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Abstract 

Overconfidence is the tendency for people to underestimate 
the true range of uncertainty regarding unknown or future 
values. It results in observed outcomes falling outside 
people’s estimated ranges more often than their stated 
confidence would suggest. Previous research has, however, 
demonstrated various ways of reducing this bias and the 
More-Or-Less-Elicitation (MOLE) tool has been designed to 
take these into account while leading people through an 
elicitation. Previous research showed MOLE’s benefit on a 
visual estimation task but real world elicitation is more likely 
to involve forecasting future values. The current study 
compared forecast ranges, for 7 and 28 day windows, elicited 
via the MOLE and direct estimation. A significant reduction 
in overconfidence (the mismatch between stated confidence 
and the proportion of ranges containing the true value) was 
observed – from more than 25% to only 7%. We conclude 
that the MOLE is a useful tool for assisting forecasting. 

Keywords: repeated judgement; elicitation; calibration; 
overconfidence; MOLE. 

Introduction 

Overconfidence (Tversky & Kahneman, 1974) refers to the 

tendency for elicited ranges of possible outcomes to 

underestimate the true uncertainty in a person’s knowledge. 

That is, if a person is asked to give a range that they are 

confident to some stated level of confidence that a future (or 

otherwise unknown) value will fall within, then the common 

observation is that the true value is less likely to fall within 

that range than their stated confidence indicates. 

This effect, while robust and demonstrated to affect both 

naïve and expert participants (Lichtenstein, Fischhoff, & 

Phillips, 1982; Morgan & Henrion, 1990), has been shown 

to be context dependent, with different elicitation methods 

known to affect the degree of overconfidence observed in a 

sample (see, e.g., Block & Harper, 1991 ). 

In light of the contextual nature of overconfidence, the 

MOLE (More-Or-Less-Elicitation) process was developed 

to improve calibration of estimated ranges. Specifically, 

reducing overconfidence by leading participants through an 

elicitation process designed to limit bias and work in concert 

with people’s natural cognitive tendencies. Previous 

experiments (Welsh, Lee, & Begg, 2008, 2009), have shown 

that this process increased accuracy of best guesses as well 

as improving calibration on a simple, perceptual task – 

estimating the number of circles on a display. 

The elicitation tasks that are of greatest application to 

real-world problems, however, involve the prediction of 

future states of the world. For instance, oil industry 

economics are dependent on the accurate forecasting of 

future oil prices. The efficacy of the MOLE method on these 

sorts of tasks is, therefore, of interest. 

The MOLE process 

The MOLE was developed with four key insights in mind. 

The first has been known for over a century (Galton, 1907) 

– that repeated estimates of a parameter can, to the extent 

that errors in the estimates are independent, be averaged to 

produce a better estimate. Previous work on elicitation has 

also shown that repeatedly asking the same person to make 

the same estimate can increase accuracy to the extent that 

independence in the estimates is maintained (Herzog & 

Hertwig, 2009; Vul & Pashler, 2008). 

The second is that people are better at making relative 

than absolute judgements (Stevens, 1957). That is, allowing 

people to select from amongst options rather than having to 

generate their own leads to more accurate estimates; an 

observation with echoes in the overconfidence literature, 

specifically Winman, Hansson and Juslin’s (2004) 

observation that people are better at evaluating the 

probability of a value falling within a range than they are at 

generating a range to match a stated level of confidence. 

The third insight is that providing a starting point in an 

estimation process biases people’s estimates.  Specifically, it 

seems to set the region that they are willing to explore when 

contemplating possible answers, such that estimates tend to 

cluster near any such anchoring value (Tversky & 

Kahneman, 1974).  The same sort of priming effect seems, 

sometimes, to occur when people generate their own starting 

point (for a discussion of this, see Block & Harper, 1991). 

The final insight is that people, when deciding on an 

estimate, have some range of values that they would 

consider appropriate and, within which, they are indifferent. 

