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MULTIPLE-QUANTUM NMR IN SOLIDS 

By 

YU-SZE YEN 

ABSTRACT 

Time domain multiple-quantum  (MQ) nuclear magnetic 

resonance (NMR) spectroacopy is a powerful tool for 

spectral simplification and for providing new 

information on molecular dynamics. In this thesis, 

applications of MQ NMR are presented and show 

distinctly the advantages of this method over the 

conventional single-quantum NMR. 

Chapter 1 introduces the spin Hamiltonians, the 

density matrix formalism and some basic concepts of NQ 

NMR spectroscopy. 

In chapter 2, 14N double-quantum coherence is 

observed with high sensitivity in isotropic solution, 

using only the magnetization of bound protons. Spin 

echoes are used to obtain the homogeneous double-

quantum spectrum and to suppress a large E 2 0 solvent 

signal. 

Chapter 	3 	resolves 	the 	main 	difficulty 	in 

observing high MQ transitions in solids. Due to the 

profusion of spin transitions in a solid, individual 

lines are unresolved. Excitation and detection of high 

quantum transitions by normal schemes are thus 

difficult. 	To ensure that overlapping lines add 
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constructively and thereby to enhance sensitivity, 

time-reversal pulse sequences are used to generate all 

lines in phase. Up to 22-quantum 'H absorption in 

solid adamantane is observed. A time dependence study 

shows an increase in spin correlations as the 

excitation time increased. 

In chapter 4, a statistical theory of MQ second 

moments is developed for coupled spins of spin 1-1/2. 

The model reveals that the ratio of the average dipolar 

coupling to the ras value largely determines the 

dependence of second moments on the number of quanta. 

The results of this model are checked against computer-

calculated and experimental second moments, and show 

good agreement. 

A simple scheme is proposed in chapter 5 for 

sensitivity improvement in a MQ experiment. The scheme 

involves acquiring all of the signal energy available 

in the detection period by applying pulsed spinlocking 

and sampling between pulses. Using this technique on 

polycrystalline 	adamantane, 	a 	large 	increase 	in 

sensitivity is observed. 	 - 

Correlation of motion of two interacting methyl 

groups is the subject of chapter 6. This system serves 

as a model for the study of hindered internal motion. 

Uecause the spin system is small and the motions are 

well-defined, the calculations involved are 

tractable. 	Group theory appropriate for nonrigid 



molecules 	is 	used 	to 	treat 	the 	change 	in 	the 

Hamiltonian 	as 	the 	methyl 	groups 	t r a n s i t 	from 

correlated to uncorrelated motion. 	Results show that 

the 	four-quantum 	order 	alone 	is 	sufficient 	to 

distinguish between the two motions. 
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CHAPTER 1 

INTRODUCTION TO MULTIPLE—QUANTUM NMR 

Multiple-quantum (MQ) spectroscopy has proven to 

be a practical tool in the simplication of spectral 

ana i ys i s ( 1)  as well as providing new information in 

molecular spin d ynam i cs .( 2 ) Diverse in its 

applications, MQ NMR has been applied to heteronuclear 

as well as homonuclear coupled spin systems, and to 

systems with J coupling, 	dipolar and quadrupolar 

interactions. 	Multiple-quantum transitions have been 

observed in liquids, solids and liquid crystals. 

Excellent reviews on this widely useful topic have been 

available in the last couple of years .( 36 ) 

This chapter presents some of the basic concepts 

of Fourier transform MQ NMR specLroscopy. The 

succeeding chapters will extend on particular aspects 

relevant to the subject of discussion. 

Before we e n t e r i n t o the realm of MQ NMR, the 

matter of spin Hamiltonians and spin dynamics as 

described in the d e n s i t y operator formalism will be 

first discussed. Then we will proceed with a 

definition of MQ coherence, d i s c u s s the information 

content of MQ spectroscopy, describe a Fourier 

transform MQ experiment, and present some properties of 

MQ coherences. 

U 



1.1 SPIN HAMILTONIANS 

The 	interaction of nuclear spins with their 

surrounding can be divided into two parts: 

H 	H ex t + Hi n t 

The external Hamiltonian Hext  is an interaction of the 

spins with applied magnetic fields, whether they be 

s t a t i c 	or 	oscillating, 	and 	is 	subject 	to 	the 

experimentalist's choice. The internal Hamiltonian 

Ht is inherent to the spin system; it is composed of 

the interaction of nuclear spins with the local 

surround ings. 

In the class of substances that we will be dealing 

with, the following interactions are of interest: 

HH 	Hrf+H Q 	D 
+fl + H cs + H J • 

The Zeemart term H Z  and the applied rf term Hrf  are 

grouped as external Hamiltonians. 	The remainder are 

internal Hamiltonjarts. 	These terms will be discussed 

separately. 

1.1.1 	Zeeman Hamiltonian 

In typical laboratory magnets, by far the largest 

term is t h e Zeernan Hamiltonian. 	Nuclei with dipole 
+ 

moments 	i. = Yn I, where y is the magnetogyric ratio, 

2 



will interact with the large applied static magnetic 

field I. 	Expressed in units of T., this interaction is. 

described by 

.- 	 •./!ç 	-H 	y.I z 	o . 1 	 0 . I zi 
1 	 1 

+ 
where z is chosen to be in the direction of H and the 

0 

summation runs through all nuclei in the sample. 

As 	a 	result 	of 	this 	interaction, 	the 	spins 

experience a torque in the direction defined by 

+ 

	

di 	+ + 
—i = Y. . x H 

	

dt 	1 1 	0 

and will precess at a rate Y i H o . 	This constant wo 	 = 

YiHo is referred to as the Larmor precess ion frequency. 

1.1.2 	Rf Hamiltonian 

For spin excitation, an oscillating field in the 

radiofrequency range can be applied. To avoid coupling 

with the static field, it is applied in the xy-plane. 

Choosing the rf field to be in the x-direction, the rf 

Hamiltonian is expressed as: 

H 	= 2H cos(wt + Oly rf 	1 	 ixi 

where H 1  is the amplitude of the rf field rotating at a 

frequency w with an initial phase c. 

3 



1.1.3 Quadrupolar Hamiltonian 

Nuclei with 1)1 possess an electric quadrupole 

moment due to the nonspherical distribution of nuclear 

charge. The nuclear quadrupole moment can interact 

with the local electric field gradient generated by the 

spacial anisotropy in the distribution of the valence 

electrons. The quadrupolar Hamiltonian is given by: 7  

eQ. 	+ 
HQ - 	 Ii•1i0Ii 

L 	1 

eQ V 
ZZ 	(312 	- I.(I.+l) + 	2 +12 

1. 

	

i 41.(21.-1) 	Z 	 1 	 2 i 	+i 	-i 
1 	1 

where Q i  is the quadrupole moment and V. 	is a second 

rank tensor describing the electric field gradient. 

The asymmetry parameter n is defined as: 

	

(V 	. - V 
xx,1 	yy,L 

1 
V 

ZZ , I 

and 	 and V zz,i  are the electric field 

gradient tensor components expressed in the principle 

axis frame. 	For axially symmetric gradients, n0. 

In the presence of a large magnetic field, only 

the secular part (i.e. the part that commutes with Hz) 

is retained: 

H 	- 	 1 
eQ. V 

ZZ,1 (312 	- I (1 +1)]. Q 	
41 (21 -1) 	 i 	i 

	

i 	i  
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1.1.4 Dipolar Hamiltonian 

The direct interaction between magnetic dipoles is 

given by: 

+ 	+ 
H 
D 	I.D 

.. 	
..•I. 

<. 
+ + 	+ + 

3(1. •r. .)(i. r. .) 
113 	3 	13 

1
.. 	3 	 2  <3 r. . 	 r. 

13 	 13 

+ where D. . 	is a traceless second rank tensor and r. . is 
13 

the vector connecting nuclei i and j. 	In high fields, 

only the secular part of HD  is retained: 

1. 1.1 
H 	 1 

3 (3cos 2 O. .- 	
Z 1 Z3 	4 	+1. 

 .1 	
+3 

.+I 	.1 	. 
13

)1  D 	
i<j r . 	 13 	 - J 	— L 

 

This 	is 	referred 	to 	as 	the 	tItruncatedI 	dipolar 

Hami itonian. 

For nuclei of different Yi, r and spins I, S the 

Hamiltonjan is further truncated to: 

H 	= 	' 
D 	 3 	(3cos6 13 	Z1 

. .- 1)I .S 
ZJ .. 

1<3 r. 
13 

1.1.5 	Chemical Shift Hamiltonjan 

The 	electron 	cloud 	surrounding 	a 	nucleus 	is 

polarized by the applied magnetic field and effectively 



shields the nucleus. 	As a result, nuclei in different 

chemical surrounding do not experience the same local 

field. In general, the shielding is expressed in 

tensor form: 

+ 	+ 
H 

CS 	.11. — ]. 	0 

where 	a. 	is a second rank tensor. 	In isotropic 

solution, it is reduced to a scalar interaction: 

H 
Cs 	 L Zi 

where only a. 	-1Tr(a.) 	is retained. 
1 	3 

1.1.6 	Indirect Spin-Spin Hamiltonian 

The interaction between nuclei via electron clouds 

in general is given by 

9. 	 9. 

H 	I.J..1. 
3 

where J. . 	is a second rank tensor. 	In high fields, 
- 

only the secular parts remain: 

4. 	+ 	aniso 
(31 .1 	- [3. .. •1 	+ 	.1 . 	.. 	 . t. • 	.)] H3 

13 
1 

1 	3 	13 	zI zJ 	1 	3 1<3 

Since the anisotropic part of H 3  has the same form as 

HDI 	it 	is 	sometimes 	called 	the 	pseudo-dipolar 
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coupling. 	In isotropic solution, the anisotropic term 

is averaged to zero, resulting in a purely scalar 

coupling: 

+ + 
J 

'
.
3  
.I. 1  .I. j .  

1<3  

As in HD,  the interaction between unlike nuclei I 

and S is truncated to give: 

H 	= J..I .S J 	
i<j Li z1 zi 

1.2 SPIN DYNAMICS 

The state of a coupled spin system is conveniently 

described by the d e n s i t y operator P. At thermal 

equilibrium, the state of maximum entropy dictates that 

the density operator takes the following form: 

exp(-H) 
p ° 	

Tr{exp(-H)} 

and kB  is the Boltzmann constant. 	At 

nperatures 8H < 1, the density operator can be 

expanded in a Taylor's series. Keeping only up to the 

first order term, 

p0 = z(1 - 8H) 



where Z - Tr{exp(-H)}. 	Since the first term is 

proportional to identity and can never have an effect 

on the spin dynamics, it is usually dropped, yielding 

what is called the reduced density operator: 

p = bI. 

In all our discussions, the constant b a  -8LuZ 1 	will 

be suppressed. 

The equation of motion for p under the influence 

of an explicitly time-independent Hamiltonian H is 

given by: 

dp - 	..j[ 	P1. dt 

The formal solution to this first order differential 

equation is: 

(t) 	exp(-iHt)p(0)exp(iHt) 

where 	(0) is the initial density operator 	If the 

Hamiltonain 	changes 	discretely 	from 	a ne 	time- 
I, 

independent 	'iltonian 	to 	another, 	successive 

applications of the above equation yields: 

P(t)...exp(-iH2t2)exp(-iH1t1)pexp(iH1t1)exp(jH2t) 



The precession at the Larmor frequency is common 

to all like spins. To remove this uninteresting term, 

it is common to transform the equation of motion into 

the rotating frame in which the rf Hamiltonian is 

stationary: 

-: 	
i[H*, p*] 

In the rotating frame, 

exp(-iutI)pexp(iwtI) 

exp ( _iwtI ) Hexp(iwtI) 

are the effective operators. 	In this representation, 

the Hamiltonian for like spins is, 

H* = -wI + wI + H+ H+ H* + H* 
z 	lx 	Q 	D 	cs 	J 

where 	 is 	the 	resonance offset 	and 	the 

internal Hamiltonians retain only the secular parts. 

In all our discussions, the rotating frame is the 

relevant one and the notation * will be suppressed. 

1.3 MQ COHERENCE 

Formally, MQ coherences are related to the off- 

diagonal elements of the density matrix p, with the n- 

quantum coherences associated with the elements n off 
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the diagonal of p. 	A MQ coherence describes the 

transition between two eigenstates where the well-known 

selection rule Am ±1 is violated. Consider the 

energy level diagram for N coupled spin-1/2 system of 

Fig.l.l. An "allowed" transition is one in which the 

quantum number changes by ±1. 	A MQ transition has no 	- - 

such restriction; it can be n-quantum or even zero- 

quantum. 	In single-quantum spectroscopy, effectively 

only one spin flips. 	In a n-quantum transition 

multiple spins flip. 	Triis multiple flip involves a 

simultaneous absorption or emission of n photons. 	The 

process is a coherent one and should be cant rasted to a 

sequential, and hence incoherent, process. 

Beca..-e a MQ coherence is a many-body correlation 

phenomenon, it requires a Hamiltonian that couples 

spins. More precisely, the criterion for whether a 

Hainiltonjan term will excite MQ coherences is that it 

must be a bilinear operator. Such bilinear operators 

are the dipolar, the J coupling and the quadrupolar 

H am ii t on i an s. 

	

In the nonlinear regime where H r f is no longer a 	 - 

weak perturbation, a nonselective excitation of MQ 

coherences can be accomplished by either a long weak 

pulse 8 	( 1H 	I IHjt I), 	or 	short 	intense 	pulses 

(fH f IJHiI) 	sandwiching 	time 	delays 	in 	which 	a 
bilinear operator is operative. 	Our focus will be on 

using short intense pulses to excite MQ coherences. 	In 



1+1 

-+2 

- J 

11 

• 	 I 
• 	 I 

o3ggggggg 

N 
2 

N 
2 1  

N 
2 

XBL. 7710-10019 

Figure 1.1 	Generalized energy level diagram of N 

coupled 	spin-1/2's. 	The 	dashed 	arrows 	indicate 

"forbidden" MQ transitions, 	the solid arrows are 

"allowed" single-quantum transitions. The Am -1 

dashed arrow indicate a transition forbidden by 

symmet ry. 



this limit, Hint can neglected in the duration of the 

pulses. 

1.4 SPECTRAL SIMPLIFICATION 

The problem with single—quantum (SQ) spectroscopy 

is apparent from the SQ spectra of oriented systems 

shown in Fig. 1.2. 	In Fig. 1.2, the number of coupled 

protons increases monotonically down the page. 	One 

observes that the spectral complexity increases with 

the number of spins. 	For a two or three spin system, 

the spectrum is still fairly simple. 	But one notices 

that for, say, a six spin system, already the lines are 

beginning to overlap. The situation for a sixteen spin 

system is intractable - one only g e t s a broad 

featureless I.ineshape. 

Three methods to reduce spectral complexity are 

proposed and can be used in combination. The first two 

methods involve reducing the number of coupled spins. 

When reduction of system size is no longer feasible, MQ 

spectroscopy offers a viable alternative. 

The first method is to simulate isolated molecular 

systems, thereby removing intermolecular dipolar 

couplings. 

In solids, extensive dipolar couplings can exist 

and because of the rigid lattice structure, the full 

effect of H D is achievable. In order to simulate 

isolated molecules and maintain the crystal structure, 

12 
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Figure 	1.2 	High 	resolution 	proton 	single—quantum 

spectra 	of 	solutes 	oriented 	in 	liquid 	crystal 

solvents. 
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the desired compound can be diluted into a matrix of 

the isotopic counterpart. Oftentimes, the nuclei of 

interest are in low natural abundance, as in the case 

of 3 c, and thus the isotopic dilution is already 

provided. 

Solutes dissolved in a liquid crystal solvent are 

particularly 	convenient 	systems 	for 	studying 

intramolecular dipolar couplings. The translational 

diffusion of the liquid crystal molecules averages to 

zero the intermolecular couplings. However, because 

the liquid crystal molecules are restricted in their 

molecular reorientation, the intramolecular couplings 

remain but are scaled by order parameters. The same 

situation occurs for solutes dissolved in a liquid 

crystal solvent. Thus we have a convenient method for 

isolating molecules, provided the molecule is soluble 

in some liquid crystal or is in liquid crystalline 

form. 

Another alternative is to reduce the number of 

coupled spins per molecule with selective isotopic 

labeling. This can often be expensive or synthetically 

difficult, and sometimes infeasible. 

To see what spectral simplication can be found 

from MQ spectroscopy, we refer again to Fig. 1.1. We 

notice that there is only one N-quantum transition, 

where N is the maximum quantum.possible. The number of 

(N- i) quantum is at most N, and so on. One can show 

14 



through a combinatorial argument that statistically the 

number of transitions falls off with the number of 

quanta in a Gaussian manner. 3  In fact, even for a 

small spin system such as benzene, this statistical 

argument holds well at least qualitatively (Fig. 

1.3). Thus, it would be advantageous to observe the 

higher quantum orders where the density of lines are 

much lower, provided they contain the same amount of 

information. This leads us to the problem of 

determining the information content of MQ orders. 

We compare the number of unknown physical 

constants with the number of measurables, based on a 

statistical argument. The claim is that it is usually 

•:h to consider only the (N-i) and (N-2) quantum 

_tsitions, provided that all the lines in these 

orders are resolvable. 

In oriented systems, typically one has as unknowns 

the chemical shifts, J couplings, and dipolar 

couplings. The number of dipolar couplings is equal to 

the number of pairs of spins. Likewise for the number 

of J couplings. The number of chemical shift 

differences is equal to the number of spins minus 

one. Thus, the total number of unknowns is N 2  - 1. 

The 	(N-i) quantum order has 	2N lines, 	and the 

(N-2) quantum order has N(N-1) lines. The 

accumulative amount of information available thusfar is 

already N 2  - 1. Therefore, indeed the (N-i) and (N-2) 

Mi 
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NMR n-Quantum Coherence in Benzene 
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Figure 1.3 	Integrated intensity versus the number of 

quanta n. 	The measured benzene values (solid dots) are 

compared 	against 	a 	gaussian 	curve 	based 	on 	a 

statistical counting argument (solid line). 



quantum orders offer enough information for a complete 

determination of the physical constants. 

1.5 FOURIER TRANSFORM MQ EXPERIMENT 

A multiple-quantum experiment can be separated 

into four time domains: preparation, evolution, mixing 

and detection (Fig. 1.4). Separation of time domains 

allows the experitnentalist to create the effective 

Hamiltonian of interest in each time period. This 

offers great flexibiltiy for the experimentalist on 

what he chooses to observe, depending on his ingenuity. 

In the preparation period, 	the coherences of 

interests are created, let evolve in t 1  under some 

Hamiltonian H 1 . 	A direct detection of MQ coherences 

would require multipole detectors. 	Since our coil is 

capable of detecting only oscillating dipoles, a mixing 

period is required to convert the MQ coherences into 

single quantum coherences, which are detected in time 

t 2 . 	This is repeated for many values of t 1  until a MQ 

interferograin in t 1  is obtained. 	The MQ evolution in 

t i  is detected as a modulation of the single-quantum 

amplitude. 	The signal is given as the trace of the 

observable 1 	M  I 	+ iI, 	with the density matrix at 

the time of observation: 

S ( t, t , t, t 2 ) 	Tr 	p( t,t 1 
	

' t 2 ) } 

= Tr{Iexp(-iH 2 t 2 )V t (1)exp(-iH 1 t 1 )U t (T) 

XpU(t)exp(jHt)V(r)exp(jHt)} 

17 
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PREPARATION EVOLUTION 
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Figure 1.4 	A block diagram of MQ puIse sequence, 

indicating the separation of time domains. 
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Shown in Fig. 	1.5 are two simple MQ pulse 

sequences. 	The first two pulses separated by a time 

delay suffice to prepare MQ coherences. 

The amount of coherence prepared depends on the 

time delay between the pulses. To demonstrate, exact 

dynamics calculation have been performed on benzene, a 

6-spin systetn.' Figure 1.6 shows the dependence of 

the average integrated intensity of n-quantum coherence 

on the preparation time. Basically, after an 

incubation period time on the order of the inverse of 

the couplings, this dependence is roughly constant for 

the lower orders. For the 6-quantum transition, since 

there is no averaging with other transitions, the 

oscillation is pronounced and continues for all times. 

For 	small pumping times 1, the power of the 

rate of growth of n-quantum integrated intensity varies 

w i t h n (Fig. 1.7). 	For the two-pulse preparation 

sequence, the power is 2n-1 (n>l). 3 	This power 

dependence clearly indicates that it takes more time to 

build up an n-body correlation. In chapter 4, 

preliminary experiments in solid adamantane verify that 

excitation of the higher quantum coherences do require 

longer preparation times. 

Transition phase and 	intensity depend on the 

preparation and mixing times for general MQ pulse 

sequences. 	The transition phase can be independent of 

preparation time only if the mixing propagator is the 
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Pig. 1.5 	Two sip1e three-pulse sequences for 

exciting 	and 	detecting 	MQ 	coherences 	in 	both 

channels. If there is no offset, then the upper pulse 

sequence is even-selective, and the lower sequence is 

odd-selective. 
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Figure 1.6 	E x a c t dynamics calculations of average 

integrated intensity versus the preparation time f o r 

the oriented benzene molecule. 	Only the 2-, 3-, 6- 

quantum orders are shown. 	The dependence is roughly 

constant for all but the six-quantum order. 
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Figure 1.7 	An expansion of the smaller preparation 

times of the previous figure, showing the rate of 

growth of coherences varies monotically with n (n'1). 



time-reversal of the preparation propagator. 	This can 

be important since overlapping lines that are out of 

phase destructively interfere. To avoid missing lines 

that happen to have a small intensity at some poorly 

chosen preparation time, it becomes necessary to do the 

same experiment with enough different preparation times 

and take an average. 

1.6 EVEN AND ODD SELECTIVITY 

it 
Consider 	the 	sequence 	! 

2I x 
- t 	

2I -x 	
for 

preparation 	(Fig. 	1.5). 	The 	"prepared" 	d e n s i t y 

operator for this sequence is 

= exp(iI)exp(-iHt)exp(-iI)I 

xexp(i.I)exp(iHr)exp(_i.I). ( 1 ) 

A useful concept is to let the rotations operate on H, 

thereby defining an effective preparation 

Hamiltonian. 	We separate the linear terms from the 

bilinear terms in H: 

H = -wI + H 
z 	zz 

where H 	 is bilinear. 	The effect of the rotation on Hzz 
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exp(i!I )Hexp(_i!I ) = 	wI 	+ H 2 x 	 2 x 	y 	yy 



1T 
where H 	exp(i—I )H exp(-i 

1T  
—I ) 

yy 	 2x zz 	2x 

With this, Eq. (1) becomes: 

pXX(.r) 	exp(-iH
yy 

 r)(I 
z 
 coss 	

x 	 yy 
wt + I sinAr)exp(iH r) 

	

U 
yy z 	 yy x 

(I ]coswt + U [I ]sint, 

where U 	[I I B exp(-iH t)I exp(iH it). The operator 

	

yy a 	 yy 	a 	yy 

U(I] is comDosed of even-quantum operators, and 

	

of od..- uantum operators. 	In the limit 

xx, 
p 	 U 	Er 

yy z 

is purely even-quantum. 

For 	the 	sequence .I - it - -I, 	the 	prepared 

density operator is: 

	

QYX(t) 	exp(-i-I )exp(-iHr)exp(i-1 )i 
2x 	 2y z 

11 	 it 
xexp(i—I)exp(tHT)exp(i—I ) 

2x 

• U 
yy 	x 	 yy 	z 
(I ]cosut + U 	[1 ]sin.wr. 

