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ABSTRACT OF THE DISSERTATION 

 

Micromechanical Damage Models for Continuous Fiber Reinforced Composite Materials 

 

by 

 

Yi Wu 

 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2013 

Professor Jiann-Wen Ju, Chair 

 

 

The primary objective of this research work is to investigate the effective mechanical 

responses of continuous fiber reinforced composites by modifying and extending the available 

micromechanical framework. A major part of the work conducted involves the investigation of 

the effective damage responses due to damage evolutions of matrix microcracks and fiber 

breakages.  
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Chapter 3 presents the effective elastic damage behavior of continuous fiber reinforced 

composites with evolutionary matrix microcracks. A cohesive penny-shape microcrack model is 

proposed within a two-step homogenization framework to achieve the effective elastic damage 

behavior of continuous fiber reinforced composites. In the proposed model, the size and the 

number density of microcracks are defined as two damage parameters to control the matrix 

microcrack evolution. In addition, the thermal effect is taken into account by taking advantage of 

the thermal eigenstrain and the Eshelby’s equivalent inclusion principle. The overall coefficient 

of thermal expansion (CTE) of the composite is systematically derived under the framework of 

micromechanics to describe the overall damage behavior of composites due to matrix microcrack 

evolution under temperature changes.  

 

Chapter 4 proposes a micromechanical evolutionary damage framework capable of 

predicting the overall mechanical behavior of and damage evolution in continuous fiber 

reinforced composites. In the framework, the effective stress fields in a single fiber due to an 

embedded penny-shaped fiber breakage are systematically derived by applying the double-

inclusion theory. The notion of effective length denoting the distance between two adjacent 

breakages is introduced as a damage parameter while determining the damage evolution within a 

single fiber. This enables the modeling of the effective damage behavior of a single-fiber 

reinforced composite. As an application of the proposed framework, a micromechanical damage 

model is further proposed to simulate the fiber-dominated failure mechanism within a multi-fiber 

composite. A Weibull probability function is adopted to estimate the varying volume fractions of 

damaged fibers and intact fibers. Numerical simulations are presented to demonstrate the 

effectiveness of the proposed methodology. 
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In Chapter 5, based on the linear elastic fracture mechanics (LEFM) and ensemble-volume 

averaging technique, an effective eigenstrain is newly proposed to quantify the homogenized 

stress fields in a single fiber due to multiple fiber breakages. In the proposed model, the number 

density evolution of fiber breakages is characterized by a two-parameter Weibull statistic with 

the temperature effect implicitly enclosed by properly adjusting the Weibull parameters. The 

damage criterion in the evolutionary damage model is theoretically derived. Utilization of the 

proposed damage framework, a homogeneous damage evolution model capable of simulating the 

material behavior of multi-fiber reinforced composite materials is developed.   

 

Chapter 6 presents two stochastic risk-competing models to simulate the fiber breakage 

evolution in a multi-fiber composite with an inhomogeneous fashion by considering different 

load sharing mechanisms. A unit cell model is adopted with each cell being assigned an initial 

weakness based on a normal distribution. Damage evolution inside each cell structure follows the 

micromechanical model presented in Chapter 5. Two risk-competing models are introduced 

subsequently to determine the damage sequence within the multi-fiber composite by computing 

the fracture probability based on the weakness of cells at each time step. It is observed that one 

risk-competing model tends to generate a concentrated damage pattern with broken fibers 

clustering in a T-shape or a cross-shape, while the other model yields a more diffused damage 

pattern. Finally, the overall stress-strain responses and the fiber breakage evolution are predicted 

and verified against experimental data. 

 

Chapter 7 examines the effective elastoplastic behavior of metal matrix composites (MMCs) 

containing unidirectionally aligned continuous fibers. A homogenization procedure is utilized to 
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derive the overall yield function for the composite based on the probabilistic spatial distribution 

of aligned inclusions. Based on continuum plasticity, a plastic flow rule and a hardening law are 

postulated. These laws together with the proposed overall yield function then characterized the 

macroscopic elastoplastic behavior of the composite under three-dimensional arbitrary 

loading/unloading histories. The overall uniaxial elastoplastic stress-strain behavior of MMCs 

with aligned continuous fibers is investigated. Comparisons between theoretical predictions and 

experimental data for the composite are performed to illustrate the capability of the proposed 

method.  

 

Chapter 8 concludes the present research on micromechanics and effective elastic and 

elastoplastic behavior of continuous fiber reinforced MMCs. Finally, related future research 

topics are discussed briefly.   
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Equation Chapter 1 Section 1 

CHAPTER 1 INTRODUCTION 

1.1 Composite Materials – Definition and Application 

The word ‘composite’ in the term ‘composite material’ signifies that two or more materials 

are combined on a macroscopic scale to form a third useful material. In general, a two-phase 

composite material needs to satisfy the following criteria. First, both constituents have to present 

in reasonable proportions. The major component of the composite is termed ‘the matrix’, 

whereas the minor component, that is, the constituent present in small amount is called ‘the 

reinforcement’. Secondly, the two constituent phases need to exhibit different properties, so the 

properties of the composite are noticeably different from those of the original constituents. 

Generally speaking, reinforcements are adopted to enhance and improve the mechanical 

properties of the composite. Lastly, a man-made composite is usually produced by mixing and 

combining the constituents by various means.  

 

The history of composites can be traced back to ancient Egypt, where the straw reinforced 

bricks are known to be the very first composites used in ancient civilizations. Due to the 

continuing quest for improved performance, composites have been studied and investigated 

extensively over the past few decades. Today, composite materials are routinely designed, 

manufactured and used in the military, aerospace, automobile, leisure, electronic and medical 

industries because of their outstanding mechanical properties such as high strength-to-weight and 

stiffness-to-weight ratios, low coefficients of thermal expansion, and superior ductility. The 
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resulting extensive applications have motivated in-depth studies of composites from various 

interdisciplinary viewpoints. 

 

1.2 Classification of Composite Materials 

There are various ways of classifying composite materials. For instance, in terms of their 

reinforcement profiles, composites can be classified as, being particle-reinforced or continuous 

fiber reinforced. Particle-reinforced composites have reinforcements with dimensions that are 

approximately equal in all directions. Such reinforcements effectively constrain the deformation 

of the surrounding matrix material as a result of their higher stiffness compared with that of the 

matrix. Although particle reinforcements can carry some loads, their load-sharing capability is 

inferior to that of continuous fiber reinforcements. Therefore, particle reinforcement is more 

effective in enhancing the stiffness than in increasing the strength of composites. In practice, 

particle reinforcements are frequently used to improve the mechanical properties of matrix 

materials, for example, modify thermal and electrical conductivities, improve composite 

performance at elevated temperatures, reduce friction, increase wear and abrasion resistance, 

reduce shrinkage, and increase surface hardness. By contrast, continuous fiber reinforcement is 

characterized by fiber length being much greater than its cross-sectional dimensions. Unlike 

particles, continuous fibers possess superb load sharing capability. This results in an effective 

increase of the strength of composites. In addition to enhancing of the composite’s overall 

moduli, continuous fibers can also significantly improve the fracture resistance of the matrix by 

bridging cracks. Because of these advantages, continuous fiber reinforced composites are one of 

the most commonly used composites in the engineering field. 
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Composites can also be classified on the basis the matrix material: polymer matrix 

composites (PMCs), metal matrix composites (MMCs) and ceramic matrix composites (CMCs). 

In general, PMCs have low strengths and Young’s moduli; CMCs are strong, stiff and brittle; 

MMCs have intermediate strengths and moduli together with good ductility. In terms of 

decreasing temperature-bearing capabilities, the three types can be ordered as CMCs, MMCs and 

PMCs. Thus, each type has its own unique advantages and corresponding application fields.  

 

1.3 Damage Mechanisms in Continuous Fiber Reinforced MMCs 

1.3.1 Continuous fiber Reinforced Metal Matrix Composites 

Continuous fiber reinforced metal matrix composites have numerous practical applications in 

a variety of industries including the aerospace industry for airframe and spacecraft structures, 

automotive, electronic, and leisure industries. In general, the matrix phase of MMCs consists of 

one contiguous metallic material, such as aluminum, titanium, magnesium, copper, and the like. 

In essence, the matrix phase provides protection and support for the reinforcements, as well as 

transfers the local stresses of reinforcements from one to another. More importantly, the metal 

matrix material can dissipate energy in the form of plastic deformation, which, in turn, lowers the 

evolution rate of other damage mechanisms, such as fiber breaking and fiber/matrix interfacial 

debonding. On the other hand, the fiber reinforcing constituent is normally a ceramic (e.g., 

silicon carbide, silicon nitride, and alumina) although a refractory metal is preferred sometimes. 

Such reinforcements are used primarily to enhance the mechanical properties of the matrix. As a 

consequence, a combination of a metal matrix with the ceramic fibers can provide the following 
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properties, which make the continuous fiber reinforced metal matrix composite, an attractive 

structural material candidate (Arsenault, 1984): 

 High strength, elastic modulus, fracture toughness and impact properties, 

 High electrical and thermal conductivity, 

 High vacuum environment resistance, 

 High surface durability and low sensitivity to surface flaws, and 

 Low sensitivity to temperature changes or thermal shock. 

 

1.3.2 Interfacial Layer in MMCs 

An interfacial layer is a thin region formed between the fiber and the matrix as a result of the 

chemical reactions. Although interfacial layers may be formed during service, but they are more 

commonly formed during fabrication. This is particularly true with regard to metals like titanium 

and aluminum. Owing to their high chemical reactivity, interfacial layers form more easily in 

them. However, whether or not interfacial layers are encountered depends also on many factors 

besides the material’s chemical reactivity. One important factor is the composition of the matrix 

material. For instance, there is negligible reaction between aluminum alloy matrices and most 

alumina fibers, except when the matrix contains lithium or magnesium. As a result, no noticeable 

interfacial layer will be observed in this case. Thermal effects can also influence the interfacial 

layer thickness. Composites in the as-fabricated state do not exhibit excessive chemical 

interactions. However after thermal exposure, composites undergo extensive chemical 

interaction thus inducing thicker interfacial layers.  
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Interfacial reactions are of special concern as they can adversely affect the mechanical 

performance of an MMC. Both the strength and toughness of a composite get degraded by the 

presence of the interfacial layer. Experimental evidence reveals that the fiber strength is closely 

related to the thickness of the interfacial layer. Fiber-matrix chemical reactions create notches on 

the fiber surface, leading to degradation of fiber strength. The level of degradation depends on 

the thickness of the reaction zone. If the reaction zone is thin, the notch formed due to cracking 

in the reaction zone is smaller than the intrinsic defects of the fiber. As a consequence, the fiber 

is more likely to maintain its original strength. Nevertheless, if the reaction zone thickness 

exceeds a critical value, the fiber strength decreases as the reaction zone thickness increases. The 

fiber strength then becomes a function of the geometry and Young’s modulus of the fiber, the 

critical energy release rate, and most importantly, the thickness of the reaction zone. When the 

reaction zone is extremely thick, the failure of the reaction zone will cause the fiber to fracture 

immediately. In other words, the fiber strength is dependent on the fracture strain of the reaction 

layer. Although a reaction layer is generally inevitable during fabrication, as a general rule, 

extensive interfacial reactions should be avoided if optimum mechanical performance is to be 

achieved with MMCs. 

 

1.3.3 Damage Mechanisms in Continuous fiber Reinforced Composites 

Many studies have shown that the homogeneity of reinforcement dispersion, the properties of 

the reinforcement (the surface properties in particular), the cleanness of the matrix, and the 

magnitude and inhomogeneity of the internal stress level all play some role in controlling the 

failure mechanisms in a continuous fiber reinforced composite system. Nevertheless, although it 
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occupies a vanishing fraction of the total composite volume, the interface layer between the 

fibers and the matrix plays a key role in determining the overall composite properties and stress-

strain relations associated with damage (He et al., 1993; Curtin, 1998). The composition and 

mechanical properties of the interface layer and the bonding conditions between adjacent layers 

are critical in controlling the damage mechanisms.  

 

Consider a unidirectionally aligned continuous fiber reinforced composite subject to tensile 

loading in the longitudinal direction. Microcracks usually initiate in the interfacial region, 

primarily due to the relatively lower fracture strength of the interfacial reaction region compared 

to that of the fiber and matrix. Subsequently, stress concentrations are induced near the crack tips 

which lead to the initiation of various damage modes. Different combinations of interfacial 

bonding conditions and material properties of the fiber, matrix and interface layer result in 

different damage mechanisms.  

 

 Interfacial Debonding 

In reality, a typical interface region possesses functionally graded multi-layer structure, 

which is formed primarily due to the chemical reaction between the fiber and the matrix. 

Moreover, the carbon coating technique, which is a commonly used to protect the fiber from 

strength degradation during fabrication, e.g., the double-layer carbon coating, will also introduce 

additional layers between the fiber and interfacial layer. Taking a SCS-6-Ti3Al composite for 

instance, titanium, aluminum and niobium are all involved in the reaction with SCS-6 fiber and 

formed multiple layers of complex carbides and silicides. The layer consists of (Ti, Nb)C(1-x) and 
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(Ti, Nb, Al)5Si3 in the inner reaction zone and (Ti, Nb)3AlC and (Ti, Nb, Al)5Si3 in the outer 

reaction zone. Since microcracks usually initiate in the interfacial region, cracks propagate along 

the weakest interface if the interfacial bonding strength is low. As a result, fiber/matrix 

interfacial debonding may take place at different locations including the interfaces between the 

two carbon coating layers, the outer carbon layer and reaction zone, and the reaction zone and 

matrix alloy. Experimental evidence reveals that both complete debonding and partial debonding 

can exist simultaneously and most of the partial fiber/matrix debonding takes place in a 

symmetric fashion under uniaxial or biaxial transverse mechanical loading. It is general agreed 

that the damage mechanism of debonding is related directly to the nonlinear behavior of the 

stress-strain relations. 

 

 Fiber Breakage 

Consider a composite made of a tough matrix and high interfacial bonding strength. In this 

case, microyielding of the matrix occurs which leads to blunting of the crack. If the fiber is 

strong, the crack neither propagates through the fiber nor debonds along the carbon coating layer. 

Upon further loading, owing to the presence of good interfacial bonding, the load is transferred 

back to the reaction zone, which in turn leads to multiple cracks in the reaction zone. As the 

loading is increased further, fiber fracture occurs at random locations in the fiber due to the 

statistical scatter of the fiber strength. The cracks resulting from the fiber breakage induce further 

stress concentration in the fibers adjacent to the broken fibers. This can lead to the fracture of 

other intact fibers as well as matrix yielding if the matrix is ductile. The failure of several fibers 

in the same plane may be sufficient to initiate failure of the composite. As a result, the composite 

exhibits a non-linear stress-strain behavior accompanied by a relatively flat facture surface. 
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 Matrix Cracking 

In case a composite possesses a relatively brittle matrix with high interfacial bonding 

strength, microcracks initiated at the interface reaction layer are able to extend into the matrix 

causing matrix microcracks. These microcracks accumulate as the loading increases. This leads 

to the formation of macrocracks within the composite. Upon further loading of a composite with 

high interfacial bonding strength, the crack can propagate easily across the fibers with little 

deflection along the fiber-matrix interface. As a result, the composite exhibits a linear elastic 

stress-strain behavior up to the final fracture. The fracture surface is relatively flat with no 

significant amount of fiber full-outs. However, if the interfacial bonding strength is low, the 

shear stress concentration at the crack tip induces debonding along the fiber-matrix interface. 

Therefore, upon further loading, the tensile and shear stress concentration at the debonded crack 

tip causes the debonding crack to propagate along the fiber-matrix interface, extends into the 

matrix, and causes multiple matrix cracking. The advancement of the crack depends on the 

matrix shear failure strengths. As a result, the composite shows a bilinear stress-strain behavior 

while the fracture surface exhibits fiber pull-out. 

 

 Matrix Yielding 

Consider a continuous fiber reinforced composite made of a ductile matrix and brittle 

reinforcements. Damage initiated in the interface layer induces stress concentration. This leads to 

microyielding of the matrix which results in blunting of the crack. If the adjacent material layers 

possess low to medium interfacial bonding strength, the fiber will be debonded easily from the 

matrix or fractured. The result is a loss in fibers’ load-sharing capability and the load carried by 



9 

the damaged fibers is transfer to the matrix. Upon further loading, global inelastic deformation in 

the matrix is triggered which may continue until the composite system fails. 

 

1.4 Objective and Scope of the Dissertation 

The primary objective of this research work is to investigate the effective mechanical 

responses of continuous fiber reinforced composites by modifying and extending the available 

micromechanical framework. A major part of the work conducted involves the investigation of 

the effective damage responses due to damage evolutions of matrix microcracks and fiber breaks.  

 

Chapter 2 introduces the fundamentals of micromechanics theory. The concepts of the 

representative volume element, the Eshelby’s equivalent principle, eigenstrains, and 

homogenization methods are reviewed first. Next, a literature review on the subject of 

continuous fiber reinforced MMCs with particular reference to various damage mechanisms is 

presented. The literature reviewed includes different analytical and numerical approaches and 

experimental results provided by various researchers. 

 

Chapter 3 presents the effective elastic damage behavior of continuous fiber reinforced 

composites with evolutionary matrix microcracks. A cohesive penny-shape microcrack model is 

proposed within a two-step homogenization framework to achieve the effective elastic damage 

behavior of fibrous composites. In the present model, the number density and the size of 

microcracks are defined as two parameters controlling the damage evolution. Moreover, the 
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thermal effect is incorporated in the proposed model by taking advantage of the thermal 

eigenstrain and the Eshelby’s equivalent inclusion principle. The overall coefficient of thermal 

expansion (CTE) of a composite is then derived under the framework of micromechanics to 

describe the overall damage behavior of composites due to the matrix microcrack evolution 

under temperature changes.  

 

Chapter 4 proposes a micromechanical evolutionary damage framework capable of 

predicting the overall mechanical behavior of and damage evolution in continuous fiber 

reinforced composites. In the presented framework, the effective stress fields in a single fiber due 

to an embedded penny-shaped fiber break are systematically derived by applying the double-

inclusion theory. An effective length denoting the distance between two adjacent cracks is then 

introduced as a damage parameter while determining the damage evolution within a single fiber. 

This enables the modeling of the effective damage behavior of a single fiber-reinforced 

composite. As an application of the proposed framework, a micromechanical damage model is 

further proposed to simulate the fiber-dominated failure mechanism within a continuous fiber 

reinforced composite. A Weibull probability function is adopted to estimate the varying volume 

fractions of damaged fibers and intact fibers. Numerical simulations are presented to demonstrate 

the effectiveness of the proposed methodology. 

 

In Chapter 5, based on the linear elastic fracture mechanics (LEFM) and ensemble-volume 

averaging technique, an effective eigenstrain is newly proposed to quantify the homogenized 

stress fields in a single fiber due to multiple breaks. In the proposed model, the number density 

evolution of fiber breaks is characterized by a two-parameter Weibull statistic with the 
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temperature effect implicitly enclosed by properly adjusting the Weibull parameters. In particular, 

the damage criterion in the evolutionary model is theoretically. Base on the proposed damage 

framework, a homogeneous damage evolution model capable of simulating the material behavior 

of multi-fiber reinforced composite materials is developed.   

 

Chapter 6 presents two stochastic risk-competing models to simulate the fiber breaking 

evolution in a multi-fiber composite in an inhomogeneous fashion by considering different load 

sharing mechanisms. A unit cell model is adopted with each cell being assigned an initial 

weakness based on a normal distribution. Damage evolution inside each individual cell structure 

follows the micromechanical model presented in Chapter 5. Two risk competing models are then 

introduced to determine the damage sequence within the multi-fiber composite by computing the 

fracture probability based on the weakness of cells at each time step. It is observed that one risk-

competing model tends to generate a concentrated damage pattern with broken fibers clustering 

in a T-shape or a cross-shape, while the other model yields a more diffused damage pattern. 

Finally, the overall stress-strain responses and the fiber break evolution are s predicted and 

verified against experimental data. 

 

Chapter 7 examines the effective elastoplastic behavior of MMCs containing unidirectionally 

aligned continuous fibers. A homogenization procedure is utilized to derive the overall yield 

function for the composite based on the probabilistic spatial distribution of aligned inclusions. 

Based on continuum plasticity, a plastic flow rule and a hardening law are postulated. These laws 

together with the proposed overall yield function then characterized the macroscopic 

elastoplastic behavior of the composite under three-dimensional arbitrary loading/unloading 
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histories. The overall uniaxial elastoplastic stress-strain behavior of MMCs with aligned 

continuous fibers is investigated. Comparisons between theoretical predictions and experimental 

data for the composite are performed to illustrate the capability of the proposed method.  

 

Chapter 8 concludes the present research on micromechanics and effective elastic and 

elastoplastic behavior of continuous fiber reinforced MMCs. Finally, related future research 

topics are discussed briefly.   
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Table 1.1 Comparison of room temperature properties of ceramics, metals and polymers 

 Density 

(Mg/m3) 

Young’s 

modulus 

(GPa) 

Strength 

(MPa) 

Ductility 

(%) 

Toughness 

KIC 

(MPa m1/2) 

Specific 

modulus 

[(GPa)/ 

(Mg/m3)] 

Specific 

strength 

[(MPa)/ 

(Mg/m3)] 

CERAMICS        

Alumina AI2O3 3.87 382 332 0 4.9 99 86 

Magnesia MgO 3.60 207 230 0 1.2 58 64 

Silicon Nitride Si3N4  166 210 0 4.0   

Zirconia ZrO2 5.92 170 900 0 8.6 29 152 

-Sialon 3.25 300 945 0 7.7 92 291 

Glass-ceramic Silceram 2.9 121 174 0 2.1 42 60 

METALS        

Auminium 2.70 69 77 47  26 29 

Auminium-3%Zn-0.7%Zr 2.83 72 325 18  25 115 

Brass Cu-30%Zn 8.50 100 550 70  12 65 

Nickel-20%Cr-15%Co 8.18 204 1200 26  25 147 

Steel mild 7.86 210 460 35  27 59 

Titanium-2.5% Sn 4.56 112 792 20  24 174 

POLYMERS        

Epoxy 1.12 4 50 4 1.5 4 36 

Melamine formaldehyde 1.50 9 70   6 47 

Nylon 6.6 1.14 2 70 60  18 61 

Polyetheretherketone 1.30 4 70   3 54 

Polymethylmethacrylate 1.19 3 50 3 1.5 3 42 

Polystyrene 1.05 3 50 2 1.0 3 48 

Polyvinylchloride rigid 1.70 3 60 15 4.0 2 35 
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Figure 1.1 Classification of composite materials. 