This explains the impact of anchoring values in that 

adjustments away from the anchor stop when this region of 

indifference is reached and thus estimates tend to lie at the 

anchor end of the region a person considers possible 

(Kahneman, 2011). The implication of this for range 

estimation is that a process building a range from the centre 

out will tend to produce a narrower range than one that 

creates a range from the outside in, as shown in Figure 1. 

Aims 

The aim of this paper is to compare the calibration achieved 
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by the computerized elicitation method (MOLE) described 

above with that of a direct estimation elicitation in which 

participants are asked to provide minimum and maximum 

values directly. Specifically, whether the advantage 

observed for the MOLE on visual tasks remains on a 

forecasting task, where participants estimate ranges they are 

confident will contain the true value that a parameter of 

interest will take at specified points in the future.   

 

(a)                    Possible Low-End Values   

 

 

Minimum     

            Best Guess 

 

(b)                    Possible Low-End Values  

 

 

Figure 1. Pictorial representation of estimating the low-end 

value of an uncertainty range, working from: (a) the best 

guess; (b) a minimum value. Note that working from best 

guess rather than the minimum value results in a higher low-

end estimate and thus a narrower range overall.  

Method 

Participants 

Participants were 158 oil industry personnel employed in 

the US (n =115) and UK (n = 43). While, for confidentiality 

reasons, demographic data are not included, previous work 

suggests a mean age of around 40 and an average of 15 

years of industry experience is typical; as is a 3 or 4:1 male 

to female gender ratio (see, e.g., Welsh, Begg, & Bratvold, 

2006; Welsh, Bratvold, & Begg, 2005). Given the involved 

companies’ interests in seeing overall results for their 

personnel, all participants willing to take part were 

accepted, rather than determining numbers in advance. 

However, analyses were not begun until all data collection 

was complete within a given jurisdiction. 

Materials 

The MOLE and direct estimation methods both asked 

participants 10 questions regarding the values of 5 

commodities/shares at times 7 and 28 days following 

testing. Two equivalent question sets were developed – 

labeled Gold and Silver after the first commodity included 

in each. Table 1 lists the commodities asked for in each. 

It is important to note that this design, with testing across 

an extended period and yet with all participants making 

forecasts across the same duration, results in individual 

results being dependent on the volatility of the parameters 

across that period. That is, participants using the same 

starting value on different days and making the same range 

estimate may end up with different calibration scores as a 

result of the true value on the target days differing. A period 

of low volatility could, thus, mask poor calibration. 

For the US participants, the quiz questions were coded 

into a graphical user interface (GUI) for delivery via the 

MOLE but delivered as a paper and pencil test for the direct 

estimation. For the UK participants, both the MOLE and 

direct estimation methods were delivered via GUI. Figure 2 

shows the GUI as it appears during elicitation using MOLE. 

 

Table 1. Commodities/parameters by quiz. 

Q. Forecast 

Window 

Quiz 1 (Gold) Quiz 2 (Silver) 

1 7 Gold price Silver price 

2 28 Gold price Silver price 

3 7 Maximum Temp Minimum Temp 

4 28 Maximum Temp Minimum Temp 

5 7 Rainfall total Wind Speed 

6 28 Rainfall total Wind Speed 

7 7 Share price Share index 

8 28 Share price Share index 

9 7 Oil price Gas price 

10 28 Oil price Gas price 

NB – the specific values asked from varied across locations. 

E.g., the Share price asked for was for each participant’s 

own company and the share index was for their country of 

residence (Dow Jones for US; FTSE100 for UK). 

 

 
Figure 2. GUI showing snapshot of MOLE process 

Procedure 

Participants were tested in small groups (2-4) within their 

company offices over a period of approximately 1 month – 

in each case. Which quiz a participant undertook under each 

elicitation method was determined randomly. That is, 

approximately half of participants completed the Gold quiz 

using the MOLE and Silver using the standard elicitation, 

while the remainder did the reverse. Which of the methods 

was delivered first was also randomized. The specific 

procedure used within each method is described below. 

