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Abstract

Theories in cognitive science are primarily aimed at explain-
ing human behavior in general, appealing to universal con-
structs such as perception or attention. When it is considered,
modeling of individual differences is typically performed by
adapting model parameters. The implicit assumption of this
standard approach is that people are relatively similar, em-
ploying the same basic cognitive processes in a given prob-
lem domain. In this work, we consider a broader evaluation of
the way in which people may differ. We evaluate 23 models
of risky choice on around 300 individuals, and find that most
models—spanning various constructs from heuristic rules and
attention to regret and subjective perception—explain the be-
havior of different subpopulations of individuals. These results
may account for part of the difficulty in obtaining a single el-
egant explanation of behavior in some long-studied domains,
and suggest a more serious consideration of individual vari-
ability in theory comparisons going forward.

Keywords: decisions under risk; theory development; cogni-
tive modeling; individual differences

Introduction
A primary aspiration of psychology has been to identify gen-
eral principles of behavior that apply universally across the
population. One of the oldest searches for such principles
have focused on decisions under risk—fundamental kinds of
decisions where the outcomes of our choices are uncertain:
e.g., would you rather take $1 or have a chance at winning
$2 with a 50/50 chance? One early account that is still influ-
ential among psychologists and behavioral economists today
is Expected Utility Theory (Von Neumann & Morgenstern,
1944), which posits that people maximize the expected (av-
erage) utility of their decisions. However, at least 65 com-
peting theories of this behavior have emerged (He, Zhao,
& Bhatia, 2022) and reaching consensus as to a winner has
remained challenging (Brandstätter, Gigerenzer, & Hertwig,
2008; Erev, Ert, Plonsky, Cohen, & Cohen, 2017).

One possible explanation for this proliferation of models is
that the underlying behavior is more complex than we might
suspect. Peterson, Bourgin, Agrawal, Reichman, and Grif-
fiths (2021) conducted an analysis of approximately 10,000
choice problems and concluded that the complexity class of
the true decision function is more complex than the major-
ity of current theories that have been proposed. They further
demonstrated that a more complex model that applies tradi-
tionally competing explanations in different problem contexts
outpredicts all other models in the largest theory evaluation to

date. This need for multiple explanations implies that differ-
ent theories may to some extent be better understood as rep-
resenting different possible cognitive strategies that a person
might employ when making decisions, an idea that has been
suggested by other theorists in the past as well (Brandstätter
et al., 2008; Erev et al., 2017). Moreover, the prevalence of
more than one decision strategy further opens up the possi-
bility that individual decision makers may also employ very
different strategies when making their decisions.

Evaluating theories at the level of individuals is certainly
not a new idea. In fact, it is common in modeling decisions
under risk. However, the typical approach is to modulate free
parameters within a single model (representing a single the-
ory) to help explain individual variability in response data.
In the case of Expected Utility Theory, a single parameter is
modulated to express differences in “risk preference,” where
some individuals are thought to be “risk-seeking” (i.e., will-
ing to take a chance to win more) and others “risk-averse”
(i.e., may accept less money on average to avoid uncertainty).
However, this approach doesn’t allow for the modulation of
entirely different constructs used in competing theories (e.g.,
attention, regret, or disappointment). That is, it is possible
that some people make decisions that are strongly affected by
say, a process of attention (Birnbaum, 2008), whereas others
may be more driven by their inclination to minimize feelings
of regret (Bell, 1982).

