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MULTIPLE-QUANTUM NMR IN SOLIDS

By

YU~-SZE YEN

ABSTRACT
Timevdomain multiple-quantum (MQ) nuclear magnetic
resonance (NMR) spectroscopy 1is a powerful tool for
spectral simplification and for .providing new
information on molecular dynamics. In this thesis,
applications of MQ ©NMR are presented and show
distinctly the advantages of this method over the
conventional single~quantum NMR,
Chapter 1 introduces the spin Hamiltonians, the
density matrix formalism'and some basic concepts of MQ
NMR spectroscopy. |

14

In chapter 2, N double-quantum coherence 1is

observed_with high sensitivity in 4isotropic solution,
using only the magnetization of bound protons. Spin
echoes are used to obtain the homogeneous double-
ﬁuantum spectfum and to s#ppress a large HZO solvent
signal.

Chapter 3 resolves the main difficulty in
observing high MQ transitions in solids. Due to the
profusion of spin t;ansitions in a_solid, individual
lines are unresoived. Excitation and detection of high

quantum transitions by normal schemes are thus

difficult. To ensure that overlapping 1lines add



constructively vand thereby to enhance sensitivity,
time-reversal pulse sequences are used to generate all
lines 41in phase. Up to 22-quantun IH absorption 1in
solid adamantane 1s observed. A time dependence study
shows an increase 1in s8pin correlations as the
excitation time increased.

In chapter 4, a statistical theory of MQ second
moments 18 developed for coupled spins of spin I-1/2,
The model reveals that the ratio of the average dipolar
coupling to the rms value largely determines the
dependence of second néments on the number of quanta.
The fesul:s of this model are checked against computer-
calculated and experimental aecoﬁd moments, and shbw
good agreement.

A simple scheme 18 proposed 1in chapter 5 for
sengsitivity improvement in aVHQ experiment. The scheme
involves acquiring all of the signal energy available
in the detection period by applying pulsed spinlocking
and sampling between pulses. Using this technique on
polycrystalline adamantane, a lafge increase in
sensitivity 18 observed.

Correlation of motion of two {interacting methyl
groups 1is the subject of chapter 6. This system serves
as a model for the studj of hindered internal motion.
Because the spin system 1is small and the motions are
well-defined, the calculations involved are

tractable. Group theory appropriate for nonrigid



molecules is used to - treat- the change in

‘Hamiltonian as the methyl groups transit

correlated to uncorrelated motion. Results show
the four-quantum order alone is sufficient

distinguish between the two motions.
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CHAPTER 1

INTRODUCTION TO MULTIPLE-QUANTUM NMR

Multiple-quantum (MQ) spectroscopy has proven to
be a practical tool in the simplication of spectral

(1)

analysis as well as providing new information 1in

(2)

molecular spin dynamics. Diverse in its
applications, MQ NMR has been applied to heteronuclear
as well as homonuclear coupled‘ spin systems, and to
systems with J coupling, dipolar and quédrupolar
interactions, Multiple-quantum transitions have been
observed in liquids, solids and liquid «crystals.
Excellent reviews on this widely useful topic have been
available in the 155: couple of years.(3-6)

This chapter presents some of the basic concepts
of Fourier transform MQ NMR specLroscopy. The
succeeding chapters will extend on particular aspects
relevant to the subject of discussion.

Before we enter 1into the realm of MQ NMR, the

matter of spin Hamiltonians and spin dynamics as

described in the density operator formalism will be

first discussed. Then we will proceed with a
definition of MQ coherence, discuss the information
content of MQ spectroscopy, describe ' a Fourier

transform MQ experiment, and present some properties of

MQ coherences.



1.1 SPIN HAMILTONIANS

The interaction of nuclear spins with their

surrounding can be divided into two parts:

The external Hamiltonian Hext is an interaction of the

spins with applied magnetic fields, whether they be

static or oscillating, and is subject to the
experimentalist's choice. The 1internal Hamiltonian
H;,. 1s inherent to the spin system; it is composed of

the interaction of nuclear spins with the local
" surroundings.
In the class of substances that we will be dealing

with, the following interactions are of interest:

The Zeeman term H, and the applied rf term H. g are
grouped as external Hamiltonians. The remainder are
ilnternal Hamiltonians. These terms will be discussed

separately.

1.1.1 Zeeman Hamiltonian

In typical laboratory magnets, by far the largest

term is the Zeeman Hamiltonian. Nuclei with dipole

hd > . - .
moments W = YAl , where Y 1s the magnetogyric ratio,



will interact with the large applied static magnetic
>
field Ho. Expressed in units of #, this interaction is.
described by
> >
HZ 8'-Ho Zui/ﬁ = -Ho EYiIzi
i i
<>

where z is chosen to be in the direction of Ho and the
summation runs through all nuclei in the sample.

As a result  of this interaction, the spins

eiperience a torque in the direction defined by

D-IQ.
(af } -2
[
L}
<
P

i =8
e

x

Ty
o

aud will precess at a rate Y;H,. This constant wy 5 =
. 3

Y{H, is referred to as the Larmor precession frequency.

/
I

1.1.2 Rf Hamiltonian .

For spin excitation, an oscillating field in the
radiofrequency range can be appiied. To avoid coupling
with the static field, it is applied in the xy-plane.
Chdosing the rf field to bé in the x-direcfion, tHe rf

Hamiltonian is expressed as:

cos(uwt + ¢)})v.I

H = ZHI i x1

rf

where Hi is the amplitude of the rf field rotating at a

frequency w with an initial phase 6.



1.1.3 Quadrupolar Hamiltonian

Nﬁclei with 121 possess an electric quadrupole
moment due to the nonspherical distribution of nuclear
charge. The nuclear quadrupole moment can interact
with the local electric field gradient generated by the
spacial anisotropy in the distribution of the valence

electrons. The quadrupolar Hamiltonian is given by:(7)

eQ.
Hy = 1 - Iyt
i 21.(21.-1)
i 1
eQ.V .
- 1 zz,1 2 _ 1 2 2
(31, LT+ + g0 (10,417 .)]

i 41.(21.-1)
i i

where Qi is the quadrupole moment and !i is a second
rank tensor describing the electric field gradient.

The asymmetry parameter n; is defined as:

and V and V are the electric field

. v . .
xx,1°’ yy,1? zz,1

gradient tensor components expressed in the principle
axis frame. For axially symmetric gradients, n=0Q.

In the presence of a large magnetic field, only
the secular part (i.e. the part that commutes with Hz)

is retained:

eQ.V

1 zz,1

Q41 (21.-1)
1 1l

larii - 1 (1+D)].




v

1.1.4 Dipolar Hamiltonian

The direct interaction between magnetic dipoles 1is

given by:
. +> >
H = ] I,D..-°I.
D i<3 1 ~13 73
. »> »> > *>
Y.Y.H 3(I,er. . )(I.°r..)
- L1 1 1] 1) _ 7 .7.]
L3 2 1]
i<j r. : r,. .
1] 1]

¢

) 3 . ‘ * -
where Qij 1s a traceless second rank tensor and rij is
the vector connecting nuclei i and j. In high fields,

only the secular part of Hp is retained:

Y 2 1
Hy = | —5(3cos SERERAC IS S Z(I+iIej+I-iI+j)J
: i<j 7.
1]
This is referred to as the "truncated" dipolar

Hamiltonian.
For nuclei of different Yi» Yj and spins I, S the

Hamiltonian is further truncated to:

Y. Y. h

Ho= 24 (3cos?6..-1)1 .5
D . 2. 3 1] zZ1 z
1<j rij

_1;1.5 Chemical Shift Hamiltonian

The electron <cloud surrounding a naucleus is

polarized by the applied magnetic field and éffectively



shields the nucleus. As a result, nuclei in different
chemical surrounding do not experience the same local
field. In general, the shielding 1is expressed 1in

tensor form:

H Sy. 1.0,
= .°g.*
cs .Yl 1 Y1 o .
i
where gi is a second rank tensor. In 1isotropic

solution, it is reduced to a scalar interaction:

- . I 3
cs Tivzi
where only g, = %Tr(gi) is retained.

1.1.6 1Indirect Spin-Spin Hamiltonian

The interaction between nuclei via electron clouds

in general is given by:

H JT.e3..T
= . -o. -
J i< 1 ~13] 7]
where {ij 1s a second rank tensor. In high fields,
only the secular parts remain:
> » aniso >
H 3 [.riJIl Iy + 355 (31, 257111

Since the anisotropic part of H, has the same form as

Hpy, it is sometimes called the pseudo-dipolar



coupling.  In isotropic solution, the anisotropic term

is averaged to zero, resulting in a purely

coupling:

and S is truncated to give:

1.2 SPIN DYNAMICS

As in'HD, the interaction between unlike nuclei I

The state of a coupled spin system is conveniently

described by the density operator o. At

thermal

equilibrium, the state of maximum entropy dictates that

the density operator takes the following form:

‘ exp(-B8H)
Po =
Tr {exp(-8H)}
wb - = ﬂ/kBT and kB is the Boltzmann constant.

aperatures BH < 1, the density operator

first order term,

(1 - BH)

©
n
N

expanded in a Taylor's series. Keeping only up to the



where Z = Tr{exp(-8H)!}. Since the first term 1is
proportional to identity and can never have an effect
on the spin dynamics, it is usually dropped, yielding

what is called the reduced density operator:

In all our discussions, the constan; b = --Bmc.z-1 will
be suppressed.

The equation of motion for p under the influence
of an explicitly time~independent Hamiltonian H is

given by:

do

E?. 'l[H, D].

The formal solution to this first order differential

equation is:

p(t) = exp(-iHt)p(0)exp(iHt)

where p(0) is the initial density operator. If the
Hamiltonain changes discretely from one t ime-
independent Yamiltonian to another, successive

applications of the above equation yields:

o(t)'...exp(-intz)exp(-iHItl)Doexp(iHltl)exp(iHth)...

[



The precession at the Larmor frequency is common

to all like spins. To remove this uninteresting term,

it is common to transform the equation of motion into

the rotating frame in which the rf Hamiltonian is

stationary:

dop*

T -i[H*, p*].

In the rotating frame,

pkx = exp(-iwtlz)pexp(iwtlz)

H* = exp(-imtIz)Hexp(ithz)

are the effective operators. In this representation,

the Hamiltonian for like spins is,

H* = -Awl + w. I + H* + H* + H* + H*
z 17 x Q D cs J
where -Aw=(w-mo) is the resonance offset and the
internal Hamiltonians retain only the secular parts.
In all our discussions, the rotating frame is the

relevant one and the notation * will be suppressed.

1.3 MQ COHERENCE

Formally, MQ coherences are related to the off-
diagonal elements of the density matrix p, with the n-

quantum coherences associated with the elements n off



the diagonal of »p. A MQ coherence describes the
transition between two eigenstates where the well-known
selection rule Am = ] is violated. Consider the
energy level diagram for N coupled spin-1/2 system of
Fig.l.1. An "allowed" transition is one in which the
quantum number changes by 21. A MQ transition has no

such restriction; it can be n-quantum or even zero-

quantum. In single-quantum spectroscopy, effectively
only one spin flips. In a n-quantum transition
multiple spins flip. Tnis multiple flip involves a

simultaneous absorption or emission of n photons. The
process is a coherent one and should be con:rasﬁed to a
sequén:ial, and hence incoherent. process.

Becav-e a HQ coherence is a many-body correlation
phenomenon, it requires a Hamiltonian that couples
spins. More precisely, the criterion for whether a
Hamiltonian term will excite MQ coheteﬁces is that it
must be a bilinear operator. Such bilinear operators
are the dipolar, the J coupling and tﬁe quadrupolar
Hamiltonians. |

In the nonlinear regime where H ¢ is no longer a
weak perturbation, a nonselective excitation of MQ
coherences can be accomplished by either a long weak

pulge(8) ([H_ gl =|H or short intense pulses

intl)’

({Hrfl)lﬂ |) sandwiching time delays in which a

int
bilinear operator is operative. Our focus will be on

using short intense pulses to excite MQ coherences. 1In

10
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dashed arrow indicate a transition forbidden by
symmetry.
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this limit, H;,¢t c¢an neglected in the duration of the

pulses.

1.4 SPECTRAL SIMPLIFICATION

The problem with single—quanfum (SQ) spectroscopy
is apparent from the SQ spectra of oriented systems
shown in Fig. 1.2. 1In Fig. 1.2, the number of coupled
protons increases monotonically down the page. One
observes that the spectral complexity increases with
the number of spins. For a two or three spin system,
the spectrum 1is sfill fairly siample. But one notices
that for, say, a six spin system, already the lines are
beginning to overlap. The situation for a sixteem spin
system is intractable - one 9only gets a broad
featureless lineshape.

Three methods to reduce spectral complexity are
proposed and can be used in combinatioﬁ. The first two
methods involve reducing the number of coupled spins.
When reduction of system size is no longer feasible, MQ
spectroscopy offers a viable alternative.

The first method is to simulate isolated molecular
systems, thereby removing intermolecular dipolar
couplings.

In solids, extensive dipolar couplings can exist
and because of the rigid lattice structure, the full
,effect of Hp 1s achievable. In order to simulate

isolated molecules and maintain the crystal structure,

12
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Figure 1.2 High resolution proton single-quantum
spectra of solutes oriented in liquid crystal

solvents.
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the desired compound can be diluted into a matrix of
the isotopic counterpart. Oftentimes, the nuclei of
interest are in low natural abﬁndance, as in the‘case
of 130, and thus the 1isotopic dilution is already
provided.

Solutes dissolved in.a liquid crystal solvent are
particularly  convenient systems for studying
intramolecular dipolar couplings. The translational
diffusion of the liquid crystal molecules averages to
zero the intermolecular couplings. However, because
the liquid crystal molecules are restricted in their
moleculér reoriencatién, the intramolecular couplings
remain but are scaled by order parameters.(g) The same
situation occurs for solutes dissolved in a liquid
crystal solvent. Thus we have a convenient method for
lsolating molecules, provided the molecule is soluble
in some liquid crystal or is im liquid crystalline
form.

Another alternative 1is to reduce the numbef of
coupled spins per molecule with selective isotopic
labeling. This can often be expensive or synthetically
difficui:, and sometimes infeasible.

To see what spectral simplication can be found
from MQ spectroscopy, we refer again to Fig. 1.1. We
notice that there is only one N-quantum transition,
where N 1s the maximum quantum possible. The number of

(N-1) quantum is at most N, and so on. One can show

14



through a combinatorial argument that statistically the
number of transitions falls off with the number of
quahta in a Gagssian manner.(3) In fact, even for a
small spin system such as benzene, this statistical

argument holds well at least qualitatively (Fig.

1.3). Thus, it would be advantageous to observe the

higher quantum orders where the density of 1lines are
much 1lower, provided they contain the same amount of
information. This leads 'us to the problem of
determining the information concént of MQ orders.

We compare the humbef of unknown physical
constants with the number of measurables, based on a

statistical argument. The claim is that it is usually

~zh to consider only the (N-1) and (N-2) quantum
..~usitions, provided that all the 1lines in these
orders are resolvable.

In oriented systems, typically one has as unknowns
the = chemical shifts, J  couplings, and dipolar
couplings. The number of dipolar couplings is equal to
the number of pairs of spins. Likewise for the number
of J couplings. The number of chemical shift
differences 1is equal to the number of spins minus
one. Thus, the total number of unknowns 1s N% - 1.

The (N-1) quantum order has 2N lines, and the
(N-2) quéntum ' order has N(N-1) lines. The
accumulative amount of information available thusfar is

already N2 - l. Therefore, indeed the (N-1) and (N-2)

15
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Figure 1.3 Integrated intensity versus the number of
quanta n. The measured benzene values (solid dots) are
compared against a gaussian curve based on a

statistical counting argument (solid line).
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quantum orders offer enough information for a complete

determination of the physical constants.

1.5 FOURIER TRANSFORM MQ EXPERIMENT

A multiple-quantum experiment can be separated
into four time domains: preparation, evolution, mixing
and detection (Fig. 1.4). Separation of time domains
allows the experimentalist to create the effective
Hamiltonian of interest in each time period. .This
offers great flexibiltiy for the experimentalist on
what he chooses to observe, depending on his ingenuity.

In the preparationi period, the coherences of

interests are created, let evolve in t under some

‘Hamiltonian Hy. A direct detection of MQ coherences

would require multipole detectors. Since our coil is
Capablé of detecting only.oscillating dipoles, a mixing
period is required to convert the MQ coherences into
single quantum coherénces, which are detected in time
t,. This is repeated for many values of t unt%l a MQ
interferogram in ty is obtained. The MQ evolution‘in
t) ls detected as a modulation of the single-quantum
amplitude. The signal is given as the trace of the
observable I, = I, + in with the density matrix at

the time of observation:

rd T L d
S(r,tl, T ,:2) 'rr{I+p(t,t1, T ,t2)}
= TriI_exp(~iH,t )V (T )exp(-ifi ¢ U (1)
x9OU(T)exp(1H1t1)V(T )exp(xHth)}

17



PREPARATION EVOLUTION ~  MIXING DETECTION

PROPAGATOR: v exp(-id 1)) Vv exp (-i¥#,t )
TIME VARIABLE: T t, t,

IBL 8112-1334:

Figure 1.4 A block diagram of MQ pulse

indicating the separation of time domains.

sequence,
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Shown in Fig. 1.5 are two simple MQ pulse
sequences. The first two pulses separated by a time
délay suffice to prepare MQ coherences.