 

Standard Elicitation Procedure 

Under the standard elicitation condition, participants were 

asked to give ranges they were certain would contain the 

true value of the parameters of interest at the specified time. 
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That is, they were asked for their minimum and maximum 

values. (This was done in preference to the more common 

80 or 90% confidence intervals to ensure comparability with 

the MOLE, which generates 100% confidence intervals.) 

These were either recorded on a paper copy of the quiz or 

entered directly into the GUI. Prior to testing, participants 

were asked to record the current value of the parameter of 

interest – to ensure that they had some idea of what the true 

value was and thus better reflect real forecasting tasks where 

people forecast values that they are familiar with. 

It was decided not to ask participants for a best guess as 

this affects the width of elicited ranges in complex ways 

(see, e.g., Block & Harper, 1991; Heywood-Smith, Welsh, 

& Begg, 2008), including a suggestion that it affects ranges 

differentially according to a person’s level of expertise in a 

subject (Bruza, Welsh, Navarro, & Begg, 2011). 

 

MOLE Procedure 

The MOLE required the elicitor to set initial bounds on the 

range of values that the computer uses – based on 

extrapolations of historical data or natural limits (where 

available). The bounds used for the different quiz questions 

are shown in Table 2. Note that some were based on the 

parameter’s current value while others were based on 

historical data. In both cases, however, the participant was 

tasked with entering the current value into the MOLE GUI 

immediately prior to the elicitation beginning. In this way, 

participants were assured of knowing something about the 

parameter in question. 

For each parameter elicitation, the program randomly 

selected two values from the uniform distribution delimited 

by these bounds and presented both to the participant, 

asking which was closer to the true value. The participant 

then rated their confidence in their choice on a scale from 

guessing to very high
1
 (as seen in Figure 1). 

This confidence rating was used by the MOLE to 

determine whether the range of values being considered 

should be truncated. Specifically, if the participant selected 

an option with maximum confidence, the MOLE ruled out 

any values lying closer to the non-selected option. That is, it 

truncated the range at the midpoint of the two current values 

and selected future values only from the remaining range. 

Any confidence level below the maximum resulted in no 

truncation of the range – the interpretation being that lower 

confidence ratings indicated a person still believed it 

possible that the alternate value could lie closer to the truth.  

Following this, the MOLE selected a new pair of values 

from the (possibly truncated) range and presented these for 

the participant to choose between – as detailed above. 

The MOLE iterated through his process 10 times (for 

                                                           
1 This scale was mapped over the top of the 50% - 100% 

confidence scale used in previous versions of the MOLE – as a 

result of discussions with the companies providing participants. 

While this, necessarily, reduces our ability to interpret results, it 

should be noted that the effect of this can only be to narrow ranges 

when the numerical scale might otherwise leave it intact. Thus, this 

change can only hinder the MOLE. 

each parameter) with the range that remained at the end 

recorded as the participant’s final range estimate. As noted 

in previous versions of this task (Welsh, et al., 2008, 2009), 

it is possible to use MOLE results to generate a full 

distribution and calculate a best estimate from a 

participant’s responses. Given the use of a simple range 

elicitation as the comparison condition, however, this was 

not done here – avoiding concerns about the assumptions 

used to generate a best estimate from the raw data. 

Participants were not made aware of the underlying 

MOLE algorithm, ensuring that any attempts to ‘game the 

system’ would be made blind. 

 

Table 2. Initial bounds for MOLE process. 