In the current work, we ask whether entirely different the-
ories might provide explanations of entirely different people.
We address this question by conducting the largest analysis
of individual differences in decisions under risk to date, eval-
uating more than 20 theories on each of 300 individuals while
taking care to avoid overfitting. We find that almost every the-
ory we evaluate provides the best fit to some subpopulation of
individuals. While this implies that many different theories
may be necessary to fully explain human decisions, we find
that the Mixture of Theories model (Peterson et al., 2021)
was the most explanatory. Other influential models such as
Prospect Theory (Kahneman & Tversky, 1979) and Regret
Theory (Bell, 1982) were also highly explanatory. We dis-
cuss how these results support the idea that even fundamental
kinds of behavior may vary significantly across individuals
and that increasing the diversity of pools of competing theo-
ries may end up being a more fruitful strategy in the practice
of theory development in some domains.
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Theory Evaluation
All theories we consider are aimed at explaining human
choices between two gambles: gamble A and gamble B,
where a single gamble is a collection of possible outcomes
xi and their respective probabilities pi. We further use the
notation y j and q j to distinguish the outcomes and probabil-
ities respectively of gamble B from gamble A. Most theories
specify how people are thought to determine the value of a
gamble, such as gamble A, or V (A). The probability that a
decision maker chooses gamble A is proportional to V (A),
defined as:

P(A) =
eηV (A)

eηV (A)+ eηV (B)
, (1)

where η is a fitted parameter that controls the degree of de-
terministic responding.

As discussed above, the number of competing theories of
risky choice is large. Our aim in this work is not to exhaus-
tively test all theories but to establish the general applica-
bility of a diversity of theories to the explanation of differ-
ent individuals. Thus, we select a subset of 22 theories that
span many different traditions and literatures. For ease to the
reader, these models are described below for the simple case
of two-outcome gambles, although we apply each theory to
datasets with gambles involving more than two outcomes.

A standard normative model of human decisions is Ex-
pected Value Maximization (EV), which encodes the as-
sumption that people maximize the average payoff from the
outcomes of their choices (i.e., make the most money possi-
ble):

V (A) =
2

∑
i=1

pixi. (2)

We next consider models across the history and literature on
“Subjective Expected Utility.” These include Expected Util-
ity Theory (EU), discussed above (Von Neumann & Mor-
genstern, 1944), where u(xi) is typically a single-parameter
power function (Wakker, 2010):

V (A) =
2

∑
i=1

piu(xi) , (3)

Prospect Theory (PT), famously proposed by Kahneman and
Tversky (1979) to explain deviations from EU, where π(xi) is
also a single-parameter power function (Wakker, 2010):

V (A) =
2

∑
i=1

π(pi)u(xi) , (4)

Cumulative Prospect Theory (CPT), an upgraded version of
Prospect Theory (Tversky & Kahneman, 1992):

V (A) = π+(p1)u(x1)+(1−π+(p1))u(x2) , if 0 ≤ x2 ≤ x1
π+(p1)u(x1)+π−(p2)u(x2) , if x2 < 0 < x1
(1−π−(p2))u(x1)+π−(p2)u(x2) , if x2 ≤ x1 ≤ 0

(5)

and the Mixture of Theories (MOT) model (Peterson et
al., 2021), a context-dependent variation of Prospect Theory
where one of two utility u j(·) and weighting functions πk(·)
are soft-selected depending on the choice problem using sets
of inferred convex weights ω j and ωk:

V (A) = ∑
i∈A

[
∑

j
ω ju j (xi)

][
∑
k

ωkπk (pi)

]
(6)

Also included from this literature was an attention-based
model, the Transfer of Attention Exchange (TAX) model
(Birnbaum, 2008):

V (A) =

(
p1

τ − κ

3 pτ
2

)
u(x1)+

(
p2

τ + κ

3 p1
τ
)

u(x2)

p1τ + p2τ
. (7)

In this and all following models, τ, κ, δ, ν, and α are free
parameters.

