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ABSTRACT

Parallel analysis of RNA ends (PARE) is a technique
utilizing high-throughput sequencing to profile un-
capped, mRNA cleavage or decay products on a
genome-wide basis. Tools currently available to val-
idate miRNA targets using PARE data employ only
annotated genes, whereas important targets may be
found in unannotated genomic regions. To handle
such cases and to scale to the growing availability of
PARE data and genomes, we developed a new tool,
‘sPARTA’ (small RNA-PARE target analyzer) that uti-
lizes a built-in, plant-focused target prediction mod-
ule (aka ‘miRferno’). sPARTA not only exhibits an un-
precedented gain in speed but also it shows greater
predictive power by validating more targets, com-
pared to a popular alternative. In addition, the novel
‘seed-free’ mode, optimized to find targets irrespec-
tive of complementarity in the seed-region, identi-
fies novel intergenic targets. To fully capitalize on
the novelty and strengths of sPARTA, we developed
a web resource, ‘comPARE’, for plant miRNA tar-
get analysis; this facilitates the systematic identi-
fication and analysis of miRNA-target interactions
across multiple species, integrated with visualization
tools. This collation of high-throughput small RNA
and PARE datasets from different genomes further
facilitates re-evaluation of existing miRNA annota-
tions, resulting in a ‘cleaner’ set of microRNAs.

INTRODUCTION

Plant small RNAs (20–24 nt) play essential regulatory roles
in growth, development as well as defense processes. These
sRNAs are typically classified into two classes: miRNA
(microRNA) and siRNA (short interfering RNA), both
capable of post-transcriptional regulation via homology-

dependent cleavage of their targets, with siRNA biogene-
sis dependent on RNA-dependent RNA polymerase activ-
ity. Since the first reports of miRNAs in plants (1,2), there
has been a steep escalation in the number of known miR-
NAs, fuelled primarily by concurrent advances in sequenc-
ing technologies and computational methodologies. At the
time of writing, there are over 7,385 mature miRNAs re-
ported from 72 plant species in miRBASE (version 20).
However, identification of a miRNA does not provide in-
sights into its function or regulatory targets, nor is an un-
derstanding of targets part of the process of miRNA identi-
fication (3). Nonetheless, a key to understanding the biolog-
ical relevance of a miRNA lies in discovering and validating
its targets.

Parallel analysis of RNA ends (PARE) is a high-
throughput sequencing technique which profiles uncapped
mRNAs, products of cleavage or decay, facilitating stud-
ies of miRNA targets (4). Nearly identical techniques have
been termed ‘degradome analysis’ or ‘GMUCT’ and they
generate equivalent data (5,6). Because of our role in de-
velopment of the technique called PARE, we are partial
to this terminology and will use it hereafter. Computa-
tional tools to predict miRNA targets and validate those
targets using PARE data are limited in both number and
functionality. In addition, among these tools, there is di-
vergence in the methodology used to predict targets and
assign significance scores. CleaveLand, the most-cited and
perhaps most commonly-used tool for computational val-
idation of miRNA targets using PARE datasets, presumes
that there exists a positive correlation between complemen-
tarity at a canonical seed region (2 to 13 nt from the 5′ end
of the miRNA) of a miRNA::target duplex and probability
of actual cleavage (7,8). Therefore, CleaveLand implements
a ‘seed region’-based target scoring schema along with a
penalty score cutoff of ≥4, to model the P-values for val-
idated interactions. However, cleavage of potential targets
can occur even with poor complementarity in the seed re-
gion or mismatches at canonical positions (9,10) (Figure 1).
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Figure 1. MicroRNA (miRNA) targets with weak or non-canonical interactions are missed by existing PARE-based validation tools. Each example shows
the target-miRNA alignment at the top, with screenshots below from our website (http://mpss.udel.edu/); the upper panel shows the PARE data, the middle
panel in each case, phased small RNA production from cleavage sites further substantiates the cleavage events. (A) at-miR173–5p cleaves the Arabidopsis
thaliana TAS1B gene with a penalty score = 4.5, and with mismatches at both the 10th and 11th positions. (B) mtr-miR1507 cleaves the Medicago truncatula
NBS-LRR type disease resistance gene (Medtr8g038570) with a penalty score = 7, and with a mismatch at the 11th position. (C) mtr-miR1507 cleaves the
M. truncatula NBS-LRR type disease resistance gene (Medtr7g078790) with a penalty score = 7, and with a mismatch at the 11th position.

http://mpss.udel.edu/
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PAREsnip is an accelerated approach to extend PARE
validation of targets from a small set of miRNAs up to a
more extensive library of small RNAs (11). Yet PAREs-
nip suffers from the same inductive bias as CleaveLand,
which is the assumption that there exists a positive corre-
lation between complementarity in the canonical seed re-
gion and probability of actual cleavage. These assumptions
about miRNA-target interactions are not easily modified
or refined. Furthermore, the target search algorithm im-
plemented in PAREsnip expects a perfect match at canon-
ical 10th–11th positions and is dependent on ‘seed region’-
based rules for its speed. Therefore, both PAREsnip and
CleaveLand tend to bias the results by assigning significant
P-values to only those interactions that either have a fairly
good complementarity in seed regions or to those miRNAs
that have limited number of interactions. Another existing
tool for PARE-based validation of miRNA targets, SeqTar
(9), broadens the complementarity-based prediction rules
but it is currently moderately slow and therefore best em-
ployed for a pre-selected set of miRNA (or sRNAs) rather
than a complex sRNA population.

