genetics, a result of the fusion of population 
genetics – the study of the genetic composition and changes of populations – and landscape 
ecology – the study of spatially structured ecological processes and the geographic patterns they 
generate (Manel et al. 2003). Though it is quite young, the field of landscape genetics quickly 
developed its own body of methodologies and provided a wealth of useful basic and applied 
findings (Manel and Holderegger 2013). However, much more remains to be understood within 
the ambit of landscape genetics, and numerous horizons remain.

One such horizon is the ability to scale theory and analysis from one or a few genes of 
interest (i.e., landscape genetics) to large numbers of polymorphic markers and even whole 
genomes and epigenomes (i.e., landscape genomics; Storfer et al. 2018). Numerous new tools, in
rapid and ongoing development over the past two decades, are facilitating this transition. A major
area of tool development, of course, is the development of new sequencing technology, allowing 
for large, random samples of genetic markers and even whole genomes to be produced for 
sizable numbers of individuals sampled from wild populations. A second area of development, 
that of new computational tools, is necessarily linked to the first, in that improved computing is 
necessary to process and analyze next-generation sequencing data. New modeling methods 
specifically suited to the types and volumes of data generated by modern sequencing are critical 
here, and for landscape genomics this includes improved simulation resources. The large spatial 
scales, long time scales, large population sizes, and high complexity of most landscape genetics 
study systems make in vivo experimentation inadequate, and thus make in silico experimentation
critical.

In chapter 1, I introduce one such simulation tool. ‘Geonomics’ is a Python package I 
developed to enable the simulation of complex evolutionary scenarios on complex and changing 
landscapes. Simulations are individual-based, spatially explicit, and scriptable, generating 
simulated populations of individuals, each with its own simulated genome, useful for theoretical, 
empirical, and applied research, as well as for education. As a flexible scripting framework 
embedded in one of the most popular scientific programming languages, Geonomics provides an 
unprecedented combination of ease of use and complexity. I first describe the need for such a 
tool and describe the structure and function of Geonomics, then validate it against a suite of tests 
derived from aspatial and spatially implicit population genetics models, and finally demonstrate 
its utility through a trio of complex simulation scenarios. 

Just as landscape genetics was born from the extension of population genetic theory to 
account for the spatial context of the study systems – i.e., the landscape – another horizon of the 
field is to continue this extension to incorporate the temporal aspect of landscapes, and thus to 
better understand how adaptation occurs in both space and time (Rissler 2016). One particularly 
important goal is to develop theory that can provide the ability to understand and perhaps even 
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predict evolutionary outcomes under environmental change (Hoffmann and Sgrò 2011). This is 
an important gap not only from a theoretical perspective, but also from an applied science 
perspective: climate change, habitat loss, and other forms of anthropogenic environmental 
change are driving distributional and evolutionary changes in species and communities, often at 
unprecedented and increasing rates, and the conservation implications of evolutionary responses 
to global change remain ambiguous in the absence of a robust foundation of evolutionary theory 
that can help identify species more and less likely to adapt and persist. 

In chapter 2, I use Geonomics, the software I presented in chapter 1, to conduct a 
theoretical study that offers novel insight in this area. Having already passed peer-review, 
Geonomics now provides a robustly vetted tool for this work. First, rather than modeling climate 
change as the uniform shift across geographic space of a species’ fixed climatic niche, I instead 
start with a conceptual evolutionary model in which the environmental gradients subtending a 
species’ local adaptation decouple as climate changes, causing the emergence of novel 
environments (Williams and Jackson 2007) and consequent shifts in the adaptive landscape 
experienced by local subpopulations, the magnitudes of which vary across the geographic 
landscape. I then use simulations within this context to test a series of hypotheses about whether 
and how genomic architecture influences the nature and outcome of evolution under climate 
change. Simulation results derive from a suite of simulation scenarios using the full factorial 
crossing of three genomic architecture components of interest: number of genes per locally-
adapted trait (‘polygenicity’), the quantity of distinct genotypes that can produce identical trait 
phenotypes  (‘genotypic redundancy’), and the rate of recombination between neighboring genes 
(‘linkage strength’).

A third horizon of of landscape genetics is its integration with biogeography more 
broadly (Rissler 2016). The paramount importance of the spatial context within landscape 
genetics arises from the recognition that the structure of the environment – e.g., landscape 
features and movement barriers, environmental gradients that act as selective forces or that 
determine the local densities of population – can have a predominant influence over processes or 
outcomes of interest. Because of this focus on the influence of specific landscape characteristics 
on specific populations, landscape genetics research usually focuses at local to regional scales. 
However, given that similar geographic contexts arise in numerous place worldwide, we stand to 
learn much about the nature and repeatability of evolution, and the processes generating the 
current geographic distribution of biodiversity by studying whether similar geographic contexts 
worldwide tend to influence microevolutionary processes in similar ways. This is a rich area of 
inquiry that points at some of the major questions of evolutionary biology – What landscape 
conditions might cause populations to diverge and species to emerge? Where are those 
conditions most likely to occur, and why? How, if at all, do spatial patterns of population 
divergence relate to patterns of speciation and, in turn, to patterns of species diversity? Given the
young age and historically parochial focus of the field of landscape genetics, this is a relatively 
untrodden yet potentially fruitful area of inquiry.

In chapter 3, I provide a global analysis that offers unprecedented insight in this realm: an
exploration of the spatial asynchrony of phenology, a biogeographical pattern that has great 
potential evolutionary importance but that has been largely overlooked in previous research. 
Phenology, both in plants and in other taxa, is frequently controlled by annual seasonality, even 
in many perhumid tropical climates where seasonality may be subtle and thus go unnoticed. At 
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high latitudes, photoperiod and temperature are the predominant seasonal cues of phenology, and
are mostly synchronized across broad geographic areas because of their dependence on the fixed 
orbital geometry of the earth. However, Martin and colleagues (2009) recognized that the most 
likely seasonal cues at lower latitudes, precipitation and solar radiation, are dependent on factors 
endogenous to the earth system – atmospheric airflow and its interaction with terrain, at 
synoptic- and meso-scales – and thus are more subject to being out of sync at relatively short 
geographic distances (e.g., in a valley versus at altitude, or on one side of a mountain range 
versus the other). Martin et al. used coarse-resolution meteorological data to demonstrate that 
this spatial asynchrony of seasons is indeed greatest, on average, across the tropics. They then 
postulated that such seasonal asynchrony could lead nearby populations of a species to exhibit 
asynchronous breeding phenologies, such that chance migrants between populations would have 
a lower chance of successful reproduction on average, causing allochronic isolation, reduced 
gene flow, increased rates of population divergence, and perhaps even increased rates of 
speciation, helping to generate the latitudinal biodiversity gradient that has long fascinated and 
puzzled biogeographers. This Asynchrony of Seasons Hypothesis (ASH), as this hypothesis is 
termed, nonetheless rests on the crucial and as yet untested assumption that high climatic 
seasonal asynchrony leads to high phenological asynchrony in the tropics, even between sites 
with similar climatological means, habitats, and thus species whose populations might 
experience allochronic isolation. In this chapter, I first use time series analysis of satellite 
imagery to map the characteristic annual phenology of terrestrial vegetation productivity (i.e., 
land surface phenology; LSP) worldwide. I validate this map extensively, using both a second 
remote sensing archive and a global set of eddy-covariance flux tower datasets, then explore and 
interpret it light of prior regional studies on phenology, climatology, and land cover and prior 
knowledge of global biogeographic patterns. Next, I use that map to map spatial asynchrony of 
LSP globally, then provide analyses to first explore the potential climatic and physiographic 
drivers of LSP asynchrony and then test the central assumption of the ASH: that phenological 
asynchrony occurs more often, and between more climatically similar sites on average, in the 
tropics.
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Abstract

Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of
evolutionary genetics. The flexibility of forward-time simulation makes it especially valuable for
these efforts, allowing for the simulation of arbitrarily complex scenarios in a way that mimics
how real populations evolve. Here, we present  Geonomics, a Python package for performing
complex,  spatially  explicit,  landscape  genomic  simulations  with  full  spatial  pedigrees  that
dramatically  reduces  user  workload  yet  remains  customizable  and  extensible  because  it  is
embedded within  a  popular,  general-purpose  language.  We show that  Geonomics results  are
consistent  with  expectations  for  a  variety  of  validation  tests  based  on  classic  models  in
population genetics and then demonstrate its utility and flexibility with a trio of more complex
simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on
complex landscapes, and non-stationary environmental change. We then discuss runtime, which
is primarily sensitive to landscape raster size, memory usage, which is primarily sensitive to
maximum population size, and other caveats related to the model’s methods for approximating
recombination  and  movement.  Taken  together,  our  tests  and  demonstrations  show  that
Geonomics provides an efficient and robust platform for population genomic simulations that
capture complex spatial and evolutionary dynamics.
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Introduction
Spatial patterns of genomic diversity result from the complex interplay of many 

underlying ecological and evolutionary processes and are shaped by a wide variety of geographic
and environmental factors. Understanding how these patterns develop in natural systems has 
emerged as a primary goal of modern evolutionary genetics. These systems often occupy 
complex and potentially changing landscapes and might include populations that are not at 
demographic equilibrium. They may undergo neutral evolution as well as natural selection, 
sometimes on multiple traits of variable genetic architecture. The study of complex natural 
systems is crucial for developing evolutionary and ecological theory (Epperson et al. 2010; 
Barrett et al. 2019; Pelletier 2019), understanding the forces governing the evolution and 
maintenance of genetic diversity (Manel et al. 2003; Schoville et al. 2012), anticipating 
ecological futures in the Anthropocene (Bay et al. 2018; Capblancq et al. 2020), and informing 
conservation and management (Crossley et al. 2017; Lind et al. 2017). The complex genomics of
many such systems are beyond the reach of analytical population genetics, and their spatial 
complexity and evolutionary dynamics make them intractable for coalescent simulation (Hoban 
et al. 2012). This hinders not only our understanding of many empirical systems but also our 
ability to predict their dynamics and, thus, to manage them. Hence, in population and landscape 
genomics, as in many other fields, forward-time simulation is a crucial tool for dissecting 
complex study systems.

However, the current suite of forward-time genomic simulators, although numerous, is 
still of limited utility for such work. Most available software is restricted, either genomically or 
geospatially, in the complexity it can model. Many programs can model systems of considerable 
genomic complexity (e.g. simuPOP, Peng and Kimmel 2005; NEMO, Guillaume and Rougemont
2006; QuantiNemo, Neuenschwander et al. 2008) yet incorporate only rudimentary spatial 
components or none at all. Other programs are designed specifically for landscape-genetic 
simulations (e.g. CDPOP, Landguth and Cushman 2010; CDMetaPOP, Landguth et al. 2017; 
SimAdapt, Rebaudo et al. 2013) but are limited in their genomic complexity. For instance, many 
programs are unable to model simultaneous selection on multiple, polygenic traits. To our 
knowledge, SLiM (Messer 2013; Haller and Messer 2017; Haller and Messer 2019) is the only 
package currently capable of simulating scenarios that are sufficiently complex, both 
genomically and geospatially, to model population genomic patterns emerging under dynamic 
evolutionary processes (according to a search of the National Cancer Institute’s Genetic 
Simulation Resources website; Peng et al. 2013). Its extreme generalizability and complexity 
allow it to be used for landscape genomics simulation, but it is not explicitly designed for such 
work. Furthermore, many species are distributed continuously in space, and examining 
continuous fields of genetic variation can require distinct methods and assumptions (Bradburd 
and Ralph 2019), yet most population genomic simulation packages are population-based. Such 
software, SLiM included, requires individuals to be assigned to discrete subpopulations, which 
can at best be arranged on a high-resolution, regular grid in order to approximate continuously 
distributed populations. 

Here we present Geonomics, a Python package for forward-time, individual-based, 
continuous-space, population genomic simulations on complex landscapes. Geonomics models 
are parameterized by way of an informatively annotated parameters file that provides the user a 
straightforward means of building models of arbitrary complexity while offering reasonable 
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default settings and ‘off switches’ for parameters and components unrelated to the user’s 
interests. Models consist of (1) a landscape with one or more environmental layers, each of 
which can undergo arbitrarily complex environmental change events and (2) one or more species
having genomes with realistic architecture and any number of associated phenotypes. Species 
undergo non-Wright-Fisher evolution in continuous space, with localized mating and mortality, 
such that species-level phenomena and simulation dynamics are emergent properties of a model’s
parameterization. Evolution is comprehensively tracked by way of recently developed data 
structures that record the complete spatial pedigree (Kelleher et al. 2018), providing for the 
customizable output of rich, three-dimensional datasets in a variety of common formats, 
including VCF and FASTA for genomic data, GeoTiff for landscape data, and CSV, Shapefile, 
and GeoJSON for individuals’ non-genomic data (location, environmental values, phenotypes, 
age, and sex). All of this allows Geonomics to produce realistic landscape genomic results useful
for a wide variety of theoretical and empirical purposes.

New Approaches
Model Design: Overview

A Geonomics model consists of two core components: the species and the landscape. The
species is composed of a set of individuals and a wide variety of demographic and life-history 
parameters, including an intrinsic growth rate, mate-search radius, mean number of offspring per 
mating event, reproductive age, and maximum age, among others. A species can undergo any 
number of change events, including changes to demographic and life history parameters and 
various types of population size changes. Each individual in the species has an x,y location, a 
sex, an age or life-history stage, a set of phenotypes, and a diploid genome consisting of any 
number of diallelic loci, which can represent either a contiguous haplotype block or a set of 
distinct loci. Loci can exhibit different types of dominance, and recombination rates can be 
heterozygous across the genome.

Phenotypic traits are continuous and quantitative, and can be monogenic or multigenic. 
Each trait is defined by the loci that comprise its genetic basis, the effect sizes of those loci, and a
phenotypic selection coefficient, which can be made heterogeneous in both space and time, 
allowing for spatially complex selection scenarios. While the strength of selection is determined 
by that coefficient, the force of selection is represented by the environmental raster layer to 
which the trait is adapting. Loci can have separate mutation rates for three types of mutations: 
neutral, deleterious, and trait-affecting mutations. Neutral mutations do not affect fitness, and 
deleterious mutations decrease fitness without affecting simulated phenotypic traits. Trait-
affecting mutations, on the other hand, introduce mutations at previously unmutated loci mapped 
to a trait. This adds to the genetic variation affecting a trait, thus generating phenotypic variance 
upon which natural selection can operate. Mutation rates can be defined separately for each trait. 

The other core component of a Geonomics model, the landscape, is a stack of raster 
layers. Each layer can be set to serve as one or more of: (1) a resistance raster, which controls 
individual movement or offspring dispersal, (2) a carrying-capacity raster, which controls 
population density, and (3) a fitness raster for a trait, which governs natural selection. A key 
feature of Geonomics is that each layer can undergo any number of arbitrarily complex 
environmental change events which, as they unfold, influence the dynamics of any species 
whose carrying capacity, movement and dispersal, or fitness depend on the corresponding layer.

4



Model Operation: Overview
A Geonomics run begins with a burn-in stage during which individuals move and 

reproduce, without genomes or selection, until a series of statistical tests is passed. These tests 
include a time-lagged t-test and an augmented Dickey-Fuller test, which are run as a pair for: (1) 
the total population size, serving as a test of temporal demographic stability; and (2) both the 
mean and the standard deviation of timestep-differenced cellwise counts of individuals, serving 
as a test of spatial demographic stability. This burn-in period results in a stationary spatial 
distribution of the species on the landscape. Following burn-in, each individual has its genome 
randomly assigned according to the genomic architecture parameters, such that the main phase of
each run begins with no pedigree and, thus, without population structure. Each time step in the 
main phase is a series of four operations, some optional (Figure 1):

1. movement (optional);
2. mating (requisite), which includes mate search, mate choice, offspring creation, and 

offspring dispersal;
3. mortality, which is due to density-dependence (requisite) and natural selection 

(optional);
4. change events (optional), including both environmental and demographic changes.

Model Operation: Movement
Movement takes place in continuous space – individuals have x,y coordinates, on either 

real or simulated landscapes, rather than being arbitrarily restricted to grid cells or bounded 
populations. Each individual moves along a vector, composed of a distance drawn from a Wald 
distribution and a direction drawn either from a uniform distribution on the unit circle or from a 
movement surface – an array of unimodal or multimodal von Mises distributions derived from a 
landscape layer that serves as a resistance surface (sensu McRae 2006; Spear et al. 2010). On a 
unimodal movement surface, each cell is assigned a single von Mises distribution, with mode 
parameter μ set to the direction of the highest-valued cell in the 8-cell neighborhood. On a 
multimodal surface, each cell’s mixture distribution is a weighted sum of eight such unimodal 
distributions, one pointing toward the center of each cell in the 8-cell neighborhood and with 
normalized weights equal to the values of the neighboring cells. This approach to simulating 
movement generates realistic, anisotropic movement across a heterogeneous landscape (Figure 
2) while avoiding time-consuming computational steps, such as repeated searches for minimum-
resistance neighboring cells.

Model Operation: Mating
Potential mating pairs are randomly drawn from among all eligible pairs of individuals 

within the mate-search radius (unless strict nearest-neighbor mating is chosen), with pairing 
probabilities either uniform or inverse-distance weighted within the mating radius, and with 
eligibility based on both sex and age. From among those pairs, actual mating-event decisions are 
Bernoulli distributed, with probability equal to the intrinsic birth rate. Each mating pair produces 
a number of offspring according to a fixed value or drawn from a Poisson distribution with λ 
equal to the mean number of offspring. Each parent produces a gamete for each of its offspring, 
using realistic recombination and Mendelian segregation. Gametes are united to create offspring 
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individuals, which then disperse to new locations. As with movement, dispersal vectors can be 
drawn isotropically or anisotropically based on a resistance surface.

Model Operation: Mortality
Mortality is modeled as a Bernoulli process with the probability of an individual death a 

combination of the probabilities of death due to density-dependence (using a logistic-growth 
model) and due to natural selection (based on the cumulative fitness for all traits), calculated as:

P (d i )=1 − (1− P ( dx , y ))∏
p=1

m

ωi , p (1),

where P (dx , y ) is the probability of death due to density-dependence for individual i, m is the 
number of traits, and ωi , p is the fitness of individual i for trait p. The probability of density-
dependent death at location x,y is calculated as:

P (dx , y )=
E [ Nd ; x , y ]

N x , y

=
E [N b ;x , y ]−

d N x , y

dt
N x , y

   

(2),
where, for location x,y, E [ Nd ; x , y ] is the expected number of deaths,N x, y is the population density,

E [ Nb ; x , y ] is the expected number of births, and 
d N x , y

dt
 is the population logistic growth rate. The 

fitness of individual i for trait p is calculated as:
ωi , p=1− ϕp ; x , y

γp (3),
where ϕ p ; x , y is the phenotypic selection coefficient on trait p at location x,y, e p ; x, y is the value of 
the selection layer for trait p at location x,y, z i ; p is the phenotype of individual i for trait p, and γp 
defines the curvature of the fitness function for trait p. The phenotype is a result of the additive 
effects of that individual’s genotypes at all underlying loci, and is calculated as:

z i ; p=∑
l=0

n

α p , l gi , l+g0  (4),

where n is the number of loci, α p ,l is the effect size of locus l on trait p, gi ,l is the genotype at 
locus l for individual i, and g0, the baseline genotype, equals 0 for monogenic traits or 0.5 for 
polygenic traits.

Model Operation: Change Events
Each demographic or environmental change event unfolds as a series of incremental 

changes that occur at the ends of scheduled time steps. A demographic change event can be 
exponential, random, or cyclical, or it can follow an arbitrarily complex, custom trajectory. Each 
event is parameterized by defining the time steps at which its changes take place and the factor 
by which the carrying capacity raster is multiplied.

Simple environmental change events are defined by a terminal raster for the final 
environmental state and a list of time steps at which incremental changes occur (based on cell-
wise linear interpolation between the beginning and terminal states). More complex, custom 
events can be simulated by providing a series of environmental rasters labeled with the time step 
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at which each will be applied. This option makes it easy to simulate evolution on real-world 
landscapes undergoing non-linear, spatially heterogeneous environmental change.

Results
Validation

To validate the performance of Geonomics, we ran a series of simulations based on 
classical population genetic models, covering both neutral and non-neutral evolutionary 
scenarios. Because the classical models are simpler than the individual-based, spatially explicit, 
continuous-movement models built by Geonomics, we parameterized the simulations so as to 
accurately emulate these models while minimizing artefacts (see Validation Testing, 
Supplementary Information). Our goal was to statistically and heuristically validate Geonomics’ 
full range of functionality and to ensure that it accurately models neutral and non-neutral 
evolutionary processes.

To verify that Geonomics effectively models neutral evolution, we first examined the 
average time to fixation for a neutral allele in a finite population using simulations 
approximating a Wright-Fisher model (Fisher 1923; Wright 1930). We simulated allele-
frequency trajectories for 250 independent loci (25 of which are plotted in Figure S1), and we 
found that that fixation time did, indeed, increase with population size and was proportional to 
4Ne, as expected (Kimura and Ohta 1969), in our simulations (Figure S2). We then tested for 
changes in the rate of drift surrounding a population bottleneck event by forcing a population to 
undergo a 70% reduction in size for 50 of 300 timesteps. We found that rates of allele frequency 
change increased during the bottleneck, then returned to prior levels shortly thereafter (Figure 
S3). Finally, we quantified the accumulation of genetic structure under a stepping-stone model 
(Kimura 1953) to certify that genetic covariance decreases with distance (Kimura and Weiss 
1964). As expected, we saw that migration rates decreased as a function of inter-island distance 
(Figure S4), whereas FST, calculated from both heterozygosity data and genetic variance data, 
increased as a function of inter-island distance (and, therefore, decreased with pairwise migration
rate) and as a function of time (Figures S4 and S5). We also performed a discriminant analysis of
principal components (DAPC) using the R package adegenet (Jombart et al. 2008) to confirm the
expected population structure of six island clusters (Figure S6). 

To validate the performance of Geonomics for modeling non-neutral evolution, we first 
performed simulations under a simple scenario of divergent selection between two discrete 
habitats. As expected, simulations on a landscape evenly divided by two habitat blocks led to 
local adaptation, producing a significant pattern of phenotype-habitat matching (Figure S7), with 
mismatches concentrated along the border between habitats. Additionally, over time, the species 
reached migration-selection equilibrium – the frequencies of the beneficial alleles in each habitat
increased up to a stationary level, with that level being positively correlated with the strength of 
selection (Figure S8). A plot of the mean difference between individuals’ phenotypic and 
environmental values shows a strong decline over model time, with the rate and level of decline 
increasing as a function of increasing strength of selection (Figure S9). Finally, logistic 
regressions show no significant relationships between phenotypic and environmental values at 
the outset (pseudo-R2s ≈ 0.0, p-values > 0.1), but show highly significant relationships at the 
ends of the simulations (p < 0.0001 for all values of ɸ), with the amounts of variation explained 
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increasing as a function of selection strength (pseudo-R2 = 0.327 for ɸ = 0.01, 0.376 for ɸ = 0.05,
and 0.406 for ɸ = 0.1). 

We next tested the ability of Geonomics to recreate the genetic structure expected under 
local adaptation along an environmental cline: monotonic change in the allele frequency of a 
non-neutral locus across the cline. On a landscape with a symmetric environmental selection 
gradient, Geonomics again produced the expected spatial pattern of local adaptation (Figure 
S10), and when we fitted sigmoid tanh clines (Szymura and Barton 1986; Porter 2013) for all 
loci, the locus underlying the monogenic trait was the only one to exhibit clinal variation (Figure 
S11). In a family of genotype-environment analyses using Bonferroni-corrected, locus-wise 
logistic regressions, this locus was also the most significantly correlated with the environmental 
variable based on locus-wise logistic regressions (p < 0.0001). A plot of the mean difference 
between individuals’ phenotypic and environmental values shows a strong decline over model 
time (Figure S12), and logistic regressions show no significant relationship between phenotypic 
and environmental values at the outset (pseudo-R2 = 0, p-value = 0.812) but a significant 
relationship at the end of the simulation (pseudo-R2 = 0.169, p-value < 0.0001). 

Finally, we verified that Geonomics can effectively model genomic data with physical 
linkage by simulating a selective sweep, introducing a beneficial mutation at the center of a 101-
locus block of otherwise neutral loci. The results exhibited the classic genomic signal of a 
selective sweep (Przeworski 2002; Kim and Nielsen 2004), with a region of reduced nucleotide 
diversity surrounding the locus under selection and that region gradually eroding over time 
(Figure S13). During these simulations, as the beneficial mutant spread through the population 
the population’s mean fitness increased from 1 - ɸ (where ɸ is the strength of selection) to a 
saturating value of 1 (Figure S14), confirming that the population dynamics of the selective 
sweep played out as expected. To further support these results, we also validated Geonomics’ 
method of recombination by examining effective recombination observed in a Geonomics model 
to those produced by an msprime simulation using the same randomly drawn, heterogeneous 
recombination map (see Recombination Test, Supplementary Materials); the resulting genome-
wide pattern of recombination breakpoint densities recapitulates the one produced by msprime 
and the true recombination map (Figure S15).

Example Applications: Overview
To demonstrate the broad utility of Geonomics for modeling complex evolutionary 

scenarios, we performed a series of simulations covering a range of potential applications. These 
demonstrations highlight scenarios for which Geonomics is particularly well suited, including 
spatially explicit simulations on highly heterogeneous landscapes, selection on multiple traits 
with complex genomic architecture, and microevolutionary responses to non-stationary 
environmental change. 

Example 1: Isolation by distance (IBD) and by environment (IBE)
Genetic covariances between individuals or populations are often inversely correlated 

with linear or resistance-based geographic distance – a pattern known as isolation by distance  
(IBD; Wright 1943) or isolation by resistance (IBR; McRae 2006; McRae et al. 2008) – or with 
environmental distance – a pattern known as isolation by environment (IBE; Wang and Bradburd
2014).  Understanding the landscape factors and population processes generating these patterns 
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has emerged as a major focus of landscape genetics (Sexton et al. 2014; Wang and Bradburd 
2014). 

To demonstrate how Geonomics can simultaneously generate patterns of IBD and IBE, 
we built a simulation that uses a heterogeneous resistance layer as a movement surface and 
models selection for a 10-gene trait on a heterogeneous environmental layer (ɸ = 0.05). The 
model features a species with stationary population size (roughly 2450 individuals), experiencing
both selection and neutral evolution. The resistance layer consists of a central barrier separating 
equal-area sides – the barrier has a high resistance to movement, but movement is unconstrained 
on either side. This layer was also used as the carrying-capacity layer, yielding homogeneous 
population density on the two sides and zero density within the barrier region. The selection 
layer consists of two environmental gradients running in opposite directions on either side of the 
barrier, such that the landscape contains pairs of locations representing a range of combinations 
of geographic and environmental distances.