We also consider theories from the literature on “Risk-
as-value,” including Portfolio Theory with variance
(Markowitz, 1952):

V (A) =
2

∑
i=1

pixi −κp1 p2 (x1 − x2)
2 , (8)

Portfolio Theory with standard deviation (Fishburn, 1977):

V (A) =
2

∑
i=1

pixi −κ
√

p1 p2 (x1 − x2) , (9)

the Below-Target model (Fishburn, 1977), where I(·) is an
indicator function:

V (A) =
2

∑
i=1

pixi −κ

2

∑
i=1

I(xi < 100δ) pi (100δ− xi) , (10)

the Below-mean semivariance model (Fishburn, 1977):

V (A) =
2

∑
i=1

pixi −κp2

(
2

∑
i=1

pixi − x2

)2

, (11)

and the Below-target semivariance model (Fishburn, 1977):

V (A) =
2

∑
i=1

pixi −κ

2

∑
i=1

I(xi < 100δ) pi (100δ− xi)
2 . (12)

We further consider theories from the literature on “Coun-
terfactual” models, including Regret Theory with expected
value evaluation (Bell, 1982), where R(·) is a “regret” func-
tion:

V (A) =
2

∑
i=1

pixi +
2

∑
i=1

2

∑
j=1

piq jR(xi − y j) , (13)

Regret Theory with expected utility evaluation (Loomes &
Sugden, 1982):

V (A) =
2

∑
i=1

piu(xi)+
2

∑
i=1

2

∑
j=1

piq jR(u(xi)−u(y j)) , (14)
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Disappointment Theory without rescaling (Bell, 1985):

V (A) =
2

∑
i=1

pixi +νp1 p2 (x1 − x2) , (15)

Disappointment Theory with expected value evaluation
(Loomes & Sugden, 1986):

V (A) =
2

∑
i=1

pixi+κ

2

∑
j=1

pi sign

(
x j −

2

∑
i=1

pixi

)∣∣∣∣∣x j −
2

∑
i=1

pixi

∣∣∣∣∣
α

,

(16)
and Disappointment Theory with expected utility evalua-
tion (Loomes & Sugden, 1986):

V (A) =
2

∑
i=1

piu(xi)+

κ

2

∑
j=1

p j sign

(
u(x j)−

2

∑
i=1

piu(xi)

)∣∣∣∣∣u(x j)−
2

∑
i=1

piu(xi)

∣∣∣∣∣
α

.

(17)

Lastly, we consider models from the literature on heuris-
tics. In this case, rather than defining V (A), we define S(A), a
function that outputs 1 if gamble A is meant to be selected and
0 otherwise. These models include the Better-than-average
heuristic (Thorngate, 1980):

S(A) =
2

∑
i=1

I
(

xi >
1
4
(x1 + x2 + y1 + y2)

)
, (18)

the Equiprobable heuristic (Thorngate, 1980):

S(A) =
1
2

2

∑
i=1

xi, (19)

the Low-payoff elimination heuristic (Thorngate, 1980):

S(A) = 2sign(x1 − y1)+ sign(x2 − y2) , (20)

the Low expected payoff elimination heuristic (Thorngate,
1980):

S(A) = 2sign(p1x1 −q1y1)+ sign(p2x2 −q2y2) , (21)

the Minimax heuristic (Thorngate, 1980):

S(A) = sign(x2 − y2) , (22)

the Maximax heuristic (Thorngate, 1980):

S(A) = sign(x1 − y1) , (23)

and the most influential of the series, the Priority Heuristic
(Brandstätter, Gigerenzer, & Hertwig, 2006):

S(A) = sign(x2 − y2) I
(
|x2 − y2|>

max(x1,y1)

10

)
×4+

sign(p1 −q1) I (|p1 −q1|> 0.1)×2+ sign(x1 − y1) . (24)

Dataset
We make use of one of the replication datasets originally col-
lected by Peterson et al. (2021). It consists of choice data for
300 participants recruited through the Prolific crowdsourcing
platform. Each participant completed five trials of a set of
sixty choice problems (i.e., pairs of gambles), for a total of
300 decisions. Following Peterson et al. (2021), each deci-
sion model outputs the probability that a particular decision
maker chooses gamble A (over gamble B). Each set of sixty
gambles were chosen at random from a dataset of 1,000 prob-
lems. Each choice problem consisted of a choice between two
gambles, as described above, where the number of possible
outcomes of any one gamble varied between 2 and 9. After
each choice was made, feedback was given about which ran-
domly sampled outcome was obtained. After the experiment,
participants received a bonus proportional to a randomly sam-
pled outcome of their decisions, which provided an incentive
for participants to make the best possible decisions.