The amount of coherence prepared depends on the
time delay between the pulses. To demonstrate, exact
dynamics calculation have been performed on benzene, a
6-spin system.(S). Figure 1.6 shows the dependence of
the average integrated intensit§ of n-quantum coherence
on the preparation time. Basically, after an
incubation period time on the order of the inverse of
the couplings, this dependence 1is roughly constant for
the lower orders. For the 6-quantum transition, since
there 1s no averaging with other transitions, the
oscillation is pronounced and continues for all times.

For -~ small pumping times T, the powér of the
rate of growth of n-quantum integrated intensity varies
with n (Fig. 1.7). For the two-pulse preparation
sequence, the power 1is 2n-1 (n>1).(3) "This power
dependence clearly indicates that it takes more time to
build up an n-body <correlation. - In chapter 4,
preliminary experiments in solid adamantane verify tﬁat
ex;itation of the higher quantum coherences do require
longer preparation times.

Transition phase and 1intensity depend on the
prepgration and wmixing times for general MQ pulse
sequences, The transition phase can be independent of

preparation time only if the mixing propagator 1is the

19
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Fig. 1.5 Two simple three-pulse sequences for

exciting and detecting MQ coherences in Eoth
channels. If there is no offset, then the upper pulse
sequence is even-selective, and the lower sequence 1s

odd-selective.
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Figure 1.6 Exact dynamics calculations of average

integrated intensity versus the preparation time for
the oriented benzene molecule. Only the 2-, 3-, 6~
quantum orders are shown. The dependence 1is roughly

constant for all but the six-quantum order.
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Figure 1.7 An expansion of the smaller preparation

times of the previous figure; showing the rate of

growth of coherences varies monotically with n (n>1).

22



time-reversal of the preparation propagator. This can
be important since overlapping lines that are out of
phase destructively interfere. To avoid missing lines
that happen to have a small intensity at some poorly
chosen preparation time, it becomes necessary to do the
s ame experimeht with enough different preparation times

and take an average.

1.6 EVEN AND ODD SELECTIVITY

Consider the sequence I -t -2 " for
‘ 27 x 2 -x
preparation (Fig. 1.5). The '"prepared'" density
operator for this sequence is
L0 = exp(idl dexp(-ilt)exp(~idl )1
. exp(izI Jexp(-i exp(-izI )T _
. T . A
Xexp(131x)exp(1ﬂr)exp(-131x). | (1)

A useful concept is to let the rotations operate on H,
thereby defining an effective preparation
"Hamiltonian. We separate the linear terms from the

bilinear terms in H:

H = -8wl_ + H
z zz
where H,,  is bilinear. The effect of the rotation on H
is:
n

. .
exp(xilx)ﬂexp(-lzlx) Ame + Hyy

23



T
2
With this, Eq. (1) becomes:

h H = (i=1 )H (-i=1 )
where H exp(izI JH__exp(-izI ) .

p**( 1) = exp(=-iH 1)(I cosAwT + I _sinAuwT)exp(iH
yy z x Yy

= U [I JcosAwr + U [I Jlsindurt,
Yy =z yy x

T)

where U [I ] = exp(-iH 1)I exp(iH Tt). The operator
Yy a P Yy a -P Yy P

U, 01,

U}y[Ix] of od.- Juantum operators. In the limit

XX
p T (1) Uyy[lz]

is purely even-quantun.

t , the P

Nl a
x

"
For the sequence 7Iy - T -

density operator 1is:

n
2
xexp(i%ly)exp(iﬂr)exp(illx)

yx = o s . T
p? T (1) exp(-1i Ix)exp( xﬂr)exp(lzly)lz

2

= U [1 JcosAwt + U [I JsinluwT.
Yy “x Yy "z
In the limit Aw=Q,
¥ty = u (1]
yy x

is purely odd-quantum.

] is composed of even-quantum operators, and

Aw=0,

repared
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By inserting a 7 pulse in the middle of Tt to

remove all resonance offsets, selective preparation

sequences can be created. Thus, an even~-selective
r afation se n is II - S T - = - II d ﬁn
prep quence 2°x 2 2 27 =-x ag
. . | T T n
odd-selectxvg one 1is 2Ix 2 T - 7 ZIy'

1.6 SEPARATION OF ORDERS

A highly wuseful property 1is that the offset
experienced by MQ coherences scales with n. By going
off-resonance by an amount Aw greater than the largest
MQ second moments, the orders can be separated. To see
how this\comes about, we expand»tﬁe density operator in

the irreducible spherical tensor operator basis:(IO)

p(t) = § a, ()T
k,n k,n k,n
where T, . l1s the nth-component of a k-rank tensor
, ,
(n<k). The tensor components Ty o are related to n-
. H
quantum operators. It 1is convenient to group the n-

quantum operators:

p(t) = § p (t)

n

where o (t) = Eak,n(t)Tk,n‘

As a result of the commutation rule:(IO)

[Iz’ Tk,n] = nTk,n

25



and the following property of exponential opetators(lo)

e*se™ = B + [4,B] +1,14,[4,B]] + 3 [4,04,14,8]]]+...

the effect of a rotation about Iz on p isﬁ
GXP(~i¢Iz)on(t)exp(i¢Iz) = Dn(t)exp(-in¢).

This implies that the existence of an offset term in -3

will cause n-quantum coherences to oscillate as nAuw:
exp(iAthIz)pn(t)exp(-iAmtIIz) = Dn(T)exp(inchl).

If the offset Aw is greater than the largest MQ second
moments, this will result in separation of the orders
in the Fourier spectrum.

As a corollary, the inhomogeneity 1s also scaled
by n. For high resolution work, it would be desirable
to remove the inhomogeneity by applying a T pulse 1in
the middle of the evolution period. But by doing so,
the centers of orders will coincide.

The method of time proportional phase
1ncremencacion(1'll) (TPPI) allows sorting of orders
meanwhile removing inhomogeneous line broadening. It
can accomplish sgseparation regardless of whether there
is a real resonance offset.

As 1s evident from its name, the method involves



incrementing the phase of the preparation pulses. for
each/ increment in t;, and keeping the mixing pulses at

a fixed phase.

Suppose we phase shift the preparation propagator

by an amount ¢:
U,(T) = exp(-i¢I )U(Texp(igr )

where U(T) is at an arbitrary fixed phase. Applying

the propagator on the initial density operator gives:
o(7) = ul(vT_ v (1)
¢ z ¢
= exp(-i#Iz)UT(t)IzU(T)exp(i¢Iz)

Consider incrementing the phase of the preparation
pulses by an amount A4¢ proportional to t- We can
express the phase as

¢ = Amtl N

A¢

where 4w = EFI.

The fictitious offset Aw is a parameter that can
be varied by changing the phase increment a¢. To
observe up to a maximum order M, the bandwidth l/Atl

must encompass up to 2MAw/2m, That 1is, the minimum

increment in t; must satisfy:

27



1 5 2MAw

Atl 2n

The corresponding condition on A4¢ given At, is:

2
g £°
8¢ < M.

Keeping the mixing propagator V(Tt°) at a fixed

phase, the expression for the signal is then:

SCt,t), T = Te{V(T)I_V' (t)exp(-if ¢ )

x U;(t)IzU¢(t)exp(-iHIt1)}

= Tr{V(T’)I_Vf(T')exp(-iH )exp(-iAutl)

1%’
x u*(r)rzu(r)exp(iAucIexp<ialcl).

Thus the signal experiences an additional, although
artificial, offset.
By insertin- . % pulse in the middle of t;, the

effective Hl is free of all real offset terms. With

this and TPPI, we can obtain separation of orders

without losing high resolution.
In chapter 2, the scaling of inhomogeneity with n
is put to use to obtain separation of MQ spin echoes

and to allow selective detection.
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CHAPTER 2
INDIRECT DETECTION OF SPIN-1 DOUBLE-QUANTUM COHERENCE

IN LIQUIDS

2.1 INTRODUCTION

Time domain multiéie-quantum (MQ) NMR has been
demonstrated in a variety éf systems(l) to offer higher
resolution and more information on relaxation dynamics
than single;quantum (SQ) methods. Although § = ]
nuclei in anisotropic systems were among the early
applications of time domain double-quantum (DQ)
NMR,(2’3’4) it is only recently that the interesting
problem has been raised of observing these transitions
in isotropic solution whefe the quadrupole coupling
vaniqhes. Prestegard and Miner(S) tecogniéed that the

usual preparation sequence using two /2 pulses(6’7)

on
the S spins (1%N) does not excite DQ coherence, even
when the spectrum shows resolved J coupling to
neighboring heteronuclei. They demonstrated that
augmentation of this sequence by spin tickling of bound
protons (I = 1/2) did allow S spin DQ coherence to be
prepared from and mixed to S spin magnetization. ,

In this work we demonstrate that the S DQ
coherence can be excited and detected by using only‘the
I spin magnetization and applying simple hard pulses at
both I and S frequencies. This 1is an example of

(8,9)

heteronuclear coherence transfer and is an

30



extension of heteronuclear MQ techniques already

(10)

demonstrated for I = S = 1/2 in liquids and in

liquid crystals(ll), and for I = 1/2, S = 1 in liquid

(12) (13,14,15)

crystals and solids.

This indirect method of observa;ioﬂ of § = 1 DQ
coherence benefits from the‘signal enhancement(loilz)
which comes from using only proton magnetization as the
initial and final conditions. In addition, we employ
spin eqhoes and time proportional phase incrementation
(fPPI)(7’16) to separate orders and a form of coherence

ttan#fer echo(9’17)

to suppress large zero-quantum
interference.
In discussing the various coherences possible in a

heteronuclear system, it is useful to label them with a

pair of quantum numbers (nI, n%) which are conserved

under free evolution. For any coherent superposition

|i><j| of two eigenstates these are defined by the
relations

[1,, [i><j|] = n§j[i><5|, (la)

[s,, |i><j|l = n§j|i><j]. (1b)

z’

These are just the differences in Zeeman quantum

.ol - I _ I S =
numbers for the states connected: “ij m mj, nij
S _ .S
mi Mj.

2.2 THEORY

Shown in Fig. 2.1 are two pulse sequence
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Fig. 2.1 Pulse sequences used for observing
heteronuclear MQ <coherence. The I spin FID 1is

monitored at t, = T. Pulse sequence B has the first
two S spin rf pulses phase shifted by ¢ = but,
(TPPI). All other rf pulses of a given frequency may
be of the same phase. The delays 4, and 4, allow

suppression of the signal from all but one order of

coherence,.



variations for observation of various orders of
coherence (nij, “?j) using oniy I spin magnetization.
Perfect rf pulses of negligible‘duration are assumed.
We consider here the case of a group of equivalent I
spins identically coﬁpled to a single S =1 spin. The

unperturbed rotating frame Hamiltonian is

H= -Aw I - Aw
z

1 sz + J Izsz, (2)

S
where J° = 21J is the scalar heteronuclear coupling (in
rad/sec) and Iz = X Izi' For the preparation sequence

i
(w/2) ~t/2-(m (1,8)-t/2-(n/2) _(1,S) the propagator is

Uu(r) = exp[i(ﬂ/Z)(Ix + Sx)]exp(—iHT/Z)exp[in(Ix + Sx)j
x exp(-iHT/Z)exp[i(ﬂ/Z)Ix]

= exp(-itJ’IySy)exp{-i(N/Z)Sx]. . (3)

The simultaneous 7 pulses remove the dependénce on the
offset terms in the Hamiltonian of Eq. (2) making the

(4,10,18) and

propagator even-quantum selective
dependent only on the variable J“ 1.
The density operator at the end of the preparation

period is p(T) = U(T)p(0)U (1), Neglecting the term

proportional to the identity this is given by

P(1) = exp(-itJ”I S )(bI dexp(itI’I S )
, y'y z y'y

= b[I cos(J“1S ) + I sin(J°1S )]
z Yy X y
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= b1 (1 + Syz(cosJ’t - 1]

+ 1 S sinJ”T}. (4)
Xy

In the last step, the identities

cos(ﬁsy) = 1 + Syz(cosa - 1), (5a)
s8in(@8S ) = 5 sin® (5b)
y y
appropriate to S = ] have been used. The initial

equilibrium spin density operator proportional to s, is
not included in the expression, since it does n&: yield
DQ coherence nor does it lead to an eventual signal in
the proton channel. Equation (4) can be written using

(19,20)

the fictitious spin-1/2 operators for the S

operators:

' 1-3
p( 1) = b(Iz[l + (2/3 - Sx
- 1/3(521'2 - 822-3))(cosJ’r - 1)]
22l 2p (g 172 g 2-3y ey (6)
x Ty y

This expansion shows that Sy2 consists of zero-quantum
and DQ operators. The coefficient of the operator

Izsyz, and thus of the (nl! = 0, nS = 22) coherence

Izsxl-3’ is maximized by setting t = 1/2J sec, where J
is in hertz.

The prepared c¢oherences evolve during ¢t,. Since

I

only (n = 11, nS = 0) coherences can freely evolve

34
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into proton transverse magnetization, the u/2 pulses at
the end of tl are mneeded to convert MQ coﬁerence into
such SQ coherence. For each increment in t;, only the
peak of the MQ spin echo at tp = T is sampled in the
proton channel. The resulting heteronuclear MQ
interferograﬁ as a function of the evolution time t, is
the autocorrelation function of p(T) = p(rT, t, = 0).
Neglecting relaxation and with 4 = 4, = 0 (Fig. 2.1),

this 1is

s(:l) = Tr{p(T,O)D(T,tI)}

= Tr{p(T,0)exp(-it. J IzSz)D(T,O)exp(xtlJ IzSz)}

1
2 .
‘Z' |p(t,0)|i,jexp( 1mijt1), (7)
1,]
where wjg T oWy - owy and w; = <i|J IzSz|i>.

Evaluation of the matrix elements of Iszl-3 [Eq.
(6)] for the case of four equivalent I; = 1/2 spins

shows that the DQ spectrum 1is a quintet with line

separation of 2J and line amplitude of

Am’) = (1/4)(cosI”t = 1 (cosi’t, - D(a')?ga®)
= (cosJt - 1)(cosdc, - 1), al = 2
= (cosJ”t - 1)(cosI’t, - 1), al = 11
=0, al = 0.

Note that the central line of the quintet has zero

amplitude. The degeneracies g(mI) are 1,4,6 for m* =
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2, %1, 0, respectively.

The fixed time delays 8, and 4, are included to
selectively echo the desired order for detection. The
scheme is similar to pulsed field gradient methods(17),
except that here the static field inhomogeneity and a
longer time delay are wused for the dephasing and
selective rephasing. Advantage 1s taken of thé
proportionality of the dephasing rate to nIYI + nsYs,
thereby allowing separation of various MQ echoes.
Sampling at the peak of the desired MQ echo results in
detgc:ion of the selected order and suppression of the
other ofders. In our experiﬁents, the 14N DQ coherence
dephases at a rate proportional to 2vg in 4, and
rephases as proton SQ coherence at a rate proportional

14

to v in A2‘ To observe the N DQ coherence echo as

proton transverse magnetization, Az must be set at

A, = —= A (9)

This scheme can be viewed as a coherence transfer.

echo filterng (CTEF) process. The desired DQ signal 1is
a small oscillation on top of a large signal
originating from coherences not of DQ nature, the
largest being from the H,0 solvent. Fluctuations 1in
the large signal resulting from instrumental
instability appear in the Fourier transform as noise at

all wvalues of wy . Because this t noise can be
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comparable to the DQ signal, it is desirable to
eliminate it by "filtering" out the large signal. 1In
addition, the dynamic range requirements of the
spectrometer are Areduced, since the largesf signals
never reach the receiver.

Pulse sequence B differs from A.only in the way
the separation of MQ orders is accomplished. Because
of the tensorial properties of MQ operators expressed
in Eq. (1), the center of the order. (nI, nd) is at
nIAmI + nsAwS. Pulse sequence A requires a real
'résonance offset, wﬁereas pulse sequence B creates an
artificial offset by TPPI.(7’16) The ® pulses in ¢t
remove all real resonance offset terms and thus field

inhomogeneity. The phase incrementation of the S rf

pulses in the  preparation period for each

incrementation in t; effects an apparent S frequency

offset in the observing frame. TPPI yields a spectrum
that 1is free of inhomogeneous broadening and yet

retains separation of the MQ orders.

2.3 RESULTS AND DISCUSSION

Spectra were obtained at 27°C of an 8 molar NH4N03
aqueous solution acidified to pH 1 to slow down proton

exchange with the solvent. The spectrum in Fig. 2.2

was obtained wusing pulse sequence A with the IQN

carrier frequency offset by 0.85 kHz from NH4+

resonance and the proton carrier frequency on resonance
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Fig. 2.2 Proton~detected heteronuclear MQ magnitude
spectrum of acidified 8 molar NH,NO; aqueous solution
observed at 185 MH:z. The spectrum is obtained using
Pulse sequence A in Fig. 2.1 with loy carrier frequency
offset from NHA* resonance by Owg = 0.85 kHz, T = t, =
9.6 msec, t increment = 200 usec, A1 = 11.327 msec,
and 4, = 1.618 msec. The incompletely suppressed on-
resonance line arises predominantly from longitudinal
H,0 magnetization present during €y - The wmultiplet
with the center offset by 1.70 kHz is the 14y DQ

spectrum.
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at 185 MHz. The time delays 4; and 4, were set
according to Eq. (9). The central peak at Aw = 0
arises ptedominantlj from imperfect CTEF of the
longitudinal proton magnetization of the solvent H,y0
present during evolution.v Other contributions are from
the zero-quantum portion of IzSy2 and from I, of the
ammonium protons, both of which are present in p(T)
eQen when DQ <coherence 1is maximized [Eqs. (4) to
(6)]. The multiplét corresponds to the DQ coherence
transfer spectrum of 14N. Its center is offset by 1.70
kHz, which.is twice the carrier frequency offset, the
splitting is 2J, and the linewidth is twice that of lay
SQ inhomogeneous linewidth - all of which are
indicativg of laN DQ transitions.