 US UK 

Q. Gold Silver Gold Silver 

1 ±5% ±5% ±10% ±10% 

2 ±10% ±10% ±10% ±10% 

3 30-110F 30-110F -20-40C -20-40C 

4 30-100F 30-110F -20-40C -20-40C 

5 0-7 in. 0-60 mph 0-100mm 0-90kmph 

6 0-20 in. 0-60 mph 0-200mm 0-90kmph 

7 ±5% ±5% ±5% ±5% 

8 ±10% ±10% ±10% ±10% 

9 ±5% ±10% ±5% ±10% 

10 ±10% ±20% ±10% ±20% 

Note: where a ±% value is indicated, the bounds were 

calculated from the current value of the parameter. Note 2: 

the UK 7-day bounds are, in places, wider than their US 

equivalents for reasons detailed below. 

Results 

On Bounds 

The US sample was collected several months before the UK 

sample and, as such, observations from this were used to 

update our process for determining bounds. Specifically, it 

was observed that the bounds used for the Silver price 

underestimated the volatility in the market – preventing a 

number of participants from being able to capture the true 

value in their final ranges, no matter what choices they 

made during the MOLE. In light of this, the ranges used for 

the UK sample were widened on this question and analyses 

exclude this question from the US. 

Otherwise, the differences in bounds reflect differences in 

expected weather for the participants’ local areas and 

changes of units from metric to imperial where appropriate. 

Equivalency of Quizzes 

Apart from the effect noted above for the silver question, the 

US sample’s performance on the questions from the Gold 

and Silver quizzes was statistically equivalent. Calibration 

on the ‘Gold’ and ‘Silver’ question sets was compared for 

both 7 day and 28 forecasts using Welch’s t-tests. These 

showed no difference between people’s performance on the 

two sets of questions, M = 82.8 and 84.0, t(228) = 0.42, p = 

0.674 on the 7 day forecasts and M = 84.0 and 85.7, t(228) 
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= 0.58, p = 0.566 on the 28 day forecasts. 

The UK sample is slightly more complex in that, while 

there is no observed difference between participants’ 

performance on the Gold and Silver quizzes under the 

MOLE, there is one using the standard elicitation method, 

with the average calibration being 20% lower on the Gold 

quiz. On examination of the data, it was noted that, during 

the period of testing for the UK sample, the parameters on 

the Gold quiz happened to be markedly more variable than 

those on the Silver quiz. The average difference between the 

minimum and maximum values observed for the various 

parameters across the date range (i.e., D = (Max-Min)/Max) 

was 0.37 for the Gold quiz compared to 0.22 for the Silver. 

In light of the larger US sample’s results, however, it was 

decided that this did not call into question the equivalency 

of the questions, per se, and analyses are carried out on the 

combined data in both cases. 

Calibration 

Participants’ calibration was calculated simply as the 

proportion of their ranges containing the true value (given 

that 100% confidence intervals were elicited). Figures 3 and 

4 show mean calibration by forecast window and elicitation 

conditions for the US and UK samples, respectively. 

Looking at Figure 3, initially, one sees two very clear 

results. The first is that the forecast length had no effect on 

people’s calibration – with little difference seen between the 

7 and 28 day forecasts under either condition in paired 

samples t-tests, t(114) =0.493 and 1.81, p = .623 and .073, A  

(common language effect size - specifically, the measure of 

stochastic superiority; Vargha & Delaney, 2000) = .526 and 

.539, for the direct estimation and MOLE conditions 

respectively. That is, while participants did, in both 

conditions, increase the width of their ranges for the 28 day 

forecasts relative to the 7, the benefit in terms of calibration 

was zero as the additional range width was offset by the 

parameters’ greater volatility in the longer term. 

The second observation is that the MOLE method 

produced markedly better calibration for both 7 and 28 day 

forecasts – with approximately 17% more of its ranges 

containing the true value than is observed for the direct 

estimation method.  Paired sample t-tests comparing 

participants’ calibration on the two elicitation methods (for 

each forecast length separately) unambiguously support this, 

t(114) = 6.92, p = 2.78x10
-10

 for the 7 day data and t(114) = 

6.06, p = 1.77x10
-8

 for the 28 day forecasts. The effect sizes 

were large and close to identical, A = 0.734 and 0.730.  