These three tools for working with PARE data, Cleave-
land (7), PAREsnip (11) and SeqTar (9) focus exclusively
on the annotated portion of the genome, utilizing cDNA
sets as their input. But many new genomes are poorly an-
notated, at least in their initial release, and recent studies in-
dicate that even in well-annotated genomes, target mRNA
still remain to be found in un-annotated, intergenic regions
(IGRs), evidenced in reports of large numbers of miRNA-
targeted long, noncoding RNAs in the grasses (12–14). For
example, one recent report describes these loci (and their
miRNA triggers) in un-annotated regions of the Brachy-
podium genome (15). Such analyses depend on approaches
for target identification at a full-genome level, not just us-
ing annotated genes. As mentioned above, all existing algo-
rithms to validate miRNA targets from PARE data are built
on the assumption that the relevant interactions are within
annotated transcripts. Since this is inaccurate, we sought a
new approach.

In the past decade, the increase in yield-per-dollar cost of
sequencing has democratized the use of high-throughput se-
quencing technologies. This has initiated a shift in plant ge-
nomics, from the study of model plants with modest genome
sizes, to diverse crops, and now even including species with
genomes many times larger than most model genomes. For
example, the recently sequenced Picea abies and Triticum
aestivum genomes are both >100× larger than Arabidop-
sis thaliana. Furthermore, an increased DNA sequencing
throughput has commoditized the sequencing of RNA sam-
ples. A single small RNA or PARE library now includes
tens millions of reads that can be analyzed and integrated
to predict new miRNAs and their targets. These advances
and cost reductions in genome and RNA sequencing war-
rant the development of a PARE validation approach ca-
pable of high efficiency to (i) handle enormous non-model
genomes and (ii) quickly analyze all possible sRNA::PARE
interactions from multiple libraries. Fortunately, there ex-
ist numerous technologies that could be deployed to meet
these needs, via the development of algorithms capable of
efficiently exploiting available computing power.

With increased studies of small RNAs, many groups
have developed approaches to identify from sequence data
novel miRNAs and their targets. Databases that computa-
tionally predict, curate and collect experimentally verified
miRNA-target interactions include TarBase (16), StarBase
(17), miRTarBase (18) and MiRecords (19). For biologists,
the most effective use is to combine the best aspects of dif-
ferent databases and interpret the data using graphical in-
terfaces. However, the database mentioned here lack inte-
grated genome viewers, with the exception of StarBase (17)
which uses the purpose-built deepView for visualization of
mapped reads, target peaks and target plots. A limitation for
plant biologists is that most of these databases focus on ani-
mals with only limited plant data. The extensive availability
of data in plants is an opportunity for greater integration
of small RNA, PARE and RNA-seq data to advance data-
driven small RNA analyses.

Motivated by the prospect of discovering novel regula-
tory modules, the shortcomings of existing algorithms, ex-
plosive growth in the number of miRNAs, the number of se-
quenced plant genomes, and the amount of available PARE
data, we developed a novel method for computational char-
acterization of sRNAs. The package that we describe here
is capable of predicting and validating targets at a whole
genome level, and for all reported miRNAs or a given li-
brary of small RNAs. Unlike earlier tools, sPARTA em-
ploys true parallel computing to gain significant advances
in speed, and it implements a data-partitioning scheme for
both scalability and to maintain a low memory footprint.
Thus, sPARTA is efficient in handling large genomes as well
as large input sets of RNA data.

MATERIALS AND METHODS

The sPARTA algorithm has four main steps that are im-
plemented in series. With the exception of the first step
in which user-defined features (gene or intergenic) are ex-
tracted and fragmented, the three subsequent steps use
single-instruction multiple-data (SIMD) parallel processing
via Python (v3.3) multiprocessing module. The two most
data intensive steps (i) mapping reads from multiple PARE
libraries and (ii) the prediction of sRNA or miRNA tar-
gets (by miRferno), both benefit from two-way SIMD par-
allelism (Figure 2).

Feature extraction and input file partitioning

To build a ‘feature set’ or input library of sequences in which
targets will be identified for a species of interest, sPARTA
starts with a GFF file (Generic Feature Format, version 3)
containing gene annotations along with the corresponding
genome sequence. In many cases, this is downloaded from
Phytozome (20). These GFF and genome sequence files are
used by the built-in Genome Slicer function to extract first
the coordinates of selected features (i.e. genic or IGRs) from
the GFF files and next to extract the sequences from the
genome. These intergenic and genic sequence sets comprise
the main feature set, which is further partitioned into dif-
ferent data elements (features) so as to implement data par-
allelism.
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Figure 2. sPARTA schematic, showing order of steps in workflow. Solid boxes represent sPARTA functions, dashed boxes represent the product of an
applied function. Multiple arrows indicates multiple output files from the preceding function. Steps executed in parallelized environment are enclosed
within colored dotted lines.