Model Fitting
Analysis 1. For our first analysis, we fit each model to each
individual participant by using gradient descent to find pa-
rameter values that minimize mean-squared error (MSE) be-
tween their decisions and the output of the model. In fitting
each model to each participant, we searched for the best learn-
ing rate in the set [.0001, .0005, .001, .005, .01, .05, .1, .5, 1,
10] using 10-fold cross-validation and reported performance
on only the out-of-sample data. Holding out data for evalu-
ation in this way guards against the possibility that individ-
ual models have been overfit to individuals and thus would
not generalize to unseen data from that participant. This also
avoids the question of whether or not to penalize more com-
plex models, since complexity is warranted if it allows for
better generalization.

Analysis 2. To minimize the possibility that parameter op-
timization fails to converge at the level of individual model
fitting, we conduct a second analysis where models are first
fit to a different but similar dataset of 10,000 choice prob-
lems, also from Peterson et al. (2021), before being fine-tuned
on individual-level data. We first collapse response propor-
tions in this dataset across participants, such that there are
exactly 10,000 probabilities to predict for each of 10,000 pos-
sible choice problems. The idea is that a model that has first
been fit to aggregate (shared) behavior will require fewer data
points at the level of individuals to converge to a reasonable
model. We use this dataset for model initialization as op-
posed to aggregating responses in the main dataset to avoid
overlap in participants across the two. We then use the origi-
nal dataset for fine-tuning to individuals because it has more
trials per participant and thus more examples of individual-
level behavior. We search learning rates in the set [.0001,
.001, .01, .1, 1, 10] for both aggregate and fine-tuned models,
resulting in a total of 36 possible settings for each individual.
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Figure 1: Distribution of the number of times each model
provided the best fit for an individual.
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Figure 2: Average MSE across all individuals for each model.
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Figure 3: Distribution of the number of times each fine-tuned
model provided the best fit for an individual.
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Figure 4: Average MSE across all individuals for each fine-
tuned model.
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Results
Analysis 1. Figure 1 displays a histogram of best-fit counts
for each model across the 300 individuals. Importantly, no
single model fits every individual best, meaning that most
models provide best explanations of at least some subpop-
ulation of individuals. However, some models provided best
fits to a larger swath of individuals than others, in particular
MOT, Prospect Theory, and Regret Theory. Heuristic models
were the least explanatory. A diversity of other theories in-
volving subjective functions, disappointment, and constructs
from the Risk-as-value class all explained some subpopula-
tion best. Figure 2, which by contrast plots average MSE
across all participants for each model, paints a slightly differ-
ent picture of model performance. That is, some models, such
as Below-mean semivariance, have a lower performance rank
under this metric. This may indicate that models can provide
good fits to many individuals despite relatively bad non-best
fits.

Analysis 2. Figures 3 and 4 show analogous results when
models were first initialized via training on the aggregate ver-
sion of the data. A quick look at Figure 4 confirms what
we might expect, that overall MSE is either lower or approx-
imately equivalent. This analysis thus likely gives a more
accurate picture of the best performance and true ranking of
each model across individuals. Interestingly, Figure 3 indi-
cates that the distribution of best-fits is now more dominated
by particular models, with much of the frequency mass now
re-allocated rightward. This may suggest that models such as
Prospect Theory require less data to characterize individuals,
whereas models such as Regret Theory may require more.
Providing enough data is thus essential to increase the preci-
sion of model comparison.