Figure 2.3 shows the improvement in resolution of
the multiplet using pulse sequence B with the same
parameter settings. The spectrum 1is a quintet with
relative amplitude§ of 1:1:0:1:1 and §p1ittings of 27,
in agreement with the calculations [Eq. (8)]. The
splitting 1is 105 = ] ﬁz; the homogeneous absorption
linewidth (full width at half maximum) is 7 * 1 Hz as
compared with the inhomogeneous linewidth of 70 to 80
Hz in Fig. 2.2. |

Also of importance 1is the <comparison of the

14

homogeneous N DQ and SQ linewidths. Through a

14

conventional N detected spin echo sequence, with a

simultaneous 7 pulse applied to the protons to preserve
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Fig. 2.3 Proton-detected 14N DQ magnitude spectrum
18 P

using pulse sequence B in Fig. 2.1 with 1y and 14w

carrier frequencies on resonance. T = t, = 10 msec;
all other parameter settings are the same as in Fig.
2.2. The spectrum is a quintet with 1:1:0:1:1

amplitude ratio and 105 Hz peak separation.



the J coupling, the absorption linewidth of 1z"N DQ and
SQ homogeneous linewidths are the same.

In both Figs. 2.2 and 2.3, the magnitude spectra
are displayed. The 1lines of the quintet <can in
ﬁrinciple be observed in phase [Eq. (7)], but were not
because of the use of CTEF. The insertion of‘the time
delay Al in t necessitates that the heteronuclear MQ
interferogram is fitst sampled not at t; = 0 but at t,
= Al' During the extra time A1, the lines accumulate
phase at differenﬁ rates resulting in a large phase
shift linear in wl;

To demonstrate the sinusoidal dependence of the
Izsx1-3 operator on preparaton time [Eq. (6)], pulse
ksequence B 'was emplo&ed with t, held constant for
different values of T. with t, fixed, the line
amplitude varies with Tt as (cosJ’Tt - Dexp(-1/T,),
where now T, refers to the al = 1 homogeneous decay
time. Figure 2.4 shows the integrated line amplitude
of the quintet as a function of T, A least squares
analysis gave T, = 80 * 11 msec.

14N, a quadrupolar

In summary, DQ transitions in
n:. .as of spin S = 1, is made possible through the J
coupling to the protons. Sensitivity 1is greatly
improved by indirectly detecting the quadrupolar nuclei
through the protons. Using TPPI and a spin echo in the

evolution period, the inherently higher resolution of

the DQ spectrum 1is realized.
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Fig. 2.4 Normalized l4y DQ line amplitude as a

function of the preparation time t. The experimental
points are compared with the solid theoretical curve of

(cosJ”t - l)exp(-r/Tz).
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CHAPTER 3

TIME-REVERSAL MULTIPLE-QUANTUM NMR IN SOLIDS

3.1 INTRODUCTION

Multiple-quantum (MQ) NMR spectroscopy has
generally been appiied to systems of isolated molecules

with a small number of spins.(l’Z) The

small system
size limits the complexity of the spectrum as well as
the number of rf quanta that can be absorbed or
emitted. One difficulty in studying large spin systems
is that the average intensity per ttansiéion decreases
rapidly with the number of spins. As a result,

(3)

selective excitation schemes may be necesséry to
channel intensity into the‘ desired n-quantum order.
'Thus, comparatively few applications  have been
(4,5)

performed in solids, where extensive dipolar
coupling makes the coupled spin systeﬁ essentially
infinite in size.

In this chapter, we present the utilization of
time reversal(3’6) to enhance overall signal intensity
so that vefy high quantum absorption can be observed in
solids. In Fig. 3.1, we show a ly MQ spectrum of solid

adamantane C10H16 obtained by such a time-reversal

excitation~detection scheme, where up to 22-quantum

absorption 1is observed. Adamantane 1is a plastic

crystal; the molecule is nearly spherical and as such

can tumble isotropically in the solid phase. At room
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Figure 3.1 IH multiple~quantum NMR spectrum of solid

adamantane at room temperature, obtained with ¢time-
reversal sequence of Fig. 3.2(d) and excitation time of
480 usec.



temperature, this motion averages to zero all
intramolecular couplings but retains the intermolecular
terms. Our system is thus not an isolated molecule but
rather a network of molecules. Very high quantum
transitions might thereby be excited.

One of the main features of solids is the high
density of spin states. Due to the continuum of
transitions, individual 1lines within each n-quantum
order are. unresélved. Since both the intensity and

phase of individual MQ coherences depend uniquely on

the excitation time, there may -occur destructive

interference between overlapping iines. The integrated
intensity of the MQ spectrum is decreased and the
signal-to-noise ratio  suffers. This problem becomes
more severe as the excitation time is increased; as 1is
obsrerved experimentally. Very quickly, typically
within 107% sec, the signal-to-noise ratio is dominated
by instrumental noise. It eventually becomes very
difficult to observe high quantum absorption, where
long excitation times are required.

What is desired then 1is the generation of all
lines in phase at the point of detection, that is, in
some manner to reverse the dephasing that occurred in
the &excitation period. In solids, the dominant
dephasing mechanism is the dipole-dipole interaction,
which 1is' homogeneous in nature. If one 1is able to

(6)

produce a homogeneous spin echo,

the peak of the
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echo is free of the dipolar H#miltonian. This in fact
can be accomplished by applying a series of intense rf
pulses to the spin system to effect what is in essence
time reversal. With the method of time reversal, we
were able to regain the intensity lost due to fast

homogeneous dephasing of spins in solids.

- 3.2 THEORY

For the following discussionﬁ, it is convenient to
in:roduce.the time~-domain HQ NMR experimeﬁt, described
schematically in Fig. 3.2(a). The sequence can be

(7)

partitioned into four time domains: preparation (1),
evolution (tl), mixing (t°), and detection (:2)
periods. As a specific example, consider the simple
three-pulse sequence in Fig. 3.2(b). The first two
pulses separated by an excitation delay-t prepare MQ
coherences, which then evolve freely for a time ;-
Because MQ coherences do not correspond to
magnetization, they are not directly observable with
our detection coil. A chird pulse is needed to convert
them into single-quantum coherences, which are detected
in time t,. For our experiments, only the point at ty
= T is sampled.(é) The sequence is repeated for many
values of ¢t, wuntil one maps out an interferogram.
Fourier transformation with respect to t; of this

interferogram yields the MQ spectrum.

The equation of motion of a coupled spin system is
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Figure 3.2 Multiple-quantum pulse sequences: (a)

Schematic pulse sequence showing relevant periods. (b)
Nonselective three-pulse experiment. (c) Even-selective
sequence with preparation pulses phase shifted by an
amount ¢=A4wt; (TPPI) to separate n-quantum orders. (d)
Time-reversed preparation and mixing periods with the

preparation ®/2 pulses phase shifted by an amount ¢

(TPPI). The preparation and mixing periods are
composed of cycles of the 8-pulse (Hxx-Hyy) sequence
shown below. A delay of 1.6 msec separates the mixing

period from the final detecting pulse to allow
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transients to decay away. 30 usec is allowed for

receiver deadtime before sampling 1is taken at the
dotted line.



conveniently described in the density ‘matrix
formalism. In this.formalism, neglecting relaxation,
the signal in the time domain is given by the trace of
the product of the observable and the reduced density
matrix:

s(r,tl,t‘) = Tr{I p(1,t ,1°)}
' z

1’
- t -- f . .
Tr{VIzV exp( 1“1‘1)0 Itexp(lﬂltl)}
= Tr{Q(r’)exp(-iHItl)P(t)exp(iHltl)}
= .l ij(T)ij(T )exp(-ijktl). (1)
i,k
Here U = exp(iHT) is the preparation propagator, V =
exp(iH“t”) is the mixing propagator, P = UTIZU is the

preparation density operator, Q = VIZVT is the mixing

density operator, |3>'s are eigenstates of the
Hamiltonian Hl, and ujk = “ﬁ - w, 1s the transition
frequency. In the above equation, the invariance of
the trace to cyclic permutation is wused. The spin

system is assumed to be initially at equilibrium. For
notational convenience, a virtual ®/2 pulse is applied
at end of T° so that 1, rather than.I+ = I, + in is
our observable.

To see how phase terms can arise in a MQ NMR
experiment, let us consider the situation V = U, which
is the case for the commonly-used pulse sequences in

Figs. 3.2(b) and 3.2(c). The transition between states

|j> and |k> is then described by a complex vector
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(ij)z, where the intensity is given by ]ijlz and the
phase is a complicated function of the preparation

period: 2
Im[ij (0]

8,1 (1) = tan 1{ b, @

2
Re[ij (r)]
The preparation density operator P and hence the phase
of a transition vary with the excitation time t.(g)

If we now look at the case V =’UT, then Q = P =

pt

», and the signal can be written as an autocorrelation
function of th. p--paration density operator P(T):
\
L T -1 1 -
S(r,tl) = P (t)exp( 1H1L1)P(T)exp(131;l)}
\. . 2 .

L Iij(t)l exp( ijktl). (3)

1,k
Note that here the signal contains no phase factor for

all lines. Suppose further that V differs from ut only

in phase by an amount ¥, i.e.,
V = exp(-isz)UTexp(isz). ' (4)

Taren Q = exp(-isz)Pexp(isz), and the signal is given

) |Pj#|2exp(inx)exp(fiwjktl). (5)

This states that all lines within order n = LI

where the m.'

J

have the same phase, and lines between neighboring

s are Zeeman magnetic quantum numbers,
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orders differ in phase by . Thus, 1if orders are
well-separated, the condition in Eq. (4) is sufficient
to ensure no phase cancellation. in practice,
Hermitian conjugation of U or V is achieved by negating
the Hamiltonian, which has the same effect as ieversing

time, hence the term time reversal.

3.3 EXPERIMENTAL

The actual pulse sequence used to generacé the
time-reversed spectra is shown in Fig. 3.2(d). The
eight-pulse <cycle ©preparation sequence creates an

average Hamiltonian(IO)_(Hxx - H . ), which is a pure

(3)

yYy

double-quantum operator and can excite only even-
quantum ftansitions. The excitation time is increased
by adding more cycles. To account for finite rf
pulsewidths, 24 + tp is used in place ofVZA, where tp
is the pulse duration. The experiment was performed on
resonance, causing all MQ orders to overlap. To create
the large artificial offset required for separation of
orders, ‘;he method | of time proportional phase
incrementation (teppr) (1 1) is used. For each

incrementation 1in t;, the phase of the preparation

pulses is incremented by the amount:

2"
- S 6
Ad N (6)
where M is the maximum MQ order to be observed.

In principle, detection can be made immediately

after the mixing pulses with a final detecting pulse.
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In Practice, however, due to pulse imperfections and
relaxation, a delay of 1.6 msec is introduced after the

mixing pulses, allowing transients to decay before

'applying a detecting pulse. These transients should

decay on the order of 'T,, the spin-spin relaxation

time,(;Z) which is typically 10™% sec for solids. The
desired signal, after mixing, is in the form of
populations. It decays as T;» the spin-lattice

relaxation time,(IZ) which is on the order of seconds,

and should essentially be preserved during the 1.6 msec .

delay. | The final /2 pulse rotates it into the
transverse plane for detection. The detecting pulse
can be of arbitrary phase, as long as it remains fixed
from point to poiqt in t- A delay of 30 usec is
inserted before sampling to allow for receiver

deadtime.

3.4 RESULTS AND DISCUSSION

To demonstrate the severity of intensity loss due
to phase cancellation in the normal nontime-reversal

approach to MQ NMR, in Fig. 3.3 we compare 1H MQ

magnitude spectra of adamantane obtained with and

without time reversal, using pulse sequences of Figs;
3.2(d) and 3.2(c), respectively. The m pulses in Fig.
3.2(c) remove all resonance-offset terms, rendering
this sequence even-selective,(13) as 1is the sequence of

Fig. 3.2(d). Both spectra were obtained at 35°¢ with a
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Figure 3.3 Comparison of adamantane ly multiple-

quantum NMR spectra obtained with 144 usec excitation
time and using (a) time-reversal pulse sequence of Fig.
3.2(d) with 4=0.8 lusec and tp=3.2 usec, and (b)

nontime-reversal pulse sequence of Fig. 3.2(c).
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preparation time of 144 usec. Without time reversal,
phase cancellation results in a significant reduction
of absolute integrated intensity. This difference in
intensity becomes mére pronounced as the excitation
time-increases. We emphasize.here that without time
réversal, we wére not able to increase the excifation
t ime ldng enough tb observe high quantum absorption.
Cbmparison of lineshapes, in particular second moments,
with and without incorporation of time reversal will be
discg#sed elsewhere.(IA)

An interesting result of these experiments is the
initial iime depenaence of MQ in;ensities on n, the
-number of quanta. The short time behavior can be
obtained from a power expansion in T of the preparation

(1)

density operator:

P(1) = exp(-iHT)P(0)exp(iHT)
: 2
= P(0) - it[H,P(0)] -% [H,[H,P(O)]] + .... (1)

For the (H, - Hyy) pulse sequence in Fig. 3.2(d)
assuming perfect G-function.pulses, evaluation of the

commutators for P(0) = Iz reveals that the integrated

intensity of a given order (n=0,4,6,8,...) grows in as:

« T (8)
ik

where the summation runs through all j,k such that m; -
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m, = a. The intensity of the double~quantum order
grows in as 2, Thus, in the short T limit, the higher
quantum operators appear at a later excitation time
than the lower quantum operators. This behavior 1is
illustrated in experimental results for adamantane in
Fig. 3.4. We observe that 1indeed the coherences
"diffuse" outward toward higher n as the excitation
time is increased. A physical interpretation for this
behavior can be obtained by realizing that MQ coherence
spins are interacting concertedly to absorb n
photons. The higher the number of quanta, the more
spins involved, and hence the longer it takes for
correlations to occur. A random walk picture
connecting spin diffusion with evolution of multiple
spin correlations and MQ coherénces is appealing.

In summary, the difficulty in applying normal MQ

NMR methods to solids can be attributed to the fast

homogeneous dephasing of spins. The incorporation of

time reversal enables all transition lines to be phased
with respect ¢to each other, thereby enhancing the
signal-to-noise ratio. Using time-reversal pulse
sequences, we were able to obtain very high quantum
absorption spectra of solid adamantane. From a time-
dependence study, we observed an increase in spin

correlations as the excitation time increased.

1s a many-spin correlation phenomenon - at least a
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Figure 3.4 Normalized integrated intensity of n-

quantum order for various excitation times extracted
from adamantane time-reversal spectra, showing how the
spin correlations "diffuse" out t. higher n. These
intensities ar; normalized so that the total integrated
intensity for each excitation time is unity. The
corresponding excitation times on the single-quantum

free induction decay are indicated in the insert.
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CHAPTER 4

SECOND MOMENTS OF MULTIPLE-QUANTUM NMR SPECTRA

4.1 INTRODUCTION
Recent years have shown much experimental and
theoretical progress on multiple-quantum (MQ) NMR

studies of dipolatv systems.(1’2'3)

Most of these
studies depend on the high resolution available in the
spin systems for dynamical and structural
information. In studies where resolution 1s poor,
particularly in solids, lineshape analysis provides the
only practical means of extracting information. Thus,
it would be of interest to explore the behavior of MQ
lineshapes as a function of the number of rf quanta
absorbed or emitted. |

For a system containing nuclei of spin I=1/2, the
second moments (M;) of the dipolar structure of MQ
spectra can be rigorously calculated by assuming a
statistical model. With this assumption, only sums and
products of the dipolar coupling constants are needed
tb determine the second moments. No diagonalization of
the Hamiltonian 1is necessary. Results reveal that the

ratio r of the average dipolar coupling constant to the

rms value:
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determines to a- large extent the second moments
behavior. The two extreme cases:

(1) r=1, all the couplings are the same,

(2) r=0, couplings of both signs occur in such a

way that the average coupling 1is zero,

‘show distinctively different behavior.

One may inquire here whetﬁer a statistical model
containé enough information to describe 1lineshape
behavior as a function of n. A statistical assumption
implies no symmetry 1n.the spin system.- What are the
implications of neglecting symmet:y,v or conversely,
what role does s8pin symmetry play 1in M, behavior?
Also, how large does the system have to be in order for
the statistical assumptidn to hold? These are the
questions that wevexplore in our experiments.

In section 4.2, we will proceed firsﬁ with a brief
description of a Fourier transform.MQ experiment ahd
some terminologies. A formulation for the MQ signal
and 1its moments is given, the need for an unique M,
definition is8 recognized, and the statistical model for
MQ moments 1s introduced. In section 4.3, a comparison

of experiment with theory is made.

4.2 THEORY
In a Fourier transform MQ experiment (Fig. 4.1),
MQ <coherences are created by applying a series of

intense rf pulses to the spin system. The preparation
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PREPARATION EVOLUTION MIXING DETECTION
PROPAGATOR: U - exp(-idit) v - exp =it ))
TIME VARIABLE: T t, T t,
L 8112-13042
Figure 4.1 Schematic ©pulse sequence showing the
relevant periods 1in a Fourier transform multiple-

quantumr NMR experiment.



sequence may be described by a preparation prépagator
(). The density operator at the end of the
preparation pulse sequence is given by UTpOU, where Po
1is the 1initial density operator, and contains MQ
coherenéea. The éystem evolves in t; under the effect
of the Hamiltonian Hl’ To detect MQ coherences, a
mixing pefiod described by the operator V(t“) 1is
required to éonvert MQ coherences 1into detectable
single-quantum cohefenCa Typically, one point at
tz-O is sampled for each incrementation in t» keeping
(1,1t°) fixed. The resultant MQ interferogram in t 13

given by:(3)

S(tl) = <I+(t1)> (1)
-'Tr{Q(-t‘)exp(-iHItl)P(r)exp(iﬂltl)}
where |
Q(-1°) = V(t)I_v ("),

CP(1) = UT(r)poU(T).