PARE data processing and read mapping

The next step in sPARTA is to map PARE reads to the
feature set. An FM index (21) for each component of the
feature-set is created using Bowtie (version 2, in the current
sPARTA implementation) (22) with the default off-rate pa-
rameter. PARE reads in tag-count format (a tab-separated
file of read sequences and normalized frequencies) from
each dataset were then aligned to the partitioned FM in-
dexes using Bowtie, with default end-to-end settings and
no mismatch allowed, to generate PARE-fragment maps.
PARE datasets in format other than tag-count could be eas-
ily converted to tag-count using publicly available Tally (23).
The PARE mapping step implements SIMD parallel pro-
cessing on both the involved datasets, i.e. the feature set and
the PARE reads. The feature set file size for different species
could range up to tens of gigabytes, while the number of

reads in a PARE dataset range from millions to hundreds of
millions. So, two-way parallelization further enhances both
scalability and load balancing, improving the parallel pro-
cessing efficiency of the sPARTA algorithm. The paralleliza-
tion on the number of reads is achieved by Bowtie’s built-in
parallel processing function that makes use of the pthreads
library to distribute reads across concurrent search threads
(24).

Prediction of targets using novel miRferno algorithm

In the third major step, targets of small RNAs are
identified in the sequences of the feature set. sPARTA
has a newly developed, built-in target prediction
module––miRferno––which has two prediction modes,
greedy and exhaustive, described below. In both modes, the
miRNA or sRNA sequences used as an input to find targets
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Figure 3. Comparative benchmarking of the sPARTA algorithm in paral-
lelized mode and in comparison to CleaveLand version 3 (CL3). In both
comparisons, four different plant genomes were used, as indicated on the
X-axis. In each set of pairwise run comparisons, the minimum fold differ-
ence is indicated in green text and the maximum in red text. (A) Runtime
comparisons between sPARTA in serial (blue line) and parallel (red line)
modes exhibit a minimum speed gain of 11× and maximum speed gain of
16.8× for the parallel mode compared to the use of a 28-core single node.
(B) sPARTA run in parallel mode (green line) is a minimum of 227× and
maximum 516× faster than the comparable software package CL3 (red
line). Using a single core (blue line), the sPARTA package is a minimum
of 18× and a maximum 39× faster than CL3.

are mapped to the fragmented features using Bowtie. The
advantage of using version 2 of Bowtie is that it allows
gapped alignments, and therefore it can find miRNA-target
interaction which include gaps and bulges. The inclusion
of these mismatches substantially increases the sensitivity
of target prediction, but gaps also greatly inflate the size
of the search space and slow down the process of finding
targets. Prior decomposition of the feature set into smaller
partitions (i.e. features) by sPARTA reduces the index size
and associated search space for gapped alignments. This
increases the efficiency of alignments, and in combination
with parallelization on the number of PARE reads and
genomic partitions (i.e. two-way parallelization), com-
prises an effective combination of speed, sensitivity and
scalability.

The two prediction modes of miRferno allow the user to
optimize for time versus sensitivity. The greedy mode is de-
signed to be fast but less sensitive. In this mode, multiple
seeds are extracted from the miRNA or sRNA sequence.
These seeds are 6 nt in length and extracted in 4 nt inter-
vals, and they are aligned to the FM indexes from the par-
titioned feature set with a maximum allowed mismatch of
1 nt. Matched instances of these seeds are further extended
to complete the alignment of the small RNA, unless three
consecutive seed extension attempts fail, resulting in the
termination of the extension. On other hand, the exhaus-
tive mode is designed for improved sensitivity; it extracts a
smaller seed of 4 nt spaced in a 3 nt interval from miRNA
or sRNA sequence. The use of multiple 4 nt seeds from a
single miRNA or sRNA along with one allowed mismatch
improves the efficiency of finding targets, as the probabil-
ity is high of at least one seed (out of seven in total, for a

21 nt small RNA) being extracted from the region of the
miRNA which binds its target at a region with 3 nt matches.
In addition to sensitive mapping parameters, if none of the
extracted seeds reports a valid alignment, then a second, ‘re-
seeding’ pass is allowed. In second pass, a new set of seeds
is generated, slightly offset, and used to search for targets.

miRferno also offers the user two different systems for tar-
get scoring, standard and seed-free. Standard scoring pro-
vides backward compatibility for earlier miRNA-target pre-
diction or validation experiments; in other words, it is based
on previously described, complementarity rules based on
a seed region (8). However, we added the seed-free scor-
ing because several recent studies have shown that there
exist miRNA-target interactions which deviate from the
standard or canonical complementarity rules that utilize
a seed region (9,10). Seed-free scoring may have broader
utility; several early (25,26) as well as recent studies (27–31)
from animals also indicate that formation of a functional
miRNA-target duplex does not require strict complemen-
tarity between a miRNA seed and its target. These non-
canonical targets in both plants and animals have been val-
idated and support an ‘expanded’ range of miRNA-target
interactions. Moreover, the targets sites from IGRs are of-
ten left unanalyzed because target-prediction tools focus on
annotated genes; poorly annotated non-coding RNAs may
interact differently with miRNAs in ways that are not yet
well defined. So, we wanted to avoid over-fitting of comple-
mentarity rules based on seed regions that might not only
restrict our ability to find non-canonical targets but also in-
troduce bias into the results. The seed-free scoring achieved
this, based on the assumption that a target site could be
functional even with weak seed-region complementarity.
Therefore, unlike the standard scoring system, within this
region, G:U wobbles, gaps and mismatches have the same
penalty score as elsewhere in the miRNA-target pairing. Fi-
nally, in the seed-free scoring system, mismatches at the crit-
ical 10th and 11th positions are permissible (32,33). While
the seed-free scoring system relaxes many of the conven-
tional miRNA-target interaction constraints, by assigning
strong mismatch penalties, it retains a requirement of a cor-
relation between sequence complementarity and cleavage
efficacy. Each miRNA-target alignment is scored using fol-
lowing position specific rules, starting from the 5’ end of the
miRNA:

(i) Mismatches at either the 10th or 11th positions carry
a penalty of 2.5.