In the limit 	&e-O, 

yx 
p 	(it) - U 	[I 

yy x 
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is purely odd-quantum. 



By inserting a 71 pulse 

remove all resonance offset 

sequences can be created. 

preparation sequence is -11 

odd-selective one is -I - 
2x 	2  

in the middle of t to 

s, selective preparation 

Thus, an even-selective 

t 	 I 	11 

 2 - 2 
- —I

-x 
 and an 2  

1 	71 

2 	2y 
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1.6 SEPARATION OF ORDERS 

A highly useful property is that the offset 

experienced by MQ coherences scales with n. By going 

off-resonance by an amount Aw greater than -  the largest 

MQ second moments, the orders can be separated. To see 

how this comes about, we expand the density operator in 

the irreducible spherical tensor operator basis: 

a(t)T 
k,n 

k,n 	k,n 

where Tk,n  is the nth-component of a k-rank tensor 

(n'k). 	The tensor components Tk,fl  are related to n- 

quantum operators. 	It is convenient to group the n- 

quantum operators: 

- I p ( t) 
n 

n 

where 	p (t) 	a 	(t)T 
k,n 

As a result of the commutation ruie: °  

I 	1= 
z' T  k,n 	flTk,n 



and the following property of exponential operators 10  

eBeA -3 + [A,B] +
21 [A,[A,B]] + 1 (A,(A,[A,B]]]+... 

the effect of a rotation about I z on p is: 

exp(—i $1 )p (t)e (i$I) - P(t)exP(—in). 

This implies that the existence of an offset term in K 1  

will cause n—quantum coherences to oscillate as nw: 

	

exp(iwt 
l z a 
I )p (T 	

l z 
)exp(—iwt I ) 	a p (r)exp(inAwt 1 ). 

If the offset &w is greater than the largest MQ second 

moments, this will result in separation of the orders 

in the Fourier spectrum. 

As a corollary, the inhomogeneity is also scaled 

by n. For high resolution work, it would be desirable 

to remove the inhomogeneity by applying a iT pulse in 

the middle of the evolution period. But by doing so, 

the centers of orders will coincide. 

The 	method 	of 	time 	proportional 	phase 

incrementation 1 ' 11 	(TPPI) allows sorting of orders 

meanwhile removing inhomogeneous line broadening. 	It 

can accomplish separation regardless of whether there 

is a real resonance offset. 

As is evident from its name, the method involves 

26 



incrementing the phase of the preparation pulses for 

each' increment in t 1 , and keeping the mixing pulses at 

a fixed phase. 

Suppose we phase shift the preparation propagator 

by an amount : 

- exp(-iPI)U(t)exp(i41 
z 

where U(t) is at an arbitrary fixed phase. 	Applying 

the propagator on the initial density operator gives: 

Ut(r)I U (r) 

exp(-iI 
z 	z 	 z 
)Ut(r)I U(t)exp(il ) 

Consider incrementing the phase of the preparation 

pulses by an amount proportional to t 1 . We can 

express the phase as 

AO 
where Aw - 

At 

The fictitious offset Aü is a parameter that can 

be varied by changing the phase increment A0. 	To 

observe up to a maximum order M, the bandwidth 

must encompass up to 2Mw/27r. 	That is, the minimum 

increment in t 1  must satisfy: 

27 



1  
2i 

The corresponding condition on 40 given at 1  is: 

$ 

Keeping the mixing propagator V(v) at a fixed 

phase, the expression for the signal is then: 

S(t,t 1 ,r) - T r (V(t)I_V t (rT) exp (_jH 1t1 ) 

X Ut(t)I TI (t)exp(-iH 1 t 1 )} 
$ 

Tr (v( r_)I_Vt( r')exp(-iH1t1)exp(-iut1) 

X U t (t)IU(t) exp (j, wtexp (jR 1t1 ) .  

Thus the signal experiences an additional, although 

artificial., offset. 

By insertin - 	w pulse in the middle of t 1 , the 

effective H 1  is free of all real offset terms. 	With 

this and TPPI, we can obtain separation of orders 

without losing high resolution. 

In chapter 2, the scaling of inhomogeneity with n 

is put to use to obtain separation of MQ spin echoes 

and to allow selective detection. 
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CHAPTER 2 

INDIRECT DETECTION OF SPIN—i DOUBLE—QUANTUM COHERENCE 

IN LIQUIDS 

2.1 INTRODUCTION 

Time domain multiple—quantum (MQ) NMR has been 

demonstrated in a variety of systems(1) to offer higher 

resolution and more information on relaxation dynamics 

than single—quantum (SQ) methods. Although S 1 

nuclei in anisotropic systems were among the early 

applications of time domain double—quantum (DQ) 

NMR9(2,3,4) it is only recently that the interesting 

problem has been raised of observing these transitions 

in isotropic solution where the quadrupole coupling 

vanishes. Prestegard and Miner recognized that the 

usual preparation sequence using two 142 puises(67)  on 

the S spins ( 14 N) does not excite DQ coherence, even 

when the spectrum shows resolved J coupling to 

neighboring heceronuclei. They demonstrated that 

augmentation of this sequence by spin tickling of bound 

protons (I 1/2) did allow S spin DQ coherence to be 

prepared from and mixed to S spin magnetization. 

In t h i s work we demonstrate that the S DQ 

coherence can be excited and detected by using only the 

I spin magnetization and applying simple hard pulses at 

both I and S frequencies. This is an example of 

heteronuclear 	coherence 	transfer 8 ' 	and 	is 	an 
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extension 	of 	heteronuclear 	MQ 	techniques 	already 

demonstrated for I S = 1/2 in liquids(10)  and in 

liquid c rys t a i s (h 1 ), and for I = 1/2, S = 1 in liquid 

crystals 12)  and solids. (13,14,15) 

This indirect method of observation of S = 1 DQ 

coherence benefits from the signal enh ancemen t( 1 °, 12 ) 

which comes from using only proton magnetization as the 

initial and final conditions. In addition, we employ 

spin echoes and time proportional phase irtcrementation 

(TPPI) 7 ' 16  to separate orders and a form of coherence 

transfer echo(917) to suppress large zero-quantum 

interference. 

In discussing the various coherences possible in a 

heteronuclear system, it is useful to label them with a 

pair of quantum numbers (n', n 5 ) which are conserved 

under free evolution. For any coherent superposition 

li><jl of two eigenstates these are defined by the 

relations 

Ji><jJ1 	 , 	 (la) 

[s e , 	Ji><jJ1 	nj I i><i  I. 	 (ib) 

These are just the differences in Zeeman quantum 

numbers for the states connected: n j  = m - m, 	= 

 - m. 

2.2 THEORY 

Shown 	in 	Fig. 	2.1 	are 	two 	pulse 	sequence 
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Fig.2.1 	Pulse 	sequences 	used 	for 	observing 

heteronuclear MQ coherence. 	The I 	spin FID is 

monitored at t 2 -  r. 	Pulse sequence B has the first 

two S spin rf pulses phase shifted by • 

(TPPI). 	All other rf pulses of a given frequency may 

be of the same phase. The delays i and &2  allow 

suppression of the signal from all but one order of 

coherence. 
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variations 	for 	observation of various 	orders 	of 

coherence n) using only I spin magnetization. 

Perfect rf pulses of negligible duration are assumed. 

We consider here the case of a group of equivalent I 

spins identically coupled to a single S l spin. The 

unperturbed rotating frame Hamiltonian is 

H - -tw 
I 

I
z 	S z 	z z 

- w S + i_i S , 	 (2) 

where J 	211J is the scalar heteronuclear coupling (in 

rad/sec) and I - 	1. 	For the preparation sequence 

( 1r/ 2 )_r/ 2 _( 1r)(I,$)_t/2_(w/2)(I,S) the propagator is 

U(r) 	exp[i(ir/2)(I 	+ S )]exp( - iHt/2)exp[iir(I 	+ S )] x 	x 	 x 	x 
x éxp(-iHr/2)exp[i(ir/2)I I x 

exp(-irJI y y S )exp(-i(1T/2)s x ]. 	 (3) 

The simultaneous 1! pulses remove the dependence on the 

offset terms in the Hamiltonian of Eq. (2) making the 

propagator even-quantum seiective410,18) and 

dependent only on the variable Jr. 

The density operator at the end of the preparation 

period is p(t) - U(t)p(0)u(t). Neglecting the term 

proportional to the identity this is given by 

p(t) = exp(-irJI S ) ( b I )exp(itJI S ) 

	

yy 	z 	 yy 

b[i cos(JrS ) + I sin(JtS )J 
z 	 y 	x 	 y 



b{I 
z (1 + S 2 (cosJt 

y 

+ I S sinJr}. 	 (4) xy 

In the last step, the identities 

cos(es 
y ) 
	

y 
1 + S 2(cos8 - 1), 	 (5a) 

sin(85 
y ) 
	

y 

	

S sine 	 (5b) 

appropriate to S - 1 have been used. The initial 

equilibrium spin density operator proportional to S is 

not included in the expression, since it does not yield 

DQ coherence nor does it lead to an eventual signal in 

the proton channel. Equation (4) can be written using 

the fictitious spin-1/2 operators(1920) for the S 

operators: 

P(T) - bCI z Cl + ( 2/3 - 	
1-3 

x 

- 	z 1-2 - 
	23))(cosj'r z 

+ 2 1/2  I x  (S y 1-2 + s 
y 
23 )sinjt}. 	(6) 

This expansion shows that S>,2 consists of zero-quantum 

and DQ operators. 	The coefficient of the operator 

and thus of the (n t 	0, nS 	±2) coherence 

is maximized by setting t 	1/2.1 sec, where .1 

is in hertz. 

The prepared coherences evolve during t1. 	S i n c e 

only (n 1 	±1, n 5 	0) coherences can freely evolve 
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into proton transverse magnetization, the n/2 pulses at 

the end of t 1  are needed to convert NQ coherence into 

such SQ coherence. For each increment in t 1 , only the 

peak of the MQ spin echo at t 2 	r is sampled in the 

proton channel. 	The resulting heteronuclear MQ 

interferogram as a function of the evolution time t 1  is 

the autocorrelat ion function of P(T) 	P(T) t 1 = 0) 

Neglecting relaxation and with AlA2 = 0 (Fig. 2.1), 

this is 

S(t 1 ) 	Tr{p(t,0)p(r,t 1 )} 

Tr {p( t,O)exp(-it 1 J1S) p( r,0)exp(it 1 J1S)} 

p(r,0)I 	.exp(-iw..t 1 ) , 	 (7) 
j tj 1, ] 

i, 

where wij  = wi - 
	

and w 

Evaluation of the matrix elements of 1S13  [Eq. 

(6)] for the case of four equivalent Ij = 1/2 spins 

shows that the DQ spectrum is a quintet with line 

separation of 2.1 and line amplitude of 

A(m t ) = (1/4)(cosJt - 1)(cosJt 2  - 1)(mt ) 2 g(m 1 ) 

(cosJt - 1)(cosJt 2  - 1), 	mt  = ±2 

(cosJr - 1)(cosJt 2  - 1), 	m1 = ±1 

0, 	 m 	0. 

Note 	that the central 	line of 	the quintet has zero 

amplitude. The degeneracies g(m 1 ) are 	1,4,6 for m' 	= 

35 
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±2, ±1, 0, respectively. 

	

The fixed time delays I 	and &2 are included to 

selectively echo the desired order for detection. The 

scheme is similar to pulsed field gradient meth o d s ( 17 )

9 

 

except that here the static field inhomogeneity and a 

longer time delay are used for the dephasing and 

selective rephasing. Advantage is taken of the 

proportionality of the dephasing rate to n')' 1  + n S yS, 

thereby allowing separation of various MQ echoes. 

Sampling at the peak of the desired MQ echo results in 

detection of the selected order and suppression of the 

other orders. in our experiments, the 14 N DQ coherence 

dephases at a rate proportional to 2y in and 

rephases as proton SQ coherence at a rate proportional 

to Y in A2 . To observe the 14 N DQ coherence echo as 

proton transverse magnetization, A 2  must be set at 

2 

	2y S 	
(9) 

This scheme can be viewed as a coherence transfer. 

echo filterrig (CTEF) process. 	The desired DQ signal is 

a 	small 	oscillation 	on 	top 	of 	a 	large 	signal 

originating from coherences not of DQ nature, the 

largest being from the H 2 0 solvent. 	Fluctuations in 

the 	large 	signal 	resulting 	from 	instrumental 

instability appear in the Fourier transform as noise at 

all values of w 1 . 	Because t h i s t 1  noise can be 



comparable to the DQ signal, it is desirable to 

eliminate it by "filtering" out the large signal. 	In 

addition, the dynamic range requirements of the 

spectrometer are reduced, since the largest signals 

never reach the receiver. 

Pulse sequence B differs from A only in the way 

the separation of MQ orders is accomplished. Because 

of the tensorial properties of MQ operators expressed 

in Eq. (1), the center of the order (n1, S) is at 

Pulse sequence A requires a real 

resonance offset, whereas pulse sequence B creates an 

artificial offset by TPPI.(7,16) The if pulses in t j  

remove all real resonance offset terms and thus field 

inhomogeneity. The phase incrementation of the S rf 

pulses in the preparation period for each 

incrementation in t 1  effects an apparent S frequency 

offset in the observing frame. TPPI yields a spectrum 

that is free of inhomogeneous broadening and yet 

retains separation of the MQ orders. 

2.3 RESULTS AND DISCUSSION 

Spectra were obtained at 27 0 C of an 8 molar NH 4 NO 3  

aqueous solution acidified to pH 1 to slow down proton 

exchange with the solvent. 	The spectrum in Fig. 2.2 

was obtained using pulse sequence A with the 

c a r r i e r 	frequency 	offset 	by 	0.85 	kHz 	from NH4  

resonance and the proton carrier frequency on resonance 
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j 	Proton—detected heteronuclear MQ rnagnitude 

spectrum of acidified 8 molar NH 4 NO 3  aqueous solution 

observed at 185 MHz. The spectrum is obtained using 

pulse sequence A in Fig. 2.1 with 14N carrier frequency 

offset from NH resonance by Aw 0.85 kHz, I 

9.6 msec, t 1  increment 	200 isec, A I = 11.327 rnsec, 
and 42  a  1.618 msec. 	The incompletely suppressed on- 

resonance line arises predominantly from longitudinal 

H 2 0 magnetization present during t. 	The multiplet 

with the center offset by 1.70 kHz is the 14N DQ 
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at 185 MHz. 	The time delays A 1  and A 2  were set 

according to Eq. (9). 	The central, peak at Aw = 0 

arises predominantly from imperfect CTEF of the 

longitudinal proton magnetization of the solvent H 2 0 

present during evolution. Other contributions are from 

the zero—quantum portion of IS ,, 2  and from I of the 

ammonium protons, both of which are present in p(t) 

even when DQ coherence is maximized [Eqs. (4) to 

(6)]. 	The multiplet corresponds to the DQ coherence 

transfer spectrum of 14 N. 	Its center is offset by 1.70 

kHz,, which is twice the carrier frequency offset, the 

splitting is 2J, and the linewidth is twice that of 

SQ 	inhomogeneous 	linewidth 	- 	all 	of which 	are 

indicative of 14 N DQ transitions. 

Figure 2.3 shows the improvement in resolution of 

the inultiplet using pulse sequence B with the same 

parameter settings. The spectrum is a quintet with 

relative amplitudes of 1:1:0:1:1 and splittings of 2J, 

in agreement with the calculations [Eq. (8)]. The 

splitting is 105 ± 1 Hz; the homogeneous absorption 

linewidth (full width at half maximum) is 7 ± 1 Hz as 

compared with the inhomogeneous linewidth of 70 to 80 

Hz in Fig. 2.2. 

Also of importance is the comparison of the 

homogeneous 14 N DQ and SQ linewidths. Through a 

conventional 14N detected spin echo sequence, with a 

simultaneous 11 pulse applied to the protons to preserve 
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500 Hz 
Z8I. 819-455C 

a. 

Fig. 2.3 	Proton—detected 14 N DQ magnitude spec t rum 

using pulse sequence B in Fig. 2.1 with 'H and 14 N 

carrier frequencies on resonance. I - t a 10 msec; 

all other parameter settings are the same as in Fig. 

2.2. The spectrum is a quintet with 1:1:0:1:1 

amplitude ratio and 105 Hz peak separation. 



the J coupling, the absorption linewidth of 14 N DQ and 

SQ homogeneous linewidths are the same. 

in both Figs. 2.2 and 2.3, the magnitude spectra 

are displayed. The lines of the quintet can in 

principle be observed in phase [Eq. (7)],  but were not 

because of the use of CTEF. The insertion of the time 

delay Al  in t 1  necessitates that the heteronuclear MQ 

interferogram is first sampled not at t 1  = 0 but at t i  

. During the extra time A l , the lines accumulate 

phase at different rates resulting in a large phase 

shift linear in w 1 . 

To demonstrate the sinusoidal dependence of the 

IzSX 1-3 operator on preparaton time [Eq. (6)],  pulse 

sequence B was employed with t 2  held constant for 

different values of T. With t 2  fixed, the line 

amplitude varies with t as (cosJt - 1)exp(-t/T 2 ), 

where now T 2  refers to the n t 	1 homogeneous decay 

time. 	Figure 2.4 shows the integrated line amplitude 

of the quintet as a function of T. 	A least squares 

analysis gave T 2 = 80 ± 11 msec. 

In summary, DQ transitions in 14 N, a quadrupolar 

ri 	.is of spin S 	1, is made possible through the J 

coupling to the protons. Sensitivity is greatly 

improved by indirectly detecting the quadrupolar nuclei 

through the protons. Using TPPI and a spin echo in the 

evolution period, the inherently higher resolution of 

the DQ spectrum is realized. 
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Fig. 	2.4 	Normalized 14 N DQ line amplitude as a 

function of the preparation time T. The experimental 

points are compared with the solid theoretical curve of 

(cosjr - l)exp(-t/T2). 
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CHAPTER 3 

TIME-REVERSAL MULTIPLE-QUANTUM NMR IN SOLIDS 

3.1 INTRODUCTION 

	

Multiple-quantum 	(MQ) 	NMR 	spectroscopy 	has 

generally been applied to systems of isolated molecules 

with a small number of spins.2) The small system 

size limits the complexity of the spectrum as well as 

the number of rf quanta that can be absorbed or 

emitted. One difficulty in studying large spin systems 

is that the average intensity per transition decreases 

rapidly with the number of spins. 	As a result, 

selective excitation schemes 	may be necessary to 

channel intensity into the desired n-quantum order. 

Thus, 	comparatively 	few 	applications 	have 	been 

performed in solids,' where extensive dipolar 

coupling makes the coupled spin system essentially 

infinite in size. 

In this chapter, we present the utilization of 

time r eversa l( 3 1 6 ) to enhance overall signal intensity 

so that very high quantum absorption can be observed in 

solids. In Fig. 3.1, we show a 'H MQ spectrum of solid 

adamantane C 10 H 16  obtained by such a time-reversal 

excitation-detection scheme, where up to 22-quantum 

absorption is observed. Adamantane is a plastic 

crystal; the molecule is nearly spherical and as such 

can tumble isotropically in the solid phase. At room 
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Figure 3.1 	'H multiple-quantum NMR spectrum of solid 

adamantane at room temperature, obtained with time- 

reversal sequence of Fig. 3.2(d) and excitation time of 

480 MSec. 
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temperature, 	this 	motion 	averages 	to 	zero 	all 

intramolecular couplings but retains the intermolecular 

terms. Our system is thus not an -isolated molecule but 

rather a network of molecules. Very high quantum 

transitions might thereby be excited. 

One of the main features of solids is the high 

density of spin states. Due to the continuum of 

transitions, individual lines within each n-quantum 

order are. unresolved. Since both the intensity and 

phase of individual MQ coherences depend uniquely on 

the excitation time, there may occur destructive 

interference between overlapping lines. The integrated 

intensity of the MQ spectrum is decreased and the 

signal-to-noise ratio suffers. This problem becomes 

more severe as the excitation time is increased, as is 

observed experimentally. Very quickly, typically 

within iO 	sec, the signal-to-noise ratio is dominated 

by instrumental noise. 	It eventually becomes very 

difficult to observ-e high quantum absorption, where 

long excitation times are required. 

What is desired then is the generation of all 

lines in phase at the point of detection, that is, in 

some manner to reverse the dephasing that occurred in 

the excitation period. In solids, the dominant 

dephasing mechanism is the dipole-dipole interaction, 

which is homogeneous in nature. If one is able to 

produce a homogeneous spin echo,(6) the peak of the 



echo is free of the dipolar Hamiltonian. This in fact 

can be accomplished by applying a series of intense rf 

pulses to the spin system to effect what is in essence 

time reversal. With the method of time reversal, we 

were able to regain the intensity lost due to fast 

homogeneous dephasing of spins in solids. 

3.2 THEORY 

For the following discussions, it is convenient to 

introduce the time—domain MQ NMR experiment, described 

schematically in Fig. 3.2(a). 	The sequence can be 

partitioned into four time domairis: 	preparation (t), 

evolution 	(t 1 ), 	mixing 	(r), 	and 	detection 	(t 2 ) 

periods. 	As a specific example, consider the simple 

three—pulse sequence in Fig. 3.2(b). 	The first two 

pulses separated by an excitation delay T prepare MQ 

coherences, which then evolve freely for a time t1. 

Because MQ coherences do not correspond to 

rnagnetization, they are not directly observable with 

our detection coil. A third pulse is needed to convert 

them into single—quantum coherences, which are detected 

in time t 2 . For our experiments, only the point at 

- t is sampled.' 8  The sequence is repeated for many 

values of t 1  until one maps Out an interferogram. 

Fourier transformation with respect to t 1  of this 

interferogram yields the MQ spectrum. 

The equation of motion of a coupled spin system is 
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Figure 3.2 Multiple-quantum 	pulse 	sequences: 	(a) 

Schematic pulse sequence showing relevant periods. (b) 

Nonselective three-pulse experiment. (c) Even-selective 

sequence with preparation pulses phase shifted by an 

amount O=Awt 1  (TPPI) to separate n-quantum orders. 	(d) 

Time-reversed preparation and mixing periods with the 

preparation ir/2 pulses phase shifted by an amount 

(TPPI). 	The 	preparation 	and mixing periods 	are 

composed of cycles of the 8-pulse (H-H)  sequence 

shown below. 	A delay of 1.6 msec separates the mixing 

period 	from 	the 	final 	detecting 	pulse 	to 	allow 
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transients to decay away. 	30 usec is allowed for 

receiver deadtime before sampling is taken at the 

dotted line. 
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conveniently 	described 	in 	the 	density 	matrix 

formalism. 	In this formalism, neglecting relaxation, 

the signal in the time domain is given by the trace of 

the product of the observable and the reduced density 

* 	 matrix: 

S(r,t 1 ,t) - Tr{Ip(t,t 1 ,r)} 

Tr{Vl zV t exp(_jH l t l )U t IUexp(jH i t i )} 

Tr{Q( r)exp(-iH 1 t 1 )p( t)exp(iH 1 t 1 ) I 

- 	
Pk(t) Qk ( t' ) exp ( _iw. k tl). 	(1) 

j ,k 

Here U 	exp(illt) is the preparation propagator, V = 

exp(iHr) is the mixing propagator, P 	U'IU is the 

preparation density operator, Q 	VIV 	is the mixing 

density 	operator, 	j>'s 	are 	eigenstates 	of 	the 

Hamiltonian H1, andwjk 	 - 	is the transition 

frequency. 	In the above equation, the invariance of 

the trace to cyclic permutation is used. 	The spin 

system is assumed to be initially at equilibrium. 	For 

notational convenience, a virtual 1T/2 pulse is applied 

at end of r so that I rather than I = 1 + iI is 

our observable. 