Fourier transforming Eq. (1) with respect to t; yields
the conjugate frequency spectrum in wy, the frequency
spectrum of interest (as opposed to wy, the conjugate
of ty, if the entire free induction decay in ty is
sampled). Henceforth, the subscript 1 will be dropped.

If the signal S(t) is separable into components of
order n, labeled Sn(t),vauch as by selective excitation

(1,3)

or detection schemes, the n-quantum moments can be
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obtained from the time-domain signal S(t) with the

following well~-known relation:(a)

(-1)* d*s_(e)
5_(0) dt®  |e=0

Hk(n) =

By differentiating Eq. (1), the analogous n-quantum
kth-momen: expression to Van Vleck's single-quantum

moments formula(6) is:
_ k times
Tr{Qn(-r')[.....[H,[H,Pn(t))].....]

Hk(n) - .
Tr{Qn(-T')Pn(T)}

Specifically, the second moments MZ expression is:(7)

Tr{(H, Q (-t7) 18, Pn(f)]}
Tr{Q (-7 )P _(1)]} e

Mz(n)

Finding exptéssions for Pn and Qn; which depend on
the pulse sequence used, and performing the
commutations are noatrivial tasks. Instead of
evaluating the coammutators directly, an alternmative is
to examine the density of states distributed by the
dipolar HamiICOniah and see what information can be
inferred.

A schematic energy level diagram of an N spin-1/2
system with random coupling constants is depicted 1in
Fig. 4.2. The spin states are most strongly split by
the Zeeman interaction of spin dipoles with the large

external static magnetic field. Each Zeeman manifold
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Figure 4.2 Schematic energy 1level diagrah for an
arbitrary spin system of N spin-1/2's. The states,

split by the Zeeman interaction, are grouped according
to their Zeeman quantum numbers. Within each Zeeman
manifold, the states are further split by the dipolar

Hamiltonian.



of magnetic quantum number m 1is further split by
dipole-dipole interacfions . among s8spins to form a
distribution of states. An n-quantum order is composed
of the sets of transitions between states of m, and m,
that satisfy the condition n = m; - my. There may be
more than one pair (m|, my) that satisfies this
condition.

Each Zeeman manifold can be labeled by either m,
the magnetic quantum number, or p, the number of spins
aligned parallel to the static external magnetic

field. The relationship between m and p is:
N
P'-z"mo

where N is the total number of spins in tﬁe system. We
find the 1label p more convenient for the following
discussions.

Let G;(w) and GZ(Q) be the distribution functions
for the density of states of manifolds labeled by P]
and p,. The statisciéal lineshape of the set of
transitions between two manifolds is described by the

cross~correlation of the two distribution functions:
- =
I(w.pl,pz) Gl(“’) Gz(w) (2)

where * denotes a cross-correlation integral (Fig.

4.3). Explicitly, this 1is:(8)
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Figure 4.3 ©Each Zeeman manifold can be
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G, (w)*G,(w) = fGl(u)Gz(u-w)du. . - (3)

The n-quantum spectrum 1is the superposition of all
cross-correlations between manifolds that satisfy the.
condition n=p,=p;:

N-n

I(w,0) = ] I(w,p,,p,=p,+n). (4)
p,;=0 |

The k*P-moment of the lineshape function I(w,n) is:

fukI(m,n)dw
Hk(n) = . (5)
fI(u,n)dw

We shall show that the MQ moments can be related
to the moments of the distributions Gi(m). To do so,
we list the following properties of cross-correlation
integrals.

Let Gl(w) and Gz(u) be two distribution functions
with normalization coanstants N; and N,, centroids at

and variances o Zand 022, i.e.:

A, and A 1

1 2’

fGi(u)dw =- Ni’

JwG, (w)dw
—i— - A .
/G, (w)dw 1

f(u-Ai)zCi(w)du

fGi(w)du



-y
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Let h = G;*G, be the cross-correlation of G; with Gype

The corresponding properties of h are:

N £ fh(uw)do = N Ny

= fuh(w)dw _

A A - A4 ’
Jh(w)dw 1 2
2 f(m-A)zh(w)dm 2 2
g = = 01 + 02 .
Jh(w)dw

We distinguish the definition of second moment from

variance (which is measured from the centroid):

2
- Ju"h(w)dw _ 2 2
My 2 TR (wdo o + A
2 2 2
= 01 + 02 + (Al - Az) . (6)

Generalizing, 1t 1is evident from the ' binomial

kth

formula that the -moment as measured from the

centroid is:

f(w=8) hn(w)dw _ E )
r
/h(w)dw r=0

ur[Glluk_r[Gzl

uk[hl

where the moments of the distribution functions are

similarly defined:

f(w-Ai)sGi(m)dw

u [G,] :
8" 1 /6, (w)dw



The kth moment in terms of the moments of the

distributions G, and G, is given by:

k
Jw h(w)dw k -
M, - = 1 (5)a*Tu_n)

k M(w)de =0 F
k 4 .
ky,.k-r T
- ,zo(rJA sgo(s)uslcllur-s[62;° (7

The above expressibns are valid for any functions
describing the distribution of states. The functional
form enters only in the quantitative values of the

moments.

4.2.1 Exact Dynamics

Consider the schematic MQ pulse sequence of Fig.
4.1. The expression for the signal intensity of such a
pulse sequence 18 given by Eq. (l). Expressed in the

eigenstates of the Hamiltonian H, this becomes:

S(t) = jZkPJk(T)QkJ(-r‘)fxp('i“’jk‘).
where G T 9y T G and H|[j> = uj|j>. Upon Fourier

transforming with respect to t we obtain the frequency

spectrum:

S(w) = J.{k ij(r)QkJ(-t‘)o(w-mjk). (8)

By going off-resonance by the amount Aw or creating an
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artificial offset by time proportional phase
(5)

incrementation, the MQ spectrum is separable into

components of order n:
N

S(w) = [ S (w)é(w - ndw),
n=0

assuming w on the right hand side of the equation

\

contains no offset component. The second moments of

the n-quantum order is then:

2
121( 0yt () 5 (@) s 6Cumu, )
M,(n) = = : .
jik (B 5 (Q )y g SCumuyy)

Evaluation of the Fourier coefficients (Pn)jk(Qn)kj in

the eigenbasis of the Hamiltonian yields a numerical

value for Mz(n).

4.2.2 Unique Second Moments Value

A fea;ure not present in conventional single-
quantum spectra is the dependence of phase on
preparation as a result of the nature of MQ pulse
experiments. The Fourier coefficient ijij [Eq. (8)]
is complex and thus contains a phase term. Moreover,
the operators P and Q are funétions of v and Tt°, and
thus 8o are the transition amplitude and phase.
Consequently, there 1is a M2 value associated with each

(t, t°) value.

We would 1like to define an unique Mz value for



discrete transition lines aé well as for a confinuun of
transition lines. A convenient choice is one in which
all lines appear 1g phase and the transition amplitudes
show their time—-averaged value.(g)

Averaging ijij over Tt = <t° in Egq. (8) and
assuming .magnitude spectra . yield an "ultimate T
average'(g) for each transition amplitude. Upon =
averaging, the inherent transition amplitude is
realized; thus ultimate T average spéc:ra should be
used to determine the unique Hz value.

Experimental T averages are done by
superimposing spectra of many randomly chosen
preparation times. The phasing of each spectrum can be
accomplished by converting it into a magnitude spectrum
1f lines are re#olvable, or incorpora:ing.time reversal
in the MQ pulse sequence.(lo)

The statistical model to be described in the next

section implicitly assumes no phase factors.

4,2.3 Statistical Model

For large spin systems, a complete diagonalization
of the Hamiltonian for exact dynamics calculations is
prohibitively cumbersome. For this reason, we turam to
approximation with a statistical model for a
qualitative description.

The statistical model assumes a spin system of no

apparent symmetry 8o that all transitions are allowed

72



and are assigned equal intensity. The assumption of

all transitions being allowed 18 embodied "in the

congtruction of one distribution function describing

the density of states for each Zeeman manifold,

regardless of their classification according to the

irreducible representations of the symmetry group. The

equality of transition intensity appéars in the
resulting lineshape of the set of cransit;bns between
two manifoids. By taking the cross-correlation between
fwo density "of states functions, each transition 1is
assigned unit intensity; that is, the cross-correlaﬁion
function counts the number of transitions per frequency
bandwidth. Any further intensity specification would
require exact'dynamics treatment.

Our focus will be on the broadehing of resonance
lines. by' the dipolar Hamiltonian.' Derivation of MQ
second moments involves first evaluating the dipolér
mean and variance of each Zeeman manifold. Given these
two items, a repres= "ive distribution of states 1is
constructed for each -a;maﬁ manifold. For a complete
description of the distributidn of states, higher
moments should be inc;uded. However, for the second
moments of n-quantum orders, only the second moments of
the distribution of states are necessary [cf. Eq.
(6))]. The second moment of each MQ order is then found
by taking' the sum of crogs—corfelacions between

appropriate Zeeman manifolds.
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4.2.3.1 Dipolar Mean and Variance of a Zeeman manifold

The dipolar mean and variance of a p-manifold 1is

given by the following expectation values:

<HD>p - Trp{DHD} v (9)

2
| <HD >p - <H/ >

2 - v 2 - 2 10
%y Trp{pHD } Tr, " (oHp} (10)

The bracket < >, denotes the ensemble average over the

P
p-manifold, Trp{ } 18 the trace over the states in the

p-manifold, p here 13 the weighting function of these
states, and BD is the secular part of the dipole-dipole

Hamiltonian expressed in units of h:(a)

+ I . I )}. (11)

B, = } 4,,(1 +1l4y ey

1
D 1<3 ij ziIzj A(I

The dij's (rad/sec) are the dipolar coupling constants

between spin i and spin j:

2
d,, = LB

ijJ c 3

i3

: 2
(l1-3cos eij

).

The s8spin operators Izi' I+i,v and I_i are the zth
component, the raising operator, and the 1lowering
operator of spin 1.

Giving equal weight to each state, as is proper, p
must be the reciprocal of the number of states. The

number of states in the p-manifold is given by (:), the
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combinatorial of N with Pe. With this, Eqs. (9) and

(10) become:

' N y-1

<Hp>o = (p) Tr{dj}, | (12)
2 2 Nyl 2 Ny-2_2

<Hp "> = <Hp> (7) Trp{HD } (p) Trp{HD}. (13)

The evaluation of Trp{HD} and Trp{HDZ} involves
ﬁombinatorial arguments. In evaluétinggthese traces,
1t 1is convenient to define a quantity £(p) to be the
probability that a spin pair will be antiparallel for a
given étate in the p-manifdld. The number of
aﬁtiparallel spin pairs out of N spins is p(N - p).
Thus, f(p) is just this number divided by the number of

pairs:

£(p) = Eillﬁ}—al. (14)

2)
From the form of Eq. (14), f(p) is also the probability
that a state in the p-manifold will have a given spin
pair (i,3) antiparallel with respect to each other.
The explicit evaluations of Trp{HD} ahd Trp{HD2} are
left to appengices ﬁ.A and 4.B. The results are quoied
here:

1
Tr ;) = (g)(l-Zf) [ 2d (15)

13 41

Trp{HDZ} - (:){(l+f)a + (1-2£)b + (l-4fg)c}, (16)
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where
1 2
a = — Z d, .,
16 ¢y 13
' )
b = — ) ) d, (d,, +4d ),
16 1<) k#i,q 11 ik kj

1<3 1°¢

o (N-p-1)(N-p-2) + (p-1)(p- 2)
g (N=-2)(N-3)

and f is defined in Eq. (14). We mention here that the
aumber of terms in the summations a, b and c are (§)’
Z(N-Z)(g) aand (sz)(g). respectively, and that the
total number of terms in a, b and ¢ is (g)z.

Combining Eqs. (12) and (13) with (15) and (16)

yields for the p-manifold:

1

h(p) = (1-2£) ] (17)
1451

?(p) = £(5-4f)a + 26(1=2£)b + 4E(I1-f-g)ec. (18)

For brevity of notation, we have defined

h(p) = <HD>p

o?(p) = <y - <Ep> 2.

Written in this form, it {is apparent that the dipolar

shift h(p) [Eq. (17)] 1s directly proportiomal to the
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avetage dipolar coupling.
For the special case of r=l, i.e. all couplings

are the same, these quantities reduce to:

h(p) = (PI(Z) - 2208 - p)I,

?(p) = (hHZpn - p).

where d is the unique coupling constant. That 1is, 1in
this limit, the width of a Zeeman manifold is
proportional to the s8quare root of the number of
antiparallel spins.

The features of the dipolar structure of_ the
energy level diagrah-’ can be ‘examined. By
differentiating cz(p) with respect to p, the extrema of
oz(p) can be found. Equation (18) can be factored as
fF(p), where F(p) is quadratic in p. Ohé extremum is
found from df/dp = 0, which yields é root at p = N/2
(or the m=0 manifold for N even). The other two roots
can be obtained from solving d4dF/dp = 0. These roots,
which can be either real or complex, occur in pairs
since F(p) is symmetric about p = N/2.

The behavior of h(p) and o(p) versus p for ten
randomly-generated sets of couplings between 30 spins
of I=1/2 18 {illustrated in Fig. 4.4(a) for r=l and in

Fig. 4.4(b) for r=0, These plots were generated with

the computer programs 1listed in appendix 4.C. They

show that the extreme states are shifted by the largest
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{a) Positive couplings

h (p)

o (p)

(b) Negatwe and positive couphings

=
V/ a

7,

©

8L 0210-6722

Figure 4.4 The dependence om p of the mean dipolar
shift h(p) and the standard deviation o(p) for ten
randomly generated 30-spin systems in the limit of (a)
r=l, with couplings 1in the range 0.0 - 1.0 kHz; (b)

r=0, with couplings in the range -1.0 - 1.0 kHz. In

(a), the top of the scale is 5.7 kHz, and in (b) is 3.8
kHz,
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amount, and the p=N/2 manifold 1s shifted slightly in
the opposite direction. They also show that the width
of the distributions is the largest at p=N/2.

One observes that the two cases have distinctly

different \features} For r=1, the width of the

distribution 18 much smaller than the dipolar shift.
For ‘:-o, ideally there 1is no dipolar shift. Aiso,
given ﬁhe same upper limit on the magnitude of the
couplings, the width is generally larger for r=1 than
for r=0. These features dictate the behavior of MQ

second moments.

4.2.3.2 Multiple-Quantum Second Moments

For each Zeeman manifold, a distribution function

is constructed from h(p) and cz(p):

N
G (w) = ( )g,(w). (19)
p, "1
The normalized function gi(m) is defined to have the

following properties:

N ‘ N
fGi(w)dw (pi)fz(w)dw (Pi)
fmgi(w)dm - Ai’

,f(u-Ai)Zgi(u)dw - cz(pi).

Evaluating the c¢ross-correlation integral of Egq.

(2) using Eq. (19), and summing over the manifolds
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yields the final expression of the n-quantum second

moments:

N-n ,
- N N
M) = 270 T (B )3 )t + oP(p,) + [n(p,)-n(p,)1%)
2 P P 1 2 1 2
pl-O 1 2 : _
(20)
wvhere h(p) and az(p) are given in Eqs. (17) and (18).
Since each transition is given unit intensity, the
normalization constant Z is Just the total number of n-

quantunm transi:ions:(ll)

n
Z = [I(w,n)dw = § (N)(¥ )
P, =0 P17 Py

2N
(N-a ) 1<a<N

{§r(§") - 2%, aeo

Higher moments are readily genéralized using Eq.(7) and
evaluating TtP{HDr}, for r=0,1,2,...k.

Showa 1in Fig. 4.5 are the M, values for the same
set of ten random spin systems as in Fig. 4.4. Figure
4.6 shows the decomposition into the two contributing
terms. As i3 evident, the Hz béhaviot depends almost
exclusively on one term or the other. For r=1 [Fig.
4.6(a)], the dominant contribution 18 from the mean

2 . [h(pl)-h(pz)lz. For r=0 (Fig.

displacements A
4.6(b)]), it 18 the widths of the lineshape functions ol

- Oz(pl) + az(pz) that 1is dominant. From the dipolar



(a) Positive couphngs

second moments

n (quanta)

(b) Negctive and positive coupling
—\ .

second momaents

o} : 30

niquantal .
I8 0210-€723

Figure 4.5 Second moments versus the number of quanta

n for the same ten systems in the limit (a) r=1, and

(b) r=0. The top of the scale is 240 kHz?
29 kHz? in (b).

in (a) and
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(@) Positive couplings

a2

° n{quanta) x

(D) Negamive and positive couplings

n(quanta)

0 D047

Figure 4.6 Contributions to the second moments. The

quantity a2 is the square of the mean shift difference
((h(pl) - h(pz)lz) contribution, and o is the width
(Oz(pl) + az(pz)) contribution. Note how different

contributions dominate in the two cases.
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structure of the energy levgl diagram, as constructed
from Figs. 4.4(a) and 4.4(b), these behaviors are
obvious. |

For r=1, the mean displacement of an m-manifold {is
much greater than 1its width and thus is the dominant
contributor. From this and the fact ﬁhat the higher
quantum vorders probe only the more extreme states
(which differ little in mean dipolar shift), we expect

the M, of high quantum orders to be small. For the

~lower quantum orders, the sampling is between adjacent

manifolds (which again do nrct differ much in mean

dipolar shift). Thus, we expect the M, of‘low quantum
orders to also be small. For the orders that connect
p=N/2 to p=0 manifolds, the difference in mean dipolar
shift 1is at its largest, and we expect these orders
(n=N/2) to have the largest Hz.