To observe the development of population structure, we collected datasets consisting of 
the genomes for all individuals at timesteps 0 and 1000. We then used principal component 
analysis (PCA) to calculate pairwise genetic distances between all individuals for each dataset. 
To visualize population structure, we extracted the first three principal components (PCs) and 
used them as the red, green, and blue (RGB) color values for mapping individuals on the 
landscape. To visualize the outcomes of selection, we produced paired maps of the same 
individuals colored by their phenotypes for the trait under selection (using Geonomics’ 
‘model.plot_phenotype(...)’ method), and also created a set of population-structure plots using 
DAPC. To visualize the time course of the simulation, we plotted the mean phenotype-
environment mismatch (i.e. the mean of |e-z|, the driving force of selection) and mean fitness. We
visualized signals of IBD and IBE in the final dataset using a 3D scatterplot of Euclidean 
pairwise genetic distance against Euclidean pairwise geographic and environmental distances, 
colored by pairwise phenotypic distances. We tested the significance of the relationship between 
genetic distance and environmental distance, controlling for geographic distance, using paired 
partial Mantel tests with the vegan package (version 2.5-6; Oksanen et al. 2019) and using 
multiple matrix regression (MMRR; Wang 2013) in R version 4.0.2 (R Core Team 2020). 
Finally, because Geonomics models do not use defined landscape-resistance values, we 
quantified the barrier’s increased landscape resistance by tracking all barrier-crossing events, 
using them to calculate the per-time step crossing rate, then comparing that to the equivalent 
crossing rate of the same landscape zone in an otherwise identical model that omitted the barrier.

The RGB and phenotype plots of the initial population, with randomly-assigned 
genomes, showed a clear lack of both spatial structure and local adaptation (Figure 3, top left). 
However, as expected, spatial structure developed over time, and the species showed signs of 
local adaptation over the course of the simulation (Figure 3, top right), as well as a 
corresponding, hierarchical population structure (Figure S15). Average phenotype-environment 
mismatch decreased and average fitness increased over time (Figure 3, top middle). At the end of
the simulation, the species demonstrated significant signals of both IBD (partial Mantel test: r = 
0.560, p ≤ 0.001; MMRR: p ≤ 0.001) and IBE (partial Mantel test: r = 0.121, p ≤ 0.001; MMRR: 
p ≤ 0.001; MMRR full model R2 = 0.354), as evidenced by the positive slopes on both horizontal
axes of the 3D scatterplot (Figure 3, bottom). The colors of the points in the 3D scatter plot also 
indicate a clear pattern of increasing phenotypic differences between individuals with increasing 
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environmental distance (Figure 3, bottom right) but not between individuals separated by 
increasing geographic distances (Figure 3, bottom left).  Finally, the barrier zone had an observed
crossing rate of 0.004 individuals per time step in this model, 13 times lower than the rate of 
0.052 individuals per time step observed in the barrier-less but otherwise identical model. These 
results show that Geonomics effectively models IBD and IBE, driven by divergent natural 
selection, using two simple raster layers. More complex layers could be used to simulate IBD 
and IBE under a wide range of scenarios, and empirical layers could be used to simulate patterns 
of spatial genetic variation on real-world landscapes.

Example 2: Simultaneous selection
One of the most powerful features of Geonomics is that it can simulate selection on 

numerous traits simultaneously, each responding to a separate selection layer. Thus, a simulated 
species can experience multiple spatial selection regimes. Many natural systems are locally 
adapted to multiple environmental variables (Fournier-Level et al. 2011; Lasky et al. 2012; 
Manel et al. 2012), so simulating these scenarios could be broadly valuable for investigating the 
nature of local adaptation in real environments. 

To demonstrate how Geonomics can model simultaneous selection, we simulated a 
scenario in which a species undergoes natural selection along two orthogonal environmental 
gradients, each driving selection for a separate trait (ɸ = 0.05). Each trait had values ranging 
from 0 to 1, determined by 10 unlinked loci, all with equal effect sizes. Individuals had a mean 
movement distance of 0.5 cell widths on a 50 x 50-cell landscape, chosen to limit gene flow and 
allow for the development of strong spatial structure and, thus, the potential for local adaptation. 
We let the system evolve for 1000 time steps and then mapped the species on each of the 
environmental layers, with individuals colored by phenotype in order to visually evaluate 
whether individual phenotypes matched their environmental backgrounds. The results showed  
clear patterns of phenotype-environment matching along both independent gradients (Figure 4) 
that evolved steadily through time  (Figure S16; compare to figures S17 and S18, with ɸ = 0), 
indicating strong evidence for simultaneous selection across the simulated landscape.

Example 3: Polygenic adaptation to climate change in the Yosemite region
Better understanding evolutionary responses to changing environments is essential for 

predicting species outcomes and preserving biodiversity under ongoing climate change 
(Hoffmann and Sgrò 2011; Franks and Hoffmann 2012; Bay et al. 2018; Capblancq et al. 2020). 
In many regions, climate shifts are projected to be spatially heterogeneous, including in montane 
regions where cooler, higher-altitude areas are warming more quickly than warmer, low-altitude 
regions (Rangwala et al. 2013; Mountain Research Initiative EDW Working Group 2015; but see
Oyler et al. 2015). Of particular interest under these scenarios is the ability of species to adapt to 
changing local conditions (Franks and Hoffmann 2012).

To demonstrate the utility of Geonomics for studying microevolutionary responses to 
climate change, we simulated the response to projected climate change of a continuously 
distributed, locally adapted species, using the sagebrush lizard (Sceloporus graciosus) in the 
topographically complex Yosemite National Park region of California (U.S.A.) as an empirical 
model. To model climate change, we assembled time series raster stacks of projected mean 
annual temperature, annual precipitation, and habitat suitability for 19 even time steps from the 
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present through the year 2100. For  present temperature and precipitation, we used PRISM data 
(Daly et al. 2008), calculated as 30-year normals for 1981-2010 at 800 meter resolution. For 
future years, we used means at a set of 5-year intervals (2015-2100), downscaled to 6 km 
resolution using the localized constructed analogs downscaling technique (LOCA; Pierce et al. 
2014), from the Cal-Adapt database (https://cal-adapt.org/). We calculated means of both 
variables from their minima and maxima observed across 32 global climate models, using a 
conservative representative concentration pathway (RCP 4.5). We developed time series of future
temperature and precipitation layers at 800-m resolution by: (1) calculating the raster difference 
between the first projected year and the current data, aggregated to the projected data’s 
resolution; (2) adding that difference to the current data, such that each cell in the current data 
received the difference of the coarser, projected cell within which it lay; and(3) repeating that 
process for all remaining years. All data preparation was done using custom scripts 
(Supplementary Information) in R (R Core Team 2019).

For the habitat suitability rasters, we constructed a species distribution model (SDM) 
using the present day temperature and precipitation variables. We downloaded all georeferenced 
S. graciosus occurrence data from the Global Biodiversity Information Facility database 
(www.gbif.org), using the gbif function in the dismo R package (Hijmans et al. 2017). We 
clipped the points to California and Nevada, then subsampled the full dataset to remove multiple 
points within the same raster cells. We generated pseudoabsence data by drawing random points 
from all cells in the California-Nevada region where the species was not observed (following the 
recommendations of Barbet‐Massin et al. 2012). We extracted the current temperature and 
precipitation data at these points and used them as predictor variables in a binomial generalized 
linear model (GLM) with a logit link (Elith and Leathwick 2009). We then projected that GLM 
onto the current and future temperature and precipitation rasters for our study region, producing 
a time series of predicted habitat suitability.

We generated the simulation’s parameters file using the code provided in Code Sample 
S1, then edited the parameter values therein as needed. To simulate the non-neutral evolution of a
polygenic, quantitative trait, we set the trait to be underlain by 100 loci randomly distributed 
across a genome of 1000 unlinked loci and set a strength of selection of ɸ = 0.5. We set other 
life-history and demographic parameters (carrying capacity, age at reproductive maturity, number
of offspring per individual, maximum age) to reasonable values based on S. graciosus natural 
history (Stebbins 1948; Tinkle 1973; Rose 1976; Ruth 1978; Tinkle et al. 1993; Supplementary 
Information).

We ran the main phase for 500 time steps without climate change (to develop a pattern of 
local adaptation), then ran an additional 100 time steps (years) with changing climate (see Code 
Sample S2). At time steps 500 (before the initiation of climate change events) and 600 (after 
completion of climate change events), we plotted the current temperature and habitat-suitability 
landscape layers along with a kriged surface of the current population’s phenotypes and a kernel 
density map of the current population’s density, two key emergent properties of the model that 
should be driven by temperature and habitat suitability, respectively. We then ran the model for 
an additional 50 timesteps to be able to more clearly visualize the effect of climate change on 
population size.

The model generated a clear and realistic pattern of adaptation to the spatial temperature 
gradient in the Yosemite region after the 500 iterations following burn-in, and that pattern 
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demonstrated a spatial shift in phenotypes that aligns clearly with the spatial shift in temperature 
under the simulated climate change scenario (Figure 5A, rows 1 and 2; Video 1, Supplementary 
Information). The model also generated a spatial pattern of population density that clearly aligns 
with spatial variation in habitat suitability prior to the onset of climate change that likewise 
shifted as expected in response to the climate change-induced shift in habitat suitability (Figure 
5A, rows 3 and 4). We observed demographic changes in response to climate change over the 
course of the simulation as well. After climate change, mean population size was reduced by 
roughly 16.8% (from about 255,500 to 212,500 individuals), in line with the 17.9% reduction in 
the carrying capacity layer derived from the habitat suitability rasters (from 337,089.0 to 
276,742.8 individuals, according to sums of the pre- and post-change carrying capacity layers). 
The population also exhibited sizable fluctuations during the climate change period, with 
oscillations exceeding 60,000 individuals (roughly 23.5% of the pre-change mean population 
size; Figure 5B). We interpret this as a result of the stepwise environmental changes comprising 
the climate change event. Each change causes a shift in the optimum phenotypes of local 
populations, leading to increased maladaptation and thus increased mortality rates. Subsequent 
reductions in density-dependent mortality rates because of these reduced population densities, 
paired with adaptation by natural selection, then reduce overall mortality rates, leading to 
rebounds in population size, with stochastic movement into and out of local populations, along 
with other sources of model stochasticity, imposing noise on this oscillatory behavior. Overall, 
these results show how Geonomics can effectively simulate organismal responses to highly 
complex environmental scenarios and reveal that these simulations can uncover system behavior 
that could provide avenues for future investigation.

Discussion
Our validations tests demonstrate that Geonomics simulates molecular evolution in 

concordance with predictions from theoretical population genetics (Fisher 1923; Wright 1943; 
Kimura; Szymura and Barton 1983), including dynamics of genetic drift, migration, and 
selection along clines, and our example applications show that Geonomics is capable of 
generating accurate and realistic population and landscape genomic datasets under scenarios of 
varying complexity. Geonomics is embedded in Python (van Rossum 1995; Python Software 
Foundation 2019), one of the most popular programming languages and one already familiar to 
many researchers who use bioinformatics. It makes the creation of arbitrarily complex models 
quick and easy, without even requiring prior Python experience, yet provides advanced users 
with access to core data structures, enabling broad customization and extension.

Many theoretical questions in population genomics necessitate explicitly spatial study 
methods, often with full tracking of a population’s spatial pedigree (Bradburd and Ralph 2019). 
Geonomics makes this work more tractable than ever before. Landscape genomics studies draw 
conclusions about complex, real-world systems, sometimes with direct implications for 
conservation and management (Epperson et al. 2010; Landguth et al. 2012). Geonomics not only
enables the generation of simulated datasets specific to such study systems, but it will also aid 
the development and testing of analytical methods in landscape genomics, strengthening our 
ability to draw accurate and reliable inferences from real-world data.
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Runtime and memory
Geonomics models run more slowly and have steeper memory limitations than models written 
and optimized in compiled languages, such as SLiM (Messer 2013; Haller and Messer 2017; 
Haller and Messer 2019). However, for users whose scenarios are well served by the design and 
affordances of Geonomics, what is sacrificed in runtime will be made up for in flexibility, 
customizability, and ease of use. With a reasonably powerful computer and for moderately sized 
models, most users should not find runtime or memory a major limitation. Indeed, our first two 
example applications were run on a laptop computer with 8 GB of RAM and an Intel® Core™ 
i5-8250U 3.4 GHz quad-core processor. Each run took an average of 271 s (about 0.27 s per time
step) for the IBD-IBE model and 144 s (roughly 0.14 s per time step) for the simultaneous 
selection model. Because the polygenic adaptation example has much higher complexity, 
approximating the high population density of a small vertebrate, we ran it on a regular-memory 
node of a computing cluster (the savio3 partition of UC Berkeley’s Savio system) with 96 GB 
RAM and 2.1 GHz Skylake processors in order to handle the larger memory requirement. This 
model took considerably longer to run (approximately 7.35 hr, running at about 32 s per time 
step after time for upfront computation of a series of changing movement surfaces) and had a 
peak memory usage of 25.433 GB, but even highly complex scenarios like this remain tractable 
on reasonable research timelines.

Given the complexity of Geonomics and the number of parameters a user can modify, 
numerous parameters and parameter combinations can influence a model’s average runtime. We 
provide a basic runtime analysis (Figure 6), run on the same 8Gb, quad-core laptop as the 
examples above. This analysis highlights some basic parameters that are likely to influence a 
model’s average runtime per time step, including the mean population size (as determined by an 
array of local carrying capacities), the number of offspring per mating event, the size of the 
landscape, and the number of non-neutral loci in the genome. The effect of landscape size 
predominates, as runtime scales superlinearly with this parameter. The number of non-neutral 
loci actually has only slight effects on total runtime, and because neutral genetic data is stored in 
a set of tables rather than redundantly for each individual (Kelleher et al. 2018) runtime is even 
less sensitive to the number of neutral loci in the genome, meaning that Geonomics can 
efficiently simulate genome-scale datasets if provided adequate memory to store the set of 
recombination pathways that is calculated at the outset. Finally, after the upfront cost of 
computing recombination pathways and movement surfaces, runtime scales roughly linearly with
the number of time steps, barring large demographic changes. That means that the moderately 
complex scenario in our simultaneous selection example could complete 1,000,000 time steps in 
approximately 40 hours, and even the highly complex scenario in our polygenic adaptation 
example with more than 200,000 individuals could run through 10,000 generations in about 3.7 
days. Hence, Geonomics could even prove useful for research at deeper timescales, for example 
in phylogeography or geogenomics (Baker et al. 2014).

Caveats
Geonomics uses two unconventional approximations to make complex models tractable 

within reasonable compute time in an interpreted language. The first is the approximation used to
model heterogeneous recombination. Enacting recombination between all neighboring loci each 
time a gamete is produced would require an extremely large and time-consuming number of 
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random draws. To avoid this, when a model is first created, Geonomics generates and saves, as 
binary arrays, a large collection of recombination ‘paths.’ The number of paths used is set by the 
user, and directly determines the minimum recombination rate difference that can be modeled. 
Each path is just a genome-length array that switches between 0 and 1 at each inter-locus 
position where a recombination event should occur. The path can then quickly be used to subset 
an individual’s genome, producing a gamete. As a model runs and gametes are continually 
produced, these paths are repeatedly shuffled and drawn through, like a deck of cards during 
multiple rounds of a game. This approach, which we have validated using msprime (see 
Recombination Test, Supplementary Information), can lead to memory limitations for models 
with a large number of paths and a long genome, because the data structure containing the paths 
is essentially a two-dimensional binary array whose size is the product of these values. To avoid 
these problems, for genomic architectures with homogeneous recombination rates, Geonomics 
provides the option to use an alternative recombination mechanism that simulates recombination 
on the fly for each new gamete but does so at a cost of increased average runtime per time step.

The second is the approximation used to model the circular distributions from which 
movement directions are drawn. Conceptually, a movement or dispersal surface is an x× y array 
of Von Mises distributions. In practice, each distribution on that surface is represented by a 
column of angular directions (an ‘approximation column’) drawn, at the time the model is built, 
from the true, continuous distribution. During a model run, to draw a movement direction from a 
cell, a random value is sampled from that cell’s approximation column. This increases 
computational efficiency by avoiding large numbers of calls to random number generators during
runtime. The accuracy of these approximation columns is a function of their length, which is set 
by the user. This length will usually not be so constrained that it significantly impacts the 
accuracy of the approximation, but such a constraint could arise if the movement or dispersal 
surface undergoes environmental change. In this case, the movement surfaces corresponding to 
each step of the change event will be generated and stored when the model is first created, and 
the series of arrays produced could exhaust memory if the landscape is very large and has many 
environmental change steps. A solution to this problem would feature some combination of 
decreasing the temporal resolution of the environmental change event, decreasing the landscape 
size, or decreasing the approximation column length. In all cases, users may check the accuracy 
of modeled movement by using built-in functions that visualize the composition and behavior of 
movement and dispersal surfaces.

Installation
The simplest way to get started with Geonomics is to install it via pip. Geonomics uses 

common, well-established Python packages as required dependencies — Numpy (Harris et al. 
2020), Matplotlib (Hunter 2007), Pandas (McKinney et al. 2010), Shapely (Gillies et al. 2007), 
Scipy (Virtanen et al. 2020), Scikit-learn (Pedregosa et al. 2011), Statsmodels (Seabold and 
Perktold 2010), Rasterio (Gillies et al. 2019), Bitarray (Schnell et al. 2011), msprime (Kelleher 
et al. 2016), and tskit (Kelleher et al. 2018) — and offers optional integration of neutral 
landscape models through the NLMpy package (Etherington et al. 2015). The source code is 
publicly available on GitHub (https://github.com/drewhart/geonomics), where it is actively 
maintained and developed. 
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Conclusions
Geonomics is a Python package designed to make building and running complex 

landscape genomic models quick and simple. At the same time, it provides a flexible scripting 
framework that allows advanced users to customize and extend its functionality. We believe 
Geonomics will prove highly useful for theoretical, empirical, methodological, and applied 
research in population and landscape genomics, molecular ecology, global change biology, and 
conservation.
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run_demo function (e.g. `import geonomics as gnx; gnx.run_demo(“IBD IBE”)`). Using those 
materials, readers can reproduce stochastically varying but qualitatively equivalent results as 
those presented in this paper.
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Figures

Figure 1: Operations during the main phase of a Geonomics model run. In the center is a species
on a multi-layer landscape that includes a selection layer (above) and a layer for movement and 
carrying capacity (below). Surrounding the landscape is a flow-diagram of the major operations 
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during a time step. Operations in dashed boxes are optional. During the movement stages (top-
left), individuals move along movement vectors drawn from various distribution options (shown 
is an example of a cell-specific von Mises mixture distribution).  During the mating stage (top-
right), each mating individual (black circle) randomly chooses a mate (white circle) from all 
potential mates within its mating radius (dashed circle). The resulting offspring (half-black, half-
white circle) disperses from its parents' midpoint along a randomly drawn dispersal vector.  
During the mortality stage (bottom-right), deaths are modeled as a Bernoulli process, with the 
probability of mortality a product of density-dependence and selection on all traits. During the 
changes stage (bottom-left), environmental and demographic change events, which can be 
represented by a series of change rasters corresponding to scheduled time steps, take place.
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Figure 2: A raster layer representing a movement surface with example movement histograms 
for each cell (left) and a movement track for a sample individual (right). The circularized 
histograms represent the movement directions that could be drawn from the von Mises mixture 
distribution approximations within each cell. Longer bars in a histogram indicate higher 
probability of movement in their direction. The movement track, plotted with the 
gnx.help.param_help.plot_movement function in Geonomics, is 5000 steps long. Both 
preferential movement toward higher-suitability regions of the landscape (i.e. cells closer to 1 in 
value) and occasional long-distance movements between relatively isolated portions of the 
landscape are evident. 
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Figure 3: Results of simulations for the isolation by distance (IBD) and isolation by environment
(IBE) example application, in which a species evolved on a landscape with a barrier layer that 
served as the movement surface (displayed as a vertical gray band down the landscape) and an 
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environmental layer that served as the selective surface for a 10-locus trait (displayed as the red 
to blue gradient on the landscape). Panel A shows the population before the simulation (left 
column) and after it (right column), colored by genetic distance (top row), with colors derived 
from scores on the first three PCs of a genetic PCA used to assign RGB values, and by 
phenotype (bottom row). The most-fit individuals are those whose phenotypic colors perfectly 
match the cells on which they are located. Panel B displays the time courses of the mean 
difference between individuals’ phenotypes and their environmental values (blue) and of mean 
fitness values (red). Panel C shows two views of a 3D scatter plot of pairwise genetic distance as 
a function of Euclidean geographic distance (left) and Euclidean environmental distance (right), 
with points colored by phenotypic distance.
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Figure 4: Results of simultaneous selection on two traits with spatially distinct selective 
regimes. Each trait is controlled by 10 unlinked loci and has a selection coefficient of ɸ = 0.05. 
Individuals are colored by phenotype for the trait under selection on each layer.
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Figure 5: Polygenic adaptation to climate change in the Yosemite region. Panel A shows 
hillshade plot comparisons of key variables (mean temperature, phenotype, habitat suitability, 
and population density) before and after the simulated climate change event. The mean of each 
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variable through time is used to draw mid-value contours on each map (white lines) to help 
visualize spatial change. As expected, the spatiotemporal shift in temperature (first row) drives a 
spatially corresponding shift in phenotypes, visualized as a surface kriged from all phenotypic 
values (second row), and the shift in habitat suitability (third row) likewise drives a 
corresponding shift in population density, visualized using a 2D kernel density estimator (fourth 
row). Panel B shows the time course of population size. The early drop in population size results 
from the onset of natural selection after completion of the unplotted burn-in portion of the model.
The oscillations and ultimate reduction at the end of the simulation are a result of the climate 
change event, which occurs during the period bracketed by vertical red lines.
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Figure 6: Average runtime as a function of four major parameters: the number of non-neutral 
loci (n_loci), the carrying-capacity constant (K) that determines mean population size, landscape 
size (dim), and the λ parameter of the Poisson distribution from which the number of offspring in
each mating event is drawn (lambda). Runtime increases with landscape dimension both because
of functions whose runtimes scale with the landscape size directly and because of functions 
whose runtime scales with total population size. The difference between the lines for K and dim 
can be taken as an indication of the runtime cost of landscape dimension above and beyond 
population-size effects, which predominates because it is superlinear.
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Supplemental Text

Validation Tests

Full details and reproducible code and parameter files for each of our validation tests are 
available from the ‘/tests/validation/’ subdirectory of the source code. We discuss the key details 
and results of these tests below.

Wright-Fisher test: genetic drift
The Wright-Fisher model of genetic drift models a fixed-size haploid population that 

turns over completely at each timestep (i.e. generation). The population can have any number of 
independent, biallelic genetic loci. For each locus, each generation’s allele frequency is chosen as
a binomial random variable, with the number of trials equal to the population size and the 
probability of success (i.e. of drawing the ‘1’ allele) equal to the previous generation’s ‘1’-allele 
frequency. The mean persistence time for an allele (i.e. the expected number of generations for 
which a locus remains segregating) is:

     t ‾ ( p )=− 4 N [ (1 − p ) ln (1− p )+p ln ( p ) ]               (S1),
where 2 N  is the number of alleles in the population (such that Ncan represent the diploid 
population size) and pis the frequency of an allele at the locus (Fisher, 1923; Hartl and Clark, 
2007; Wright, Sewall, 1930).

The Wright-Fisher model is much simpler than the sorts of models for which Geonomics 
is designed (as are all of the following validation tests)—it is aspatial, panmictic, features fixed 
population sizes, and models only neutral loci. Thus, we parameterized Geonomics so as to 
approximate the model as closely as possible. To emulate aspatiality and panmixia, we used a 
population on a homogeneous landscape, using isotropic movement, with movement and 
dispersal distributions that broadly encompass the diagonal width of the landscape, and with no 
mating radius imposed (to allow panmixia) instead of local mating (i.e. with the mating radius 
set to ‘None’). To enforce complete generational turnover, we set the maximum-age parameter to
1 (i.e. 1 timestep). While Geonomics does not maintain constant population size, we maintained 
the carrying-capacity raster at a constant, uniform value, thus maintaining a stationary mean 
population size. We simulated 250 independent neutral loci (by setting all inter-locus 
recombination rates to 0.5), with starting ‘1’-allele frequencies of 0.5 (although the actual 
starting frequencies vary slightly around this value because of sampling error when all 
individuals’ genotypes are drawn binomially).

We ran the Wright-Fisher approximation test for three values of the carrying-capacity 
raster (i.e. three values of ‘K_factor’), hence for three mean population sizes (708, 1564, and 
2440 individuals). For each mean population size (calculated as the harmonic mean, to account 
for stochastic fluctuations around the carrying capacity), we compared mean persistence time to 
that expected by theory, according to equation S1. Figures S1 and S2 show that the results are a 
close match to the theoretical expectations.

Bottleneck test: population dynamics
Because drift is a stronger evolutionary force in smaller populations, drift accelerates in 

shrinking populations. If a population undergoes a bottleneck event, the overall effect of drift on 
the population during that time is expected to be larger than what a constant-size population of 
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equivalent starting size would experience during that time. Thus, mean fixation time should 
decrease in a bottlenecked population relative to one of constant size.

As with the Wright-Fisher model, to test the effectiveness of Geonomics for modeling a 
population bottleneck we used a homogeneous landscape with broad distributions for movement 
and dispersal and without a mating radius in order to emulate aspatiality and panmixia. To 
simulate a bottleneck event, we created a custom change event in which the population’s 
carrying-capacity raster is reduced to 30% of its initial value for 50 timesteps (from the 200th to 
250th), then returned to its initial value for the remainder of the simulation (through the 300th 
timestep). These simulations produced a clear signal of accelerated drift during the bottleneck 
event, with the mean rate of allele-frequency change, calculated in 15-timestep sliding windows, 
nearly tripling during the period of the bottleneck (Figure S3).

Stepping stone test: population subdivision and genetic differentiation
The stepping-stone model, or one-dimensional island model, is a spatially implicit model.

It models a series of subpopulations arranged along a straight line, with migration between all 
neighboring pairs. As a combined result of divergence by drift and homogenization by effective 
migration, subpopulations are expected to reach a stationary level of genetic differentiation: 
migration-drift equilibrium. Theory provides the expected pairwise genetic differentiation 
between a pair of subpopulations at equilibrium as:

FST=
1

1+4 Nm
(S2),

where N  is the population size and m is the per-generation migration rate, such that Nm can be 
interpreted as the per-generation number of migrant individuals (Hartl and Clark, 2007).

To approximate the stepping-stone model, we created a Landscape Layer with a diagonal 
of six equally spaced, equal-sized islands (1.0-valued cells) embedded in a ‘sea’ of 0.0-valued 
cells. We used this layer as the carrying-capacity raster (Figure S4, left). We parameterized 
dispersal to be very near to parents’ midpoints, movement distance to be strongly right-skewed, 
such that the long-distance movement events leading to migration are uncommon, and the mating
radius to a value that makes island populations effectively panmictic but that prohibits mating 
between individuals on separate islands. Genomes contained 100 neutral loci, and we ran the 
simulation for 5000 timesteps.

Because Geonomics does not model discrete populations, it does not stipulate migration 
rates between discrete locations on the landscape. Thus, we manually tracked the number of 
migration events during each timestep for all possible directional migration events (i.e. for all 
permutations of island pairs), then used that data to calculate all mean migration rates. With 
those values, we solved equation S2, then compared the resulting FSTexpectations to the 
observed values (calculated from the simulated data using two common methods; Figure S4, 
right). We also used Discriminant Analysis of Principal Components (DAPC), performed in the 
R package adegenet (Jombart et al. 2008), to visualize population structure. 