(ii) A wobble with a single flanking mismatch or mis-
matches on both sides carries a penalty of 1.5 or 2.0,
respectively.

(iii) A single gap, mismatch and wobble at any position car-
ries a penalty of 1.5, 1.0 or 0.5, respectively.

Finally, in sPARTA, the Bowtie scoring system was mod-
ified to reject miRNA-target alignments with more than
one gap or six ‘edits’ (mismatches or G:U wobbles). These
settings are user-configurable and can be relaxed using the
depth parameter with input values ranging from 0 (default)
to 3 (relaxed).
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Figure 4. Our approach to assessing the comparative benchmark of the prediction power. Loci generating phased sRNAs were identified from published
small RNA datasets of Brachypodium distachyon and Medicago truncatula, while genome-wide target prediction and validation was performed using their
associated PARE datasets against all species-specific miRNAs. GEO accession numbers are indicated in the top row of boxes; asterisks indicate data either
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and used for a comparison of predictive power.
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Indexing and prediction of validated interactions

In the final step of sPARTA, the PARE read abundances
and positions are assessed relative to the predicted miRNA
or sRNA targets, with the aim of validating ‘real’ cleavage
events. First, for each PARE library, map files generated
for all partitions of the feature set (from the second step
of sPARTA) are combined and transformed into an index.
This PARE-Genome (PAGe) index is specific to PARE li-
braries and consists of coordinates in which the 5′ end of
the PARE reads is mapped to the genic or intergenic fea-
ture set, along with the read abundance. PAGe indexes are
used to classify the mapped reads (the evidence of cleav-
age at a specific site) into separate classes on the basis of
their abundance (the strength of this evidence of cleavage).

For a genic feature set, sPARTA implements the same sig-
nal classification schema described in earlier studies (7,11).
This schema uses five ‘classes’ to rank the evidence of cleav-
age based upon normalized or raw tag count input file; in
other words, each PARE read in a gene is assigned to one of
the five classes. Class 0 indicates a PARE signal with abun-
dance greater than one read that is also the maximal signal
on the transcript; this is ultimately the most promising site
for miRNA-directed cleavage. Class 1 is similar to class 0
except there exists more than one maximal PARE signal on
the transcript with the same abundance. Class 2 is a PARE
read above the median for the gene, and with an abundance
of more than one read. Class 3 is a PARE read below the
median, but still with an abundance of more than one read.

http://mpss.udel.edu/brachy_pare2
http://mpss.udel.edu/mt_pare/
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bdi-miR2275 accounted for half of the intergenic targets. The pie charts
show miRNA families with more than three targets, with the number of
targets following the miRNA name.

Lastly, class 4 are PARE reads with an abundance of one,
essentially not discernable from ‘background’.

IGRs may be more challenging to analyze than genic re-
gions, for the purposes of finding and validating sRNA tar-
gets, for several reasons. First and foremost, a single IGR
might contain more than one transcript and these tran-
scripts could be coordinately regulated, potentially by one
or more miRNAs. In such a scenario, a transcript with the
highest expression could impact the signal of a more weakly
expressed transcript sharing the IGR, pushing it to a lower
class (2 or 3) and thus diluting the score and detection of a
genuine cleavage event in the weaker transcript. Second, an
IGR may contain no transcripts cleaved by an sRNA, with
the only mapped PARE signals resulting from decay or non-
specific effects; in absence of strong signal from a cleavage
event, these low strength signals will be assigned to class 0
or 1 thereby inflating these top categories and confound-
ing the calculation of the confidence score. Therefore, to fit
the variable and difficult-to-assess nature of IGRs, sPARTA
classifies PARE signals on the basis of the global abundance
of PARE reads. For each PARE library, the signals in the
bottom 20% (by abundance) are assigned to class 4 and ex-
cluded from further calculations. The remaining signals are
then classified as follows:

Class 0: > 90th percentile (of PARE read abundances ex-
cluding class 4)

Class 1: 90th percentile ≥ PARE read abundance > 75th
percentile

Class 2: 75th percentile ≥ PARE read abundance > median
(50th percentile)

Class 3: median ≥ PARE read abundance

sPARTA calculates the confidence score (P-value) as de-
fined in Cleaveland (v3, or ’CL3’) but with slight modifica-
tion so as to improve the P-value for cases where miRNA-
target interactions have weak complementarity or when a
single miRNA cleaves hundreds of targets, for example, the
miR2118 or miR2275 targets described previously for rice
and maize (13). This P-value is further corrected for the
noise around the cleavage site. The calculation of the P-
value is as follows:

P-value (at least one significant result) = 1 − pbinom (0,
trials, probability of success)

Corrected P-value = P-value of an interaction/signal to
noise ratio

Where,

trials = total number of miRferno predicted targets within
a score bracket, i.e. the number of predicted targets with
score ≥5 and <6, instead of cumulative number of pre-
dicted targets for a miRNA at specific score as in CL3.

probability of success = fraction of total (eligible) bases in
the feature set occupied by a specific PARE signal class
(7).