For r=0, the opposite is true. Since the dipolar
shift 18 1ideally zero for all manifolds, only the
variances can contribute, The variances are roughly
the séme except for the more excréme states. "This
suggests that M, should remain roughly constant for the
lower quantum orders and then drop to zero at n=N.

Figure 4.5(a) shows that for r=l the maximunm Mqy
occurs off center toward higher n. This 1is due to a
third competing factor: the normalization constant.
Since the number of transitions decreases with n, the

maximum M, 1is driven toward higher n.

83



To summarize, the three competing factors in

determining the features of M, are:

(1) the difference 1in mean displacements between

‘transition manifolds.

(2) the distribution  widths of transition

manifolds. -

(3) the normalization constant.
The first term never contributes to the zero-quantum
order and drives maximum M: toward n=N/2. The second
term, which 1is directly proportional to 32 » drives
naximﬁm M, towards n=0. The smaller the averagé
coupling d is, the smaller M, 1is. Finally, the third
term favors highet De

The plots in Figs. 4.5 and 4.6 were generated with

‘the same programs listed in appendix 4.C.A

4.3 COMPARISON OF EXPERIMENT WITH COMPUTER SIMULATIONS

AND STATISTICAL MODEL

We show examples of systems exhibiting both
behaviors predicted by the statistical model.
Experimental :esults can be <compared against exact
dynamics calculations of ultimate T averaged

(12) and the statistical model using the

spectra
experimental coupling constants.
The r=0 behavior is exhibited by n-hexane-dg, with

the methyl positions deuterated, oriented in a nematic

liquid crystal. It 4{is an 8-spin system: only
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intramolecular couplings are nonzero since rapid
translational diffusion of solutes in a liquid crystai
averages to zero intermolecular couplings. The ratio
of the average IH dipolar coupling to the rms value is
measured to bevr-0.12. Shown in Fig. 4.7 are the M,
values of a T-averaged MQ magnitude spectrum of this

(13) The T values range from 9.0 - 11.5 msec,

system.
in increments of 0;5 msec. A nonselective three-pulse
gsec - .ce was used. The largest second moments occur
nea: .-J, in agreement with the statistical model.

. The other extreme is illustrated in the
experimental second moments Qersus n of polycrystalline
adamantane, shown in Fig. 4.8, The T values range from
244.8 - 448.8>usec, in increments of 40.8 usec. The
transition 1lines are overlapping, and thus a time-
reversal’(éven;selective) pulse sequencé was used to
obtain these spéctra.(lo) Since the sample is a
powder, it is hard to assign a single r value to fhe
spin system. Furthermore, there are an Avogadro's
number of coupled spins 8o the system size is
essentially infinite. These experiments show that M,

increaseé with n up to l6-quantum, indicating that r>0

and the number of spins involved is indeed very large.

4.4 CONCLUSION

Van Vleck's moments formula for single-quantum

spectra can be easily extended for MQ spectra. In the
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Figure 4.7 Results of n-hexane-d6 oriented {in a

nematic 1liquid <crystal: experimental values (solid
dots), exact dynamics calculated ultimate T average M,
values (solid line), and statistical HZ values versus n
(dashed 1line). The experimental MQ spectrum used 1is
the average of six magnitude spectra with Tt values

ranging from 9.0 - 11.5 msec.
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Figure 4.8 The MQ M, values of solid adamantane

powder. The spectrum used is the average of 5 spectra

with preparation times ranging from 244.8 - 448.8 usec.
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process of generalization, we find thg'dépendence of M,
on the number of quanta. One useful consequence of

this 18 that one can choose to observe the broader

orders that are more sensitive to molecular dynamics_

than the conventional single-quantum order.

Using a statistical assumption, the second moments
of MQ orders are rigorously evaluated. The statistical
model reveals that two distinct behaviors can occur in
M, values as a function of n. Both behaviors have been
shown to exist expefimentally. The experimental
.resglt; are ih accord with statistical model
predictions and with exact dynamics calculations. The
agreement of the n-hexane-dy MQ spectra with the
statistical model demonstrates that even for a small 8-
spin system with symmetry (C,,), the statistical model
predicts the <correct general Hz behévior. vThis
indicates that the manifolds of states ‘grouped
according to the irreducible representa:ions must have
distributions similar to those of a random spin
system. In combipation, :ﬁe two systems demonstrate
that a statistical second vmoments.v treatment is
appropriate for small spin systems as well as for large

spin systems.
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APPENDIX 4.A

Evaluation of Trp{HD} for the p-manifold

Since the trace 1is independent of the choice of
representation, the siﬁple pfoduct basis set will be
used. Henceforth all state§ will be referred to 1in
this basis.-set. Only the operator IziIzj of HD is
diagqnal and'conttibutes to the trace. Thus,

()

Tr {Hp} = k§1<k|HD|k>

(g) X |
- Y o4, . <k|I_ I |k>. (A.1)
k=1 1<y 3 21z} \

. Exchanging the order of the two summations, which are

done 1independently, we sum over the states first.

Using the relation:

%, (1,3) are : .rallel in |k>
<k|I_,I_.]k> = ( ‘
zi 2] L= %, (1,3) are antiparallel in |k>
(A.2)
the summation over the states k produces:
' 1
E klI I,41k> = ZI[S(N,p) - o(N,p)l, (A.3)

where S(N,p) is defined as the number of states in the
p-manifold that has spin pair (i,j) parallel, and

O(N,p) 1s the number of states that has (i,3)
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antiparallel. These two quantities are determined by

combinatorial arguments and are given by:

S(N,p) = (N;Z)_ + (323) (A.4)
O(N,p) = (:J 2%§§21. (A.5)
> .

Congervation of states requires:
N
S(N,p) + o(N,p) = ().
Substituting Eqs. (A.3) - (A.S5) {n Eq. (A.1l) yields
Ny Ny 1<
Tr (Bp} = (p)[(z) - 2p(N = p)]gd (a.6)

N
where d = (N -1 d is the average dipolar
| 27 e Y1y

144
coupling.



APPENDIX 4.B

Evaluation of Trp{HDZ} for the p-manifold

As 1in appendix A, we use the simple product basis

2}. Written in the form of.

set in evaluating Trp{HD
summation over states, Tréfﬂnz}‘can be separated into

diagonal and off-diagonal elements of Hp:

Tr{HDZ} = J<k|Hp[k><k|H |k> + [° <k|aD|1><1|aD|k>,(B.1)
Tk k,1 | »

where the'prime_on the second summation indicates that

the 1=k term i{is excluded. The first term is the sum of

‘gquares of the diagonal elements of Hp, and the second’

term {is the corresponding sum for off-diagonal -

elements. From the form of HD, we recognize that the
operator IziIzjris purely diagonal and the flip-flop
operaFor (I+iI_j- + I-iI+j) is ﬁurely off-diagonal.
This implies that only IziIzj contributes to the first
summation, and only (I+iI-j + i-iI+j) contributes to

the second summation in Eq. (B.1):

N
2 (%J N N .
= » -, II L4
Tr, {8, } ) 153 1'§j‘dijdi ; <k|Izilzj|k><k|Izi 2] [k>
» 1 r )
+ ) ] ) ngijqi,j,<k|1+11_j+1_11+j[1>

k,1 1<3 1°<3°

XL Ty oI 4T LT Lk (B.2)
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1. Consider for now the first summation of Egq.
(B.2). This term 18 more easily evaluated by
exchanging the order of summations over states and

spins, i.e.

N
Sekim jeo<km_ (k> = § ] <La. 4. .qn )
L<klBy D 14y 1-4y- T6 Y131y |

wheré

)

Q(N,p) = ;e E <k|IziIzj|k><k|Izi,Izj,lk>. (B.3)

The sum Q(N,p) has both positive and négative
contributions. The summand in Q(N,p) is positive when
<k|IziIzj|k> and <k|Izi»Izj-|k> are both either
positive (+1/4) or negative (-1/4) [see Eq. (A.2)] and
is negative when <k|IziIzj|k> and <k|Iz1‘Izj‘|k> are
opposite in sign. Performing the summation over states

k of Eq. (B.3) yields:
Q(N,p) = A - B. (B.4)

Here A i1s defined to be the number of states within the
p-manifold that, given ¢two spin pairs (i,3j) and
(1°,3°), have both pairs parallel in spin or both pairs
antiparallel in spin. B 18 defined to be the number of
states within ;he p-manifold that have one spin pair

parallel 1in spin and the other antiparallel in spin.



2
By

Conservation of states requires:
N
A+ B = .
()
implying that Eq. (B.4) becomes:
- N
Q(N,p) = (p) - 2B. (B.5)

Thus it is only necessary to evaluate _B. Three
cases can be distinguished: ~

(a) (1,1) = (1°,37),

(b) (1,3) and (1°,3°) share one common spin,

(¢) (1,j) and (1°,3°) share no common spin.

We will treat each case separately.

Case (a): B = 0, by definition.

Case (b): Suppose 1,j,k are the: spins of interest,
where k = 1“ or j°. We divide the N spin system into
two parts: |

(1) a 3-spin system consisting of spins i,j,k, and

(2) a (N-3)-spin system consisting‘of the rest of

the spins.
Diviéion of the system facilitates the counting
argument. We designate the number of spins that are
parallel to the magnetic field in the first spin
subsYStem by p?,'and likewise the same for p, in the

second spin subsystem. Note that conservation of spins

requires p, + Pg = P- We also ;let Br and B8 have
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analogous meanings in the subsystems as B does in the
total system [Eq. (B.4)].

For the 3-spin system,

9, pr-oo3.

e "2, pa12 (8.6)

To treat the (N-3)-spin system, we utilize the facts
that p, = p - P, and that it is the product of B_ and

Bg that 1is important, i.e.:

For pt-0,3, Br-O ahd the contribution to B 1is zero
regardless of Bg. We thus will not evaluate By for

ps-p,p-B. For ps-p°1,pf2, the coatribution is nonzero,

and
N—
{(P°1)’ pg=p-l
B = .
8 N-3
(p_z)' PB'P'Z

Therefore,

- £(3).

Case (c): Evaluation of B here involves the same
concept as 1in case (b). Since (i1,j) and (1°,j°) are

four distinct spins, we divide the N spin system into a
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4-spin system and a (N-4) spin system. The results

-are.;
: 0, pr-O.Z.“*
b {(‘J - %) s
1 37 pr *T
T - N-4
. {(p-lJ- | P =p-1
- B .
L 8 N-4 - — ‘
(9‘3)’ : Ps P 3

Therefore,

3 = (1IGI1) + (DG

| N
- 2f ),
s(pJ
where

- (N-p-1)(N-p-2) + (p-1)(p-2)
g (N-Z)(N-3) . (8.7)

In tabulated form, we have for expressions of B:

B
case (a) 0
case (b) f(:)
case (c) ' ng(:)

The sum Q(N,p) for each of these cases can be found

with Eq. (B.5).
The finai form of the first summation term is:
N
(0)
§<k|an|k><k|unlk> - (:)[a + (1-2f)b + (l-4fg)c), (B.8)
k

£y

where



N
1

b = — 7§ 1 d,.(d,, +4d..),
145 k1,4 15 %1k k3

1 N N
° Tgi%j 1?§j'd11d1‘1' ' (1417, 3#3')
are merely constants, and f and g are defined in Eqgs.
(14) and (3.7);

2. To evaluate the aécond summation in Eq. (B.2),
we realize that for a given pair of states |k> and |1>,
at most one of the terms I+iI-j and I-i;+j will give a
nonzero matrix element. Also, 1f one spin pair flip-
flop term takes |1> into |k>, then a different spin
pair flip-flop term cannot take the same state |[1> into
|k>. That {is,

eI T +T_ T, 1511, .1 _ .+

-3 R M TIPS o

(B.9)

Furthermore, for a given state [k>, Eq. (B.9) 1is
satisfied for only ome state |1>. Thus summation over

Loof |<klI Iy + I I,,01>|% gives:

0, (1,3) are parallel in |k>

. 2
% |<k|1+11_j+1_11+j|1>l ={
(B.10)

Performing the summation over k of Eq. (B.10) produces:

) 2‘|<k|1+11_J+1_11+J|1>|2 = 0(N,p), (B.11)
k1

1, (1,3) are antiparallel in |k>°
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where O(N,p) is defined in appendix A, Eq. (A.5).

Making use of Eqs. (8.9) and (B.11) and the

freedom of eichanging the order of summations, the

second summation term 1is:

o
Y12 (%) 2
Y} 1°<k|H_ |1><1|H_ |k> = | -—=d “I<k|I_, I_.+I_. I__|1>]
s D D 14y 1643 14 +1 ‘j 1°+]
N
. 1.2 .
= 1 Tgdiy O(N,p)
1<y 16713 )
- (:)fa. (B.12)

Combining the two summationé [Eqs. (B.8) and
(B.12)], we have as our final expression:
Trp{HDZ} - (:){(1+f)a + (1-2£f)b + (l-4fg)ec}, (B.13)

where a, b, ¢, f and g are as defined in Eq. (B.8).



APPENDIX 4.C
Computer listings of programs MOMENTS, PLOTl, and
PLOT2

These programs were written for use on the VAX/VMS
computer system.

MOMENTS calculates the statisﬁical dipolar second
moments of each multiple-quantum order. It requifes as
inputs the number of spins and the dipolar codpling
constants. An option is8 provided for g;nera:ing‘random
couplings, given a range of couplings and the number of
spins. The program also has the capability of ruaning
consecutively up to seven different systems having the
same number of spins.

The second moments for the multiple~quantum orders
are gathered i;. the datafile PLOT1.DA. If the mean
dipolar shifts and standard deviations for the Zeeman
manifolds are also desired as outputs, the datafile
PLOT2.DA i3 created.

~unning PLOTl and PLOT2 will allow the plotting of
the data arrays PLOT1.DA and PLOT2.DA, respectively, on
the Tektroanix 4014 and 4662 plp:ters.

The plotting routines were supplied by Jim

Murdc: ...
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Pro.ram Tomsuts

Tbis groeram calculates tte rultiple-quantum

second momeats fOr a spin system containming ut
to 22 spin-1/c”s. 1lke calculation is vased on
a statistical moael, ebich disregards syzmetry.

aimension 3(453¢),var(1C1),syvar(121),a(1e1;
integer 3,pz
real mor(1le¢l),mori(igl),mom2(121),00rm

2{p)=p¥(a=-p)*z.2/float(n?*(c=-1))
rand(j)=c.¢%rano{j) = i.2

qpan(unitaal.name¥’plot1.da'.ty;ea’ued’)
ofen(uait=¢z,name="plotZ.za’,type=nes”)

type @1 :
format(//,° enter tce zumter of spims: °,5)
accept *,n

nz=n+a

al=n+}

typ2 $18,n ' . '
forrat(/,’ how masy °“,13,° spin systems szould te triedr °,$)
accept #,n5€ts ‘

ty.e 2¢a :

torrat(/,’ stouid tce «idtn and the mean contridbution de plptted'/
° i3 aidition to tha seconi moment ? (2=no,l=yes; ~,5)

accept *,isep

mr=nl

an=2%3]} )

1f(isep .eq. 1) mm=2%a]

4rice(1,721) nsets,rm

write(2,721) asets,nn

40 45¢ lcet=l,asets .
if(asets .et. 1) type S14,m,iset ,
forrat(//.14," SEIN SYSTzr #°,13, cseve o)

'type'iaz

format(/,” 12 you want rasder couplings? (i=nc,l=yes) °,3)
accepdt ®,icrolce .
1f(icaoice .ea. 1) gc to 20

type 3¢

forrat(//,  enter tgze dipolar couplicg constants 10 BZ..eee’,/)
10 22 is1,n-1

d0 28 J=i-+1l,n

k3a%({=1) = 1¥(4+1)/2 + )

type ¢4, L,

format(3a, ‘d( ,13,°,7,13,°) ¢ “,%)

accept *,4(«)

continue

80 to 5¢

tyve 202

format(//,’ enster a maxirum magnitude for couplings ia hz: °,$)
accept *,dmax

type Sve

forrat(’ sbould ail couplings de positive ? (2=no,lsyes)
accept *,1p0s

type 227

]

%)
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fcrrat(’ enter a randorizing integer: ‘,%)
accept %,jr
Jre=jr

40 2@ {=1,3-1

d0 4¢ Jj=i+l,n

a=g?(i=1) = 13(1+1)/2 + }

é (g )=dmax~ragi(jr)

ir(ipos .eq. 1) aflg)=atrs(d(x))
contiaue

acoupscomd(n,z)
tyoe 3<¢&, acoup

-

forrat(/,’ 4o you eant the °,13,° coupliczs printed ocut? °,$)
- acespt ¥,ipriat

compute tae dijolar varlabdles t,a,b

a=.2

t=3.Q

t=3.2

40 <23 i=1,2-1

do 222 j=iel,n

43 2¢¢ 431 ,n-1

a1c 22¢ lag+l,a

g13a¥ (i=1) = L¥(iel)/2 +
£223%(g=1) - £*(4~*1)s/2 + 1
$2((teeqet)ecr.(leqol)oor.{j.2q.x) 0r{J.2q.1))
bab + d(41)%2(xZ)