 

 

 

Figure 1.2 Schematic of the interfacial region microstructure of a fiber reinforced composite. 
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Figure 1.3 Schematic of the fiber breakage damage mechanism in a fiber reinforced composite. 

 

 

Figure 1.4 Schematic of the matrix microcrack damage mechanism in a fiber reinforced composite. 
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Figure 1.5 Schematic of the interfacial debonding damage mechanism in a fiber reinforced 

composite. 
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Equation Chapter (Next) Section 1 

CHAPTER 2 LITERATURE REVIEW 

2.1 Theories of Micromechanics 

Traditional continuum mechanics deals with idealized materials under the assumptions of (1) 

the elastic properties of a solid at a material point are the same in every direction (isotropy); (2) 

the material property is the same at all points within the solid (homogeneity). These two 

assumptions render a uniform stress/strain distribution within an infinitesimal material element. 

However, optical morphology reveals that microscopic structures of a solid are complex; consist 

of inclusions, grains separated by grain boundaries, and local damage such as microcavities, 

cracks and dislocations. Consequently, the stress/strain fields within such a material element are 

not uniform at the microscopic level. In addition, it is impractical, or even impossible to 

comprehensively account for the factors of the microstructure in engineering design and analysis. 

Nevertheless, the field of micromechanics seeks to provide a rigorous framework for studying 

the overall material behavior by taking material microstructures and local damage into 

consideration. It also enables one to examine the interaction of constituent materials at a 

microscopic scale and determine the interaction effect on the overall composite properties at a 

macroscopic scale. 
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2.1.1 Representative Volume Element (RVE) 

The prediction and estimation of the overall mechanical properties of random heterogeneous 

materials is of great interest to researchers and engineers in many science and engineering 

disciplines. In micromechanics, the so-called ‘effective’ properties of a heterogeneous composite 

can be obtained by certain volume and ensemble averaging processes over a representative 

volume element (RVE). An RVE for a material point of the continuum mass defines a material 

volume that statistically represents the infinitesimal material in the neighborhood of that material 

point. In other words, an RVE features the ‘mesoscopic’ length scale that is much larger than the 

characteristic length scale of inhomogeneity/inclusion but is smaller than the characteristic 

length scale of the ‘macroscopic’ specimen.  

 

2.1.2 Eshelby’s Equivalence Principle and Eigenstrain  

In studying heterogeneous solids, it is convenient and effective to consider the equivalent 

homogeneous solids (Eshelby, 1957). In accounting for the mismatch of the material properties 

between the matrix and inclusion, the notion of stress-free strain 
*ε  is introduced within the 

inclusion domain so that, under the applied force or displacement, the equivalent homogeneous 

solid has the same stress and strain fields as the actual heterogeneous solid. As a result of this 

artifact, the following equation can be obtained on the basis of an integral representation of 

elasticity: 

    0 0 *

1 0: :    C ε ε C ε ε ε  (2.1) 
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where 1C  and 0C  are the elasticity tensors of the inhomogeneity phase and matrix phase, 

respectively, and ε  and 0ε  signify the perturbed strain due to the presence of the inhomogeneity 

and the far-field strain, respectively. 

 

Eigenstrain, *ε , (Mura, 1987) is a generic name introduced in micromechanics to represent 

inelastic strains such as thermal strains, phase transformation strains initial strains, plastic strains, 

misfit strains, and the like. In literature, other names have been used for eigenstrains by various 

authors, e.g., stress-free transformation strains (Eshelby, 1957). On the other hand, eigenstress is 

a generic name for the self-equilibrated internal stresses caused by one or more of these 

eigenstrains in bodies, which are free from any external force and surface constraints. The 

eigenstress is a consequence of the incompatibility of the eigenstrain. For micromechanical 

modeling of elastic heterogeneous solids, Eshelby highlighted the following results: 

if 

1) the matrix is homogeneous, linearly elastic and extended infinitely; 

2) the inclusion domain is ellipsoid, 

then 

1) the eigenstrain is uniformly distributed within the inclusion domain; 

2) the perturbed strain ε'and perturbed stress σ'  caused by the presence of the inclusions are 

also uniform within the inclusion domain; 

3) the perturbed strain in the inclusion domain is demonstrated by 
*'ij ijkl klε S ε . 
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Since the perturbed strain is evaluated in the inclusion domain, S  tensor is called the 

interior-point Eshelby’s tensor. The key features of S  tensor are: 

1) it is independent of material properties of the inclusion, 

2) it depends on the shape of ellipsoidal inclusion and Poisson’s ratio of the isotropic matrix 

material. 

 

2.1.3 Homogenization Methods 

In micromechanics, the procedure related to the ensemble-volume averaging process is called 

‘homogenization’. It is a methodology applied in estimating the effective material properties. A 

number of homogenization methods have been developed in literature to predict the overall 

properties and behavior of heterogeneous materials. The first school utilizes the variational 

principle to arrive at the mathematical lower and upper bounds for the effective elastic moduli of 

composites. With this perspective, Hashin and Shtrikman (1962a, b) gave the mathematical 

lower and upper bounds for the effective moduli of isotropic composite materials with prescribed 

volume fractions of inclusions with arbitrary shapes. Later, Hill (1963) and Hashin (1965) 

determined the bounds for the fiber-reinforced composites. Castenada and Wills (1988), and 

Talbot and Wills (1985) introduced a general method for deriving the bounds on the overall 

potentials of nonlinear composites. In addition, Castenada (1991) proposed a new and 

conceptually simple variational procedure that leads to more general bounds for the nonlinear 

composites. The second school is known as the effective medium theory which includes the self-

consistent method (Budiansky, 1965), the differential scheme (Hashin, 1988; McLaughlin, 1977), 

the generalized self-consistent method (Christensen and Lo, 1979; Christensen, 1990) and the 
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Mori-Tanaka method (Mori and Tanaka, 1973; Weng, 1990). In the effective medium theory, 

particle locations or their relative configurations are not taken into consideration. The third 

school aims at direct micromechanical determination of effective properties of the composite 

materials by incorporating the interactions amongst the inclusions and the geometric effect due 

to the configurations of the inclusions dispersed within the matrix material. Important works 

along this line, include Ju and Chen (1994a, b), Ju and Lee (2000), Li et al. (2004), Ju and Ko 

(2006), Ju and Yanase (2009). 

 

Numerical methods, such as the finite element method (FEM) are also used widely for 

predicting the overall behavior of composites. For example, Christman et al. (1989 a, b) and 

Tvergard (1990) calculated the effective elastoplastic behavior of aligned short-fiber reinforced 

MMCs using the axisymmetric unit cell model. To determine the effective response of the 

MMCs, Levy and Papazian (1990) used the unit cell model while applying the three-dimensional 

finite element method. 

 

Both analytical and numerical treatments have their advantages and disadvantages (Dunn and 

Ledbetter, 1996). In general, analytical approaches assume an idealized geometry to predict the 

properties of the RVE. For the sake of mathematical simplicity, the reinforcing phases are 

assumed to be ellipsoidal inclusions. In such cases, the celebrated Eshelby’s equivalence 

principle (Eshelby, 1957) is applicable. Plastic flow is typically constructed according to the 

effective-medium approach (continuum plasticity), which does not rigorously consider the 

micromechanical local plastic flow initiated at the interface between the reinforcement and the 

matrix. On the other hand, numerical approaches are based on a pre-defined geometry, so the 
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local elastic and plastic stress/strain fields can be analyzed. However, the periodic boundary 

conditions introduce a periodicity in the inclusion distribution, which does not exist in actual 

composite materials. Therefore, the resulting local fields must be interpreted with caution. 

 

2.2 Theoretical Damage Models 

 Interfacial Debonding 

The symmetric debonding model is employed extensively in literature for both the analytical 

analyses (cf. Takahashi and Chou, 1988; Zhao and Weng, 2002) and the numerical analyses (cf. 

Nimmar et al., 1991; Warrier et al., 1999; Naboulsi, 2003). A series of comprehensive studies on 

the damage behavior of fiber-reinforced composites due to fiber/matrix interfacial debonding is 

performed by Ju and his coworkers. Various damage models are proposed by considering 

particle-shaped reinforcements (Ju and Lee, 2000; Liu et al., 2004, 2006) and continuous fibers 

(Ju and Ko, 2006; Ju and Yanase, 2009) with evolutionary complete debonding (Ju and Ko, 2006) 

and progressive partial debonding (Sun et al. 2003; Ju and Ko, 2008; Ju et al., 2008). In 

particular, the geometric effect of the fiber cross section shape on the overall damage behavior is 

studied. For instance, continuous reinforcements with circular-shaped (Ju and Ko, 2008) and 

elliptical-shaped cross-sections (Ju et al., 2009; Ju and Yanase, 2009) are systematically 

investigated. In their study, an interfacial debonding angle is introduced as the damage parameter 

based on the symmetric debonding model. Moreover, debonding is assumed to propagate 

instantly in the fiber direction once the interfacial damage is activated. As a result, the three 

dimensional problem can be effectively solved as a two-dimensional problem and the partially 

debonded isotropic elliptical fibers can be replaced by equivalent orthotropic yet perfectly 
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bonded elliptical fibers. The Weibull probabilistic function is employed to describe the 

progressive fiber debonding process in the composite system. As an extension of the framework, 

thermal residual stresses have also been taken into account successfully through the concept of 

thermal eigenstrain to simulate the effects of the manufacturing process-induced residual stresses 

(Ju and Yanase, 2008). The primary advantage of these models is that they provide the explicit 

form of the effective moduli of the composite. However, these models only consider the 

influence of far-field interactions on the overall deformation behavior of a composite with a 

moderate fiber volume fraction.  

 

 Fiber Breaking 

There are several schools of theories for estimating the damage effect of fiber breaks in 

multi-fiber composites. The shear lag theory (Cox, 1952) involving various load transferring 

mechanisms is one of the means. For example, the global load shearing (GLS) model assumes 

that the load originally borne by the broken fiber is equally redistributed over all the remaining 

intact fibers on the cross-session. Every cross-sects becomes statistically identical, thus, a multi-

fiber composite problem can be treated as an equivalent single-fiber composite problem (Curtin, 

1998). The primary advantage of such models is simplicity of application. However, in reality, 

the load transfer mechanism within the local region is far more complicated. Hence, the local 

load shearing (LLS) model is proposed assuming that the extra load associated with the failed 

fibers is transferred to the neighboring fibers (Smith, 1980; He et al., 1993; Zhou and Curtin, 

1995; Ibnabdeljalil and Curtin, 1997; Okabe and Takeda, 2002). This group of models is mainly 

concerned with the local microstructure and how the load transfers from the broken fiber to the 

intact fibers. Both the GLS and LLS models lead to a qualitative understanding of the 
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mechanisms of forming discontinuities, as well as the interaction among the material phases. 

However, none of these approaches allows straightforward incorporation of the nonlinear models 

to describe the complicated material behaviors (Mishnaevsky and Brøndsted, 2009).  

 

Another school aims at formulating the explicit forms of the overall constitutive laws for 

heterogeneous materials considering various local damage modes (Ju, 1991; Ju and Tseng, 1992; 

Sun et al., 2003; Lee and Ju, 2008). Following the concept of eigenstrain introduced by Eshelby 

(1957, 1961), the effective properties of heterogeneous composites containing inhomogeneities 

and local damage are derived based on an ensemble-volume averaging process within a 

representative volume element (RVE). In particular, Sun and Ju (Sun et al., 2003) applied the 

double-inclusion theory (Hori and Nemat-Nasser, 1993; Shodia and Sarvestani, 2001) to 

investigate the particle-shaped fiber cracking problem. They explicitly derived the perturb stress 

field associated with a single crack embedded in a single fiber. Utilizing the innovative 

governing ensemble-volume average field equations developed by Ju and Chen (1994), the 

explicit form of the overall constitutive relations for short fiber reinforced composites with 

progressive fiber breaks was realized. Ko and Ju (2013) further extended the application of the 

double-inclusion theory to predict the overall material behavior associated with fiber cracking in 

continuous fiber-reinforced composites, with the local cracking damage propagating along the 

longitudinal direction. The primary advantage of micromechanics is that these models consider 

the explicit form of the overall constitutive relations of composites considering different material 

phases and various damage modes. However, since the crack opening displacement of the 

breakage is neglected in the double-inclusion model, the ensemble volume-averaged total 

eigenstrain depends only on material properties of the fiber phase.  
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Numerical techniques have also been applied extensively to simulate the fiber breaking 

process in MMCs. Finite element simulation is one of the most commonly-used methods 

(Nickolas and Ahmad, 1994; Shodja and Sarvestni, 2001; Xia et al., 2002; Ohno et al., 2004). 

Another widely adopted technique for the prediction of the strength of the composite materials is 

the Monte Carlo simulation (Landis, 2000; Meyer et al., 2003; Liu and Zheng, 2006; Nazari et al., 

2011). Most computational models are based on a pre-defined micro-structural layout, which has 

the advantage of high accuracy of solutions by taking into account the geometry of 

reinforcements and local interactions among reinforcements. However, numerical models do not 

yield explicit forms for the overall constitutive relations. This makes them difficult to be 

implemented in the stress analyses at the macroscopic level. 

 

 Matrix Cracking 

The penny-shaped microcrack model is extensively employed in theoretical models to study 

the damage behavior of composites due to matrix cracks. In addition, the crack number density is 

widely adopted as the damage parameter that governs the degradation of composites. Kaechele 

and Tetelman suggested that the crack number density increases as the ninth power of normal 

stress across the cleavage plane. A number of models based on the penny-shaped crack models 

and the concept of crack density evolution, have been developed to simulate the matrix cracking 

problem in composite materials. Based on the theory of micromechanics, Ju and his coworkers 

conducted a series of studies to systematically investigate the influence of microcracks on the 

effective moduli of the composites. A three-dimensional statistical micromechanical framework 

considering the first-order microcrack interaction was proposed by Ju and Tseng (1992) to 

investigate effective elastic moduli of brittle solids with randomly located, penny-shaped 
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microcracks. The higher-order pair-wise microcrack interaction was later taken into account (Ju 

and Chen, 1994 d, e). Moreover, Ju and Lee applied the highly accurate Legendre and 

Tchebycheff orthogonal polynomials to solve the randomly located and oriented two-crack 

interaction problem in a two-dimensional space. A three-dimensional elastic stress analysis was 

later performed on an infinite solid to study the interaction between a penny-shaped crack and a 

spherical inclusion (Lee and Ju, 2007). The primary advantage of these models is that the 

microstructural statistical information is embedded implicitly in the ensemble-averaged 

equations and, therefore, no Monte Carlo simulations are needed.  

 

In reality, there exists an atomic bonding force near the crack tip, which provides a cohesive 

closing pressure on the crack and resists further crack propagation. Since the pioneering works of 

Dugdale (1960) and Barenblatt (1962), cohesive cracks have been studied widely and employed 

to investigate the failure mechanisms. Keer and Mura (1965) used the Tresca yield criterion to 

link the cohesive strength with the microscale yield stress. Later, Keer and his coworkers (1966, 

1991, and 1993) performed a series of studies to investigate the cohesive crack in various 

materials under different loading conditions. Li et al. (2004) proposed a cohesive microcrack 

model based on the homogenization of the Dugdale-Bilby-Cottrell-Swinden type microcracks in 

a two dimensional elastic representative volume element. In addition to the analytical models, 

numerical techniques, such as the finite element method, are also widely used to simulate the 

damage evolution of cohesive cracks. For instance, Belytschko and his coworkers (2002) utilized 

the extended finite element method (XFEM) to predict the growth of arbitrary cohesive cracks.  
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 Matrix Yielding 

The matrix material tends to yield at a relatively low stress around the interface between the 

matrix and inclusion due to the high stress concentration induced by the mismatched stiffness of 

those materials (Christman et al., 1989a, b). However, the resulting local plastic yielding does 

not control the onset of global yielding. The overall yield stress of metal matrix composites is 

governed not so much by the premature local yielding of the matrix, but rather by the attainment 

of an average stress in the matrix that is sufficient for the global yielding (Clyne and Withers, 

1993). Moreover, due to the similarity of the yield criteria developed for monolithic materials 

which reflect the tri-axial state of stress, it seems reasonable to take this tri-axial state of stress 

into account for metal matrix composites. A number of models use the von Mises and Tresca 

type yield criteria. They assume that overall plastic flow of the composite occurs when the 

average stress in the matrix exceeds certain threshold value. Therefore, the matrix material plays 

a crucial role in determining the overall composite yielding (Nieh and Chellman, 1984). 

 

In literature, there are several schools of theories regarding the prediction of the elastoplastic 

behavior of MMCs due to matrix plastic deformation. A number of models have focused on the 

prediction of effective elastoplastic behavior of MMCs from their microstructural characteristics. 

These microstructural characteristics include the mechanical properties of constituent phases, 

volume fractions, spatial distributions, and micro-geometries (shapes, orientations, and sizes) of 

inhomogeneities. For instance, Tandon and Weng (1988) employed the Mori-Tanaka method 

(Mori and Tanaka, 1973) and the secant moduli method (Berveiller and Zaoui, 1979) to predict 

the effective elastoplasticity of MMCs. Subsequently, Zhao and Weng (1990) considered the 

overall elastoplasticity of aligned spheroid reinforced MMCs. An improved method was 
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proposed by Qiu and Weng (1991, 1992, 1995), using the energy criterion for the effective stress 

of the ductile matrix while estimating the strain potential and the overall stress-strain relations of 

two-phase composites containing spherical or spheroidal inclusions. Ju and his research group 

proposed an elastoplastic micromechanical framework, in which the local stress field at any 

matrix point can be computed directly by using the exterior-point Eshelby’s tensor. The 

ensemble-area-averaging method can be employed directly to obtain the effective yield function 

for the fiber reinforced metal matrix composites with evolutionary multi-level damage. 

 

Emanating from the continuum mechanics approach, another group of researchers treats 

MMCs as single-phase anisotropic materials exhibiting properties along different directions. 

Naturally, the behavior of the aligned fiber reinforced MMCs exhibit at least transverse isotropy. 

Important works along this line include, the continuum model of Mulhern et al. (1967), the 

failure criteria of Hashin (1980), and the bimodal plasticity analysis of Dvorak and Bahei-El-Din 

(1987) and Dvorak (1988) for fiber reinforced MMCs. Hansen et al. (1991) and Schmidt et al. 

(1993) also proposed a modified model of Hill (1948) to calculate the plastic behavior of 

transversely isotropic composites. Further, Voyiadjis and Thiagarajan (1995) proposed a new 

anisotropic pressure-dependent continuum yield surface model for directional fiber-reinforced 

MMCs. 

 

Numerical techniques are also used widely for modeling the mechanical behavior of MMCs. 

For instance, Christman et al. (1989a, b) and Tvergaard (1990) calculated the effective 

elastoplastic behavior of short-fiber reinforced MMCs by using an axisymmetric unit cell model 

under the finite element framework. Similarly, Levy and Papazian (1990) and Hom (1992) 
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utilized a unit cell model together with the three-dimensional finite element analysis to determine 

the effective elastoplastic responses of short-fiber reinforced MMCs. Moreover, Bao et al. (1991) 

combined the finite element analysis with a theoretical investigation.  
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CHAPTER 3 MICROMECHANICAL MODELING OF CONTINUOUS 

FIBER REINFORCED COMPOSITES WITH PENNY-SHAPED COHESIVE 

MATRIX MICROCRACKS AND THERMAL EFFECTS 

3.1 Introduction 

Continuous fiber reinforced composites have been investigated extensively because of their 

superb mechanical properties. Experimental results indicate that chemical reactions between the 

fiber and the matrix during fabrication normally form a brittle interfacial layer. In general, this 

layer possesses a lower fracture strength comparing to that of the fiber and the matrix. Upon the 

tensile loading along the fiber longitudinal direction, microcracks initiate in the interfacial layer 

with the crack opening surfaces perpendicular to the loading direction. As a consequence, stress 

concentrations are induced near crack tips. Different damage modes can be triggered near the 

interfacial region depending on the combination of the constituents’ properties and the interfacial 

bonding conditions. Consider a composite with a brittle matrix and perfect interfacial bonding 

conditions. Microcracks that initiated in the interface layer can further extend into the brittle 

matrix, leading to the formation of matrix microcracks. As the load increases, the size and the 

number density of microcracks increase as well. This leads to the nonlinear stress-strain 

behaviors of the overall material behavior. 

 

In literature, the effective properties of an isotropic elastic matrix material containing 

microcracks have been investigated extensively. Famous works along this line include the self-
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consistent model (Budiansky 1965; Ju and Lee 1991a, 1991b), the variational bounds (Talbot 

and Willis, 1985), the differential scheme (Hashin 1988), the Mori-Tanaka method (Zhao et al. 

1989), the deterministic microcrack interaction model (Krasnikovs and Megnis 2005), and the 

statistical microcrack interaction model (Ju and Tseng 1992). Moreover, numerical techniques 

have also been applied widely in studying microcracks and crack propagation problems. For 

example, Belytschko and his coworkers (1991) developed a finite element model for crack 

growth without re-meshing.   

 

In reality, a small area termed the ‘cohesive zone’ exists near the crack tip, where the atomic 

bonding force applies a closing pressure on the crack tip and resists the crack from further 

propagation. The presence of the cohesive zone complicates the local microstructures and the 

corresponding theoretical study. A number of research works have taken account of the cohesive 

effect while investigating the matrix crack initiation and crack propagation problems. The early 

contribution was made by L. Keer and T. Mura (1965), who used the Tresca yield criterion 

linking the cohesive strength with the microscale yield stress. In their study, only uniaxial 

tension loading was considered. More recently, Chen and Keer (1993) re-examined the problem, 

and they obtained the general solutions for a penny-shaped cohesive crack under mixed-mode 

loadings. Later, Li and his coworkers (2003) proposed a micromechanical framework to 

incorporate the cohesive effect under hydrostatic loading condition. The overall damaged 

material properties were derived analytically. In addition, numerical models have also been 

developed to take the cohesive effect into account. For example, Belytschko and his co-works 

(Moës and Belytschko 2002) modified their crack model by using the extended finite element 

method (XFEM) to simulate the growth of arbitrary cohesive cracks. 
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3.2 Micromechanical Formulation 

In order to render a tractable homogenization solution, the following assumptions are made 

in this study: 1) the overall damage due to the permanent crack opening is only associated with 

the average hydrostatic stress state in an RVE; and 2) the overall damage effect due to the 

average deviatoric stress is negligible (Wang and Li, 2004). These assumptions enable us to 

investigate the damage behavior that is only susceptible to macro hydrostatic stress state.  