To see how phase terms can arise in a MQ NMR 

experiment, let us consider the situation V = U, which 

is the case for the commonly-used pulse sequences in 

Figs. 3.2(b) and 3.2(c). The transition between states 

Ii> and 10 is then described by a complex vector 



where the intensity is given by IPjkI2 and the 

phase is a complicated function of the preparation 

period: -1 Im[Pk2t] 
e.k(t) - tan 	

2(t)] 	
(2) 

Re[p jk   

The preparation density operator P and hence the phase 

of a transition vary with the excitation time 

If we now look at the case V 	U', then Q 	P 

pt, and the signal can be written as an autocorrelation 

function of th 	' - paration density operator P(t): 

S(r,t1) - _;P t (t)(iH t )P( t)(i H )} 

	

Pk ( t ) I 2 exP(_iw k t l ). 	 (3) 
j 

Note that here the signal contains no phase factor for 

all lines. Suppose further that V differs from U only 

in phase by an amount X,  i.e., 

	

v a exp(-iXt z )U t exp(iXI). 	 (4) 

T.en Q - exp( - iXI)Pexp(iXI), and the signal is given 

b y : 

S(t,t1) 	 IPkI 2 exP ( inX ) exP(_iw k t l ). (5) 
n j,k 

This states that all lines within order n = mj - mkl 

where the m j 's are Zeeman magnetic quantum numbers, 

have the same phase, and lines between neighboring 
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orders differ in phase by ±. 	Thus, if orders are 

well—separated, the condition in Eq. (4) is sufficient 

to ensure no phase cancellation. In practice, 

Hermitian conjugation of U or V is achieved by negating 

the Hamiltonian, which has the same effect as reversing 

time, hence the term time reversal. 

3.3 EXPERIMENTAL 

The actual pulse sequence used to generate the 

time—reversed spectra is shown in Fig. 3.2(d). The 

eight—pulse cycle preparation sequence creates an 

average Hamiltonian° (H - which is a pure 

double—quantum operator 3 	and can excite only even- 

quantum transitions. 	The excitation time is increased 

by adding more cycles. 	To account for f i n i t e rf 

pul.sewidths, 2 	+ t 	is used in place of 2.A, where 

is the pulse duration. The experiment was performed on 

resonance, causing all MQ orders to overlap. To create 

the large artificial offset required for separation of 

orders, 	the 	method 	of 	time 	proportional 	phase 

increinentat.iori (TPPI)Ufl is used. For each 

incrementation in t, the phase of the preparation 

pulses is incremented by the amount: 

(6) 

where M is the maximum MQ order to be observed. 

In principle, detection can be made immediately 

after the mixing pulses with a final detecting pulse. 



In practice, however, due to pulse imperfections and 

relaxation, a delay of 1.6 msec is introduced after the 

mixing pulses, allowing transients to decay before 

applying a detecting pulse. These transients should 

decay on the order of T 2 , the spin-spin relaxation 

time,(12) which is typically 10 sec for solids. The 

desired signal, after mixing, 	is in the form of 

populations. 	It 	decays 	as 	T1 , 	the 	spin-lattice 

relaxation time,(12) which is on the order of seconds, 

and should essentially be preserved during the 1.6 msec - 

delay. 	The final 	ff12 pulse rotates it 	into the 

transverse plane for detection. 	The detecting pulse 

can be of arbitrary phase, as long as it remains fixed 

from point to point in t 1 . 	A delay of 30 isec is 

inserted 	before 	sampling 	to 	allow 	for 	receiver 

dead t iine. 

3.4 RESULTS AND DISCUSSION 

To demonstrate the severity of intensity loss due 

to phase cancellat.on in the normal nontime-reversal 

approach to MQ NMR, in Fig. 3.3 we compare 1H MQ 

magnitude spectra of adarnantane obtained with and 

without time reversal, using pulse sequences of Figs. 

3.2(d) and 3.2(c), respectively. Their pulses in Fig. 

3.2(c) remove all resonance-offset terms, rendering 

this sequence even-seiective, ( '- 	as is the sequence of 

Fig. 3.2(d). 	Both spectra were obtained at 35 0 C with a 
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Figure 3.3 Comparison 	of 	adamantane 	1 H 	multiple- 

quantum NMR spectra obtained with 144 usec excitation 

time and using (a) time-reversal pulse sequence of Fig. 

3.2(d) w i t h 0.8 psec and t3.2 lisec, and (b) 

nontime-reversal pulse sequence of Fig. 3.2(c). 
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preparation time of 144 psec. 	Without time reversal, 

phase cancellation results in a significant reduction 

of absolute integrated intensity. This difference in 

intensity becomes more pronounced as the excitation 

time increases. We emphasize here that without time 

reversal, we were not able to increase the excitation 

time long enough to observe high quantum absorption. 

Comparison of lineshapes, in particular second moments, 

with and without incorporation of time reversal will be 

discussed e l sewh ere .( 14 ) 

An interesting result of these experiments is the 

initial time dependence of MQ intensities on n, the 

-number of quanta. The short time behavior can be 

obtained from a power expansion in t of the preparation 

density o p era t or: ( 1 ) 

P(t) 	exp(-iHt)P(0)ex.p(iHr) 

P(0) - ir[H,p(0)] - 	[H,[H,P(o)]] + . . . . 	(7) 

For the (Hxx - pulse sequence in Fig. 3.2(d) 

assuming perfect 6-function pulses, evaluation of the 

commutators for P(0) reveals that the integrated 

intensity of a given order (n0,4,6,8,...) grows in as: 

I 	 (8) 
j,k 	

jk 2 

where the summation runs through all j,k such that m - 
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mk - n. 	The intensity of the double-quantum order 

grows in as t2 . Thus, in the short t limit, the higher 

quantum operators appear at a later excitation time 

than the lower quantum operators. This behavior is 

illustrated in experimental results for adamantane in 

Fig. 3.4. We observe that indeed the coherences 

"diffuse" outward toward higher n as the excitation 

time is increased. A physical interpretation for this 

behavior can be obtained by realizing that MQ coherence 

is a many-spin correlation phenomenon - at least n 

spins are interacting concertedly to absorb n 

photons. The higher the number of quanta, the more 

spins involved, and hence the longer it takes for 

correlations to occur. A random walk picture 

connecting spin diffusion with evolution of multiple 

spin correlations and MQ coherences is appealing. 

In summary, the difficulty in applying normal MQ 

NMR methods to solids can be attributed to the fast 

homogeneous dephasing of spins. The incorporation of, 

time reversal enables all transition lines to be phased 

with respect to each ocher, thereby enhancing the 

signal-to-noise ratio. Using time-reversal pulse 

sequences, we were able to obtain very high quantum 

absorption spectra of solid adamantane. From a time-

dependence study, we observed an increase in spin 

correlations as the excitation time increased. 
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Figure 3.4 Normalized 	integrated 	intensity 	of 	n- 

quantum order for various excitation times extracted 

from adamaritane time-reversal spectra, showing how the 

spin correlations "diffuse" out t higher n. These 

intensities are normalized so that the total integrated 

intensity for each excitation time is unity. The 

corresponding excitation times on the single-quantum 

free induction decay are indicated in the insert. 
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CHAPTER 4 

SECOND MOMENTS OF MULTIPLE—QUANTUM NMR SPECTRA 

4.1 INTRODUCTION 

Recent years have shown much experimental and 

theoretical progress on multiple—quantum (MQ) NMR 

studies of dipolar systetns.(12i3) Most of these 

studies depend on the high resolution available in the 

spin systems for dynamical and structural 

information. In studies where resolution is poor, 

particularly in solids, lineshape analysis provides the 

only practical means of extracting information. Thus, 

it would be of interest to explore the behavior of MQ 

lineshapes as a function of the number of rf quanta 

absorbed or emitted. 

For, a system containing nuclei of spin 11/2, the 

second moments (N 2 ) of the dipolar structure of MQ 

spectra can be rigorously calculated by assuming a 

statistical model. With this assumption, only sums and 

products of the dipolar coupling constants are needed 

to determine the second moments. No diagonalization of 

the Hamiltonian is necessary. Results reveal that the 

ratio r of the average dipolar coupling constant to the 

rms value: 

d 
r - -.-1/2 

d 



determines to a large extent the second moments 

behavior. The two extreme cases: 

r-1, all the couplings are the same, 

r-O, couplings of both signs occur in such a 

way that the average coupling is zero, 

show distinctively different behavior. 

One may inquire here whether a statistical model 

contains enough information to describe lineshape 

behavior as a function of n. A statistical assumption 

implies no symmetry in the spin system. What are the 

implications of neglecting symmetry, or conversely, 

what role does spin symmetry play in M 2  behavior? 

Also, how large does the system have to be in order for 

the statistical assumption to hold? These are the 

questions that we explore in our experiments. 

In section 4.2, we will proceed first with a brief 

description of a Fourier transform MQ experiment and 

some terminologies. A formulation for the MQ signal 

and its moments is given, the need for an unique M 2  

definition is recognized, and the statistical model for 

MQ moments is introduced. In section 4.3, a comparison 

of experiment with theory is made. 

4.2 THEORY 

In a Fourier transform MQ experiment (Fig. 4.1), 

MQ coherences are created by applying a series of 

intense rf pulses to the spin system. The preparation 
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Figure 4.1 	Schematic pulse sequence showing the 

relevant periods in a Fourier transform multiple-

quantum NMR experiment. 



sequence may be described by a preparation propagator 

U(r). The density operator at the end of the 

preparation pulse sequence is given by Up 0U, where p 0  

is the initial density operator, and contains 14Q 

coherences. The system evolves in t 1  under the effect 

of 	the Hamiltonian 	B1 . To detect .MQ 	coherences, a 

mixing period 	described by the 	operator 	V(t) is 

required to convert MQ coherences into detectable 

single-quantum coherenc Typically, one point at 

t 2 -0 is sampled for each incrementation in t 1 , keeping 

(r,t) fixed. The resultant MQ interferogram in t1 is 

given by: 3  

S(t 1 ) - <I(t 1 )> 	 (1) 

- Tr{Q(-t)exp(-iH 1 t 1 )P(t)exp(jH 1 t 1 )} 

where 

Q(-t) - V( 1 )Ivt( 1 ) ,  

P(t) - Ut( T ) p U( r ) .  

Fourier transforming Eq. (1) with respect to t 1  yields 

the conjugate frequency spectrum in w 1 , the frequency 

spectrum of interest (as opposed to w 2 , the conjugate 

of t2, if the entire free induction decay in t 2  is 

sampled). Henceforth, the subscript 1 will be dropped. 

If the signal S(t) is separable into components of 

order n, labeled S(t), such as by selective excitation 

or detection schemes, 1 ' 3  the n-quantum moments can be 
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obtained from the time-domain signal S(t) with the 

following well-known relation: 4  

()k dkS(t) 

Mk(n) - 	 k 

	

S(0) 	dt 	It-0 0  

By differentiating Eq. (1), the analogous n-quantum 	-. 

kt_moment expression to Van Vieck's single-quantum 

moments formula 6  is: 

k times 
-------- 

Tr {Q n (-r) [ . . . . . (H, (H,P ( t) ] ] . . . . . I 
- 	 fl 

Tr(Q (-t)P Cr)) 

	

U 	n 

Specifically, the second moments M 2  expression is: 7  

	

TrUE, Q(t)1 	P (r)J} n 112(n) - 
	Tr{Q (_r#)P  (r)} 

	

n 	a 

Finding expressions for P and Q. which depend on 

the 	pulse 	sequence 	used, 	and 	performing 	the 

commutations 	are 	nontrivial 	tasks. 	Instead of 

evaluating the commutators directly, an alternative is 

to examine the density of states distributed by the 

dipolar Eamiltonian and see what information can be 
	 a, 

infe rred. 

A schematic energy level diagram of an N spin-1/2 

system with random coupling constants is depicted in 

Fig. 4.2. The spin states are most strongly split by 

the Zeeman interaction of spin dipoles with the large 

external static magnetic field. Each Zeemari manifold 
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Figure 4.2 	Schematic energy level diagram for an 

arbitrary spin system of N spin-1/2's. 	The states, 

split by the Zeeman interaction, are grouped according 

to their Zeeman quantum numbers. Within each Zeeman 

manifold, the states are further split by the dipolar 

Hami it onian. 
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of magnetic quantum number m is further split by 

dipole-dipole interactions among spins to form a 

distribution of states. An n-quantum order is composed 

of the sets of transitions between states of m 1  and a2  

that satisfy the condition n - a 1  - m2 . There may be 

more than one pair (a1, m 2 ) that satisfies this 

condition. 

Each Zeeman manifold can be labeled by either a, 

the magnetic quantum number, or p, the number of spins 

aligned parallel to the static external magnetic 

field. The relationship between a and p is: 

N 
p 

where N is the total number of spins in the system. We 

find the label p more convenient for the following 

discussions. 

Let G 1 (w) and G2 (e) be the distribution functions 

for the density of states of manifolds labeled by p 1  

and The statistical lineshape of the set of 

transitions between two manifolds is described by the 

cross-correlation of the two distribution functions: 

I(w,p 1 ,p 2 ) - G()*G(w) 	 (2) 

where * denotes a cross-correlation integral (Fig. 

4.3). 	Explicitly, this is:8 



/ 
I 

pN 

	

p:N-I 	 - 
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• 
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p=Q 
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Figure 4.3 Each Zeean manifold can be described by a 

characteristic distribution of states with a mean 

dipolar energy shift and a dipolar. width. The 

statistical lineshape function for a set of transitions 

between two Zeeman manifolds is a cross-correlation 

between the two distributions. 
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G1(w)*G2(w) - fG 1 (u)G2 (u-w)du. 	 (3) 

The n-quantum spectrum is the 8uperposition of all 

cross-correlations between manifolds that satisfy the 

condition np 2 -p 1 : 

N-n 
I(w,p 1 ,p 2 p 1 +n). 	 (4) 

p1 -0  

The kth_inoinent of the lineshape function I(w,n) is: 

rk jw I(w,n)d 
Mk(n) - 	 . 	 (5) 

fI(w,n)d 

We shall show that the MQ moments can be related 

to the moments of the distributions G(). To do so, 

we list the following properties of cross-correlation 

integrals. 

Let G 1 () and G2 () be two distribution functions 

with normalization constants N 1  and N 2 , centroids at 

2 	2 and A , and variances a 1  and a2  , i.e.: 

fG(w)dw - N. 

- / G(w)d 

I(w-1)2G1(w)dw 	
2 

JG(w)dw 	- 



Let h 	G1 *G2  be the cross-correlation of C 1  with G 2 . 

The corresponding properties of h are: 

N 	fh(w)dw - -N 1 N2 , 

fh(w)dw - 
	

- A
29 

 
fh ( w) d w 

a2 	1(w-A) 2h(w)dw - 	2 + a2 2 . 
fh ( w) d w 

We distinguish the definition of second moment from 

variance (which is measured from the centroid): 

- fw 2h(w)dw2 	2 -a +A = fh()dw 

- 	2 + a2  + (A1 - A2 ). 	 (6) 

Generalizing, it is evident from the binomial 

formula that the kth_moment  as measured from the 

centroid is: 

4 	

- f( W A)kh( w )d w  - 	

r1kr2 
-. 	 [h] = 
	fh(w)dw 	r0 

where the moments of the distribution functions are 

similarly defined: 

= 
fG(w)dw 



The k t, moment in terms of the moments of the 

distributions C 1  and C 2  is given by: 

fw h k ()dw 	
k (k)krEh] M - 

r k 	
fh(w)dw 	r-0 

k 	 r 
- 	(k)kr V  (r) 	[C 	[C]. 

a -o 	
(7) a a 1 r-s 2  

The above expressions are valid for any functions 

describing the distribution of states. The functional 

form enters only in the quantitative values of the 

moments. 

4.2.1 Exact Dynamics 

Consider the schematic MQ pulse sequence of Fig. 

4.1. The expression for the signal intensity of such a 

pulse sequence is given by Eq. (1). Expressed in the 

eigenatates of the Ramiltonian H, this becomes: 

S(t) - 
	

r)Qk 3  ( _ r)exp(_iwJ kt). ,  
3 ,k  

where w 	
- i - wk , 	and 1ij> - &j>. 	Upon Fourierjk  

transforming with respect to t we obtain the frequency 

spectrum: 

S(w) - 	I P k(tk  (-r)w-ua 	 (8) 
j,k 	 3 	3 
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By going off-resonance by the amount Aw or creating an 
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artificial 	offset 	by 	time 	proportional 	phase 

incrementation, 5  the MQ spectrum is separable into 

components of order n: 

N 
S(w) - 	S(w)6(w - 

n-O 

assuming w on the right hand side of the equation 

contains no offset component. The second moments of 

the n-quantum order is then: 

r  
k jk 2 (Pn )jk(Qn )kjd( 4_wj; ) 

M2(n) - 

j,k 

Evaluation of the Fourier coefficients (Pn)jk(Qn)kj  in 

the eigenbasis of the Hamiltonian yields a numerical 

value for M2(n). 

4.2.2 Unique Second Moments Value 

A feature not present in conventional single-

quantum spectra is the dependence of phase on 

preparation as a result of the nature of MQ pulse 

experiments. The Fourier coefficient PjkQkj  [Eq. (8)] 

is complex and thus contains a phase term. Moreover, 

the operators P and Q are functions of r and r, and 

thus so are the transition amplitude and phase. 

Consequently, there is a M 2  value associated with each 

(t, r) value. 

We would like to define an unique M 2  value for 



discrete transition lines as well as for a continuum of 

transition lines. A convenient choice is one in which 

all lines appear in phase and the transition amplitudes 

show their time—averaged value. 9  

Averaging PjkQkjover T 	 in Eq. (8) and 

assuming magnitude spectra yield an "ultimate r 

average" 9 	for each transition amplitude. 	Upon t 

averaging, the inherent transition amplitude is 

realized; thus ultimate T average spectra should be 

used to determine the unique 142  value. 

Experimental 	T 	averages 	are 	done 	by 

superimposing spectra of many randomly chosen 

preparation times. The phasing of each spectrum can be 

accomplished by converting it into a magnitude spectrum 

if lines are resolvable, or incorporating time reversal 

in the MQ pulse sequence.' 0  

The statistical model to be described in the next 

section implicitly assumes no phase factors. 

4.2.3 Statistical Model 

For large spin systems, a complete diagotialization 

of the Ramiltonian for exact dynamics calculations is 

prohibitively cumbersome. For this reason, we turn to 

approximation 	with 	a 	statistical 	model 	for 	a 

qualitative description. 

The statistical model assumes a spin system of no 

apparent symmetry so that all transitions are allowed 
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and are assigned equal intensity. 	The assumption of 

all transitions being allowed is embodied in the 

construction of one distribution function describing 

the density of states for each Zeeman manifold, 

regardless of their classification according to the 

irreducible representations of the symmetry group. The 

equality of transition intensity appears in the 

resulting lineshape of the set of transitions between 

two manifolds. By taking the cross-correlation between 

two density of states functions, each transition is 

assigned unit intensity; that is, the cross-correlation 

function counts the number of transitions per frequency 

bandwidth. Any further intensity specification would 

require exact dynamics treatment. 

Our focus will be on the broadening of resonance 

lines by the dipolar Hamiltonian. Derivation of MQ 

second moments involves first evaluating the dipolar 

mean and variance of each Zeemati manifold. Given these 

two items, a repres 	ive distribut.on of states is 

constructed for each - man manifold. 	For a complete 

description of the distribution of states, higher 

moments should be included. However, for the second 

moments of n-quantum orders, only the second moments of 

the distribution of states are necessary [cf. Eq. 

(6)]. The second moment of each MQ order is then found 

by taking the sum of cross-correlations between 

appropriate Zeeman manifolds. 



4.2.3.1 Dipolar Mean and Variance of a Zeeman manifold 

The dipolar mean and variance of a p-manifold is 

given by the following expectation values: 

<H D p 	p 	D 
> - Tr (pE } 	 (9) 

<a 2> 
- <a >2 m Tr {a 2} 

- Tr 2 ( PH} 	(.10) D p 	Dp 	p 	D 	p 	D  

The bracket < >, denotes the ensemble average over the 

p-manifold, Tr{ } is the trace over the states in the 

p-manifold, p here is the weighting function of these 

states, and HD  is the secular part of the dipole-dipole 

Hamiltonian expressed in units of 

- 	 di {IjI 	- +( 1+i~ + 	 (11) 
i <j 

The d 1 ts (rad/sec) are the dipolar coupling constants 

between spin i and spin j: 

dij 
- 12 h(l3 COs  

r jj  

The spin operators 1zj' I, and 	are the zth 

component, the raising operator, and the lowering 

operator of spin i. 

Giving equal weight to each state, as is proper, p 

must be the reciprocal of the number of states. The 

number of states in the p-manifold is given by 
(), 

the 

74 



9 

combinatorial of N with p. 

(10) become: 

, 
<H > 	)-1 Tr{HD}, D 	I

N 
p 	p 

With this, Eqs. (9) and 

(12) 
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<H 2> - <H > 2 	(N)_lTr {HD2} - (N)•2T2{H} 	(13) D p 	Dp 	p 	p 

The evaluation of Tr 
p D 	 D 

CU ) and Tr {R 2} involves p 

combinatorial arguments. 	In evaluating these traces, 

it is convenient to define a quantity f(p) to be the 

probability that a spin pair will be antiparallel for a 

given state in the p-manifold. The number of 

antiparallel spin pairs out of N spins is p(N - p). 

Thus, f(p) is just this number divided by the number of 

pairs: 

f(p) 
p(N 

(14) 
() 

From the 	form of 	Eq. 	(14), f(p) 	is 	also 	the probability 

that a 	state 	in 	the 	p-manifold will 	have 	a given 	spin 

pair (i,j) 	antiparallel with 	respect 	to 	each 	other. 

The explicit 	evaluations of 	Tr 	CR 	} 	and 	Tr 	CR 2} 	
are 

	

D 	 D p p 

left to appen4ices 4.A and 4.B. 	The 	results are quoted 

here: 

Tr CE } - (N )(1-2f) 
p D 

i <j 
(15) 

Tr CR 2} 
JC(1+f)a + (1-2f)b + (1-4fg)c}, (16) pD 	p 



where 

I 	2 a - 

b - 	 d(d 	+dkj). 16 
i<j k*i,j 

c - 
1

dijdi.j.. 	(i*i, j*j) 
i<j i .ø <j 

(N-p-1)(N-p-2) + (p-1)(p-2) g - 
	 (N-2)(N-3) 

and f is defined in Eq. (14). We mention here that the 

number of terms in the summations a, b and c are 

2(N-2)() and (2)(), respectively, and that the 

total number of terms in a, b and c is N 2  

Combining Eqs. (12) and (13) with (15) and (16) 

yields for the p-manifold: 

h(p) - (1-2f) 
	

(17) 
i <j 

- f(5-4f)a + 2f(1-2f)b + 4f(1-f-g)c. 	(18) 

For brevity of notation, we have defined 

h(p) - <HD>p 

02(p) 	<HD 2 > p  - <HD> p 2 . 

Written in this form, it is apparent that the dipolar 

shift h(p) [Eq. (17)] is directly proportional to the 
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average dipolar coupling. 

For the special case of r1, i.e. all couplings 

are the same, these quantities reduce to: 

h(p) - (.)[() - 2p(N - 

2 	d2 
a (p) - (.) p(N- p). 

where d is the unique coupling constant. That is, in 

this limit, the width of a Zeeman manifold is 

proportional to the square root of the number of 

antiparallel spins. 