£0 10 2¢d

tat + 1{«l)

a=a *+ 3(al)%diazg)

coatinue

tst/4

a=a/1<

3a3t/1c

30 452 r=9,n

mismel

ccmpute toe cormaiizaticn f£feactor ccecee
arsgem

if(m .eq. €) gormr=core(nc,n) = 2.0%%a
{£f(r .3e. <) normscomc(az,nom)

c3mpute toe veriance apd the meéan of the leeman manifolds

10 3k §=¢,2
Plspe+l

var(pl)=t(z)® ((S=4%f(;))%a ¢+ (2-430(p))*d + 4% (f(p)*

(a%8=Z,=c*(n=1))/((a=2)®(n=3))*(t*t=a=D))
a{pl)s(1=a¥I(p))%t
coatinue

ccrpute tce c<eco0s TOomeot ...

rom(rl)=3.4
moml(ml)s¢.d
rom2(ml)=0.2
40 429 p=2,cr
ri=p+l
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p<=plem

roml (rl )=momi(m1l) + corb(a,p)*comb(n, r+p)'(var(pl)¢var(pc))/norm
rom2(ml)=momz(m1) + come(a,p)®comt(n,m+p)*(a(52)=-£(p1))**2/norm
contioue

mom(ml) = mori(ml) + ror2(m1)

 contiaue

priat s¢1,a

forrat(1cl//° second morents for a “,13,° spin system .....”//)

tf(iccoice .egq. 1) g3 to ,aa . :

prizt o«de

forrat(Zx,” coupliags entered by hand’)

80 Lo 47¢ ‘

dlse==arazx

12(1ipos .eq. 1) dl0w=d.2

'riat cz.. dloe,dmax
rfa:( x, raoge of ra*domlj-c-osen couplinz- ‘5.2,
‘8z t0 ‘4f9.2,° hz ) A

--1at €34,)rv

rcrma;(//.:x.'inizial rancomizing iateger = ,:.3:)

1f(ipriot .eq. €) go tc 4c@

priat ge:s ’

format(///7,° tne coupling constaats im0 N2 e.eae’,/)
40 472 {=1,n~-1

do 272 j=si+1i,a .

g=a*(1=1) = {®(i*1)/2 + ;

print o«d, 1,4, d(s)

ferzat(Sx, "2l ,13,7,%,13,°) = 7,£c.2)

continue

priat 67
fcrnat\///// ?2x,° si2ta’,1561, Tean'/' m'.ax.’second moments”,
12x. ratio 1YY contribut.cn ' =X, contributlon /
=t 130T ) 02X =t B, 120 =) y2x, 120 T=") /)
10 292 =2,
rl=re+}l |
ratnomsmom(ml)/mem(z)
priat £2g, w.mom(ml),ratmom,roml(mi),mom2(m1)
ferrat(le,7x,€13.5,82,213.5,252,e13.5,8x,e13.8)
¢oatiaue

oriat oll

fornat(lcl///// ) ,12:. didth +16x,°ratio”,24x, “mean/
- .111.-‘ - )'101, Seeae '34" ---’/l)

id0 477 z=3,n

pl=p-+l

sqvar(pl)asqrt(var(pl)’ v

ratvar=sqvar(pl)/sqr: .:.2))

priat 91z, p,sqvar(gp..,ratvar,a(pl)

tirrat(is,7x,€13.6,62,613.6,252,213.6)

continue

create 3ata arrays for plotting ...c..

writa(1,70z) (mom(i),i=1,81)

1f(‘sep.eq 1) -rite(l ?79z) (momi1(1),i=1,81),(rom2(1),1=1,n1)
vrite(z,7¢2) (sqvar(i).i=1.n1)

write(e,722) (a(1i),i=1,n1)
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coatiause

type Sus

forrat(//,° do you saat amotier spia system 2 (@=no

accept %,ispin
1f(1sp1a .eq. 1) go to 12

priat €12
fermat(lal)

format(ie)

fcrmat(el1s.8)
close(uaitsy)

cios2(unit=2)
- 3- 33

function combd(n,x)

computes the oinomial coefficiect for o “talngs”

™ at & tire

comGa}
1t(m .le. ¢) roturn
it(r .ge. ) retura
Tr=m

15(>r .2t. 3/2) mmen-m
ccrbay

1f(zm .eq. 1) retura
Trismre}

qd=rm

40 23 i=i,mm1
comtscorc¥(ag=1)
qai=qd*(rr=4)
1f(moa(1,12) .aa. 2) &0 to 29
comd=comrd/ 44

qe=1,.¢

ccatisue

ccmiscomt/q4d

retura

egd

tasen

sl=yes)
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pre2ram plotl

3 prosram for plotting cqually-spaced data poirts on the
Testroaix 4vl4 sad 4c62

dimension dat(1¢,1021),drax(10),1ipos(10),ines(12),2xy(4),
corr{4) '
ctaracter®3 word(2)

ecrd(1)s’snsemtle”’
s0ra(2)s’easemtle’
word (2)="data set’

tyve 521 :

format(/,’ eater plotter used: 2= 4214, 1= 43552 °,$)
accept *,ipnl . :

Jp=d .

1f(ipl .pe. 2) Jp=2

type 282 . " .
forrat(/,” in wiicz plot file is tke data 2 “,$)
accept ¥,ifl ’

call defile(’zlot’,if1,1)
type 222

torrat(/,’ boe macy data ENSENMBLES 2?2 °,5)
acc2pt 3,aezs

type @< .
fermat(/,” waica uanits 10 you prefer - laches (&) or cm °;

‘(1) 2 °,%) :
accept *,jun

corr(l)=c.ZB4E3
corr(z)=3,53242
corr(2)=9,.52z2¢
corr(4)=d.23¢E3

- xy(1)=g, 22

ry(z)=s,28
27(3)=1%.8
xv(4)=e.¢

if(iun .2q. ¢) 20 toO Z¢

"do 12 1=1,4

xy(1)=3y(1) ® Z.24
call srsirt(4€14,2)
cail daszpt(2)

call 214
cail iacces

d0 4CC lensl,nens

t7pe 30¢€, iea
format(//,” 3ata emsemtle “,12,” .ece.”)

read(1,€¢2) nsets,np
read (1,€028) ((dat(i,y), J=1,np), i=1,nsets)

type 325, nsets
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forrat(/,.17,° data SETs ip tels ensembdle’)

ips=1

1f(ncets .e¢. 1) g0 to 22

type S51¢ '

format(/,3x, eater the desirel plottizg style eovce ol
€x,’l = all Jata sets on the same paze o/

£x, 2 = separate pares byt consistent scaling’,/,

€x,°3 = saparate pages and independent scaling °.3)
accept *,1ips

1£(1ps .1t. 3) creps=i
{£(1ps .eq. I) creyssnsets

49 222 irep=1,areps

1f(areps .2t. 1) type 311, irep
garmat(/,23, data set “,11,° eases’)

tyoe 312, 3p
fgrmat(/zsx,'norizontal scallag for your’,15,” data points”®,
o e o e '

type 512

format(/,5x, eater loe¢ and Lish polat limits to be’,/,

<2, 3isalayed ¢ (for all points, enter 2,3) W)

accent #,3i0,0ai

1f(nalo .€q. @) 1lo=1

1£(ary .e3. ¢) Dai=0§

if(aci .lé. alo) o0 to 23

azp=agl = alo .

type 314, zy(Jp+l)

gcrrat(/.52, enter tae désired plot eidth 12 your»preferred’.
/.ix,°upits ¢ (“.23.1,° mazirym) °,3)

accept *,111

tf(lua .€q. 1) XXx=xxx / &.2¢

2332332 / corr{)p*l)

gzacg=nsets
{f(ips .eq. ) ptacg=irep

40 ¢3 is=sirep,naacs
fpos(is)=d
1zaz(1s)=9d
qraz(is)=v.@

JFos=?

Joeg=e

sYaxs¢. ¢

do 32 is=sirep,nbhdck

410 2k ig=23lo,n3}

1f(4at(is.1;) .le. .20l) ¢go %o 25
tpos(is)=1

Jpos=l

if(dat(is,1p) .ge. =.221) go to 27
{oea(is)=l

Joegsl
&nax(ks)-a«axl(d«ax(is).abs(dat(ls.lp)))
continue

smaxsarazl(imaz(is),sraz)

contiague

type 218
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format(//,4x, vertical scalinsg .....”)

1f(1ips .€q. 3) 30 tO 43

praxssrag
4pOS=}pos
£08:%0€g

g0 to 5@
prazxsirax(ire;)
‘pos=1pos(1rev)
kceg=ineg(ire;)

itop=¢
ibot=g

if{4geg .ne. 3) g0 to SS

tyoe Z1€ .

tornat(/.-x. your data points are all positive. do you’,/,

cg. ‘eant toe pegative calf-plane suppressed ? (2=no0,l=yes) °,
s)"

accept *,1top

1£(sz0s ‘ne. ¢) 40 to éo

type ul {

fornat(/.-x. your data points are all anegative. do you’,/,
-§. ‘eant taoe positive balf-plane suopressed 7 (2=10,1=yes) °,
?

accept *,1c0t

type 18, Pmax
fermat(/,5x, the beefiest data poiat has ads. value = °,314.6)
tvae €1s
for*at(/.-x. for "autoratic” full=-value scaliaz, eater 2.2".
/.ox. ‘otLerdise ecter tie aumber -*ich corres;zoads to’,/,
6z, ‘maximum magaitude oo tae plot: °,$)
accept *,fv
1£f(fv .eq. 2.0) ymazxapmaz

12(fv .2t. <.E) ymaxsfy

iyse 322, xy{(Jp+Z)

forwat(/.-x. enter the desired olot beight in your preferred’,
/o6X, uaits 3 (’,£3.1,  maximum) °,$)

accept *,yyy

if(iun .eq. 1) yys=yyy / Z2.54

 77y*yyy / corr(jp+zc)

ytop=yyy - 102

1f(ips .n2. 2) type 321

torrmat(/,5x, soould a y-azis be drasa ? (@=mo,l=yes) ‘,$)

1£(1ps .2q. 2) type 522

forwat(/.-x. sgould a y—axis be draem ? (ﬂ-no 1=yes, ,/,
€x, 2w=yes, but only op the first page) °,$)

ascept *,1ax

1£(jp .85. ~ 20 to 7€

type S2%, 12s)

fcrnat(//. ‘ =nter 1 if Jou are ready to plot, ¢ if you ./.
4x,°vas: . sal; .S “,a,°, or =1 if you waat to quit : °,3)

dccept *,.: .ice
if(icholice .eq. 2) go to 3¢2
1f(1ctolce .1t. 2) £o0 to 430

Jpaces=]
1£(ips .29. £) npages=mnsets
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do 132 ipacges=l,npages

12(ips .a2®. Z) &0 tO 72
tyoe 52¢€, lpage

format{/.%x,’aata set ‘,1z,” == plot it 2? (@=no,i=yes) “,$%)

accept *,ig0
1£f(1g0 .e3. 2) &0 to 13¢

call 3ewpaz

xlo=nlo

z=i=1hi

12{(itop .ey. itaot) call «indow(zlo,zhi,-7max,ymax)
1f(1top .eaq. 1) call eindaw(zlo,zc1,2.2,7max)
1f(idot .=q. 1) cali eindow(zlo,xal,~ymax,2.2)
call veport(e.2,xxx,2.128,7t0p)

+f(iax .eq. ¢) o to 73

1f((13x .eq. 2) .aci. (ipage .4t. 1)) %o to 78
73xts ymax * (1 = Lfzot)

yazbseyrazx ¥ (1 = {toy)

call move(zlo,saxt)

call irae(zlo,saxb)

call move(alo,2.2)

c3il irae{zat,c.i)

nliness}
1£(ips .2q9. 1) alinesmnsets

do 122 {ligesl,nlines
ir=razd(irep,i;ace,illise)

call move(zlo,dat(ir,alo))

13 3@ 4=1,23p

call dras(xloec,2at(im,nl0+x))
call 4rsend

continye

type 238

terrat(/,102, “0NeA2s 27 (@sno,l=yes,2=gev style,’,
‘Tanev easemtle,ssquit’ “,3)

accept *,ion

1f(ton .eq. 2) &0 to 72

12(4ca .eq. 2) gc tao 21

1£(1on .eq. 1) go to 40¢

12(408 .2C. 4; ¢#0 tO 4&=d

contious

continue
contisue

call «rstop
close(unit=¢l)

format(1€)
forrat(el6.8)

end
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a proeram for plotting equally-spaced data points on tie
Tegtroalx 4¢l4 and 466c == similar to PLOT1, tut combines
Up to seven alfferent data ensemdles on tae same graph.

dimension dat(1e,b¢1,7),dmax(10),1pos(10),inez(10),xy(4),
corr(e)
cparacter®g Jord(3)

word (1)="aAl &CLE’
4ord (2)="FOFSTAND’
ucr1(3)= data set’

type 291
format(/,” eater piotter used: 9= 4214, 1= 4662 °,5)
accept *,ipl

Je=9

12(ipl .3e. ¢) Jo=2

tyoe £2z2 " "

for-: .’ in ehich "plot file i{s the data ¥ °,3)
acec: .. ~...1

call 1efile\’zlot’,121,1)

type £02
forrat(/,” hos rTany data ENSEMBLES ?
accept *,n€ns

’ L4 -

e?)

type Z43

for-at(/,” ebicL units 10 you prefer - icches (2) or cm
‘(1) 7 %,%)

accept *,iun

corr(l)=¢.3c465
corr(2)=d.35¢4z¢
corr(3jsv.aczz€
corr(4)=d.slL&s

38

U(t

¥
xy(.. -..E
1y(4)=8.3

if(iun -&g. 2) g0 to 13

call ,rsirt(4e14,2)
call iasaopt(a)

call clip

call incues

do <@ x=1,nens

read (1, 602) asets,np

read(‘.sa ) ((dat(i,J.%), J-l.np). i=1,0sets)
continue

type S2€, nsets .
format(/,”’ (“e12,’ data SET3 per ensemble)’)
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175=1

1f(esets .2y. 1) .0 to
type 212

xchat(/.-x. eater taoe
= all jata sats

:x. ‘1

Ex,’3
3ccedt

12(13s
1£(ips

do 200

tf(creps «8t. 1) type 311, irep
format(/,3z,°3ata sat

type 31, a)p
format(/,4z,°cortzontal scaling for your’,is,’
tspe 312
forwa:(/.-x. eater lce and high point limits to, .1
3z, 11spleyed ¢ (for all poilats, eater 2,3)
accept *,nio0,na4

.eq. ¢) clo=l

1f(ani .e5. &) nai=np

1f{a21 .le. nlo) 40 to 23

Brp=nci - aleo

type 214, xy()pel)

ror?a:(/.-x. enter tne desired ulo: -idth iz your preferred’,

if(elo

/.¢63,°

azcept *,xxx
i1f(lua .eq. 1) zxx=xxx / Z.34
X33=3XX / corr(Jyg+1)

ghacg=nsets
1£(1ps .eq. ) skhacs=irep

20 23 issirep,nrack
iros(is)=g
iees(1s)=2
drax(is)=e.2

JEos=d
Jas 2=

sraxsg 2

do 39 iss{rep,agacx

406 <5 £=1,nens

do 2& {p=clo,szl

1!(‘5:(1..--.
izos(is)=1

Jross)

1£(3at(1s,1p,x) .ge.
ta2g(1s)=l

Joeg=l

drax({s)=amaxi(draz(is),abs(dat(is,1p,x)))
coatinue

ceatisie

smax=amazxl (dmax(is),smaz)

continue

type £1%
format(//,42, vertical scalinog .....°)

desired plottiag ,Strle
W1 ¢t toe samne page’,

&r,°2 ® sejarate paces tut consisteat sce*ing o/ s

® Séyarate pages and independent scalinz

S) areys=1
2) areps=asets

irep=l,.nregs

data points”’,

.221) 29 to 2%

-.¢21) 20 to 27
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1f(ips .€q. 3) go to 45
prax=smax

KE05=)POS

dnez2=jneg

20 to 3¢
pnaxxdmax(lrepg
cpos=ipos(irer
sneg=ineg(irep)

{top=d

{cot=y . .

1f(xneg .n0e. €) go to 33

type £12

forrat(/.3x, ‘your data points are all positive. do you’,/,
5x, wagt tze negative ralf-plame suppressed ? (2=10,l=yes) °,
?) : :

accept *,itop

tf(£pos .Be. 3) g9 to &3

type 317

forrat(/,5x, your 2ata points are all aezastive. do you’,/,
£x,°want tre positive balf-plane suppressed ? (2=£a,l=yes) °,
$) . .

accept *,icot

type E1&, pmax

format(/.5x, tce teefiest data polat nas abs. value = ",214.8)
type S1: " " .

format(/,%x, for autoratic full-value scaling, eater 2.2;°,
/.EX, 0tlereise enter the numper eoich corresyonis to’,/,
iz, Tazirum magaitude oa tke plot: °,%)

accept ®,fv

if(fv .eq. 8.2) ymaxsprax

{f(fvy .gt. ¢.2) ymax={v

type 222, zy{Jp+c)

forma: .2z, enter tme 2esired plot height in yaur preferred’,
/y5x . .ts 3 (7,£8.1,7 maximum) '.$§

accept ~,yi4 ,

1f(iun .€q. 1) yyy=yyy / 2.354

yiy=yyy / corr(Jp+2)

ytopsyyy * .122 .