The results demonstrate that the model approached migration-drift equilibrium, as 
expected by theory (Figure S5), with all island populations reaching dynamic equilibria around 
the same mean size. Estimated migration rates and FSTvalues qualitatively match theoretical 
expectations: mean migration rate drops off precipitously at greater than one step-distance apart, 
and genetic differentiation increases to approximate saturation. Values of FSTconsistently 
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undershoot the values expected based on estimated migration rates, however, because 
subpopulations have yet to approach fixation at most loci (which is the expectation implied by 
expected FSTvalues close to 1). DAPC demonstrated that the simulation generated the expected 
population structure of six distinct clusters, one per island (Figure S6).
Contrasting-habitat test: divergent selection

In a population divided between two, divergent selective environments, if there is 
standing genetic variation for a biallelic locus controlling the trait adapting to those 
environments then theory predicts that the two subpopulations will diverge at that locus as each 
moves toward its respective adaptive peak. The rate at which divergence should occur depends 
on the relative strengths of two opposing evolutionary forces: natural selection, which causes 
divergence, and gene flow, which causes homogenization. The rate of allele frequency change in 
either subpopulation at timestep t is expressed as:

δ q=
− spq [q+h ( p − q ) ]

1 − sq (2 hp+q )
+mi q

❑
− mo q

(S3),
where pand qare the frequencies of the beneficial and deleterious alleles in the local 
subpopulation, sis the selection coefficient against the homozygous recessive phenotype, his the 
degree of dominance of the recessive allele, mi and mo are the migration rates into and out of the 
subpopulation being analyzed, and q❑is the frequency of the locally deleterious allele in the 
alternative subpopulation where it is beneficial (Hartl and Clark, 2007).

This model, like the stepping-stone model, is spatially implicit. To approximate this, we 
created a landscape with two layers. The first was divided into two equal-sized halves, one 
valued at 0.0, the other at 1.0; this layer was used as the layer driving natural selection. The 
second was valued uniformly at 1.0; this was used as the carrying-capacity raster (thus setting 
uniform population density across the landscape and determining, in sum, the overall carrying 
capacity of the landscape). We created one monogenic trait whose position was randomly chosen
within a genomic architecture of 100 unlinked loci. We ran the model for 1000 timesteps for each
of three values of the parameter ɸ (identical to s in equation S3): 0.1, 0.05, and 0.01. Given that 
Geonomics does not directly define a migration rate parameter, we tracked the number of 
migration events (i.e. individuals crossing the landscape’s horizontal midline) during each 
timestep, then used that data to solve equation S3.

Results depict clear local adaptation to each of the two halves of the landscape, with 
spillover of opposite phenotypes and resulting heterozygote births occurring along the border 
between the two habitats (Figure S7). Allele trajectories in each half of the environment follow 
qualitatively the increasing and saturating trajectories expected by theory, but reach consistently 
more divergent allele frequencies than expected based on the theoretical calculation (Figure S8). 
However, these results are an easily understandable artefact of estimating a spatially implicit, 
population-based model using a spatially explicit, individual-based one—our method of 
calculating migration rates includes all individuals who cross the habitat boundary, including the 
large number who only barely cross and who may even quickly migrate back, such that expected 
allele-frequency trajectories are based on an overestimation of true gene flow and thus serve as 
lower bounds on the real trajectories.  As further validation, a plot of the mean difference 
between each individual’s phenotypic and environmental values shows a strong decline over 
model time, with the rate and level of decline increasing as a function of increasing strength of 
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selection (Figure S9). Moreover, logistic regressions show no significant relationships between 
phenotypic and environmental values at the outset (pseudo-R2s ≈ 0.0, p-values > 0.1) but show 
highly significant relationships at the ends of the simulations (p < 0.0001 for all values of ɸ), 
with the amounts of variation explained increasing as a function of selection strength (pseudo-R2 
= 0.327 for ɸ = 0.01, 0.376 for ɸ = 0.05, and 0.406 for ɸ = 0.1).
Cline test: local adaptation

In a clinal model, a population adapts locally across an environmental gradient, which is 
characterized by the extremes of its environmental values and its steepness (i.e. the instantaneous
rate of environmental change along it). Local adaptation across this gradient will generate a 
geographic cline in allele frequencies. The clinal pattern is only expected for loci under selection 
along the cline (and other loci in linkage). Unlinked loci have no long-term clinal expectation 
(though they could initially be swept along with the selective locus, and any number could 
continue to show spurious concordant clinal variation). To detect clinal adaptation, we can fit 
cline curves to the allele-frequency variation across the environmental gradient for all loci, with 
the expectation that the clines fit to adaptive loci will mirror the gradient. Numerous equations 
have been used to fit clines, but one of the most common is the sigmoidal tanh function:

px=
1
2 (1+t [ 2 ( x− c )

w ]) (S4), 

where p is the frequency of the reference allele at position x along the cline, c is the centerpoint 

of the cline (such that px=c=0.5), and w is the ‘width’, which is defined as w=
1

slope
 at point c 

(Porter, 2013).
To implement the cline model in Geonomics, we created a landscape with two layers. The

first layer was an environmental layer—a symmetrical, non-linear gradient between 0-valued and
1-valued halves (Figure S10). The second was a uniformly valued habitat-quality layer, used to 
set a uniform population density and thus determine the global carrying capacity. We created a 
monogenic trait whose locus was randomly placed within a genomic architecture of 100 
independent loci. The trait had a ɸ of 0.01, with the gradient layer serving as its selective force. 
We ran the cline model for 1500 timesteps, then used a numerical optimization function (in 
Python’s scipy package; Jones et al. 2001) to fit equation S4 for all loci. We plotted all fitted 
clines on top of the first landscape layer, with the cline for the single selective locus highlighted. 
The selective locus consistently and clearly stands out as the only locus with a cline matching the
expectation of a monotonic pattern mirroring the environmental gradient and spanning nearly the
full range of phenotypic values (Figure S11). 

Results clearly show a pattern of clinal adaptation across the landscape—despite isolated 
patches of maladaptive genotypes potentially resulting from occasional long-distance migration 
events—with a zone of admixture and phenotypic spillover surrounding the cline’s center (Figure
S10). In a Bonferroni-corrected family of locus-wise logistic regression models of environmental
value on genotype, the selective locus consistently stands out as the most significant (p-values of 
roughly 3x10-100). Furthermore, a plot of the mean difference between phenotypic and 
environmental values shows a strong decline over model time (Figure S12), and logistic 
regressions show no significant relationship between phenotypic and environmental values at the
outset (pseudo-R2 = 0, p-value = 0.370) but a significant relationship at the end of the simulation 
(pseudo-R2 = 0.345, p-value < 0.0001).
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Selective sweep test: genetic hitchhiking
Genomic architecture and linkage add important complexity to models of molecular 

evolution. The most basic model of selection with linkage is that of a selective sweep: a 
beneficial mutation occurs in a population, falling on a random genomic background, then rises 
in frequency because of its selective advantage until it becomes fixed, pulling up the frequency 
of the surrounding haplotype block in the process. The haplotype block is, nevertheless, subject 
to recombination, which gradually erodes it symmetrically around the beneficial mutation. Thus, 
the selective-sweep model predicts that once a beneficial mutation occurs —as long as it is not 
lost early on by chance— it and the haplotype block around it will rise in frequency, the mutation
will eventually fix, potentially with some core block around it, and the rest of the block will 
erode over time. The haplotype block should be clearly visible in genomic data, where it will 
manifest as a genomic region of reduced diversity and heterozygosity centered on the mutation.

To implement the selective sweep model in Geonomics, we again created a model 
approximating an aspatial, panmictic population (see Wright-Fisher test for details). We created a
single, monogenic trait with a ɸ of 0.1. The trait’s locus was manually set to position 500, such 
that it was at the center of the 1001-locus genome. The genome had a homogeneous 
recombination rate of 0.001 between all neighboring loci. We manually set the starting ’1’-allele 
frequency at this locus to 0.0 but set the trait to be selected upon by a uniform layer of 1 values, 
such that all individuals began the model equally unfit (i.e. with a fitness value of 1−ϕ=0.9). 
After burn-in, we iteratively chose a random individual, introduced a ‘1’-mutation in its genome 
at locus 50, ran the model for 50 timesteps, and checked whether the ‘1’ allele had reached a 
frequency greater than 0.05 by that time. We iterated until that check was passed, at which point 
we declared the mutant allele ‘established’ and continued to run the model until 2500 timesteps 
after the novel mutation reached fixation. At three timepoints during that model we calculated 
and recorded genome-wide nucleotide diversity using a sliding-window approach.

We found that Geonomics successfully and realistically simulated the behavior of a 
selective sweep. The first adaptive mutant that was not immediately lost by drift rose rapidly in 
frequency, then fixed. The population’s mean fitness increased quickly from 0.9 (the universal 
fitness value before the mutation was introduced) to 1.00 (the universal fitness value after the 
sweep was complete; Figure S14). The linkage block around the selected locus became a region 
of depressed nucleotide diversity (Figure S13, top row) and heightened linkage (Figure S13, 
bottom row) – the classic signature of a selective sweep.

Recombination test
To provide additional validation of Geonomics’ recombination model, we compared the 

effective recombination rates observed in a Geonomics model to those produced by an msprime 
simulation using the same recombination map. We produced a recombination map by assigning 
999 random, interlocus recombination rates to a 1000-length simulated genome. We drew the 
rates by taking the first 999 values ≤ 0.5 from a random vector drawn from the distribution 
~Beta(0.4, 1.3), producing a left-skewed distribution that nonetheless sampled the full range of 
physical linkage values. We ran an msprime model using the msprime.RecombinationMap object
created from those values and also ran a Geonomics model using those values as the 
recombination-rate column in a Geonomics custom genomic architecture file. We then plotted 
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the true recombination rates and the observed breakpoint densities from both models, binned 
within even-width genomic windows. The results show that Geonomics’ observed breakpoint 
densities recapitulate the true recombination rates just as closely as do those of msprime (Figure 
S15).

Applications

Example 3: Polygenic adaptation to climate change in the Yosemite region
To build this simulation, we first generated a template Geonomics parameters file (using 

the Geonomics function ‘gnx.make_parameters_file(…)’), then edited it to best emulate our 
empirical study system (see Code Sample S1). This created a parameters file for a simulation 
with: (1) three empirical layers  mean temperature, precipitation, and habitat suitability), two of 
which (temperature and habitat suitability) have environmental change events; (2) one species, 
with one trait adapted to mean temperature; and (3) a data collection design. We set life-history 
parameters to reasonable approximations of S. graciosus biology, based on available literature. 
We set spatial parameters based on the relationship between the resolution of the environmental 
rasters and the characteristic scales of S. graciosus key life-history traits. The resolution of the 
rasters is 0.00833°, which at latitude 38° is equal to about 730.984 m in the east-west direction 
and 927.296 m in the north-south direction, giving each cell a total area of roughly 6.78 × 105 m2 
(67.8 hectares). Using a population density of 208 individuals per hectare (Tinkle, 1973) and the 
rough estimate that about 10% of the land area covered by our study contains the open habitat 
favored by S. graciosus rather than the more closed habitat favored by the congener S. 
occidentalis, with whom it experiences a large degree of competitive exclusion (Rose 1976), we 
chose a per-cell carrying capcity (parameter ‘K_factor’) of 67.8 hectares/cell × 208 
individuals/hectare × 0.1 proportion of habitat suitable ≈ 1410 individuals (which we then further
multiplied by 0.1 for computational tractability). We set the reproductive age to 2 years (Tinkle, 
1973; Tinkle et al. 1993). We left the sex ratio at unity, given controversy in the literature about 
whether or not it skewed toward females because of lower male survival rates (Tinkle, 1973; but 
see Tinkle et al. 1993). We set the number of births per individual to be a Poisson random 
variable with lambda = 4.464 individuals/clutch × 2 clutches/year × 0.16 survival rate = 1.428, 
based on an average clutch size of 4.464 across surveyed California populations (Tinkle et al. 
1993), an average of 2 clutches per year (Tinkle, 1973; Tinkle et al. 1993), and an average rate of
survival to the first year of 0.16 (Ruth, 1978). We estimated the mean interannual movement 
distance as 12.457 m (expressed as 0.01704 cell widths), based on an average of all recorded 
interannual movement events in Stebbins’ (1948) study of S. graciosus home ranges. We used 
this as an order-of-magnitude estimate for movement, but increased parameters slightly above 
this value in order to pair the reduced population density we chose for purposes of computational
tractability. Thus, we set a mating radius value of 0.5 cell widths, and parameterized movement 
and dispersal as ‘~Lognormal(7x10-5, 0.3)’ and ‘~Lognormal(7.5x10-4, 1),’ respectively. In the 
absence of any known published estimates, we set the population intrinsic growth rate to 0.5.  
The full code to perform this analysis is available as Code Sample S2 and in the Yosemite demo 
script, included in the Geonomics package.

Accessibility

For both of the two most common types of color blindness (protanopia and deuteranopia) 
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we tested the colorblind-friendliness of all of the Matplotlib color palettes used by Geonomics as
defaults. For perceptive simulation we used the script provided by Sarjak Thakkar (2018). All 
color palettes retain interpretability.
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Supplemental Figures

Figure S1: Trajectories for the frequencies of the ‘1’-alleles for 25 of the 250 simulated loci (one
line per locus) in a Wright-Fisher model without mutation. We ran simulations for three mean 
population sizes, as determined by three fixed values of the carrying capacity (‘K_factor’) 
parameter, until all loci fixed.
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Figure S2: Violin plots of mean persistence time distributions across all loci from our Wright-
Fisher validation test, shown as a function of harmonic mean population size. Resulting mean 
persistence times (red dots) are an extremely close match to predictions calculated using 
Equation S1 (black, horizontal lines).
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Figure S3: Ten randomly chosen allele frequency trajectories (top), population size (middle), 
and mean rate of allele frequency change (bottom; calculated for 15-timestep sliding windows) 
from the bottleneck validation test. We ran the simulation for 300 timesteps with a 50-timestep 
bottleneck. 
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Figure S4: Map of six island populations at the end of the simulation for the stepping-stone 
validation test (left), produced using ‘model.plot’ in Geonomics, and plot of pairwise FST values 
and inter-island migration rates as functions of inter-island distance (right). R2 values and p-
values result from quadratic regressions of FST values on inter-island distances and log-log 
regression of mean migration rates on inter-island distances. 
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Figure S5: Plot of FST over model time for the stepping-stone validation test. Each line 
represents a different island pair, with colors corresponding to increasing inter-island distances 
(from yellow to green).
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Figure S6: Results of discriminant analysis on principal components (DAPC) from the stepping-
stone validation test, including plots of (A) the individual loadings on the first three discriminant 
axes, (B) individuals at the final time step color coded by population membership assignments, 
and (C) DAPC membership probabilities for each of the individuals. The optimal number of PCs 
to retain (n = 59) was determined through cross-validation using the ‘xvalDapc’ function in the 
adegenet R package (Jombart et al. 2008). 
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Figure S7: Map of the population after spatially divergent selection at ϕ = 0.10 in simulations 
for the divergence validation test, produced using the ‘model.plot_fitness’ function in 
Geonomics. Individuals are plotted on top of the selective landscape layer, which is divided into 
two halves. Outer circles are colored by phenotype, ranging from dark blue to dark red, 
representing the optimal phenotypes for each environmental background. Inner circles are color 
and sized by fitness, such that darker-gray, larger inner circles represent less fit individuals. 
Stochasticity leads to asymmetry in the structure of the hybrid zone, the nature of which varies 
from one iteration to the next; at the moment when this figure was produced, more blue alleles 
were present in the red environment than vice versa.
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Figure S8: Observed (solid lines) versus expected (dashed lines) allele-frequency trajectories for
two contrasting habitats (blue = 0.0-valued; red = 1.0-valued) resulting from divergence test 
simulations with three selection coefficients:ϕ = 0.01 (dark), ϕ =0.05 (medium), andϕ = 0.10 
(light).
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Figure S9: Plot of the mean difference between each individual’s phenotype and environmental 
value plotted against time, for divergence test simulations with three different selection 
coefficients (‘phi’). A pattern of background matching, which is indicative of local adaptation, 
builds up over time. The pattern develops more quickly, and becomes more pronounced, under 
stronger selection regimes.
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Figure S10: Map of the final generation from the cline test simulation on top of the selective 
landscape layer, with individuals colored by phenotype (outer circles) and fitness (inner circles), 
as in Figure S7.
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Figure S11: Plot of allele-frequency clines (neutral loci in black, selective locus in bold yellow) 
against the selective landscape layer (horizontal gradient from red to blue) from the cline test.
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Figure S12: Plot of the mean difference between each individual’s phenotype and environmental
value plotted against time during the cline test simulation. A pattern of background matching 
builds up over time.
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Figure S13: Results of the selective sweep validation test, including nucleotide diversity 
calculated in 11-locus windows across the genome (top row) and pairwise linkage (R2) for locus 
pairs plotted against genetic distance (bottom row). Genetic distance was calculated as the 
‘recombination distance’ (the sum of intervening interlocus recombination rates between paired 
loci). 
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Figure S14: Mean fitness of the entire population, over the full run of the selective sweep test 
simulation.
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Figure S15: Breakpoint densities, within 50, even-width genomic windows, as calculated from 
the tskit.TreeSequence results of a Geonomics simulation (red) and an equivalent msprime 
simulation (blue). The observed densities clearly recapitulate the true recombination rates 
expressed in the input recombination map (black dashed line).
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Figure S16:  Results from discriminant analysis of principal components (DAPC) of neutral-
locus genotypes at the final time step from the simulations for the isolation by distance (IBD) 
and by environment (IBE) example, conducted using the R package adegenet (Jombart et al. 
2008). The optimal number of PCs to retain (n = 7) was determined through cross-validation 
using the ‘xvalDapc’ function (Jombart et al. 2008). A plot of the individuals’ loadings on the 
first three discriminant axes (A), with each individual colored according to its DAPC-derived 
population membership assignment (C), recapitulates their spatial arrangement (B). Beyond 
showing general patterns of IBD, our simulated neutral genetic data clearly match the expected 
hierarchical population structure: distinct clusters separated by the central barrier, with the 
subclusters further differentiated along the environmental gradients running in opposite 
directions on either side.
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Figure S17: The mean difference between individuals’ phenotypes and environmental values 
plotted against time, resulting from the simulations for the simultaneous selection example 
application. Values decrease over time for both traits, reflecting the buildup of a pattern of 
background matching. 
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Figure S18: Results of the simultaneous selection simulation when selection is excluded (ɸ = 0).
Individuals are colored by phenotype for the trait corresponding to each layer and show no signal
of background matching, as expected.
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Figure S19: The mean difference between individuals’ phenotypes and environmental values 
plotted against time, during the simultaneous selection simulation, when selection is excluded (ɸ 
= 0). These values show no decreasing trend over time, unlike in the model including selection 
(Figure S16).
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Code Sample S1:
>>> gnx.make_parameters_file(filepath=‘yosemite_params.py’,
                                                   layers=[{‘type’: ‘file’, ‘change’: True},
                                               {‘type’: ‘file’, ‘change’: True},
                                                              {‘type’: ‘file’, ‘change’: False}],
                                          species=[{‘movement’: True,

                                ‘movement_surface’: True,
                                                                   ‘genomes’: True, ‘n_traits’: 1}],
                                          data=True)
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Code Sample 2:
>>> model = gnx.make_model(filepath=‘yosemite_params.py’)
>>> model.walk(100000, mode = ‘burn’)
>>> model.walk(500, mode = ‘main’)
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Abstract

As climate change advances environmental gradients decouple,  generating novel multivariate
environments that stress wild populations.  A commonly assumed mechanism of evolutionary
rescue  is  adaptive  gene  flow  from  populations  whose  current  climates  approximate  future
projections – but novel multivariate environments have no current analogs by definition, and
gene flow from similar climates can cause maladaptive introgression with respect to decoupling
environmental variables. Genomic architecture can play an important but often-ignored role in
determining  the  effectiveness  and  relative  magnitudes  of  adaptive  gene  flow  and  in  situ
adaptation.  Here,  I  use  Geonomics,  the  Python package  presented  in  chapter  1,  to  simulate
multivariate  evolutionary  responses  to  climate  change  under  scenarios  of  variable  trait
polygenicity,  linkage,  and  genotypic  redundancy.  I  test  a  series  of  hypotheses  about  cross-
scenario variability in evolutionary outcomes, reporting results that partially corroborate but also
complicate or extend previous findings based on univariate and static environments. First, I find
that up-gradient gene flow is consistently present, but its magnitude is strongly constrained under
lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as a more
effective mechanism of evolutionary rescue under  these conditions.  Second,  I  find that  high
polygenicity causes increased maladaptation and acute demographic decline, a concerning result
given the likely polygenic nature of many climate-adapted traits. Finally, I show that adaptive
capacity increases under higher genotypic redundancy across all scenarios, adding to the growing
recognition of its importance and suggesting opportunities for better understanding the climatic
vulnerability of real populations.
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Introduction and Background
Climate change is one of the foremost threats to biodiversity in the Anthropocene. The 

ability of species to persist within their current ranges will likely depend largely upon their 
abilities to locally adapt to climate change through natural selection – a concept frequently 
referred to as ‘adaptive capacity’ or ‘evolutionary potential’ (Chevin et al. 2010; Harrisson et al. 
2014, Nicotra et al. 2015; Vilas et al. 2015; Wade et al. 2017). Because adaptive de novo 
mutations take a long time to arise, this adaptation will instead most likely be facilitated by the 
reconfiguration of existing adaptive diversity (Bomblies et al. 2022). A common conceptual 
model underlying this assumption is that of adaptive gene flow tracking a shifting climatic 
gradient (i.e., in the vector direction of climate velocity; (Loarie et al. 2009; Ackerly et al. 2010),
which would bring beneficial genes into recipient populations from ‘climate-suitable’ 
populations – i.e., populations whose current climates approximate future local projections 
(Bellis et al. 2020). This model of adaptive gene flow has both theoretical (Aitken and Whitlock 
2013; Slatkin 1987; Tigano and Friesen 2016) and empirical (Feder et al. 2012; Bell et al. 2011) 
support, but meets resistance under theoretical conditions in which gene flow can be maladaptive
(Wang and Bradburd 2014; Lenormand 2002; Slatkin 1987; Haldane 1930; Wright 1931; 
Felsenstein 1976). In these circumstances, shifting allelic covariance – the in situ recombination 
of standing genetic variation into new, adaptive genotypes – could be a more efficient 
mechanism of local adaptation to environmental change.

In recent decades, research bridging the fields molecular population genetics and 
quantitative genetics (Barghi et al. 2020; Barton 1999; Pritchard et al. 2010a; Pritchard et al. 
2010b) has revealed that the genomic architecture of a trait is a core determinant of whether and 
how that trait becomes locally adapted (Yeaman et al. 2022). The number of loci underlying a 
trait (henceforth, ‘polygenicity’), the rate of recombination between trait loci (i.e., linkage), and 
the number of distinct genotypes that yield identical trait phenotypes (i.e., genotypic redundancy;
Yeaman 2022; Láruson et al. 2020; Barghi et al. 2020) are among the key aspects of genomic 
architecture that influence adaptation (Barton 1999; Yeaman and Whitlock 2011; Yeaman 2022; 
Le Corre and Kremer 2012). Previous research suggests that ecologically-important traits can 
vary from few loci of large effect (Martin and Orgogozo2013; Rees et al. 2020) to many loci of 
small effect (Boyle et al. 2017; Rockman 2012; Savolainen et al. 2013; Sella and Barton 2019; 
Barghi et al. 2020), and shows that this variation in polygenicity can determine the rate and 
nature of local adaptation (Yeaman 2015). Linkage controls the likelihood that adaptive alleles 
cluster together, essentially forming alleles of larger effect size that are stronger targets of 
selection and more resistant to swamping gene flow (Yeaman and Whitlock 2011), thereby 
facilitating local adaptation (Tigano and Friesen 2016). Genotypic redundancy can facilitate local
adaptation by allowing the existence of a stable phenotypic cline subtended by a genotypic 
dynamic equilibrium consisting of continuous and concerted shifts in non-neutral allele 
frequencies (i.e., ‘transient genomic architectures’ (Barghi et al. 2019; Manceau et al. 2010; 
Yeaman 2015).

The influence of genomic architecture on the nature and outcomes of local adaptation to 
changing environmental gradients has been studied to a limited extent, with nearly exclusive 
focus on univariate models of the selective environment (but see Schiffers et al. (2013)). Yet, 
such models have limitations for studying adaptation to climate change because species can be 
simultaneously adapted to multiple, unaligned environmental gradients (Guillaume 2011) that 
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can shift differentially and thus decouple as climate change advances (Crimmins et al. 2011; 
Daly et al. 2010), leading to the emergence of novel multivariate landscapes (Williams and 
Jackson 2007; Williams et al. 2007; Fitzpatrick et al. 2018). Thus, it is important to assess how 
the genomic architectures of multiple traits can combine to determine the nature and outcome of 
multivariate adaptation under climate change. Gene flow from ‘climate-suitable’ portions of a 
species’ range is often assumed to be adaptive from the perspective of a single trait adapted to a 
shifting climatic gradient, but this assumption may be invalid if this gene flow also conveys 
linked variation for a trait adapted to a second environmental gradient from which the climatic 
gradient is decoupling – i.e., if the gene flow contains alleles of countervailing adaptive value. 
Under these circumstances, the genomic architectures of both traits (e.g., polygenicity, linkage, 
and genotypic redundancy) can determine the relative likelihoods of adaptation by gene flow and
in situ adaptation by shifting allelic covariance (Aitken and Whitlock 2013; Schiffers et al. 2013)
– and thus, the overall evolutionary outcome.

Spatially explicit simulation is one of our strongest tools for improving our understanding
of the complex dynamics of gene flow and adaptation under climate change (Capblancq et al. 
2020). In the previous chapter, I developed, validated, and demonstrated the extended utility of a 
novel Python simulator, Geonomics (Terasaki Hart et al. 2021), which I designed with precisely 
this purpose in mind. Here, I use individual-based, spatially explicit Geonomics simulations to 
test how genomic architecture influences multivariate adaptation to climate change. We simulate 
the adaptation of a single population continuously distributed in space to a bivariate environment
composed of two horizontal environmental gradients, each exerting selection on a separate trait. 
In our main models, we then simulate climate change on that landscape by holding one gradient 
constant while gradually shifting the other gradient horizontally, such that the decoupling 
environment pushes local fitness peaks toward novel regions of bivariate trait space (Fig. 1). We 
run 100 pairs of climate change simulations and null (i.e., stable climate) simulations, for each of
eighteen scenarios resulting from the full factorial crossing of three key components of genomic 
architecture: genotypic redundancy, polygenicity, and linkage (the precise values of which are 
given in Table 1).

We analyze cross-scenario variation in the resulting spatiotemporal patterns of gene flow, 
population size and density, and phenotypic distributions – all of which are emergent properties 
of our simulation parameterizations, as explained in our methods and specified in Appendix 1 – 
to test a series of hypotheses about the influence of genomic architecture on multivariate 
adaptation under climate change. First, we hypothesize that up-gradient gene flow will be higher 
under climate change than under a stable climate across all scenarios, but that gene flow 
contributes least to climate change adaptation when linkage is low and polygenicity is high. This 
is because we expect gene flow to always have at least some adaptive value, but we also expect 
low-linkage, high-polygenicity architectures (i.e., ‘dispersed’ architectures; Yeaman 2015) to 
exhibit quick in situ adaptation via shifting allelic covariance among many small-effect alleles, 
akin to adaptation under transient genomic architectures, facilitating phenotypic shifts in the 
absence of up-gradient gene flow. Second, we hypothesize that stronger linkage and higher 
polygenicity will reduce a population’s adaptive capacity under climate change, manifesting as 
greater reductions in population size and mean fitness and more persistent maladaptation, 
because both conditions impose longer expected wait times for the emergence of recombinant 
haplotypes that push phenotypes further from their pre-change fitness peaks. Finally, we 
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hypothesize that higher genotypic redundancy facilitates adaptation to shifting gradients, much 
as it does on stable gradients (Barghi et al. 2019; Manceau et al. 2010; Yeaman 2015), resulting 
in smaller reductions in population size and mean fitness.