The features of the dipolar structure of the 

energy level diagram can be examined. By 

differentiating a 2 (p) with respect to p, the extrema of 

02 (p) can be found. 	Equation (18) can be factored as 

fF(p), where F(p) is quadratic in p. 	One extremum is 

found from df/dp - 0, which yields a root at p - N/2 

(or the m-O manifold for N even). The other two roots 

can be obtained from solving dF/dp - 0. These roots, 

which can be either real or complex, occur in pairs 

since F(p) is symmetric about p - N/2. 

The behavior of h(p) and a(p) versus p for ten 

randomly-generated sets of couplings between 30 spins 

of 1-1/2 is illustrated in Fig. 4.4(a) for r1 and in 

Fig. 4.4(b) for r0. 	These plots were generated with 

the computer programs listed in appendix 4.C. 	They 

show that the extreme states are shifted by the largest 
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Figure 4.4 	The dependence on p of the mean dipolar 

shift h(p) and the standard deviation a(p) for ten 

randomly generated 30-spin systems in the limit of (a) 

r1, with couplings in the range 0.0 - 1.0 kHz; (b) 

r=0, with couplings in the range -1.0 - 1.0 kHz. In 

(a), the top of the scale is 5.7 kHz, and in (b) is 3.8 

kRz. 
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amount, and the p-N/2 manifold is shifted slightly in 

the opposite direction. They also show that the width 

of the distributions isthe largest at pN/2. 

One observes that the two cases have distinctly 

different features. For r1, the width of the 

distribution is much smaller than the dipolar shift. 

For r-O, ideally there is no dipolar shift. Also, 

given the same upper limit on the magnitude of the 

couplings, the width is generally larger for r-1 than 

for r-O. These features dictate the behavior of MQ 

second moments. 

4.2.3.2 Multiple-Quantum Second Moments 

For each Zeeman manifold, a distribution function 

is constructed from h(p) and 

- (Jg(w). 	 (19) 
P i  

The normalized function g j (w) is defined to have the 

following properties: 

fG(w)dw - (N )fg(w)dw - (N 
pi 	 piJ 

fwg 1 (w)dw 

f(w-A) 2g(w)dw All  a2 () 

Evaluating the cross-correlation integral of Eq. 

(2) using Eq. (19), and summing over the manifolds 
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yields the final expression of the n-quantum second 

moments: 

N N N2 (n) - 	
N-n 

 ( 	)( 	)(a
2 
 (p 1 ) + a2 (p 2 ) + [h(p 1 )-h(p 2 )J 2 J 

p1-0 p
1  p2  

(20) 

where h(p) and 2 (p) are given in Eqs. (17) and (18). 

Since each transition is given unit intensity, the 

normalization constant Z is Just the total number of n-

quantum trans iti ons: (U) 

N-n 
2 - fI(,n)dc - 	(N )(N j 

p1 p 2  

2N 
(N 1 (N-n' 	 n 

-I! 	 (21) 11 	2N 
L2 [

(N ) - 2N1, 	
n0 

Higher moments are readily generalized using Eq.(7) and 

evaluating Tr {HD r }, for r-0,1,2,...k. 

Shown in Fig. 4.5 are the M 2  values for the same 

set of ten random spin systems as in Fig. 4.4. Figure 

4.6 shows the decomposition into the two contributing 

terms. 	As is evident, the N 2  behavior depends almost 

exclusively on one term or the other. 	For r1 [Fig. 

4.6(a)], the dominant contribution is from the mean 

displacements a 2 - [h(p 1 )-h(p 2 )1 2 . For r0 (Fig. 

4.6(b)], it is the widths of the lineshape functions a 2  

- a2(p1) + 02 (p 2 ) that is dominant. From the dipolar 
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Figure 4.5 Second moments versus the number of quanta 

n for the same ten systems in the limit (a) r1, and 

(b) r0. The top of the scale is 240 kHz 2  in (a) and 

29 kHz 2  in (b). 
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Figure 4.6 	Contributions to the second moments. 	The 
quantity A2  is the square of the mean shift difference 
(Eh(p1) — h(p 2 )1 2 ) contribution, and a 2  is the width 
(a2 (p 1 ) + contribution. Note how different 

contributions dominate in the two cases. 
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structure of the energy level diagram, as constructed 

from Figs. 4.4(a) and 4.4(b), these behaviors are 

obvious. 

For r-]., the mean displacement of an rn-manifold is 

much greater than its width and thus is the dominant 

contributor. From this and the fact that the higher 

quantum orders probe only the more extreme states 

(which differ little in mean dipolar shift), we expect 

the M2.of high quantum orders to be small. For the 

lower quantum orders, the sampling is between adjacent 

manifolds (which again do not differ much in mean 

dipolar shift). Thug, we expect the M 2  of low quantum 

orders to also be small. For the orders that connect 

p-N/2 to pO manifolds, the difference in mean dipolar 

shift is at its largest, and we expect these orders 

(nN/2) to have the largest M 2 . 

For r-O, the opposite is true. Since the dipolar 

shift is ideally zero for all manifolds, only the 

variances can contribute. 	The variances are roughly 

the same except for the more extreme states. 	This 

8uggests that M 2  should remain roughly constant for the 

lower quantum orders and then drop to zero at nN. 

Figure 4.5(a) shows that for r1 the maximum 

occurs off center toward higher n. 	This is due to a 

third competing factor: the normalization constant. 

Since the number of transitions decreases with n, the 

maximum N 2 Is driven toward higher n. 
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To summarize, the three competing factors in 

determining the features of 112  are: 

the difference in mean displacements between 

transition manifolds. 

the 	distribution 	widths 	of 	transition 

manifolds. 

the normalization constant. 

The first term never contributes to the zero-quantum 

order and drives maximum 112 toward nN/2. The second 

-2 term, which is directly proportional to d 	, drives 

maximum 112 towards u'O. 	The smaller the average 

coupling d is, the smaller 112  is. 	Finally, the third 

term favors higher n. 

The plots in Pigs. 4.5 and 4.6 were generated with 

the same programs listed in appendix 4.C. 

4.3 COMPARISON OF EXPERIMENT WITH COMPUTER SIMULATIONS 

AND STATISTICAL MODEL 

We show examples of systems exhibiting both 

behaviors predicted by the statistical model. 

Experimental results can be compared against exact 

dynamics calculations of ultimate r averaged 

spectra 12 	and the statistical model using the 

experimental coupling constants. 

The rO behavior is exhibited by n-hexane-d 6 , with 

the methyl positions deuterated, oriented in a nematic 

liquid crystal. It is an 8-spin system: only 
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intramolecular couplings are nonzero since rapid 

translational diffusion of solutes in a liquid crystal 

averages to zero intermolecular couplings. 	The ratio 

of the average 1
H, dipolar coupling to the rms value is 

measured to be r0.12. 	Shown in Fig. 4.7 are the 

values of a r-averaged MQ magnitude spectrum of this 

system. 3 	The t values range from 9.0 - 11.5 msec, 

in increments of 0.5 msec. A nonselective three-pulse 

sec 	ce was used. 	The largest second moments occur 

flea: 	-3, in agreement with the statistical model. 

The other extreme is illustrated in the 

experimental second moments versus n of polycrystalline 

adamantane, shown in Fig. 4.8. The t values range from 

244.8 - 448.8 Itsec, in increments of 40.8 isec. The 

transition lines, are overlapping, and thus a time-

reversal (even-selective) pulse sequence was used to 

obtain these spectra. 00  Since the sample is a 

powder, it is hard to assign a single r value to the 

spin system. Furthermore, there are an Avogadro's 

number of coupled spins so the system size is 

essentially infinite. These experiments show that M 2  

increases with n up to 16-quantum, indicating that r>0 

and the number of spins involved is indeed very large. 

4.4 CONCLUSION 

Van Vieck's moments formula for single-quantum 

spectra can be easily extended for MQ spectra. In the 
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Figure. 4.7 	Results of n—hexane--d 6  oriented in a 

nematic liquid crystal: experimental values (solid 

dots), exact dynamics calculated ultimate t average M 2  

values (solid line), and statistical M 2  values versus n 

(dashed line). The experimental MQ spectrum used is 

the average of six magnitude spectra with t values 

ranging from 9.0 - 11.5 msec. 
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Figure 4.8 	The MQ M 2  values Lof  solid adamantane 

powder. The spectrum used is the average of 5 spectra 

with preparation times ranging from 244.8 - 448.8 usec. 



process of generalization, we find the dependence of M 2  

on the number of quanta. One useful consequence of 

this is that one can choose to observe the broader 

orders that are more sensitive to molecular dynamics 

than the conventional single-quantum order. 

Using a statistical assumption, the second moments 

of MQ orders are rigorously evaluated. The statistical 

model reveals that two distinct behaviors can occur in 

1(2 values as a function of n. Both behaviors have been 

shown to exist experimentally. The experimental 

results are in accord with statistical model 

predictions and with exact dynamics calculations. The 

agreement of the n-hexane-d 6  NQ spectra with the 

statistical model demonstrates that even for a small 8-

spin system with symmetry (C2h),  the statistical model 

predicts the correct general 112  behavior. This 

indicates that the manifolds of states grouped 

according to the irreducible representations must have 

distributions similar to those of a random spin 

system. In combination, the two systems demonstrate 

that a statistical second moments treatment is 

appropriate for small spin systems as well as for large 

spin systems. 
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APPENDIX 4.A 

Evaluation of TrP{HD}  for the p-manifold 

Since the trace is independent of the choice of 

representation, the simple product basis set will be 

used. 	Henceforth all states will be referred to in 

this basis set. 	Only the operator I zi i zj of  RD is 

diagonal and contributes to the trace. Thus, 

(N )  

Tr {HD }  - 	<kIRDIk> p 	k-i 

N 
N 

d 	<ku 	I 	1k>. 	(A.1) 
k-i i<j ii 	zi zj 

Exchanging the order of the two summations., which are 

done independently, we sum over the states first. 

Using the relation: 

(i,j) are 	allel in 1k> 

I<kIIiIjIk> - - 	
(i,j) are antiparallel in 1k> 

(A.2) 

the summation over the states k produces: 

<kjI z I 	1k> - 1[S(N,p) - O(N,p)J, 	(A.3) 

	

k 	i zj 

where S(N,p) is defined as the number of states in the 

p-manifold that has spin pair (i,j) parallel, and 

O(N,p) 	is 	the number of 	states 	that has 	(i,j) 
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antiparal].el. 	These two quantities are determined by 

combinatorial arguments and are given by: 

	

S(N,p) - ( N-2 
 ) + N-2 
	

(A.4) 

O(N,p) - (N p(N—p) 
N 	• 	 (A.5) 

Conservation of states requires: 

S(N,p) + O(N,p) 
- ( n

N

). 

Substituting Eqs. (A.3) - (A.5) in Eq. (A.1) yields 

TrP CHD} 	()[() - 2p(N - 	 (A.6) 

where 	- 	 d 	is 	the 	average 	dipolar 
i <j 

coupling. 

J 



APPENDIX 4.3 

Evaluation of Tr 
p D {H 

2 1 for the p-manifold 

As in appendix A, we use the simple product basis 

set in evaluating Tr{HD2}. Written in the form of 

summation over states, Tr{HD}  can be separated into 

diagonal and off-diagonal elements of HD: 

Tr {HD 2 } - <kIHDIk><ktH D tk )  + 	<kIHDjl><ltEDIk> , ( 3 . 1 ) 
k,l 

where the prime on the second summation indicates that 

the 1-k term is excluded. The first term is the sum of 

squares of the diagonal elements of HD , and the second 

term 	is the corresponding 	sum for 	off-diagonal 

elements. From the 	form of 	HDI 	we recognize 	that 	the 

operator 1zj1zj  is purely diagonal and the flip-flop 

operator (I+ I. + I..I+ ) is purely off-diagonal. 

This implies that only I ziizj contributes to the first 

summation, and only + contributes to 

the second summation in Eq. (B.1): 

N 

Tr {HD 2 } - 	
ij 	

djjdij<kIjIjIk><kIIjIjlk> 

+.j--d jj dj.. j <kII +j I..j +I_j I +j Il> 
k,l i<j i<j 
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x<11I 1
0

I 	 .1k>. (3.2) 
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1. Consider for now the first summation of Eq. 

(B.2). This term is more easily evaluated by 

exchanging the order of summations over states and 

spins, i.e. 

(N) 

I<klH D  lk><k  IRD  jk> - 
N 	N 

•i-k dijdj.j.Q(NP) i<j i_<i_ 

where 

(N )  

Q(N,p) 	16 1 <kJI 
zi zj 

I 	k><kII.I.lk>. 	(3.3) 

The 	sum Q(N,p) has both positive and negative 

contributions. The summand in Q(N,p) is positive when 

<kIIiIjIk> 	and 	<kIIi..IjIk> 	are 	both 	either 

positive (+1/4) or negative (-1/4) (see Eq. (A.2)] and 

is negative when <kIIjIjIk>  and  <kII 2 j.Ij_Ik> are 

opposite in sign. Performing the summation over states 

k of Eq. (3.3) yields: 

	

Q(N,p) - A - B. 	 (B.4) 

Here A is defined to be the number of states within the 

p-manifold that given two spin pairs (i,j) and 

(i,j ), have both pairs parallel in spin or both pairs 

antiparallel in spin. B is defined to be the number of 

states within the p-manifold that have one spin pair 

parallel in spin and the other antiparallel in spin. 



Conservation of states requires: 

A + B - (), 

implying that Eq. (B.4) becomes: 

	

Q(N,p) - (N) - 2B. 	 (B.5) 

Thus it is only necessary to evaluate B. 	Three 

cases can be distinguished: 

(i,j)  

(i,j) and (i,j) share one common spin, 

(i,j) and (i,j) share no common spin. 

We will treat each case separately. 

Case (a): B 	0, by definition. 

Case (b): Suppose i,j,k are the spins of interest, 

where k - i or j.  We divide the N spin system into 

two parts: 

a 3-spin system consisting of spins i,j,k, and 

a (N-3)--spin system consisting of the rest of 

the spins. 

Division of the system facilitates the counting 

argument. We designate the number of spins that are 

parallel to the magnetic field in the first spin 

subsystem by p r'  and likewise the same for p 5  in the 

second spin subsystem. Note that conservation of spins 

requires Pr  + p5 
- 

p. We also let Br  and B 9  have 
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analogous ieanings in the subsystems as B does in the 

total system [Eq. (B.4)]. 

For the 3-spin system, 

B 

	

0, 	
r0'3 

-{ r 	2, 	
r''2 • 
	 (B.6) 

To treat the (N-3)-spin system, we utilize the facts 

that P. - p - and that it is the product of B r and 

B 5  that is important, i.e.: 

B 	I B B. 
rs 

P r  

For p r 0 ' 3 ' 3r0 and the contribution to B is zero 

regardless of B. We thus will not evaluate B. for 

p 5 -p,p-3. For p 3 -p-1,p-2, the contribution is nonzero, 

and 

(N_3) 	
p -p-i 

B 
 .{

pi' 	5 

N_3j 	
p -p -2  p-2 ' 	a 

Therefore,  

B - 2(N_3) + 2 ( P _21 
N-) )  

- 

Case (c): 	Evaluation of B here involves the same 

concept as in case (b). 	Since (i,j) and (i,j) are 

four distinct spins, we divide the N spin system into a 
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4-spin system and a (N-4) spin system. 	The results 

are: 
0, 

Br -- (), 	r1'3 

1N4 	
p -p-i ftp-i'' 	 S 

B 
	1N-41 	 p -p -3  'p -3I ' 	 S 

Therefore, 

B 
(4\(N4 + (4(N4 

- 	 ii 
'i J'p-i 	 J¼p_3 

2fg (N ),  

whe re 

- (N-p-1)(N-p-2) +  
g 	 (N-2)(N-3) 	 . 	(B.7)    

In tabulated form, we have for expressions of B: 

B 

case (a) 	 0 

case (b) 	
f(N) 

case (c) 	
2fg(N) 

The sum Q(N,p) for each of these cases can be found 

with Eq. (3.5). 

The final form of the first summation term is: 

(N )  

I<klHDjk><kIHDIk> - ( N)L a+ (i_2f)b + (i_4f g ) c ] ,  (3.8) 
p 

where 



N 
1 

a 
 - -- 

N 	N 
b 

- 

  16 	 d(d 	+ dkj)P 
i<j k*i,j 

N 	N 
d 	d. .. 

i<j i_<i 	ii i j 	
, 	 (i~i', j ~j') 

are merely Constants, and f and g are defined in Eqs. 

(14) and (B.7). 

2. To evaluate the second summation in Eq. (3.2), 

we realize that for a given pair of states 1k> and Ii>, 

at most one of the terms and will give a 

nonzero matrix element. Also, if one spin pair flip-

flop term takes Il> into k>, then a different spin 

pair flip—flop term cannot take the same state 11> into 

1k>. That is 

(B.9) 

Furthermore, for a given state 1k), Eq. (3.9) is 

satisfied for only one state 1>. Thus summation over 

1 of I<kII+ I... + I_jI+Il>J 2  gives: 

(i,j) are parallel in 1k> 
1, (i,j) are antiparallel in Ik> 

(3. 10) 

Performing the summation over k of Eq. (3.10) produces: 

- 
O(N,p), 	(B.11) 

ki 



where O(N,p) is defined in appendix A, Eq. (A.5). 

Making use of Eqs. (B.9) and (B.11) and the 

freedom of exchanging the order of summations, the 

second summation term is: 

N 	
(N) 

<kIHD Il><lIR D Ik> - 	i+d1 	1 - 1<klI I +1 I 	Ii>1 2  
k 1 	 i<j 	k,1 	- .j 	i j 

	

N 	
12 - 	: Thd44 O(N,p) 

-J 

)fa. 
	

(B.12) 
p 

Combining the two summations [Eqs. (8.8) and 

(B.12)], we have as our final expression: 

TrP{HD2} 	(){(1+f)a + (1-2f)b + (1-4fg)c}, 	(B.13) 
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APPENDIX 4.0 

Computer listings of programs MOMENTS, PLOTI, and 

PLOT2 

These programs were written for use on the VAX/VMS 

computer system. 

MOMENTS calculates the statistical dipolar second 

moments of each multiple-quantum order. It requires as 

inputs the number of spins and the dipolar coupling 

constants. An option is provided for generating random 

couplings, given a range of couplings and the number of 

spins. The program also has the capability of running 

consecutively,  up to seven different Systems having the 

same number of spins. 

The second moments for the multiple-quantum orders 

are gathered in the datafile PLOT1.DA. If the mean 

dipolar shifts and standard deviations for the Zeeman 

manifolds are also desired as outputs, the datafile 

PLOT2.DA is created. 

unning PLOTI and PLOT2 will allow the plotting of 

the data arrays PLOT1.DA and PLOT2.DA, respectively, on 

the Tektronix 4014 and 4662 plotters. 

The plotting routines were supplied by Jim 

Murdcz 
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ro;rr1 ;ro:ts 
C 
C 	 rbts çrorom caLcilates tte iultiple—quantu 
c 	seconi trorneots for a spin system containing u; 
c 	to La spin—l/'s. l.e calcUation is based on  
c 	a statistical moel, •bicb d1sreards syrrnetry. 
C 

airnesion (49) ,var(l1),s4var(ll),h(l€1) 
integer ;,pZ 
real motr(1il),morrU11),rorn2(101),orm 

C 

f(p)  zp'(-p  
ranu(J)-.raa(J) - 

C 
o;en(iu1ti2l,namez'plotl.da',type'ned') 
o 

C 

12 type 	1 
forrnat(//,' enter tce :umter of spins: 
accept ',n 
Qafl+fl 
31.1 

C 
typa 
forrat(/,' 	t20. man,j 	'.13,' soin 	systems s--oull be trted  
accept •.nsets 

C 
te 	tic  
forrrat(/. '  SOUid te 	.idtn and 	the mean contribution be plotted'! 

' 	 in aitton 	to 	tZe 	second 	Iroment 7 	(2*no,lsyesJ ',) 
acc.ept 	O,isep 
mrrznl 
on2Mnl 
lf(isep 	.eq.. 	1) 	rrrn1 
wrtte(l,?1) 	nsets,rm 
write(,?il) 	nsets,nn 

C 

e. o 	4cc 	i5€ta1,flsáts 
tt(nsets 	.,zt. 	1) 	type 	14,n,iset 

:14 torrat(//9j4,' 	SFIN 	SYSTi?'! 	J',13,' 	.....',/) 
C 

type 
forrat(/,' do you .ant 	randoir couplings? (&snc,l2yes) 	',) 
accept 	,icr.oice 
tf(icnoice 	.eq. 	1) 	gc 	to 	.ø 

C 
type 	3 
forat(//,' enter te dpo1ar coupliag 	constants in 	bz ..... '.1) 
13 20 	jai,n-1 
do ZO ,3i.1,n. 
gza(i-1) 	- i'(i•1)/2 	$ 	J 
tipe 	Z4 

: 

accept 
continue 
go to 59 

C 

tye 
format(//,' enter a rnaxiirum iragnitude for eou;lings in bz: 
accept ,diai 
type 50t 

26 

	

	forirat' sbould al couplings be positive 7 (e*no,1yes) ',$) 
accept °,ipos 
type 	? 



fcrrratV eater a rado'tztg Integer: ',$) 
accent *,jr. 
jrgzjr 

C 
to ø t1,n-1 
o 46 jt.1,ii 

- 1'(I1)/2 • 
( Ac )wdm ax 4 ran:(J r) 

If(lpos .e. 1) a()ats(d(i)) 
4Z 	contnua 
C 
ti 	3copscamb(n.) 

ty.e :, 3COUp 
fcrrit(/,' do you .ant the ,t,' couplings prtnte out? ',$) 
accpt ",tpriat 

C 
C 	 compute te io1ar variables t,a,b 
C 

a aØ • 

1a .0 
t -a • 

O 420 101,3-1 
o 22C J1.1,n 

.3 &d .1i Sal.n1 
c 29C ll.a 

- t'(I.1)/ • 
- i(l)i2 • 1 

1 	• 
40 to 144 
tt • 
aa • 
coatinue 
tt/4 
a s / 

C 
C 

40 4tZ 7a• 

C 
C 	 cCpute te normiiat1on factor 
C 

ii(r .cq. C) noru-cn 	(nZ,n) - 
tf( 	.. 	) norracomc(nZ,nm) 

C 
c 	cmpue te variance and the maan of te Zeeman manhfo1s 
C 

13 
p I-p .1 
var(p1)-t(;) 	((-f;))*a • (2-4f(p))"b • 4I(f(p)4ø 

a(pl )S(l-."f(p) )'t 
S ze 	coatln.e 
C 
c 	cGpute tce secn moment 
C 

from(n1 )-3.ô 
monl (ml ) . 
rosr.2(r1 )- . 
to 4Cuô ;,ciT 

;1p•l 



p2'pl'm 
irom1(rr1)=moti1(m1) + 
tom2(m1)amom(ai1) • co(,p)comb(n,m+p)*(b(;2)—(p1))'412/norm 

4e 	continue 
mom(ni) a rrosrj(ml) + ,r01T2(r,1) 

C 
4 iC 	continue 
C 
C 

print 	1,3 

foriiat(1n1//' seconi rorreots for a ,13,' splo system ..... . 
tf(tceoic .eg. 1) €o  to iø 
prtt oZ 
forra;(x, coup1tns enterei by hani') 
o to 4?0 