Turning to Figure 4, one sees a similar pattern of results – 

although the 28 day result for the direct estimation method 

shows a decline in calibration as a result of the greater 

volatility in the Gold quiz questions discussed above. A 

paired sample t-test indicated that the difference observed 

here was significant, t(42) = 3.1, p = .004, A = .604. A 

second, paired sample t-test indicated no difference between 

participant’s 7 and 28 day forecast calibration using the 

MOLE, t(42) = 0.22, p = 0.824, A = 0.521. 

The difference between participants’ mean calibration on 

the MOLE and direct estimation was 17% on the 7 day 

forecast and 27% at 28 days. Paired sample t-tests 

comparing mean calibration at each forecast length 

confirmed these differences were significant, t(42) = 4.3 and 

5.9, p = 1.06x10
-4

 and p = 5.97x10
-7

, A = 0.734 and 0.779. 

 

 
Figure 3. Mean calibration by elicitation condition and 

forecast window (US sample) 

 

 
Figure 4. Mean calibration by elicitation condition and 

forecast window (UK sample) 

 

Looking at Figure 4 and the t-test results described above, 

it seems clear that there is an interaction effect – with the 

longer period affecting calibration only for participants 

during the direct estimation condition. That is, greater 

volatility on the Gold quiz questions (discussed above) led 

to a decrease in calibration for participants undertaking the 

direct estimation conditions, but no such decrease for 

participants answering the same questions using the MOLE. 

Discussion 

The results confirm that the MOLE’s advantaged over direct 

estimation elicitation methods in previous, perceptual 

studies (Welsh, et al., 2008, 2009) transfers to a forecasting 
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paradigm with greater applicability to real world problems. 

While the MOLE does not eliminate overconfidence (this 

may, in fact, be impossible where error is involved - as 

discussed by Soll & Klayman, 2004), it reduces it to less 

than 10% in all conditions – averaging just under 7%. This 

is less than a third the overconfidence observed in the direct 

estimation conditions, which averages just over 25% across 

all conditions. 

Some other results do, however, require additional 

explanation; for instance, in the UK sample, additional 

volatility in some parameters across the experiment’s 

(moving) forecast window led to a marked decrease in 

calibration in the direct estimation task but not the MOLE. 

A likely cause of this is the outside-in method the MOLE 

uses to construct its final range. As shown in Figure 1, this 

is predicted to result in wider ranges – as was observed.  

These ranges are, however, still expected to correspond to 

an individual’s beliefs. By requiring participants to 

definitively rule values out before removing them from 

consideration (rather than asking whether they should be 

included), the MOLE preserves as much of a person’s 

‘region of uncertainty’ as possible. Given the participant 

(presumably) believes any value within this range is 

possible – all of them should fall within a 100% confidence 

interval and the MOLE makes this far more likely.  

That this makes ranges wider is unsurprising but the fact 

that it also prevents the drop off in calibration seen with 

unexpectedly high volatility demonstrates the approach’s 

strength and seems to have strong parallels with Yaniv and 

Foster’s (1995) accuracy/informativeness trade-off. That is, 

people accept values presented by the MOLE as possible, 

despite the fact that they would not report such values 

themselves for fear of them being deemed uninformative. 

Another interesting observation is the equivalence of 

results across the forecast windows. Specifically, 

participants maintained the same calibration when 

predicting further into the future by giving wider ranges,  

mirroring the observation that expert and novice forecasters 

maintain similar levels of overconfidence despite 

differences in knowledge (McKenzie, Liersch, & Yaniv, 

2008). This suggests that people may have a stable, 

preferred level of calibration. 