And,

P-value of an interaction = PARE-validated interaction
with P-value <0.25 and signal-to-noise ratio >0.25

Signal to noise ratio = fraction of PARE abundance at
cleavage site in a 10 nt window around the cleavage site
(5 nt in each the 3′ and 5′ directions).

This relaxed P-value calculation gives more weight to the
evidence from PARE data and it yields a greater number of
validated targets as compared to CL3, but it could also have
a higher proportion of false positives. We believe that this
trade-off can be reasonably reduced by either (i) including
replicates of PARE datasets (11) or (ii) by establishing the
anti-correlation in expression levels between miRNA and
their targets.

Finally, for the analyses that we described here, publi-
cally available PARE, sRNA and RNA-seq datasets for A.
thaliana, Oryza sativa, Medicago truncatula and Brachy-
podium distachyon were downloaded from NCBI GEO (Ta-
ble 1). sPARTA (in the seed-free mode) was used to gener-
ate species-specific sets of PARE-validated miRNA-target
interactions. The back-end for the comPARE web resource,
which stores the data and perform searches, consists of a
relational database implemented with MySQL on CentOS
release 6.4. The graphical user interface (GUI) was devel-
oped in PHP for seamless integration with our customized
genome browser (34) for visualization as well as in-depth
exploration of data from different sources such as PARE,
small RNA, RNA-seq (when available) integrated with ge-
nomic annotations and features.

RESULTS

Data and Tools

To assess the performance of sPARTA (greedy mode),
real datasets (PARE, small RNA, genomes and miRNAs)
were used to determine metrics, as it would be in an ac-
tual miRNA target identification experiment. Publically-
available PARE datasets generated using Illumina sequenc-
ing from four different species (A. thaliana, B. distachyon,
M. truncatula, and O. sativa; Table 1) were downloaded
from our Massively Parallel Signature Sequencing database
(34), and the corresponding genome sequences and annota-
tion information were fetched from their respective repos-
itories (Table 1). miRNA sequences for all four species
were downloaded from miRBASE (version 20). CleaveLand
(version 3, CL3) and PARESnip (version 2.1) are currently
the only publicly-available, command line tools for PARE-
based miRNA-target validation. We used CL3 for compar-
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Figure 7. Shared but unphased, PARE-validated targets of miR2118 and miR2275 in leaf suggests additional factors in phased small RNA production.
Examples of two targets each of miR2118 (panels A and B) and miR2275 (panels C and D) from Brachypodium distachyon, validated in leaf data and with
cleavage sites identical to those in panicles. These miRNA-target interactions trigger phased sRNA generation in panicles but not leaves. Each panel shows
three plots that correspond to the abundance (TP15M) of PARE reads at cleavage site, small RNA abundances (TP4M), and the phasing score profile for
the region. (A) miR2118 target site on chromosome 1, with the cleavage site at 48781736. (B) miR2118 target site on chromosome 4, with the cleavage site
at 56729428. (C) miR2275 target site on chromosome 3, with the cleavage site at 2775383. (D) miR2275 target site on chromosome 4, with the cleavage site
at 11334438.
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Figure 8. The interface to comPARE, web-based access to PARE-validated sets of miRNAs targets. A screenshot of the comPARE web interface. The red
boxes highlight different types of user options. For example, in the upper left (i), the user can choose single or multiple species specific PARE databases to
search for miRNA-target interactions. In the upper right (ii), in advanced search could be performed by setting the search parameters as per the required
confidence level. In the lower left (iii), for a miRNA or target of interest, a search could be executed using a miRNA name and/or genome-specific target
identifier as a query. Lower right (iv), if these options are listed, multiple sRNA databases for a species of interest other than the initial selection could be
made. Finally (v), at the very bottom, the links, if clicked, display additional information about each interaction.

Table 1. Small RNA and PARE data used in these analyses

Species miRNAs Annotation version PARE datasets Small RNA datasets

A. thaliana 337 TAIR 10.0 GSM280226 None used.
GSM280227

B. distachyon 882 MIPS 1.0 BDI25, BDI20 (15) GSM506621,GSM506620
M. truncatula 599 JCVI 3.5 MEDFL3 (35),

GSM643818, GSM643817
GSM767273, GSM769274,
GSM769275, GSM769276,
GSM729277, GSM729279

O. sativa 713 MSU 7.0 GSM476257 None used.
GSM434596

ative benchmarking primarily because it’s is the most cited
tool for these types of analyses and secondly due to unre-
solved technical problems with the execution of PAREsnip.

Evaluation of sPARTA speed

sPARTA was evaluated on a machine equipped with 4 ×
64 bit 8-core 2.4 GHz Intel Xeon (32 cores total) running
CentOS release version 6.4. Python 3.3 and R 3.0 (36) were
installed ‘as is’ available from their respective sources. In the

comparisons below, the added time to extract features, i.e.
genic or intergenic transcripts, from the genome is not in-
cluded as this feature is not present in any available tools.
All the runtimes reflect an average of five independent tri-
als.