1f(ips .n€e. 2) type E21

forrat(/.5x, snould a y-axis b draws ? (2=mo,l=yes) °,$%)
1f(ips .eq. 2) lype 322

tcrmat(/,5x, szould a y-axis ce drawa ? (d=go,1=.es,”,/,
6z, ‘z®yes, out ooly oo tke first page) ~,3) '
accept *,iax

1f(Jp -7-. ¢) go to 7¢

type <. wordi(ipss)

forn... /,2x,°enter 1 if you are:ready to plot, 3 if you’',/,
4x, eant to s«ip ThIS ‘,a, , or =1 if you want to guit : “,3)
accept *,icnoice

1r(icnoice .eq. ) g0 to 200

1f(icnooice 1t. ¥) go to 420

npages=l
1£(ips .eq. <) opages=psets

d0 132 {page=1,npages
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n

e

0 Wi
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o

iz2
el

c
429

c¥z
ce3

1¢(ips .0€. 2) &0 T3 72

tpe 228, 1page

¢orrat(/,2x, ‘data set °,12,° — plot it 22 (2=n0,1=7es)
accept *,iu0

1f(1g0 .€3. ¢) g0 to 13€

call new3ag

xlo=alo

zbi=nkl

1£(1top .ey. Ltot) call windov(xlo,xal,-ymaz,yrax)
1f(1top .€4. 1) call -in:ow(xlo.xni.d.ﬂ.y*axs
1f(ibot .eq. 1) call sipece{zlo,zrt,~ymaz,9.¢)
calil v-;art(z.e.xxx.z.lza.ytcp)

1f£(lazx .2q. 2) g0 to 75

1f((1ax .eq. &) .and. (ipage .gt. 1)) g0 to 73
yaxt= ymaz * (1 = ioot)

yaxos=-yraz * (1 - 1top)

call move(zlo,yazt)

call iraw(alo,yaxt)

call rmove(xlo,d.%)

call drae(xei,é.2)

slines=l
1£(1ps .eq. 1) aliness=usets

d0 1¢d tlines=i,nlines
irsmaz2(irep,irase.ilioe)

10 =S 4=1,n22%

call move(xlo,dat(ir,alo.x))

30 =@ J=l,a3¢

call irae(zlo+j,dat(im,0le+J,x))
cogtiaue

call 2rsead
continue

type S3¢
farmat(/.l@x.‘uhaAiJ 27 (e=go,l=yes,2=nev style,”,
‘s=quits ‘,$)

‘accept *,io0n

1£(102 .ey. &) g0 tO 73
12(i08 .2q. <) g0 %0 2l
1f(ion .€q. 2) g0 tO 42¢

coatinue
cogtiaue
call grstop

ciose{uoitegl)

tcraatéié)
termat(elé.g)

28d

“e$)
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CHAPTER 5
SENSITIVITY ENHANCEMENT BY SPINLOCKING IN THE

-DETECTION PERIOD

Se.l. INTRODUCTION AND THEORY

A MQ experiment is a two-dimensional
experiment.(l) Tha:' is8, one of the dimensions 1is
scanned in real time, and the other 1is scanned by
successive 1ncréﬁentation from shot to shot. Every
twvo-dimensional experiment suffers from twd sources of
noise: the real time noise, and the successive shot to
shot noise. The first type of noise, the t, noise, 1is
predominantly thermal noise in the electronics, and is
also coamon to s8ingle-dimension experiments. ' The
second type of noise, which has been termed the t
noise,(Z) i3 due to the 4dirreproducibility of the
experiment and 18 inherent 1in any two-dimensional
experiment.

A simple scheme 1is proposed to improve S/N by
- minimizing the t, noise. The idea is to acquire more
signal energy(3) in the detection period.

The pulse sequence used is shown in Fig. 5.1. It

is a typical MQ sequence but with a train of pulses in

the detection period. The first three pulses allow

even—-quantum selection and are phase~-shifted
by 4¢ = %ﬁ », where M 18 the maximum order desired, for

each 1incrementatioan 1in t; to effect separation of
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Figure 5.1 Even-gselective multiple-quantum pulse

sequence with spinlocking pulses 1in the detection
period. The preparation pulses are incremented by an

amount A¢ for each incrementation in tl_(TPPI).



orders (TPPI(A)). The ﬂ’pulse in t; removes offset
terms in the w; spectrum. The next two rf pulses mix
the MQ coherences into single-quantum (SQ) coherences.
Detecting the amplitude modulation of the SQ coherences
as a function of t; maps out the MQ evolution.

Because the evolution in t, is uninteresting for
ourlfﬁrﬁoses, it is unnecessary to acquire the entire
F.I.D. in t,. In fhct, typically only one point in ty
is sampled for each inérementa:ion in t,;. Only the
amplitude modulation of the SQ coherences in ts is
desired. Therefore, 1instead of subjecting the SQ
coherences to decay under the full Hamiltonian, which
may contain rapidly dephasing terms, one can increase
the signal energy available for detection by removing
the rapidly decaying terms. The main source in solids
is the dipolar Hamiltonian. One solutionm is to apply
WAHUHA(s) in t, to remove this term. Best yet is to
remove all such terms by pulsed spinlocking.(6’7)
Under perfect spinlocking conditidns, the only decay
that will occur will be due to the spin-lattice
relaxation in the rotating frame. _

The multiple pulses ih t, (Fig. 5.1) are applied
for just that effect. Rhim et a1(7) have shown that
optimal spinlocking is achieved with a series of =/4

pulses at a repetition rate Q satisfying

YHloc
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where w = YH is +proportional ¢to the average rf

1 1

irradiation gtrength and H;,. is the local field

. strength.

By spinlocking the SQ coherences in t,, we are in
essence preserving the signal amplitude as modulated by
the evolution in t;. By sampling in the pulse windows
and aver;ging over all the signél that is available in
the detection period, we have performed an integration
of the sig;al in t,. The integral is proportional to

the- signai amplitude at tp = 0 averaged over the t,y

noise.

5.2 EXPERIMENTAL RESULIS AND DISCUSSION

The sample is polycrystalline adamantane,

CioHig- Experiments were performed at a regulated

temperature of 25°C.

The following observations on the effective
relaxation rates were ﬁade. The SQ transverse decay
time under free evolution was measurea to be = 100
usec. A series of n/4 pulses was applied at various
repetition rates to the SQ coherences. The observed
decay times in the rotating frame were

Q.l = 15.9 usec, T

> 1.2 sec

le -

Q.l = 25.9 usec, Tle = 1.0 sec
Q.l = 35.9 wusec, T = 0.2 sec

le

Q ° > 90 usec, saw no spinlocking effect
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with n/2 spinlocking rf pulses at a repetition time of
gl = 54.8 usec, T;, = 2.2 msec.
For our MQ experiments, the repetition rate was 2

= (39 usec)™! = 25.6 kHz and the pulse duration for a =

pulse was 8.0 \usec. Thus the average 1irradiation
strength was 'EI/Zﬂ = 3.2 kHz. From second momehts
measurements, YHloc/ZR is roughly 15 kHz for
adamantane. Thus the condition for spinlocking was

nodestly satisfied, and for our purposé§ sufficient.

The .preparation time was T™=60 usec in all our MQ
experiments.

The first sampled point occurs at t, = 0, the
normal sampling point. This is to be compared with the
integrated spinlocked signal. Integration was
simulated by taking the average of 1000 points sampled
in the spinloéking windows. These poincs were taken
after the first 25 v/4 pulses, or at a delay of 25271 =
1.00 msec after the mixing period. This delay moves
the sampling far away from any transients that were not
spinlocked.

Shown in Fig. 5.2 is a comparison of MQ spectra
obtained with one point sampled at t, = 0 and the
average of 1000 points sampled between spinlocking
pulses. There is an improvement in S/N of roughly x2
by sampling more points, indicating that the signal was
,largerenough so that t; noise dominates.

To effect t, limitation in noise, the signal was
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Figure 5.2 MQ spectrum obtained with pulse sequence of
Fig. 5.1 using (a) the first sampled point, yielding
the normal spectrum, (b) an average of 1000 points
sampled between the spinlocking pulses, yielding the
spinlocked spectrum. The <comparison shows 1lit:

improvement by t, spinlocking, indicating that t, nc e

dominates.
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attenuated by 30dB and the receiver amplifier gain was
increased appropriately to achieve its full dynamic
range. Figure 5.3 shows the large improvement in S/N

by spinlocking. The S/N is increased byv20 - 30 times,

which is near the maximum improvement possible. That

is, for t, limited sensitivity, the spinlocking
spectrum 1is equivalent to an accumulation of ruas
roughly equal to the number of points sampled in t,y.

In both instances, Figs. 5.2 and 5.3, we observe
the intensity in the odd-qpantum order relative to the
even-quantum order is less in the spinlocking
spectrum. The odd-quantum coherences appear as a
result of imperfect even-selection, and must be a
result of imperfect offset cancellation in the
preparation and mixing periods. If even-selection is
perfect, the signal should appear as <Ix> for the pulse
sequence shown in Pig. 5.1. A small offset term causes
signal to appear in the orthogonal channel. It also
creates a small amount of odd-quantum in both channels
in addition to even~quantum coherences, but in
different amounts. The difference in the spinlocked
spectrum and the normal spectrum reflects this
difference in the preparation of even and odd quantum
coherences in the two channels: the spinlocked signal
pertains to only one of the channels. Based on this
argument, we sShould expect to see a difference in

spectra obtained with t, spinlocking if selectivity is

118



119

(o)
‘500kHz
1 1 1 1 1 1 1 | 1 ! ]
0 2 4 6 8 10
n (quanta) .
(b)

SO0 kHz
] ! 1 ! | 1 ] ! L 1 ]
0 2 4, S 8 10

n (quanta)
Xl 0210-672¢

Figure 5.3 MQ spectra obtained in the same way as Fig.

5.2 but with attenuated signal input to receiver. The
comparison shows large improvement by t, spinlocking

when the S/N in the spectrum is limited by t, noise.



imperfect.

For nonselective sequences, signal in the other
channel can be obtained by repeating the experiment a
second timé with the spinlocking pulses changed in
phase by 90°. Another strategy is to phasé the
spinlocking pulses at 45° with respect to the mixing
pulses, thereby spinlocking both channels
simultaneously and with equal weighting.

In conclusion, the experiments show that the
proposed scheme can improve sensitivity of detection.
The t; noise is proportional to the magnetization and
cannot be minimized by increasing sample size. In
contrast, the t, noise can be made insignificant by
doing so. However, given the situation that the t,
noise is an important limitation, these preliminary
experiments show that pulsed spinlocking 1ian the
detection period and with integration of signal in the

windows is successful in enlarging S/N.
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CHAPTER 6

CORRELATION OF MOTION OF TWO METHYL GROUPS

6.1 INTRODUCTION

Two interacting methyl groups serve as a model
system for studying hindered internal rotation.
Because it 1involves only six nuclear spins, the
calculations involved are tractable. Definitions of
correlated and uncorrelated motion are well defined and
thus exact treatment 1is possiblg.

We wish to utilize the fact that molecular motion
modifies the observed couplings between nuclear
spins. In oriented systems, such as solids or solutes
dissolved in a liquid crystal, the dipolar interaction
is typically two or three orders of magnitude larger
than the J couplings. Our studies wili be in such
systems; thus we will concentrate on motional averaging
of the dipolar couplings and neglect the J
couplings.(l)

The definitions of correlated and wuncorrelated
motion of :vo.methyl groups are first stated. The form
of the Hamiltonians is thus defined and is different
for the two motions, ensuring that NMR is sensitive to
correlation of motion. The NMR spectrum for each of
these cases can be calculated as a function of the
dipolar coupling constants. Group theory for nonrigid

molecules is used to simplify the calculations in these
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two extremes and in the intermediate region. The
transition from correlated to uncorrelated motion can
be likened to an exchange process and hence is amenable
to treatment with éxchange theory. Multiple-quantum
NMR enters as a simplification tool in the extraction
of coupling consténts. A computer simulation of the 4-
quantum spectra for the molecule 1,8-dimethyl~-
'naphthalene-d6 undergoing exchange processes at a
particular crystal orientation is presented.
Exﬁeriménts on the same molecule dissolved in a nematic
liquid crystal reveals that at room temperature this
system has uncorrelated =equivalent Qethyl gro.ps.
Finally,.ve present the analysis of a simple two-spin
system, diprotonated 1;8-dimethy1naphthalene-d10, in

the limit of correlated and uncorrelated motion.

6.2 DEFINITION OF CORRELATED AND UNCORRELATED MOTION

In both limits, the methyl groups are undergoing
rapid torsional motions about their Cy axes. The
distinction we would 1like to make here 1is in the
relative motion of the methyl groups. We define the
motions as follows. If the methyl groups are
correlated, the motion of one methyl group completely
decefmines the mogion of the other group. If the
methyl grouﬁs are uncorrelated, the relative
orientation of the methyi groups is completely random

in time.
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The above definition of <correlated motion 1is
independent of how the motion is executed. The methyl
groups can either be correlated in an "eclipsed" or
"staggered" configuration, as shown in Fig. 6.1, or in
an intermediate configuration. The motionally averaged
values of the dipolar couplings are modified by the
type of correlated motion the spin system undergoes,
but the number of <coupling <constants remains the
same. Experipental determination of the dipolar
coupling constants, assuming a certain fixed distance
between the two C3 axes, can'lead to information on how
the methyl groups move in a correlated manner. The C3
axes distance can_be.deCermined by other means, such as
X-ray diffraction or neutron scattering methods.(Z)

The symmetry group of the spin Hamiltonian is also
‘independenc of how the correlated motion is executed,
and can be found based on the above definition.

Correlation of two methyl groups can be viewed as
two wheels in gear, however the methyl groups are
positioned. In the transicion to becoming
uncorrelated, there is an occasional slipping of
gears. The rate of slippage depends on the potential
barrier determined by the environment and on the

temperature of observation.

6.3 DETERMINATION OF THE SPIN HAMILTONIAN

We will assume a system of isolated molecules
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eclipsed N 4

staggered l
3 5

XBL 8210-2925

Figure 6.1 When the correlated motion of two methjl

groups occur in an "eciipsed" manner, the methyl groups
are mirror images. In a "staggered" configuration,

they act as gears in a cogwheel mesh.
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oriented in a matrix. The relevant Hamiltonian is the
one that 1is averaged over the nuclear motion. The
Hamiltonian also has to be consistent with the spacial
symmetry of the molecule.

At room temperature, the correlation time of
rotation T _ is typically 1079 - 10711 gec for methyl

(2)

groups. To observe the effect on dipolar spectrum

the inherent time scale is roughly 1073 - 10~% sec for

typical dipolar couplings. Thus, on the NMR time
scale, at room temperature the methyl groups are
motionally averaged.

To determine the Hamiltonian of the spin system,
one must know the number of spins involved, the number
of unique dipolar couplings according.to the molecular
"motion, and the molecular orientation with respect to
the external magnetic field. Specification of the
molecular orientation is essential since the magnitude
of the coupiing depends on the polar angle 6 that the
internuclear vector r makes with the egternal magnetic

-
field H :
o

|~

d. <

. (3cosze.. - 1).
ij i

. J
J

™)

We will first treat a hypothetical case of rigid
lattice structure with one molecule per unit cell. The
influence on the spin Hamiltonian by molecular

reorientation, such as happens in a liquid crystal,
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will be treated in section 6.6. The determination of
the number of motionally averaged dipolar <coupling
constants 1is discussed separately for the intramethyl

~and intermethyl parts of the dipolar Hamiltonian.

6.3.1 Intramethyl Couplings -

Due to the fast Cy reorientation of the methyl
groups, the dipolar couplings within each methyl group

is averaged to the same value. If the orientation of

the crystal is such that the two C3 axes make the same °

angle with respect to ﬁo R then the methyl groups are
equivalent and there 1is only one unique intramethyl
coupling constant. Otherwise, the methyl groﬁps are
inequivalent and .there are two distinct intramethyl
coﬁpling constants. The above statements are true
regatdiess of whether the methyl groups are correlated
or not. Thus, intramethyl couplings do not lead to

information on correlation.

6.3.2 1Intermethyl couplings

The determination of the number of intermethyl
couplings 1is more <complicated as ua result of two
factors: the relative motion of the methyl groups and
the direction of the C5 axes with teépect to ﬁo . We

will assume for simplicity that each methyl group can

hop between three equivalent equilibrium positions.
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6.3.2.1 Uncorrelated Motion

If the methyl groups are wuncorrelated (Fig.
6.2(a)], a proton on one group senses the same coupling
to all three protons on the other group. But all the
protons on a methyl group are equivalent as a result of
the rapid methyl reorientation. Averaging the
couplings over this motion yields one unique
intermethyl coupling constant. Any type of molecular

reorientation will not alter this ﬁniqueness.

6.3.2.2 Correlated Motion

This case is the most difficult one to contend
with. Determination of the couplings depends on the
factors mentioned at the beginning of section 6.3.2.
In Fig. 6.2(b), for the sake of discussion, we have
assumed a particular relative positioning of the methyl
groups. However, the results remain unaltered by the
relative positioning or by whether the methyl
reorientation is discrete or continuous. According to
Fig. 6.2(b), ﬁhere are three configurations that are
possible.