 

A three dimensional penny-shaped Dugdale crack model with an inner radius a  and outer 

radius b  is adopted to represent a cohesive microcrack. The ring-shaped zone with width b a  

denotes the cohesive zone as illustrated in Figure 3.2. Consider an RVE with microcracks 

randomly dispersed within it and a uniform triaxial tension stress 0  is applied at the remote 

boundary of the RVE. The traction conditions on the remote boundary V  and the symmetric 

displacement boundary conditions can be expressed in the cylindrical coordinate as 

 
0| | |zz V V rr V   

        (3.1) 

 ( , ,0) 0  for ,  0 2zu r b r       (3.2) 

Utilizing the concept of superposition, the problem of a matrix material containing one penny-

shaped cohesive microcrack under hydrostatic stress state can be treated as two sub-problems as 

shown in Figure 3.3. One is an intact material under the hydrostatic stress and the other is a crack 

problem with the crack surface traction distribution. The stresses on the crack surface and the 

cohesive zone are 

    , ,0     for     0 ,  0 2zz cor H r a r b           (3.3) 
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where  H r a  is the Heaviside function, and co
 
is the cohesive strength of the matrix phase.  

 

In the second sub-problem, the crack opening displacement 
zu  can be solved analytically as 
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The averaged strain field ε  is related to the averaged stress σ  through the overall 

complementary energy density cW  of the RVE 

 cW



ε

σ
 (3.5) 

The averaged strain ε  and the far-field stress 
0σ  can be related by introducing an effective 

compliance tensor D  of the damaged RVE through 

 
0:ε D σ  (3.6) 

where the averaged stress 
0σ σ   according to the average theorem. 

 

Similarly, the averaged strain ε  can be divided into two parts, with each part associated with 

a sub-problem. Then, 

 (0) ( )a ε ε ε  (3.7) 

where ( )a
ε  is termed as additional strain tensor representing the damage effect. This additional 

strain can be expressed in terms of the averaged stress σ  as 
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 ( ) :a ε H σ  (3.8) 

where H  is the additional compliance tensor due to the presence of microcracks. Once H  is 

derived, the effective elastic compliance moduli  D D H  can be deduced subsequently. 

 

Assume that the total energy release of a cohesive crack is completely consumed in the 

surface separation. This may or may not be true in cohesive fracture due to the plastic dissipation 

in the cohesive zone. As a consequence, the upper bound estimation of the total energy release 

rate of an RVE with a single penny-shaped cohesive microcrack can be expressed as 

    
2

m z co zR u dS u dS
 

     (3.9) 

Carrying out the integration using crack displacement solutions, the energy release estimate can 

be written as the following expression: 
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where the cohesive microcrack volume fraction can be expressed as 
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where a is the radius of the th crack, and 
34 / 3a is the volume of a sphere with radius a , 

N  is the number density of microcracks in the RVE, and  is the ratio between the volume of 

permanent crack opening and the volume of total crack opening of a cohesive microcrack. For 

simplicity, we assumed that this ratio is fixed with the value 0.95   for every crack inside the 

RVE. Hence, the density of energy release of the RVE is estimated as 
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The overall complementary energy density, therefore, may be expressed as the sum of 

complementary energy of corresponding virgin material and the density of energy release 

estimate due to microcrack distribution, 
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For a given microcrack volume fraction f  , the averaged strain tensor can be obtained as 
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Further, the expression for the additional strain can be derived as 
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By imposing the restriction that the relative reduction of the shear modulus is the same as that of 

the bulk modulus leads to 

 
K

K




  (3.16) 

By using the following relations: 
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We can then derive that    and   
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Finally, the effective elastic moduli can be estimated as: 
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3.3 Two-Step Homogenization and Damage Evolution 

3.3.1 Homogenization Procedure 

Based on the penny-shaped cohesive microcrack model, a two-step homogenization 

framework is developed to achieve the effective elastic damage behaviors of continuous fiber-

reinforced composites associated with matrix microcracks. In the first stop, an intact matrix 

material is homogenized with the penny-shaped microcracks. Next, the damaged matrix material 

is homogenized with reinforcements to achieve the effective damaged material properties of the 

continuous fiber reinforced composite associated with matrix microcracks. In the present 
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framework, the fiber volume fraction is assumed to be low so that the higher-order interactions 

among reinforcements and microcracks can be neglected.   

 

3.3.2 Damage Evolution 

The crack number density and the crack size are defined as two damage parameters in 

describing the damage evolution due to matrix microcracks. Upon on loading, the number 

density of matrix microcracks increases. Assuming that the number evolution of matrix 

microcracks is governed by the Weibull statistic: 

 1 saturatedn p n   (3.22) 

1

1 exp     if  

0                                       if  
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cr
cr
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p S
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     

     




 

where 
saturatedn  and cr  are the saturated number of matrix microcracks and the stress threshold 

for microcrack initiation, respectively,   is the internal stress of the composite, and S  and M  

are the two Weibull parameters, which can be quantitatively characterized from experiment. 

Here, S  is associated with the local fiber breaking strength, whereas M governs the damage 

evolution rate.  

 

Once a microcrack is triggered, the size of the microcrack increases as the load increases. 

We define a radius ratio 
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
 (3.23) 

This ratio tends to increase as the loading increases. As a consequence, we compute the current 

volume fraction of microcracks as ( )old
new old

new

ratio
f f

ratio
  . This governs the damage evolution of 

the cohesive microcracks. 

 

3.4 Numerical Results and Discussion 

The following material properties of a fiber-reinforced composite are adopted for 

demonstration purpose. The Young's Modulus of the matrix and fibers are 210 GPAmE   and 

245 GPAfE  , respectively. The Poisson's ratios are 0.3m   for the matrix and 0.27m   for 

the fibers. Assuming the initial volume fraction of microcracks is 0.05. 

 

The stress-strain curves in Figure 3.5 show the nonlinear material behavior due to the 

microcrack evolution with different values of initial microcrack volume fraction. The greater the 

initial volume fraction of microcracks, the lower the stiffness of the material will be. From the 

numerical simulation as shown in Figure 3.6, it is obvious that the existence of microcracks 

within the composites tends to lower the stiffness of materials. By introducing the cohesive 

effects into the penny-shaped microcrack model, an increasing of the overall stiffness of the 

composites is observed. That is, the closing pressure due to the cohesion attempts to stop the 

growth of the microcracks, thus, requires more energy for further cracks to propagate. Figure 3.7 
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shows the stress-strain behavior of the fiber-reinforced composite with cohesive microcrack 

compared against the virgin matrix material and matrix material with cohesive microcracks.  

 

The proposed micromechanical damage model with the two-step homogenization is further 

implemented in the user subroutine UMAT in ABAQUS. The plate with the same material 

properties given previously is discretized by 1,200 20-nodes finite element with the prescribed 

displacements and boundary conditions given in Figure 3.8. General nonlinear analysis with 50 

load increments is performed in order to capture the material degradation due to microcrack 

damage evolution.  

 

The overall stress-strain relations and overall microcrack damage evolution obtained from 

the analyses in ABAQUS are shown in Figure 3.9 and Figure 3.10, respectively. The 

corresponding stress-strain relationships and damage evolution curves for the corner and middle 

points of the plate are given in Figure 3.11–Figure 3.14, which reveals that the damage 

evolutions are inhomogeneous and position-dependent. 

 

3.5 Microscopic Matrix Cracks with Thermal Effects 

The mechanical properties and material behaviors of composites are sensitive to thermal 

effect. On one hand, the material properties of MMCs are dependent upon temperature 

(Matthews and Rawlings 1993). On the other hand, thermal residual stresses normally exist in 

the composites due to the high temperature fabrication/annealing and subsequent cooling process. 
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While the introduction of rigid inhomogeneity improves the material properties of matrix, their 

existence induces the thermal residual stresses in composites simultaneously, owing to the 

mismatch between the coefficients of thermal expansion (CTE) of the matrix and that of the 

inhomogeneity. Particularly, the combination of the thermal expansion coefficients between the 

fiber and matrix has significant effect on the behaviors of the matrix cracks triggered by the 

internal residual stresses. Take continuous fiber reinforced composites for instance. If the CTE of 

the reinforcements is greater than that of the matrix, the axial tensile stresses induced in the fiber 

produce an overall net residual compressive stress in the matrix and, as the fibers contract, there 

is a tendency for them to pull away from the matrix. The stress state is reversed when the CTE of 

the reinforcements is less than that of the matrix
 
and cracking of the matrix due to the axial 

tensile stresses occurred in the matrix (Matthews and Rawlings 1993). In reality, thermal stresses 

and thermal strains can be either beneficial or detrimental to structures depending on the path of 

temperature changes, boundary conditions, and the CTEs of the fiber and matrix. Therefore, a 

thorough understanding of the thermal effects of the composites due to the temperature change 

enables a more accurate prediction of composite behaviors and a better design of the composite 

structure.  

 

A number of researches aimed at investigating the thermal effect on the overall material 

behaviors by computing the effective thermal expansion coefficients of a composite. Taya et al. 

(1985) studied the effects of dispersed microvoids on the thermal expansion behavior of 

composite material. Their findings indicated that the combination of fiber reinforcements with 

high elastic modulus and low CTE and disk-shaped voids will remarkably lower the overall CTE 

of composites. Wakashima et al. (1974) predicted the overall thermal expansion characteristics 
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of a two-phase composite material containing aligned ellipsoidal inclusions. These works 

provide the foundation to study the coupling of mechanical properties of composites and thermal 

effects. Another group of models focused on studying the effect of thermal residual stress on the 

damage evolution in composites. Research works along this line include Ju and Yanase proposed 

a micromechanical framework to incorporate the thermal effect by introducing the thermal 

eigenstrain due to manufacturing defects. Taking advantage of the Eshelby’s equivalent principle 

and Eshelby’s solution, the thermal eigenstrain is related to the material properties, far-field 

strain and the eigenstrain due to the material mismatch. The thermal residual stresses are at 

equilibrium with their surroundings. However, it will affect the interfacial stress, thus the 

interfacial damage evolution. Homogenized constitutive equations of composites are then 

derived systematically in an explicit way so that they can be implemented directly for the 

structural analysis.  

 

3.5.1 Effective Thermal Expansion Coefficient (CTE) 

Consider a two-phase composite reinforced with continuous fibers as shown in Figure 3.15. 

The matrix phase is linearly elastic with the elastic stiffness tensor denoted by mC . The fibers are 

represented by the randomly dispersed yet unidirectionally aligned, linearly elastic cylinders with 

the elastic stiffness tensor denoted by 
fC . The fiber aspect ratio is defined as 3 1/a a  , where 

3a  is the fiber radius and 1a  represents the fiber length.  Both the matrix phase and the fiber 

phase are isotropic with the CTEs designated as 
mα  and

fα , respectively. Let the domains of the 

composite body and fibers being denoted by D  and  , respectively. Hence the domain of the 

matrix phase is represented by D . The thermal strains of the composite can be treated as a 
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superposition of a homogeneous thermal deformation T

m m T  ε α  due to the matrix and an 

additional deformation 
T

add


ε  due to the mismatch between the matrix CTE and overall composite 

CTE. The local perturbed strain 'ε  due to the presence of the fiber inclusion and additional 

thermal strain * ( )f m T  β α α  with respect to the thermal strain of the matrix phase can be 

related to the total strain as the follows: 

 
*            in       

                        in D

total T

add

total T

add





    

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ε ε ε β

ε ε
 (3.24) 

Therefore, the total stresses in both matrix and fiber phases have the form: 
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 (3.25) 

By using the Eshelby's equivalent inclusion principle, the internal stress in  can be recast as 

  * *:total T

m add

    σ C ε ε β ε  (3.26) 

where  

  * *:  ε S β ε  (3.27) 

Herein, S  is the 4th-rank interior Eshelby tensor depending on the geometry of the inclusion and 

the Poisson’s ratio of the matrix, and *ε  is the eigenstrain with non-zero values in  . 

 

By using the Eshelby's equivalent inclusion method, the internal stress can be expressed as 
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which leads to the following expression of the additional mismatched deformation as: 

    * *:T

add f   ε I S β ε  (3.29) 

The overall disturbance strain in the composite due to thermal effect can be written as 
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Therefore, the overall thermal expansion coefficient of the composite is derived as 

   * *T

c composite mT f T     α ε α β ε  (3.31) 

where the eigenstrain is determined by solving the following equation 

            * * * * * * * *: : : : : : : ( )f mf f             
   

C I S β ε S I β S ε C I S β ε S I β ε  (3.32) 

 

3.5.2 Effective Moduli of Composites with Microcracks and Thermal Effects 

The first-order interaction approximation will be employed to estimate increases in effective 

compliances of brittle solids with microcracks. Four governing micromechanical ensemble-

volume averaged field equations were derived by Ju and Chen (1994a). 
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where 
rA  is defined as: 

  
1

0 0r r


  A C C C  (3.37) 

If we consider a two-phase composite material with linearly elastic isotropic 0C  and 1C , the 

effective moduli of it can be derived from the governing equations as the following: 

   * 0  1          
-1

C C I A S  (3.38) 

Unidirectionally aligned penny-shaped microcracks can be regarded as the limiting case of 

unidirectionally aligned spheroidal voids with the aspect ratio 0  . That is, one can collapse 

one axis of a spheroidal microvoid to recover a penny-shaped microcrack. In this event, the non-

interacting approximation becomes 
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If a composite is undergoing a temperature change T , then the total strain totalε  in the composite 

is the sum of the elastic strain elε  and the thermal strain thε . Unlike the elastic strain, the thermal 

strain thε is a stress-free strain. Therefore, if we consider a composite with microcracks under a 
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given temperature change, the stress-strain relations in the vector form incorporating the thermal 

effect appear as 

 * : el cT σ C ε α  (3.40) 

 

3.5.3 Numerical Results 

Let us examine the effective thermal expansion coefficients of the SiC/Al composite and 

carbon/epoxy composite by the presented model. The thermo-mechanical properties of 

constituents are given in Table 3.1. Both the effective thermal expansion coefficients in the 

longitudinal direction and transverse direction are plotted in Figure 3.17 and Figure 3.18 for the 

SiC/Al and Carbon/Epoxy composites, respectively. Various aspect ratios are adopted herein 

with the values of 1.5, 4 and 25 for a SiC/Al composite. It is obvious that the effective thermal 

expansion coefficients in the transverse direction are larger those in the longitudinal direction. 

The bigger the aspect ratio, the greater the difference of the effective thermal expansion 

coefficients is in two directions. Figure 3.18 shows the effective thermal coefficients of the 

Carbon/Epoxy with fiber aspect ratios of 10, 20 and 100. The larger effective transverse thermal 

expansion coefficients over those in the longitudinal direction are observed again for the 

Carbon/Epoxy composite. However, the difference between the overall thermal expansion 

coefficients of the Carbon/Epoxy in the transverse and longitudinal directions tends to be much 

larger than that of the SiC/Al composite. This is because of the matrix and fibers in SiC/Al share 

the same thermal expansion coefficients in both the transverse and longitudinal directions while 

the fibers have much larger thermal expansion coefficients in the transverse direction than that of 

the longitudinal direction in Carbon/Epoxy composite. Comparing the results of T  in Figure 
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3.17 and those in Figure 3.18, 
T  for SiC/Al increases monotonically as f increases, whereas 

that for Carbon/Epoxy has a peal at f around 0.1. 

 

The constitutive relations are plotted in Figure 3.19 and Figure 3.20 for pure matrix material 

with penny-shaped microcracks with and without cohesive effect under different temperature 

changes. Figure 3.21 shows the stress-strain relation for the fiber reinforced composite with 

cohesive microcracks under different temperature changes. Obviously, larger temperature 

changes will induce the larger thermal strain in the structural component, which further leads to 

the larger deformation of the composite.  

 

3.6 Conclusion 

In this Chapter, a micromechanical damage mechanics framework is proposed to predict the 

overall elastic damage behaviors of the fibrous composites with the evolution of cohesive 

microcracks. The concept of cohesion effects is introduced in the proposed model by considering 

the energy release contribution to the material damage process is estimated in a representative 

volume element under the macro hydrostatic stress state. A two-step homogenization is 

implemented to simulate the damage behavior of fibrous composites with the presence of 

microcrack evolution. From the numerical simulations, the resulting stress-strain relations exhibit 

nonlinear elastic-damage behaviors, which are computationally governed by the stress-state or 

strain-state (algorithm) of progressively damaged composite materials. Subsequently, the 

proposed micromechanical formulation is further implemented in the finite element analysis 

software ABAQUS with UMAT subroutine. The stress-strain relations and the damage contour 
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plots are systematically presented to illustrate the predictive capability of proposed probabilistic 

micromechanical formulation. Moreover, the effective thermal expansion coefficients were 

derived for the fiber-reinforced composites. Both the constant aspect ratio and the variable aspect 

ratio of the fibers are taken into consideration in determining the effective thermal expansion 

coefficients. The effect of variable fiber aspect ratio on the thermo-mechanical properties of a 

fibrous composite was investigated in the numerical examples as well. With the existence of the 

thermal effect, the overall effective moduli of a two-phase composite with penny-shaped 

microcracks were obtained under our micromechanical framework. 
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Table 3.1 Material properties of composite materials used in the numerical examples. 

 Al SiC Epoxy Carbon 

Young's modulus 

(GPA) 
68.3 490 3.5 

C11  =  28.25 

C33  =  234.23 

C12  =  12.13 

C13  =  12.14 

C44  =  10.0 

Poisson's Ratio 0.33 0.17 0.42 

CTE 

Longitudinal (x 10
-6

) 
23.6 4.3 80 -1.5 

CTE 

Transverse (x 10
-6

) 
23.6 4.3 80 27.0 

 

 

Figure 3.1 Isotropic distribution of microcracks with random orientations. 
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Figure 3.2 Schematic of a penny-shaped microcrack with the cohesive crack zone. 

 

 

Figure 3.3 Illustration of the superposition of the cohesive microcrack problem. 

 

 

Figure 3.4 Schematic of the two-step homogenization for fiber-reinforced composites with matrix 

micro-cracking. 
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Figure 3.5 Predicted stress-strain relations of matrix with various amounts of initial cohesive 

microcracks. 

 

 

Figure 3.6 Predicted stress-strain relations of matrix with and without consideration of cohesive 

microcracks. 
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Figure 3.7 Predicted stress-strain relations of fiber-reinforced composites. 

 

 

Figure 3.8 Schematic of the dimension of the laminated composite and its boundary conditions. 
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Figure 3.9 Overall stress-strain behaviors of the laminated composite with various amounts of 

initial cohesive microcracks. 

 

 

Figure 3.10 Overall microcrack volume fraction evolution with various amounts of initial cohesive 

microcracks. 
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Figure 3.11 Predicted stress-strain relation at the middle point. 

 

 

Figure 3.12 Predicted stress-strain relation at the corner point. 
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Figure 3.13 Predicted microcrack volume fraction evolution at the middle point. 

 

 

Figure 3.14 Predicted microcrack volume fraction evolution at the corner point. 
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Figure 3.15 Schematic of fibers with constant aspect ratio embedded in the matrix. 

 

 

Figure 3.16 Schematic of fibers with variable aspect ratio embedded in the matrix. 
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Figure 3.17 Effective CTE of SiC/Al composites with different fiber aspect ratios. 

 

 

Figure 3.18 Effective CTE of carbon/epoxy composites with different fiber aspect ratios. 
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Figure 3.19 Predicted stress-strain relations of the matrix material with cohesive penny-shaped 

microcracks under different temperature changes. 

 

 

Figure 3.20 Predicted stress-strain relations of the matrix material without cohesive penny-shaped 

microcracks under different temperature changes. 
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Figure 3.21 Predicted stress-strain relations of the composite material with cohesive penny-shaped 

microcracks under different temperature changes. 
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Equation Chapter (Next) Section 1 

CHAPTER 4 EFFECTS OF FIBER BREAKAGE ON FIBER-DOMINATED 

DAMAGE BEHAVIOR OF CONTINUOUS FIBER REINFORCED 

COMPOSITES 

4.1 Introduction 

Continuous fiber reinforced metal matrix composites (MMCs) have been applied widely as 

load-bearing materials in various industries due to their superior mechanical properties. Silicon 

carbide, silicon nitride, carbon, boron, and glass are the commonly-used fiber materials. Ductile 

metals or alloys with high failure strength, such as aluminum, steel, and titanium, are used 

extensively as the matrix material for the sake of composites to have a high strength-to-weight 

ratio and a high stiffness-to-weight ratio. In general, the failure strength of fibers is much lower 

than that of the matrix in a MMC. If the interfacial bonding strength is high, fiber breakage may 

occurs before other damage modes while the tensile loading is applied in the fiber direction. The 

failure of several fibers in the same plane may trigger the failure of the composite before the 

global onset of plastic deformation in the composite (Jeng et al., 1991). This damage mechanism 

is termed as the fiber-dominated damage is some literature.  

 

The single-fiber composite (SFC) fragmentation test is an effective means in determining the 

fiber strength, interface bonding strength, and interface toughness in a composite. During a 

fragmentation test, a SFC specimen is loaded in tension until the number of fiber breaks reaches 

saturation. The material properties can be quantified from the measurement of the microscopic 

damage and the fiber fragmentation at each strain level. Most analytical models of SFC 
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fragmentation tests assume a constant shear stress for simplicity. Regions around a fiber break 

are shielded from higher loads by the shearing and the shielded region grows with the applied 

load until the shielded regions around all the breaks encompass the entire fiber length. Curtin and 

his coworkers (1998) conducted a series of investigations on SFC fragmentation tests. They 

proposed several models to calculate the evolving fragment distribution and applied the final 

saturated fragment distribution data to estimate the interfacial shear stress. Some of the models 

also evaluated the fragmentation process in the SFC to estimate the fiber strength distribution.  

 

Although the SFC test is instructive in studying the fiber breakage mechanism, the fiber 

breakage evolution process in multi-fiber composites is far more complicated than that of a SFC. 