Results
Gene flow

Climate change led to a nearly universal increase in up-gradient gene flow compared to 
null simulations: difference in gene flow was >0 in all scenarios in Fig. 2, and in our regression 
results the fitted values’ 95% confidence intervals were >0 in all but one (the moderate-
polygenicity, low-linkage, high-redundancy secenario, where the confidence interval was just 
below 0). However, the magnitude of this increase was minimal under some scenarios, and was 
positively correlated with linkage (βl = 0.0129±0.0006, P<2×10-16) and inversely correlated with 
polygenicity (βp = -0.0142±0.0006, P<2×10-16), corroborating our first hypothesis. 
Correspondingly, down-gradient gene flow was universally suppressed under climate change, as 
expected. Of the three components of genomic architecture that we tested, polygenicity had the 
most striking effect on the extent to which up-gradient gene flow contributes to adaptation; 
moderate and high polygenicity scenarios generally had much lower up-gradient gene flow than 
did low-polygenicity scenarios, with low-redundancy, independent-linkage scenarios being the 
main exception. Moderate-polygenicity scenarios actually showed the lowest overall increase in 
up-gradient gene flow, though differences between moderate- and high-redundancy scenarios 
were minor.

Linkage and polygenicity
As expected, our null simulations showed essentially no changes in mean fitness (Fig. 2) 

or population size (Fig. S2) – aside from small modeling artefacts that applied to both null and 
climate-change scenarios – and their phenotypic distributions were stable through time (Fig. 3). 
The results of our climate change simulations exhibited decreases in population size and mean 
fitness that are the expected results of increasing maladaptation (Aitken and Whitlock 2013). 
They also revealed environment-tracking bivariate phenotypic shifts (Fig. 4) in line with the 
expected direction depicted in the lower half of Fig. 1 but with variable amounts of shortfall 
below the fitness-maximizing phenotypic shift. Across scenarios, the demographic impacts of 
climate change increased with increasing linkage (change in fitness: βl = -0.00183±0.00010, 
P<2×10-16; change in population size: βl = -33.33±1.287, P<2×10-16 ; maladaptation: βl = 
0.0038±0.0004, P<2×10-16). (Maladaptation is defined as the area in bivariate trait space 
separating the central line of a population’s post-change phenotypic distribution from the central 
line of the distribution that would optimally track the changing environment; see wedges in Figs. 
4 and S3, and see Methods for details.) Demographic impacts also showed a signal of overall 
increase with increasing polygenicity (change in fitness: βp = -0.00217±0.00010, P<2×10-16; 
change in population size: βl = -15.07±1.287, P<2×10-16 ; maladaptation: βl = 0.0097±0.0004, 
P<2×10-16), although the cross-scenario trend was non-monotonic and complex: impacts were 
smallest at moderate polygenicity; more pronounced at low polygenicity and at high polgenicity 
when redundancy was high; and extreme at high polygeniciy and low redundancy (Fig. 3, Fig. 
S2). Indeed, demographic decline was so strong at low redundancy and high polygenicity that 
adaptive capacity was effectively outstripped: demographic decline persisted throughout the 
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climate change period, with little indication of evolutionary rescue (i.e., stabilization and 
rebound) occurring until the post-change period (see Fig. 3, Fig. S2). The collapse of adaptive 
capacity in these scenarios is also visible in the large red areas of phenotypic-shift shortfall in 
Fig. 4. The low-redundancy, high-polygenicity, strong-linkage scenario had such low adaptive 
capacity that mean fitness declined by 5.2% on average (from 0.934 to 0.885), mean population 
size declined by 17.1% on average (from 6326 to 5246 individuals), and the simulated 
population ceased to occupy the rightmost, fastest-changing portion of the landscape. This is 
visible as the disappearance of population density in the portion of the post-climate change 
phenotypic space corresponding to that region of the landscape in Fig. 4, but is more clearly 
visible in the before-after population density maps (Fig. S4).

Genotypic redundancy
Our high-redundancy scenarios showed consistently smaller demographic impacts of 

climate change and higher adaptive capacity than their low-redundancy counterparts (change in 
fitness: βr = 0.00402±0.00016, P<2×10-16; change in population size: βr = 39.06±2.101, P<2×10-

16; maladaptation: βr = -0.0098±0.0006, P<2×10-16), supporting our hypothesis that genotypic 
redundancy can facilitate adaptation to shifting environmental gradients (Fig. 2, Fig. S2). This 
effect was most pronounced in the high-polygenicity scenarios, which exhibited much milder 
demographic decline under high redundancy, despite still showing no evidence of demographic 
rebound until after climate change (Fig. 3). Indeed, increased redundancy put the demographic 
impacts of these scenarios on par with those of the low-polygenicity scenarios (e.g., compare 
low- and high-redundancy boxplots in Fig. 3 and in Fig. S2).

Discussion
Current theoretical understanding of evolutionary responses to climate change largely 

derives from a simplified mechanistic model in which adaptation is universally facilitated by up-
gradient gene flow. This model is not only the conceptual basis for research but also the 
inspiration for some climate-smart approaches to biodiversity management (e.g., assisted gene 
flow; Aitken and Whitlock (2013)). However, adopting this model as the basis for theoretical and
mechanistic research risks overlooking the influence of genomic architecture on multivariate 
adaptation to environmental change. Starting from a more realistic, multi-trait framework, our 
simulations demonstrate that up-gradient gene flow does indeed occur under climate change, but 
that its conrtibution to adaptation can be constrained by polygenicity and, to a lesser extent, 
linkage. Given the plausibility of the range of genomic architectures we simulate (Barghi et al. 
2020; Boyle et al. 2017; Rockman 2012; Savolainen et al. 2013; Sella and Barton 2019; 
Bomblies and Peichel 2022), these results raise the compelling possibility that up-gradient gene 
flow, while unlikely to be net-maladaptive, could have limited ability to support adaptation in 
many systems, especially those where climate-adapted traits have more dispersed architectures 
(i.e., architectures composed of many genes of small effect; Yeaman (2015)), providing a higher 
capacity for in situ adaptation to rapid change. This poses an important question for subsequent 
research: How often are climate-adapted trait architectures dispersed, versus being more 
concentrated (i.e., composed of few loci of large effect)? 

We also show that the genomic architecture of climate-adapted traits can influence the 
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nature and size of the demographic fluctuations that occur during evolutionary responses to 
climate change. Our results suggest that neglecting this fact can cause important contingencies to
go overlooked, while accounting for it could extend current theory and provide valuable insight. 
First, our results suggest that strong linkage between non-neutral loci, especially under high 
polygenicity, can increase maladaptation and demographic decline during climate change. In the 
most extreme case, evolutionary rescue is absent: high polygenicity and low redundancy 
combine to drive dramatic and persistent demographic declines, and even cause local extinction 
when linkage is strong. This was unexpected in light of previous work reporting that dispersed 
architectures produce stable, resilient phenotypic clines despite transient genotypic composition 
(Yeaman 2015; Yeaman 2022), and thus that species with such architectures could exhibit rapid 
local adaptation (Aitken et al. 2008) – but may make sense in light of the quick evolutionary 
rescue observed in these scenarios’ artificial ‘post-change’ periods, suggesting that the pace of 
environmental change exceeded the pace of adaptation. We did expect evolutionary responses to 
climate change to be slower in these scenarios, because natural selection is less effective on 
smaller-effect alleles and because high linkage leads to longer expected wait times for the 
generation of novel, adaptive recombinants, but we did not expect adaptive capacity to be 
completely outstripped.

The fact that high genotypic redundancy reduces demographic decline, not just in the 
aforementioned scenarios but across them all, contributes to the building recognition of the 
importance of redundancy as a driver of population-genetic outcomes in polygenic systems 
(Láruson et al. 2020; Yeaman 2022). This also presents a possible mechanism to be explored in 
real-world populations living at species’ colder range edges. Much like the local populations in 
the rightmost region of our low-redundancy scenarios, these local populations could already be at
the edge of the phenotypic space defined by their standing genetic variation; in this case, 
segregating redundancy (a la Láruson et al. (2020)) and thus adaptive capacity would be low, so 
local extinction vulnerability would be substantial. However, species whose cold range edges are
predominantly determined by geographic barriers or biotic interactions rather than by bioclimate 
(Thomas 2010) could feature local populations more similar to our high-redundancy scenarios: 
segregating redundancy would be higher, so selection would be balancing rather than directional 
and adaptive capacity would be substantial.

Our findings also help advance the theoretical understanding of local adaptation with 
recombination. Recombination is generally regarded as disadvantageous in situations of clinal 
adaptation with gene flow, because it disrupts the association between adaptive loci underlying a 
single trait, but unstable environments are considered a major exception (Tigano and Friesen 
2016). Our results suggest that recombination can also be advantageous under the monotonic 
environmental change that is characteristic of climate change, particularly when simultaneous 
adaptation is occurring for multiple traits adapted to decoupling gradients. This likely occurs 
because recombination allows for more effective in situ adaptation by shifting allelic covariance 
– despite the fact that it still disrupts the associations between loci that would otherwise allow for
the development of larger-effect gene clusters. This suggests that in situ shifts in allelic 
covariance provide an alternative to adaptive gene flow as a mechanism for evolutionary rescue, 
especially in multi-trait systems where gene flow can be adaptive for shifting climatic gradients 
but maladaptive with respect to other decoupling gradients.
 Second, the minimal demographic decline in our moderate-polygenicity models contrasts 
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with previous work finding that adaptation to a gradient is more effective under either 
concentrated or dispersed genomic architectures (Yeaman and Whitlock 2011). This 
disagreement may be attributable to the difference in timeframes between adaptation to a 
univariate environmental gradient and adaptation to a decoupling, multivariate gradient. 
Adaptation to a single, static gradient can proceed gradually, so may either favor large-effect 
alleles or allele-clusters in the long haul (Yeaman 2015; Yeaman 2022), once they have arisen by 
mutation, recombination, gene flow, or a combination thereof, or dispersed architectures (Bürger 
and Gimelfarb 2002; Kondrashov and Yampolsky 1996; Yeaman 2022; Yeaman and Whitlock 
2011) in temporally fluctuating environments. However, the sudden onset of persistent 
environmental change in a population that is already locally adapted triggers a ‘race against 
time’, and it may be that the genomic architectures with optimal adaptive capacity are ‘middle 
ground’ architectures that comprise freely recombining loci with small-enough effect sizes to 
avoid large sudden declines in fitness from migration load but with large enough effect sizes to 
avoid the long wait times necessary for recombination to cluster many adaptive loci into larger-
effect haplotypes. If this is true it would suggest an inherent tension between the architectures 
that might be expected to evolve in locally adapted populations prior to climate change and those
most likely to facilitate adaptation to change – although the precise intragenomic positions of the
loci involved, left simplistically symmetric in our simulations, may be influential in real-world 
systems.
 A major challenge in simulation-based research is the complexity of the high-dimensional
parameter space that could be explored. Informative studies can be constructed by focusing on a 
small set of key parameters while holding others at reasonable values, as we have done here. 
This nonetheless leaves unexplored a number of secondary parameters that can have non-
negligible influence over the complex ecological phenomena of interest. In the case of 
evolutionary responses to climate change this provides areas for future research, including: 
population size (in Geonomics, an emergent property of a number of parameters, including 
carrying capacity and instrinsic population growth rate), which is a key determinant of the 
relative strengths of drift and natural selection (Murray et al. 2017) and of the wait time to 
emergence of recombinant haploytpes (Christiansen et al. 1998), among other important 
dynamics; movement behavior, a key factor embedded in the rudimentary migration-selection 
dynamics that lie at the heart of models like ours (Wright 1931; Haldane 1930; Barton 1999); 
allelic effect size distributions (Orr 1998), which are omitted here in favor of a single fixed effect
size; and the spatial structure of the environment, including the geometries, slopes, and 
orientations of gradients (e.g., Benes and Bracken (2020)), and their rates of change. A number 
of other more complex evolutionary aspects could also be explored through a similar modeling 
framework, including pleiotropy (Thompson 2020) and epistasis, hybridization, and life history 
variation. Finally, important and conservation-relevant insight could emerge from the integration 
of other dimensions of climate change ecology, including range shifts (Weiss-Lehman and Shaw 
2020), plasticity (Chevin et al. 2010) and range-wide variation in population density (Aitken and 
Whitlock 2013).

Adaptation is one of the main mechanisms by which species may persist under climate 
change. Given the multidimensional nature of ecological phenotypes and the decoupling of 
environmental gradients that climate change will frequently cause, adaptive responses will 
frequently be multivariate. Within this context, the potential influence of adaptive genomic 
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architecture on evolutionary outcomes has typically been neglected in conceptual and 
mechanistic models. Our results show that this neglect can conceal important variability in the 
nature and success of adaptive responses, including the strong influence of genomic architecture 
on the effectiveness of up-gradient gene flow and in situ adaptation, the magnitude and 
persistence of maladaptation, and the likelihood of concomitant demographic decline or 
evolutionary rescue. Further research in this arena, both simulated and empirical, can help refine 
our understanding of adaptation to climate change, both advancing evolutionary theory and 
facilitating the development of better-informed management strategies.

Methods
Simulation

We performed all of the simulations for this study using Geonomics (Terasaki Hart et al. 
2021), a Python (Van Rossum and Drake, 1995) package for creating forward-time, agent-based, 
continuous-space landscape genomic simulations using arbitrarily complex life histories, 
environments, and environmental change scenarios. All of our simulated scenarios feature a 
species with two traits, each of which experiences selection on the basis of a different 
environmental variable. Both environmental variables are modeled as linear, horizontal gradients
that initially span environmental values from 1 to 0, left to right. The fitness of individuals is a 
function of the difference between their local environmental values and their phenotypes, which 
are determined by the additive effects of multiple loci (i.e., without pleiotropy or epistasis) – a 
reasonable approximation of many traits of interest in real populations (Sella and Barton 2019).

Each simulation starts with a neutral burn-in period, ended by Geonomics' tests of 
temporal and spatial population stability, then runs for 2500 time steps non-neutral evolution, 
generating a pattern of local adaptation to the initial environment. After that, one of the 
environmental layers undergoes a change event in which the gradient’s values change stepwise 
over a period of 250 time steps, resulting in a final gradient that spans values from 1 to 0.5, left 
to right. This creates a scenario in which the two environmental variables become decoupled, 
leading to the emergence of novel environments (i.e., sites occupying new vectors in two-
dimensional environmental space). The purpose of this is to emulate a common phenomenon 
under climate change: the decoupling of multivariate environmental gradients, leading to the 
emergence of novel climates (Williams and Jackson 2007; Williams et al. 2007; Fitzpatrick et al.
2018). Importantly, this landscape arrangement generates heterogeneous rates of climate change, 
with the rate ranging from 0 at the leftmost edge to 0.5 per 250 time steps at the rightmost edge. 
This complicates interpretation of our results, but less so than in an alternative scenario with 
spatially homogeneous rates of change, which would generate an artefact of range expansion 
whose genomic signal would be superimposed on that of climate change adaptation. This latter 
approach is also of interest, and may be explored in future work, but the approach we chose here 
allows us to best isolate the evolutionary dynamics resulting from the components of genomic 
architecture that define our scenarios and hypotheses.

Next, we wrote a custom Python script that reads the template Geonomics parameters 
file, edits any parameters that vary across our scenarios, instantiates a model, runs a fixed 
number of iterations of that model, and outputs simulated genetic and other data. Our parameters 
of interest are the number of loci underlying each trait (parameter n_loci), the linkage between 
neighboring loci (i.e., the homogeneous recombination rate; parameter recomb), and the amount 
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of genotypic redundancy (parameter redund). The values we assigned to these parameters are 
provided in Table 1. Of note, in low-redundancy scenarios the n_loci values we specify produce 
many-to-one genotype-phenotype mappings at intermediate phenotypes that decline to one-to-
one mappings at extreme phenotypes, whereas in high-redundancy scenarios the doubled n_loci 
values produce many-to-one mappings across all phenotypes between 0 and 1, inclusive – i.e., all
phenotypes matching environmental values that occur somewhere on the landscape. The full 
factorial combinations of the chosen values of those parameters generate the set of simulation 
scenarios depicted in the tabular arrangments of Figs. 2, 3, 4, S2, S3, and S4. We used that script 
to run a set of batch jobs on the savio3 partition of UC Berkeley’s Savio system (each node has 
96 GB RAM and 32, 2.1-GHz Skylake processors). For each scenario, we ran a total of 100 
iterations of  the scenario of interest, featuring a 250-time-step climate change period 
(henceforth, the ‘main’ scenarios), and 100 iterations of a paired null scenario without natural 
selection (henceforth, the ‘null’ scenarios). Given that Geonomics is a complex simulation 
framework, it features numerous other parameters, which we set at reasonable default values. 
Certain values of interest that might be parameter settings in some population-based, spatially-
implicit simulation models are instead emergent properties within Geonomics’ individual-based, 
spatially-explicit framework; for example, the population size values we report herein emerge 
from the interaction of numerous parameters (e.g., the raster of local carrying capacities, the 
population intrinsic growth rate, the number of offspring per reproduction event, and the death 
rates resulting from the parameters controlling both density-dependent mortality and natural 
selection), rather than being set a priori. The complete set of Geonomics parameters and the 
values we assigned to them across all models (as well as green-highlighted notes denoting 
runtime and genomic-architecture parameter overridden by the main simulation scripts) are 
provided in Appendix 1.

Using a combination of internal Geonomics functions and custom Python code, we 
designed a set of data outputs from each model run, to visualize our results and test our series of 
hypotheses. We saved tables of individuals’ locations and phenotypes at both the beginning and 
the end of the climate change period. We also saved time series of population size, mean fitness, 
and mean phenotype of the trait adapted to the shifting gradient. We gathered this data at every 
time step, from 250 time steps before the onset of climate change, through the 250 time steps of 
the event, and continuing until 250 time steps after climate change completed. The final 250 time
steps after climate change are unrealistic, but are useful for elucidating the nature of the changes 
that persisted to the end of the climate change period; we refer to this period as the ‘post-change 
period’.

We also saved subsampled data on the vector directions of gene flow occurring during 
climate change, by keeping all final individuals’ data pertaining to two randomly chosen loci that
had positive effects on the trait adapted to the shifting environmental gradient. We restricted our 
sample in this way both to focus on loci expected to facilitate adaptation to increasing 
environmental values and thus to shift up-gradient, and to provide equal sample sizes across 
scenarios in downstream analysis (which was constrained to the number of positive-effect loci 
present in the low-polygenicity, low-redundancy scearnios). Data were collected using an 
internal Geonomics function that extracts data from the spatial pedigrees stored in the 
simulation's tskit (Kelleher et al. 2018) data structures. We also calculated a single high-level 
summary metric per model that provided us a comparator for the relative amounts of up-gradient 
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gene flow that occurred across our scenarios, for use in hypothesis testing. We refer to the metric 
simply as ‘up-gradient gene flow’, and we calculate it as:

,

where angles are expressed counterclockwise from the right. The cosΘ≥0 condition allows us to 
ignore leftward gene flow, which we expected to be low irrespective of scenario for the positive- 
effect loci for which we collected data, given that it would oppose the environmental shift so 
would be generally maladaptive.

Analysis
We analyzed all 18 scenarios' and all 100 iterations’ data using visual summaries and 

companion statistical tests. All analysis and visualization was produced using custom scripts 
written in Python (Van Rossum and Drake 1995) and R (R Core Team 2021).

To test our first hypothesis about gene flow, we first produced a visualization of the 
directional distributions of gene flow in all 18 scenarios, comparing between main and null 
scenarios (Fig. 2). To create this visualization, we gathered directional data from each simulation 
for a random sample of the gene flow that occurred during the climate change event, using 
Geonomics’ integration with tskit (Kelleher et al. 2018), which allows for temporal subsetting 
and output of the information contained the full spatial pedigree of a simulated population. We 
then fitted a mixture of 4 von Mises distributions to that data using the R package movMF 
(Hornik and Grün 2014), yielding 12 parameter estimates defining each simulation's fitted 
mixture distribution. For each of the 18 scenarios, we then plotted the probability density 
function described by the means of all length-12 vectors of fitted parameters. We did this 
separately for null scenarios and for main scenarios, then overlaid the main scenario (in red) on 
top of the nulls (in blue), providing a summary depiction of the nature of gene flow within each 
main scenario as compared to its null expectation.

Finally, we ran a simple linear regression of the main-null difference in up-gradient gene 
flow density as a function of the components of genomic architecture (GFup,main – GFup,null ~ α + 

βppolygenicity + βllinkage + βrredundancy + ε), which we used to interpret our results and test 
the components of our first hypothesis. We model the genomic architecture components as 
numeric integer variables representing the factorial or exponential increases used to set their 
parameter values in simulations: polygenicity: low = 0, moderate = 1; high = 2 (polygenicityvariable

= log5 ((polygenicitysimulated)/(4×redundancyvariable))); linkage: low = 0, moderate = 1, high = 2 
(linkagevariable = -log10((linkagesimulated)/0.5));

redundancy: low = 0, high = 1. We use this model, compared against the patterns revealed by 
Fig. 2, to test both components of our first hypothesis, expecting all scenarios' fitted values
for the main-null difference in up-gradient gene flow to have 95% confidence intervals >0 for the
main-null difference in up-gradient gene flow (component 1), and expecting the coefficients on 
the linkage and polygenicity terms of the model to be significantly positive and negative, 

68



respectively (component 2).
To visually assess our second and third hypotheses, we created a series of plots 

comparing climate change-driven demographic shifts and maladptation across all 18 scenarios 
and between null and main moels. First, we plotted the null and main trajectories of two 
demographic metrics – mean fitness and population size – in each of our 18 scenarios. For each 
scenario and metric, and for both main and null models, we created ensemble datasets by 
combining all 100 iterations’ output time series of the metric, then derived summary time series 
by calculating each time step’s 100-iteration mean and 5th and 95th percentiles. We plotted the 
resulting summary time series in Fig. 3 (mean fitness) and Fig. S2 (population size), with null 
results again shown in blue and main results in red. We plotted the metrics starting from 250 time
steps before the climate change event and running until 250 time steps after its completion, 
allowing us to evaluate the onset, course, and aftermath of the demographic responses. 
Additionally, we summarized all scenarios in a pair of box plots (one plot for low genotypic 
redundancy, one for high), with plots arranged by polygenicity along the x-axis, colored blue or 
red to denote null or main results, and shaded darker for increasing levels of linkage.

Next, to better understand changes in population size and distribution, we mapped before-
after comparisons of population density across all 18 main scenarios (Fig. S4). Each population 
density map is calculated as the array of mean population densities at all cells on the landscape, 
averaged across all 100 main simulations of the map's corresponding scenario. Population 
densities are depicted as increasing from black to white, with values standardized across the 
entire plot grid.

Finally, to visualize maladaptation, we created an identically-structured grid of plots 
comparing each scenario’s mean phenotypic distributions before and after climate change, 
including scatter plots of the density of individuals occuring across two-dimensional trait space 
and lines and wedges depicting the average maladaptation observed across each scenario's 100 
iterations (Fig. 4). We refer to the wedge as ‘persistent maladaptation’, and we calculate it as the 
difference between: a.) the area within two-dimensional trait space that the population’s 
phenotypic distribution would have needed to shift through during the climate change event, so 
as to remain  optimally fit to its environment, and b.) the observed area of phenotypic shift 
within a scenario’s 100 simulations. (We qualify this metric as ‘persistent’ to emphasize that it 
does not reflect transient maladaptation that arises but then resides during the period of climate 
change, but rather reflects only maladaptation that remains at the end of the climate change 
period.) To measure this area, we first determined the triangular area between the expected 
central tendency lines of the optimal bivariate phenotypic distributions before and after the 
climate change event; these are unambiguously determined by the model parameterization, 
because they are the lines connecting all of the discrete points in environmental space that occur 
on the pre- and post- change landscapes. Then, for each model run, we used ordinary least 
squares (OLS) to fit a central tendency line to the 100-iteration ensemble phenotypic distribution 
observed at the end of the climate change event (arithmetically fixing the y-intercept at the (1,1) 
point in phenotypic space, the unchanging phenotypic optimum at the leftmost extent of the 
landscape). The area of the wedge between the expected and observed post-change central 
tendency lines provides our measure of a scenario’s persistent maladaptation. We plot before and 
after scatter plots of the ensemble datasets of individuals’ two-dimensional phenotypes (binned 
to a grid of regular points for interpretability, with points shaded to depict relative densities of 
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individuals). We then overplot onto those scatter plots the central tendency lines of the expected 
(dotted lines) and observed (solid lines) phenotypic distributions, as well as the wedges of 
persistent maladaptation. In Fig. S3 we produce the same plot as Fig. 4, but using data from null 
simulations to demonstrate that all differences in maladaptation observed between scenarios were
attributable to climate change, and with blue translucent wedges showing the expected area of 
phenotypic shift under each null scenario's corresponding main simulation, for reference.