We first evaluated the total time required by sPARTA to
predict and validate targets at a whole-genome level for all
four species. All available miRNAs for each species were
used for target prediction, followed by validation using two
separate PARE libraries (Table 1). Two different scenar-
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ios were tested: sequential and parallel. As the name sug-
gests, the sequential run used just one core for the analy-
sis, whereas the parallel run utilized ∼85% of the available
cores (n = 28). For the total runtimes, we excluded the ex-
ecution time for the step which maps the PARE dataset to
the genome, as mapping step is performed by Bowtie (22),
for which the settings can optimized to run using the same
number of processors as the sPARTA parallel mode. The
comparison demonstrated a minimum speed gain of 10.56×
with the genic feature set of O. sativa, and a maximum speed
gain of 22.31× with the intergenic feature set of A. thaliana.
At a whole-genome level, a maximum speed gain of 16.7x
and minimum speed gain of 11.2x was achieved by the par-
allel mode of sPARTA (Figure 3A).

Next, we compared sPARTA performance to CleaveLand
(CL3) which is the most-widely used tool for the evaluation
of plant miRNA targets. CL3 consists of two sequentially
executed scripts, requiring input from two third-party tools,
TargetFinder (8) and Bowtie (22). To enable a comparison
with sPARTA, we implemented the CL3-based pipeline us-
ing its bundled scripts and required tools, with no modifi-
cation to those original scripts or settings. For the fairest
comparison between algorithms, the PARE mapping step
for CL3 was assigned the same number of cores as sPARTA.
CL3 lacks the functionality to predict intergenic targets,
therefore a comparison was made just for the genic feature
set. Outperforming CL3, sPARTA exhibited a minimum
speed gain of 227.39x (564.62 to 2.48 min) with A. thaliana
and a maximum speed gain of 515.12x (4108 to 7.964 min)
with O. sativa (Figure 3B). Even in the serial mode, sPARTA
was found to be a minimum 18x (564.62 to 30.36 min) and
maximum 39.5x (4108.2 to 104.7 min) faster than CL3 with
A. thaliana and O. sativa respectively (Figure 3B).

Prediction performance of sPARTA

Strong experimental support is required to validate
miRNA-target interactions identified by sPARTA. Such ex-
perimental data may be either modified 5′ RACE, applied
to individual targets, or genome-level data sets from PARE,
an extension of 5′ RACE to the genome level. For PARE
data, there are a number of earlier miRNA-target valida-
tion studies (15,37–38). Yet, since these earlier studies were
also computational (i.e. had their own set of parameters for
PARE validation), their sensitivity is unknown and there-
fore cannot be used as a ‘gold standard’ to calculate the de-
gree to which the sPARTA predictions generated false pos-
itives or false negatives. Moreover, since there is no earlier
published approach or tool to cross-validate miRNA tar-
gets from IGRs, it is not possible to appraise the sensitivity
of these intergenic predictions from sPARTA. In the con-
text of these limitations, we performed an assessment of the
predictive power of sPARTA by comparison to CL3.

A subset of plant miRNAs, including miR2118 (13),
miR2275 (13), miR173 (39) and miR390 (32) induce the
production of secondary siRNAs in a phased arrange-
ment from their target RNA transcript, via the recruit-
ment of RDR6 and DCL4 or DCL5. The start site of the
register of this phasing is determined by the position of
miRNA-guided cleavage. Since the presence of phased sR-
NAs (phasiRNAs) from a locus indicates a real miRNA-

target interaction occurred, finding a PARE-validated trig-
ger site that was responsible for phasiRNA production fur-
ther supports the validity of some miRNA-target inter-
action. We used this cross-validation of a computation-
ally predicted miRNA-target interaction with phasiRNA
(‘PHAS’) loci as the basis to assess and compare the ability
of different software tools to identify miRNA target sites.

Two recent studies have reported numerous 21-nt phased
loci from genic regions of M. truncatula and both 21- and
24-nt phased loci from IGRs of B. distachyon (15,35).Using
the small RNA data from these studies, we repeated those
analyses to identify a total of 310 (24-nt phasing) and 755
(21-nt phasing) PHAS loci from IGRs of B. distachyon,
and 129 (21-nt phasing) PHAS loci from genic regions of
M. truncatula (Figure 4). For every phased locus, an in-
dex of potential miRNA target sites was generated. This
index consisted of 11 coordinates (+/− 5 cycles) in corre-
spondence to the phased (21- or 24-nt) periodicity from the
initiation site of phased locus (Supplementary Figure S3).
PARE datasets from both studies were used to generate a
list of PARE-validated targets against all miRNAs for each
species, using sPARTA and CL3 independently. Though the
CL3 functionality is limited to transcriptome or genic re-
gions, our aim was to compare an existing algorithm with
sPARTA to assess its advantage or disadvantage in its pre-
diction power. For this particular analysis, we rectified one
of the main technical shortcoming of CL-the based pipeline
by capacitating a parallelized prediction of targets; for this,
we developed a parallelized version of TargetFinder (8). No
changes were made to the target prediction scoring schema,
so as to retain the original approach of CL3. Finally, trig-
gers of phased loci were identified by searching for a match
between the phase-index of an individual locus and vali-
dated cleavage sites from both CL3 and sPARTA.