4 	a1naairz 
tf(ipos .eq. 1) 11O..2 
print U4, d1w,dtrai 

ran,za of ra:dorn1 -j—cosen coup1tn 	',f.2, 
1 	oz to 	,f.2, hz) 

.:1.At 	0i,JrtO 
crTaL(// 9 :z,'1nitta1 ran:omtijn integer a 

C 
472 	if(tprint .eq. e) go tc 4c0 

prtt 
fornat(///i,' te cr-u -,ling cnnstants in nz 

o 47 iaj,j 

o 47 9  jaj+, 
La*(t-1J - i(i.1)/2 + 
print o.d, i,J,d() 

zi 
47n 	continue 
C 
C 
4nu. print 67 

fctffat/////,flZ, •itA',1Qz,'rean'/' rn,az,'secon tvoments', 
1 	12z.'ratio'.'contributon'.;.'contrtbuttan'/, 
1 	—rx,1,'— 	 ----- 	 - 

Ia 

rt,nomzrrom(nh)/cm(Z) 
print 	o, in,nom(m1),ratrom,rrom1(m1),mo2(r1) 

continue 
C 

?rtnt Oh 
11 	forirat(lch/////' 	,12z,'Iitb',16x,'ratia',4x,'meaa'/ 

1 	' --•' .h1x,( -') ,1z , ' '.341, '---',) 
o 47'? ;Ø,n 

p ip .1 
sqvr( p1 	sqr t( var( p1.) 
ratvar-sqvar(pl)/sqr:  
rint o1, p,sqvar(p,ratvar,n(p1) 

477 	continue 
C 
C 
c 	create data arrays for plotting ..... 
C 

write(1,70) (moir(i),ial,nl) 
if(tsep.eq.i) rrite(i,72) (mom1(i),1a1,n1),(Tom2(i),ia1,n1) 
write(,7e2) (sqvar(1).i-1,nx) 
wrtte(,02)  
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C 
4 zic3 	continue 
C 

type 
fcriat(//,' do you sant anotber spin systen ? (Ozno,1zyes) ',S) accept ,ispi 
if(ispin .. 1) go  to 12 

C 
print ela 
fGrtiat(1i) 

C 
7e1 	forrt(j) 

fcrrnat(ei:.e) 
C 
49 	Ciose(unitsl) 

Cos(unjta2) 
eal 

C 
C 
C 
C 
C 

function cotib(n,) 
C 
c 	:o;utes the otnomtal coefficient for n talngs taen 
C 	 ir at a tLcT 
C 

C OsrO 
1L(m .le. ) return 
ti(IT .e. n) return 

tf(,r .at. n/i) nm-n—m 
ccb -  
if(m .eq. 1) return 

o 2 tai,n1 

q q d$ Lrj ) 

ifUnoa(1,14) .ae. 13) go to 20 
COfl bcogT 0/ .,.t 

ccntjnue 
comb-comc/qi 
return 
e n 
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C 
C 

C 

C 

1 

C 

C 

521 

C 

12 
C 
22 

prc.raz ploU 

a ?ro.raa for plotting cq -Ja117—spaced data poicts on the 
Tetroaiz iv,14 and 42 

itnension dat(1,102i) , az(10),tpos(1O),ine(1O) ,xy(4), 
corr(') 
caracter 38 word(.3) 

•crl(1)-'ensemtle' 
.orl(2). 'ensen tie' 
.ora(.3)z'2ata set' 

tyne 521 
format(/,' enter plotter used: O= 4014 9  1= 4362 
accept •,ipi 
Jpø 
if(ipl .ne. 2) J;2 

tifle z02. _ 	- 
foriat(/,' in. wtic 	plot file is the data ? ',$) 
acceDt O ,ifl 

call .ieile(';1ot',ifl,1) 

tyne 52.3 
forrat(/,' ho4 many data ENS'LZS 7 
accept ,ens 

type 505 
format(/,' waicn units 10 you prefer - Inches () or cm ; 
'(1) 7 ',$ 

accept ,tun 

corr(1)a.E465 
corr()s. 
corr(.3)z0.222 
corr (4 

xy(1. )a.3 

xy(4 )z.: 

if(lun .. 	) go to Zt 
do 12 121,4 
zy(i)axy(i) 	2.54 

call rstrt(4214,2) 
call asnpt() 
call clip 
cail incraes 

2o 42 len-1,nens 

type soe, ten 
format(//,' data ensemhle ',12,' .....') 

redd(1,€2) nsets,np 
reaa(1,0) ((dat(t,J), j-t,n), 1-1,nsets) 

type SOE, nsets 
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C 

522 

C 

C 

C 

1 

C 

C 

C 

C 

C 

526 
C 

C 



for.Tat(/,t?, data SLT$ to tots ensemble') 

104 

C 
C 
21 

1 

C 
22 

C 

C 

11 
C 

12 
1 

'3 

I 

14 
1 

C 

C 

C 

26 

27 

29 
C 

ipsl 
if(nsets .ec. i) 0 to 22 
type 
format(/,.!Z,'enteT the destre plottiflg style .....',/, 

• all data sets on the same pae',/. 
separate pae5 but consistent scaling',!, 

Ez,'3 a separate paes and independent scaling 
accept ,ips 

if(tps .lt. 3) crpst 
if(ips .to. 3) eresn5etS 

do 	Z trepi,nrepS 

if(orep! .t. 1) type 511, trep 
fraat(/,31,'44ta set ',il.

S  

tje l2. np 
forrnat(/,41,'nOrtZofltal scaling for your',15,' data points', 

type 	13 
forflat(/,X.'enter 	Lod and kieb point limits 	

to 	be',!, 

1531aYed 	: 	(for all points, 	enter 2,0) 

accept 	',Lo,nni 
if(nlo 	.eq. 	0) 	nlot 
tf(ii 	.eo. 	) 	nnlao; 
jf(nct 	•1. 	nb) 	o 	to 23 

- nb 
type z14. in desired plot utdth 	your preferred'. fcrrat(/,Z,'oter 	tac 

S,) J,z,'u1tS 	: 	(',f.l.'ma1i..) 
accept 	,LXI 
tf(in 	.eq. 	1) 	IZISIII / 
zz1z12 	/ 	corr(j't) 

azaciLmosets 
tf(tps .e. 3) nac1treP 

do Z isairep,onaCZ 
ipos (is 
te4(tS) 

sTaLa. 

do 30 tsatrp,Dac. 
do Zb i;*obo.not 
tf(dat(ts,t;) .le. .201) o to 26 
i;os (is )1 
Jpost 
if(dat(ts.iP) .e. -.221) go to 27 
tnea(is )-t 
jaegal 

COOt inue 
5lTazaal7aI1(dmaL(ts) ,sIaZ) 
continue 

type 



forrrt(//,41.,'VertiCa1 scaling  
C 

if(ips .e. 	o to jz5 
prazasmax 
lposzJpos 

go to ø 
4 	pxs.a(ir) 

tposipos( trep) 
ceje  

C 
itop 
ibot 
if(dae. .ne. 0) go to 55 
tyDe zlE 

5 115 	forna1(/,5x,'your data points are all positive. do you',!, 
1 	X,'.dnt toe negative naif-plane suppressed 2 (0=oo,1ayes) 
2 $) 

accept ,itop 
if(.;os .ne. lei 	o to do 
type 31'? 

!17 	forifat(/,!1,'your data points are all negative. do you',!, 
1 	x,'.anL toe positive half-plane sLopressed 2 (Zno,iyes) '• 
2 	5) 

accept ,iDot 
C 

type tie, pax 
518 	fcrma.t(/.5,'te beefiest data point has abs. val.ie  

t:.oe !1 
51.4 	forra.t(/,Si,'for autoattc full-value scalinz, enter 

I 	/,1,'otterdise enter the n"ber which corr!s;o:ds 
äz,'rnaziuum ranitude on toe plot: 	',$) 
accept ,fv 
if(fv .c. 0.0) yraxax 
if(fv .lt. ..) ynaxfv 

c 
t.ype 	ø, zijp2) 
forat(/,5x, enter the desired plot height in your preferred', 

1 	/,ãx,'uaits : 	(',f..i,' raxjrnum) 	',S) 
accept •,yyy 
if(tun .C4. 1) yyjYYy / 2.54 
,j yyayyy / corr(jpZ) 
ytop/yy 

C 
tf(tpsne. 2) type 521 

521 	forat(/,5,'snould a y-azis be drawn 2 (=no,lyes) ',S) 
tf(ips .eq. 2) type 522 

a y-axis be drawn  
1 	cx,'2yes, but only on the first page) ',5) 

a:cept *,ja 
C 	 - 

if(jp .. 	o to 7€ 
type 525. 	ips) 
foriat(/i. 	enter 1 if you are ready to plot, Z if you',!, 

1 	4x,'wan: 	sLi; La 	',a,', or -1 if you want to 3uit 	'.5) 
accept 	tce 
it(ichoice .eq. €) go to 33 
if(ictoice .lt. 	) go to 490 

C 
C 

7€ 	npaes1 
if(ips .aq. 2) opagesnsets 

C 

105 



do 12 1pael,npaêeS 
C 

tf(tps at. 2) go to 72 
type 52, tpage 

2ó 	fortrat/.x,'ata set ',t2, -- plot it 7? (ø'zo,t-yes) ',$) 
accept .te° 
tf(tgo .e. 2) ,o to 12 

C 
72 	call 3fiwpa; 

ilon10 

tf(ttop .e. icot) call atndow(zlo,zht,7!ax,yrna2) 
lf(ttop .eq. 1) call d1daw(zlo,zet,2.ø,7"ax) 
lf(tbot .q. 1) cali .tado(xlo,zt,—yMaz.ø.ø) 
call v.ort(.2,zxz ,2.l2,ytop) 

(iax .eq. 	) &a to 7 5  
tt((lz .eç. 2) .ad. U;age .t. i)) go to 
yzt* ymaz 	(1 - Loot) 
yaxba—ynaI ' (1 - Lto) 
call move(xlo,ja.zt) 
call tra.(zlo,ja.zb) 
call rroe(lo,.a) 
c.siJ ira.(&t,.) 

c 
zltaesal 
tf(tps .aq. 1) itnessets 

C 
62 	do 12e tl1ne-1,ltes 

traxe(trep, t;a&e, tltoe) 
call movd(zlo,.iat(lLT,lo)) 
do ;ø iMop 
call dra.z1o.,t(tn,n1oi)) 
call Ersen 

lee 	cottue 

C 
type .32 
fcrat(/,lz,'O..A 	72 (0 o,Layes,2ew style 1,', 

1':!nu ,!v ensemcle,imqultj 
accept ,ton 
tf(ton .eq. 	) go to 7 
tf(toa .eq. 2) 	c to 21 
tf(ton .eq. 	) go to 42e 
itt ton .eq. 4, eo to 4 

c 
cant 1nu 

ZZ 	conttne 
40 	continue 
C 
C 
4-414 call drstop 

c1ose(inttel) 
C 

format(te) 
623 	for'at(el6.a) 
C 

end 

t,r.1 



prodram plotZ 
C 
C 	a proram for plotting equally-spaced data points on the 
C 	 Tetronix 4,Zlt and 466k -- simtlar to PLOT1, tut combines 
c 	u; to seven cifferent data ensembles on tee sarre graph. 
C 

ii".enston dat(12,b21,7),dmax(10),jpos(1e),jneg(1Ø),xy(4), 
1 	corr(4) 

cnaracter8 iord(3) 
C 

ord(l)-'iiAr áCL' 
ord(2)z'iOPSIANE' 

wcr1(3)'data set' 
C 

type 501 
forr?Iat(/,' eater plotter used: Øa  4014, Is 4662 
accept ,ipl 

if(ipl .e. 	) jp2 
C 

tyoe 502 
:22 	for- 	' in daich Dlot file is the data 

acc,  

call iefile';lot ,ifl,1) 
c 

tipe 
torat(/, hod rany data £NSiMBLES 7 ,) 
accept •,aens 

C 
type 

z e z forat(/,' .nicr units to you prefer - inches (Z) or cm 

accept ,tun 
C 

corr(l )nO. 5c465  
corr(2).S42 
corrC 
corr(4)-.J 

C 

C 
if(iun .et. 0) go to l 
do 10 i1,4 
zy(i 	zy(1) * 2.4 

C 
call 	s:rt(414,2) 
call asant(4) 
call clip 
call ln:es 

C 
C 
C 

do 20 
read(1,02) nsets,gp 
read(,C) ((dat(i,J,A), Jal,np), i1,nsets) 

22 	continue 
C 

type0€, osets 
format(/.' 	(.12,' data SETS per ensemble') 

C 
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21 	Ipsal 
it(sts .C4. 	) p0 to 22 
type 12 
fcrat(/,4x'eater toe desired Dlottj 	style 

1 	âi,'l a  all ãata sets co toe sai,e pae',/, 
2 	i,Z a se3drat€ pa.es tut coosisteot sca1in',/, 
4 	x,'3 	se..srate pages and indepenerit sca1iri 

CCe?t 	,ips 
C 

	

22 	i(ips .lt. 3) nrts1 
if(ips .ec. 3) areps=nsets 

C 
do 300 Irepat,rireps 

C 

tf(nreps .t.
' 
 1) type 311, ire 

	

311 	foat(/,3z,ata st 	.11, 	.....') 
C 

tipe 12, an 

	

312 	forat(/,41,'corjzontaj scaling for your',15,' data points', 
1 	• 

	

23 	tjpe 313 

	

313 	fartrat(/,Sz,'enter lad ad high point ltnits to be,/, 
1 

	

	z,isp1ye1 : (for all points, enter 3,3 ) accept .nio,ai 
if(lo .eq. 	) CLQS1 
if(nhi .eq. 4) nniaap 
ifxnj .le. nb) 6 0 to 23 
uçpnei - 1110 
type :14. xy(j;'i) 

	

314 	forrat(/,3,'enter the lesired blat didth in your preferred', 
1 	/,z,units  

accept •,zxz 
tf(iun .eq. 1) zzzz / 2.4 
zilazix / corr(J.1) 

C 
ahacan5e ts 
tf(ips .eq. 3) nac1atrep 

do 23 jsatre,,nhacX 
iças (is )- 

23 
• ; o s -a 

sr'az- 
C 

to 30 1sirep,nnacz 
do 23 
do 2rc ip-oia,rii 

..Ie. .221) 	o to 25 

26 	

i;33 (j)j 

if(n4t(1s,1p,) .me. -.21) go to 27 
iriag( j)aj 
j rie g- 1 

2? 
26 	continue 
2S 	cori:ine 

sxaanaxj(ij,(j) ,smax) 
20 	contInue 
C 

type 313 

	

313. 	forat(//941,vertjcal scaijog .....) 



c 

45 

C 

S lo 
1 

55 

517 
1 

C 
eo 
!16  

S 
2. 

C 

520 
1 

C 

521 

522 
1 

C 

525 
1 

C 
C 
7e 

C 

if(1ps .eq.) eo to 45 
prraxas(ra2 
kposjpos 
cejneg 

go to ZZ 
paxadmaz(ireP 
çoszipos (Ire; 
zie=.neg(irep) 

I topzO 
t-16  

1f(neg .ne. e) go to 5 
type 515 
forrat(/,5z,'your data points are all positive, do you',/, 
ox,'.act tne negative a1f—plane suppressed 1 (ø=no,l=yes) 

accept ,itop 
tf(Lpos .ne. 3) go to 00 
type 17 
for-at(/,Sz,'your data points are all neative. do you',!, 
Sx,'want tne positive half—plane suppressed 1 (0=no,1=yes) 

accept •,icot 

type 51, prraz 
fornat(/.S,'tne oeetiest data point nas abs. value = ',414.6) 
type S1 
format(/,Sx,'for autoirati: full—Value scalinic enter 
/.5x,'otner. 	 n .Se enter the numoer .nich correspois to',!, 
Sx,'taziirum magnitude on the plot: 	',$) 

accept 9 ,fv 
if(fv .eq. 0.) yosaxopmax 
i.f(fv .t. 	jmazfV 

type 522, ry(j;.2) 
fcra 	.5,'enter tne desired plot height in your preferred', 

:s : 	(',f.i,' mazimum) 
accept iIii 
if(tun .eq. 1) yyyyyy 
yy=yyy / corr(Jp2) 
ytopyyy • lea 

if(lps .ne. 2) type 521 
forat(/.5z,'saoud a y—dXts b draa 7 (2co,lyes) 
tf(ips .eq. 	) type 522 
format(/,Sz,'snould a y—azts he drawn 7 
z,'2-yes, out only on the first page) 

accept •,iax 

If(jp . 	. 	) go to 7€ 
type .Z. 	uord'.ips) 
forif 	/,,'enter 1 if you are'ready to plot, 0 if 

. 	
you',!, 

4z,.ac 	to si; ILS ',a, , or —1 if you want to quit : 
accept •,tcnoice 
if(IccoIce .eq. .) go to .00 
tf(Icnolce .lt. ) go to 400 

cpa es • 1 
If(tps .eq. 2) apacesosets 

±0 150 ipagel,npages 

109 



C 
tt(ips .me. 2) o to 72 
t;'pe :Z, j;ae 

26 	forirat(/,I.'data set '.t,' — plot it 77 (ao,ljes) 
',$) 

accept *,tO 
tf(to .eq. 	) go to l 

C 
72 	call new.pag 

zlosalo 

tf(ttop .e. Itot) call wtcov(xlO,Iflt.Ym4X ynax) 
tf(ttop .e. 1) call 
1f(tbot .eq. 1) cal]. 
caU 

7.! 	tf(laI.eq. ') 	o to 7 
tf((taX .eq. 	) •an. (tpage .gt. 1)) go to 7 

yaxts ymaz 	(1. - toot) 
yaxoayraX 	(1 - ttopl 
call rov(zlo,ya1t) 
call raw(i.10,yaz) 
call t?ove(zlo,a.) 
call rad(2z..i,.Z) 

c 
altnessl 
tt(tps .eq. 1) altnessetS 

c 
d.o igo tltae.1,411e5 
ttTaIaz( j;ep,t;ae,tlte) 

c 

call 

call 1ra.(.iloJ,dat(tfl,Al0,1,1)) 
MIZ 	 coat taut 

call .rsead. 
coat In 

C 
C 

type 5.52 
tornat(/,Løx,'UtiaAiu) ii (Oo,lje5,2OtV style,'. 

1 	'.3-qttt) 	,:) 
accept*,Lou 
tf(to 	.e. 	) go to 7 
tf(toa .. 	) O to Zl 
tf(toa .eq. .!) do to IU 

C 
coat taut 
conttut 

c 
C 

call Lirstop 
c.&ose(uut t-l) 

c 
dliz 	fcr'at(t6) 

fcrrnat(e]..) 
C 

end 
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CHAPTER 5 

SENSITIVITY ENHANCEMENT BY SPINLOCING IN THE 

-DETECTION PERIOD 

5.1. INTRODUCTION AND THEORY 

A 	MQ 	experiment 	is 	a 	two-dimensional 

experiment. That is, one of the dimensions is 

scanned in real time, and the other is scanned by 

successive incrementation from shot to shot. Every 

two-dimensional experiment suffers from two sources of 

noise: the real time noise, and the successive shot to 

shot noise. The first type of noise, the t 2  noise, is 

predominantly thermal noise in the electronics, and is 

also common to single-dimension experiments. The 

second type of noise, which has been termed the t j  

noise, 2  is due to the irreproducibility of the 

experiment and is inherent in any two-dimensional 

experiment. 

A simple scheme is proposed to improve S/N by 

minimizing the t2 noise. The idea is to acquire more 

signal energy 3  in the detection period. 

The pulse sequence used is shown in Fig. 5.1. It 

is a typical MQ sequence but with a train of pulses in 

the detection period. The first three pulses allow 

even-quantum 	selection 	and 	are 	phase-shifted 

by 40 - 	, where N is the maximum order desired, for 

each incrementation in t 1  to effect separation of 
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7,' 	ir x 	7,' 
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I 	 I 	 I  
I 	 I 	 I 

I 	 I 	 I 
prepare 	I 	evolve 	 mix 	 spinlock 

I 	 I 	 I 
XSLS2IO?27 

Figure 	5.1 	Even—selective multiple—quantum pulse 

sequence with spinlocking pulses in the detection 

period. 	The preparation pulses are incremented by an 

amount 	$ for each incrementation in t 1  (TPPI). 
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orders (TPPI 4 ). 	The IT pulse in t 1  removes offset 

terms in the W1  spectrum. The next two rf pulses mix 

the MQ coherences into single—quantum (SQ) coherences. 

Detecting the amplitude modulation of the SQ coherences 

as a function of t 1  maps out the MQ evolution. 

Because the evolution in t 2  is uninteresting for 

our purposes, it is unnecessary to acquire the entire 

F.I.D. in t 2 . In fact, typically only one point in 

is sampled for each incrementation in t 1 . Only the 

amplitude modulation of the SQ coherences in t 2  is 

desired. Therefore, instead of subjecting the SQ 

coherences to decay under the full Ramiltonian, which 

may contain rapidly dephasing terms, one can increase 

the signal energy available for detection by removing 

the rapidly decaying terms. The main source in solids 

is the dipolar Ratniltonian. One solution is to apply 

WARURA 5  in t 2  to remove this term. Best yet is to 

remove all such terms by pulsed sp i n l oc ki ng .( 67 ) 

Under perfect spinlocking conditions, the only decay 

that will occur will be due to the spin—lattice 

relaxation in the rotating frame. 

The multiple pulses in t2 (Fig. 5.1) are applied 

for just that effect. Rhim et al' have shown that 

optimal spinlocking is achieved with a series of ir/4 

pulses at a repetition rate Q satisfying 

TM bc 
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where 	 is proportional to the average rf 

irradiation qtrength and Hlocis  the local field 

strength. 

By spinlocking the SQ coherences in t 2 , we are in 

essence preserving the signal amplitude as modulated by 

the evolution in t 1 . By sampling in the pulse windows 

and averaging over all the signal that is available in 

the detection period, we have performed an integration 

of the signal in t 2 . 	The integral is proportional to 

the signal amplitude at t 2 0  0 averaged over the 

noise. 

5.2 EXPERIMENTAL RESULTS AND DISCUSSION 

	

The 	sample 	is 	polycrystalline 	adamantane, 

C 10 H 16 . 	Experiments were performed at a regulated 

temperature of 25C. 

	

The 	following 	observations 	on 	the 	effective 

relaxation rates were made. 	The SQ transverse decay 

time under free evolution was measured to be 	100 

sec. 	A series of ir/4 pulses was applied at various 

repetition rates to the SQ coherences. 	The observed 

decay times in the rotating frame were 

Cl 

	

Q 	15.9 psec, T 	1.2 sec
le 

25.9 Psec, T 1 	1.0 sec 

35.9 usec, Tie 	0.2 sec 

C l  ) 90 usec, saw no spinlocking effect . 



With w/2 spinlocking rf pulses at a repetition time of 

54.8 ILsec, Tie - 2.2 msec. 

For our MQ experiments, the repetition rate was 11 

- (39 Iisec) 	- 25.6 kHz and the pulse duration for a w 

pulse was 8.0 Psec. 	Thus the average irradiation 

strength was w1 /2w - 3.2 kHz. 	From second moments 

measurements, 	YHi 0 / 21r 	is 	roughly 	15 	kHz 	for 

adamantane. 	Thus the condition for spinlocking was 

modestly satisfied, and for our purposes sufficient. 

The preparation time was .T60 isec in all our MQ 

experiments. 