To summarize our results, we ran identically structured simple linear regressions for each 
of our three response variables measuring population-level changes during the climate change 
event change in mean fitness, change in population size, and persistent maladaptation – with 
polygenicity, linkage, redundancy, and nullness serving as explanatory variables: [ΔNt | Δfit | 
maladaptation] ~ α + βppolygenicity + βllinkage + βrredundancy + βnnullness + ε. We model 
nullness as a binary categorical variable (null=0, main=1) and again model the genomic 
architecture components as numeric integer variables, as described above. We use these models, 
in combination with the cross-scenario trends visible in Fig. 3, Fig. S2, and Fig. 4, to test the 
components of our second hypothesis (polygenicity and linkage) and third (redundancy). 
Specifically, our second hypothesis predicts that the coefficients of the linkage and genicity 
terms are significantly non-zero and negative (for the fitness-change and population size-change 
models) or positive (for the maladaptation model) with increasing linkage and genicity, while our
third hypothesis predicts significantly non-zero redundancy coefficients with the opposite signs.
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Tables

component level parameter value
genotypic redundancy low: redund = 1

high: redund = 2
polygenicity low: n_loci = 4 x redund

mod: n_loci = 20 x redund
high: n_loci = 100 x redund

linkage low: recomb = 0.5
mod: recomb = 0.05
high: recomb = 0.005

Table 1: Parameter values used for each of the three focal components of genomic architecture 
parameters. The full factorial combinations of these parameter values constitute the set of 18 
simulation scenarios for which we present results. Of note, the interaction between the n_loci and
redund parameter values creates, in low-redundancy scenarios, genotype-phenotype mappings 
that are many-to-one for intermediate phenotypes but decline to one-to-one mappings at extreme 
phenotypes, but creates, in high-redundancy scenarios, many-to-one mappings across all 
phenotypes between 0 and 1, inclusive – i.e., across all phenotypes that are optimal within 
environmental values occurring somewhere on the landscape.
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Figures

Figure 1: Conceptual model of adaptation to climate change. Above: Stacked, horizontal cross-
sections of our square simulation landscape, shown for the shifting environmental gradient (e1, 
blue-red color ramp) and the stable gradient (e2, white-black color ramp), both before climate 
change (t1) and after (t2). Below: Bivariate fitness landscape of the traits adapted to the shifting 
and stable gradients, on axes e1 and e2, respectively. Three example positions along the bivariate 
gradient (x1, x2, x3) are delineated by thin vertical boxes on the physical landscape, both before 
climate change (gray) and after (yellow), and their corresponding fitness peaks are shown as 
color-matched kernels located along color-matched lines of the fitness optima that exist on the 
physical landscape before (t1) and after (t2) climate change. Shifts in local fitness peaks are 
shown as labeled arrows (x2, x3); the environment at the far left of the physical landscape does 
not change, so x1's fitness peaks are overlapping and have no shift, whereas the environment at 
the far right of the physical landscape experiences the maximal rate of change, which is reflected
in the shift in x3's fitness peaks. Note that fitness peaks are stylized and truncated for ease of 
depiction; in our simulations, fitness decreases as a linear function of an individual's distance 
from its phenotypic optimum, rather than the truncated Gaussian function depicted here.
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Figure 2: Comparison, across all 18 scenarios, of the distributions of gene-flow directions during
the climate change period. Scenarios are organized into top and bottom sections for low and high
redundancy, with rows in each section representing levels of linkage and columns representing 
polygenicity. Main scenarios (red) are compared against null scenarios (blue). Compass labels 
indicate directions of gene flow as it would be observed from a bird’s-eye view of the simulated 
landscape, with rightward (i.e., ‘up-gradient’) gene flow moving in the same direction as the 
shifting environmental gradient, and with upward and downward (i.e., ‘on contour’) gene flow 
being perpendicular to the environmental gradients. Down-gradient gene flow is expected to be 
maladaptive under all scenarios, explaining why it is universally suppressed relative to the null 
results. There is a general trend toward increasing on-contour gene flow and decreasing up-
gradient gene flow with decreasing strength of linkage and increasing number of loci per trait.
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Figure 3: Left: Mean fitness dynamics for all scenarios during the 250 time steps before the 
climate change period and the 250 time steps during it (with the two periods divided by a red, 
dashed vertical line marking the onset of the climate change period). Scenarios are organized as 
in Fig. 2: top and bottom sections for low and high redundancy, with rows in each section 
representing levels of linkage and columns representing polygenicity. Right: Comparison of 
climate change-driven changes in mean fitness across scenarios. Null scenarios are plotted on the
left in blue, and main scenarios are plotted on the right, in red. Within each plot, scenarios are 
divided by the number of loci per trait (x-axis) and by the strength of linkage (shade, with darker 
hues representing stronger linkage).
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Figure 4: Comparison, across all 18 redundancy scenarios, of the observed versus expected 
phenotypic shift during the climate change period. Scenarios are organized as in Fig. 2: top and 
bottom sections representing low and high redundancy, with rows in each section representing 
levels of linkage and columns (in before-after pairs) representing polygenicity. For each scenario,
the left (‘before’) scatterplot shows the distribution of individuals’ bivariate phenotypes before 
climate change begins, whereas the right (‘after’) scatterplot shows how the distribution has 
shifted by the end of the climate change period. The trait adapted to the shifting environmental 
gradient is distributed along the x axis, and the trait adapted to the stable gradient is distributed 
along the y axis. Scatterplots depict multi-model ensemble results for each scenario. The size and
opacity of each point represents the number of individuals exhibiting that bivariate phenotype. 
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(Note that the gridded arrangement of the points in each scatterplot is a function of the number of
loci per trait which, because locus effect sizes are fixed, directly determines the set of attainable, 
evenly-spaced, discrete phenotypic values. Because fewer loci per trait yields fewer possible 
phenotypes, individuals are grouped into fewer, larger phenotypic bins in the 4- and 20-locus 
scenarios.) Solid black lines delineate the shift in the phenotypic distributions’ central tendencies 
that is expected to take place during the cimate change period, dotted black lines depict the 
observed (OLS-fitted) phenotypic distributions’ central tendencies at the ‘during’ and ‘after’ time
steps, and translucent red wedges depict the differences between the expected and observed 
distributions (i.e., ‘phenotypic shortfall’, the response variable in our statistical tests).
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Supplemental Figures

Figure S1: Depiction of genotypic redundancy for all simulated polygenicity values. Phenotypic 
values are plotted along the x-axis, and the natural log of the number of genotypes that yield each
phenotypic value is plotted along the y-axis. Polygenicities corresponding to low-redundancy 
scenarios are plotted and labeled in light teal, and those corresponding to high-redundancy 
scenarios in dark teal. The minimum and maximum environmental values on the landscape are 
represented by dotted vertical lines. The number of genotypes corresponding to each phenotype 
is calculated using a custom adaptation of Eqxn. ii, Box 1 in (Láruson et al. 2020) implemented 
for a diploid species and fitted to the numerical conventions used by Geonomics.
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Figure S2: Left: Population size dynamics for all scenarios during the 250 time steps before the 
climate change period and the 250 time steps during it (with the two periods divided by a red, 
dashed vertical line marking the onset of the climate change period). Scenarios are organized as 
in Fig. 2: top and bottom sections representing low and high redundancy, with rows in each 
section representing levels of linkage and columns representing polygenicity. Both means (black 
lines) and variability envelopes (5th percentile to 95th percentile) are shown, with scenario type 
depicted by color (main scenarios in red, null scenarios in blue). Right: Comparison of climate 
change-driven changes in mean population size across scenarios. Null scenarios are plotted on 
the left in blue, and main scenarios are plotted on the right, in red. Within each plot, scenarios are
divided by the number of loci per trait (x-axis) and by the strength of linkage (shade, with darker 
hues representing stronger linkage).
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Figure S3: Maps depicting shifts in population density during climate change for all null 
simulations. Scenarios are organized as in Fig. 2: top and bottom sections representing low and 
high redundancy, with rows in each section representing levels of linkage and columns (in 
before-after pairs) representing polygenicity. As well as showing local extinction in the low-
redundancy, high-polygenicity, strong-linkage scenario (bottom right of top section), these maps 
also show moderate simulation edge effects and density banding in the low-polygenicity 
scenarios because of the mismatch between environmental and phenotypic resolutions.
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Figure S4: Maps depicting shifts in population density during climate change for all scenarios.
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Appendix 1: Template parameters file used for all simulations (with key parameters 
annotated in green)

# template_params.py

import numpy as np
import pandas as pd
import os

# set up the landscape
b4 = np.vstack([np.linspace(1, 0, 50) for _ in range(50)])
af = np.vstack([np.linspace(1, 0.5, 50) for _ in range(50)])
stable = np.vstack([np.linspace(1, 0, 50) for _ in range(50)])
K = np.ones((50,50))

# NOTE: time_steps.CSV USED TO SET CLIMATE CHANGE 
#       TO START AT TIME STEP 2500 
#       AND FINISH AT TIME STEP 2750
if os.getcwd().split('/')[1] == 'home':
    steps = pd.read_csv(('/home/deth/Desktop/CAL/research/projects/sim/'
                         'ch2/climate_change_adaptation_and_genomic_arch/sim/'
                         'time_steps.CSV'))
else:
    steps = pd.read_csv(('/global/scratch/users/drewhart/'
                         'ch2/climate_change_adaptation_and_genomic_arch/sim/'
                         'time_steps.CSV'))
# set time when environmental change begins
change_T = int(steps[steps['name']=='start']['num'].values[0])
# set time when environmental change ends
T = int(steps[steps['name']=='end']['num'].values[0])

# show the landscape, for debugging, if requested
debug_landscape = False
if debug_landscape:
    import matplotlib.pyplot as plt
    fig = plt.figure()
    ax1 = fig.add_subplot(221)
    im1 = ax1.imshow(b4, cmap='spring', vmin=0, vmax=1)
    plt.colorbar(im1)
    ax3 = fig.add_subplot(223)
    im3 = ax3.imshow(af, cmap='spring', vmin=0, vmax=1)
    plt.colorbar(im3)
    ax2 = fig.add_subplot(222)
    im2 = ax2.imshow(stable, cmap='winter', vmin=0, vmax=1)
    plt.colorbar(im2)
    ax4 = fig.add_subplot(224)
    im4 = ax4.imshow(K, cmap='autumn', vmin=0, vmax=1)
    plt.colorbar(im4)
    plt.show()

# This is a parameters file generated by Geonomics
# (by the gnx.make_parameters_file() function).

                   #   ::::::          :::    :: :::::::::::#
             #::::::    ::::   :::      ::    :: :: ::::::::::: ::#
          #:::::::::     ::            ::   :::::::::::::::::::::::::#
        #::::::::::                      :::::::::: :::::: ::::::::  ::#
      #  : ::::  ::                    ::::  : ::    :::::::: : ::  :    #
     # GGGGG :EEEE: OOOOO   NN   NN   OOOOO   MM   MM IIIIII  CCCCC SSSSS #
    # GG     EE    OO   OO  NNN  NN  OO   OO  MM   MM   II   CC     SS     #
    # GG     EE   OO     OO NN N NN OO     OO MMM MMM   II   CC     SSSSSS #
    # GG GGG EEEE OO     OO NN  NNN OO     OO MM M MM   II   CC         SS #
    # GG   G EE    OO   OO  NN   NN  OO   OO  MM   MM   II   CC        SSS #
     # GGGGG :EEEE: OOOOO   NN   NN   OOOOO   MM   MM IIIIII  CCCCC SSSSS #
      #    : ::::::::               :::::::::: ::              ::  :   : #
        #:    :::::                    :::::: :::             :::::::  #
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          #    :::                      :::::  ::              ::::: #
             #  ::                      ::::                      #
                   #                                        #
                      #  :: ::    :::             #

params = {
###############################################################################

###################
#### LANDSCAPE ####
###################
    'landscape': {

    ##############
    #### main ####
    ##############
        'main': {
            #x,y (a.k.a. j,i) dimensions of the Landscape
            'dim':                      (50,50),
            #x,y resolution of the Landscape
            'res':                      (1,1),
            #x,y coords of upper-left corner of the Landscape
            'ulc':                      (0,0),
            #projection of the Landscape
            'prj':                      None,
            }, # <END> 'main'

    ################
    #### layers ####
    ################
        'layers': {

            #layer name (LAYER NAMES MUST BE UNIQUE!)
            'shift': {

        #-------------------------------------#
        #--- layer num. 0: init parameters ---#
        #-------------------------------------#

                #initiating parameters for this layer
                'init': {

                    #parameters for a 'defined'-type Layer
                    'defined': {
                        #raster to use for the Layer
                        'rast':                   b4,
                        #point coordinates
                        'pts':                    None,
                        #point values
                        'vals':                   None,
                        #interpolation method {None, 'linear', 'cubic',
                        #'nearest'}
                        'interp_method':          None,

                        }, # <END> 'defined'

                    }, # <END> 'init'

            #---------------------------------------#
            #--- layer num. 0: change parameters ---#
            #---------------------------------------#

                #landscape-change events for this Layer
                'change': {

                    0: {
                        #array or file for final raster of event, or directory
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                        #of files for each stepwise change in event
                        'change_rast':              af,
                        #starting timestep of event
                        'start_t':          change_T,
                        #ending timestep of event
                        'end_t':            T,
                        #number of stepwise changes in event
                        'n_steps':          T-change_T,
                        }, # <END> event 0

                    }, # <END> 'change'

                }, # <END> layer num. 0

            #layer name (LAYER NAMES MUST BE UNIQUE!)
            'stable': {

        #-------------------------------------#
        #--- layer num. 1: init parameters ---#
        #-------------------------------------#

                #initiating parameters for this layer
                'init': {

                    #parameters for a 'defined'-type Layer
                    'defined': {
                        #raster to use for the Layer
                        'rast':                   stable,
                        #point coordinates
                        'pts':                    None,
                        #point values
                        'vals':                   None,
                        #interpolation method {None, 'linear', 'cubic',
                        #'nearest'}
                        'interp_method':          None,

                        }, # <END> 'defined'

                    }, # <END> 'init'

                }, # <END> layer num. 1

            #layer name (LAYER NAMES MUST BE UNIQUE!)
            'K': {

        #-------------------------------------#
        #--- layer num. 2: init parameters ---#
        #-------------------------------------#

                #initiating parameters for this layer
                'init': {

                    #parameters for a 'defined'-type Layer
                    'defined': {
                        #raster to use for the Layer
                        'rast':                   K,
                        #point coordinates
                        'pts':                    None,
                        #point values
                        'vals':                   None,
                        #interpolation method {None, 'linear', 'cubic',
                        #'nearest'}
                        'interp_method':          None,

                        }, # <END> 'defined'
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                    }, # <END> 'init'

                }, # <END> layer num. 2

        #layer name (LAYER NAMES MUST BE UNIQUE!)
        'move': {

        #-------------------------------------#
        #--- layer num. 2: init parameters ---#
        #-------------------------------------#

                #initiating parameters for this layer
                'init': {

                    #parameters for a 'defined'-type Layer
                    'defined': {
                        #raster to use for the Layer
                        'rast':                   np.ones((50,50)),
                        #point coordinates
                        'pts':                    None,
                        #point values
                        'vals':                   None,
                        #interpolation method {None, 'linear', 'cubic',
                        #'nearest'}
                        'interp_method':          None,

                        }, # <END> 'defined'

                    }, # <END> 'init'

                }

    #### NOTE: Individual Layers' sections can be copy-and-pasted (and
    #### assigned distinct keys and names), to create additional Layers.

            } # <END> 'layers'

        }, # <END> 'landscape'

###############################################################################

###################
#### COMMUNITY ####
###################
    'comm': {

        'species': {

            #species name (SPECIES NAMES MUST BE UNIQUE!)
            'spp_0': {

            #-----------------------------------#
            #--- spp num. 0: init parameters ---#
            #-----------------------------------#

                'init': {
                    #starting number of individs
                    'N':                1000,
                    #carrying-capacity Layer name
                    'K_layer':          'K',
                    #multiplicative factor for carrying-capacity layer
                    'K_factor':         2.5,
                    }, # <END> 'init'

            #-------------------------------------#
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            #--- spp num. 0: mating parameters ---#
            #-------------------------------------#

                'mating'    : {
                    #age(s) at sexual maturity (if tuple, female first)
                    'repro_age':                0,
                    #whether to assign sexes
                    'sex':                      False,
                    #ratio of males to females
                    'sex_ratio':                1/1,
                    #whether P(birth) should be weighted by parental dist
                    'dist_weighted_birth':       False,
                    #intrinsic growth rate
                    'R':                        0.5,
                    #intrinsic birth rate (MUST BE 0<=b<=1)
                    'b':                        0.5,
                    #expectation of distr of n offspring per mating pair
                    'n_births_distr_lambda':    1,
                    #whether n births should be fixed at n_births_dist_lambda
                    'n_births_fixed':           True,
                    #radius of mate-search area
                    'mating_radius':            5,

  #whether individs should choose nearest neighs as mates
                    'choose_nearest_mate':      False,

   #whether mate-choice should be inverse distance-weighted
                    'inverse_dist_mating':      False,
                    }, # <END> 'mating'

            #----------------------------------------#
            #--- spp num. 0: mortality parameters ---#
            #----------------------------------------#

                'mortality'     : {
                    #maximum age
                    'max_age':                      None,
                    #min P(death) (MUST BE 0<=d_min<=1)
                    'd_min':                        0,
                    #max P(death) (MUST BE 0<=d_max<=1)
                    'd_max':                        1,
                    #width of window used to estimate local pop density
                    'density_grid_window_width':    None,
                    }, # <END> 'mortality'

            #---------------------------------------#
            #--- spp num. 0: movement parameters ---#
            #---------------------------------------#

                'movement': {
                    #whether or not the species is mobile
                    'move':                     True,
                    #mode of distr of movement direction
                    'direction_distr_mu':       0,
                    #concentration of distr of movement direction
                    'direction_distr_kappa':    0,
                    #mean of distr of movement distance
                    'movement_distance_distr_param1':        0.25,
                    #variance of distr of movement distance
                    'movement_distance_distr_param2':     0.5,

  #movement distance distr to use ('lognormal','levy','wald') 
                    'movement_distance_distr':             'wald',
                    #mean of distr of dispersal distance
                    'dispersal_distance_distr_param1':       0.5,
                    #variance of distr of dispersal distance
                    'dispersal_distance_distr_param2':    0.5,
   #dispersal distance distr to use ('lognormal','levy','wald') 
                    'dispersal_distance_distr':             'wald',                    
                    },    # <END> 'movement'
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            #---------------------------------------------------#
            #--- spp num. 0: genomic architecture parameters ---#
            #---------------------------------------------------#

                'gen_arch': {
                    #file defining custom genomic arch
                    'gen_arch_file':            None,
                    #num of loci
                    'L':                        1000,
                    #value to use for fixed starting allele freqs (None to draw)
                    'start_p_fixed':            0.5,
                    #whether to start neutral locus freqs at 0
                    'start_neut_zero':          True,
                    #genome-wide per-base neutral mut rate (0 to disable)
                    'mu_neut':                  0,
                    #genome-wide per-base deleterious mut rate (0 to disable)
                    'mu_delet':                 0,
                    #shape of distr of deleterious effect sizes
                    'delet_alpha_distr_shape':  0.2,
                    #scale of distr of deleterious effect sizes
                    'delet_alpha_distr_scale':  0.2,
                    #NOTE: MAIN SCRIPT OVERRIDES THE FOLLOWING TWO PARAMS
                    #TO SET RECOMBINATION RATES TO A FIXED VALUE OF
                    #0.5, 0.05, OR 0.005 FOR INDEPENDENT,
                    #WEAK, OR STRONG LINKAGE VALUES
                    #alpha of distr of recomb rates
                    'r_distr_alpha':            1000,
                    #beta of distr of recomb rates
                    'r_distr_beta':             1e3,
                    #whether loci should be dominant (for allele '1')
                    'dom':                      False,
                    #whether to allow pleiotropy
                    'pleiotropy':               False,
                    #custom fn for drawing recomb rates
                    'recomb_rate_custom_fn':    None,
                    #number of recomb paths to hold in memory
                    'n_recomb_paths_mem':       int(1e4),
                    #total number of recomb paths to simulate
                    'n_recomb_paths_tot':       int(1e5),

  #num of crossing-over events (i.e. recombs) to simulate 
                    'n_recomb_sims':            100_000,
                    #whether to generate recombination paths at each timestep
                    'allow_ad_hoc_recomb':       False,
                    #whether to save mutation logs
                    'mut_log':                  False,

  #whether to jitter recomb bps, to correctly track num_trees
                    'jitter_breakpoints': False,

        #whether to use tskit (to record full spatial pedigree)
                    'use_tskit': True,

   #time step interval for simplication of tskit tables 
                    'tskit_simp_interval': 100,

                    'traits': {

                        #-------------------------#
                        #---trait 0 parameters ---#
                        #-------------------------#
                        #trait name (TRAIT NAMES MUST BE UNIQUE!)
                        'trait_0': {
                            #trait-selection Layer name
                            'layer':                'shift',
                            #polygenic selection coefficient
                            'phi':                  1,
                            #NOTE: MAIN SCRIPT CHANGES NEXT PARAM TO 4, 20, OR 100
                            #FOR LOW-REDUNDANCY SCENARIOS OF DIFF. POLYGENICITY,
                            #OR 8, 40, OR 200 FOR HIGH-REDUNDANCY SCENARIOS
                            #number of loci underlying trait
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                            'n_loci':               50,
                            #mutation rate at loci underlying trait
                            'mu':                   0,
                            #mean of distr of effect sizes
                            'alpha_distr_mu' :      0,
                            #variance of distr of effect size
                            'alpha_distr_sigma':    0,
                            #max allowed magnitude for an alpha value
                            'max_alpha_mag':        None,
                            #curvature of fitness function
                            'gamma':                1,
                            #whether the trait is universally advantageous
                            'univ_adv':             False
                            }, # <END> trait 0

                        #-------------------------#
                        #---trait 1 parameters ---#
                        #-------------------------#
                        #trait name (TRAIT NAMES MUST BE UNIQUE!)
                        'trait_1': {
                            #trait-selection Layer name
                            'layer':                'stable',
                            #polygenic selection coefficient
                            'phi':                  1,
                            #NOTE: MAIN SCRIPT CHANGES NEXT PARAM TO 4, 20, OR 100
                            #FOR LOW-REDUNDANCY SCENARIOS OF DIFF. POLYGENICITY,
                            #OR 8, 40, OR 200 FOR HIGH-REDUNDANCY SCENARIOS
                            #number of loci underlying trait
                            'n_loci':               50,
                            #mutation rate at loci underlying trait
                            'mu':                   0,
                            #mean of distr of effect sizes
                            'alpha_distr_mu' :      0,
                            #variance of distr of effect size
                            'alpha_distr_sigma':    0,
                            #max allowed magnitude for an alpha value
                            'max_alpha_mag':        None,
                            #curvature of fitness function
                            'gamma':                1,
                            #whether the trait is universally advantageous
                            'univ_adv':             False
                            }, # <END> trait 1

    #### NOTE: Individual Traits' sections can be copy-and-pasted (and
    #### assigned distinct keys and names), to create additional Traits.

                        }, # <END> 'traits'

                    }, # <END> 'gen_arch'

                }, # <END> spp num. 0

    #### NOTE: individual Species' sections can be copy-and-pasted (and
    #### assigned distinct keys and names), to create additional Species.

            }, # <END> 'species'

        }, # <END> 'comm'

###############################################################################

###############
#### MODEL ####
###############
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    'model': {
        # NOTE: NEXT PARAM OVERRIDDEN BY MAIN SCRIPT
        #total Model runtime (in timesteps)
        'T':            100000,
        #min burn-in runtime (in timesteps)
        'burn_T':       30,
        #seed number
        'num':          None,

        ###############################
        #### iterations parameters ####
        ###############################
        'its': {
            #num iterations
            'n_its':            1,
            #whether to randomize Landscape each iteration
            'rand_landscape':   False,
            #whether to randomize Community each iteration
            'rand_comm':        False,
 #whether to randomize GenomicArchitectures each iteration
            'rand_genarch':     True,
            #whether to burn in each iteration
            'repeat_burn':      False,
            }, # <END> 'iterations'

        ####################################
        #### data-collection parameters ####
        ####################################
        'data': {
            'sampling': {
                #sampling scheme {'all', 'random', 'point', 'transect'}
                'scheme':               'all',
                #sample size at each point, for point & transect sampling
                'n':                    1000,
                #coords of collection points, for point sampling
                'points':               None,
                #coords of transect endpoints, for transect sampling
                'transect_endpoints':   None,
                #num points along transect, for transect sampling
                'n_transect_points':    None,
                #collection radius around points, for point & transect sampling
                'radius':               None,
                #when to collect data
                'when':                [change_T-1,
                                        int((change_T-1+T-1)/2),
                                        T-1],
                #whether to save current Layers when data is collected
                'include_landscape':    False,
                #whether to include fixed loci in VCF files
                'include_fixed_sites':  True,
                },
            'format': {
                #format for genetic data {'vcf', 'fasta'}
                'gen_format':           ['vcf'],
                #format for vector geodata {'csv', 'shapefile', 'geojson'}
                'geo_vect_format':      'csv',
                #format for raster geodata {'geotiff', 'txt'}
                'geo_rast_format':      'geotiff',

    #format for files containing non-neutral loci
                'nonneut_loc_format':      'csv',
                },
            }, #<END> 'data'

        } # <END> 'model'

    } # <END> params
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Abstract

As I have demonstrated in chapter 2, the spatial nature of populations can have an important
influence on their temporal evolutionary dynamics. Yet, the reverse is also true: The complex
temporal  dynamics  of  populations  can  play  an  important,  albeit  underappreciated  role  in
determining the spatial dynamics and patterns of evolution. As one example, geographic patterns
in the timing of plant productivity – i.e., in land surface phenology (LSP) – not only convey
critical information about environmental controls on plant function and carbon cycling but also
indicate the potential  for spatial  asynchrony in reproductive phenology,  and thus  for  genetic
isolation and divergence between conspecific populations. Despite the major implications for
ecophysiology, ecosystems ecology, and evolutionary biology, most LSP mapping methodologies
struggle  to  describe  the  full  diversity  of  terrestrial  biome phenologies,  and LSP asynchrony
mapping methodologies are scarcely developed. Here, we first apply a multivariate, generalized,
and robustly-validated LSP mapping methodology, based on simple harmonic regression, to a
global time series archive of MODIS near-infrared reflectance of vegetation (NIRV, a proxy of
plant productivity). The result reveals surprising LSP diversity, including both regional patterns
of  heterogeneity  that  are  corroborated  by  prior  findings  and  intercontinental  patterns  of
convergence that recapitulate major bioclimatic and biogeographic gradients. Next, we present a
global  map of  LSP asynchrony, then use machine learning to explore regional  variability  in
potential climatic and physiographic drivers. We find that high LSP asynchrony occurs in the
world’s five Mediterranean climate regions, where it appears driven by precipitation asynchrony
and spatial variability in vegetation structure, and in tropical montane regions, where minimum
temperature asynchrony and precipitation asynchrony appear to be interacting drivers. Finally,
we  use  an  ensemble  of  regressions  within  high-asynchrony  regions  to  demonstrate  that
phenological asynchrony between climatically similar sites is most frequent at lower latitudes,
suggesting that phenological asynchrony is most likely to cause allochronic divergence in the
tropics.
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Introduction and Background
Terrestrial plant communities exhibit wide variation in annual rhythms of productivity, a 

collective result of species’ adaptive responses to the broad diversity of abiotic environments 
(Tang et al. 2016). The spatiotemporal patterns this creates, known as land surface phenology 
(LSP), convey rich ecophysiological information on the bioclimatic controls of canopy function 
(Adole et al. 2019) and thus the global carbon cycle. Characterizing these patterns in order to 
study the nature and drivers of LSP continues to grow in importance as global change advances 
and phenologies shift in response (Piao et al. 2019; Richardson et al. 2013; Tang et al. 2016), 
portending wide-ranging consequences for conservation and land management (Ettinger et al. 
2022; Morellato et al. 2016). A deeper understanding of LSP is crucial for improving the ability 
of earth system models to simulate current and future phenologies (Fu et al. 2020; Peñuelas et al.
2009; Richardson et al. 2012; Tang et al. 2016) and for improving understanding of the 
feedbacks of phenological shifts on components of the global climate system (Bonan 2008; Fu et
al. 2020; Lovejoy and Nobre 2018; Notaro et al. 2011; Salati et al. 1979) and carbon cycle 
(Richardson et al. 2013), including key uncertainties (S. Wang et al. 2022) like  interannual 
variation in xeric biome productivity (Broich et al. 2014; Buitenwerf et al. 2015; Poulter et al. 
2014) and spatial variation in tropical forest source-sink dynamics (Gatti et al. 2021; Harris et al.
2014). Yet, most LSP research has focused on the estimation of univariate statistics designed for 
unimodal time series, limiting our ability to describe the full complexity of Earth’s LSP patterns, 
especially in many tropical and arid regions characterized by subtle or multimodal seasonal 
patterns that remain poorly understood (Fu et al. 2020; Garonna et al. 2016; Lloyd 1990; 
Richardson et al. 2013; Tang et al. 2016; L. Zeng et al. 2020; Sakai and Kitajima 2019). The 
historical lack of strong remote sensing proxies of photosynthesis has compounded this 
limitation, forcing prior analyses to use standard vegetation indices (e.g., the enhanced or 
normalized difference vegetation indices) with limited sensitivity to seasonal variation in 
evergreen ecosystems (A. Chen et al. 2022; Walther et al. 2016; Y. Zeng et al. 2022). 
Multivariate analysis of new, stronger proxies of photosynthesis, including near-infrared 
reflectance of vegetation (Badgley et al. 2017, 2019; Huang et al. 2019; Y. Zeng et al. 2022) and 
sun-induced chlorophyll fluorescence (X. Li and Xiao 2019; Piao et al. 2019; Sun et al. 2017; 
Tang et al. 2016; Y. Zeng et al. 2022), offers the potential for globally-consistent, data-rich, 
comparative insight into the seasonality of terrestrial ecosystems.