One important confound in the above analysis is that each
participant completed a different set of choice problems. This
leaves open the possibility that particular models better fit
particular individuals not because of their individual charac-
teristics but because they made decisions for similar choice
problems. After all, past work indicates that different strate-
gies may apply in the context of different choice problems
(Peterson et al., 2021). To rule this out, we looked at the top
1,000 pairs of individuals with the greatest overlap in choice
problems. No pair shared more than 25 choice problems. The
proportion of pairs that were best fit by the same model was
11.5%. If there is no dependence between problems and mod-
els, then the probability that two decision makers are fit by the
same model is simply the sum of the squared proportion of in-
dividuals that are best fit by each theory, which comes out to
11.1%. Thus, the assignment of individuals to the same best
fitting model appears to be fully explained by chance.

Discussion
When specifying theories of basic cognitive processes, theo-
rists have an understandable tendency to provide highly gen-
eral explanations. We say, for example, that our theory of
decisions is a theory of mental sampling, or a theory of at-

tention. When considering individual differences, we thus
expect that people differ in the manner they draw mental sam-
ples, or in the limitations or proclivities of their attention sys-
tems, but is this a reasonable assumption?

We set out to test the idea that different theories, even those
employing very different constructs, could explain the be-
havior of different subpopulations of participants. While we
found that the distribution of best-fits across individuals is
not uniform, there is also no single winner. Most theories we
evaluated provided best fits to at least some subpopulation
of individuals, ranging from less than 10 to almost 60. This
suggests that people may vary more in their decision making
strategies and behavior than is typically assumed in the vast
literature on decisions under risk.

The diversity in the theories that provided the largest num-
ber of best fits is interesting. Regret Theory posits that peo-
ple act to minimize regret. Risk-as-value theories assume the
people penalize gambles with high variability. EU, PT, and
CPT all mainly appeal to subjective functions that transform
objective quantities such as monetary outcomes and proba-
bilities into subjective quantities. MOT assumes that people
employ different decision strategies in different contexts. In
retrospect, it seems more than merely plausible these ideas
might apply to some people more than others.

Perhaps the most surprising finding aside from the rele-
vance of a diversity of models in general was the high appli-
cability of regret-based theories. These theories assume that a
gamble has a lower value if it is likely to induce regret as a re-
sult of considering counterfactual scenarios (i.e., where more
money could have been earned otherwise). There is far less
work evaluating the predictive performance of such models
compared to e.g., Prospect Theory, the Transfer of Attention
Exchange model, or the Priority Heuristic. While the perfor-
mance of Prospect Theory may be expected given that it is a
special case of the MOT model, Regret Theory is not known
to be explicitly related to MOT. This may suggest that multi-
strategy models such as MOT may benefit from including a
regret component in future iterations. In any case, tendency
toward regret may be one of the more defining features that
sets some individuals apart from others.

Even in the case that theorists indeed take our results as
evidence for stronger individual differences, a number of ar-
guments could still be made for a single winner based on vari-
ous criteria. MOT, which assumes that the effects of prospect
theory are context-dependent, sometimes turning on or off,
provided best fits to the largest number of individuals while
also maintaining lowest overall MSE. However, Regret The-
ory and Prospect Theory are relatively simple theories, pro-
viding good explanations with relatively minimal machinery
(and requiring less data than MOT to be fit). EV and EU, the
favorites of early behavioral economists, are even simpler. It
could be argued that such simple theories explain the major-
ity of behavior while subsequent ideas explain only minor bi-
ases and idiosyncrasies. Nonetheless, based on our results,
the range of these idiosyncrasies is likely larger than has been
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considered in past work.
As we highlighted near the outset of this work, people may

employ different cognitive strategies depending on the con-
text or decision problem at hand. Our analysis suggests that
decisions under risk may be even more complicated than this,
moderated by both context and significant differences in in-
dividual characteristics (i.e., different strategies of employing
different strategies). This presents nontrivial considerations
for future modeling. While it is relatively easy to vary single
parameters within any particular model, there is not always a
library of historical theories at hand. Thus, theorists should
consider leaving room when possible for greater flexibility
when considering how a pool of individuals may differ.