The first sampled point occurs at t 2 	0 1  the 

normal sampling point. This is to be compared with the 

integrated 	spinlocked 	signal. 	Integration 	was 

simulated by taking the average of 1000 points sampled 

in the spinlocking windows. 	These points were taken 

after the first 25 1/4 pulses, or at a delay of 25f 1  

1.00 msec after the mixing period. 	This delay moves 

the sampling far away from any transients that were not 

sp inlocked. 

Shown in Fig. 5.2 is a comparison of MQ spectra 

obtained with one point sampled at t 2  0 and the 

average of 1000 points sampled between spinlocking 

pulses. There is an improvement in S/N of roughly x2 

by sampling more points, indicating that the signal was 

large enough so that t 1  noise dominates. 

To effect t 2  Limitation in noise, the signal was 
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Figure 5.2 MQ spectrum obtained with pulse sequence of 

Fig. 5.1 using (a) the first sampled point, yielding 

the normal spectrum, (b) an average of 1000 p o i n t s 

sampled between the spinlocking pulses, yielding the 

spinlocked spectrum. 	The comparison shows lit: 

improvement by t 2  spinlocking, indicating that t 1  n: . 

dominates. 



attenuated by 30dB and the receiver amplifier gain was 

increased appropriately to achieve its full dynamic 

range. Figure 5.3 shows the large improvement in SIN 

by spinlocking. The S/N is increased by 20 - 30 times, 

which is near the maximum improvementpossible. That 

is, for t 2  limited sensitivity, the spinlocking 

spectrum is equivalent to an accumulation of runs 

roughly equal to the number of points sampled in t 2 . 

In both instances, Figs. 5.2 and 5.3, we observe 

the intensity in the odd-quantum order relative to the 

even-quantum order is less in the spinlocking 

spectrum. The odd-quantum coherences appear as a 

result of imperfect even-selection, and must be a 

result of imperfect offset cancellation in the 

preparation and mixing periods. If even-selection is 

perfect, the signal should appear as <1 k > for the pulse 

sequence shown in Fig. 5.1. A smalL offset term causes 

signal to appear in the orthogonal channel. It also 

creates a small amount of odd-quantum in both channels 

in addition to even-quantum coherences, but in 

different amounts. 	The difference in the spinlocked 

spectrum and the normal spectrum reflects this 

difference in the preparation of even and odd quantum 

coherences in the two channels: the spinlocked signal 

pertains to only one of the channels. Based on this 

argument, we should expect to see a difference in 

spectra obtained with t 2  spinlocking if selectivity is 

118 



(0 

119 

I 	I 	I 	 I 	I 

0 	 2 	 4 	 6 	 8 	 10 
n (guonto) 

Ct 

I 	I 	I 	I 	I 

0 	 2 	 4 	 6 	 8 	 10 
n (quanta) 

. SZtO-7tt 

Figure 5.3 MQ spectra obtained in the same way as Fig. 

5.2 but with attenuated signal input to receiver. The 

comparison shows large improvement by t 2  spinlocking 

when the S/N in the spectrum is limited by t 2  noise. 



imperfect. 

For nonselective sequences, signal in the other 

channel can be obtained by repeating the experiment a 

second time with the spinlocking pulses changed in 

phase by 90'. Another strategy is to phase the 

spinlocking pulses at 45' with respect to the mixing 

pulses, thereby spinlocking both channels 

simultaneously and with equal weighting. 

In conclusion, the experiments show that the 

proposed scheme can improve sensitivity of .  detection. 

The t 1  noise is proportional to the magnetization and 

cannot be minimized by increasing sample size. 	In 

contrast, the t 2  noise can be made insignificant by 

doing so. 	However, given the situation that the 

noise is an important limitation, these preliminary 

experiments 	show that 	pulsed spinlocking 	in the 

detection period and with integration of signal in the 

windows is successful in enlarging S/N. 
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CHAPTER 6 

CORRELATION OF MOTION OF TWO METHYL GROUPS 

6.1 INTRODUCTION 

Two interacting methyl groups serve as a model 

system 	for 	studying 	hindered 	internal 	rotation. 

Because 	it 	involves only six nuclear spins, the 

calculations involved are tractable. Definitions of 

correlated and uncorrela'ted motion are well defined and 

thus exact treatment is possible. 

We wish to utilize the fact that molecular motion 

modifies 	the 	observed 	couplings 	between 	nuclear 

spins. In oriented systems, such as solids or solutes 

dissolved in a liquid crystal, the dipolar interaction 

is typically two or three orders of magnitude larger 

than the .1 couplings. Our studies will be in such 

systems; thus we will concentrate on motional averaging 

of the dipolar couplings and neglect the J 

couplings. (1) 

The definitions of correlated and uncorrelated 

motion of two methyl groups are first stated. The form 

of the Hamiltonians is thus defined and is different 

for the two motions, ensuring that NMR is sensitive to 

correlation of motion. The NMR spectrum for each of 

these cases can be calculated as a function of the 

dipolar coupling constants. Group theory for nonrigid 

molecules is used to simplify the calculations in these 

1.22 
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two extremes and in the intermediate region. 	The 

transition from correlated to uncorrelated motion can 

be likened to an exchange process and hence is amenable 

to treatment with exchange theory. Multiple-quantum 

NMR enters as a simplification tool in the extraction 

of coupling constants. A computer simulation of the 4-

quantum spectra for the molecule 1,8-dimethyl- 

naphthalene-d, 	undergoing exchange processes 	at a 

particular crystal orientation is presented. 

Experiments on the same molecule dissolved in a nematic 

liquid cry:al reveals that at room temperature this 

system has un.correlated equivalent methyl gro... 

Finally, we present the analysis of a simple two-spin 

system, diprotonated 1,8-dimethylnaphthalene-d 10 , in 

the limit of correlated and uncorrelated motion. 

6.2 DEFINITION OF CORRELATED AND UCORRELATED MOTION 

In both limits, the methyl groups are undergoing 

rapid torsional motions about their C 3  axes. The 

distinction we would like to make here is in the 

relative motion of the methyl groups. We define the 

motions 	as 	follows. 	If 	the methyl 	groups 	are 

correlated, the motion of one methyl group completely 

determines the motion of the other group. 	If the 

methyl groups are uncorrelated, the relative 

orientation of the methyl groups is completely random 

in time. 



The above definition of correlated motion is 

independent of how the motion is executed. The methyl 

groups can either be correlated in an "eclipsed" or 

"staggered" configuration, as shown in Fig. 6.1, or in 

an intermediate configuration. The motionally averaged 

values of the dipolar couplings are modified by the 

type of correlated motion the spin system undergoes, 

but the number of coupling constants remains the 

same. Experimental determination of the dipolar 

coupling constants, assuming a certain fixed distance 

between the two C 3  axes, can lead to information on how 

the methyl groups move in a correlated manner. The C 3  

axes distance can be determined by other means, such as 

X-ray diffraction or neutron scattering methods.' 2  

The symmetry group of the spin Hamiltonian is also 

independent of how the correlated motion is executed, 

and can be found based on the above definition. 

Correlation of two methyl groups can be viewed as 

two wheels in gear, however the methyl groups are 

positioned. In the transition to becoming 

uncorrelated, 	there 	is 	an occasional 	slipping of 

gears. The rate of slippage depends on the potential 

barrier determined by the environment and on the 

temperature of observation. 

6.3 DETERMINATION OF THE SPIN HAMILTONIAN 

We will assume a system of isolated molecules 
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!j_ure 6.1 	When the correlated motion of two methyl 

groups occur in an "eclipsed" manner, the methyl groups 

are mirror images. In a "staggered" configuration, 

they act as gears in a cogwheel mesh. 
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oriented in a matrix. 	The relevant Hamiltortian is the 

one that is averaged over the nuclear motion. 	The 

Hamiltonian also has to be consistent with the spacial 

symmetry of the molecule. 

At room temperature, the correlation time of 

rotation T
C is typically iO 	- 	sec for methyl 

groups.(2) 	To observe the effect on dipolar spectrum 

the inherent time scale is roughly 10 	- 10 	sec for 

typical dipolar couplings. Thus, on the NMR time 

scale, at room temperature the methyl groups are 

mot ional ly averaged. 

To determine the Hamiltonian of the spin system, 

one must know the number of spins involved, the number 

of unique dipolar couplings according to the molecular 

motion, and the molecular orientation with respect to 

the external magnetic field. Specification of the 

molecular orientation is essential since the magnitude 

of the coupling depends on the polar angle e that the 

internuclear vector r makes with the external magnetic 

4 

field H 
0 

d. . 	 cos
2  8..  

1) 
r . 

13 

We will first treat a hypothetical case of rigid 

lattice structure with one molecule per unit cell. The 

influence on the spin Hamiltonian by molecular 

reorientation, such as happens in a liquid crystal, 
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will be treated in section 6.6. 	The determination of 

the number of motionally averaged dipolar coupling 

constants is discussed separately for the intramethyl 

and intermethyl parts of the dipolar Hamiltonian. 

6.3.1 Intramethyl Couplings 

Due to the fast C 3  reorientation of the methyl 

groups, the dipolar couplings within each methyl group 

is averaged to the same value. If the orientation of 

the crystal is such that the two C3  axes make the same 

angle with respect to H , then the methyl groups are 

equivalent and there is only one unique intramethyl 

coupling constant. Otherwise, the methyl groups are 

inequivalent and there are two distinct intramethyl 

coupling constants. The above statements are true 

regardless of whether the methyl groups are correlated 

or not. Thus, intramethyl couplings do not lead to 

information on correlation. 

6.3.2 Intermethyl couplings 

The determination of the number of interinethyl 

couplings is more complicated as a result of two 

factors: the relative motion of the methyl groups and 

+ 
the direction of the C. axes with respect to H 

0 
. 	We 

will assume for simplicity that each methyl group can 

hop between three equivalent equilibrium positions. 



6.3.2.1 Uncorrelated Motion 

If the methyl groups are uncorrelated 	[Fig. 

6.2(a)], a proton on one group senses the same coupling 

to all three protons on the other group. But all the 

protons on a methyl group are equivalent as a result of 

the rapid methyl reorientation. Averaging the 

couplings 	over 	this 	motion 	yields 	one 	unique 

intermechyl coupling constant. 	Any type of molecular 

reorientation will not alter this uniqueness. 

6.3.2.2 Correlated Motion 

This case is the most difficult one to contend 

with. Determination of the couplings depends on the 

factors mentioned at the beginning of section 6.3.2. 

In Fig. 6.2(b), for the sake of discussion, we have 

assumed a particular relative positioning of the methyl 

groups. However, the results remain unaltered by the 

relative 	positioning 	or 	by 	whether 	the 	methyl 

reorientation is discrete or continuous. According to 

Fig. 6.2(b), there are three configurations that are 

pass ib I.e. 

When the motion is correlated, the number of 

unique intermethyl couplings depends on the orientation 

of the molecule, and thus the symmetry group of the 

Hamiltonian will vary with the orientation. (Take note 

that this fact does not hold when the motion is 

uncorrelated.) Three situations can occur. 
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Uncorrelated Motion 

6>  

Correlated Motion 

>- 

2—< >- 

-4 

XBL. 8210-2926 

Figure 6.2 	(a) In uncorrelated motion, the 	methyl 

groups have a random relationship with respect to each 

other. (b) Assuming the methyl rotor can hop only 

between equilibrium positions, there are only three 

possible configurations for correlated motion. 
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(i) Equivalent Methyl Groups 

When the two methyl C 3  axes make the same polar 

angle with respect to H 0 , they are NMR equivalent. 

Averaging the dipolar couplings over the three possible 

configurations results in: 

d 14 d 25 ad 36  

d 15 d 16 d 24 -d 26 -d 34 -d 352  

where the subscripts are consistent with the labeling 

scheme of Fig. 6.2(b). Thus there are two unique 

intermethyl coupling constants when the methyl groups 

are equivalent. The net result is that the dipolar 

Hamiltonian is of the form: 

RD 	U 	U. + V 	V 	+w 	W 
31 

k,l kI  m,n mn 

where u is the unique iritramethyl coupling constant, v 

and 	v 	are 	the 	two unique 	intermethyl 	coupling 

constants. 	The spin operators U, V and W are of the 

same form: 

Uij - 	 - 	(r+I 	+ 1.1), 

and the indices run through the following labels: 

(i,j) - {(1,2). (2,3), (1,3), (4,5), (5,6), (4,6)) 

	

(it,1) 	((1 ,4), (2,5), (3,6)) 

	

(m,n) 	((1,5), (1,6), (2,4), (2,6), (3,4), (3,5)). 
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+ 
H and the Methyl C. Axes are Contained in ale 	 3 

Plane 

The two methyl C 3  axes define a plane in the 

Cartesian space. The orientation of interest here is 

the one where this plane contains also the direction 

of H We distinguish here the case where the methyl 

groups are inequivalent. In this orientation, assuming 

the same proton Aabeling scheme as before, one finds 

that the equivalency of the intermethyl couplings are 

the same as in case (1). Thus, the dipolar Hamiltonian 

is of the form: 

u._ + u 	U (2) _ + V V v 	+ w 	w . 

	

1. 	 2... ._ 	 kl 	inn i. ,j 	 k,l 	m,n 

and the indices run through the following sets: 

	

(i,j) 	- {(i ,2), (2,3), (1,3)) 

(i,j) - {(4,5), (5,6), (4,6)}, 

and (k,l) and (m,n) run through the same sets as 

before. 

(iii) Arbitrary Orientation 

Excluding the particular orientations listed in 

the 	above 	two 	cases 	(i) 	and 	(ii), 	all 	other 

orientations fall in this class. 	The averaging of the 

intermethyl couplings is different and yields: 

d14-d25-d36 

131 



d 15 d 26 ad 34  

d 16 d 24 -d 35 . 

Thus for an arbitrary orientation, the number of unique 

intermethyl couplings is three. The dipolar 

Hamiltonian is then of the form: 

(2) 
HD 	 + 	 + v 	V k1 + 1 	mu 

	

L 	
lc.,l 	m,n L ,3 

+ V 
2 

m ,n 

The indices run through the following sets: 

(i,j) - ((1,2), (2,3), (1,3)1 

(i,j) - ((4,5), (5,6), (4,6)1 

(k,l) 	- ((1,4), (2,5), (3,6)1 

(m,n) 	a ((i ,5), (2,6), (3,4)) 

(m,n) - ((1,6), (2,4), (3,5)) 

The number of unique intramethyl and intermethyl 

couplings are displayed in Table 6.1. 

6.4 MMR PERMUTATION GROUP OP NON-RIGID MOLECULES 

The commutability of I and H implies that the 

Hailtonian in the eigenbasis of I is already in block 

diagonal form according to the Zeeman quantum number 

M. By finding the symmetry group of the spin system, 

each Zeeman block can be further block diagonalized 

according to the irreducible representations of the 

symmetry group. This reduces substantially the amount 
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Table 6.1 

Number of unique dipolar couplings 

intramethv 1 
	

intermeth'yl 

uncorrelated: (S 3 xS 3 ).S 2 	 1 
	

1 

S3 X53 	 2 
	

1 

correlated: 	 D3h 
	 1 
	

2 

S 3 	 2 
	

2 

C 3 	 2 
	

3 
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of time and effort in diagonalizing the Hamiltonian to 

8olve for elgenenergies, and even more so when solving 

for the equation of motion of the density matrix. 

The objective is to find all operations that leave 

the spin Hamiltonian invariant. 	This defines the 

symmetry group of the Hamiltonian. 	The following 

procedure for group determination applies also to rigid 

systems: 

Find equalities among dipolar couplings. This 

contains the symmetry of the dipolar Hamiltonian, 

including the motionally averaged symmetry as well as 

the spacial symmetry of the molecule. 	Form sets of 

equal dipolar couplings £2. - C(i,j): d..dk}, where  dk 

represents the unique coupling constant for the set 

Find all permutations of labels such that the 

dipolar couplings remain in the same set. 	These 

permutations are the elements of the symmetry group of 

the dipolar Hamiltonian: 

C 	(P 
r 	r 
: P Q k 
	k Q 1, 

where 

p . 
r 	c (p 

	

d. . 	d 	: r 	tj 	ma 
d. 
	and 	d 	are 	both ma in 	2 	). k 

One 	must 	be 	careful 	to 	locate 	all 	symmetry 

operations. It is more likely the case that a symmetry 

operation is missed, and more transition lines are 

predicted than is really the case. 



3. Given the identity of the group, the goal is 

to ultimately determine the energy level diagram 

according to the irreducible representations of the 

group. I

This can be accomplished by calculating the 

coefficients 	of 	generating 	functions 	of 	wreath 

products,' 	or by obtaining the character table of 

the 	group 	and 	decomposing 	constructed 	reducible 

representations 	of • the 	Zeeman manifolds 	into 	the 

group's irreducible representations. 

Often it isdifficult to identify the group even 

when the elements of the group are known. One may use 

elementary group theory, i.e. construct a 

multiplication table of the elements, extract the 

classes and subgroups from this table, etc., and 

eventually construct •the character table. 	This is 

usually a difficult problem. Sometimes through 

recognition one may find an isomorphisin 5  with a known 

group and the obtainment of the group's character table 

is automatic, since isomorphic groups have identical 

character tables. Fortunately, there is a systematic 

approach to group determination of nonrigid molecules 

that involves decomposing a larger group into products 

of smaller groups, which are easier to handle. 

Two types of products are relevant, the direct 

product and the aemidirect product. The conditions in 

which they are applicable are discussed below. 

A direct product can be formed between two groups 
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only if they commute. An obvious case to recognizeis 

the following. Physically, if two subgroups involve 

permutations of labels only between disjoint parts of 

the molecule, and no other operations in the group will. 

connect the two subgroups, then these parts of the 

molecules can be considered as separate entities. The 

operations on separate entities commute, and a direct 

product can be formed. 

Semidirect products is used when one of the 

subgroups is the set of all operations that permute 

entire identical molecular parts, but that do not 

involve any permutations within the molecular 

parts. 1 ' 8 	Note that the frame subgroup does not 

commute with the internal subgroups. 

It is useful to realize that all NMR semidirect 

product groups of spin systems undergoing uncorrelated 

internal motion can be categorized as generalized 

wreath products. 	Wreath products are a subset of 

semidirect products. 	In general for nonrigid systems, 

the molecular symmetry group can be decomposed into a 

semidirect product of internal torsional subgroups and 

a skeletal frame subgroup. When a frame subgroup which 

permutes a set of identical rotors can be defined, it 

can be decomposed into a wreath product. 5  When more 

than one set of rotors are to be permuted, the 

generalized wreath product should be used. 

When 	the 	molecule 	is 	undergoing 	correlated 
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internal motion, the group is isomorphic to a point 

group. More specifically, the subgroup for the parts 

of the molecule that move in a relative manner are 

isomorphic to point groups. 

As an example, consider the para-disubstjtuted 

biphenyl molecule X-C6 H4-C6 H4-y At room 

temperature rapid torsional motion occurs about the 

phenyl-phenyl bond. We will analyze the composition of 

its symmetry group based on the above concepts. Each 

phenyl ring has C2 	symmetry. 	Juxtaposed to another 

phenyl ring, its symmetry is reduced to C 2 . If the 

para-substituents X and Y distort the phenyl structures 

inequivalently, then the group of the whole molecule is 

just the direct product C 2 xC 2  , which is isomorphic to 

D 2 . If the para-substituents distort the phenyl 

structure equivalently, then an additional subgroup, 

that contains the permutation of the two phenyl rings, 

must be included. This group C 2  does not commute with 

either r' the pheny]. C 2 1 s nor with their direct 

product. The group for the symmetrically disubst.ituted 

biphenyl molecule is (C 2 xC2 )c 2 , which can be shown to 

be isomorphic to D 4 . Here the symbol x represents a 

direct product, and 	represents a semidirect product. 

Finally, we consider the importance of separation 

of motional time scales. 	To cite an example, consider 

the n-hexane molecule, CH 3 (CH 2 ) 4 CH 3 . 	Suppose the 

hexane molecule 	is undergoing slow conformationa]. 
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changes but rapid torsional motions about the C-C 

bonds. 	A different symmetry group may exist for each 

conformation. 	Each conformation must be considered as 

a separate motionally averaged nonrigid specie, each 

contributing individually to the NMR spectrum. If the 

hexarie molecule is also undergoing rapid conformational 

changes, then the molecule is considered as one specie 

which is averaged over the conformations as well as the 

torsional mot ions. 

6.5 DETERMINATION OF THE HAMILTONIAN SYMMETRY GROUP 

Molecules undergoing rapid internal motion must be 

treated with group theory appropriate for nonrigid 

systems, as discussed in the previous section. As the 

environment of the spin system changes, so may the 

symmetry group of the Hamiltonian. Specifically, if 

one is dealing with a single crystal, as the 

orientation changes, the Ramiltonian changes and the 

symmetry of the Hamiltonian may change. In the case of 

two coupled methyl groups, there are five symmetry 

groups to consider. We demonstrate the determination 

of the Hamiltonian group on the different motional 

cases. 

6.5.1 	...ncorrelated Equivalent Methyl Groups 

The group for the case of an equivalent pair of 

methyl groups undergoing uncorrelated motion is C 
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(S3xS3)S 2 	The prime on the second subgroup 

allows differentiation between the two methyl groups. 

The notation S represents the group of permutation of 

n identical objects (nuclei). In wreath notation, C 

The elements of S 3 , S 3 , and S 2  are listed 

below: 

S 3  

(1)(2)(3) 

(02), (23), (13)1 	 - 

((123), (132)1 

S 3  

(4)(5)(6) 

{(45), (56), (46)} 

((456), (465)1 

(l) (2) (3)(4) (5) (6) 

(14)(25)(36) 

The 	notation (a 1  a 2 	... aY 	represents 	a cyclic 

-- 	 permutation of 	p objects, i.e. 	a 1 	becomes a 2 , 	a 2  

becomes 	a 3 , ..., and 	a becomes 	a 1 . 	The above 

permutations can be 	related 	to 	point group 

operations. As 	examples, 	the 	permutation 	(123) has 	C 3  

character 	and 	(12) has 	C 2  character 	on 	an 	individual 



methyl group. 

There are a total of (6x6)x272 elements in the 

group (S 3 xS 3 ).S 2 . The construction of the group C in 

terms of products of smaller groups can be formulated 

in the following manner. S 3  and S 3  are obvious 

subgroups; they represent the rapid reorientations of 

individual methyl groups. All the elements of the 5 3  

commute with all the elements of S 3  since they permute 

disjoint sets of nuclear labels. One can then form a 

direct product S 3 xS 3  , whichis also a subgroup of. C. 

The product of S 3 *S 3  with S 2  is a semidirect product 

since S 2  does not commute with either S 3  and S 3.  

The character table of (S 3 XS 3 )_S2 can be obtained 

from the subgroups S 3  and S 21  as prescribed in many 

references.' 8  However, we will utilize the identity 

of a pair of coupled methyl groups to gaseous ethane, 

of which the character table has already been 

derived. 0  Given the character table, projection 

operators are used to obtain the energy level diagram 

according to the irreducible representations of C, up 

to the number of states for each Zeeman manifold. 

6.5.2 Uncorrelated Inequivalent Methyl Grouos 

When the methyl groups are inequivalent and 

uncorrelated in motion, the S 2  subgroup present in the 

previous group that characterizes the symmetry of two 

identical rotors is removed. The appropriate group is 
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then S 3 XS3. 	The elements of the group can obtained 

from a direct product of S 3  with S 3 . 