Caveats 

As noted above, both the MOLE and direct estimation 

conditions are assumed, herein, to yield 100% confidence 

intervals – that is intervals the participant believes will 

definitely contain the true range. While this could, in the 

direct estimation condition, lead to ‘sandbagging’ (i.e., 

generating 0 to ∞ ranges to guarantee success), this is not 

observed in the data due to people’s tendency towards 

informativeness (Yaniv & Foster, 1995). (In fact, such wide 

ranges are not generally appropriate. For example, 

“temperature measured at Heathrow Airport” will not ever 

exceed 400°C - the autoignition point of jet fuel and, thus, 

the temperature at which the airport (and its thermometers) 

will cease to exist.) 

It should also be noted that a typical calibration task 

asking for 80% confidence intervals can equally easily be 

‘gamed’ by providing 80% extremely wide ranges and 20% 

extremely narrow (or just plain wrong) estimates. Any 

tendency that a person has towards such behavior would, 

presumably, benefit their calibration scores in the direct 

estimation task to a greater extent than in the MOLE which, 

as noted above, did not make clear to participants the 

process by which it created a range from their responses. 

Thus, to the extent that such effects impact the data, it 

would be expected to erode differences between the two 

conditions – which remain marked. 

The second concern is the requirement that the 

experimenter set the initial bounds for the MOLE – as 

demonstrated by our own failure to account for the volatility 

of the silver price. While this increases the potential for 

overconfidence in the MOLE results – by causing cases 

where it is impossible to create a range that contains the true 

value – more judicious use of historical data and natural 

bounds renders this a relatively minor concern. Certainly, 

defining an initial range is a problem shared with any 

elicitation method that seeks to guide participants to 

consider a wider range (see, e.g., Haran, Moore, & 

Morewedge, 2010, who ask participants to assign 

probabilitites across the full range of possible answers - as 

defined by the experimenters). 

Future Research 

While the basic efficacy of the MOLE process for reducing 

overconfidence has been demonstrated, there remain a 

number of questions regarding its operation that require 

further exploration. The first is to test the impact of 

changing the initial bounds on the final ranges generated 

from the MOLE – beyond the initial requirement of getting 

the bounds wide enough to begin with to ensure that the 

participants can create a range that contains the observed 

value. If the MOLE is working as it should, then wider 

ranges shoulder result only in people cutting more of the 

range away to reach the same final width – with the other 

possibility being that the initial selection of bounds affects 

the final range and thus that a reevaluation of the MOLE 

might be required in light of such evidence of bias. 

Additional work is also required to determine whether the 

current mechanism for reducing those bounds is too 

conservative or, alternatively, not conservative enough. That 

is, whether people are accidentally removing sections of 

range that they do not intend to or unable to remove sections 

that they consider unfeasible. The current MOLE process 

does not have a mechanism for testing this – for example, 

by occasionally providing a value from outside the current 

range as a test that it is, in fact, considered unfeasible. 

Finally, while not contemplated in the current experiment, 

the MOLE procedure is designed to improve accuracy as 

well as calibration – via repeated judgements and the 

elimination or watering down of anchoring/priming effects. 

Given this, a variety of experimental tests are possible. For 

instance: altering the number of iterations the MOLE runs 
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for and observing the effect this has on best estimates; and 

measuring the decline in the strength of any anchoring 

values as the MOLE progresses. 

This work would seem to lead, naturally, to consideration 

of the best algorithms for selecting values to be presented to 

participants. Currently, the MOLE selects values randomly 

from a uniform distribution covering the remaining range at 

any point in the experiment and runs for a set number of 

iterations. A more intelligent algorithm, however, could take 

into account past values or select the most efficient 

comparisons when testing a participant’s range or 

determining when the process should be terminated. 

Conclusion 

The MOLE method produces ranges significantly wider 

than those generated by participants required to directly 

estimate the minimum and maximum points of a range. This 

results in markedly less overconfidence. 

Given the common observation that people, in general, 

are overconfident – underestimating the range of possible 

outcomes – the use of elicitation tools such as the MOLE, 

designed in line with established psychological theory, 

seems a useful method for improving forecasting accuracy. 
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