sPARTA demonstrated advantages over CL3 by identify-
ing more triggers, as well as by exhibiting a high enrichment
in P-value of correct predictions. In the case of phased loci
from IGR of B. distachyon, 3-fold (total = 56) and 4.5-fold
(total = 88) more triggers were validated by sPARTA (P-
value ≤ 0.05) for 24- and 21-phased loci respectively (Figure
5A). Of all the miRNA triggers identified by sPARTA, 70%
of 21-phased and 90% of 24-phased triggers were predicted
under a P-value of 0.05. Interestingly, miR2118 was iden-
tified as trigger in 126 out of 127 validations of 21-phased
loci whereas for 24-phased loci, miR2275 was identified as
trigger in all the validations. This is consistent with earlier
reports of the miR2118 and miR2275 families (14,35) as
triggers of reproductive-specific 21- and 24-nt phased loci,
respectively. This observation further supports the robust-
ness of our approach used for comparative benchmark of
predictive power, by showing that PARE-validated triggers
of phased loci are not products of chance. For phased loci
from genic regions of Medicago, sPARTA identified 2.5-fold
more triggers under a P-value of 0.05 as compared to CL3
(Figure 5B). As in B. distachyon, sPARTA exhibited an en-
richment of P-values by predicting 68% of 21-phased loci
triggers under a P-value of 0.05.
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Targets identified from intergenic regions

A total of 506 credible targets (with a corrected P-value ≤
0.05, PARE signal class ≤3) for 70 different miRNA fam-
ilies (Figure 6) were identified from the IGRs of B. dis-
tachyon, using the published PARE datasets from root, leaf,
stem and panicle tissues (15). These targets would certainly
have been missed by existing PARE validations tools as
those tools are limited to analysis of just the annotated genic
regions. We also found multiple targets from a single IGR,
each with different expression dynamics; our approach for
the classification of PARE reads mapped to IGRs was de-
veloped with this scenario in mind.

From the total set of intergenic targets, the panicle data
alone accounted for most validated interactions (n = 344)
with 157 and 114 unique cleavages triggered by just two
miRNA families, miR2118 and miR2275, respectively. Both
miRNA families are known to trigger phasiRNA biogenesis
(13). In 48% of cleavage site identified, we found an overlap
of the cleavage site within +/− 5 phased positions or ‘in-
dexes’ from the dominant register of phasing, i.e. the posi-
tion with the highest phasing score. For those cleavage sites
which did not match with the phased index, upon inspec-
tion, we found presence of a phased locus in close vicin-
ity (∼250 nt). The reason for this disagreement between
the cleavage site and phase index could be the depletion of
some sRNAs from a few phasiRNA cycles, consistent with
the non-stoichiometric abundances of tasiRNAs from Ara-
bidopsis TAS loci, leading to a shift in the predicted po-
sition of the predominant register for the phasiRNAs. We
also observed PARE validation of cleavage by miR2118 and
miR2275 in leaf with the same cleavage co-ordinates as pan-
icles (Figure 7). For these interactions shared with those
that lead to phased sRNA generation in panicles, no asso-
ciated phased sRNAs were found near the cleavage site in
leaf, yet the abundance of PARE reads at the cleavage sites
indicates strong expression of the precursors in both panicle
and leaf tissues. These observations suggests that there are
other factors influencing the production of phased sRNAs.

Unlike miR2118 and miR2275 families, whose activity
was found to be conserved to leaf and panicle, a few miR-
NAs like miR396 shared targets across different combina-
tion of tissues. miR396 has been previously demonstrated
to coordinate cell proliferation in leaf meristem by regulat-
ing transcription factors belonging to the family of growth-
regulating factor (GRF) (40). Another transcription fac-
tor, bHLH74, crucial to margin and vein pattern forma-
tion of Arabidopsis leaves has been found to be a target
of miR396 (41). Recently, it was reported that the miR396
regulatory network and tasiRNA biogenesis pathway syn-
ergistically interact to regulate leaf development (42). We
found miR396 to be highly expressed not only in leaf but
also seedling, stem and panicle of B. distachyon (15); it is
also found in roots but at a comparatively low level. In pan-
icle, a total of nine validated targets of miR396 were iden-
tified from genic (n = 4) and IGRs (n = 5). All four genic
targets from panicle were found to be member of GRF fam-
ily (Supplementary Figure S1) like earlier published stud-
ies on leaf development. Moreover, the PARE signal at the
cleavage site of all four of these targets belonged to class 0,
i.e. PARE read abundance ≥ 90th percentile of all PARE

reads mapped to the genic regions (Supplementary Figure
S1 A, B and C), suggesting moderate expression of cleaved
GRF transcripts. There are also several IGRs (Supplemen-
tary Figure S1 D, E and F) with strong signals of miR396
activity, highly enriched in panicle. These observations in-
dicate that in addition to leaf development, miR396 might
also play a role in panicle development.