The sequence of the damage modes in composites depends on the material properties of 

constitutes, the properties of the interface reaction layer, the volume fraction of the 

reinforcements and the interfacial bonding conditions. Generally, for fiber reinforced composites 

with brittle matrix materials, the first noticeable damage mode upon tensile loading in the fiber 

direction is the matrix cracks perpendicular to the loading direction. As the applied load 

increases, more transverse matrix cracks initiate, accompanied by other damage events such as 

the fiber/matrix interfacial debonding and the fiber breakage. On the other hand, if the matrix 

material is ductile while the fibers are relatively brittle, the fiber breakage tends to initiate as the 

first damage mode (Curtin 1998). As fiber breakages accumulate, other damage modes such as 

the matrix cracks and the interfacial debonding occur subsequently and further reduce the 

strength of the composite until the composite reaches its failure criteria. In this sense, the fiber 

breakage involves in the failure process of a composite at different stages depending on the 

material properties of material phases and their interfacial bonding conditions.  
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A number of models have been proposed to predict the strength and the stiffness of 

continuous fiber-reinforced composites with fiber breakage under various loading conditions. 

Wang and his co-workers (2008) investigated the effect of multiple cracks on a SFC by the 

integral equation technique. Steif (1984) studied the stiffness reduction due to fiber breakage by 

simulating a dilute concentration of broken fibers which were partially debonded from the matrix. 

Liao and his coworkers (2000) developed a tensile strength model for a unidirectional fiber-

reinforced brittle matrix composite, in which a statistical analysis of fiber fracture was performed. 

Oguni and Ravichandran (2000) worked on an energy-based model to predict the longitudinal 

splitting in unidirectional fiber-reinforced composites under compression loading condition. 

Krasnikovs and Megnis (2005) proposed a stochastic fiber break clusters accumulation model for 

polymer matrix unidirectional fiber-reinforced composites subjected to tension-tension fatigue 

loading. Most analytical models are based on the linear elasticity and the linear elastic fracture 

mechanics. On the other hand, most computational models are based on the periodic unit cell 

models, which have the advantage of high accuracy of solutions by considering realistic 

geometry of reinforcements and local interactions among reinforcements with the expense of 

intensive computational cost. Moreover, numerical models do not result in explicit forms for the 

overall constitutive relations. This makes them difficult to implement in stress analyses at the 

macroscopic level. 

 

In this Chapter, we focus on studying i) the fiber breakage mechanism in a single-fiber 

composite; ii) the fiber-dominated damage in a unidirectional reinforced multi-fiber composite  

under the rigorous micromechanical framework. 
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4.2 Double-Inclusion Model 

A double-inclusion model consists of an ellipsoidal inclusion which contains an ellipsoidal 

heterogeneity. The double-inclusion is embedded in an infinitely extended homogeneous domain. 

Comparing to a single-inclusion problem, the local field variables in the double-inclusion are 

difficult to determine, even for uniform far-field boundary conditions. However, the average 

field quantities of the inclusion can be calculated analytically and explicitly. The following 

notations are adopted for this study as illustrated in Figure 4.1: the domains of the outer inclusion, 

the inner inclusion, and the infinite solid are denoted by R , , and B , respectively; region 

R   is denoted by  . It is assumed that the domains of  ,  , and B R  are uniform with 

elastic tensors (1)C , (2)
C , and C , respectively. The corresponding constitutive relations can be 

established thereafter as 

  

 

 

 

(1)

(2)

: ,    for  in      

: ,   for  in      

: ,       for  in B R

 


 
 

C ε x x

σ x C ε x x

C ε x x

 (4.1) 

Suppose that the infinite solid B  is subjected to a far-field strain field 
ε  with an accompanied 

far-field stress field : σ C ε . In order to analyze this double-inclusion problem, we consider 

an auxiliary problem as shown in Figure 4.2. The notations of 
*R , 

* , 
*  and *B denotes the 

counterparts of R ,  ,   and B  in the original problem, respectively. Eigenstrains, *( )xε , are 

distributed in the region 
*R . Based on the Eshelby’s inclusion theory (Eshelby 1957, 1961), the 

eigenstrain field *( )xε  produces the perturbed strains and stresses as follows: 

      
*

* *; : y
R

dV  ε x ε G x y ε y  (4.2) 
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      * * *; : ;   
 

σ x ε C ε x ε ε x  (4.3) 

where  *;ε x ε  and  *;σ x ε  are the perturbed strains and stresses at location x, respectively; 

and G  is the fourth-order tensor determined by the Green’s function associated with the 

equivalent infinite solid 
*B  (Mura 1987). Utilization of the Eshelby’s equivalent inclusion 

principle, the following consistency condition is reached 

      

   
   

1 * *

* * *

2 * *

: ; ,    for  in 
; : ;

: ; ,    for  in 



 



   
  

        
    

C ε ε x ε x
σ σ x ε C ε ε x ε ε x

C ε ε x ε x
 (4.4) 

Consistency conditions shown in Equation 1.4 can be solved numerically, and the local 

response of the double inclusion problem can then be analyzed. However, the relative position 

and orientation of the inclusion   must be specifically defined in the numerical analysis. In 

addition, average field quantities can be estimated analytically and explicitly, yielding the close-

form expressions for the overall moduli of the double-inclusion problem. With the aid of the 

equivalent homogeneous inclusion method (Hori and Nemat-Nasser, 1993), the ensemble-

averaged eigenstrains over 
*  and 

*  can be determined as follows: 

       

   

1
1 1

*( ) ( ) (1) ( ) ( ) ( ) ( ) ( ) (2)

1
1

( ) ( ) ( ) (1)

1

         :
1

R R

R

f

f

f

f


 

    




  

                   

  
       

ε S C C C S S S S S C C C

S S S C C C ε

(4.5) 

       

   

1
1 1

*( ) ( ) ( ) ( ) (1) ( ) ( ) ( ) (1)

1
1

( ) ( ) ( ) (2)

1

         :
1

R R

R

f

f

f

f


 

    




  

                   

  
       

ε S S S C C C S S S C C C

S S S C C C ε

(4.6) 
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where ( )RS  and ( )
S  are the Eshelby’s tensors for ellipsoids 

*R  and 
* , respectively; 

* */f R   is the volume fraction of the inner inclusion 
* . The rest of the average field 

relations for the double inclusion can be determined by 

   :   


   ε I S Φ S Φ ε  (4.7) 

   :   


     
 

σ C I S Φ S I Φ ε  (4.8) 

 :
1 1

R f f

f f

  



  
       

   
ε I S S Φ S Φ ε  (4.9) 

 :
1 1

R f f

f f

  



    
         

     

σ C I S I S Φ S Φ ε  (4.10) 

 ( ) :R R

R

 ε I S Φ ε  (4.11) 

   :R R

R

   
 

σ C I S I Φ ε  (4.12) 

where ( ) ( )R   S S S , I  is the fourth-rank identity tensor, and  

       

1 1

1 2 1( ) ( ) ( )

1 1

f f

f f

 

   
    

              
      

Φ S A S S S A S S A  (4.13) 

       

1 1

1 1 2( ) ( ) ( )

1 1

f f

f f

 

   
    

              
      

Φ S S A S S A S S A  (4.14) 

  1R f f     Φ Φ Φ  (4.15) 

Herein, we adopt the following expressions 

     
1

1 1


 A C C C  (4.16) 
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     
1

2 2


 A C C C  (4.17) 

 

4.3 Characterization of Fiber Breakage in a Single-Fiber Composite 

Consider a single-fiber composite under an external tensile loading in the longitudinal 

direction as illustrated in Figure 4.3. The fiber phase is assumed to be isotropic and elastic with 

elasticity modulus of (1)C . It is embedded in an isotropic and elastic matrix material with a 

elasticity tensor of (0)
C . A penny-shaped microcrack model is adopted to represent a breakage in 

the fiber. Following the notations defined in the previous section, the domains of the fiber 

breakage, the intact fiber phase, and the matrix are denoted by R ,  , and B , respectively, as 

shown in Figure 4.4. It is assumed that  ,   and B R  possess uniform elastic properties of 

(2)
C , (1)C  and (0)

C , respectively. Taking advantage of the double-inclusion model, the problem 

of a single fiber breakage within a single-fiber composite can be analyzed subsequently. If there 

is no fiber break in the single-fiber composite, the overall elasticity tensor C  can be derived as 

  
1

(0) 1 ,  , , , , , 1,2,3ijkl ijmn mnkl mnkl mnkl i j k l m n


    
  

C C I Y S  (4.18) 

  
3 1

1
( ) ( ) (0) (0)

1

,  , , , , , 1,2,3mnkl mnkl mnpq mnpq pqkl k l m n p q 










    
  Y S C C C  (4.19) 

where 

 ( ) (1)    and  (2) 0    (4.20) 

where (1)  is the initial volume fraction of intact fibers; and (2) is the volume fraction of 

fractured fibers; and S  is the fourth-rank Eshelby tensor associated with a cylindrical inclusion 
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for the fiber phase and an spheroidal inclusion for the fiber breakage (void) phase, which has the 

form (Mura 1984; Ju and Sun 2001):  

 
   1 2

( )ijkl IK ij kl IJ ik jl il jkS S       S  (4.21) 

Cylindrical inclusion (fiber phase (1)
S ): 

 
     1 1 1

11 12 130,   0S S S    (4.22) 

    1 1 0
21 31

02(1 )
S S




 


 (4.23) 

        1 1 1 1 0
22 33 32 23

0

4 1

8(1 )
S S S S






   


 (4.24) 

                  2 2 2 2 2 2 2 2 2 0
11 12 13 21 31 22 33 23 32

0

3 41
0,   ,   

4 8(1 )
S S S S S S S S S






        


 (4.25) 

Sphoroidal inclusion (void phase (2)S ): 

 
   

 
1

11 0 02 2

2 4
4 g 0 4

1 3 1
S  

 

 
      

 (4.26) 

 
     

2 2
1 1

12 13 0 02 2

2 1 2
4 g 0 4

1 1
S S

 
 

 

 
     

  
 (4.27) 

 
     

2 2
1 1

21 31 0 2 2

1 2 2
2 g 0

1 1
S S

 


 

 
     

  
 (4.28) 

 
       

 
 

 

2 2
1 1 1 1

22 23 32 33 0 2 2

4 1
2 g 0

4 1 2 1
S S S S

 


 

 
       

   

 (4.29) 
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    
 

2 2
2

11 0 02 2

4 2 12 8
4 g 0 4

1 3 1
S

 
 

 

  
     

  
 (4.30) 

 
         

2
2 2 2 2

12 13 21 31 0 02 2

2 2
g 0 2

1 1
S S S S


 

 

 
        

  
 (4.31) 

 
       

 
 

 

2 2
2 2 2 2

22 23 32 33 0 02 2

4 7
2 g 0 2

4 1 2 1
S S S S

 
 

 

 
       

   

 (4.32) 

where 1   is the aspect ratio of the spheroidal inclusion, 0  is the Poisson’s ratio of the matrix 

phase, and 

  
 

 
1/2

2 1

3/2
2

g 0 1 cos
1


  



   
  

 (4.33) 

Once the fiber breakage occurs, that is ( ) (2)  , and (1) 0  , the overall eigenstrain in a single 

fiber with a single crack can be derived as follows: 

  * *(2) *(1) * 1 1 o 1 o 1  : :                     f f            ε ε ε J K ε K ε  (4.34) 

where 

  
1

1
*(1) (1) (1) (0) (0)

0:


    
  

ε S C C C ε  (4.35) 

       
1

1
*(2) (1) (2) (2) (1) (0) (0) (2)


       

  
ε I S S S C C C S I  (4.36) 

and 

  
1

(1) (1) (0) (0)


  K S C C C  (4.37) 
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    
* 1

1
(1) (2) (2) (1) (0) (0)




           

J
J I S S S C C C E  (4.38) 

  
*

(2)

0
lim



 

  
E

E S I  (4.39) 

Herein, f is the volume fraction of the single crack in a single fiber defined as 

 
 

 1 2 1

2 0
1

Area of An Elliptical-Shaped Void

Area of A Cylindrical Fiber

( ) 1
  

( )

             

f

a a a

a 


 


  




   
     

  
 (4.40) 

Hence, by using the overall eigenstrain in the damaged fiber and the average field equations from 

Ju and Chen's work (1994a, b), the effective elasticity tensor of a single-fiber composite can be 

reached 

  

(1) (1)

matrix
intact fiber phase

fiber breakage (void) phase

1
(2) (1) 1

1
(2) (0) (2) (1) (2) (1) 1

(0) (0)

      

  

  







 
 

 
 

 

   

 S S J K

C S I S J K J

C = C C K

 (4.41) 

 

4.4 Statistical Modeling of Damage Evolution in Fiber Reinforced 

Composites due to Fiber Breakage 

4.4.1 Damage Evolution in Single-Fiber Composites 

The averaged normal stress in the fiber longitudinal direction is the controlling factor in the 

fiber breakage evolution. This implies that fiber breakage occurs in a certain plane of the fiber if 
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the averaged normal stress perpendicular to that plane exceeds a critical value. As the applied 

strain increases, the number of fiber breaks (crack density) increases. Meanwhile, the fiber 

fragment length becomes smaller as the applied strain reaches a higher level. At a certain strain 

level, the crack density becomes constant and the fragment length achieves its minimum (Kim 

and Nairn, 2002). As a consequence, we introduce a quantity L  represent the averaged fragment 

length. As the strain level increases, the averaged fragment length L decreases, whereas the 

number density of fiber breakages increases. Therefore, we adopted 1/ L  to quantify the crack 

number density evolution of fiber breakages. A two-parameter Weibull probability function is 

adopted to govern the fiber breakage evolution.  

 

(1)
(1)11
11

(1)

11

1 exp ,

0,

M

cri
cri

d cr

cri

P S

 
 

 

   
      

     




 (4.42) 

where the Weibull parameters crS  and M  are related to the critical fracture strength of fibers 

and the fiber breakage evolution rate (Sun et al. 2003), respectively. cri  is the critical fracture 

stress. The volume-averaged internal fiber stress 
(1)

σ  can be determined by 

    
1

1
(1) (0) (1) (1) (1) (0) (0) :




          
σ C I I S S C C C ε  (4.43) 

Therefore, the averaged post-breakage fiber length is defined as 

 0(1 )dL L P   (4.44) 

The volume fraction of the fiber breakages within a single-fiber composite is further modified as 
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 1 2 1

2

01

Area of An Elliptical-Shaped Void

Area of A Cylindrical Fiber

( ) 1
   

( )

             

f

a a a

a L L L 

  

   



     
       

    
 (4.45) 

 

4.4.2 Fiber-Dominated Damage Evolution in Multi-Fiber Composites 

The failure of several fibers in the same plane may trigger the failure of the composite before 

the global onset of plastic deformation in the composite (Jeng et al., 1991). This damage 

mechanism is termed as the fiber-dominated damage is some literature. As the external loading 

increases, the volume fraction of intact fibers decreases, whereas the volume fraction of fractured 

fibers increases. The Weibull probability function is adopted to describe this damage 

evolutionary process. 

 

(1)
(1)11
11

(1)

11

1 exp ,

0,

M

cri
cri

d cr

cri

P S

 
 

 

   
      

     




 (4.46) 

where 

    
1

1
(1) (0) (1) (1) (1) (0) (0) :




          
σ C I I S S C C C ε  (4.47) 

Therefore, the overall properties of a composite writes 

 

 

(1) (1)
1

(2) (1) 1

1
(2) (0) (2) (1) (2) (1) 1

(0) (0)  

  







 
 

 
 

    

       

 S S J K

C S I S J K J

C = C C K
 (4.48) 
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4.5 Numerical Results and Discussions 

Continuous fiber-reinforced epoxy matrix composites are adopted for illustration purpose 

with material properties and dimensions listed in Table 4.1. The prediction of the fiber breakage 

evolution in a single-fiber composite is plotted in comparison with experiment results. Good 

agreement is observed for both the AS4-Carbon and E-Glass fibers in Figure 4.6 and Figure 4.7, 

respectively. The number density of fiber breakages in the AS4-Carbon fiber increased rapidly 

after strain level of 1.5%. When the strain reached 2.7%, the fiber breakage number density 

shows a plateau. The critical length of the fiber fragment is obtained from this plateau region. 

For E-glass fibers, as expected, the fiber breakage number density plot demonstrates a similar 

fashion, but the plateau shifts into the higher strain region. The plateau is obtained after strain 

level about 3.2%. 

 

Further, the stress-strain behavior of the multi-fiber composites is investigated. We adopt the 

same materials as those used in the single-fiber composite case. The total volume fraction of 

fibers is 15%. As clearly indicated in Figure 4.9, materials behave nonlinearly due to the 

existence of fiber breakages. The volume fraction evolution of the damaged fibers is plotted with 

respect to the applied strain in Figure 4.8. Two sets of Weibull parameters are considered to 

demonstrate the effect of Weibull parameters on the damage evolution. It is clear that M governs 

the evolution rate while S control the shape of the damage evolution curve.   
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4.6 Conclusions 

In this chapter, we proposed a micromechanical damage framework to predict the overall elastic 

fiber-dominated damage behavior of continuous fiber-reinforced composites due to fiber 

breakage. The theory of double-inclusion was applied to derive the stress fields of a single fiber 

break embedded in a single fiber phase. First, the damage evolution due to fiber breakage in a 

SFC was investigated. An effective length L  which signifies the averaged distance between two 

neighbored breakages was introduced to address the multiple fiber breakage inside a single fiber. 

The averaged length L  decreases as loading increases. The total fiber breakage volume increases 

with the loading. A two-parameter Weibull distribution is adopted to govern the evolution of the 

averaged L  upon the loading. In addition, the model was extended to investigate the overall 

fiber-dominated failure in a multi-fiber composite. In order to demonstrate the predictive 

capability of the proposed models, comparisons are made between our predictions and the 

available experimental data (Kim and Nairn, 2002). In general, good agreement has been 

observed. 
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Table 4.1 Material properties of composite materials used in the numerical examples. 

 AS4-Carbon E-Glass Epoxy 

Young's modulus (MPa) 231000 72500 2600 

Poisson's Ratio 0.22 0.22 0.34 

Length (mm) 25.4 25.4  

Radius (
310 mm) 3.5 7  

Critical Tensile Strength (MPa) 4070 2000  

 

 

Figure 4.1 Illustration of a double-inclusion problem, in which a uniform infinite domain B  with 

material properties C  is embedded with a double inclusion R    with material properties 
(1)C  and 

(2)
C  for the inclusion and heterogeneity, respectively. 

 

 

Figure 4.2 Illustration of the auxiliary problem to the double-inclusion problem, in which an 

equivalent, unbounded solid 
*B  with uniform material properties C  is embedded with an 

equivalent inclusion 
* * *R     with homogenized eigenstrains  *

ε x  . 

 

Ω* 

ε*(x)

Γ*, ε*(x)

R*=Γ*+Ω*

B*, C

 

Ω, C1

Γ, C2

R=Γ+Ω

B, C
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Figure 4.3 (a) Schematic of a three-dimensional intact fiber with original fiber length 0L  and (b) 

illustration of the multiple fiber breaks occurred in a single fiber. 

 

x2

x1

x3

 

breakbreak break break break

L1 L5L4L3L2 L6

(a) 

(b) 
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Figure 4.4 Illustration of the double-inclusion model for modeling of a single-fiber composite with a 

single fiber break. 

 

 

Figure 4.5 Illustration of the distribution of fiber breaks in single-fiber composites during tensile 

loadings (modified from Kim and Nairn 2002). 
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Figure 4.6 Numerically predicted fiber break density of AS4 carbon fiber as a function of the 

applied macroscopic strain. 

 

Figure 4.7 Numerically predicted fiber break density of E-glass fiber as a function of the applied 

macroscopic strain. 
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Figure 4.8 Numerically predicted volume fraction evolution of fiber breaking damage occurred in 

the fiber-reinforced composites with different values of Weibull parameter crS  . 

 

Figure 4.9 Numerically predicted stress-strain responses for pure matrix and for the fiber-

reinforced composites without consideration of fiber breaking and with consideration of fiber 

breaking with different values of Weibull parameter crS  . 
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Equation Chapter (Next) Section 1 

CHAPTER 5 MICROMECHANICAL DAMAGE MODELING OF 

PROGRESSIVE ELASTIC FIBER BREAKAGE FOR LONGITUDINAL 

FIBER REINFORCED COMPOSITES 

5.1 Introduction 

Continuous fiber-reinforced metal matrix composites (MMCs) have been widely studied due 

to their highly specific mechanical properties and potential applications in various industries. 

The three phases of a continuous fiber-reinforced composite system, namely the fiber 

reinforcements, the matrix and the interface region between the fibers and matrix, together with 

the interfacial bonding condition control the failure mechanisms. In particular, experimental 

evidence reveals that although the interface zone between the fibers and matrix occupies a 

vanishing fraction of the total composite volume, it plays a key role in determining the overall 

composite properties and stress-strain relations related to damage (He et al., 1993; Curtin, 1998). 

It is generally agreed that the fiber fragmentation is the dominant damage mode leading to the 

catastrophic failure of the fiber reinforced composites, especially for the continuous fiber 

reinforced MMCs (Brindley et al., 1992). In a special case when i) the failure strain of the fiber 

phase is much lower than that of the matrix, and ii) the interphase zone between the fibers and 

matrix is relatively weak, damage is more likely to initiate from the interphase zone and  

propagate into the fiber causing fiber breaks at random locations. In other words, fiber breaks 

tend to appear prior to other damage scenarios such as the matrix cracking and massive matrix 

plastic deformation. In the present work, we concentrate our interests on the damage scenario of 

progressive fiber breakage in composite materials made of a tough matrix, and weak fibers with 
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relatively weak interfacial prosperities. In addition, the interfacial bonding condition between 

material phases is assumed to be perfect. 

 

The fragmentation test on single-fiber composites (SFCs) serves as a means to investigate the 

local damage behavior within the multi-fiber composites. Considerable experimental evidences 

reveal that the number accumulation of fiber breaks in a SFC follows a Weibull statistic (Jeng et 

al., 1991; Zhao et al., 2000; Kim and Nairn, 2002). Moreover, the fiber breakage evolution and 

the fragmentation distribution can be used to derive the Weibull modulus, and to quantitatively 

extract the interfacial properties, such as the interfacial shear stress (Curtin, 1998). Although 

many features of the SFCs are preserved in the multi-fiber composites of practical interest, the 

evolution of fiber fragmentation in multi-fiber composites during loading is, in principle, 

different from that in the SFCs in many ways. For example, the sequence of damage initiation in 

each fiber can be characterized as a stochastic process since the fiber strength is non-uniform due 

to the manufacturing defects. Moreover, fiber damage in some local region increases the stresses 

in the surrounding fibers and drives further damage locally. The mechanism of this load 

transferring from broken fibers to intact fibers is difficult to be determined experimentally. In 

addition, the local microstructure of multi-fiber composites is more complex than that of the 

SFCs. Consequently, we assume in the current study that the composite failure becomes 

statistical and the fiber fragmentation evolution of multi-fiber composites follows certain 

probability distribution. 