Our analysis is not without limitations. First, while we
aimed to examine as broad a sampling of decision theories
as possible, we likely excluded some important ones. For ex-
ample, one recent promising theory is BEAST (Erev et al.,
2017), which was not considered here simply because it takes
much more time to fit—and thus, to evaluate fairly—than
other theories we consider. Second, the need for pre-fitting
models on aggregate data also suggests that analyses would
benefit more from larger data at the level of individual reso-
lution beyond just large numbers of participants. Lastly, and
perhaps most importantly, it is possible that some portion of
the ranking based on number of best fits may be due to noise.
However, if this were the case, we would expect better per-
forming models to be highly similar, such that only chance
factors determine the final “best fit” to a particular individual.
Our results suggest a different story. For example, Regret
Theory, Prospect Theory, and MOT are relatively different
models. Thus, perhaps a more likely explanation of the re-
sults is that some participants do indeed worry more about po-
tentially regretting their decisions later than others. Nonethe-
less, future work should focus on reducing the chance of noise
through repeated fits to different subsets of participants’ trials
or larger datasets at the level of trials per participant.

Conclusion

Theories of behavior have long sought to highlight both the
common principles of cognition that are shared across the
population as well as the characteristics that make individuals
so unique and interesting. However, variability at the level of
constructs is usually reserved for debates and model compar-
isons concerning human behavior in general, while variability
at the level of individual differences is generally considered to
be much smaller in scope. Our results suggest that this may
not always be a good assumption, and that theorists should
take care to consider that even fundamental cognitive strate-
gies may differ greatly across individuals.

Acknowledgments

This research project and related results were made possible
with the support of the NOMIS Foundation and the National
Science Foundation (grant no. 1718550).

References
Bell, D. E. (1982). Regret in decision making under uncer-

tainty. Operations research, 30(5), 961–981.
Bell, D. E. (1985). Disappointment in decision making under

uncertainty. Operations research, 33(1), 1–27.
Birnbaum, M. H. (2008). New paradoxes of risky decision

making. Psychological review, 115(2), 463.
Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The

priority heuristic: making choices without trade-offs. Psy-
chological review, 113(2), 409.

Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2008).
Risky choice with heuristics: reply to birnbaum (2008),
johnson, schulte-mecklenbeck, and willemsen (2008), and
rieger and wang (2008).

Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017).
From anomalies to forecasts: Toward a descriptive model
of decisions under risk, under ambiguity, and from experi-
ence. Psychological review, 124(4), 369.

Fishburn, P. C. (1977). Mean-risk analysis with risk asso-
ciated with below-target returns. The American Economic
Review, 67(2), 116–126.

He, L., Zhao, W. J., & Bhatia, S. (2022). An ontology of
decision models. Psychological Review, 129(1), 49.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An
analysis of decisions under risk. Econometrica, 47, 278.

Loomes, G., & Sugden, R. (1982). Regret theory: An al-
ternative theory of rational choice under uncertainty. The
economic journal, 92(368), 805–824.

Loomes, G., & Sugden, R. (1986). Disappointment and dy-
namic consistency in choice under uncertainty. The Review
of Economic Studies, 53(2), 271–282.

Markowitz, H. (1952). Portfolio selection. The Jour-
nal of Finance, 7(1), 77–91. Retrieved 2023-01-29, from
http://www.jstor.org/stable/2975974

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman,
D., & Griffiths, T. L. (2021). Using large-scale experi-
ments and machine learning to discover theories of human
decision-making. Science, 372(6547), 1209–1214.

Thorngate, W. (1980). Efficient decision heuristics. Behav-
ioral Science, 25(3), 219–225.

Tversky, A., & Kahneman, D. (1992). Advances in prospect
theory: Cumulative representation of uncertainty. Journal
of Risk and uncertainty, 5(4), 297–323.

Von Neumann, J., & Morgenstern, O. (1944). Theory of
games and economic behavior. Princeton, NJ: Princeton
University Press.

Wakker, P. P. (2010). Prospect theory: For risk and ambigu-
ity. Cambridge university press.

2809