In the process of these analyses, we noted that reliance
on annotated miRNAs without their critical assessment can
lead to spurious conclusions. As an example, three anno-
tated miRNA families, miR5174, miR5181 and miR5180
(43), accounted for the greatest number of validated tar-
gets (n = 132), after the miR2118 and mi2275 families. Fur-
ther inspection of these miRNAs revealed that they origi-
nate from repetitive regions, rich in heterochromatic small
RNAs (24 nt) and their abundance is quite low in the li-
braries used for prediction (Supplementary Figure S2). The
approach (43) implemented to annotate these three miRNA
families used default Bowtie parameters therefore only first
valid sRNA alignment to genome was reported instead of
all the mappings of sRNA to the genome which lead to
‘clustering’ with incomplete set of small RNA mappings,
also no hit- or abundance-based filter was applied to re-
move lowly expressed or reads with large number of hits
to genome. Moreover, through sPARTA-based analysis all
of the targets of these three families were found to be in
highly repetitive regions. These data strongly suggested that
these are incorrectly annotated miRNAs; as miRNAs are
largely predicted computationally using different pipelines
and parameters, mostly on basis of small RNA sequencing
datasets and submitted to miRBASE without experimental
validation, researchers need to be wary of such false predic-
tions. Presence of such spurious miRNAs in public repos-
itories suggested the need for a resources which allows vi-
sualization of miRNAs and their targets in their genomic
contexts, to allow manual inspection.

The comPARE web interface

We developed a web-based tool, which we call ‘comPARE’,
for two purposes: (i) to serve as a single point of access
for plant miRNA-target interactions that we have validated
with PARE data, (ii) to facilitate connections of those data
to our custom-built genome browser, specialized for small
RNA (34). This interface is designed to be easy to use,
yet incorporate advanced functionality such as modifiable
search parameters, combined searches of sRNA or PARE
datasets, and analysis of library-based data. The comPARE
site is accessible at: https://mpss.udel.edu/tools/mirna apps/
comPARE.php. To use this site, shown in Figure 8, first,
a user chooses the PARE database for species of interest
from the main query page, additional information about the
available databases and included libraries are found at our
lab’s main page http://mpss.udel.edu. For specific miRNAs
and/or targets of interest, their identifiers are entered into
the respective text boxes on the main query page, generat-
ing results by clicking on ‘Search with default values’. This
then will display all the interactions that pass the criteria, set
at a default for convenience. A more advanced search could
be performed by modifying the values of search parameters,
including the miRNA-target complementarity score (Target

https://mpss.udel.edu/tools/mirna_apps/comPARE.php
http://mpss.udel.edu
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score), P-value cutoff, normalized abundance of the PARE
signal at cleavage site (small window) and signal class (see
‘Materials and Methods’ section); the search is executed
by clicking on ‘Search with selected values’. The results for
both a simple or modified query are presented in a simpli-
fied table format consisting of the miRNA name, miRNA
sequence and the list of targets. However, a detailed view
can be opened by clicking on ‘Show extra columns’ located
in the header of the results table, which displays additional
information including the target score, P-value, small win-
dow (a 1 nt region flanking the cleavage site), large window
(a 5 nt region flanking the cleavage site), signal class, the
cleavage site coordinates, and the annotated function of the
target (if available) for each interaction that passed the se-
lected or default search parameters. A user can also search
for all the interactions from the selected species with ei-
ther modified or default search parameters. The results from
the user query in comPARE then integrate small RNA and
PARE data, layered on an annotated genome. This provides
a comprehensive view of cleavage sites, facilitating an in
depth exploration of miRNA-target interactions. For addi-
tional functionalities of comPARE, please refer to the Sup-
plementary Text.

In addition to searches, visualization and exploration
of miRNA-target interactions, one of the main strengths
of comPARE is that it enables the discovery of conserved
miRNA targets across different species. This functionality is
of high value for revealing not only the evolutionarily con-
served targets of specific miRNAs but, most interestingly,
the non-conserved targets of different species or libraries.
A quick search with ‘miR2118’ from the main query page
shows that its targets are unrelated, genic and intergenic in
M. truncatula and B. distachyon respectively, in consensus
with earlier studies (35,44). Such cross-species contrasting
patterns of miRNA targets are of high biological signifi-
cance, and comPARE could aid in discovering this patterns
as it allows identification of genome wide targets for miR-
NAs from different species.

DISCUSSION

sPARTA is a powerful tool for plant miRNA target pre-
diction and PARE validation. It can search for targets in
unannotated genomic regions, which is useful to discover
novel regulatory modules, independent of genome anno-
tations that may be incomplete. Earlier tools like PAREs-
nip use seed-region complementarity rules to accelerate the
analysis, whereas sPARTA implements true parallelization
to reduce the run-time for miRNA-target validation ex-
periments from hours or days to minutes. This speed en-
ables target analysis of hundreds, thousands or even mil-
lions of small RNAs at once. The novel ‘seed-free’ mode is
based on recent empirical observations regarding miRNA-
target interactions, and it identifies targets with weak seed-
region complementarities or mismatches at canonical po-
sitions. sPARTA forms the core of comPARE, a web re-
source that allows the discovery, visualization and in-depth
exploration of genome wide miRNA-target interactions
in heterogeneous yet highly integrative environment. com-
PARE was developed to serve as repository of our vali-
dated miRNA interactions, collating small RNA and PARE

datasets along with their genomic context. In conclusion,
this study presents three novel tools: miRferno for target
prediction, sPARTA for PARE based target validation and
comPARE for visualization, exploration and comparative
analysis of miRNAs targets. We believe that these three
tools will allow us to effectively exploit advanced comput-
ing power, discover novel regulatory modules and dispense
high quality miRNA-target interactions.
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