 

There are several schools of theories for estimating the damage effect of fiber breaks in 

multi-fiber composites. The shear-lag theory with different load transferring mechanisms is one 
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of the means. For example, the global load shearing (GLS) model assumes that the load 

originally taken by the broken fiber is equally redistributed over all the remaining intact fibers on 

the cross-section. Every cross-section becomes statistically identical, and therefore, a multi-fiber 

composite problem can be treated as an equivalent single-fiber composite problem (Curtin, 1998). 

The primary advantage of these models is their simplicity of applications. However, the load 

transfer mechanism in the local region is far more complicated in reality. Hence, the local load 

shearing (LLS) model was proposed assuming that the extra load associated with the failed fibers 

is transferred to the neighboring fibers (Smith, 1980; He et al., 1993; Zhou and Curtin, 1995; 

Ibnabdeljalil and Curtin, 1997; Okabe and Takeda, 2002). This group of models concerns the 

local microstructure, and the understanding on the load transfer from the broken fiber to the 

intact fibers is crucial. Both the GLS and LLS models allow the qualitative understanding of the 

mechanisms of forming discontinuities, as well as the interaction between the material phases. 

However, none of these approaches allows straightforward incorporation with the nonlinear 

models for describing complicated material behaviors (Mishnaevsky and Brøndsted, 2009).  

 

Another school aims at formulating the explicit forms of the overall constitutive laws for 

heterogeneous materials considering various local damage modes (Ju, 1991; Ju and Tseng, 1992; 

Sun et al., 2003; Lee and Ju, 2008). Following the concept of eigenstrain introduced by Eshelby 

(1957, 1961), the effective properties of heterogeneous composites containing inhomogeneities 

and local damage can be then derived based on an ensemble-volume averaging process within a 

representative volume element (RVE). In particular, Sun and Ju (Sun et al., 2003) applied the 

double-inclusion theory (Hori and Nemat-Nasser, 1993; Shodia and Sarvestani, 2001) to 

investigate the particle-shaped fiber cracking problem. They explicitly derived the perturbed 
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stress field associated with a single crack embedded in a single fiber. The Weibull distribution 

was adopted to govern the accumulation of the crack number in the multi-fiber composite. 

Utilizing the innovative governing ensemble-volume average field equations developed by Ju 

and Chen (1994), the explicit form of the overall constitutive relations for short fiber reinforced 

composites with progressive fiber breaks were achieved. Ko and Ju (2013) further extended the 

application of the double-inclusion theory to predict the overall material behavior associated with 

fiber cracking in the continuous fiber reinforced composites, with the local cracking damage 

propagating along the longitudinal direction. The primary advantage of micromechanics is that 

the micromechanical models allow the explicit form of the overall constitutive relations of 

composites considering different material phases and various damage modes. 

 

Moreover, numerical techniques have been applied extensively to simulate the fiber breakage 

process in MMCs. Finite element simulation is one of the most commonly-used methods 

(Nickolas and Ahmad, 1994; Shodja and Sarvestni, 2001; Xia et al., 2002; Ohno et al., 2004). 

Another widely adopted technique is the Monte Carlo simulation for prediction of the strength of 

the composite materials (Landis, 2000; Meyer et al., 2003; Liu and Zheng, 2006; Nazari et al., 

2011). Most of the computational models are based on a pre-defined fiber micro-structural layout, 

which has the advantage of high accuracy of solutions by considering the geometry of 

reinforcements and local interactions among reinforcements. However, numerical models do not 

yield explicit forms for the overall constitutive relations, making them difficult to implement in 

the stress analyses at the macroscopic level. 
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The objective of this Chapter is to investigate the overall material behavior of continuous 

fiber reinforced composites with relatively ductile matrix and brittle continuous reinforcements 

under tensile loading. The primary interest focuses on the effect of fiber breaks on the overall 

material properties. The remainder of this Chapter is organized as follows. First, the 

micromechanical field equations are systematically presented with special consideration of fiber 

breaking effect. The computational algorithm of the progressive damage evolution is 

subsequently illustrated. The homogeneous damage evolution model is introduced to predict the 

mechanical properties of longitudinal fiber reinforced composites. Finally, numerical predictions 

by the proposed approach are validated with the available experimental data and a series of 

parametric studies are presented. 

 

5.2 Micromechanical Formulation of Fiber Breakage Evolution in 

Longitudinal Fiber reinforced Composites 

Consider a far-field macro strain 
0ε  applied on the boundary D  of a representative volume 

element (RVE) D  embedded with an inhomogeneity  . The inhomogeneity is defined as 

inhomogeneous if there is an eigenstrain 
*

crε  inside the RVE. As a result, the total stress field 
t

σ  

in the composite material can be expressed as 

 
 

 

0 *

1

0

0

:                           in 

:                            in D

t

cr

t

    


  

σ C ε ε ε

σ C ε ε
 (5.1) 

where 1C  and 0C  are the elasticity tensors of the inhomogeneity (fiber) phase and the matrix 

phase, respectively, ε  is the perturbed strain due to the presence of the inhomogeneous 
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inhomogeneity, and *

crε  is the eigenstrain within the inhomogeneity. For a continuous fiber-

reinforced composite with fiber breaks, 
*

crε  represents the eigenstrain caused by the fiber breaks 

in the fiber phase. 

 

The inhomogeneous inhomogeneity problem can be analyzed by an equivalent inclusion 

problem using a homogeneous matrix with an elastic stiffness tensor 
0C , in which the total 

eigenstrain in the inclusion is 
** * *

cr ε ε ε .  The corresponding total stress field 
t

σ  of this 

equivalent inclusion problem is written as 

 
 

 

0 * *

0

0

0

:                     in 

:                             in D

t

cr

t

     


  

σ C ε ε ε ε

σ C ε ε
 (5.2) 

where *ε  is the conventional eigenstrain field accounting for the mismatch due to the 

inhomogeneity. Utilization of the equivalent inclusion principle leads to 

    0 * 0 * *

1 0: :        in cr cr
       C ε ε ε C ε ε ε ε  (5.3) 

The perturbed strain 'ε  in Equation (5.3) can be related to the total eigenstrain 
**
ε  based on the 

Eshelby solution: 

  ** * *: : cr
   ε S ε S ε ε  (5.4) 

where S  is the interior-point Eshelby tensor which depends on the material properties of the 

matrix and the geometry of the fiber inclusion. For cylindrical embedded fibers, the Eshelby 

tensor can be expressed in a generalized isotropic fourth-order tensor form as 
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   1 2

( )ijkl IK ij kl IJ ik jl il jkS S       S  (5.5) 

where the second-rank coefficient tensors  1

IKS   and  2

IJS  are 

 
                 1 1 1 1 1 1 1 1 10 0
11 12 13 21 31 22 33 32 23

0 0

4 1
0,   0,   ,  

2(1 ) 8(1 )
S S S S S S S S S

 

 


        

 
 (5.6) 

 
                 2 2 2 2 2 2 2 2 2 0
11 12 13 21 31 22 33 23 32

0

3 41
0,   ,   

4 8(1 )
S S S S S S S S S






        


 (5.7) 

where 0  is the Poisson’s ratio of the matrix. The ensemble-volume averaged strain ε  can be 

determined by  

 0 **

1

:
n

r r
r




 
   

 
ε ε S ε  (5.8) 

where  denotes the ensemble-volume averaged operator; r  is the volume fraction of the rth 

phase inhomogeneity; and 
**

r ε  is the ensemble volume-averaged total eigenstrain in the rth 

inclusion phase. Similarly, the ensemble-volume averaged stress is 

  

1

**

0 0

1

**

0

1

1
:

1
= : :

:

n

m rm r
r

n

m m rr r
r

n

r r
r

V V
V

V V
V









 
  

 

 
  

 

 
  

 







σ σ σ

C ε C ε ε

C ε ε

 (5.9) 

where mV  , rV  , and V are the volumes of the matrix phase, the rth inclusion phase, and the  RVE, 

respectively.  In order to determine the total eigenstrain 
**
ε  in each fiber phase, we further 
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derive the expression for the portion of eigenstrain due to fiber breakage based on linear elastic 

fracture mechanics as presented in the following section. 

 

5.3 Eigenstrain due to Fiber Breakage in Fiber Reinforced Composites 

Experimental evidence indicated that the gap constituting the fiber break has a significant 

contribution to the longitudinal deformation of the composite. The presence of fiber breaks will 

cause the stress redistribution near the crack tips without further inducing extra stresses. 

Therefore, the strain caused by the fiber breaks is a stress-free strain, and it can be categorized as 

an additional eigenstrain 
*

crε  in the inhomogeneity phase. In the present work, we choose a 

composite reinforced with cylindrical-shaped fibers for illustration purpose. The ensemble-

volume averaged eigenstrains in each fiber phase can be expressed as  

          * 1

2 i
cr ir S

f dS    ε x x u n n u x x  (5.10) 

where  f x  is the probability density function for a fiber break centered at x ; [0,0,1]Tn  is 

surface normal of the fiber break; x  denotes any point on the crack surface 
iS ; and  u  is the 

microcrack opening displacement vector based on the theory of linear elastic fracture mechanics 

as:  

 
2

2 2

2
8(1 )

2
(2 )

(2 )

x

y

z

u s

u c r t
E

pu



 


      
   

                

 (5.11) 
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where E  and   are the Young’s modulus and Poisson’s ratio of the fiber; c  is the radius of the 

fiber break; r  x x  is the distance of point x  away from the center of fiber break; and 

, ,  and p s t  are the z-direction normal, x-direction and y-direction shear stresses projected on the 

fiber microcrack surface in its local coordinates, respectively. Carrying out the integration in 

Equation (5.10) by using Equation (5.11) yields:  

    
2

* 3

0

16(1 )
:

3 (2 )
cr f rr

f c
E






    


ε x x g K σ  (5.12) 

where 
f r

σ  is the ensemble averaged fiber stress associated with the thr  fiber phase;  g  and 
0K  

are the transformation matrices with the forms: 

 

0 0 2 0 0 0

0 0 0 0 2 0

0 0 0 2 0 0

T

 
 
 
  

g  (5.13) 

and 

 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

 
 
 
  

K  (5.14) 

The volume averaged eigenstrain due the existence of the fiber breaks in the thr  fiber phase is 

 
 2

* 3

0

16(1 )
: :

3 (2 )

fV

cr f fr rr
f

f d

c n
E V







       



 x x

ε g K σ Γ σ  (5.15) 

where 
216(1 ) 3 (2 ) fc E L       , n  denotes the number of fiber breaks; fL  stands for the 

fiber length; and Γ  is the 4
th

 order tensor which has the form 
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  
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0 0 0 0 0 0

0 0 2 0 0 0
0,0,2 ,2,2,0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 0

diag




 
 
 

 
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 
 
 
 

Γ  (5.16) 

It can be easily seen from Equations (5.15) and (5.16) that the presence of the fiber breaks only 

contributes to the z-direction normal, x-direction and y-direction shear strain components of the 

eigenstrain field. Substituting the stresses of the fiber phase defined in Equation (5.2) into 

Equation (5.15), the volume averaged eigenstrain due to the multiple fiber breaks in the 

longitudinal direction is reached as the following 

  * 0 **

0: :fcr r rr
n n          

 
ε Γ σ Γ C ε ε ε  (5.17) 

Assume that the number evolution of fiber breaks is governed by the Weibull statistic: 

 1 saturatedn p n   (5.18) 

and  

 1

1 exp     if  

0                                       if  

M

cr
cr

cr

p S

 
 

 

   
     

     




 (5.19) 

where 
saturatedn  and cr  are the saturated number of fiber breaks and stress threshold for fiber 

break initiation, respectively. Moreover,   is the internal fiber stress in the longitudinal 

direction, and S  and M  are the two Weibull parameters, which can be quantitatively 

characterized from the fragmentation test of the single-fiber composite. Here, S  is associated 

with the local fiber breaking strength, whereas M  governs the damage evolution rate. Clearly, 
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the volume averaged eigenstrain due to fiber breaks depends on the material properties and 

geometry of the fiber phase, the geometry of the crack and the current stress level in the fiber. 

 

Therefore, the expression for the ensemble-volume averaged total eigenstrains in the 

thr inclusion phase is obtained as follows: 

 ** 0:rr
ε T ε  (5.20) 

The 4
th

 order tensor 
rT  in Equation (5.20) relates the ensemble-volume averaged eigenstrains in 

the thr inclusion phase to the far-field macro strains as follows: 

 
1

1 0 1 0 1 1 0[ ( ) ( ) ( )] [ ( ( ) ) ]r r rn n            T C S C S I C Γ C S I C I C Γ C  (5.21) 

where 1
2
( )ijkl ij kl ik jl il jk       I  is the fourth-rank identity tensor. Clearly, the ensemble-

volume averaged total eigenstrain in the inclusion phase is induced by both the mismatch due to 

the inhomogeneity and the fiber breaking effect. Readers interested in the detailed derivation of 

rT  can refer to Appendix A. Furthermore, with the aid of multiplication and inverse formulae 

and lengthy derivation, Equation (5.21) can be rewritten in the following generalized isotropic 

fourth-rank tensor form: 

    
 

 
 1 2

( )r r ij kl r ik jl il jkijkl IK IJ
T T       T  (5.22) 

where the expressions of the second-rank tensors  1
( )r IKT   and  2

( )r IJT  are provided in Appendix B. 
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5.4 Overall Elastic Moduli of Fiber Reinforced Composites with Progressive 

Fiber Breakage 

To derive the overall elastic moduli of the composites, we next seek the relationship between 

the ensemble-volume averaged stress and strain fields. Substituting Equation (5.20) into 

Equation (5.8) leads to the expression of the far-field strain in terms of the ensemble-volume 

averaged strain as follows: 

 0 1 :ε B ε  (5.23) 

where the fourth-rank tensor B  has the form 

 
1

n

r r

r




  B I S T  (5.24) 

Alternatively, the expression can be written in the following generalized isotropic fourth-rank 

tensor form: 

 
   1 2

( )ijkl IK ij kl IJ ik jl il jkB B       B  (5.25) 

where 
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2

n

IJ r IJ r IJr
B S T


   (5.27) 

By combining Equations (5.20) and (5.23), we can reach the expression as follows: 

  ** 1 :rr

ε B T ε  (5.28) 
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With the aid of Equations (5.9) and (5.28), the ensemble-volume averaged strain and ensemble-

volume averaged stress is 

  1

0

1

:
n

r r

r

 



  
   

  
σ C I B T ε  (5.29) 

Hence, based on the theory of micromechanics and linear elastic fracture mechanics, the overall 

homogenized elasticity moduli for the longitudinally fiber reinforced composites with 

progressive fiber breakage are derived: 
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 



 
   

 
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The above expression of the overall elasticity moduli can be recast into the following generalized 

isotropic fourth-rank tensor form: 

 
   1 2* * * ( )ijkl IK ij kl IJ ik jl il jkC C       C  (5.31) 

where 
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and 
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                      1 2 1 1 1 1 2 1 2 1 1

1 22 22 1 21 2 22 22 11 11 12 21[( ) ] [( )( 2 ) ]I I IQ B B B B B B B B B B B       (5.37) 

                      1 2 1 1 1 1 2 1 2 1 1
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where 
0  and 0  are the Lame constants of the matrix phase. The fiber stress in the thr  phase 

inclusion for computing the damage evolution of fiber breakage as shown in Equation (5.19) can 

then be obtained by 
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 (5.39) 

 

5.5 Computational Algorithm for Modeling of Progressive Damage of Fiber 

Breakage in Longitudinal Fiber Reinforced Composites 

A strain-driven algorithm is employed to determine the overall stress history by the given 

overall strain history. Given the known state from the previous time step t t , the goal is to 

determine the unknown state           *

1    1 1 1 1
, , , ,cr n

        
ε ε ε σ  at the time step 

1t t . The fiber 

stress and its induced fiber break number are computed by an internal numerical iteration at the 

(λ+1)th time step, with the following convergence criteria: 

    
1

1 1
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where   is the internal iteration index. Therefore, the overall elastic moduli at the current time 

step can be computed by 
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Consequently, the overall stress 
1σ  at the current time step can be updated as 

        
*

1 1 1
:

     
  σ σ C ε  (5.45) 

For convenience, Table 5.1 summarizes the above micromechanical iterative computational 

algorithm for the overall elastic responses of longitudinally fiber reinforced composites with 

progressive damages due to fiber breaks. 

 

5.6 Numerical Results 

First, we apply the newly proposed micromechanical damage framework to investigate the 

evolutionary fiber breaking process in single-fiber composites.  The available experimental data 

of the single-fiber composite fragmentation tests provided by Zhao et al. (2000) are adopted for 

validation purpose. In their experimental study, the number of observed fiber breakages is 

recorded at each applied stress level until the specimen fragmentation reaches its critical length. 

In particular, SFCs with three surface treatments: the water-sized (untreated) E-glass fiber, γ-
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GPS treated E-glass fiber, and γ-MPS treated E-glass fiber are used to account for the various 

interfacial bonding strengths. The following material and physical properties of composites are 

used in theoretical predictions: epoxy resin matrix with Young’s modulus 2600 MPamE  , 

Poisson’s ratio 0.34m  , E-glass fiber with Young’s modulus 72.5 GPafE  , Poisson’s ratio 

0.22f  , fiber length 25.4 mmfL  , fiber diameter 14 mfd  . A two-parameter Weibull 

model as depicted in Equation (5.19) is employed to govern the damage evolution due to fiber 

breakage. The critical fiber breaking stress cr  and the number of fiber breakages at saturation 

saturatedn  are characterized by the nonlinear least-squares fitting. The theoretical predictions are 

summarized in Table 5.2 and Figure 4.1–Figure 5.3. The numerical results agree well with the 

available experimental data and the p-vales of the Kolmogorov-Smirmov (K-S) goodness-of-fit 

test are accepted at the 5% significance level for all the testing samples. Moreover, the predicted 

cr  and saturatedn  display good agreement with the experimental observations as shown in Table 

5.3. Therefore, we conclude that the newly proposed micromechanical damage model is suitable 

for modeling of the progressive fiber breaking process in fiber reinforced composites. 

 

Next, we apply the proposed model to investigate the tensile behavior of a multi-fiber 

reinforced titanium alloy matrix composite by considering the fiber breakage evolution with the 

homogeneous fashion. The parametric studies are performed thereafter to investigate the effects 

of material properties and matrix and fiber phases upon the predicted mechanical behaviors of 

the composite materials. The experimental data (Jeng et al., 1991) are available for three 

different titanium alloy matrix materials with unidirectional aligned SCS-6 fibers: Ti-6Al-4V 

(SCS-6/Ti-6-4), Ti-15V-3Al-3Cr-3Sn (SCS-6/Ti-15-3), and Ti-25Al-10Nb (SCS-6/Ti-25-10). 
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Fabricated condition is considered for all three cases, whereas a heat-treated condition with 

500 C/12 hrs  heating rate is also examined for SCS-6/Ti-6-4 and SCS-6/Ti-25-10 composites. 

The material properties for the three composites are summarized as follows: Young’s moduli 

6 4 113.8 GPaTi

mE     , 
15 3 82 GPaTi

mE    , 
25 10 113.3 GPaTi

mE    6 400 GPa;SCS

fE    Poisson’s 

ratios 
6 4 0.342Ti

m
   , 

15 3 0.33Ti

m
   , 

25 10 0.34Ti

m
   , 6 0.25,SCS

f
   fiber volume fraction 

0.35f  , fiber diameter 142 mfd  , and fiber length 125 mmfL  . Two Weibull 

parameters, S  and M , the initial crack stress level cr  and the saturated number of fiber breaks 

saturatedn  are obtained through a nonlinear least-squares fit. For simplicity, the temperature effect 

is assumed to affect these four characterized parameters implicitly.  

 

 

Table 5.3 summarizes the theoretical predictions for the tensile fragmentation behavior of the 

fiber reinforced titanium alloy matrix composites by the proposed micromechanical model. 

Figure 5.8–Figure 5.10 exhibit the comparisons of the stress-strain relationship between the 

numerical predictions and the experimental data. The numerical results are in general in good 

agreement with the experimental data below the yield strain (about 0.45~0.55 % as observed in 

the experiments), whereas the predictions deviate from the experimental observations slightly 

after the titanium alloy matrix reaches its yielding point, especially for the SCS-6/Ti-6-4 and 

SCS-6/Ti-15-3. The discrepancies may be due to the post-yielding plastic response of the matrix. 

This issue will be further taken into consideration in the next chapter. 
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To further investigate the effects of various material properties on the mechanical behaviors 

of the composites, we hereby perform the following parametric studies using the proposed 

micromechanical damage model. Due to the small-strain assumption, we only demonstrate the 

numerical predictions within the strain level of 1.5%. Figure 5.11–Figure 5.13 illustrate the 

overall stress-strain relations, the progressive damage evolution due to fiber breaking, and the 

overall effective elastic modulus along the loading direction with different volume fractions of 

reinforcing fibers f . As the fiber volume fraction increases, the predicted macroscopic stress 

and the overall effective elastic modulus increase as well, resulting a greater resistance to the 

fiber breaking. This demonstrates the strengthening effect of the composites with longitudinally 

reinforcing fibers. 

 

The effects of the fiber Young’s modulus ratio /f mE E , fiber Poisson’s ratio fv , and matrix 

Poisson’s ratio mv  upon the mechanical behaviors of composites with a constant fiber volume 

fraction of 30% are illustrated in Figure 5.14–Figure 5.16, Figure 5.17–Figure 5.19, and Figure 

5.20–Figure 5.22, respectively. Although the stiffer reinforcement can increase the overall 

effective properties of the composites, it also increases the corresponding stress level in the fiber, 

thus the earlier initiation of fiber breaking. On the other hand, the increase in Poisson’s ratio of 

both the matrix and fiber leads to the increase of the overall effective properties of the 

composites, thus the earlier damage initiation due to fiber breaking. Therefore, it is 

recommended in the design of fiber reinforced composites to carefully choose proper material 

properties of the matrix and fibers with a compromise between the enhancement of strength and 

the reduction of fiber-breaking resistance.  
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5.7 Conclusions 

In this chapter, a computational micromechanics-based damage framework has been 

developed to predict the overall behavior and the damage evolution due to progressive fiber 

breakage in continuous fiber reinforced composites. The effect of the fiber breakage evolution is 

successfully quantified by an effective eigenstrain field based on the theories of linear elastic 

fracture mechanics and micromechanical damage mechanics. The accumulation of the break 

number is governed by a two-parameter Weibull probability function, which implicitly encloses 

the information of spatial distributions of the fiber breaks and the temperature effect on the 

damage evolution. The proposed model is validated with the experimental data of the single-fiber 

composite fragmentation tests from Zhao et al. (2000). Moreover, the proposed model is applied 

to investigate the fiber breakage evolution in multi-fiber composites with the homogeneous 

fashion. The predictions are validated with the overall stress-strain response of the titanium alloy 

matrix composites under the tensile fragmentation tests by Jeng et al. (1991). Numerical results 

indicate that the overall material response is sensitive to the fiber and matrix Young’s modulus 

ratio. As a result, it is critical in the design of fiber reinforced composites to carefully choose 

proper material properties of the matrix and fibers for optimization between the reinforcement 

effect and the fiber-breaking resistance.  
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Table 5.1 Computational algorithm for the overall elastostatic damage response of fiber reinforced 

composites with fiber breakage evolution 

Given:    
*

( ) ( ) ( ){ , , , , }
cr

n   
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Table 5.2 Summary of theoretical predictions and experimental data of the fragmentation tests of 

single-fiber composites. 