By providing a biological signal of the predominant seasonal environmental fluctuations 
that control the annual phenologies of a wide range of taxa, spatial patterns in LSP also convey 
valuable information for evolutionary biogeography. According to the Asynchrony of Seasons 
Hypothesis (ASH; (Martin et al. 2009), spatial variation in seasonal timing can decouple 
reproductive phenologies between populations, creating allochronic isolation (Hendry and Day 
2005) that accelerates genetic divergence and perhaps even speciation (Coyne and Orr 2004; 
Taylor and Friesen 2017). The ASH posits this to be most common in the tropics and thus 
proposes it as a potential mechanism generating the latitudinal diversity gradient. This is because
tropical species’ phenologies are more often determined by seasonal timing of precipitation or 
solar radiation – which can decouple across short geographic distances because of complex 
interactions between topography and synoptic-to-mesoscale airflow, and can do so even between 
sites with similar climatologies or habitat conditions (Cavelier et al. 1996; Moore et al. 2005; 
Scholl et al. 2007; Thomé et al. 2021; Zhisheng et al. 2015) – rather than the common high-
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latitude cues of temperature and photoperiod seasonality, which are generally synchronized 
across broad geographic areas. Allochronic isolation resulting from this phenomenon would 
likely be amplified by the tight altitudinal ranges and bioclimatic niches that characterize many 
tropical montane species (Freeman et al. 2022; Ghalambor et al. 2006; Janzen 1967). Thus, 
whereas chapter 2 provides an example of the spatial nature of an evolving system influencing its
temporal dynamics, this chapter provides an example of the less-appreciated inverse situation: 
the potential for a system’s temporal complexity to influence its evolutionary dynamics. 
Observational and genetic evidence for the ASH is mixed (Gamba and Muchhala 2020; Guarnizo
et al. 2022; Moore et al. 2005; Quintero et al. 2014; Thomé et al. 2021), but global geographic 
patterns of climatic asynchrony are still poorly resolved (Guarnizo et al. 2022; Martin et al. 
2009), global patterns and drivers of phenological asynchrony remain unknown, and a core 
implication of the ASH argument remains unassessed: that phenological asynchrony is less 
dependent on climatological differences in high-asynchrony tropical regions.
Here, we leverage recent remote sensing advancements and high-performance computing to 
provide an unprecedented global analysis of the spatial variability and asynchrony of LSP. First, 
we use harmonic regression in Google Earth Engine (Gorelick et al. 2017) to fit pixelwise 
characteristic annual phenology curves to a rigorously quality-filtered, 10-year time series (2010-
2019) of MODIS-derived (Vermote and Wolfe, 2015a, 2015b) NIRV data. We use multivariate 
analysis of the results to compute and visualize a global map of characteristic LSP (henceforth, 
‘LSP map’) at 0.05° (~5.5 km) resolution, then examine emergent spatial patterns in the context 
of previously described global and regional land cover patterns and climate-phenology 
relationships. Next, we produce and validate a global map of spatial phenological asynchrony 
(henceforth, ‘LSP asynchrony map’) to examine patterns of asynchrony at different spatial 
scales, explore variation in regional drivers of LSP asynchrony, and test a key implication of the 
ASH.

Results and Discussion
Phenology mapping

Our global LSP map reveals clear, coherent patterns from regional to intercontinental 
scales, demonstrating the broad ecological value of a globally-consistent, multivariate approach 
to LSP analysis. Empirical orthogonal function (EOF) analysis of the global set of characteristic 
annual LSP curves fitted by harmonic regression of NIRV data suggests that the majority of the 
variation (95.6%) in earth’s diverse LSP regimes is explained by three, orthogonal modes of 
spatiotemporal variation. The predominant mode (70.0% of total variation) largely reflects the 
north-south hemispheric seasonal dipole, but embedded within it is a clear signal of 
intercontinental convergence across major marine climate regions, including the five 
Mediterranean climate zones and their neighboring semi-arid shrublands, as well as the fringing 
wet-forest regions in the extreme east of Brazil and along the coast of Somalia, Kenya, and 
Tanzania (Fig. S1). Embedded within modes two (17.7%) and three (7.9%) appear to be the 
remaining seasonally-wet regions of the global tropical and subtropical monsoon systems 
(Zhisheng et al. 2015) and finer patterns related to agricultural production.

Combination of these three major modes into a color-composite visualization (Fig. 1) 
depicts the global diversity and patterns of LSP in unprecedented clarity. (To aid interpretation 
across latitudes we transformed all EOF modes that exhibit north-south dipoles using a two-part 
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weighted sum across the inter-tropical convergence zone (ITCZ), earth’s functional climatic 
division between north and south hemispheres, but we provide untransformed color-composites 
of both components of the weighted sum in Fig. S2, for comparison.) At the broadest scales, 
intercontinental convergence stands out as a pattern of similar LSP gradients and mosaics 
occurring within similar geographic and climatic contexts. One striking example is the 
convergence between earth’s more temperate Mediterranean-climate regions (California, coastal 
Chile, and the Mediterranean proper), where non-forest vegetation takes on predominantly 
green-blue hues representing phenological maxima in late winter and spring whereas forests, 
predominantly montane, display later-peaking orange-red hues (e.g., Fig. 1b) – corroborating and
extending across continents the ‘double peak’ seasonality described by Turner et al. (2020). 
Within the remaining, warmer Mediterranean regions of the South African cape (Fig. 1e) and 
southern and southwestern Australia (Fig. 1g), non-forest in the milder coastal climate zones is 
similarly green and late-winter/spring-peaking, but isolated wet subtropical forests stand out in 
peach-orange and peak in summer, and vegetation in the hot subtropical inland climates quickly 
grades to winter-peaking dark blues, purples, and pinks roughly indicative of dry woodlands, 
shrublands and deserts, and grasslands, respectively. Another example of convergence occurs at 
the southeastern edges of tropical land masses, including northern Madagascar (Fig. 1f) and the 
Cape York Peninsula of Australia (Fig 1h), where coastal wet forests (orange) with 
photosynthetic peaks not far from the summer solstice quickly grade westward into seasonally 
dry forests, shrublands, and savannas (pink and purple) with phenologies peaking late in the 
rainy season. Convergence also emerges between similar agricultural regions – for example, 
between the United States’ corn belt (the rose-colored region that encompasses much of the 
upper midwest and extends along the Mississippi River in Fig. 1; (Zhong et al. 2016)) and the 
maize-rich regions to the north of the Po River in northern Italy (Fig. 1i), both of which contrast 
with peach-orange regional forests.

Complex patterns of regional LSP heterogeneity also emerge from Fig. 1, which we 
interpret as being attributable to a mixture of climatic, community compositional, and 
physiographic and ecophysiological mechanisms. In many regions, phenological heterogeneity 
appears to be driven by geographic variation in climate – for example, in Southern California, 
Northern Baja California, and western Sonora and Sinaloa (Fig. 1b), a sharp transition zone 
distinguishes the Mediterranean  winter-monsoon climate zone to the north (lime green to blue) 
from the summer-monsoon climate that prevails in the south (pink to purple), and this stark 
division shows striking, incidental agreement with the monsoon climate zone whose orographic 
forcing was recently described (Boos and Pascale, 021). This climate-phenology relationship 
often appears partially convolved with a signal of plant community structure – for example, in 
North America’s Great Basin (Fig. 1a), we observe a marked and significant advance of spring 
onset in areas more heavily invaded by cheatgrass and other annuals (lime-green pixels) 
compared to clusters of cells that peak one (olive-green) to two months (orange) later. The early-
peaking clusters have significantly higher average estimated annual herbaceous cover (19.74% 
according to data from Maestas et al. (2020) than both the mid- (9.59%; Tukey’s Honest 
Significant Difference (HSD) P-value: 0.00) and the late-peaking cluster (6.00%; HSD P-value: 
0.00), providing a striking match to the cheatgrass, sagebrush, and montane phenologies fitted by
Bradley et al. (Bradley et al. 2007) using a more sophisticated algorithm. Similarly, 
heterogeneity occurs in Northern Italy (Fig. 1i) between montane forest (peach-orange) and non-
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forest vegetation (light green) as well as the Po River Valley’s patchwork of agricultural activity 
(d’Andrimont et al. 2021), which is composed of mixed crops and pasture to the south of the 
River (also light green) and a string of maize-dominated regions to the north (rose). In other 
regions, however, phenological heterogeneity appears to be driven by a suite of local and largely 
non-climatic influences on plant ecophysiology. For example, stark patterns in South Florida 
(Fig. 1c) suggest a combined influence of microtopography and hydrology that makes sense in 
light of previous efforts to map vegetation (Homer et al. 2015) and CO2 fluxes (C. Zhang et al. 
2021): much of the Everglades sawgrass marsh (dark green-blue) exhibits peak photosynthesis 
during the winter dry season, when water levels are lowest, while the wooded wetland region to 
the north and west (light green) shows a quick spring peak that may partly reflect cypress leaf-
out, and remaining areas of drained, urban, and upland vegetation, along with southwest 
mangrove forests (all orange-red), show a broader peak in the summer wet season. Similarly, 
microtopography or ecohydrology could underpin the distinction between the dual-peak 
phenologies observed in forests surrounding the mouth of the Amazon River (indigo and 
maroon; Fig. 1d) and the nearly unimodal phenologies (light blue) that occur in non-forest 
vegetation that is both naturally occurring (shrubland in the northwest) and anthropogenic 
(deforested areas at the mouth of the river and south of it), especially if different plant 
architectures and, thus, different root foraging dynamics cause different seasonal patterns of 
water availability for different plant communities subjected to an identical climate.

We validated the LSP map using both a shorter (2014-2017), independent SIF dataset 
from Orbiting Carbon Observatory 2 (OCO-2) (Yu et al. 2019) and a global set of gross primary 
productivity (GPP) time series from publicly-available flux tower datasets (FLUXNET; (Knoben
2019; Pastorello et al. 2020)). The NIRV-SIF comparison shows that the NIRV-derived LSP map 
closely matches its SIF-derived counterpart ( R2 between NIRV and SIF fitted seasonal time 
series has a pixel-wise median of 0.872), but reveals low between-dataset correlation in some 
drier grassland, shrubland, and woodland biomes (Fig. 2a). We feel that any disagreement 
between these two datasets is unlikely to be an artefact of the ANN-derived SIF map we chose to
use because the ANN-interpolated seasonality within OCO-2 orbital gaps matches that of an 
independent TROPOMI SIF dataset (Fig. S3, S4). Subsequent validation of both the NIRV and 
SIF LSP datasets against flux-tower gross primary productivity (GPP) data is strong in most 
biomes but is again mixed in roughly the same subset of drier biome types (Fig. 2b, 2d). We 
believe a large fraction of this biome-sensitivity results from mismatched temporal scales, given 
that seasonally dry biomes are generally characterized by large interannual variability in 
productivity (Broich et al. 2014; Buitenwerf et al. 2015; Poulter et al. 2014), leading to frequent 
phenological disagreement between the time periods covered by the GPP time series available at 
flux towers, which vary both in dates and length, and the fixed period covered by our remote 
sensing datasets. The fact that the bulk of the poorly validating datasets have shorter time series 
than our 10-year MODIS NIRV dataset and even our 4⅓-year interpolated OCO-2 SIF dataset 
(Fig. 2c, 2e) supports this interpretation. However, we also suspect that some of the observed 
biome-sensitivity derives from mismatched spatial scales, given that many of the biomes in 
question are characterized by high spatial heterogeneity in vegetation structure and thus in 
phenology (Richardson et al. 2013), often at spatial scales finer than our 0.05° pixels. It is thus 
possible that local asynchrony in LSP (Turner et al. 2020) causes a mismatch between the local 
GPP dynamics recorded at flux towers and the NIRV dynamics of the majority land cover that is 
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captured by our coarser pixels (L. Zeng et al. 2020). This interpretation is supported by the 
sensitivity of tower sites’ validation performance to the distance between them and their nearest 
available NIRV pixels. Both temporal and spatial mismatches could also help explain the 
heightened divergence between the NIRV and SIF datasets in these regions, to the extent that the 
distinct ranges of time and the non-coregistered footprints of the raw sensor data would cause 
differential mixes of vegetation types to propagate through to each of our datasets.
Nonetheless, it is also plausible that a portion of the biome-sensitivity we observe could result 
from a weaker ability of our remote-sensing metrics to reflect productivity (as measured in GPP) 
in some regions; both NIRV and SIF show strong correlation with canopy productivity at 
seasonal-to-annual scales (Pickering et al. 2022; J. Zhang et al. 2022), but a large portion of the 
signal in these metrics is structural (e.g., leaf clumping, leaf-angle distribution; Dechant et al. 
2020), and these metrics’ shortcomings are being actively researched, particularly with respect to
the estimation of GPP (Kim et al. 2021; Yang et al. 2022; M. Zhang et al. 2022). To gain both 
ecophysiological and remote-sensing insight, future work should aim to discriminate between 
cases where the divergence of our NIRV and SIF phenologies from GPP reflects actually 
divergent photosynthetic dynamics – for example, differences in the temporal dynamics of water-
availability experienced under different plant architectures or soil conditions (Phillips et al. 
2016) or in the environmental stress induced by different near-surface climates (Bonan 2008; 
Cohn et al. 2019; Sampaio et al. 2007) – and cases where it instead reflects structural decoupling
of our remote sensing metrics from the true seasonality of canopy productivity. Candidate 
regions for such work could include places where our map registers starkly different phenologies
between closely juxtaposed vegetation types whose occurrence is anthropogenic rather than 
being driven by topoclimate, such that in situ work could determine if the differential remote 
sensing signal across different canopies exposed to the same climate is being driven by actual 
differences in seasonal productivity or just by differences in seasonal canopy structure.

Phenological asynchrony
We estimate spatial asynchrony as the slope of the relationship between a.) the Euclidean 

distances between a pixel’s fitted characteristic annual time series and the fitted time series of all 
of its neighbors, and b.) the geographic distances between a pixel and all its neighbors (explained
in detail in Fig. 3a). (Note that the resulting asynchrony metric is technically expressed in change
in units of the target variable per change in geographic distance, but the units are not especially 
informative and the magnitude of the mapped values is a function of the neighborhood radius 
used for the calculation, such that values be considered arbitrary and only informative when 
considered as relative values within a map.) Global mapping of LSP asynchrony using this 
metric (Fig. 3b) reveals high-asynchrony hotspots centered in temperate Mediterranean climates 
and neighboring xeric regions, in tropical montane regions, and in the ‘arc of deforestation’ and 
other parts of the Amazon basin. All NIRV-derived maps, irrespective of the neighborhood radii 
used to derive them, validate well against independent, SIF-derived maps (R2=0.43 for 
asynchrony calculated at a 50 km radius, 0.49 at 100 km, and 0.52 at 150 km; see Fig. S5). We 
display all 6 phenological asynchrony maps in Figs. S6 and S7, but in our subsequent discussion 
focus on the 100 km-radius NIRV LSP map and all 100 km-radius climatic asynchrony maps, 
both because the daily-composite, uninterpolated, 10-year NIRV dataset provides more robust 
information than the SIF dataset, and because we find that global patterns of asynchrony are 
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largely insensitive to the choice of neighborhood radius size (R2 between NIRV maps at different 
radii are 0.815 for the 50-150 km comparison, 0.899 for 50-100 km, and 0.953 for 100-150 km; 
Table S1 provides these R2s for all radius comparisons and all phenological and climatic 
asynchrony maps produced).

To explore potential drivers of global LSP asynchrony patterns, we constructed a random 
forest model predicting LSP asynchrony as a function of seven covariates (detailed in Table S2): 
the spatial asynchrony of five major climatological variables (mean minimum and maximum 
temperature, mean precipitation, mean climatic water deficit, and mean cloud cover; in Figs. S8-
12, we show these maps for all three neighborhood radii), neighborhood entropy of vegetation 
structure, and topographic complexity (as measured by the vector ruggedness metric). Results 
show a strong ability to predict the broad patterns of phenological asynchrony, irrespective of 
model structure (R2=0.81 and RMSE=0.44, for our ‘main model’, predicting the 100 km-
neighborhood NIRV LSP asynchrony map and including geographic coordinates as covariates; 
we ran models for all three neighborhood radii, for both phenology datasets, and both including 
and excluding geographic coordinates as covariates, and chose this as our main model after 
finding that our results are largely insensitive to phenology dataset, asynchrony neighborhood 
radius, and geographic coordinate inclusion; see Table S3). Our results attribute global patterns 
of LSP asynchrony to three predominant covariates: precipitation asynchrony; minimum 
temperature asynchrony; and neighborhood entropy in vegetation structure (Fig. 4a-b). To 
regionally interpret our global model’s results, we map the local influence of these three 
predominant covariates using SHAP values (Lundberg and Lee 2017) (Fig. 4c). We then combine
these three SHAP maps into the summary map in Fig. 4d, in which the hue of a pixel (yellow, 
cyan, magenta) indicates its predominant covariate, the value (i.e., brightness) indicates the scale 
of predominance, and the saturation (i.e., color richness) is scaled to LSP asynchrony, such that 
low-asynchrony locations fade to white.

The summary map in Fig. 4d, especially when considered in the light of our phenology 
visualization (Fig. 1), suggests a few generalized explanations for the observed global pattern of 
LSP asynchrony. First, asynchrony is low in: moist temperate regions (e.g., eastern North 
America; eastern Asia; Fig. 3b), where consistent water availability but long, harsh winters 
synchronize seasonal LSP across space and across vegetation types; and in most tropical regions 
without substantial topographic variation, where consistent warmth and solar energy allow broad 
regional patterns of precipitation seasonality to similarly synchronize seasonal LSP across space 
and across vegetation types. Second, asynchrony is generally high in global Mediterranean 
climate zones, where distinctly structured vegetation communities show decoupled phenologies 
(Turner et al. 2020), perhaps because of extrinsic topoclimatic controls (e.g., altitudinal variation
in growing season) and intrinsic physiological controls (e.g., differential plant structure and root 
architecture could lead to different seasonal patterns of water availability and thus to different 
resource-use strategies). A similar mechanism could be operating in the western Amazon arc of 
deforestation, but further research is needed to understand the nature of the dramatically different
LSP between forest and juxtaposed non-forest in this anomalous region. Third, precipitation 
asynchrony is a major cause of LSP asynchrony across a number of regions globally, including 
not only the semi-arid mid-latitude regions that neighbor Mediterranean climates (e.g., the 
Mediterranean-monsoon transition zone of North America’s desert southwest and the mountains 
of northwest Africa, the Middle East, Central Asia, and eastern Australia) but also some montane 
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tropical regions characterized by strong precipitation gradients (e.g., eastern Brazil, the 
Afromontane, eastern Madagascar, northeast Queensland). Finally, asynchrony is generally high 
across most other tropical montane regions, where minimum temperature asynchrony is 
sometimes the top covariate, but where covariate predominance is low in many locations (black 
regions of the tropics in Fig. 4d). The apparent importance of minimum temperature is a 
surprising result, given that tropical seasonality is most commonly considered in the context of 
precipitation, but we also find that the high temperature asynchrony we map in the tropics 
recapitulates the findings of Martin et al. (2009), albeit at higher resolution, and it is entirely 
plausible that minimum temperature is a previously unrecognized control on phenology in these 
regions, at least at some elevations or in some biomes. However, we also note that low covariate 
predominance could indicate that complex driver interactions underpin LSP in these regions and 
that more nuanced climatic LSP drivers could be acting in these regions but could be correlated 
with minimum temperature asynchrony and omitted from our model. Finally, it is possible that 
many species phenologies are unrelated to climate in these regions, such that the species 
dominance of a pixel’s signal determines that pixel’s fitted phenology and, when aggregated 
across space, generates a signal of high asynchrony; however, we do not believe this to be the 
case, not only because we would expect it to create ‘static’ in these regions in the Fig. 1 RGB 
map, which we do not see.

The ASH suggests that tropical montane asynchrony could be driven partially by 
differences in phenology between different climatic zones, as would be expected in temperate 
zones, but could also be decoupled from climate to the extent that climatically similar sites can 
have divergent seasonalities. To probe this possibility, we test the hypothesis that the strength of 
the relationship between the pairwise climatic and phenological distances between sites is 
positively correlated with absolute latitude. We first used a clustering algorithm and a hull-
delineation algorithm (together referred to as our ‘regionalization algorithm’) to empirically 
describe a global set of high-asynchrony regions (Fig. 5a, S8a). We drew sets of random points 
within those regions and ran a matrix regression of the form distphen ~ distclim + distgeog on each 
point set, then tested the hypothesis that distclim coefficients from regional models are positively
correlated with regions’ mean absolute latitudes. Because of the potential sensitivity of our 
results to the parameterization of our regionalization algorithm, we ran this analysis for all 27 
combinations of reasonable ranges of values for each of the three regionalization 
hyperparameters parameters (the maximum geographic distance between two points that the 
DBSCAN clustering algorithm could consider to be in the same neighborhood, epsilon: 2, 3.5, 5;
the number of samples required within a neighborhood for a point to be considered as a cluster’s 
core, min_samples: 0.3, 0.45, 0.6; and the value controlling the maximum complexity of a 
region’s alpha-complex polygon, alpha: 0.25, 0.75, 1.25). Summarizing all parameterizations, we
found that the magnitude of the relationship between climatic and seasonal distances varies 
regionally (Fig. 5a) but that the overall pattern provides a clear result: phenological distance 
between sites is less related to climatic distance at lower latitudes (Fig. 5b-c; Monte Carlo P-
value = 0.00) . This supports a core implication of the ASH (Martin et al. 2009), suggesting that 
tropical species – already often more range-restricted by topoclimate (Ghalambor et al. 2006; 
Janzen 1967; Sheldon et al. 2018) and occurring at lower population densities more susceptible 
to genetic drift (terSteege et al. 2013) – are likely to experience additive, allochronic isolation 

102



because of phenological asynchrony between sites that are climatologically equivalent but 
phenologically out of sync.

Indeed, our global asynchrony map identifies high-asynchrony regions in many of earth’s
continental biodiversity hotspots (Myers et al. 2000), including not only tropical montane 
regions (e.g., tropical Andes, Brazil’s Atlantic Forest, and the Afromontane region) but also 
Mediterranean and semiarid regions (e.g., California Floristic Zone, Cape Floristic Province, 
Chile, Western Australian, and the Mediterranean and Caucasus). This striking pattern is 
consistent with the possibility that seasonal asynchrony has played a role in the generation of 
broad biogeographic patterns of species diversity, as predicted by the ASH. Our maps can help to
identify sites where future phenological research can quantify the predictive power of LSP for 
species-level reproductive cycles and where population genetic data can measure the extent of 
allochronic isolation between phenologically asynchronous populations. Compelling support for 
this use comes from the fact that the local seasonal phenologies reported in our dataset show 
strong agreement with the local climatic seasonalities and seasonal breeding phenologies 
reported in the only two field-based population genetic ASH studies we are aware of (Moore et 
al. 2005; Thomé et al. 2021) and that precipitation is both the predominant driver of climatic 
asynchrony identified in those studies and an important covariate in our analysis within these 
regions (Fig. 4d).

Conclusion
Our LSP analysis provides not only unprecedented global understanding of variation in 

canopy phenology at an ecosystem scale but also a globally-consistent demonstration of the 
utility of long-term remote sensing archives for description of characteristic LSP, even in semi-
arid and arid biomes typified by high interannual variability in carbon cycling and low 
signal:noise ratio of remotely-sensed photosynthesis. We identify coherent spatial patterns of 
intercontinental LSP convergence and regional divergence, and contextualize those patterns 
within a broader understanding of spatial bioclimatic variation. Finally, our work provides not 
only the first moderate-resolution global maps of climatic and LSP asynchrony but also new 
insight into the drivers of LSP asynchrony and global patterns in its independence from climatic 
variability, lending strong support to a core prediction implication of the ASH. We believe our 
findings provide a strong foundation for future work in many promising and largely uncharted 
areas of research, including development of higher-resolution, regional LSP and LSP asynchrony
maps, higher-resolution and regionally-focused analyses of the drivers and climatological 
dependence of LSP asynchrony, and evolutionary biogeography research that can more explicitly
consider and account for the potential effects of phenological asynchrony on allochronic genetic 
isolation between conspecific populations.
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Methods
Land surface phenology (LSP) datasets

Both the near-infrared reflectance of vegetation (NIRV) and sun-induced chlorophyll 
fluorescence (SIF) datasets were preprocessed on Google Earth Engine (GEE; Gorelick et al. 
2017). We use a 10-year archive of MODIS-derived NIRV data as our main dataset. Following 
best-practices for estimation of patterns at the annual timescale, we chose the MCD43A4 v006 
dataset (Schaaf and Wang 2015), a nadir bidirectional reflectance distribution function (BRDF) 
adjusted reflectance (Y. Zeng et al. 2022) 16-day temporal composite (L. Zeng et al. 2020). We 
used the version of this data that is publicly available in the GEE data catalog. We did not carry 
out topographic correction because the scale of our analysis (0.05°; ~5.5 km) is sufficiently 
coarse that spatial averaging is expected to remove topographic bias (R. Chen et al. 2022; Y. 
Zeng et al. 2022).

To help validate our NIRV maps, we ran some of our main analyses identically but using 
the global, gridded SIF dataset produced by Yu et al. (2019). This is a spatially contiguous time 
series dataset, interpolated by artificial neural net (ANN) from the spatially discontiguous SIF 
data measured along Orbiting Carbon Observatory 2 (OCO-2) orbital swaths. This dataset was 
rigorously validated, internally and externally, by its authors, who found that it accurately 
captured the global patterns present in the original OCO-2 retrievals and that it explained 81% of
the variation in contemporaneous Chlorophyll Fluorescence Imaging Spectrometer (CFIS) aerial 
measurements taken beneath OCO-2 orbits and 72% of the variation in measurements not 
beneath orbits. We downloaded this data from the Distributed Active Archive Center for 
Biogeochemical Dynamics 
(https://daac.ornl.gov/VEGETATION/guides/Global_High_Res_SIF_OCO2.html), then ingested 
it into GEE.