6.5.3 Correlated Equivalent Methyl Groups 

If 	the 	methyl 	groups 	are 	correlated 	and 

equivalent, the operations on this spin system are 

isomorphic 	to 	those 	that 	are 	performed 	on 

cyclopropane. That is, the protons in both cases are 

restricted to move in a relative manner. The zrouD for 

this case is D3h. The elements of this group are: 

(1)(2) (3) (4)(5)(6) 

1(123)(456), (132)(465)} 

{(12)(45), (23)(56), (13)(46)1 

(14)(25)(36) 

((153426), (162435)1 

((15)(24)(36) , (l4)(26) (35), (16) (25)(34) I 

6.5.4 	Correlated Ineguivalent Methyl Grot.i...s 	in a 

"Planar" Orientat ion 

If the methyl groups are inequivalent and in an 

orientation such that the methyl C 3  axes and H lie in 

a plane, then the appropriate group is S 3 . That is, 

since the methyl groups are constrained to move 

together but are not interchangeable, this system acts 

isomorphically as a single methyl group, and thus its 

symmetry group must be the same as t h a t of a methyl 

group. The elements of the S 3  group are: 



(1)(2)(3) (4)(5)(6) 

((123)(456', (132)(465) } 

((23)(56), (13)(46) , (12)(45) I 

6.5.5 	Correlated Ineguivalent Methyl Groups at an 

Arbitrary Orientation 

For an arbitrary orientation of the methyl C 3  axes 

but with correlated motion, the group is C 3 . 	This 

group has the lowest symmetry of all the cases. 	It is 

easy to show that the elements of the C 3  group are: 

(1) (2) (3)(4) (5) (6) 

( 123) (456) 

(132)(465) 

The 	list 	of groups 	for all 	five cases are 

tabulated in Table 6.2. 

6.6 	EFFECT OF SPINNING OR MOLECULAR REORIENTATION 

ABOUT A FIXED AXIS 

Molecular reorientation is of particular concern 

in a liquid crystalline environment where solutes have 

rotational freedom, although usually it is axially 

restricted. Molecular reorientation can also occur in 

a solid matrix if spacial symmetry allows it. 

To t r e a t this matter, we f i r s t determine the 

effect of spinning on an internuclear vector r
4
. Figure 

6.3 shows the vector r being spun about an axis w with 
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Table 6.2 

Symmetry groups of two interacting methyl groups 

equivalent 
	

inequiva lent 

uncorrelated: 
	

(S 3 xs 3 ) s 2 	 S 3  xS 3  

correlated 	 3h 
	 S 3  

C3 
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144 

x 
XSL 8210-672e 

Figure 6.3 	A vector diagram showing the relevant 

angles when an internuclear vector r is being spun 

about an axis at a rate w s . 	The spinning axis has a 

fixed angle O relative to the external magnetic 

field H 01  and the vector r has a fixed angle 8 relative 

to the spinning axis. As a result of spinning, the 

angle 8 that r makes with H is time-dependent. 
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an angle 6 with respect to H 	 and an angle 8 with 

respect to C4 • 	Assuming the rate of spinning w is 

much faster than the inverse of the coupling, the time-

average value of cos 2 0(t) is given 

0(t) - cos 8(cos 0 --sin 0 ) + —sin 0 s2 	s 	2 	$ 

+ 	 + 
If two internuclear vectors r. . and r 

kl 
 of equal 

magnitude 	in 	this 	spinning 	system 	have 	angles 

8. . and 8 
ki 
 such that 

	

cos28• 	cos2Bkl, 1.3 

or 	8.. 
1.3 - 

± 8
k 	+ p11 	(p'O, ±1 1  ±2,...) 	(1) 

then the two coupling constants d j  and.d k  1  are made 

equal. 

The case of two methyl groups has three axes of 

rotation: the two C3  axes and the spinning axes. To 

treat the combined motions, it is convenient to relate 

the spinning axis with respect to a "molecular" 

coordinate system defined by the two C 3  axes. 

Figure 6.4 depicts the methyl groups as planar 

rotors with their C 3  axes at some orientation with 

+ 
respect to H . 

0 	
The a—axis is defined to have the 

highest symmetry; it bisects the two C 3  axes and is 

contained 	in 	the 	same 	plane. 	The b—axis 	lies 

perpendicular to the a—axis in this plane, and the c- 
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y 

z 
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x 

XSL 8210-6729 

Figure 6.4 	Definition of the molecular frame (abc), 

shown here with the laboratory frame (xyz). The plane 

defined by the two C 3  axes will be labeled the ab-

plane, with the a-axis (the axis of highest symmetry) 

bisecting the two C 3  axes. The c-axis is perpendicular 

to this plane. 



axis is perpendicular to this plane. 

Using Eq. 	(1) 	and 	some elementary 	geometry 

arguments, the following conclusions are drawn and are 

applicable regardless of the direction of the C 3  axes 
+ 

with respect to H 
0 

If the spinning axis is contained in the ac- 

plane or bc-plane, then the two methyl groups are made 

equivalent. 	Any other spinning axis will make the 

methyl groups inequivalent. 	The groups that can arise 

from• spinning 	at 	this 	axis 	are 	(S3 xS 3 )s 2 	if 

uncorrelated and D3h  if correlated. 

If the methyl groups are uncorrelated, 

spinning about an axis anywhere but in the ac- or bc-

plane will leave the methyl groups inequivalent. 	The 

group that results is S 3 xS 3 . 

Consider correlated methyl groups. 	Suppose 

the C3  axes are parallel and the two methyl groups are 

mirror images. Spinning about an axis in the ab-plane, 

but excluding the a- and b-axis, will result in the 

group S 3 . 	If there is any deviati.n from this ideal 

geometry, the S 3  group will never occur and :he C 3  

group is the appropriate one. 	Tie C 3  gruup also 

en.ompasses any spinning axis not contained in the ab-, 

ac-, or bc-planes. 

6.7 ENERGY LEVEL DIAGRAMS 

The corresponding energy level diagrams are in 
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Figs. 6.5 - 6.9. Group theory allows the determination 

of the energy level diagram up to the number of levels 

in each irreducible representation of a given Zeeman 

quantum number. It requires no quantitative values of 

the couplings, only the equivalence in the couplings, 

and thus cannot lead to information on the 

eigenenergies. 	Further determination of the energy 

level diagram requires diagonalization of. the 

Hamiltonian within each subblock, or interpretation of 

the experimental dipolar spectrum, depending on one's 

objective. 

Correlated systems have a lower symmetry than 

urtcorrelated systems. The uncorrelated representations 

must be reducible in correlated representations. By 

decornposing the uncorrelated representations into 

correlated irreducible representations, one can find 

how uncorrelated states transform under the correlated 

group. This decomposition shows how the levels split 

under 	a 	small 	perturbation. 	The 	method 	of 

decomposition is called subduction of a higher symmetry 

group into a lower symmetry group. 	The reverse is 

called an induction. 	To perform a subduction, one 

first finds the correspondence between classes of the 

two symmetry groups and thereby obtain the character of 

the higher symmetry group's representations for each of 

the classes of the lover symmetry group. With the 

great orthogonality theorem, one can decompose the 
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(S 3 xS 3 )AS 2 	A ig 	A lu 	G I 	G2 g 	G2 

m3 

rn2 

m:I 

mO 

m-I 

m:-2 

m —3 	
XBL 8210-2977 

Figure 6.5 	Energy level diagram for (S 3 xS 3 )S 2 : 

uncorrelated equivalent methyl groups. 
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S 3 xS 3 	A l 	E1 	E2G 
m=3 	- 

m=2  

m:I  

m : Q 

m 

m=_2 	 - - - 

m=-3 
XBL 8210-2931 

Figure 	6.6 	Energy 	level 	diagram 	for 	S3 xS 3 : 

uncorrelated inequivalertt methyl groups. 
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D3h 	 E' 	E" 

m.3 

m:2 

m:I 

mO 

m:-I 

m -2 

m-3 
XBL 8210-2928 

Figure 6.7 	Energy level diagram for D3h: correlated 

equivalent methyl groups. 
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S3 	A 	A 2  

m=3 	- 

m=2  

m=I 	—15 
m=Q  

m-2 	- 

m-3 
XBL 8210-2929 

Figure 6.8 	Energy level diagram for S 3 : correlated, 

inequivalent methyl groups with the two c3 axes and 
0 

contained in the same plane. 
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C3 	 Eab 

m:3 

m:2

15 m:I 	'15  
m:O 	 8 	- 16 
m:-I  

m-2 

m:-3 
XBL 8210-2930 

Figure 6.9 	Energy level diagram for C3: correlated 

inequivalent methyl groups at an arbitrary orientation. 
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representations 	into a linear combination of the 

irreducible representations of the lover group. 

"Coalescence diagrams" describing the convergence 

and separation of representations in the transition 

region are shown in Figs. 6.10 - 6.12. Note that it is 

not possible to subduce or induce energy level diagrams 

between equivalent and inequivalent methyl groups. 

This is because equivalent methyl groups, whether 

uncorrelated or correlated, contain a C 2  type operation 

that is not present in inequivalent methyl groups, and 

complete correspondence between classes can never be 

achieved. 

Coalescence diagrams can also be found between 

correlated methyl groups, and between uncorrelaced 

methyl groups. Such diagrams show the change in the 

symmetry of the Ramiltonian with changes in the crystal 

orientation. These diagrams are in Figs. 6.13 - 6.16. 

6.8 MQ SPECTRA 

From the energy level diagram, one can count the 

number of transitions that occur for a given quantum 

order, excluding accidental degeneracy due to poor 

spectral resolution. Table 6.3 lists the number of 

transition lines for each quantum order and for each of 

the limiting cases. The NQ (6Q) order always contains 

one central line with no dipolar information (to first 

order) and is excluded from the table. The 5—quantum 



155 

(S 3 XS 3 )AS2 	A 19 	A N  G 1 	G29 	G2 

m3 

m:2 

m:I 

m:O 

m:-I 

m = -2 

m = -3 

A ll 	A 121 	'Ell  

m3 

m2 

ml 

m:O  

m:-I  

m-2 

m:-3 
XBL 8210-2975 

Figure 6.10 	Coalescence diagram from uncorrelated, 

equivalent methyl groups [(S 3 xS 3 )S 2 ] to correlated 

equivalent methyl groups 03h). 
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S3 xS 3 	A l 	E, 	E 2 	G 

m:3 

m:2 

m: I 

mO  

m = -I 

m-2 

XBL 3210-2973 

Figure  6.11 	Coalescence diagram from uncorrelated 

inequivalent 	methyl 	groups 	(S3 xS 3 ) 	to 	correlated 

inequivalent methyl groups (S3). 
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S3 xS3 	A 1 	E 1 	E 2 	G 

m:3 

m2 

mI 

m:O  

m:—I  

m:-2 

m = —3 

C 3 	 A 	Eab 

m:3 

m2 

m1  

m:O  

m—I 	 }s 	---}5 

m:-2 

m:-3 
XBL. 8210-2933 

Figure 6.12 	Coalescence diagram from uncorrelated 

inequival.ent 	methyl 	groups 	(S3 xS 3 ) 	to 	correlated 

inequivalent methyl groups (C3). 
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(S3XS3)A52 	41q 	A N 	G 2 	G2 

m3 

m2 

m I 

m:O 

m: —I 

m-2 

m:3 _ 

S3xS3 	A 1 	 E 2 	G 

m:3 

m2 

m  

mO  

ms—I 

m:2 

ni - —3 	
X8L 8210-2934 

Figure 	6.13 	Coalescence diagram from equivalent 

uncorrelated methyl groups ((S 3 xS 3 )S 2 ] to inequivalent 
uncorrelated methyl groups (S3xS3). 
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b3h 	 E" 

m:3 

m2 

m : I 

m:O 

m :- I 

m-2 

m1  

mO  16 

m-I 	____ 	 15 

m-2 

m:-3 
X8L 8210-2976 

Figure 6.14 	Coalescence diagram from equivalent 

correlated 	methyl 	groups 	 to 	inequivalent 

correlated methyl groups (S3). 



E" 

m3 

m:2 

m I  

mQ  

m - I  

m : -2 

v 
C3 	 A 

m:2  

m:I  15 
mO  

m-I 15 

m-2 

m-3 
XBL 8210-2974 

Figure 	6.15 	Coalescence 	diagram from equivalent 
correlated 	methyl 	groups 	03h) 	to 	inequivaient 
correlated methyl groups (C3). 
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Figure. 6.16 Coalescence diagram between the groups S 3  

and C3 , both of which correspond to correlated, 

inequivalent methyl groups, but at different crystal 

orientt ion. 



Table 6.3 

Number of transitions in the MQ spectrum for each of 

the symmetry groups 

uncorrelated 	 correlated 

S 3 xS 3 S 2 	S3 xS 3 	D3h 	S 3 	C3  

5Q* 1 2 1 2 2 

4Q* 2 4 3 6 7 

3Q* 7 14 12 24 28 

2Q* 13 20 22 36 53 

1Q* 20 34 38 60 - 	 92 

OQI 6 15 19 36 65 

* The entry corresponds to the number of doublets. The 

4Q and 2Q orders have in addition a strong central 

line. Note that the nQ (n*0) orders are symmetric 

about the order center. 

t The entry corresponds to the number of lines. The OQ 

order is not symmetric about the order c enter. 
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order offers no differentiation between correlated and 

uncorrelated motion. (It does tell however whether the 

methyl groups are equivalent.) The 4—quantum spectrum 

is sensitive to two—body correlations, and is able to 

distinguish the motions. 

6.9 INTERMEDIATE REGION - EXCHANGE THEORY 

Suppose we begin with a pair of correlated methyl 

groups at very low temperature. The methyl protons are 

undergoing fast torsional motions but always at a fixed 

relationship with one another. As the temperature 

increases, an occasional slippage of gears can occur, 

and the methyl groups change configurations. This 

slippage of gears can occur in either sense; i.e. one 

of the methyl gears can slip in the clockwise or 

counterclockwise direction (Fig. 6.17). This 

occasional slipppage in either sense can be envisioned 

a hopping between three equivalent sites 

(configurations). Tus we can apply exchange theory to 

this process. 

6.9.1 Exchange Operators 

Let P represent a slippage of gears in one 

sense. 	Then its inverse P 1  must be the slippage in 

the opposite sense. 	Properties of the permutation 

operators P and P 1  are: 

(1) 	P3 a p 3  W i, 
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Figure 6.17 	In becoming uncorrelated, one of the 

methyl groups can slip in a clockwise direction or in a 

counterclockwise direction. 
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P 2 	p_ i , 

p, p 1  are real, nonsytnmetric (non-Hermitian) 

and non-unitary, 

(P + P') is real, symmetric (Hermitian) and 

non-unitary. 

6.9.2 Master Equation with Exchange 

Let P be the initial density operator. 	The form 

of the density operator after exchange P can be 

determined in the following manner. Let ' be the wave 

function describing the initial state of the spin 

system. The density matrix p is defined as 'P'P, where 

here 'P 18 written as a column vector. The wavefunction 

after exchange by definition is P4i. 	This implies that 

the density operator a f t e r exchange is (P'P)(P'P)t 

p'P'Ptpt 	pppt• 	The change in the density matrix as a 

result of exchange is then PpP - P. 

We assume that both senses of slippage are random 

independent processes with the same rate of occurrence 

characterized by te_ 1 • 2)  Because the exchanges are 

between equivalent sites, the Hamiltonians before and 

a f t e r exchange are the same. Neglecting all other 

relaxation effects, the master equation governing the 

evolution of the density matrix is: 

p d  
- - i[p,H] + 
	

- 	
+ -1lt - 

dt 
e 	 e 



In superoperator representation, this is written as: 

ii 	
A 1111 	A 1112 

	
........ Allkk 	p 11  

P12 	 A 1211 	A 1212 
	

.... .... Al2kk 	p 12  
d 	. 	a 	 • 	 . 

1 

kk 	Akkll Akkl2 • 	..Akkkk 	P kk 

where here k_2Nx2H. Compactly written, this is 

d 	*9 
P - AP. (2) 

The superoperator A is composed of the Liouville 

operator a and an exchange superoperator X: 

a 	 a 	 a 

A - iR + X. 	 (3) 

Equation 	(2) 	represents 	a 	set 	of 	2N2N 

simultaneous linear differential equations: 

d 	 (i(a 	6 -R 6 ) + 
- 1,6 	8 Ya CLY 68 

e 
— 

e 

where ( , 8)  

(k,k). 	The matrix elements of the superoperators can 

be related to those of the Reisenberg operators: 

	

H 16 -H 6 	-H 6 68 ya 	ny 68' 
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- - [pp t6  + 	 - 26 ay 'Sf3 e 

When solving for eigenvalues of the matrix A, 

properties of the superoperators to recognize are: 

H is Hermitian, 
A 

X is real non-symmetric, 

A 
Thus. A is complex non-Hermitian. 

A simplification results from the commutation of 

I z  with the exchange operators: 

[P, Il - [P 1 19 :E] - 0. 

This means that the Zeeman quantum number m is 

conserved under permutations (exchanges) P and P 1 . 

Alternatively stated, P and P' do not mix blocks of 

different m. Thus, each Zeeman manifold can be treated 

separately. 

The exchange operators P and P' in general do mix 

states 	belonging 	to 	different 	irreducible 

representations. As evident from the coalescence 

diagrams of Figs. 6.10 - 6.12, this is to be expected 

since the states rearrange in the transition between 

the two energy level diagrams. However, some 

simplification do result and the symmetry-adapted-

linear_combinatjon (6)  (SALc) basis will be adopted. 

The solutions to the master equation are found by 
* 

diagonalizi.ng A. 	The eigenvalues that result are 
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complex. 	Because the equations are linear, 	the 

solutions 	yield 	Lorentzian 	lineshapes 	with 

characteristic frequencies and linewidthg. The 

imaginary part of the eigenvalue gives the frequency of 

transition, and the real part yields the exchange 

broadening I' 1T/ 2 (ful1width—half_maxjmum value). The 

phase of a transition is determined by the initial 

conditions, i.e. the phase factors of the prepared 

density matrix p(tzO), where t refers to the evolution 

t ime. 

Before performing a computer simulation, numerical 

values for the coupling constants are required. This 

takes us to the next section. 

6.10 1 ,8 —DIMETNYLMAPHTHALENE 

The reasons for choosing 1,8 —dimethylnaphthalene 

(1,8—DMN) for our studies are: (1) the methyl groups 

are sterically hindered, and (2) its crystallographic 

structure is known.(13) Presented below are some of 

the relevant structural information of this molecule in 

the single crystal form. 	Complete information is 

available 	from the structure parameters given in 

reference (13]. 

The crystal structure is monoclinic with four 

molecules per unit cell and lattice constants a9.835A, 

b-7.012A, and c16.114A. The angles that a, b and c 

axes make with respect to one another are a.909 
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8124.35 	and 	Y90'. 	The 	crystallographic 	data 

presented in reference [13] are in fractional 

coordinates x, y, z as referred in this coordinate 

system. In order to determine an internuclear distance 

r 1  the following formula should be used: 

2 	 22 	
1 3 

22 	 22 r. •
) 	(x.-x.) a 	+ (y.-y.) b 	+ (z.-z.) c 1 	 1 	.1 	 1 	3 

+ 2(x 1  .-x 
3  .)(z.-z.)abcog8. 13 

in Fig. 6.18 is the labeling scheme for 1,8-

DMN molecule, consistent with reference [13]. 	In the 

minimum strain-energy configuration, the carbon 

skeleton of the 1,8-DMN molecule is planar. The methyl 

groups are in an eclipsed configuration where the outer 

methyl C-H bonds [C(11)-H(11c) and C(12)-H(12c)] lie 

roughly in the same plane as the aromatic frame. The 

amount of tilt of the outer C-H bonds out of the 

aromatic plane is 5' for the C(11)-a(11c) bond and 

-10.8' for the C(12)-H(12c) bond. Thus the two methyl 

groups are not quite mirror images. 

The methyl C 3  axes are also slightly tilted out of 

this plane: the methyl(ll) C 3  axis (C(l)-c(ii) bond] 

deviates by 0.2, and the methyl(12) C 3  axis [C(8)-(12) 

bond] deviates by -0.2 0 , which are negligible. 

The methyl C3  axes are nci parallel; they are 

splayed outward to accomodate both methyl groups in 

such close proximity. Taking the C(9)-c(10) bond to be 
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Figure 6.18 	Molecular structure and the labeling 
scheme of 



the axis of highest symmetry, the tnethyl(11) C 3  axis 

deviates by -7.4, and the methyl(12) C 3  axis deviates 

by +7.4. 

In the equilibrium configuration, assuming the 

covalent radius of proton is 0.32A, the clearance 

between the outer radii of the closest intermethyl 

protons is 1.32A. The separation of the methyl C 3  axes 

are determined from the C(l)-C(8) distance (2.543A) and 

the C(11)-C(12) distance (2.932A). The effective 

activation barrier to methyl rotation for this molecule 

has been measured to be 3 kca l/ mo l e .( 14 ) 

From Fig. 6.18, one observes that the aromatic 

protons H(2) and H(7) are significantly close to the 

methyl protons. 	The average distance of H(2) and R(7) 

with the methyl protons is 3.00A. 	Another useful 

distance to know is the closest intermolecular proton-

proton distance, which is 6.79A. Both of these 

distances will be useful when estimating the rf power 

required for heteronuclear decoupling. 

6.11 COMPUTER SIMULATION OF EXCHANGE PROCESS 

We will choose one particular crystal orientation 

for discussion. The orientation chosen is where the 

methyl C 3  axes and H 0  lie in the same plane and the 

polar angles of the C 3  axes with H o  are 78 °  and 92 ° . 

The methyl groups are inequivalent and the appropriate 

groups are S 3 xS 3  if uncorrelated, and S 3  if 
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correlated. 	The dipolar coupling constants for this 

crystal orientation are: 

u 1  M 10.858 kHz 	 (4) 

u2  - 14.645 kHz 

uncorrelated: 	v 	8.327 kffz 

correlated: 	 v M 17.001 kHz 

w - 3.990 kHz. 

The 5—quantum lines are unaffected by exchange. 

We will concern ourselves with the 4—quantum spectrum 

in the exchange process. The transitions of interest 

are between the ms±2 to m2 Zeeman manifolds, and m±1 

to m3 manifolds. We start with the correlated limit 

since it is easier to envision slippage of gears as an 

exchange process than the reverse situation. 

The secular determinant can be constructed given 

the matrix elements of the Ramiltonian and the exchange 

operators in the SALC basis of the correlated symmetry 

group. 

For simplicity we dictate that all coherenceg, or 

the elements of the prepared density matrix, assume the 

same initial phase and intensity. In the rotating 

frame and on resonance, only. the dipolar Ramiltortjan 

needs to be considered in the equation of motion [Eq. 

(2)]. 

6.11.1 
	

Secular Determinant for m±2 to m2 Manifcldq 

The 	A 1 (m±2) 	manifolds 	are 	unaffected 	by 
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exchange. 	These n4 transitions remain sharp with no 

frequency shift. 

The E manifold is affected by exchange. 	The 

secular determinant is 16x16 and will not be shown 

here. The actual construction was done trivially 

within a computer program, listed in appendix 6.A. The 

solutions to the secular determinant were derived from 

running a package computer program EIGCC from the IMSL 

library. EIGCC is an iterative routine for 

diagonalizing a general complex matrix. 