 Water-sized fibers γ-GPS treated fibers γ-MPS treated fibers 

S  (MPa) 1475 2040 2467 

M  2.026 1.334 2.949 

cr  (MPa) 

Theoretical 

Prediction 
731 1954 843 

Experimental 

Observation 
500~800 1700~2000 700~900 

saturatedn  

(in 20 mm 

gauge length) 

Theoretical 

Prediction 
81.27 63.26 60.28 

Experimental 

Observation 
75~80 60 60 

 

 

Table 5.3 Summary of theoretical predictions for the tensile test of fiber reinforced titanium alloy 

matrix composites. 

 

SCS-6/Ti-6-4 SCS-6/Ti-15-3 SCS-6/Ti-25-10 

Fabricated 
o800 C/12hrs  Fabricated Fabricated 

o800 C/12hrs  

S  (MPa) 1613.78 2595.47 1459.57 1659.60 1196.69 

M  1.025 2.551 2.508 0.713 2.265 

cr  (MPa) 258.54 257.07 1022.87 552.76 833.57 

saturatedn  156.89 351.62 189.54 39.99 259.56 

 

 

Figure 5.1 Comparisons of the number of observed fiber breaks versus applied stress between the 

theoretical prediction and the experimental data (water-sized fibers). 
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Figure 5.2 Comparisons of the number of observed fiber breaks versus applied stress between the 

theoretical prediction and the experimental data (γ-GPS fibers). 

 

 

 

Figure 5.3 Comparisons of the number of observed fiber breaks versus applied stress between the 

theoretical prediction and the experimental data (γ-MPS fibers). 
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Figure 5.4 Comparisons of predicted behaviors of longitudinally fiber reinforced composites 

considering progressive fiber breaking with different surface treatments: predicted stress-strain 

relationships. 

 

 

Figure 5.5 Comparisons of predicted behaviors of longitudinally fiber reinforced composites 

considering progressive fiber breaking with different surface treatments: predicted stress versus 

damage parameter 1p . 
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Figure 5.6 Comparisons of predicted behaviors of longitudinally fiber reinforced composites 

considering progressive fiber breaking with different surface treatments: predicted number of fiber 

breaks versus macroscopic strain. 

 

 

Figure 5.7 Comparisons of predicted behaviors of longitudinally fiber reinforced composites 

considering progressive fiber breaking with different surface treatments: overall effective elastic 

modulus versus macroscopic strain. 
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Figure 5.8 Comparisons between numerical predictions and experimental data of fiber reinforced 

titanium alloy matrix composites: SCS-6/Ti-15-3 composite. 

 

 

Figure 5.9 Comparisons between numerical predictions and experimental data of fiber reinforced 

titanium alloy matrix composites: SCS-6/Ti-6-4 composite. 
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Figure 5.10 Comparisons between numerical predictions and experimental data of fiber reinforced 

titanium alloy matrix composites: SCS-6/Ti-25-10 composite. 

 

 

Figure 5.11 Comparisons of predicted behaviors of longitudinally fiber reinforced composites 

considering progressive fiber breaking with various volume fractions of fibers: predicted stress-

strain relationships. 
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Figure 5.12 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various volume fractions of fibers: predicted stress 

versus damage parameter. 

 

 

Figure 5.13 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various volume fractions of fibers: overall effective 

elastic modulus versus macroscopic strain. 
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Figure 5.14 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Young’s moduli of fibers:  predicted stress-

strain relationships. 

 

 

Figure 5.15 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Young’s moduli of fibers: predicted stress 

versus damage parameter. 
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Figure 5.16 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Young’s modulus values of fibers: overall 

effective elastic modulus versus macroscopic strain. 

 

 

Figure 5.17 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of fiber: predicted stress-strain 

relationships. 
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Figure 5.18 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of fiber: predicted stress 

versus damage parameter. 

 

 

Figure 5.19 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of fiber: overall effective 

elastic modulus versus macroscopic strain. 
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Figure 5.20 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of matrix: predicted stress-

strain relationships. 

 

 

Figure 5.21 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of matrix: predicted stress 

versus damage parameter. 
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Figure 5.22 Comparisons of predicted behaviors of longitudinal fiber reinforced composites 

considering progressive fiber breaking with various Poisson’s ratios of matrix m : overall effective 

elastic modulus versus macroscopic strain. 
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Equation Chapter (Next) Section 1 

CHAPTER 6 STOCHASTIC SIMULATIONS OF FIBER BREAKAGE 

EVOLUTION IN LONGITUDINAL MULTI-FIBER REINFORCED 

COMPOSITES 

6.1 Introduction 

The fiber fragmentation evolution in longitudinal multi-fiber reinforced composites is 

characterized as a stochastic process for several reasons. First of all, the fiber strength is not 

uniform due to manufacturing defects. Fibers fracture at random positions depending on their 

strength distributions. Second, the local microstructure of a multi-fiber reinforced composite is 

complex. The interactions among material phases are more complicated than that in a single-

fiber composite. Third, the interfacial bonding conditions may not be perfect due to the 

limitations of the current manufacturing techniques. More importantly, once a fiber breakage 

occurs, the stress around the breakage region increases and drives further damage locally. The 

mechanism of the load transferring from broken fibers to intact fibers is difficult to be 

determined analytically. As a result, the composite failure becomes statistical and the fiber 

fragmentation evolution follows some probability distribution. 

 

The objective of this chapter is to investigate the fiber breakage evolution in a longitudinal 

multi-fiber reinforced composite with an inhomogeneous fashion based on the micromechanical 

framework proposed in the previous chapter. The following assumptions are adopted for this 

study: i) the failure strain of the embedded fibers is much lower than that of the matrix, ii) the 

bonding conditions are perfect. In other words, we herein focus on composites with brittle fibers, 
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relatively ductile matrix, and perfectly bonded interface. The remainder of this chapter is 

organized as follows. First, the stochastic unit cell approach is introduced for the modeling of 

fiber breakage evolution. Two stochastic risk-competing models are proposed subsequently to 

simulate the fiber breakage evolution in an inhomogeneous fashion considering different load 

sharing mechanisms. The first risk-competing model states that the nearest neighboring fibers of 

the damaged fiber with the dominant weakness will fracture with some probability, while the 

second model assumes that all surrounding fibers associated with the broken fibers have an equal 

chance to fracture with some probability. Finally, numerical simulations of the proposed 

approach are performed. 

 

6.2 Stochastic Unit Cell Approach on Modeling of Fiber Breakage Evolution 

The microstructural characteristics, such as the mechanical properties of constituent phases, 

volume fractions, spatial distributions, and micro-geometries (shapes, orientations and sized) of 

inhomogeneities, have effects on the overall nonlinear behaviors (Jeng et al., 1991). However, 

for a continuous fiber reinforced composite subjected to a tensile loading along the fiber 

direction, neither the cross-section geometry nor the distribution of the fibers has noticeable 

effect on the constitutive response (Brockenbrough and Sureash, 1990). Therefore, periodic unit 

cell models are suitable in studying the continuous fiber reinforced composites. The periodic unit 

cell model is used widely in micromechanics analyses due to its simplicity and well-

representation. In this chapter, a planar periodic unit cell structure as shown in Figure 6.1 is 

adopted to simulate the damage accumulation in a multi-fiber composite. Each sub-unit 

represents a matrix material embedded with a single fiber. The evolution of fiber fragmentation 

in multi-fiber composites during loading is, in principle, different from that in the single-fiber 
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composites. In a multi-fiber composite, each fiber experiences a non-uniform stress due to the 

uniform applied stress plus stresses transferred from other broken fibers in the composites. Fiber 

damage in some local region increases the stresses in the surrounding neighborhood and drives 

further damage locally. As a consequence, the composite failure becomes statistical, with some 

probability distribution. In this sense, the evolution of fiber damage depends crucially on the 

nature of the load transfer from broken or slipping fibers to intact fibers. The key to describe the 

fragmentation process in a multi-fiber composite is to understand how the local loading sharing 

influences the composite behavior. Figure 6.2 illustrates the computational algorithm for the 

numerical simulation of the fiber breakage process in a multi-fiber composite. In particular, two 

risk-competing models are implemented in the algorithm to simulate the load sharing mechanism 

in a composite system for arbitrary spatial locations of fiber breakages. 

 

6.3 Simulation Mechanism of Fiber Breakage – Dominant Weakness 

Selection 

A risk-competing model based on the fiber weakness is proposed to describe the non-uniform 

and inhomogeneous damage evolution as illustrated in Figure 6.3. The computational procedure 

for the fiber breaking process within the periodic unit cell is described as follows: 

(1) Assign an initial value of weakness to each cell based on a normal distribution. 

(2) Choose the first fiber to fracture at random. 

(3) Degrade the strength intensity of the four nearest fibers with a factor  . 

(4) Determine the fiber with the dominant weakness value (yellow cycle in Figure 6.3) and 

fracture this fiber j with the following probability: 
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4
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j
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weakness
p

weakness





 (6.1) 

    

6.4 Simulation Mechanism of Fiber Breakage – All Surrounding 

Neighboring Fiber Selection 

The second risk-competing model is proposed as illustrated in Figure 6.4, and the 

corresponding computational procedure is exhibited below: 

(1) Assign an initial value of weakness to each cell based on a normal distribution. 

(2) Choose the first fiber to fracture at random. 

(3) Degrade the strength intensity of the nearest four fibers with a factor  . 

(4) Select a fiber among all the neighboring fibers with an equal probability and fracture 

fiber j with the following probability: 

 
j

j

i

i V

weakness
p

weakness





 (6.2) 

where set V  contains all the fiber sub-units surrounding the fractured fibers.  

 

6.5 Numerical Investigation 

To investigate the fragmentation process and local load sharing mechanism in a multi-fiber 

reinforced composite system, we perform stochastic simulations of progressive fiber breakage 

within a representative unit cell by implementing the two proposed risk-competing models. For 
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each model, 50 independent simulations are carried out with an incremental strain of 0.005%. 

Each fiber sub-unit is assigned an initial weakness value based on a normal distribution 

 0.5,0.01  to account for the quality variation in fibers. As one fiber sub-unit experiences a 

breakage, a reduction factor   of 0.95 is adopted to reduce the strength intensity of the 

neighboring fiber sub-units associated with the damaged fiber. Meanwhile, the local fiber stress 

of the broken fiber sub-unit decreases by 10%, and the extra load is equally redistributed in the 

nearest neighboring fiber sub-units. The material properties and Weibull parameters adopted in 

the stochastic simulations are: Em =114 GPa, νm = 0.34, Ef = 400 GPa, , νf = 0.25, Lf = 125 mm,   

df = 142 μm, 0.3f   ( /
if f sub unitN   ), S = 1460 MPa, M = 2.51, 1020 MPacr  , 

1.52 / mmsaturatedn  .  

 

The predicted macroscopic stress and the total number of fiber cracks in a 12 12  unit cell 

model versus the applied macroscopic strain by the proposed two stochastic modeling methods 

are rendered in Figure 6.5-Figure 6.6 and Figure 6.7-Figure 6.8, respectively. At the applied 

macroscopic strain level of 1.0%, fiber breakage Mechanism 1 yields the predicted macroscopic 

stress with the mean of 2,051.3 MPa and the standard deviation of 17.8 MPa, and the total 

number of fiber breaks with the mean of 79.01 and a standard deviation of 3.48. On the other 

hand, fiber breakage Mechanism 2 produces the results of 1,943.8 MPa 28.4 MPamacro    and 

100.3 16.2cracksn    at the macroscopic strain level of 1.0%. 

 

The typical damage patterns for the corresponding failure mechanisms are illustrated in 

Figure 6.9 and Figure 6.10, respectively. Figure 6.11 and Figure 6.12 exhibit the typical intensity 
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pattern obtained by Model 1 and Model 2, respectively. As observed in Figure 6.11 and Figure 

6.12, Model 1 tends to generate a concentrated damage pattern with broken fibers clustering in a 

T-shape or cross type shape, whereas Model 2 generally yields a more diffused damage pattern. 

Therefore, it is reasonable to assume that Model 1 is more appropriate in simulating the damage 

evolution in a stiffer material, while Model 2 is more suitable in describing the damage pattern of 

a softer composite. 

 

To investigate the effect of the unit cell size on the numerical predictions, we further perform 

the stochastic simulations by applying various unit cell sizes: 8 8 , 10 10 , 12 12  and 15 15 . 

The predicted macroscopic stress versus applied macroscopic strain relationships by using the 

two risk-competing models are illustrated in Figure 6.13 and Figure 6.14, respectively. Less than 

5% variation is observed as the size of the unit cell models varies for both risk-competing models, 

indicating that our proposed approaches are statistically robust and suitable for stochastic 

modeling of fiber breakage evolution in longitudinal fiber reinforced composites. 

 

6.6 Conclusions 

To account for the realistic damage accumulation in a multi-fiber reinforced composite 

system, two risk-competing models have been proposed to simulate the local load sharing 

mechanism and the damage evolution of fiber breakage. In the absence of sufficient experimental 

observations, the proposed risk-competing models demonstrate the possible fiber breakage 

evolution patterns in a multi-fiber reinforced composite. In general, the stochastic modeling 

results are capable of capturing the salient characteristics and responses of the composite 
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materials. Thorough validations will be performed as the associated experimental data become 

available. 
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Figure 6.1 Schematic representation of a unit cell of 12x12 fiber sub-units for stochastic simulation 

of fiber breakage evolution in multi-fiber reinforced composites. 

 

 

Figure 6.2 Flowchart of computational algorithm for stochastic simulation of fiber breakage 

evolution in multi-fiber reinforced composites. 
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Figure 6.3 Schematic diagram of risk-competing model 1 – dominant weakness selection. 

 

 

Figure 6.4 Schematic diagram of risk-competing model 2 – all surrounding fiber selection. 

damaged fiber

newly damaged fiber at the current step

potential damaged fiber in the next step

intact fiber
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Figure 6.5 Results of stochastic modeling of progressive fiber breaking in multi-fiber reinforced 

composites by Failure Mechanism 1: simulated stress-strain curves (mean ± 1.0 standard deviation). 

 

 

Figure 6.6 Results of stochastic modeling of fiber breakage evolution in multi-fiber reinforced 

composites by Failure Mechanism 1: simulated total number of fiber breakages versus strain 

curves (mean ± 1.0 standard deviation). 
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Figure 6.7 Results of stochastic modeling of fiber breakage evolution in multi-fiber reinforced 

composites by Failure Mechanism 1: simulated stress-strain curves (mean ± 1.0 standard deviation). 

 

 

Figure 6.8 Results of stochastic modeling of fiber breakage evolution in multi-fiber reinforced 

composites by Failure Mechanism 2: simulated total number of fiber breakages versus strain 

curves (mean ± 1.0 standard deviation). 
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Figure 6.9 Typical progressive damage pattern of broken fibers in multi-fiber reinforced 

composites by Failure Mechanism 1. 
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Figure 6.10 Typical progressive damage pattern of broken fibers in multi-fiber reinforced 

composites by Failure Mechanism 2. 
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Figure 6.11 Comparisons of typical intensity patterns of the stochastic simulation results: Failure 

Mechanism 1. 

 

 

Figure 6.12 Comparisons of typical intensity patterns of the stochastic simulation results: Failure 

Mechanism 2. 
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Figure 6.13 Comparisons of averaged stress-strain curves of 50 simulations for multi-fiber 

reinforced composites considering progressive fiber breakage with various unit cell sizes: Failure 

Mechanism 1. 

 

 

Figure 6.14 Comparisons of averaged stress-strain curves of 50 simulations for multi-fiber 

reinforced composites considering progressive fiber breakage with various unit cell sizes: Failure 

Mechanism 2. 
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Equation Chapter (Next) Section 1 

CHAPTER 7 ELASTOPLASTIC DAMAGE MICROMECHANICS FOR 

CONTINUOUS FIBER REINFORCED DUCTILE MATRIX COMPOSITES 

WITH FIBER BREAKAGE EVOLUTION 

7.1 Introduction 

Continuous fiber reinforced metal matrix composites (MMCs) are attractive candidate 

materials for aerospace, automotive and many other industry applications for their superb 

mechanical properties, such as low density, high strength, and high stiffness (Brindley et al., 1992; 

Draper et al., 1989). In practice, a thin interface layer is normally formed between the matrix and 

the fibers due to chemical reactions during fabrication. The interface layer, although occupies a 

vanishing fraction of the total composite volume, plays a key role in determining the overall 

composite properties and characterizing the composite failure mechanisms (Eldridge and 

Brindley, 1989; Jeng et al., 1991; He et al., 1993; Curtin, 1998; Zhao et al., 2000; Kim and Nairn, 

2002). The interfacial bonding strength between adjacent material phases, such as the bonding 

strength between the fiber and the interface zone and the bonding strength between the matrix 

and the interface zone, is critical in controlling the damage evolution. For a composite made of a 

ductile matrix and weak fibers with high interfacial bonding strength under tensile loading, 

microcracks first initiate in the interfacial layer due to its brittleness and low fracture strength 

comparing to that of the matrix and the fibers. Consequently, stress concentration occurs near 

these crack tips, which in turn results in the microyielding of the matrix and further leads to the 

blunting of the cracks. These microcracks extend into the fibers at random locations causing 

fiber fracture due to the statistical scattering of the fiber strength. Upon further loading, fiber 
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breakage evolution occurs in accompany with global matrix yielding. Therefore, both the 

progressive fiber breakage evolution and the matrix inelastic deformation has significant 

contributions to the overall nonlinear material behaviors of fiber reinforced MMCs.  

 

The inelastic behaviors of MMCs under tensile loadings are complex in many ways. On one 

hand, the stress and strain fields in the matrix material vary substantially from one point to 

another. For instance, local damage in the interfacial reaction layer leads to the microyielding of 

the matrix to blunt the cracks. However, this local plastic yielding does not control the onset of 

the global yielding. The overall yield stress of metal matrix composites is governed by the 

average stress in the matrix that is sufficient for the global yielding (Clyne and Withers, 1993). 

As a result, a number of models use the von Mises and the Tresca type yield criterion, assuming 

that when the average stress in the matrix exceeds a threshold value, the overall plastic flow of 

the composite occurs. On the other hand, the microstructural characteristics, such as the 

mechanical properties of constituent phases, volume fractions, spatial distributions, and micro-

geometries (shapes, orientations and sized) of inhomogeneities, have effects on the overall 

nonlinear behaviors (Jeng et al., 1991). However, for a continuous fiber reinforced composite 

subjected to a tensile loading along the fiber direction, neither the cross-section geometry nor the 

distribution of the fibers has noticeable effect on the constitutive response (Brockenbrough and 

Sureash, 1990). Therefore, unit cell models have been widely used in the prediction of the 

continuous fiber reinforced composites. 

 

A group of models focused on the prediction of the effective elastoplastic behavior of MMCs 

accounting for the microstructural characteristics. Important analytical models includes Tandon 



127 

and Weng (1988), Christman and his coworks (1989), Zhao and Weng (1990), Qiu and Weng 

(1991, 1992, 1995), Dednarcykand Arnold (2001). Further, Ju and his coworkers (1994a; 1997; 

2001; 2003a) performed a series of studies on prediction of the elastoplasitc behavior of two-

phase metal matrix composites with different microstructural characteristics. The local stress 

field in any matrix point can be computed directly by using of the exterior-point Eshelby’s tensor. 

The ensemble-area-averaging method can then be employed directly to obtain the effective yield 

function for the fiber-reinforced MMCs with various evolutionary damage modes, such as matrix 

cracking, interfacial debonding and reinforcement cracking (Ju and Chen 1994b; Sun and Ju, 

2001; Sun et al., 2003b; Ju and Yanase, 2008; Ju et al., 2008). 

 

Computational approaches such as the finite element analysis and Monte Carlo simulations 

have also been performed extensively to capture the nonlinear behaviors of MMCs (Lienkamp 

and Schwartz, 1993; Durham et al., 1997; Landis et al., 2000; Park and Padgett, 2006; Okabe et 

al., 2010; 2012). For example, Allen and his coworkers (1994) simulated the inelasticity of a 

matrix material by using a rate-dependent viscoplasticity model. The interface fracture was 

modeled by using a nonlinear interface constitutive model. Zhang and his coworkers (2010) 

proposed a hierarchical multiscale model to simulate the failure mechanism in a unidirectional 

fiber-reinforced MMC. Monte Carlo simulations were conducted at the macroscale level with a 

representative volume model established in the mesoscale and the residual stress derived in the 

mircoscale level to obtain the ultimate tensile strength.  

 

Taking advantage of the continuum mechanics approach, another group of researchers treated 

MMCs as single-phase anisotropic materials with different properties along different directions, 
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such as the continuum model by Mulhern et al. (1967), the failure criteria proposed by Hashin 

(1980), and the bi-modal plasticity analysis by Dvorak and Bahei-El-Din (1987) and the fiber 

reinforced MMCs analysis by Dvorak et al. (1988). Hansen et al. (1991) and Schmidt et al. (1993) 

proposed a modified Hill model (1948) to calculate the plastic behavior of transversely isotropic 

composites. Further, Voyiadjis and Thiagarajan (1995) proposed a new anisotropic pressure-

dependent continuum yield surface for directional fiber-reinforced MMCs. 