Given that the SIF dataset interpolates across orbital gaps but that the paper describing 
the dataset did not explicitly validate the seasonal phenological patterns of the interpolated data, 
we compared seasonality in the interpolated, orbital-gap data to seasonality in another, coarser-
resolution SIF dataset collected by the TROPOspheric Monitoring Instrument (TROPOMI). To 
do this, we extracted SIF time series from the ANN-interpolated dataset at a sample of random 
points drawn within OCO-2 orbital gaps in three tropical realms (the Neotropics, tropical Africa, 
and Indo-Pacific and Australia; Fig. S1), then compared those values to contemporaneous time-
series extracted from another high-resolution, satellite SIF dataset derived from data from the 
TROPOMI sensor (Köhler et al. 2018; Köhler and Frankenberg, 2020). We used tropical regions 
for this validation because their lack of a pronounced thermal winter creates the possibility that 
seasonality there exhibits spatially varying patterns that are not accurately recovered by spatial 
interpolation from orbital swaths. If the interpolated dataset adequately captures the true seasonal
patterns of SIF within OCO-2 orbital gaps then its time series should explain the bulk of the 
variation in the TROPOMI time series. Indeed, we found very high correlation between these 
orbital-gap datasets (R2 = 0.87; Fig S2).

Data filtering
In an attempt to exclude locations where our LSP-mapping methodology would return 

inaccurate or artificial results, we produced both LSP maps (NIRV and SIF) using an extensive 
filtering pipeline that removed invalid land cover, data-deficient pixels, and pixels with 

104



statistically insignificant fitted LSP. For land-cover filtering, we used the GEE data catalog asset 
for the 500-meter resolution, yearly, global MODIS land cover dataset (MCD12Q1.006; (Friedl 
and Sulla-Menashe 2019), classified according to the Annual International Geosphere-Biosphere 
Programme’s (IGBP) classification scheme (‘Land Cover Type 1’). To avoid fitting LSP noise 
resulting from land cover/land use change, we removed any pixels at our analysis resolution of 
0.05°, or ~5.5 km (henceforth, ‘target resolution’) within which the most common (i.e., mode) 
land cover type of the 500-meter MODIS pixels was not the same in at least 8 of the 10 years of 
the NIRV time series. Next, to avoid fitting LSP curves to data with no expected productivity, we 
iterated over each year in an LSP dataset and dropped data for any target-resolution pixels where 
> 20% of the 500-meter pixels for that year were classed as permanent snow and ice, barren, or 
water bodies.

Next, because we observed a tendency for the harmonic regression procedure (described 
below) to interpolate spurious second LSP peaks during extended periods of missing data (e.g., 
during high-latitude winters), we removed any target-resolution pixels whose data did not satisfy 
a set of strict non-missingness criteria. First, we dropped any pixels whose LSP time series had 
>50% missing data, a simple step to help remove sites with data dropout because of substantial 
cloud contamination or regular MODIS QC problems. Next, we removed any pixels with a 
monthly mean proportion of non-missing daily NIRV data <0.1. Finally, we removed any pixels 
whose Pielou’s evenness (Pielou 1966) was <0.8; we calculated Pielou’s evenness, J' = H'/H'max
, by calculating H' (i.e., Shannon’s diversity index; (Shannon 1948) using 12 values, each value 
being a monthly average proportion of non-missing daily data over the 10-year NIRV archive. 
Manual inspection of fitted LSP patterns after applying this series of filtering steps confirmed 
successful removal of locations previously producing spurious results.

Finally, after running the global harmonic regression described in the subsequent section, 
we used permutation tests to filter out pixels whose fitted seasonality was insignificant. To do 
this, we ran a number of additional harmonic regressions, each time permuting the LSP time-
series stack so as to scramble any true temporal (i.e. seasonal) pattern. The image of R2 values 
was extracted from each permuted regression and compared to the R2 values from the true 
harmonic regression, and the proportion of permutations for which the permuted time series’ R2 
exceeded the unpermuted R2 was stored, providing a map of empirical P-values for the 
unpermuted fitted LSP patterns. For the phenology portion of the study, we ran this test using 25 
permutations at every pixel globally (because of computational limitations), then filtered out any 
pixels with a P-value ≥ a one-sided significance threshold of ɑ=0.01.
We used the series of filtering steps described above to produce both the NIRV and SIF datasets 
for which we then carried out the LSP mapping and validation analyses described below. This 
allowed us to retain in our LSP mapping results both agricultural land cover and more contiguous
coverage of semi-arid regions, improving the utility and visibility of the resulting LSP 
summaries. However, to maximally avoid sensitivity of our LSP asynchrony analyses to 
anthropogenic and spurious results we made the conservative choice to implement two additional
data-filtering steps prior to producing LSP asynchrony maps. First, because we found that the 
permutation-testing procedure yielded more conservative results when run on the shorter and less
temporally resolved SIF dataset – i.e., dropped many more pixels in semi-arid regions, cloudy 
tropical mountains, and other regions of marginal data quality – we used 100 permutations of the 
SIF data and the same one-sided significance threshold (ɑ=0.01) to produce a second 
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significance mask, then removed from both the NIRV and SIF datasets any pixels flagged as 
insignificant in that mask. Second, because our asynchrony analysis explores the potential 
climatic drivers of LSP we chose to remove any target-resolution pixels whose land cover 
suggested that their phenologies could be influenced by irrigation or other management 
practices, and thus could be at least partly decoupled from climatic control. To do this, we 
removed from both the NIRV and SIF LSP datasets used to calculate asynchrony maps any years’
data at target-resolution pixels where > 20% of the 500-meter pixels in that year’s MODIS land 
cover dataset were classed as croplands, urban and built-up lands, or cropland/natural vegetation 
mosaics.

Estimation and validation of seasonal phenology
To estimate the seasonality of stand-level photosynthesis we ran a harmonic regression 

model, vectorized across all 0.05° pixels in the global NIRV and SIF maps, in which each pixel’s 
time series is predicted as a function of time. For each variable we used the following model:

val = β0 + β1sin(tann) + β2cos(tann) + β3sin(tsem) + β4cos(tsem) + ε

where t is the linear time component (days from the start of the time series), and tann and tsem are 
circular time expressed on annual and semiannual frequencies (i.e., day of the year expressed in 
radians, where 2π radians corresponds to the last day of the year for tann, or to middle and last 
days of the year for tsem). We then retained all resulting coefficient maps except βt, yielding a 
stack of five coefficient maps that describes the detrended, characteristic annual LSP fitted at 
each pixel globally. (Note that this operation is algebraically equivalent to detrending the time 
series and then running a Fourier transform that includes both the annual and semiannual 
frequency components.) We chose to include both the annual and semiannual frequencies in the 
harmonic regression in order to strike a balance between complexity and overfitting. We 
expected that complex annual LSP patterns were likely to occur in locations around the globe 
that have bimodal annual seasonal patterns of precipitation (Knoben 2019) and deep winter 
freeze; indeed, preliminary analysis revealed numerous regions with stronger bimodal than 
unimodal annual LSP patterns (i.e. regions containing many pixels whose R2 values were higher 
in semiannual-only harmonic regression models than in annual-only models) in precisely those 
regions. The chosen linear combination of annual and semiannual components is complex 
enough to allow us to represent annual LSP curves that are unimodal, evenly bimodal (two equal 
peaks and troughs), or unevenly bimodal (featuring major and minor peaks and troughs), but not 
more complex, and thus avoids overfitting by excluding unfounded higher frequencies.

We first validated the annual NIRV LSP map by calculating a map of R2 values between 
each pixel’s fitted annual NIRV and SIF LSP curves. To do this for a given pixel, we first predict 
the pixel’s characteristic annual NIRV LSP as a daily time series by matrix-multiplying the 
pixel’s vector of five retained NIRV coefficients with a 365x5 matrix in which rows represent 
days of the year and columns contain those days expressed in the units of the regression model, 
explained above. We then do the same operation for the corresponding pixel in the SIF map. 
Finally, we calculate the R2 of the two resulting 365-day, detrended, fitted time series. (We 
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henceforth refer to the characteristic LSP time series thus obtained as “fitted LSP curves”.) 
Doing this for all non-missing pixels globally produces the validation map displayed in Fig. 2a. 
We next separately validated the fitted LSP curves for both LSP datasets (NIRV, SIF) against 
gross primary productivity (GPP) curves that we fitted to FLUXNET2015 (Knoben 2019; 
Pastorello et al. 2020) daily GPP data following an identical harmonic regression methodology 
as above. We used data from any tower: 1.) located within a valid, unmasked pixel in our LSP 
datasets or ≤ 2 pixels (queen’s neighborhood) distant from a valid, non-masked pixel; and 2.) 
providing at least one full year of publicly-available GPP data at the time of download (October 
11, 2021), resulting in 237 GPP datasets for validation of the NIRV map and 234 datasets for 
validation of the SIF map. We first manually downloaded all available such datasets from the 
FLUXNET server. We then used Python to iteratively load each tower’s dataset and implement 
the harmonic regression model as long as at least one year of contiguous GPP data was available.
We used the fitted coefficients from each such regression and the matrix multiplication 
previously described to generate a 365-day fitted characteristic GPP curve for each flux tower. 
Finally, for each tower, we calculated the R2 s between the tower’s fitted GPP curve and each of 
the fitted LSP curves corresponding to the tower (i.e., either pertaining to the pixel where the 
tower is located or, if that pixel is masked in our LSP dataset, the nearest valid, non-masked pixel
within a 2 pixel-wide box that surrounds it). We summarize this validation procedure across all 
tower datasets by producing, for each LSP dataset: 1.) a scatter plot of the LSP-GPP R2 values 
overplotted on the Whittaker biomes (Whittaker 1970) (Fig. 2B,D), to depict bioclimatic patterns
in validation performance; and 2.) a scatterplot of LSP-GPP R2 versus GPP time series length 
(Fig. 2C,E), to depict the relationship between GPP data availability and validation performance.

Visualization of seasonal phenology
To visualize the global variability of seasonal phenology present in the results of our 

harmonic regression, we used three-channel color visualization of the results of a dimensionality-
reduction analysis to produce a single global map. First, we used Python to run empirical 
orthogonal functions (EOF) analysis (i.e., principal components analysis (PCA) of 
spatiotemporal data) to reduce the dimensionality of our global set of fitted LSP curves (a data 
cube of dimensionality i x j x 365, where i and j are the latitudinal and longitudinal dimensions 
of our map and 365 is the length of the fitted characteristic daily time series). We ran the EOF 
analysis using the square root of the cosine of the latitude as area weights for pixel data, per 
standard practice.

Finding that the first three EOFs cumulatively explain 95.6% of the total variation in our 
global, we used the red, green, and blue (RGB) color channels to display them, thus visualizing 
the bulk of global canopy phenological variability within a single map. Given that EOFs 1 and 2 
have embedded within them both the unremarkable north-south hemispheric seasonality dipole 
and the hemisphere-independent patterns of interest (e.g., monsoon-driven dynamics), we 
devised a method to transform the raw EOF maps prior to RGB visualization, and hence to 
represent global phenological variability in a consistent color scheme irrespective of the north-
south hemispheric divide. To do this, using WebPlotDigitizer (Rohatgi 2022) we first manually 
digitized a geospatial vector file of the mean intertropical convergence zone (ITCZ) in boreal 
summer (June, July, August) and winter (December, January, February) as presented by Zhisheng
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et al. (2015). Then we used that file to calculate a single, annual-mean ITCZ geospatial vector by
averaging the boreal summer and winter ITCZ latitudes at evenly spaced longitudes across the 
globe. Finally, for each of EOFs 1 and 2, we constructed a synthetic, transformed map by 
calculating w×EOF + (1-w)×(1-EOF), where w varies from 1 in the northern hemisphere to 0 in 
the southern hemisphere and transitions linearly from 1 to 0 in a 10 degree band latitudinally 
bracketing the annual mean ITCZ. We chose to use the ITCZ as the latitudinal boundary across 
which to transform the EOF maps for visualization because it serves as a much more natural 
climatic dividing line between the northern and southern hemispheres than does the equator. We 
heuristically tuned this transformation method so as to minimize the inevitable artefactual color-
warping it creates; nonetheless, to help interpret the main result (displayed in Fig. 1) across the 
region surrounding the ITCZ, where color-warping occurs, we provide in Fig. S2 a pair of 
equivalent RGB maps created using untransformed EOF maps and using EOF maps transformed 
as (1-EOF). Despite the unavoidable color-warping this visualization method creates, we still 
feel that this single-map multivariate summary provides a valuable global comparison of LSP 
patterns, and we emphasize that because this method is used only for visualization it thus has no 
influence on any analytical results of this study.

To highlight focal regions with patterns of interest, we manually defined the bounding 
boxes of each of the focal-region maps within Fig. 1 (a-i), then plotted each focal region’s map 
using the same RGB visualization displayed in the global map. To depict the characteristic 
annual phenological time series corresponding to each of the major colors in a region, we first 
used mini-batch K-means clustering (a version of the standard K-means clustering algorithm that
reduces computational burden by using only a fixed-size random subsample of the full dataset at 
each iteration) to cluster the focal region’s RGB map into K colors, for K=1:10, then visually 
inspected the focal region’s scree plot (% variance explained as a function of K) to visually 
determine the K value nearest to the elbow, and hence the most parsimonious value of K for 
clustering phenologies within the region. We then used K-means clustering for the chosen K 
value to assign each pixel to one of K clusters. Finally, for each cluster, we calculated a summary
time series as the composite of the daily medians of all of the cluster’s pixels’ original time 
series. We used these results to provide a summary comparison of the range of fitted LSP curves 
represented by the RGB map within a focal region: to do this, we plotted each cluster’s summary
time series as a line plot, colored by the RGB value corresponding to the cluster’s center.
Noting regional phenological variability in the Great Basin of the United States (Fig. 2B) that 
appeared to match the cheatgrass-invaded, sagebrush, and montane phenologies presented by 
Bradley et al. (2007), we used ancillary data from Maestas et al. (2020), aggregated to the 0.05° 
resolution of our map, to calculate the average estimated percent annual herbaceous cover in 
each of the three predominant clusters fitted by our analysis. To support our interpretation of the 
three clusters as annual-invaded regions, sagebrush, and montane vegetation, which we based on 
the differences in their average annual herbaceous cover and visual comparison to Bradley et al. 
(2007), we used ANOVA to test the significance of the differences across all three clusters, 
followed by a Tukey Honest Significant Difference (HSD) test to test for significant pairwise 
differences between the clusters.

Calculation of phenological asynchrony
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Although GEE is designed for carrying out a set of common spatial analysis operations at
scale, it is not well suited to the calculation of custom neighborhood metrics such as
our spatial asynchrony metric. Thus we exported the results of our filtered harmonic regression 
as a series of TFRecord (TensorFlow Record) files, each containing a stack of images of the 
regression coefficients for a number of rectangular geographic regions. Earth Engine accepts a 
‘kernel width’ argument for the export of these files, which determines the extent of overlap 
between neighboring regions. We set the kernel width to be double our largest target 
neighborhood size (300 km = 2 150 km), thus outputting a series of files whose new ✕

asynchrony images could be independently calculated. These new asynchrony files were 
processed using parallel Julia (Bezanson et al. 2017) code on a supercomputer (UC Berkeley’s 
Savio cluster, using the savio3 partition, each node of which contains a 2.1 GHz Skylake 
processor with 32 cores and 96 GB of RAM).

We calculated a global image of our asynchrony metric as a series of regional tiles, and 
each tile was calculated pixel-wise, using an algorithm founded upon that described in Martin et 
al. (2009):

1. Use the regression coefficients to calculate the 365-day annual time series of fitted SIF or
NIRV values for the focal pixel (following the matrix-multiplication operation explained 
above);

2. Identify all pixels whose centerpoints are within the chosen neighborhood radius of the 
focal pixel (the ‘neighbor pixels’);

3. For each neighbor pixel:
1. Calculate the fitted SIF or NIRV time series (again using the same matrix 

multiplication);
2. Calculate and save the 365-dimensional Euclidean phenological distance between 

that time series and the focal pixel’s time series (after standardizing both);
3. Calculate and save the geographic (geodesic) distance to the focal pixel;

4. Calculate asynchrony as the slope of the overall regression of neighbor-wise Euclidean 
phenological distances on neighbor-wise geographic distances;

5. Store the asynchrony value (as well as the R2 and sample size of the regression used to 
devise it).

(This algorithm is visualized in Fig. 3a, and the methods used to visualize it are described in the 
subsequent section.) Finally, we used Python to mosaic the resulting collection of asynchrony 
image TFRecord tiles into a global map (displayed in Fig. 3b).

Asynchrony conceptual diagram
To depict the calculation of asynchrony, we first simulated harmonic-regression output 

for a low-asynchrony region (as a 5-layer stack of mean coefficient values with rasters of low-
relative-magnitude Gaussian noise added to them) and for a high-asynchrony region (as a 5-layer
stack of mean coefficient values with large-relative-magnitude spatially autocorrelated noise 
added to them, using neutral landscape models (NLMs) generated by the nlmpy package 
(Etherington et al. 2015)). We reduced each 5-layer simulated map to a single-layer map by 
calculating each pixel’s 365-day fitted phenological time series from the pixel’s simulated vector 
of 5 harmonic regression coefficients, then calculating the day of the year when the simulated 
variable reaches its peak. We display the resulting day-of-peak maps, colored using a cyclical 
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colormap, in the left column of Fig. 3a, showing a low-asynchrony region in the upper row and a
high-asynchrony region in the lower row, and we superimpose on each a translucent circular 
neighborhood within which the center pixel’s asynchrony metric will be calculated. We display 
line plots of all of an asynchrony neighborhood’s pixels’ fitted time series in the center column. 
We then display scatter plots of an asynchrony neighborhood’s pixels’ geographic distance-
phenological distance relationships in the right column, along with the zero-intercept simple 
linear regressions fitted to those scatter plots, the slopes of which serve as the center pixel’s 
asynchrony metric (as explained in the previous section). We use orange and red stars (left and 
right columns) and orange and red curves (center column) to track the behavior of a pair of focal 
neighbor pixels at nearer and further geographic distance from the focal pixel (i.e., the black star 
at the centers of the maps in the left column).

Calculation of climatic and physiographic covariates
For our random forest model exploring the potential drivers of phenological asynchrony 

(explained in the next section) we used workflows combining GEE, Julia, GDAL, and Python to 
produce a number of physiographic and environmental covariates. We saved all covariates as 
GeoTIFF rasters, aggregated to the resolution of our response variable (NIRV, 0.05°), for 
downstream statistical analysis in R (R Core Team 2021). (For a detailed synopsis of the 
covariates, see Table S2.)

First, we used the 64-year archive of TerraClimate data (Abatzoglou et al. 2018) to 
develop a set of maps describing the asynchrony of climatic factors potentially driving 
phenological asynchrony: minimum and maximum monthly temperature, monthly precipitation, 
climatic water deficit. We supplemented this with a map of asynchrony in cloud cover by 
extracting the internal cloud algorithm flag bit (bit 10 of the 1 km reflectance data QA band) 
from the MODIS Aqua and Terra daily 1 km global surface reflectance archive (MYD09GA.006 
(Vermote and Wolfe 2015b) and MOD09GA.006 (Vermote and Wolfe 2015a). We accessed both 
the TerraClimate and MODIS datasets using the GEE data catalog, reprojected them to match our
target resolution (0.05°), processed them using the same harmonic regression workflow 
described above for the LSP datasets (minus the LSP-specific data filtering pipeline), then 
downloaded the set of overlapping TFRecord image tiles and processed them on UC Berkeley’s 
Savio cluster using the same parallelized Julia code as used for the LSP asynchrony maps. This 
resulted in a series of three asynchrony maps for each climatic variable, one for each of our three
neighborhood radii (50 km, 100 km, 150 km).

To allow the random forest to capture phenological asynchrony between juxtaposed and 
structurally distinct vegetation communities that is not attributable to climatic asynchrony, we 
used GEE to create a global map of entropy in vegetation structure within 100 km neighborhoods
(henceforth, the ‘vegetation entropy map’). To do this, we used a 10-year series (matching the 10
years of the NIRV dataset) of reclassed annual MODIS IGBP 500 m land cover (Friedl and Sulla-
Menashe 2019; the same dataset used in the LSP data-filtering workflow described above). We 
reclassed land cover into categories of forest (IGBP classes 1-5: evergreen or deciduous 
broadleaf or needleleaf forests and mixed forest), shrubland (IGBP classes 6 and 7: closed and 
open shrublands), savanna (IGBP classes 8 and 9: woody savannas and savannas), grassland 
(IGBP class 10), or permanent wetland (IGBP class 11); we masked out IGBP classes 12 and 
above (croplands and cropland mosaics, urban and built-up lands, permanent snow and ice, 
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barren, and water bodies) so that the information captured by this covariate would match the 
information reflected in the LSP asynchrony response variable from which the same categories 
were removed. Next, we reduced the stack of 10 years’ reclassed vegetation structure maps into a
single map representing the most common class (i.e., mode), then for purposes of computational 
tractability we aggregated that map to 0.05° using the mode. Finally, we calculated the entropy of
the vegetation structure classes within each pixel’s circular (100 km radius) neighborhood, 
producing the vegetation entropy covariate map.

To capture the potential importance of topographic complexity for driving phenological 
asynchrony, we downloaded a global map of the vector ruggedness metric (Sappington et al. 
2007) as a final covariate. We chose this over other measures of topographic complexity because 
of its reduced correlation with slope. We downloaded the layer produced by Amatulli et al. 
(2018) from http://www.earthenv.org/topography, choosing the SRTM-derived, median-
aggregated layer at 50 km so that each 50 km pixel could serve as a proxy for a true 
neighborhood metric, providing information about the area surrounding our ~5.5 km (0.05°) 
target-resolution LSP response variables.

Drivers of phenological asynchrony

To explore the potential drivers of LSP asynchrony, we constructed a random forest 
model (using R’s ranger package; Wright and Ziegler 2017) predicting LSP asynchrony using 
the set of neighborhood-metric covariates described above (and detailed in Table S2): 
LSP.asyneigh ~ ppt.asyneigh + tmp.min.asyneigh + tmp.max.asyneigh + def.asyneigh + cld.asyneigh + 
veg.ent + vrm.med [+ x + y], where LSP.asy is asynchrony of LSP datasets (using either the 
NIRV or SIF dataset), neigh indicates the asynchrony neighborhood radius, ppt.asy is 
precipitation asynchrony, tmp.min.asy and tmp.max.asy are minimum and maximum temperature
asynchrony, def.asy is climatic water deficit asynchrony, cld.asy is cloud cover asynchrony, 
veg.ent is vegetation structural entropy, vrm.med is the median vector ruggedness metric, and x 
and y are longitude and latitude (brackets indicating optional inclusion). We chose the random 
forest algorithm for this analysis because of its ability to robustly model non-linear relationships,
suited to our expectation that phenological asynchrony would be driven by different and 
potentially interacting factors in different regions of the globe. We developed a comprehensive 
and conservative modeling workflow, described in detail below, then ran this workflow once for 
each combination of LSP dataset (NIRV, SIF), neighborhood radius (50 km, 100 km, 150 km), 
and coordinate inclusion (geographic coordinates either included or excluded as covariates; we 
check sensitivity to this because of lack of consensus about how to handle spatial data within 
random forests; J. Li et al. 2011; Sekulić et al. 2020). This produced a final set of 12 models, the 
results of which we summarize in Table S3. Because we found that salient results are largely 
insensitive to choice of LSP dataset, neighborhood radius, and coordinate inclusion, we chose the
100 km, NIRV-based, coordinates-included model as the main model to summarize in the text.

Prior to producing final results, we prepared the modeling data, tuned hyperparameters, 
and carried our feature selection. First, we coprojected the response and covariate rasters in a 
metric projection (EPSG: 3857) to ensure coordinates are expressed in meters, then stacked them
and extracted their values at all non-masked pixels. Next, we carried out comprehensive 
hyperparameter tuning (Boehmke and Greenwell 2019), assessing model performance as a 
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function of five random forest tuning parameters (number of trees per forest: ntree = 150, 200, 
250, 300; fraction of observations to use in each tree, for tree decorrelation: sample.fraction = 
0.3, 0.55, 0.8; minimum number of observations that can be captured by a node: min.node.size = 
1, 3, 5, 10; size of random subset of variables from which to choose each node’s split variable: 
mtry=2, 4; and whether to sample with replacement: replace = true, false) and a function of the 
fraction of the full global dataset used for modeling (subset.frac = 0.05, 0.005; drawn as a 
random subsample, quartile-stratified by the LSP response variable, to reduce the computational 
strain imposed by the size of the modeling dataset but not cause excessive information loss). We 
included geographic coordinates in all models used for hyperparameter tuning, as we intended to 
retain them in the main model assessed in the text (unless we found that predominant results 
were highly sensitive to their inclusion). We used as a performance metric the root mean squared 
error (RMSE) of the model fitted to a 60% training split of the subsampled global dataset, but 
found that the RMSE of the predictions made on the 40% test split yielded the same set of 
optimum-performance hyperparameter choices. Lastly, before running the final set of models we 
confirmed that none of our subsetted datasets contained highly collinear variables (i.e., R2 >= 
0.75), and we used the Boruta feature-selection algorithm (Kursa and Rudnicki 2010) to select 
our final feature set (but found no features to be dropped).
We produced the final 12 models of results (Table S3) by constructing each model using the 
optimum hyperparameters indicated by our tuning results (ntree = 300, sample.fraction = 0.8, 
min.node.size = 1, mtry = 3, replace = false, and subset.frac = 0.05). To assess each model, we 
calculated two variable importance metrics (permutation-based: ranger’s default importance 
metric, using the comparison between the accuracy of out-of-bag sample predictions and the 
same accuracy calculated after permuting covariate values, averaged over all trees; and ‘SHAP’: 
absolute Shapley Additive Explanations (SHAP) values (Lundberg and Lee 2017) summed 
across all predictions in a model’s training dataset), as well as two metrics of overall model 
performance (R2 and RMSE). Finally, we use each mode to make predictions at each pixel in our 
global dataset and to calculate prediction errors (mapped in Fig. S13), as well as SHAP values 
(to help with spatial model interpretability). Noting minimal variability across models in the top-
importance covariates (Table S3), we summarize the main model (100-km NIRV, coordinates 
included) in the text and in Fig. 4, including all covariates’ importance metrics (Fig. 4a), maps of 
the covariate maps (Fig. 4b) and SHAP values for the three top-importance (by SHAP value) 
covariates (Fig. 4c), and a SHAP-value summary map (Fig. 4d). The summary map combines the
three SHAP maps shown in Fig. 4c into a single map in which each pixel’s hue (yellow, cyan, or 
magenta) indicates the top covariate at that pixel (by absolute SHAP value), saturation indicates 
the scale of predominance (with pixels grading toward white as the standard deviation of their 
SHAP values approaches 0), and value (i.e., brightness) indicates magnitude of LSP asynchrony 
(such that the lowest-asynchrony locations fade to black), such that color indicates the likely 
predominant driver within a high-asynchrony area, white whiter colors indicating greater 
uncertainty about driver predominance or stronger driver codominance. 

Regional relationships between climatic distance and phenological distance
To test the hypothesis that phenological asynchrony is less dependent on climatic 

difference at low latitudes than at higher latitudes, we ran an ensemble analysis. Each sub-
analysis in the ensemble first uses clustering to delineate a global set of high-asynchrony regions,
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then uses matrix regression to estimate the slope of the relationship between climatic distance 
and phenological distance (henceforth, the climate-phenology correlational strength) within each 
region, then finally assesses the relationship between regions’ mean latitudes and their climate-
phenology correlational strengths. To avoid sensitivity to the specific values chosen for the three 
parameters used in the region-delineation process we repeated sub-analyses across combinations 
of low, middle, and high values for those parameters, then used Monte Carlo analysis to yield 
final summary results across the ensemble.