6.11.2 Secular Determinant for m±1  to m3 Manifolds 

Only the A 1  manifold is involved. In general, the 

manifolds corresponding to different irreducible 

representations are mixed by P and P 1 . Note that 

although the A 2 (m±1) is mixed with the A 1 (m±1) 

states, the secular determinant is not. This exception 

occurs when transitions involve the extreme states A 1  

(m±3). The origin of this exception arises from the 

invariance of the extreme states to exchange. Thus the 

secular determinant for the 4-quantum order is also 

block diagonal with respect to the irreducible 

representations of the group. 	For the A 1  transitions, 

it is: 

a-A 	0 	e 	f 

	

0 	b-A 	e 	f 
-0 

e 	e 	c - A 	g 

f 	f 	9 	d-A 



where 

a - -i(fu1  + v + 2w) 

b - -i(u 2  + v + 2w) 

c -i(u 1 	+ u 2  + 2w) - 

d i[(u 1 +u 2 ) + v + v] 	- - 

e 

f - -.--(v + w) 

g - -t—(u 1  + 	u 2 ) + 
	T. 

With the insertion of the coupling constants 

listed in Eq. (4) into the program EXCH2 listed in 

appendix 6.A for the E manifold and EXCH1 in appendix 

6.3 for the A 1  manifold, the results are shown in Table 

6.4. 	The sharp transition A 1 (tn± 2 ) to A 1 (m2) at 

13.722 kHz is excluded from this table. 	Since the 4Q 

spectrum is symmetric, only half of it is tabulated. 

The frequencies are measured from the center of the 4Q 

order. The lines that are broadened near the center 

(at 0 kHz) are also excluded from the table. 

The data in Table 6.4 and including the A 1 (tn±2) 

transitions are illustrated in Fig. 6.19. At 
t e l sec, 

the lines are fairly sharp and correspond to correlated 

motion. 	The most action occurs in the 0.1 - 2 msec 

range. 	As the rate of exchange increases, the E 

transition 	at 	7 	kflz 	mixes 	with 	the 	central 	E 

transitions, 	broadens and is shifted 	in frequency 
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Table 6.4 

The frequencies (v) and exchange broadenings () for 

the 4-quantum order E(m±2) to E(m2) and A 1 (m=i2) 

to A 1.(m2) transitions. 

r(sec) v(kHz) r(kHz) 

iio 60.235 (A 1 ) 0.003 
44.758 (A l ) 0.0001 
36.805 (A 1 ) 0.0002 

61.545 (A l ) 1.157 
44.780 (A 1 ) 0.032 
36.814 (A 1 ) 0.025 

2x10 62.171 (A 1 ) 0.825 
44.802 (A 1.) 0.032 
36.831 (A l ) 0.034 
26.777 (A 	) 14.109 
5.626 (El 14.33 

iio 62.485 (A 1 ) 0.188 
44.825 (A l ) 0.009 
36.871 (A 1 ) 0.017 
26.401 (A 	) 2.785 
6.91 (El 2.08 

62.496 (A l ) 0.095 
44.825 (A l ) 0.005 
36.875 (A l ) 0.009 
26.386 (A 	) 1.392 
7.05 (El 1.03 

62.500 (A l ) 0.0002 
44.825 (A 1 ) 0.0 
36.876 (A 1 ) 0.0 
26.381 (A 	) 0.003 
7.099 (El 0.002 
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4— Quantum Order 
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Figure 6.19 	Computer simulation of one half of the 4- 

quantum region showing the broadening and merging of 

lines as correlation sets in. 
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toward the order center as it disappears. 	The outer 

four A 1  transitions are mixed and shifted in frequency 

toward each other as the transition line at 26 kHz 

broadens and disappears. At te 1O 7  sec, fast exchange 

is occuring, and the spectrum corresponds to 

uncorre 1 at ed motion. 

6.12 	1,8-DIMETHYLNAPHTHALENE-D 6  IN A NEMATIC LIQUID 

CRYSTAL 

A convenient method for molecular isolaton is the 

dissolution of the desired molecules in a nematic 

liquid 'crystal solvent. I t s applicability is 

restricted to the narrow temperature ,  range of the 

nematic phase. In the nematic phase, the long axis of 

the liquid crystal molecules have a defined direction 

when placed in a magnetic field. The translational 

freedom averages intermolecular couplings to zero and 

retains only intramolecular couplings. Molecular 

reorientation of the solute in the liquid crystal 

matrix does occur 	rd scales down the intramolecular 

dipolar couplings. 	This scaling of coupling constants 

by restricted molecular reorientation is described by 

order parameters, the number of them depending on the 

structural symmetry of the solute molecule. 

The MQ spectrum for 1,8-dimethylnaphthalene-d 6  

(1,8-DMN-d 6 ) dissolved 	astman #15320 liquid crystal 

at room temperature is shown in Fig. 6.20. 	From this 
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Figure 6.20 	MQ spectrum of 

dissolved in a nemattc liquid crystal at 25 C. 



spectrum, we wish to determine whether the methyl 

groups are correlated in motion. It is not obvious a 

priori whether the methyl groups are equivalent. Their 

equivalency relies on the molecular reorientation that 

occurs in the liquid crystalline matrix. [See section 

6.6.] 

Figure 6.20 shows two doublets in the 4-quantum 

region. Referring to Table 6.3, we see immediately 

that this corresponds to the group (S 3 xS 3 )S 2 , implying 

equivalent and uncorrelated methyl groups. 

Often the object is to-  obtain mole.ular structural 

information by iterating on the couplings and the order 

parameters. However in our case we know the molecular 

structure beforehand. We can use this extra piece of 

information to solve directly for the order parameters 

which informs us of the type of molecular reorientation 

occuring in the liquid crystal matrix. 

To extract coupling constants from the 4- and 5-

quantum orders, an iteration routine MQITER 9  is 

used. This routine requires as inputs the experimental 

transition frequencies and an initial guess of the 

coupling constants. The latter input requires 

specification of the type of motion that the methyl 

groups are experiencing. The resulting couplings from 

iterating on the 4- and 5-quantum orders are used to 

generate the 3-quantum order, which is then compared 

with the experimental 3-quantum spectrum. The best fit 
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for 	these 	orders 	corresponds 	to 	equivalent 	and 

uncorrelated methyl groups (as expected) with dipolar 

couplings (Fig. 6.21) 

u 	1.196 kHz 	 (5) 

v 	-1.223 kHz. 

Here u and v are scaled by the order parameters. 

For 1,8-DMN-d 6 , the molecular point group is 

C2 ,,. 	For 	C2 ,,, 	molecules, 	there 	are 	two 	order 

S aa  and SbbS cc , where a,b, and c are 

the axes of the molecular frame. The a-axis is taken 

to be the one of highest symmetry, the b-axis is 

defined here to lie also in the aromatic plane, and the 

c-axis is perpendicular to the aromatic plane (Fig. 

6.18). 

The motionally averaged dipolar Hamiltonian can be 

expressed as: 

- 	

- 

where z refers to the direction of the external 

magnetic field. 	For molecules having more than one 

configuratjo, 	in the limit of f a s t conformatjonal 

changes all configurations contribute to the observed 

coupling constants: 

<D. .> - 1 
(6) 13  

a a 
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Figure 6.21 MQ spectrum of the 3— to 6—quantum region 

presented with the theoretical stick spectrum for 

uncorrelated equivalent methyl groups. 
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where n 3  is the number of configurations. 	In general, 

each configuration may differ in symmetry and thus may 

have a different set of order parameterg• In our case, 

the methyl reorientation about the C 3  axes does not 

affect the order parameters SinCe they hop about 

equivalent positions. Hence each configuration must 

have the same order parameters, which can then be 

factored out of the summation. The spacial part of RD 

is th en: ( 15 ) 	 - 

(3cos 2 ec 
<D. .) - K( s 	I aa 	 3 CL  r. 

ii 

	

2 () 	2 (cos 	 e)) 

	

e 	Co s 
+ ( Sbb_s 	I 	ijb 	ijc__ 	

(7) 
CL r. 

1] 

For the intramethyl coupling u there are six 

configurations to be averaged, and for the intermechyl 

coupling v there are nine. Inserting Eq. (7) into (6) 

given the observed coupling constants <D> in Eq. (5), 

and calculating 8 ij Is from the crystallographic data 

result in an unique solution for the order parameters: 

S aa  - 0.037 

SbbS c 	—0.291. 

The relation s 
aa 	bb 

< s 	- cc implies that the 
molecular reorientation in the liquid crystal solvent 
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is predominantly about an axis in the bc-plane. 	We 

deduce however that since 	1,8-DMN 	is planar, 	the open 

volume required for •a 	rotation 	about the 	c-axis 	is less 

than for about the b-axis (or about the a-axis). Thus 

we assert that the reorientation is predominantly about 

the c-axis. Also, this reorientation equalizes both 

methyl groups, which is consistent with the obtained MQ 

spect rum. 

To summarize, the number of lines in the 4-quantum 

order allows us to determine that the methyl groups on 

1,8-DMN at room temperature are uncorrelated and 

equivalent in the nematic liquid crystalline 

environment. Since 1,8-DMN is planar, to minimize 

steric hindrance between solute and solvent we can 

expect the aromatic plane tc lie along the direction of 

the long axis of the liquid c-ystal. Considering the 

amount of free volume required, it can be argued that 

the molecular reorientation is predominantly about an 

axis perpendicular to the aromatic plane. The above 

affirmations are in agreement with the measured order 

parameters. 

6.13 1 ,8-DIMETHYLNAPHTHALENE-D 10  

The practical advantages and disadvantages of MQ 

spectroscopy on the molecule 1,8-DMN-d 6  can be compared 

with those of single-quantum i,SQ) spectroscopy on 1,8-

DMN-d 10 . In both cases, an isolated molecular system 
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is simulated by diluting the desired guest molecule in 

a perdeuterated host which preserves the molecular and 

crystal structure. The power required for proton-

deuteron decoupling is roughly the same for both 

cases. 	The advantages and disadvantages of MQ NMR on 

1,8—DMN—d 6  is first discussed. 	The SQ spectroscopy of 

1,8—DMN-d 10 	is 	analyzed 	and 	the 	significance 	of 

impurity concentration is examined. 

For the NQ experiment,, the wise choice for the 

guest molecule is 1,8—DMN—d 6  where the uninteresting 

aromatic positions are deuterated. The advantages are: 

(1) it requires a lower deuteratjori level, and (2) it 

has the capability of separating the desired signal 

from impurity signal. The previous sections have shown 

that the 4Q order is sensit ive to correlation of 

motion. It is highly improbable that the perdeuterated 

host impurities will contribute to the 4Q spectrum - 

the probability of four or more impurity protons on the 

same molecule is extremely small. Thus the purity 

requirement 	of 	the host 	is not 	stringent. 	The 

impurities of the guest molecule will contribute to the 

C 

	

	
4Q region, but if the purity is reasonably high 090Z) 

the purity level again is not critical. 

The disadvantage of a MQ experiment is that it is 

a two—dimensional experiment. Hence for a given data 

acquisition time, it is inherently a lower sensitivity 

experiment, with noise in t 1  as well as in t2.(16) To 



get the same amount of sensitivity as in an one-

dimensional SQ experiment, perfect selective excitation 

of the desired quantum order and a full two-dimensional 

data acquisition are required. 

For SQ spectroscopy to be feasible, a two-proton 

system with one proton on each methyl group (and the 

rest of the positions deuterated) is the most 

convenient choice. Single-quantum spectroscopy on this 

system can give information on the correlation of 

motion. 

The advantage of SQ NMR is that it is a simple 

one-dimensional 	experiment, 	provided 	the 	magnet 

inhomogeneity 	is 	small 	compared 	to 	the 	dipolar 

broadening. 	The pulse sequence involves one pulse, or 

at best a two-pulse solid echo sequence.07) 	(The 

solid echo experiment is preferred to minimize linear 

phase distortion and since most solids have a decay 

time comparable to the receiver deadtime.) 

The major problem of SQ NMR is that the desired SQ 

signal will overlap with impurity signal. If the 

dilution level is high (which is desirable for better 

isolation of guest molecules), the impurities of the 

host contribute a signifi..ant amount of signal. The 

details of this matter will be discussed separately in 

section 6.13.2. 

We make the case for preferring a powder sample to 

a single crystal. 8 	The experimental 	problems 
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associated with a single crystal are (1) a crystal may 

undergo crystal structural phase transitions as 

temperature is lowered, and (2) cracking of crystal may 

result if the cooling or heating of the sample occurs 

too quickly. In using a powder, it becomes unnecessary 

to know the crystal orientation, nor to know the number 

of molecules in the unit cell and their relative 

orientation in the unit cell. Though the S/N is lower 

for a powder per frequency bandwidth, the singularities 

(that occur at 690) in the powder spectrum should be 

sharp and the peak S/N should be substantial, excluding 

dominant impurity signal contributions. 

6.13.1 Single-Quantum Spectrum 

If the system is uncorrelated, we expect on the 

average one unique dipolar coupling constant. The nine 

configurations possible are shown in Fig. 6.22, where 

it is assumed that the methyl group can only hop 

between equilibrium orientations. The dipolar 

Hamiltoniart for this case is just: 

v(l 	r 	- 1(11+11)] 

	

zl z2 	4 

vV 12 . 

The extreme eigertstates 	+.> and 	--> are shifted 

by 4v, 	the 	symmetric 	eigenstate 	--(+-> + 
,r2 

by - —v,arzd the antisymmetric state --(I+-> - -+>) is 
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Uncorrelated Motion 

H>— 	>—H 

—<H 	 HH 

H—< H >— 
H—< H 	

H 

Correlated Motion 

(0) 	 H>—H 

(b) 	
H H>— __<H  >__H H_< H>_ 

(c) H 

XSL 8210-2935 

Figure 6.22 	Assuming random hopping only between 

equilibrium positions, 	fr uncorrelated motion the 

methyl groups have :andom relationship. For 

correlated motion there are only three possible initial 

conditions, and three possible configurations each. 

Note that configurations b and c are indistinguishable 

by NMR. 
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unshifted. 

Assuming the methyl geometry is unaltered by 

deuteration, the coupling constant can be calculated. 

The coupling for 0=0 0 , which is the maximum inherent 

value possible, is: 

v 0 	5.784 kHz. 

The SQ spectrum for this molecule is then a doublet 

with a separation of (ii +or 11.072 kHz for 0=0' 

(Fig. 6.23(a)]. 

If the system is correlated in motion, on the 

average 	there 	are 	two 	unique 	dipolar 	coupling 

constants. 	The two constants arise from the fact that 

there are two initial configurations possible (Fig. 

6.22(b)]. 	(Actually there are three; however, two of 

them are NMR equivalent but are enantiomers.) 	The 

superimposed Ramiltonian is: 

HO  a l vV 	+ 4wV 12 . 

The coupling constants for 80 are: 

v 0  - 10.535 kHz 

wo - 3.408 kMz 

The 	SQ spectrum is a 	superposition of two 	doublets with 

separations 	(/1 + f)v and 	(Ii + 4)w , or 	20.167 and 
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Uncorrelated Motion 

-JO 	 0 	 Jo 
1' (kHz) 

Correlated Motion 

-ib 	ô 	lb 
• 	 v (kHz) 

XBL 8210-2927 

Figure 6.23 	The single-quantum spectrum for 1,8- 

dimethylnapthalene_d 10  molecule at orientation 	=90 0  

undergoing (a) uncorrelated motion, resulting in a 

doublet, 	and 	(b) 	correlated 	motion, 	showing 	two 

doublets with one doublet having twice the intensity of 

the other. 
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6.524 kHz for 80 	[Fig. 6.23(b)]. 

The dispersion function of a powder pattern is 

given by: 19  

2" 

	

f(v) - (-.--. + j)'2, 	 -d <v<--d 
0 	

o 	2o 

2v + 	 2 	2v 

	

d 	 + ( - . + j)"2, 	- 1 	1  
0 

d <v<
2
d - (- 

2o 	o 
0 

( 	+ 
2v 	1) _1/21 

 

- - 

	

d 
0 	

2o 	o 

where d 0  corresponds to the appropriate coupling 

constant at 00 0 . 	The singularities occur at 

which corresponds to d at 6-90'. Calculated dipolar 

powder patterns for uncorrelated and correlated motion 

of 1,8-DMN-d 10  are shown in Fig. 6.24. Measurement of 

the splittings between singularities of a powder 

pattern yields the coupling constant at 0-0'. 

6.13.2 Impurity Content 

The motivation for including this section stemmed 

from measurements made on 1,8-DMN-d 10  showing impurity 

signal comparable to or larger than the desired signal, 

even at a high host purity level of 99.0% and at a 5 

dilution. This came rather as a surprise at first. 

The arguments to be discussed below will clearly show 

why SQ spectroscopy requires high purity samples. 

The level of sample purity can be estimated 



(a) Uncorrelated Motion 

-5 	0 	5 

iv (kHz) 

(b) Correlated Motion 

-10 	-5 	0 	5 	10 
v (kHz) 

XBL 8210-2979 

Figure 6.24 	The single-quantum powder spectrum for 

1,8-dimethylnaphthalene-d 10  undergoing (a) uncorrelated 

motion, and (b) correlated motion, showing a 

superposition of two powder patterns. 
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assuming 	a 	statistical 	distribution 	of 	proton 

attachments. Generalizing, suppose there are N 

molecules with m sites each, totaling a number of mN 

sites. The question is: what is the probability that 

each molecule with m sites will have k impurities? 

This can be abstracted to the following problem. 

Suppose there are a total of mN objects, where x of 

them are of one kind and y of them of another kind. 

What is the probability of picking m objects such that 

k of them are of the y type, assuming 	k(y 

and (m-k)x? 	Through combinatorial arguments, this 

probability is found to be: 

	

(y 	X 
' tm-k P(m,k) - 

Listed in Table 6.5 are the probabilities for 

typical impurity levels. The percentage refers to the 

number of sites occupied by an impurity and not molar 

percent. The notation P(m,k) is interpreted as the 

probability,  of 1,8-DMN having k impurity protons. For 

1,8-DMN, the number of sites is a-12. The tabulated 

values assume N100 molecules, which is large enough to 

yield values close to those of N.m. 

Note that a portion of P(12,2) has protons in the 

desired location. This amount is (1)1 
 or 1/66, 

implying P(12,2) should be multiplied by 65/66 to give 

the correct impurity content. 



Table 6.5 

Probability P(m,k) of m s i t e s being occupied by k 

impurit ies 

impurity content 	P(12 0 1) 	P(12,2) 	P(12,3) 

10Z 0.38 0.23 0.17 

11 0.11 0.006 2x10 

0.5Z 0.06 0.001 1x10 

193 



The calculation of impurity content of the 

starting guest material is more complicated. 	It 

depends 	on 	the 	selectivity 	of 	the 	deuteration 

procedure. 	Thus the proton attachment is no longer a 

statistical problem. Fortunately, the purity 

requirement is less stringent since the guest molecule 

will be in low abundance. For example, if the net 

effect of the selectivity and extraction procedure is 

90% effective, then roughly )10Z of the sites are 

occupied by mislocated protons and the desired signal 

is 4-90% of the expected value. (Compare this to a 

random deuteration composing of 38% single—proton 

impurity, 23% two—proton impurity and 17% three—proton 

impurity.) For the rough estimate that we want to make 

this modification can be neglected. Note that part of 

this reduction is counteracted by the perdeuterated 

host having the desired proton attachment. 

Given Table 6.5, the comparison of the size of 

impurity signal from the host versus the desired guest 

signal can be made for a given guest dilution. 

A 5% molar dilution is a reasonable amount for 

effecting isolation of guest molecules. 	(Considering 

cubic—closest—packing structure, 2% dilution is 

optimal. But if the nearest intermolecular distance is 

greater than the intramolecular distances, 5% dilution 

is tolerable.) When the dilution is high, the impurity 

of the guest compound can be neglected. 
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The total 1 H signal size is proportional to the 

number of proton occupied sites. 	At 5% dilution, 95% 

of the molecules are hosts. 	Assuming a host impurity 

level of 12, the number of sites corresponding to 

single-proton host moleucles is (0.11)95% = 10%, to 

U 	
two-proton hosts is 2(0.06)952 	1%, and to three- 

proton hosts is 3(0.016)95% 	0.05%. 	Compare this to 

the number of guest proton sites, which is at best 

(2)52 - 10%. 	The rest of the sites contribute to 

deuterium signal. 	Thus even at 5% molar dilution and 

with a 99% host purity level, the impurity signal is 

comparable to the desired signal. 

To improve the above situation., one may either 

increase the amount of guest molecules (which may 

result in intermolecular broadening) or decrease the 

impurity content of the host. 	Let us consider the 

latter. 

Suppose the host impurity level is ultra-low at 

0.5%. 	At 5% dilution, the number of host impurity 

sites 	is 	5% 	single-proton, 	0.2% 	two-proton 	and 

negligible three-proton. 	The desired signal again 

derives from 10% of the sites. 	Thus at 0.5% host 

impurity level, the desired signal is twice as large as 

the impurity signal, which is tolerable. 

It is worth mentioning that it is very difficult 

to get higher than 99.5% purity since most commercial 

starting materials (D 2 0). are graded at 99.5%. 
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6.13.3 	Conclusion 

Provided the sample purity is high enough, it is 

feasible 	to perform SQ NMR apectroscopy on the 

selectively 	deuterated 	1,8-DNN-d 10 	diluted 	in 	a 

perdeuterated matrix. The observation of correlation 

of motion of two methyl groups is then an one-pulse 

experiment with heteronuclear decoupling. A powder 

sample of 1,8-DMN-d 10  is preferable to a single crystal 

for experimental ease and to remove the need to know 

the unit cell, structure. In contrast to the single 

crystal spectrum, the powder spectrum is also 

unaffected by the fact that in the slow motional limit, 

the methyl groups can no longer be treated as an 

averaged specie. 

A preliminary measurement on a powder sample of 5% 

dilution in a host of 99Z purity resulted in a smearing 

Out of the powder pattern by impurity signal. A simple 

calculation assuming statistical proton attachments 

reveals the importance of high purity requirement of 

the host compound. 



APPENDIX 6.A 

Computer listings of programs EXCH2 and HARDMAT 

EXCH2 diagonalizes the superoperator A for the 

four-quantum transitions in the E manifold. The NMR 

permutation group S 3  and the dipolar couplings for the 

orientation specified in section 6.11 are assumed. It 

requires as inputs only the exchange times ("tau"). 

HARDMAT is called within EXCH2 to create a "hard 

copy" of the constructed 16x16 superoperator A. This 

subroutine was supplied by Jim Murdoch. 
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• 	pro.rarexc2 	-- - 
r 

oes the e—ar1fä1 	erorto "  
C __________ 	_______ ______  

— 	 CCIn1f7 sCi16TiciJ,Z(1e,1, 
dtes1or  
Crter? title 

C 
C 1.' j1.4 ________ 	_________________________________ 	- • -- 

C 

-- 	 -. 	- 

'2.2 '?t .3 ' 1 
C 

	

- 	• 	-•-- -- 	-- ---.-- - -- 	 - 

- •- - -- - 	- 	- - - • - 	- ---- - --- 	----- 	- - - 

/ sqr2.'' 
----i 76 .'T sçrt(2. -- -- --• ---- ------ ------- - - 

C 
C 

, l. 	 • 	 - 

1 	 _____  

-Trr- z!' 2..r 
C 

- 	
3 ., z 	- 	- 	 - 	- - 

- - 	 .e . 	;tCvCi 
If(t .:e._j  C C 

zz 	ty;e !ZZ - 	 - 	- 	- -- 	- 	- 	- - 
02 	:?-tJ'.' enter a value for tau: •,; 

acce;t W,tau 	- 	- 	 - 
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C 
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C 
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APPENDIX 6.8 

Computer listing for program EXCH1 

EXCH1 diagonalizes the superoperator A for the 

four—quantum transitions involving the A 1  m*1 and m*3 

manifolds. The NMR permutation group S 3  is assumed. 

The programs asks for the matrix elements of the 

Liouville operator U and the exchange times as inputs. 
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