 

This chapter focuses upon the prediction of the overall elastoplastic material properties of 

continuous fiber reinforced MMCs under external loadings. We assume that the fracture strength 

of the fiber is much lower than that of the matrix. Furthermore, the interfacial bonding condition 

is assumed to be perfect. Hence, the local damage due to interfacial debonding is neglected in the 

current study. First of all, an elastic damage micromechanical framework is introduced to derive 

the overall stress fields taking account of fiber breakage evolution. The effective damaged 

moduli of continuous fiber reinforced MMCs are formulated systematically. Further, the 

effective yield function which controls the global plastic deformation is presented based on the 

ensemble-volume averaging technique. The computational algorithm of the elastoplastic damage 

modeling is subsequently illustrated. Finally, comparisons of the stress-strain behaviors are 

performed between the numerical predictions and the available experimental data to demonstrate 

the capability of our proposed methodology.   
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7.2 Micromechanics and Damage Mechanics of MMCs with Fiber Breakage 

Consider a unidirectionally aligned yet randomly distributed continuous fiber reinforced 

ductile matrix composite with fiber breakages as shown in Figure 7.1. The elasticity tensors of 

the matrix and the fiber are 0C  and 1C , respectively. The Eshelby’s equivalent equation can be 

derived as 

    0 * 0 * *

1 0: :        in cr cr
       C ε ε ε C ε ε ε ε  (7.1) 

where ε  is the perturbed strain due to the presence of the fiber phase; *ε  is the conventional 

eigenstrain field accounting for the mismatch between the matrix and the fiber; and 
*

crε  is the 

eigenstrain proposed in Chapter 5 to quantify the effect of fiber breakages. The eigenstrain 
*

crε  

together with *ε  compose the total eigenstrain **
ε . 

 

Theoretically, the perturbed strain ε  in Equation (7.1) can be related to the total eigenstrain **
ε  

by 

  ** * *: : cr
   ε S ε S ε ε  (7.2) 

where S   is the fourth-rank interior-point Eshelby’s tensor which depends on the Poisson’s ratio 

of the matrix phase and the geometry of the fiber phase. The expression of the Eshelby’s tenor S  

writes (Sun and Ju, 2001) 

 
   1 2

( )ijkl IK ij kl IJ ik jl il jkS S       S  (7.3) 

where 
 1

IKS   and 
 2

IJS   are the second-rank tensors with the components of an elliptic cylindrical 

inclusion provided in Appendix C. 
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In the present work, a penny-shaped crack model considering the crack thickness u  is 

adopted to simulate the fiber breakage. The crack surface is assumed to be perpendicular to the 

longitudinal direction (X1). Based on linear elastic fracture mechanics, the thickness of a fiber 

breakage is predicted by averaging the mode I crack opening displacement over the crack surface. 

By using the ensemble-volume average technique, the volume-averaged eigenstrain due to 

multiple fiber breakages in the fiber phase can be quantified as follows: 

 
*

0 **

0 :cr n       ε Γ C ε ε ε  (7.4) 

where 2

0 0 016(1 ) 3 (2 ) fc E L        ,  0,0,2 ,2,2,0diag  Γ , and n  denotes the number 

of fiber breakages.  

 

Further, we employ a two-parameter Weibull’s probability function to govern the number 

evolution of fiber breakages as follows: 

 1 1 exp

M

f crn
P

n S

   
     

   

 (7.5) 

where 1P  is a damage parameter which describes the current state of the fiber breakage evolution; 

n  represents the saturated number of fiber breakage; cr  signifies the stress threshold of fiber 

breakage; and M  and S  are the two Weibull parameters, which can be quantitatively 

characterized from a fragmentation test of a single-fiber composite (Zhao et al., 2000). In the 

present model, S  is associated with the local fiber breakage strength, whereas M  governs the 

damage evolution rate. The Weibull parameters implicitly include the temperature effect on the 
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material behavior. f  denotes the average internal fiber stress along the longitudinal direction. 

The expression of fσ  is determined by 

    0

0 :f     σ C I I S B ε  (7.6) 

Clearly, the ensemble-volume averaged eigenstrain 
*

crε  explicitly encloses the information of the 

mechanical properties of the matrix (Poisson’s ratio 
0  and Young’s modulus 0E ), the physical 

properties of the fiber (the radius of fiber break c , volume fraction of fiber  , and fiber length 

fL ), the local fiber breakage strength, and the current internal stress level in the fiber. 

 

In consequence, the ensemble-volume averaged total eigenstrain within the fiber phase can 

be related to the applied far-field strains 0ε  by 

 
** 0:ε B ε  (7.7) 

where 

  
1

1n


     B A S A Γ C  (7.8) 

    
1

1 0 1 0 0n


      A C C C Γ C C  (7.9) 

It is interesting to note that Equations (7.8) and (7.9) are reduced to Equations (20) and (21) in 

Sun and Ju (2001) if no fiber breakage is presented, that is, 0n   . The component form of the 

fourth-rank tensor B is given in Appendix C. 
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7.3 Effective Elastic Moduli of Continuous Fiber Reinforced MMCs with 

Evolutionary Fiber Breakage 

The ensemble-volume averaged strain ε  and stress σ  can be determined by  

 0 **: ε ε S ε  (7.10) 

and 

  **

0 :  σ C ε ε  (7.11) 

Therefore, the overall macroscopic stress-strain relationship writes 

 * :σ C ε  (7.12) 

where *
C  is the effective elastic stiffness tensor of a continuous fiber reinforced MMC with 

evolutionary fiber breakage. It is determined based on the framework of micromechanics and 

damage mechanics by 

     1* 1 1

0 0 1n  
         C C I M B C I M A S A Γ C  (7.13) 

and  

  M I S B  (7.14) 

The detailed component form of the fourth-rank tensor C
*
 are provided in Appendix C. 

 

7.4 Homogenization Procedure for the Effective Yield Function 

The deformation of a two-phase metal matrix composite can be decomposed into the elastic 

deformation of both the matrix and the fibers along with the stress-free plastic deformation in the 



133 

metallic matrix only. A homogenization (ensemble-volume averaging) procedure is typically 

performed within the RVE, in which elastic fibers are embedded in an elastoplastic matrix 

material, to obtain the overall constitutive equations of composites. In this research, the current 

stress ( )σ x  is assumed to satisfy the von Mises yield criterion for any material point x in the 

matrix phase: 

    , e : : e 0p p

m d mF K  σ σ I σ  (7.15) 

where e p

m   is the equivalent plastic strain;  e p

mK  is the isotropic hardening function; and 

1 1
2 3
( )d ik jl ij kl ij kl       I   signifies the deviatoric part of the fourth-rank identity tensor. We 

then denote the square of the current stress norm associated with the local material point and a 

given inclusion configuration g  as ( | ) ( | ) : : ( | )dH x σ x I σ xg g g . Following Ju and Chen 

(1994a) and Sun and Ju (2001), the ensemble-volume averaged square of the stress norm over all 

possible realizations can be obtained with the first-order approximation by 

 
       

 

1 1 10

0( ) |
m

H H H H p d


   
 x x

x x x x x  (7.16) 

where 
0 0 0: :dH  σ I σ  denotes the square of the far-field stress norm, and   x  defines the 

exclusion zone of material point x associated with the inclusion centered at  1
x  with the 

probability density function 
 1

( )p x . The above approximation neglects the interactions among 

neighboring inclusions and 
 1

( )p x  is assumed to be statistically homogeneous, isotropic, and 

uniform, that is, 
 1

( ) /p N Vx , where N and V are the number of inclusions and the volume of 

the RVE, respectively. After carrying out lengthy derivation, we can evaluate the ensemble-

volume averaged square of the stress norm as 
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 0 0( ) : :
m

H x σ T σ  (7.17) 

where the fourth-rank tensor T has the form: 

  (1) (2)

ijkl IK ij kl IJ ik jl il jkT T T         (7.18) 

The detailed expressions for 
(1)

IKT  and 
(2)

IJT  can be found in Sun and Ju (2001). Alternatively, 

( )
m

H x  can be written in terms of the macroscopic stress σ  as follows: 

 ( ) : :
m

H x σ T σ  (7.19) 

where 

 0 :σ P σ
 (7.20) 

 
TT P T P  (7.21) 

   
1

1

0 0


    P C I I S B C  (7.22) 

Readers can refer to APPENDIX C for the component forms of the fourth-rank tensor P. 

Equation (7.19) reduces to Equation (58) in Sun and Ju (2001) if no fiber breakage presents in 

the composites. In addition, the above-mentioned ensemble averaged square of the stress norm 

degenerates to the classical J2 invariant as 0   (special case with matrix phase only). 

 

7.5 Computational Modeling of Elastoplastic Behaviors of MMCs with Fiber 

Breakage Evolution 

Based on continuum plasticity, the total macroscopic strain ε  can be decomposed into 

elastic and plastic parts as follows: 



135 

 
e p ε ε ε  (7.23) 

Upon loading, the MMCs behave as purely elastic materials or yield and behave plastically 

depending on the current stress state. After the ensemble-volume averaging process presented in 

the previous section, the macroscopic yield criterion of the composite material can be written as: 

      , e 1 : : e 0p p

m mF K   σ σ T σ  (7.24) 

where the fourth-rank tensor T  is defined in Equation (7.21), and (e )p

mK  denotes the isotropic 

hardening function expressed as 

    
2

e
3

q
p p

m YK h e   
  

 (7.25) 

Herein, Y  represents the yield strength of the matrix material; and h  and q  signify the 

isotropic hardening parameters. Moreover, the overall ensemble-volume averaged associative 

flow rule is considered in the current study, and the plastic strain rate can be determined by 

  
:

1
: :

p F
  


  


T σ
ε

σ σ T σ
 (7.26) 

where   is the plastic consistency parameter. Furthermore, the rate of the effective equivalent 

plastic strain writes 

  
2

1
3

pe     (7.27) 

The plastic consistency parameter   together with the effective yield function  , e p

mF σ  must 

satisfy the Kuhn-Tucker loading and unloading conditions as well as the consistency requirement: 

    0,  , e 0,  , e 0   (Kuhn-Tucker loading/unloading condition)p p

m mF F   σ σ  (7.28) 



136 

  , e 0   (consistency requirement)p

mF σ  (7.29) 

Hence, the plastic consistency condition can be calculated by 

 
 

     

*

1
*

: : :

2
: : 1

3

q
pF

h q e






 
 

   
          

T σ C ε

C T σ
σ

 (7.30) 

The overall macroscopic stress rate tensor is related to the overall macroscopic strain rate tensor 

by 

 *epσ C ε  (7.31) 

where the elastoplastic tangent stiffness tensor *ep
C  takes the form 

 
 

*

*

*

                if   0 (elastic)

   if   0 (plastic)

ep




 
 

 

C
C

C I U
 (7.32) 

Herein, the fourth-rank tensor U  reads 

 
   

 
 

*

1

*

: :

2
: :

3 1

q
ph q e








  
 
  
 

T σ C T σ
U

σ T C T T σ

 (7.33) 

Therefore, an elastoplastic damage micromechanical constitutive model for MMCs with 

evolutionary fiber breakage has been explicitly formulated. The extension of the proposed model 

to accommodate the kinematic hardening, anisotropic hardening, and non-associative overall 

flow rule is feasible within the micromechanical homogenization framework.  
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In the following section, several applications of the proposed elastoplastic constitutive model 

are performed to illustrate the predictability of the present approach. In each simulation, an 

incremental macroscopic stress tensor σ  is provided as well as the current total macroscopic 

stress tensor 
1   σ σ σ . Based on Equations (7.26)-(7.27) and (7.30)-(7.31), the incremental 

plastic strain tensor pε , incremental plastic consistency parameter  , incremental equivalent 

plastic strain 
pe , and the incremental total strain tensor ε  are computed. The current state 

solutions at increment 1   are updated by 
* 1

1 1:e

 



 ε C σ , 1   ε ε ε , 1

p p p

   ε ε ε , 

1

p p pe e e    , and 1      , whereas the current total number of fiber breaks 1( )n     is 

determined with a local iteration as summarized in Table 7.1. 

 

7.6 Numerical Simulations 

In the following study, unless noted otherwise, the matrix material is taken as the titanium 

alloy with Young’s modulus 82 GPamE  , Poisson’s ratio 0.342mv  , initial uniaxial yield 

stress 430 MPaY  , and the strain hardening parameters 14.4 GPah   and 0.685q  . For the 

reinforcement material, we adopt Young’s modulus 400 GPafE  , Poisson’s ratio 0.25fv   

which are similar to the elastic properties of SiC materials. The critical strength that governs the 

fiber breakage is 255 MPacr  , and the Weibull parameters are 1.54M   and S = 3200 MPa. 

 

7.6.1 Uniaxial Stress-Strain Behavior 

Consider a uniaxial tensile loading along the X1 (fiber longitudinal) direction, the applied 

macroscopic stress σ  can be expressed by 
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 11 0,     all other  0ij    (7.34) 

With a simple isotropic hardening law, the overall yield function is derived as 

     (1) (2) 2
11 11 11 3

, 1 2 ( )p p q

yF e T T h e         σ  (7.35) 

where the component forms of the second-rank tensors 
(1)T   and 

(2)T can be determined from 

Equation (7.21). The macroscopic incremental elastic strains and overall incremental plastic 

strain can be determined by 
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where   is the incremental plastic consistency parameter and ijD  denotes the component of 

the compliance tensor 
* 1D C . For a monotonic uniaxial loading condition, the overall stress-

strain relationship can be obtained by integrating Eq. (7.36) as follows: 
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 (7.38) 

where the positive plastic consistency parameter      is determined by solving the 

nonlinear equation 0F   with the plastic consistency condition: 
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To illustrate the capability of the proposed elastoplastic-damage formulation, we compare our 

analytical predictions with the available experimental data of uniaxial tension tests reported by 

Jeng et al. (1991). Figure 7.2 and Figure 7.3 demonstrate the comparisons between the 

predictions and the experimental data of the stress-strain relationships of Ti-15-3 composites 

under the as-fabricated condition and the 800
o
C/12 hrs condition, respectively. The prediction is 

in general in good agreement with the experimental observation. The proposed elastoplastic 

damage model is able to capture the plastic behavior of the material, yielding a more accurate 

prediction than the effective elastic damage formulation (Ju and Wu, 2013). The temperature 

effect is assumed to be implicitly enclosed using the Weibull parameters with 12.1 GPah  , 

0.624q   for 800
o
C/12 hrs condition. As observed, extensive thermal exposure at 800

o
C 

degrades the material properties. The yielding point of the Ti-15-3 composite with the as-

fabricated state is slightly higher than that after the heat treatment at 800
o
C. Good agreement is 

also observed between the prediction and experimental result for Ti-6-4 composites under as-

fabricated condition as shown in Figure 7.4. It is interesting to notice in Figure 7.5 that the fiber 

breakage process evolves at a slower rate beyond 0.6% macroscopic strain in the elastoplastic-

damage model than that in the elastostatic-damage counterpart, as certain amount of energy is 

dissipated in the form of plastic deformations once the matrix yields. 

 

Figure 7.6 shows that the Young’s modulus, the initial yield strength and the plastic 

hardening modulus increase as the volume fraction of fibers increases. This serves as the 
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evidence of the fiber-strengthening effect on MMCs. Figure 7.7 displays the effect of the 

reinforcement shape (fiber aspect ratio) on the mechanical behavior of MMCs with a constant 

fiber volume fraction. It is clear that fibers with larger aspect ratio have stronger strengthening 

effect in the longitudinal direction. Figure 7.8 illustrates the elastoplastic behavior of MMCs 

with different contrast ratios in Young’s modulus between the matrix and fiber constituents. 

Fibers with higher Young’s modulus lead to higher elastic and plastic stress-strain responses, 

thus more pronounced stiffening effects. In contrast, no significant differences are observed in 

the stress-strain responses as the Poisson’s ratio of fibers varies as presented in Figure 7.9. 

 

Next, we investigate the effects of various parameters on the evolutionary fiber breakage 

process. Figure 7.10 illustrates the effect of the fiber volume fraction on the number of 

cumulative fiber breakages. The probability of having manufactory imperfections increases as 

the volume fraction of fibers increases. Therefore, composites with larger fiber volume fraction 

are likely to have more fiber breakages as shown in Figure 7.10. Similarly, as the length of the 

fiber increases, the chance that the fiber possesses imperfections increases. Thus, composites 

with fibers in longer length tend to have more fiber cracks during the damage evolution as 

demonstrated in Figure 7.11. Figure 7.12 indicates that higher Young’s modulus of fibers is also 

one of the reasons that lead to greater number of cracks. This is primarily due to the fact that 

fibers with higher Young’s modules are generally more brittle. Moreover, the Poisson’s ratio of 

the fiber phase is found to have insignificant effects on the crack number as shown in Figure 7.13. 
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7.6.2 Mechanical Behaviors of MMCs under Asymmetric Loadings 

Under asymmetric tension, the overall stress state can be expressed by 

 11 22 33 110,     ,     all other  0ijR         (7.40) 

where R is the ratio of the stress along the longitudinal direction to that in the radial direction. 

Specifically, if R=0, the previously discussed uniaxial loading case will be recovered; on the 

other hand, if R=1, it results in a pure hydrostatic loading condition. The corresponding yield 

function writes 
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where (1) (2) (1) 2 (1) (2)
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incremental plastic strains can then be computed by 
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 (7.43) 

 

Since there is no experimental data available for this asymmetric loading case, we consider the 

same MMCs in the previous section for demonstration purpose. Figure 7.14 and Figure 7.15 

show the stress-strain responses of MMCs under various stress ratios (R = 0, 0.4, 0.7, 0.85, 1.25, 
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1.5, and 2.0). It is observed that the stress ratio affects the overall responses of the MMCs 

significantly. The stress-strain curves exhibit less non-linearity as R increases until the negative 

strain, since the stress in the radial direction becomes dominant in the overall elastoplastic 

responses. Therefore, a proper selection of the stress ratio R, fiber volume fraction   , and the 

aspect ratio of the fiber can help the design of the MMCs with better performance under 

asymmetric loadings.  

 

7.6.3 Initial Yield Surface of MMC’s with Fiber Breakage 

For general loading conditions, the initial yield surface of MMCs can be obtained by 
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Carrying out the tensor contraction, we arrive at 
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Alternatively, the initial yield surface can be expressed in terms of the mean stress and the 

effective deviatoric stress as follows: 

  1
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The predictions of the overall normalized initial yield surfaces at various damage levels for the 

MMCs with harder ( f mE E  ) reinforcements and softer ( m fE E ) reinforcements are shown 
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in Figure 7.16 and Figure 7.17, respectively. The initial yield surface in the middle region 

undergoes more expansion away from the origin as more damage cumulating in the composite, 

indicating that a larger amount of the energy is dissipated in the form of fiber breaks rather than 

incurring the plastic deformations. Figure 7.18–Figure 7.20 exhibit the overall normalized initial 

yield surfaces with various fiber volume fractions at three levels of fiber breakage damage for 

the MMCs with harder fibers. It is noted that the initial yielding point in terms of pure 
m  or 

pure e  increases or decreases, respectively, as increasing fiber volume fraction. On the other 

hand, the effects of the fiber aspect ratio on the initial yield surface at various stages of fiber 

breaking damage for the MMCs with harder fibers are demonstrated in Figure 7.21–Figure 7.23.  

 

7.7 Conclusion 

Emanating from the elastic damage micromechanical framework proposed in Chapter 5, the 

effective elastoplastic formulations have been derived to capture the nonlinear behaviors of 

continuous fiber reinforced ductile matrix composites under various loadings. In this chapter, the 

total eigenstrain field is a summation of the conventional eigenstrain due to the mismatch 

between the inclusion and the matrix and the effective eigenstrain due to fiber. In addition, the 

effective elastoplastic deformations are predicted by means of the effective yield surface derived 

from a representative microstructure with purely elastic fibers embedded in the elastoplastic 

matrix. Several numerical applications of the proposed model to fiber reinforced MMCs under 

external loadings are presented. In particular, the overall uniaxial and axisymmetric elastoplastic 

stress-strain responses of the continuous fiber reinforced MMCs are investigated. Studies of the 

initial yield surfaces at various damage levels are performed. 
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In summary, the proposed model is capable of predicting the elastoplastic stress-strain 

responses of the continuous fiber reinforced MMCs under tensile loadings. Reinforcements with 

the larger aspect ratio, the higher volume fraction, or the higher Young’s modulus result in better 

strengthening effects at the expense of accelerating the fiber breakage evolution rate. On the 

other hand, the plastic deformation in the matrix tends to slow the rate of fiber breakage 

evolution in the form of energy dissipation. In addition, the transverse loading has significant 

effect on the material behavior.  
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Table 7.1 Computational algorithm for determination of the total number of fiber breakages. 

Given the state solutions at the previous increment  : { , , , , , ( ) }e p pe n     ε ε ε  and current total 

macroscopic stress tensor 1 σ  

To compute 1( )n    with the following local iteration scheme with the iteration count 0  , and 

0

1( ) ( )n n    : 
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Figure 7.1 Schematic representation of a continuous fiber reinforced metal matrix composite 

subjected to external loadings with fiber breakages. 

 

 

Figure 7.2 Comparison of the uniaxial stress-strain responses between the analytical predictions 

(elastostatic damage model and elastoplastic damage model) and the experimental data (Jeng et al., 

1991) for Ti5-3 composites in the as fabricated condition. 
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Figure 7.3 Comparison of the uniaxial stress-strain responses between the analytical predictions 

(elastostatic damage model and elastoplastic damage model) and the experimental data (Jeng et al., 

1991) for Ti5-3 composites in the 800°C/12hrs condition. 

 

 

Figure 7.4 Comparison of the uniaxial stress-strain response between the analytical predictions 

(elastostatic damage model and elastoplatic damage model) and the experimental data (Jang et al., 

1991) for Ti-6-4 composites. 
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Figure 7.5 Comparison of the predicted evolutionary numbers of fiber breakages in the Ti-6-4 

composites between the elastostatic damage model and elastoplastic damage model. 

 

 

Figure 7.6 Parametric studies on the effects of fiber volume fraction on the uniaxial stress-strain 

behavior of the continuous fiber reinforced MMCs. 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa,              

νf = 0.25, σcr = 250 MPa, S = 3200 Mpa, α = 10,      

M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 0.685 
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Figure 7.7 Parametric studies on the effects of fiber aspect ratio on the uniaxial stress-strain 

behavior of the continuous fiber reinforced MMCs. 

 

 
Figure 7.8 Parametric studies on the effects of fiber Young’s modulus on the uniaxial stress-strain 

behavior of the continuous fiber reinforced MMCs. 