First, to delineate high-asynchrony regions, we first converted our NIRV LSP asynchrony 
map into a map of maximum-asynchrony pixels by setting all pixels ≥ the 95th percentile 
asynchrony value to 1 and masking all other pixels. We then used the DBSCAN clustering 
algorithm (Ester et al. 1996) to cluster those high-asynchrony pixels into high-asynchrony 
clusters. We chose the DBSCAN algorithm because of its ability to robustly identify arbitrary-
shape clusters around the high-density centers of a point set, without forcing all points to have 
cluster assignments, which was a good match for the noisiness of our asynchrony metric and thus
of the maximum-asynchrony map. Finally, we used the alpha-complex algorithm (a straight-line 
edge variant of the alpha-hull algorithm), implemented in Python by the Alpha Shape Toolbox 
(Bellock 2021), to delineate those clusters as high-asynchrony regions. This algorithm allowed 
us to relax the convexity and contiguity assumptions of other hull-determination algorithms, and 
thus to flexibly delineate complexly-shaped regions (e.g., mountain arcs) without inevitably 
including all intervening geographic area as would occur with a convex hull.

To assess the relationship between a region’s mean latitude and the strength of correlation
between climatic and phenological distances within that region, we first standardized and stacked
each of the 19 WorldClim bioclimatic variables (Fick and Hijmans 2017) and standardized our 
global map of 365-day fitted LSP curves. Then, for each delineated region, we executed the 
following algorithm:

1. Draw a set of 1000 random points within the region, then subset them to all N points that 
fall within non-masked NIRV pixels;

2. Calculate the matrix of pairwise phenological distances (distphen) between all N points 
(calculated as 365-dimensional pairwise Euclidean distances between points’ paired time 
series);

3. Calculate the matrix of pairwise climatic distances (distclim) between all N points 
(calculated as 19-dimensional pairwise Euclidean distances between points’ vectors of 
bioclimatic values);

4. Calculate the matrix of pairwise geographic distances (distgeog) between all N points 
(calculated as Great Circle distances);

5. Standardize all three variables (so that coefficients of all regressions are beta coefficients,
and hence comparable), then run a multiple-matrix regression with randomization 
(MMRR; Wang 2013) on the resulting matrices, using the formula distphen ~ distclim + 
distgeog;

6. Save the distclim coefficient from the MMRR, as well as the region’s mean pairwise 
standardized climatic distance and its mean absolute latitude

Given the possible sensitivity of this analysis to the specific values chosen for the two 
main DBSCAN parameters (epsilon (eps): the maximum geographic distance between two points
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that can be considered to be in the same neighborhood, expressed in decimal degrees in our 
analysis; minimum number of samples (min_samples): the number of samples required within a 
neighborhood for a point to be considered as a core point) and the main alpha-complex 
parameter (alpha: a value controlling how edge members are chosen, and thus determining the 
maximum complexity of the hull’s edge), we reran the above analysis for all combinations of 
reasonable low, middle, and high values for each of the three parameters: eps = 2, 3.5, 5; 
min_samples = 0.3, 0.45, 0.6; alpha = 0.25, 0.75, 1.25.

As a final step, we then summarized the ensemble results of all 27 (=33) region-
delineation parameterizations by running the overarching, ensemble simple linear regression 
model coeffdist,clim ~ βlat|latmed|, using βlat to test the null hypothesis that the regions’ climate-
phenology correlational strength is equal across mean absolute latitude. Because this regression 
violates the assumption that independent variable samples are IID – each point represents a 
clustered and delineated high-asynchrony region, and those regions can overlap across distinct 
parameterizations of the sub-analyses – we use Monte Carlo analysis to generate an empirical P-
value for βlat in the ensemble linear regression model: We run 1000 iterations of the same 
regression, each time permuting the vector of |latmed| values, then calculate an empirical P-value 
as the fraction of the 1000 simulated βlat that are at least as extreme as the true βlat.
We display the results of the ensemble linear regression as scatter plot and trend line (Fig. 5b), 
and display the results of the Monte Carlo analysis as a histogram depicting the empirical 
distribution of simulated βlat and a vertical line depicting the true βlat value relative to that 
distribution (Fig. 5c). To provide a spatially explicit geographic interpretation of the results of 
this analysis, we also map a summary of the ensemble results as a hexbin map (Fig. 5a), with the 
color of each hexbin indicating the mean βlat of all high-asynchrony regions whose delineated 
alpha-complex polygon spatially intersects the hexbin.
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Figures

Figure 1: Phenological diversity: Global LSP visualization. Colors result from depicting in red,
green, and blue the top three modes of our global empirical orthogonal functions (EOF) analysis 
(after folding across the intertropical convergence zone (ITCZ) any EOFs that display a north-
south hemispheric dipole, for inter-hemispheric comparability; see methods). These three EOFs 
together explain >90% of the variation in the annual phenologies fitted to our filtered, global 
time series of MODIS near-infrared reflectance of vegetation (NIRV). a-i: Zoomed maps of the 
focal regions discussed in the text, paired with line plots depicting the median fitted phenologies 
of the major color clusters occurring in the regions. Clusters were derived using K-means 
clustering, with K chosen by visual inspection of scree plots and regional maps; they facilitate 
visual interpretation but have no influence over any quantitative or statistical results. Regions 
(and the color-interpretation mentioned in the text) include: a. Great Basin, USA (green: 
cheatgrass; olive: sagebrush; orange: montane); b. Southern California, USA and Baja California,
Mexico (lime green to blue: Mediterranean winter-monsoon climate region; pink to purple: 
summer-monsoon climate region) c. Southern Florida, USA (dark green-blue: Everglades 
sawgrass marsh; light green: wooded wetland; orange-red: drained, urban, upland, and 
mangrove); d. mouth of the Amazon River, Brazil (indigo and maroon: forest; light blue: non-
forest); e. Cape Region, South Africa (green: non-forest Mediterranean vegetation; peach: 
isolated wet forests; dark blue, purple, and pink: dry woodland, shrubland and desert, and 
grassland); f. Madagascar (orange: coastal wet forests; pink and purple: seasonally dry forests, 
shrublands, and savannas); g. Southwest Australia (color-interpretation same as for e.); h. Cape 
York Peninsula, Australia (color-interpretation same as for f.); i. northern Italy and surroundings 
(rose: maize-rich agricultural regions; green: other agriculture, and non-forest vegetation; peach-
orange: montane forest).
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Figure 2: FLUXNET validation of NIRV phenology: A. Agreement between NIRV and SIF 
fitted phenologies. Each pixel shows the R2 value (scaled from 0=black to 1=white) between the 
characteristic annual phenology curves fitted to that cell’s NIRV and SIF datasets. Areas of poor 
validation mainly cluster in temperate-to-hot semi-arid ecosystems, especially in the southern 
hemisphere, where interannual carbon-cycle variability depends largely on stochastic 
precipitation (Broich et al. 2014; Buitenwerf et al. 2015; Poulter et al. 2014) and may drive 
decorrelation between the characteristic LSP curves fitted to our 10-year NIRV and 4.25-year SIF
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samples. B. and D. Flux-tower validation performance across global biomes, for the NIRV (B.) 
and SIF (D.) datasets. Each flux tower’s site is plotted in the environmental space defined by the 
site’s mean annual temperature (MAT) and mean annual precipitation (MAP), with the Whittaker
biomes (Whittaker 1970) plotted beneath for context. Sites are colored by the R2 (again scaled 
from 0=black to 1=white) between the characteristic annual phenology fitted to the remote 
sensing data at that site (or up to two map pixels away, ~11 km, distant) and the characteristic 
annual GPP phenology fitted, using identical methods, to the site’s daily flux tower data. As in 
part A, the worst-performing flux tower sites also fall mostly within semi-arid and arid biomes 
typified by large interannual C-cycle variability. C. and E. Flux-tower validation performance of 
the NIRV (C.) and SIF (E.) datasets, as a function of the length of available GPP time series. The 
worst-performing sites in our validation analysis frequently feature GPP time series shorter than 
the remote sensing time series used to estimate seasonal phenology (10 years for NIRV; 4.25 
years for SIF), and do not necessarily overlap or nest within the time period covered by the 
remote sensing time series, again likely contributing to poor validation because of differential 
temporal sampling of these regions’ characteristically stochastic interannual photosynthetic 
variability.
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Figure 3: Phenological asynchrony: A: Conceptual diagram depicting the stepwise calculation 
(from left to right) of spatial asynchrony for a focal pixel located in either of two simulated 
regions, one of low asynchrony (upper row) and one of high asynchrony (lower row). Maps in 
the left column depict spatial heterogeneity in phenology (depicted here as the day of the year of 
peak seasonality, as shown on the colorbar). The central focal pixel (black star) is the pixel for 
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which an asynchrony value is being calculated, using an analysis that considers the pairwise 
comparisons between the focal pixel and each other pixel inside the neighborhood (white dashed 
line). The line plots in the middle column depict the characteristic annual phenologies pertaining 
to each of the neighbor pixels inside the circular neighborhood (set of dim gray curves) and the 
focal pixel (bold black curve). Scatter plots in the right column depict the relationship between 
pairwise geographic distances and pairwise phenological distances, where each distance is 
calculated between the focal pixel and another pixel somewhere in the neighborhood. The slope 
of the trend line fitted to one of the scatter plots in the right column (by simple linear regression) 
is taken as the focal pixel’s asynchrony metric. To demonstrate why this is so, two neighbor 
pixels – at shorter (orange) and further (red) geographic distances from the focal pixel – are 
tracked across the series of plots. In the low-asynchrony region, distance from the focal pixel 
does little to change the date of a neighbor pixel’s peak phenology (top row, left) and little to 
change the Euclidean distance between the phenology curves at the focal and neighbor pixels 
(top row, center), such that the scatter plot for all neighbor pixels remains relatively flat (top row,
right). However, because of the large phenological heterogeneity in a high-asynchrony region, 
neighbor pixels further from the focal pixel often fall in locations with considerably different 
phenologies from the focal pixel (bottom row, left); as neighbor pixels get further from the focal 
pixel they tend to have phenologies whose curves have greater Euclidean distances from the 
focal pixel’s curve (bottom row, center; note that the orange and then red curves appear 
increasingly warped with respect to the bold black curve), and thus the full set of pairwise pixel 
comparisons builds up a geographic-phenological distance scatter plot with a strong slope that is 
indicative of the region’s high asynchrony (bottom row, right).  B. Global LSP asynchrony map. 
This map shows the result of applying the asynchrony metric explained in A. to the annual LSP 
curve fitted at each pixel in our filtered, global dataset of MODIS near-infrared reflectance of 
vegetation (NIRV). Brighter colors indicate increasing spatial asynchrony of land-surface 
phenology. (By dimensional analysis, asynchrony is expressed in change in units of the variable, 
which here (NIRV) is unitless, per change in geographic distance (meters), but the magnitude of 
the mapped values is a function of the neighborhood radius usd for the calculation and thus 
should be considered arbitrary, with only the relative values within a map being informative.)
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Figure 4: Correlates of spatial phenological asynchrony: A. Variable importance results for 
the main model (predicting 100-km neighborhood NIRV LSP asynchrony, including geographic 
coordinates as covariates). Variable importance is shown using two metrics (mean SHAP values, 
in dark gray, and permutation-based importance, in light gray). Variables are ordered top-down 
by decreasing SHAP importance, and are: longitude (‘y’), latitude (‘x’), precipitation asynchrony
(‘ppt.asy’), minimum temperature asynchrony (‘tmp.min.asy’), vegetation structural entropy 
(‘veg.ent’), cloud cover asynchrony (‘cld.asy’), maximum temperature asynchrony 
(‘tmp.max.asy’), median vector ruggedness metric (‘vrm.med’), and climatic water deficit 
asynchrony (‘def.asy’). Covariates are explained in detail in Table S2. B. Maps of the top three 
covariates in the main model: ppt.asy, tmp.min.asy, and veg.ent. These three top variables were 
largely consistent across all models run, with only vegetation structural entropy being outranked 
by cld.asy and tmp.max.asy depending on the importance metric and model (see Table S3 for all 
variable importance results). C. Maps of the top three covariates’ local Shapley (SHAP) values. 
For a given covariate’s map, each pixel value indicates the magnitude and direction of the 
covariate’s influence on the random forest’s predicted LSP asynchrony at that pixel; thus, each 
map provides an interpretation of the overall importance of a covariate and its regionally variable
influence. D. Summary interpretation map. We combine the three SHAP maps shown in part C. 
into a single map in which each pixel’s hue (yellow, cyan, or magenta) indicates the top covariate
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at that pixel (by absolute SHAP value), value indicates the scale of predominance (with pixels 
grading toward black as the standard deviation of their SHAP values approaches 0), and 
saturation (i.e., brightness) indicates magnitude of LSP asynchrony (such that the lowest-
asynchrony locations fade toward white, down to the 50th percentile of asynchrony, beyond 
which all pixels are masked out for ease of interpretability). Thus, color indicates the likely 
predominant driver of LSP asynchrony within a high-asynchrony area, and blacker areas indicate
greater uncertainty about driver predominance or stronger driver codominance. 
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Figure 5: Latitudinal variation in the climate-dependence of phenological asynchrony 
Summary results of an ensemble of MMRR models, run for high-asynchrony regions identified 
and delineated worldwide, estimating the strength of the relationship between seasonal and 
climatic differences (i.e., the magnitude of the fitted parameter βdist_clim). The weaker this 
relationship within a given high-asynchrony region, the more climatically similar are sites with 
divergent phenologies, increasing the likelihood of allochronic isolation between separate 
populations of species with even narrow climatic niches. A. Geographic summary of results. 
Each hexbin’s color represents the mean βdist_clim value of all high-asynchrony regions whose 
polygons intersect the hexbin. B. Ensemble results (one point per delineated high-asynchrony 
region) reveal a pronounced positive relationship between βdist_clim mean absolute latitude. C. 
Monte Carlo simulation across the ensemble results finds that the positive slope in part B. 
(0.003) is significantly greater than the slopes derived from permuted datasets (empirical P-value
= 0.000).
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Supplemental Tables

var neigh_comp r2

NIRv 50|100 0.899428419489627

50|150 0.815051543652447

100|150 0.95337020709664

SIF 50|100 0.922104746726498

50|150 0.855458768735066

100|150 0.963384263699549

tmp.min 50|100 0.916903137228962

50|150 0.829598693399889

100|150 0.964465064925608

tmp.max 50|100 0.908327519666317

50|150 0.810494307011837

100|150 0.962091739192981

ppt 50|100 0.905029141661629

50|150 0.805820312505186

100|150 0.958061440484181

def 50|100 0.885057581983968

50|150 0.768739569782019

100|150 0.952231915095714

cld 50|100 0.921166001980917

50|150 0.836354336807822

100|150 0.964853126234789

Table S1: R2 s of inter-neighborhood asynchrony map comparisons for all asynchrony 
variables produced The left column lists all variables for which we calculated asynchrony maps
(abbreviations: tmp.min = TerraClimate minimum temperature; tmp.max = maximum 
temperature; ppt = TerraClimate precipitation; def = TerraClimate climatic water deficit; cld = 
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MODIS cloud cover). The middle column shows the two neighborhood radii for which the R2 is 
calculated.
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covar description data source

tmp.min.asy

spatial asynchrony in the seasonality of monthly 

minimum temperature, based on 73 years 

(01/01/1958 - 12/01/2021) of TerraClimate 

monthly means

https://developers.google.com/earth-

engine/datasets/catalog/

IDAHO_EPSCOR_TERRACLIMATE

tmp.max.asy

spatial asynchrony in the seasonality of monthly 

maximum temperature, based on 73 years 

(01/01/1958 - 12/01/2021) of TerraClimate 

monthly means

https://developers.google.com/earth-

engine/datasets/catalog/

IDAHO_EPSCOR_TERRACLIMATE

ppt.asy

spatial asynchrony in the seasonality of monthly 

precipitation, based on 73 years (01/01/1958 - 

12/01/2021) of TerraClimate monthly means

https://developers.google.com/earth-

engine/datasets/catalog/

IDAHO_EPSCOR_TERRACLIMATE

def.asy

spatial asynchrony in the seasonality of monthly 

climatic water deficit, based on 73 years 

(01/01/1958 - 12/01/2021) of TerraClimate 

monthly means

https://developers.google.com/earth-

engine/datasets/catalog/

IDAHO_EPSCOR_TERRACLIMATE

cld.asy

spatial asynchrony in the seasonality of cloud 

cover, based on 10 years (01/01/2010 - 01/01/2020)

of MODIS Aqua (MYD09GA v.006) and Terra 

(MOD09GA v.006) daily cloud band data

https://developers.google.com/earth-

engine/datasets/catalog/

MODIS_006_MOD09GA

https://developers.google.com/earth-

engine/datasets/catalog/

MODIS_006_MYD09GA

vrm.med

median of the vector ruggedness metric (which an 

index of topographic complexity), calculated from 

SRTM DEM data and calculated at within ~50 km-

resolution pixels

http://www.earthenv.org/topography

veg.ent

entropy, in 100 km-radius circular neighborhoods, 

of vegetation structural types, reclassed from the 

MODIS v.006 annual land cover time series

https://developers.google.com/earth-

engine/datasets/catalog/

MODIS_006_MCD12Q1

x pixel-center longitude n/a

y pixel-center latitude n/a

Table S2: Synopsis of covariates for phenological asynchrony random forest model Table 
includes the abbreviated code for each covariate (left column; these codes also appear in Figure 
4), a detailed description of the metric calculated (center column), and the URL of the original 
data source (right column).
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Table S3: Summary results of all phenological asynchrony random forest models Results 
include variable importance (both SHAP- and permutation-based; left and center columns) and 
overall model performance (R2 and mean squared error (MSE); right column), and are shown for 
models either including or excluding geographic coordinates as covariates (rows) and for models
using both phenology metrics and using all three neighborhood radii (columns and sub-columns 
within each sub-table).
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Supplemental Figures

Fig S1: Raw EOF maps Each map shows one of the three predominant modes of characteristic 
annual LSP spatiotemporal variability resulting from our EOF analysis. EOF values are 
standardized and centered on zero, and maps are ordered by decreasing percent total variance 
explained, from top to bottom.
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Fig S2: Untransformed RGB LSP maps Above: The raw values of all three top EOF modes 
depicted as red, green, and blue. Below: The three top modes depicted as red, green, and blue, 
but with modes 1 and 2 transformed to 1-mode (as is done in Figure 1 for the portions of the map
south of the ITCZ).
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Figure S3: Orbital-gap validation points for SIF dataset: Map of random points chosen 
within Orbiting Carbon Observatory 2 (OCO-2) orbital gaps, used for the validation of our main 
SIF dataset against TROPOspheric Monitoring Instrument (TROPOMI) SIF data (Figure S3).
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Figure S4: Validation of OCO-2 orbital-gap SIF time series against TROPOMI SIF time 
series For each point sampled in each of the three regions depicted in Figure S2 (orange: South 
America; purple: Africa; blue: Indo-Pacific and Australia), all contemporaneous estimates from 
the ANN-gridded SIF dataset used in our asynchrony maps and from the TROPOMI validation 
dataset are scattered. A simple linear regression depicts the level of agreement between these two
independent sets of measurements.
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Figure S5: Correlation between NIRV and SIF phenological asynchrony maps, across 3 
neighborhood radii Maps show the raster difference between standardized NIRV and SIF-
derived phenological asynchrony maps for a given asynchrony neighborhood radius (top: 50 km;
middle: 100 km; bottom: 150 km). For each neighborhood radius, original asynchrony map pixel 
values are scattered together at the right, and a simple linear regression depicts their relationship 
and correlation (R2).
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Figure S6: NIRV asynchrony maps, for all 3 neighborhood radii
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Figure S7: SIF asynchrony maps, for all 3 neighborhood radii
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Figure S8: Minimum temperature asynchrony maps, for all 3 neighborhood radii
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Figure S9: Maximum temperature asynchrony maps, for all 3 neighborhood radii
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Figure S10: Precipitation asynchrony maps, for all 3 neighborhood radii
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Figure S11: Climatic water deficit asynchrony maps, for all 3 neighborhood radii
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Figure S12: Cloud-cover asynchrony maps, for all 3 neighborhood radii
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Figure S13: Map of standardized random forest prediction errors Values show the difference
between the LSP asynchrony predicted by our random forest model and the actual LSP 
asynchrony value. Values shown are for our main model, using NIRV-based LSP data and a 100 
km neighborhood radius and including geographic coordinates as covariates.
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Conclusion
In this final section I conclude the body of work detailed above. For each chapter, I first 

summarize key research findings, then articulate their importance, limitations, and implications 
for future work. It is my hope that the key points outlined below will serve as stepping stones, 
both for myself and for other researchers, in the endless effort to understand how evolution 
unfolds in the space and time of real-world environments.

In chapter 1, I produce and validate Geonomics, a robust Python scripting framework 
within which arbitrarily complex landscape genomic simulations can be built and explored. All 
validation tests are successful, demonstrating the Geonomics successfully recreates results 
expected under classical population genetics theory. And as the demonstration simulations in that
chapter make clear, the broad capacity, flexibility, and ease of use of Geonomics can make it of 
great use to future theoretical and empirical research efforts. This contribution is important, as 
previously available comparable tools can be prohibitively complicated to learn and use, limiting
the accessibility and usability of the state-of-the-art simulation resources that are crucial to 
progress in landscape genetics. 

Geonomics, like all tools, nonetheless has its many limitations – it is a strong and 
convenient resource for the purposes for which it was designed, but would be a cumbersome 
choice of tool for purposes outside that. These outside purposes can be grouped into three 
categories: The first category is purposes for which less complex simulators are a better fit (e.g., 
population-based simulations would be best run in a more standard population-based 
framework). The second consists of purposes for which other complex simulators are a better fit 
(e.g., simulations requiring codon-specific genomic representation or allowing simulation of 
tandem-repeat markers should seek out simulators that integrate these biological facets). Third, 
however, is the category of purposes that are currently outside the purview of Geonomics but 
that have high potential for future expansion. At time of writing, examples of this third category 
about which interested researchers have contacted me include: simulation of a population’s 
geographic expansion from a point introduction (currently feasible, but not supported by built-in 
functionality), calculation of both local and global effective population sizes (plausible, but 
would require development and validation of a methodology for spatial estimation of this 
normally aspatial statistic), and coevolutionary simulation of interacting species (would require 
substantial investment in the development and optimization of new modules of code, despite 
having been considered as a possible expansion since the early design of the Geonomics 
codebase). Ultimately, these requests for support, as well the recent publication of the first peer-
reviewed use of Geonomics for empirical research (Maier et al. 2022), demonstrate the interest 
and utility that will help Geonomics find a life beyond the dissertation.

Chapter 2 not only provides the first theoretical study to rely on Geonomics, but also 
makes significant contributions to our understanding of evolutionary responses to global change. 
First, rather than using a simplistic notion of climate change as the uniform shift of climates 
across geographic space, I instead adopt an alternative landscape model of climate change as the 
basis for my simulations – one in which the environmental gradients subtending a species’ local 
adaptation decouple as climate changes, causing the emergence of novel environments and 
consequent shifts in the adaptive landscape experienced by local subpopulations. This is a 
significant conceptual contribution, given that this scenario is rarely used as the basis for 
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evolutionary simulations, yet is a closer match to the consensus understanding of the landscape 
effects of climate change. 

Second, when I employ this model across a suite of simulation scenarios of varying 
genomic architecture I produce results that offer novel and valuable insights, at two levels. At a 
detailed level, my analysis suggests particular areas of genomic architecture space in which 
adaptation to climate change is more or less likely to proceed – most notably, I find that 
architectures characterized by high polygenicity and low genotypic redundancy are likely to have
especially low adaptive capacity, increasing the risk of local maladaptation and extinction. These 
specific findings are compelling but they are, of course, quite limited: No one simulation study 
could make hard claims as to the precise and generalizable influence of specific components of 
genomic architecture on all evolutionary outcomes under climate change. Rather, I hope that a 
growing body of work can: 1.) demonstrate the replicability of the findings I present here; 2.) 
expand them to incorporate other factors not considered here (e.g., population size, 
environmental complexity, distribution of allelic effect sizes) and characterize their degree of 
sensitivity to these factors; and 3.) validate these and future findings within empirical systems. 
This stream of research effort would help move the field toward a more generalized 
understanding of the evolutionary effects of environmental change. Nonetheless, at a high level, 
this study affirms that genomic architecture has the potential to influence, and even 
predominantly control, evolutionary dynamics and outcomes under climate change. This, in and 
of itself, flags this as an important but underappreciated area of future work for landscape 
geneticists.

The results presented in chapter 3 help highlight another underappreciated area of interest
for landscape genetics: The potential for spatially asynchronous phenology to cause allochronic 
isolation, heightened population divergence, and perhaps even elevated speciation rates, as 
proposed by the Asynchrony of Seasons Hypothesis (Martin et al. 2009). However, despite the 
ASH having been introduced over a decade ago and having been the motivation for a few 
species-specific studies since then, some of its main implications – that seasonal asynchrony 
leads to phenological asynchrony predominantly in the tropics, and that seasonal asynchrony can 
be decoupled from climatic difference there – have gone largely unassessed. My work in chapter 
3 inspects these implications and finds broad support: I find that global hotspots of phenological 
asynchrony are concentrated in tropical montane regions, but also in Mediterranean and 
neighboring semi-arid climate regions; that phenological asynchrony appears to be driven by 
precipitation asynchrony and minimum temperature asynchrony across many of those regions; 
and that phenological asynchrony between climatically similar sites tends to be greater on 
average in the tropics than at higher latitudes, though this varies regionally. These results 
provide, to my knowledge, the first global analysis of phenological asynchrony, and they not 
only help highlight phenological allochrony as a promising area for future landscape genetics 
research but they also provide a global, moderate-resolution (0.05°) map that can help identify 
locations for future field-based work.

On the way to documenting the aforementioned results in chapter 3, my work also 
incidentally produces a global map of land surface phenology (LSP) using a novel, multivariate 
LSP-mapping approach. I provide and interpret this map, showing that it uncovers a wealth of 
compelling and ecologically coherent patterns, including both regional heterogeneity that 
appears to reflect well-known environmental gradients, and intercontinental convergence in some
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patterns of regional heterogeneity that recapitulates broad biogeographic and climatic patterns. 
My results also provide useful, globally-consistent performance assessment for the two LSP 
datasets I use (near-infrared reflectance of vegetation, or NIRV; and sun-induced chlorophyll 
fluorescence, or SIF). Both of these are recently-derived remote sensing proxies of terrestrial 
productivity and are in a period of active development and improvement. Thus, my NIRV-SIF 
cross-validation and my validation of both datasets against global FLUXNET eddy-covariance 
GPP estimates make useful contributions to the NIRV and SIF remote sensing literature. 
However, although my results identify clear regions of reduced NIRV-SIF correlation and NIRV- 
or SIF-GPP correlation – namely, global semi-arid regions – they are not conclusive as to 
whether poorer validation in those regions is a result of the inadequacy of these metrics as 
proxies for photosynthesis, of the inadequacy of the resolution of my analysis as it compares to 
the finer spatial scale of flux-tower data, or of some other cause. This is a major limitation of this
study, and it calls for future work, likely at higher resolution in select focal regions or localities, 
and paired with field-sampling, to fully elucidate the relationship and divergence between these 
remote sensing proxies and actual photosynthetic activity on the ground.
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