Em = 82 GPa, νm = 0.342, νf = 0.25,  

σcr = 250 MPa, S = 3200 Mpa, α = 10, ϕ = 0.3,      

M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 0.685 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa,              

νf = 0.25, σcr = 250 MPa, S = 3200 Mpa, ϕ = 0.3,      

M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 0.685 
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Figure 7.9 Parametric studies on the effects of matrix Poisson’s ratio on the uniaxial stress-strain 

behavior of the continuous reinforced MMCs. 

 

 
Figure 7.10 Parametric studies on the effects of fiber volume fraction on the number of 

evolutionary fiber breakages in the continuous fiber reinforced MMCs. 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa,              

σcr = 250 MPa, S = 3200 Mpa, ϕ = 0.3, α = 10,     

M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 0.685 



151 

 

Figure 7.11 Parametric studies on the effects of fiber aspect ratio on the number of evolutionary 

fiber breakages in the continuous fiber reinforced MMCs. 

 

 
Figure 7.12 Parametric studies on the effects of fiber Young’s modulus on the number of 

evolutionary fiber breakages in the continuous fiber reinforced MMCs. 
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Figure 7.13 Parametric studies on the effects of matrix Poisson’s ratio on the number of 

evolutionary fiber breakages in the continuous fiber reinforced MMCs. 

 

 
Figure 7.14 Effects of the stress ratio on the normalized overall elastoplastic-damage responses in 

the X1 (longitudinal) direction with the material properties: Em = 82 GPa, νm = 0.342,   Ef = 400 GPa, 

α = 25, νf = 0.25, σcr = 250 MPa, S = 3200 MPa, ϕ = 0.3, M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 

0.685). 
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Figure 7.15 Effects of the stress ratio on the normalized overall elastoplastic-damage responses in 

the X2 (radial) direction with the material properties: Em = 82 GPa, νm = 0.342,   Ef = 400 GPa, α = 

25, νf = 0.25, σcr = 250 MPa, S = 3200 MPa, ϕ = 0.3, M = 1.54, σY = 430 MPa, h = 14400 MPa, q = 

0.685). 

 

 
Figure 7.16 Effects of the fiber Young’s modulus on the initial yield surface at various levels of fiber 

breakage damage in harder fiber inclusion. 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25 
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Figure 7.17 Effects of the fiber Young’s modulus on the initial yield surface at various levels of fiber 

breakage damage in softer fiber inclusion. 

 

 
Figure 7.18 Effects of the fiber volume fraction on the initial yield surface at various levels of fiber 

breakage damage (damage parameter P1 = 0). 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.0 

Em = 82 GPa, νm = 0.342, Ef = 30 GPa, νf = 0.25, ϕ = 0.2, α = 25 
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Figure 7.19 Effects of the fiber volume fraction on the initial yield surface at various levels of fiber 

breakage damage (damage parameter P1 = 0.5). 

 

 
Figure 7.20 Effects of the fiber volume fraction on the initial yield surface at various levels of fiber 

breakage damage (damage parameter P1 = 1.0). 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.5 

 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.5 
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Figure 7.21 Effects of the aspect ratio on the initial yield surface at various levels of fiber breakage 

damage (damage parameter P1 = 0). 

 

 
Figure 7.22 Effects of the aspect ratio on the initial yield surface at various levels of fiber breakage 

damage (damage parameter P1 = 0). 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.5 

 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.0 
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Figure 7.23 Effects of the aspect ratio on the initial yield surface at various levels of fiber breakage 

damage (damage parameter P1 = 0). 

 

 

Em = 82 GPa, νm = 0.342, Ef = 400 GPa, νf = 0.25, ϕ = 0.2, α = 25, P1 = 0.5 
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Equation Chapter (Next) Section 1 

CHAPTER 8 CONCLUSIONS AND FUTURE WORKS 

8.1 Conclusions 

In this dissertation, modeling on the elastic and the elastoplastic material behaviors of 

continuous fiber reinforced composites is investigated. A major part of the work conducted 

involves the investigation of the effective damage responses due to damage evolutions of matrix 

microcracks and fiber breakages.  

 

Chapter 3 presents the effective elastic damage behavior of continuous fiber reinforced 

composites with evolutionary matrix microcracks. A cohesive penny-shape microcrack model is 

proposed within a two-step homogenization framework to achieve the effective elastic damage 

behavior of continuous fiber reinforced composites. In the present model, the size and the 

number density of microcracks are defined as two damage parameters to control the damage 

evolution. In addition, the thermal effect has been taken into account in the proposed model by 

taking advantage of the thermal eigenstrain and the Eshelby’s equivalent inclusion principle. The 

overall coefficient of thermal expansion (CTE) of a fiber reinforced composite is derived 

systematically under the framework of micromechanics to describe the overall damage behavior 

of composites due to the matrix microcrack evolution under temperature changes.  

 

Chapter 4 proposes a micromechanical evolutionary damage framework capable of 

predicting the overall mechanical behavior of and damage evolution in continuous fiber 

reinforced composites. In the presented framework, the effective stress fields in a single fiber due 



159 

to an embedded penny-shaped fiber break are systematically derived by applying the double-

inclusion theory. An effective length denoting the distance between two adjacent cracks is then 

introduced as a damage parameter while determining the damage evolution within a single fiber. 

This enables the modeling of the effective damage behavior of a single fiber-reinforced 

composite. As an application of the proposed framework, a micromechanical damage model is 

further proposed to simulate the fiber-dominated failure mechanism within a continuous fiber 

reinforced composite. A Weibull probability function is adopted to estimate the varying volume 

fractions of damaged fibers and intact fibers. Numerical simulations are presented to demonstrate 

the effectiveness of the proposed methodology. 

 

In Chapter 5, based on the linear elastic fracture mechanics (LEFM) and ensemble-volume 

averaging technique, an effective eigenstrain is newly proposed to quantify the homogenized 

stress fields in a single fiber due to multiple breaks. In the proposed model, the number density 

evolution of fiber breaks is characterized by a two-parameter Weibull statistic with the 

temperature effect implicitly enclosed by properly adjusting the Weibull parameters. In particular, 

the damage criterion in the evolutionary model is theoretically. Base on the proposed damage 

framework, a homogeneous damage evolution model capable of simulating the material behavior 

of multi-fiber reinforced composite materials is developed.   

 

Chapter 6 presents two stochastic risk-competing models to simulate the fiber breaking 

evolution in a multi-fiber composite in an inhomogeneous fashion by considering different load 

sharing mechanisms. A unit cell model is adopted with each cell being assigned an initial 

weakness based on a normal distribution. Damage evolution inside each individual cell structure 
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follows the micromechanical model presented in Chapter 5. Two risk competing models are then 

introduced to determine the damage sequence within the multi-fiber composite by computing the 

fracture probability based on the weakness of cells at each time step. It is observed that one risk-

competing model tends to generate a concentrated damage pattern with broken fibers clustering 

in a T-shape or a cross-shape, while the other model yields a more diffused damage pattern. 

Finally, the overall stress-strain responses and the fiber break evolution are s predicted and 

verified against experimental data. 

 

Chapter 7 examines the effective elastoplastic behavior of MMCs containing unidirectionally 

aligned continuous fibers. A homogenization procedure is utilized to derive the overall yield 

function for the composite based on the probabilistic spatial distribution of aligned inclusions. 

Based on continuum plasticity, a plastic flow rule and a hardening law are postulated. These laws 

together with the proposed overall yield function then characterized the macroscopic 

elastoplastic behavior of the composite under three-dimensional arbitrary loading/unloading 

histories. The overall uniaxial elastoplastic stress-strain behavior of MMCs with aligned 

continuous fibers is investigated. Comparisons between theoretical predictions and experimental 

data for the composite are performed to illustrate the capability of the proposed method. 

 

8.2 Future works 

To further enhance the proposed models, the following improvements can be accomplished 

in the future. 
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(1) Combined effect of fiber breakage and fiber/matrix interfacial debonding 

Experimental investigations reveal that interfacial debonding between the fiber and the 

matrix normally occurs simultaneously along with fiber fracture. It is crucial to consider the 

combined effect due to both fiber breaking and the fiber/matrix debonding. On one hand, the 

stress distribution near the fiber breakage is affected significantly by the existence of the 

fiber/matrix debonding. On the other hand, the load-sharing capability of a fiber that is 

partially or completely debonded from the matrix will degrade to different levels. Therefore, 

a debonded fiber is less likely to have multiple fiber breakages comparing to an intact fiber. 

The number density of fiber breakages and the debonding length are intrinsically related. 

Their quantitative relationship depends on the material properties, loading conditions and 

bonding conditions. To account for the combined effect of these two damage modes, we can 

extend the framework developed in Chapter 6 by proposing a risk-competing model to 

simulate the competition between fiber breakage evolution and interfacial debonding 

evolution. Once the effective elastic damage constitutive relations are achieved, the overall 

yielding function can be further derived to capture the elastoplastic damage behavior of a 

fiber reinforced MMC considering both fiber breakage and interfacial debonding.  

 

(2) Damage behavior of functionally graded composites 

In reality, an interface region possesses functionally graded multi-layer structure, which is 

formed primarily due to the chemical reaction between the fiber and the matrix. In addition, 

the carbon coating technique, which is a commonly used to protect the fiber from strength 

degradation during fabrication, e.g., double-layer carbon coating, will also introduce 

additional layers between the fiber and interfacial layer. As a consequence, fiber/matrix 
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interfacial debonding may take place at different locations including the interfaces between 

the carbon coating layers, the outer carbon layer and reaction zone, and the reaction zone and 

matrix alloy. In the future research, the geometry and material properties of the interfacial 

layer can be taken into account while investigating the damage behavior of fiber reinforced 

composites. The effect of interfacial debonding at various locations on the overall material 

behavior can be investigated in details under the framework of micromechanics.   

 

(3) Fiber-dominated damage mechanism considering higher-order interactions 

The fiber-dominated damage mechanism in a multi-fiber reinforced composite has been 

investigated in Chapter 4. However, some experimental studies indicate that the fiber-

dominated failure mechanism is more likely to be observed in composite with a high fiber 

volume fraction. As a result, the interactions among inclusions become significant, and 

further studies need to be performed to include the higher-order interaction effect. Based on 

the micromechanical models proposed by Ju and Lin (2001), Ju and Lee (2004) and Ju and 

Ko (2006), the proposed fiber-dominated damage mode in Chapter 4 can be further extended 

to include the effect of higher-order interactions among inclusions.  

 

(4) Nanocomposites  

Nanocomposites are materials filled with nano-sized inclusions. In other words, inclusions 

have at least one dimension in the nanometer scale. They become more and more popular in 

various application fields due to their capability of improving mechanical properties with a 

small amount of reinforcements. However, the nanocomposite is still a nascent field of 
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material science and technology in the development stage. Some of the critical issues 

hindering realizations of their full potential are dispersion and alignment, and interfacial 

bonding of nano-inclusions. Moreover, due to the nano-size of the inclusion, some of the 

micromechanics analysis models may not be valid because of the size-effect. Therefore, a 

new micromechanical/nanomechanical model needs to be developed to account for the 

influence of size, shape, volume fraction, and distribution of these nano-scaled 

reinforcements. In addition, a better understanding is necessary for the composition, 

microstructure, properties of nano-scaled reinforcements, and the influence of heat treatment 

or manufacturing process on the nano-structure and the overall properties of composites. The 

elucidation of these effects on the mechanical properties and deformation behaviors of nano-

size particle/fiber reinforced composites through theoretical and experimental investigations 

will open a door for the development of the performance-based design of composite 

materials for a wide range of engineering applications. 
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APPENDIX A DETAILED DERIVATION OF THE RELATIONSHIP 

BETWEEN FIBER-BREAKAGE INDUCED EIGENSTRAIN AND 

MACROSCOPIC STRAIN 

The ensemble-volume averaged perturbed strain 
r

ε   in the rth fiber phase is related to the 

ensemble-volume averaged total eigenstrain **

r
ε   based on the Eshelby’s solution as follows 

 **:
r r

 ε S ε  (A.1) 

where S is the interior Eshelby tensor, and the total eigenstrain 
** * *

r cr r r      ε ε ε  which 

accounts for both the eigenstrain presents in the inhomogeneity 
*

r ε  and the eigenstrain due 

to fiber breaking 
*

cr r ε . Based on the micromechanical formulation presented in Ju and Chen 

(1994), the ensemble volume averaged eigenstrain in the rth fiber phase due to fiber breaking can 

be expressed by 

  * 0 **

0 :cr rr r
n      

 
ε Γ C ε ε ε  (A.2) 

The consistency condition based on the Eshelby equivalent inclusion principle reads 

    0 * 0 * *

1 0: :cr crr rr r r
      C ε ε ε C ε ε ε ε  (A.3) 

Combining Eqns. (A.1) and (A.3) and utilizing Eq. (A.2) lead to  

   0 ** 0 ** 0 **

1 1 0 0 0 0: : : : : :
r r r

n n           C ε C S ε Γ C ε Γ C S I ε C ε C S I ε (A.4) 

or 
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      0 **

1 0 1 0 0: :
r

n n                  C I Γ C ε C S C S I Γ C S I ε  (A.5) 

Therefore, we reach the following expression which relates the ensemble volume averaged total 

eigenstrain in the rth fiber phase to the macroscopic strain 

 ** 0:rr
ε T ε  (A.6) 

and  

      
1

1 0 0 1 0r n n 


                 T C S C S I Γ C S I C I Γ C  (A.7) 

Noted that rT  reduces to Eqn. (20) in Ju and Sun (2001) with no presence of fiber breaks as 

follows: 

 

   

 

 

1

1 0 1 0

1

1 0 0

1

r







      

     

 

T C S C S I C C

S C C C

S A

 (A.8) 
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APPENDIX B COMPONENTS OF THE FOUR-RANK TENSORS (Tr) IN 

CHAPTER 5 

The coefficient tensors  1
( )r IKT  and 

(2)( )r IJT  of the generalized isotropic fourth-rank tensor rT  

shown in Equation (5.21) are provided as follows: 

          1 1 1 1 1

1 2 1 1 1 4 1 2 2 1 2 3 4( ) [ ( ) 2 ( )] 2 ( )r I I I I I IIT Y S G Y S G               (B.1) 

            1 1 1 1 1 1

2 3 3 1 1 1 1 1 2 2 1 2 3 4( ) ( ) [ ( ) ( )] 2 ( 2 )r I r I I I I I IIT T Y S G Y S G               (B.2) 

      2 2 2

2( ) 1 4( ) 1 2r IJ IJ IJ IJT Y S G     (B.3) 

where 

 
    2 2

22IJ IJ IJY S F     (B.4) 

               1 1 1 1 1 1 1 1

1 1 11 11 11 2 1 22 22 22 3 1 12 12 4 1 21 21( ) ,  2( ) ,  ,  Y S G Y S G Y S G Y S G                    (B.5) 

 
               

3
1 1 2 1 2 2

1 1 1 1

1

(2 2 ),     2IK IK II RK IJ IJr r
R

G n H H H G n H     


       (B.6) 

 
           

3
1 2 1 1 2 2

1 2 1 2

1

2 2 ,     2IK KK IK RK IJ IJ

R

H Y Y Y H Y


         (B.7) 

 1 0 1 1 0 1 0 1 0 1 0 2 0 1 0( ) ( )[2( ) 3( )],   2( )Y Y                     (B.8) 

where i  and i   are the Lame constants of the ith phase ( 0i   for matrix and 1i    for fiber), 

respectively. 
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APPENDIX C COMPONENTS OF THE FOUR-RANK TENSORS (B, P, C*) 

IN CHAPTER 7 

With the aid of the inversion formula for the generalized isotropic fourth-rank tensor 

provided in Appendix B, the B tensor in Equation (7.8) can be expressed as 

  (1) (2)

ijkl IK ij kl IJ ik jl il jkB B B         (C.1) 

with 

  

    
2

2 2

2

1 1

24
IJ

IJIJ IJ

B
Z S F 


 

 (C.2) 

  

         1 1 1 1

2 1 1 1 4 1 2 21

1

1 2 3 4

21

2

I I I I

I

II

Z S F Z S F
B

 

    

     
  
 
 

 (C.3) 

    

         1 1 1 1

3 1 1 1 1 1 2 21 1

2 3

1 2 3 4

1

2 2

I I I I

I I

II

Z S F Z S F
B B

 

    

      
   
 
 

 (C.4) 

and 

 
    2 2

22IJ IJ IJZ S F     (C.5) 

 
    1 1

1 1 11 11 11Z S F      (C.6) 

    1 1

2 1 22 22 222( )Z S F      (C.7) 

    1 1

3 1 12 12Z S F     (C.8) 
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    1 1

4 1 21 21Z S F     (C.9) 

        
3

1 1 2 1

1 1 1

1

2 2IK IK II RK

R

F n E E E   


 
     

 
  (C.10) 

    2 2

12IJ IJF n E     (C.11) 

 
       

3
1 2 1 1

1 2 1

1

2 2IK KK IK RK

R

E Z Z Z


       (C.12) 

 
   2 2

22IJ IJE Z   (C.13) 

 
     

0 1 1 0
1

1 0 1 0 1 02 3
Z

   

     




     
 (C.14) 

 
 

0
2

1 02
Z



 



 (C.15) 

where 0   and 0   are the Lame constants of the matrix-phase material, and 1   and 1  are the 

Lame constants of the fiber-phase material. Therefore, we can derive the component form for the 

fourth-rank tensor P defined in Equation (7.17) as follows: 

 
   1 2

( )ijkl IK ij kl IJ ik jl il jkP P P         (C.16) 

 
 

 

1

2
2

IK
IK

II

Y
P

Q
   (C.17) 

 
 

 

2

2

1

4
IJ

IJ

P
Q

  (C.18) 

with 
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               

3
1 1 2 2 1 1 1

1

2 1 2IK IK KK IJ IK IR RK

R

Q S B S B S B  


        (C.19) 

 
      2 2 21

1 2
2

IJ IJ IJQ S B     (C.20) 

 
         

             

1 2 1 1 1

22 22 1 21 2
1

1 2 1 2 1 1

22 22 11 11 12 21

( )

2

I I
I

Q Q Q Q Q
Y

Q Q Q Q Q Q

 

   
 

 (C.21) 

 

          

             

1 2 1 1 1

11 11 2 12 1

2 3
1 2 1 2 1 1

22 22 11 11 12 21

2

2 2

I I

I I

Q Q Q Q Q
Y Y

Q Q Q Q Q Q

 
 

   
 

 (C.22) 

Similarly, the overall effective moduli tensor C
*
 in Equation (7.19) can be explicitly expressed 

by 

  * *(1) *(2)

ijkl IK ij kl IJ ik jl il jkC C C         (C.23) 

and 

        
3

* 1 2 1 1

0 0 0 0

1

2 2IJ KK IK RK

R

C    


        (C.24) 

          
* 2 2

0 0 2 2
1 2 1

2
IJ IJ

IJ IJ

C
W S


  



 
     
 
 

 (C.25) 

  

    
2

2 2

1

4
IJ

IJ IJW S
 


 (C.26) 

  

                        1 1 2 2 1 1 1 1 1 1

22 22 22 22 1 1 21 21 2 2
1

1
2

I I I I

I

W S W S W S W S W S

D

            
    (C.27) 
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    

                        1 1 1 1 1 1 2 2 1 1

12 12 1 1 11 11 11 11 2 2
1 1

2 3

2

4

I I I I

I I

W S W S W S W S W S

D

          
      (C.28) 

 

   

                       

2 2

1 1 2 2 1 1 2 2 1 1 1 1

1 11 11 11 2 22 22 22 12 12 21 21

( )

      {[( ) 2( )][( ) ( )] ( )( )}

II II

I I

D W S

W S W S W S W S W S W S



     

  

        
 (C.29) 

where   is the volume fraction of the reinforcements, and  1

IKS  and  2

IJS  are the coefficient 

tensors of the Eshelby tensor S for a cylindrical inclusion. S is dependent on the geometry of the 

inclusion and the Poisson’s ratio of the matrix with each component explicitly described as 

follows 

  1

11 0S   (C.30) 

    1 1

12 13 0S S   (C.31) 

    

 
1 1 0

21 31

02 1
S S




 


 (C.32) 

 
       

 
1 1 1 1 0

22 33 32 23

0

4 1

8 1
S S S S






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
 (C.33) 

  2

11 0S   (C.34) 

        2 2 2 2

12 13 21 31

1

4
S S S S     (C.35) 

 
       

 
2 2 2 2 0

22 33 23 32

0

3 4

8 1
S S S S






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
 (C.36) 
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APPENDIX D MULTIPLICATION FORMULA FOR TWO GENERALIZED 

ISOTROPIC FOURTH-RANK TENSORS 

Consider a generalized isotropic fourth-rank tensor C as the multiplication of another two 

generalized isotropic fourth-rank tensors A and B 

  (1) (2)

ijkl IK ij kl IJ ik jl il jk ijmn mnklC C C A B          (D.1) 

  (1) (2)

ijkl IK ij kl IJ ik jl il jkA A A         (D.2) 

  (1) (2)

ijkl IK ij kl IJ ik jl il jkB B B         (D.3) 

where 
(1)( )IK  and 

(2)( )IJ  are the second-rank tensors. By carrying out the multiplication on the 

R.H.S of Eq. (D.1) and using the fact that 
(2)( )IJ  is symmetric, it can be easily shown that the 

second-rank tenors 
(1)

IKC  and 
(2)

IJC  have the form: 

 
3

(1) (1) (2) (2) (1) (1) (1)

1

2 2IK IK KK II IK IR RK

R

C A B A B A B


    (D.4) 

and 

 
(2) (2) (2)2IJ IJ IJC A B  (D.5) 

where the repeated capital indices II and KK follow the notation in Mura (1987) that do not 

imply summation,. 
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APPENDIX E INVERSE FORMULA FOR A GENERALIZED ISOTROPIC 

FOURTH-RANK TENSOR 

Consider a generalized isotropic fourth-rank tensor Z with the following component form: 

  (1) (2)

ijkl IK ij kl IJ ik jl il jkZ Z Z         (E.1) 

where 
(1)

IKZ  and 
(2)

IJZ  are second-rank tensors and 
(2)

IJZ  is symmetric. After lengthy derivations, it 

can be shown that the inverse of the above fourth-rank tensor has the form: 

   1 (1)

(2)

1ˆ
4

ijkl IK ij kl ik jl il jk

IJ

Z Z
Z

          (E.2) 

where the second-rank tensor (1)ˆ
IKZ  can be calculated by the following expressions: 

 
 

 

          

             

1 2 1 1 1
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1 2 1 2 1 2 1 1
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1ˆ
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