When the motion 1is  correlated, the number of
unique intermethyl couplings depends on the orientation
of the molecule, and thus the symmetry group of the
Hamiltonian will vary with the orientation. (Take note
that this fact does not hold when the motion 1is

uncorrelated.) Three situations can occur.
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(a) Uncorrelated Motion

N
Yw
H

(b) Correlated Motion

:

< >
= D

XBL 8210-2926

Figure 6.2 (a) In uncorrelated motion, the methyl

groups have a random relationship with respect to each
other. (b) Assuming the methyl rotor can hop only
between equilibrium positions, there are only three

possible configurations for correlated motion.
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(i) Equivalent Methyl Groups

When the two methyl C3 axes make the same polar

angle with respect to H they are NMR equivalent.

o?
Averaging the dipolar couplings over the three possible
configurations results in:

d147d25™d 3¢

415791674247 4267434735
where the subscripts are consistent with the labeling
scheme of Fig. 6.2(b). Thus there are two unique
intermethyl coupling constants when the methyl groups
are equivalent. The net result is that the dipolar
Hamiltonian is of the form:

Hy = u )} U,. + v ) Ve * ¥ I W

i,j ! k,1 m,n "0

where u is the unique intramethyl coupling constant, v
and v are the twvo unique intermethyl coupling
constants. The spin operators U, V, and W are of the

same form:

),

ij T lzilzy ~ 3(TeiToy * Togty;

and the indices run through the following labels:

(i,j) {<1,2), (2,3, (1,3), (4,5), (5,6), (4,6)}

(k,1) {(1,4), (2,5), (3,6)}

(m,n) {c1,5), (1,6), (2,4), (2,6), (3,4), (3,5)}.



(ii) H_ and the Methyl C, Axes are Contained in a

v

Plane

The two ﬁethyl C; axes definme a plane in the
Cartesian space. The orientation of interest here is
the one where this plane contains also the direction
of E;. We distinguish here the case where the methyl
groups are inequivaient. In this orientation, assuming
the same proton . labeling schéme»as before, one finds
that the eqﬁivalency of the intermethyl couplings are
the same as in case (i). Thus, the dipolar Hamiltonian

is of the form:

SN

1 Zi’,j' ' k,! m,n

: ) :
HD = U, Z U 2 Ug.;. + v Z Vkl + w Z wm .

PO a
1,1

and the indices run through the following sets:
(i,j) = {(1,2), (2,3), (1,3)}
(i‘{j’) = {(4,5), (5,6), (4,6)},
and (k,l) and (m,n) run through the same sets as

before.

(iii) Arbitrary Orientation

Excluding the particular orientations listed 1in

the above two cases (i) and (ii), all other
orientations fall in this class. The averaging of the

intermethyl couplings is different and yields:

dj4=dgs5=d3g
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d1s=dae=d3,4
d16™d24™d35-
Thus for an arbitrary orientation, the number of unique

intermethyl couplings is three. The dipolar

Hamiltonian is then of the form:

H, = u Ug)ru ol .y 1V, +w Zw(”
D 1.%.713 2..5..717;3 kl 1 mn
1,] 17,3 k,1 m,n
(2)
M T .wm‘n"

n’,n

The indices run through the following sets:

(i,3) = {(1,2), (2,3), (1,3)}

(i,3°) = {(4,5), (5,6), (4,6)}
(k,1) = {(1,4), (2,5), (3,6)}
(m,n) = {(1,5), (2,6), (3,4)}
(m”,n") = {(1,6), (2,4), (3,5)}

The number of unique intramethyl and intermethyl

couplings are displayed in Table 6.1.

6.4 NMR PERMUTATION GROUP OF NON-RIGID MOLECULES

The commutability of I, and H implies that the
Hamiltonian in the eigenbasis of I, is already in block
diagonal form according to the Zeeman quantum number
m. By finding the symmetry group of the spin system,
each Zeeman block can be further block diagonalized

according to the irreducible representations of the

symmetry group. This reduces substantially the amount
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Table 6.1

Number of unique dipolar couplings

intramethyl intermethyl
uncorrelated: (S3XS3).S2 1 1
83x83 2 1
correlated: - D3h 1 | 2
Sy 2 2



of time and effbrt in diagonalizing the Hamiltonian to
solve for eigenenergies, and even more so when solving
for the equacipn of motion of the density matrix.

The objective is to find all operations that leave
the spin Hamiltonian invariant. This defines the
symmetry group of the ﬁamiltonian. The following
procedure for group determination applies also to rigid
systems:

1. Find equalities among dipolar couplings. This
contains the symmetry of the dipolar Hamiltonian,
including the motionally averaged symmetry as well as
the spacial 'symme:ry of the molecule. Form sets of
~equal dipolar couplings &

k

represents the unique coupling constant for the set Qk.

= {(i,j): dij'dk}’ where d,

2. Find all permutations of labels such that the
dipolar <couplings remain in the same set. These
permutations are the elements of the symmetry group of

the dipolar Hamiltonian:

G= (P :P Q = Q },
T T

k k
where
P & = {Prdij’ d on! dijand d . are both in Qk}.
One must be careful to locate all symmetry
operations. It is more likely the case that a symmetry

operation 1is missed, and more transition lines are

predicted than is really the case.
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3. Given the identity of the group, the goal 1is
to wultimately determine the energy level diagram

according to the irreducible representations of the

group. This can be accomplished by calculating the
coefficients of generating functions of wreath
produccs,(s’A) or by obtéining'the character table of

the group and decomposing constructed reducible
representations of the Zeeman manifolds 1into the
igroup's irteduéible representations.

Often it i#‘difficulf to identify the group even
when the elements of the group are known. One may use
elementary group theory, i.e. cbnstruct | a
multiplication table of the elements, extract the
élasses and subgroups from this table, etc., and
eventually construct -the character table. This 1is
usually a difficult problem. Sometimes through
recognition one may find an isomorﬁhism(S) with a known
group and the obtainment of the group's character table
is automatic, since isomorphic groups have identical
character tables. Fortunately, there is a systematic
approach to group détermination of nonrigid molecules
that involves decomposing a larger group into products
of smaller groups, which are easier to handle.

Two types of products are relevant, the direct
product and the semidirect product. The conditions in
which they are applicable are discussed below.

A direct product can be formed between two groups
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only if they commute. An obvious case to recognize is
the following. Physically, if two subgroups involve

permutations of labels only between disjoint parts of

the molecule, and no other operations in the group will.

connect the two subgroups, then these parts of the
molecules can be considered as separate entities. The
operations on separate entities commute, and a direct
product can be formed.

Semidirect products 1is used when omne of the
subgroups is the set of all operations that permute
entire identical molecular parts, but th;t do not
iavolve any permutations within  the molecular

parts.(7’8)

Note that the frame subgroup does not
commute with the internal subgroups.
It is useful to realize that all NMR semidirect

product groups of spin systems undergoing uncorrelated

internal motion <can be <categorized as generalized
wreath products. Wreath products are a subset of
semidirect products. In general for nonrigid systéms,
the molecular symmetry group can be decomposed into a
semidirect product of internal torsional subgroups and
a skeletal frame subgroup. When a frame subgroup which
permutes a set of identical rotors can be defined, it

(5)

can be decomposed into a wreath product. When more
than one set of rotors are to be permuted, the

generalized wreath product should be used.(6)

When the molecule is undergoing correlated
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internal motion, the group is isomorphic to a point

group. More specifically, the subgroup for the parts

of the mole@ule that move in a relative manner are
isomorphic to point groups.

As an example, consider the para-disubstituted

‘biphenyl molecule X-C.H,-C_.H -Y.(g) At room
v S 7674 64 ‘

'temperature rapid torsional motion occurs about the

phenyl-phenyl bond. We will analyze the composition of

its symmetry group based on the above concepts. Each .

phenyl ring has C,y symmetry. Juxtaposed to another
phenyl ring, its symmetry is reduced to C,. If the
para-substituents X and Y distort the phenyl structures
inequivalently, then the group of the whole molecule is
just.the direct product CZXC2 , which is isomorphic to
D,. If the para-substituents distorg the phenyl
structure equivalently, then an additional subgroup,
that contains the permutation of the two phenyl rings,
must be included. This group C, does not commute with
either 7 t:the phenyl Cz's nor. with their direct
product. The group for the symmettiéally disubstituted
biphenyl molecule is (szcz)“cz, which can be shown to
be isomorphic to D, . Here the symbol X represents a
direct product, and -« represents a semidirect product.
Finally, we consider the importance of separation
of motional time scales. To cite an example, consider

the n-hexane molecule, CH3(CHZ)4CH3. Suppose the

hexane molecule is undergoing slow conformational
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changes but rapid torsional motions about the C-C
bonds. A different symmetry group may exist for each
conformation. Each conformation must be considered as
4 separate wmotionally averaged nonrigid specie, eacﬁ
contributing individually to the NMR spectrum. 1If the
hexane molecule is also undergoing rapid conformational
changes, then the molecule is considered as one specie
which 1is averagéd over the conformations as well as the

torsional motions.

6.5 DETERMINATION OF THE HAMILTONIAN SYMMETRY GROUP

Molecules undergoing rapid internal motion must be
treated with group theory appropriate for nonrigid

systems, as discussed in the previous section. As the

environment of the spin  system changes, so may the

symmetry group of the Hamiltonian. Specifically, if
one is dealing with a single «crystal, as the
orientation changes, the Hamiltonian changes and the
symmetry of the Hamiltonian may change. 1In the case of
two coupled methyl groups, there are five symmetry
groups to consider. Qe demonstrate the determination
of the Hamil:onian‘ group on the different motional

cases,.

6.5.1 .ncorrelated Equivalent Methyl Groups

The group for the case of an equivalent pair of

methyl groups undergoing uncorrelated motion is G =
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(S3XS ) - 8,. The prime on the second subgroup

3
allows differentiation between the two methyl groups.
The notation S, represents the group of permutation of
n identical objects (nuclei). In wreath notation, G =

52[83]. The elements ,Of Sy, 83', and S5, are listed

below:

S3

(1)(2)(3)
{(12), (23), (13)}

{(123), (132)}

-

S3
(4)(5)(6)

{(a5), (56), (46)1}
{(a56), (465)1}

S,
(1)(2)(3)(4)(5)(6)

(14)(25)(36)

" The notation (a, a,3 ... ap) represents a cyclic
permutation of p objects, i.e. a; becomes a,, a,
becomes a3, e, and ap becomes a. The above
permutations can be related to point group

operations. As examples, the permutation (123) has C,y

character and (12) has 02 character on an 1individual
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methyl group.
There are a total of (6x6)x2=72 elements in the

group (S3XS “)aS,. The construction of the group G in

3
terms of products of smaller groups can be formulated
in the following manner. S5 and S3‘ are obvious
subgroups; they represent the rapid reorientations of
individual methyl groups. All the elements of the S,
commute with all the elements of 53’ since they permute
disjoint sets of nuclear labels. One can then férm a
direct product § XS3' » which-is also a subgroup of G.

3

The product of 53!83’ with S, is a semidirect product

since 52 ddes not commute with either 83 and 83‘.
The character table of (S3XS3)-SZ can be obtained

from the subgroups S3 and S,, as prescribed in many

(7,8)

references. However, we will utilize the identity

of a pair of coupled methyl groups to gaseous ethane,
of which the character table has already Dbeen

g (10)

derive Given the <character table, projection

operators are used to obCain‘:he energy level diagram

according to the irreducible representations of G, up

to the number of states for each Zeeman manifold.

6.5.2 Uncorrelated Inequivalent Methyl Groups

When the methyl groups are 1inequivalent and
uncorrelated in motion, the So subgroup present in the
previous group that characterizes the symmetry of two

identical rotors is removed. The appropriate group is
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then §4x55. The elements of the group can obtained

from a direct product of §3 with S3°7.

6.5.3 Correlated Equivalen£ Methyl Groups

If the methyl groups are correlated and
equivalent, the operetione on this spin system are
isomorphic to . those that are ,pefformed on
cycloptopane( That is, the protons in both cases are
restricted to ﬁove in a relative manner. The group for
this case 1is D3,- The elements of this group are:

(1)(2)(3)(a)(5)(6)
{(123)(456), (132)(465)}
{(12)(45), (23)(56), (13)(46)}
(14)(25)(36)
{(153426), (162435)}

{(15)(24)(36), (14)(26)(35), (16)(25)(34)}

6.5.4 Correlated 1Inequivalent Methyl Grou:s in a

"Planar" Orientation

If the methyl groups are inequivalent and in an
orientation such that the methyl Cy axes and ﬁo lie in
a plane, then the appropriate group is 83.v That is,
since the methyl groups are constrained to hove
together but are not interchangeable, this system acts
isomorphically as a single methyl group, and thus its
symmetry group must be the same as that of a methyl

group. The elements of the 53 group are:
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(1)(2)(3)(4)(5)(6)
{(123)(456), (132)(465)}
{(23)(56), (13)(C46), (12)(45)}

6.5.5 Correlated Inequivalent Methyl Groups at an

Arbitrary Orientation

For an arbitrary orien:é:ion of the methyl C, axes
but with correlated motion, the group 1is Ca. This
group has the lowest symmetry of all the cases. It is
easy to show that the elements of the C; group are:

(1)(2)(3)(4)(5)(6)
(123)(456)

(132)(465)

The 1list of groups for all  five cases are

tabulated in Table 6.2.

6.6 EFFECT OF SPINNING OR MOLECULAR REORIENTATION

ABOUT A FIXED AXIS

Molecular reorientation is of particular concern
in a liquid crystalline environment where solutes have
rotational freedom, although wusually it is axially
restricted. Molecular reorientation can also occur in
a solid matrix if spacial symmetry allows it.

To treat this matter, we first determine the
effect of spinning on an internuclear vector r. Figure

’ I3 ’ 3
6.3 shows the vector r being spun about an axis W, with
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Table 6.2

Symmetry groups of two interacting methyl groups

equivalent inequivalent
uncorrelated: (84xs4) 8, S3xSq
correlated: D3ph §,

C3
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Figure 6.3 A vector diagram showing the relevant

->
angles when an 1internuclear vector r 1is being spun

about an axis at a rate w,. The spinning axis has a

fixed angle 8, relative to the external magnetic

+
field ffo, and the vector r has a fixed angle B relative
to the spinning axis. As a result of spinning, the

> >
angle 6 that r makes with Ho is time-dependent.

144

ve



145

- ’ : .
an angle © with respect to Ho and an angle B with
. +>
respect to W . Assuming the rate of spinning wg is
much faster than the inverse of the coupling, the time-

average value of cos26(t) is given by:(ll)

2 2

coszﬂ(t) = coszﬁ(cosze -lsin 8 ) + l-si.ri 8 .
, s 2 s 2 8
. > »>
If two internuclear vectors rij and Tl of equal
magnitude in this spinning system have angles
Bij and Bkl such that
| coszﬂij = coszskl,
or Bij = tBkl +»pﬂ (p=0, 21, £2,...) 1)
then the two Coupling constants Eij and Ekl are made
equal,.

The case of two methyl groups has three axes of
rotation: the two C; axes and the spinning axes. To
treat the combined motions, it is convenient to relate
the spinning axis with respect to a '"molecular"
coordinate system defined by the two C; axes.

Figure 6.4 depicts the methyl groups as planar
rotors with their C3; axes at some orientation Qith
respect to go' The a-axis 1is defined to have ﬁhe
highest symhetry; it bisects the two ‘C3 axes and 1is

contained in ' the same plane. The b-axis lies

perpendicular to the a-axis in this plane, and the c-
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Figure 6.4 Definition of the molecular frame (abc),

shown here with the laboratory frame (xyz). The plane
defined by the two C; axes will be labeled the ab-
pPlane, with the a-axis (the axis of highest symmetry)
bisecting the two C3 axes. The c-axis is perpendicular

to this plane.
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axis is perpendicular to this plane.

Using Eq. (1) and some elementary geometry
arguﬁents, the following conclusions are drawn and are
- applicable regardless of the direction of the Cy axes
with respect to ﬁo:

(1) 1If the spinning axis is contained in the ac-
plane or bc-plane, then the two methyl groups are made
equivalent. Any other spinning axis will make the
methyl gr&ups inequivalent. The gréﬁps that can arise
from '—spinning at this axis are (S3XS3)‘S2 if
uncorrelated and Dy, if correlated.

(2) If the methyl groups are wuncorrelated,
spinning about an axis ényvhere but in the ac- or be-
plane will leave the methyl groups ineﬁuivalent. The

3 73

(3) Consider correlated methyl groups. Suppose

group that results is S_xS_.

the C3 axes are parallel and the two me;hyl groups are
mirror images. Spinning about an axis in the ab-plane,
but excluding the a- and b-axis, will result in the
group Si,. 1f there.is aﬁy déviation from this ideal
geometry, the S, group will nevér occur anc :he Cj
group 1is the appropriate one. The C3 group also
encompasses any spinning axis not contained in the ab-,

ac-, or bc-planes.

6.7 ENERGY LEVEL DIAGRAMS

The <corresponding energy level diagrams are 1in
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Figs. 6.5 - 6;9. Group theory allows thev¢eCermination
of the energy level diagram up to the number of levels
in each irreducible representation of a given Zeeman
quantum number. It requires no quantitative values of

the couplings, only the equivalence in the couplings,

and thus cannot lead to information on the
eigenenergies. Further determination of the energy
level diagram requires diagonalization of the

Hamiltonian within each subblock, or interpretation of
the experimental dipolar spectrum, depending on one's
objective.

Correlated systems have a lower symmetry than
uncorrelated systems. The uncorrelated representations
must be reducible in correlated representations. By
decomposing the uncorrelated representations into
correlated irreducible representations, one can find
how uncorrelated states transform under the correlated
group. This decomposition shows how the levels split
under a small perturbation. The method of
decomposition is called subduction of a higher symmetry
group . into a lower symme:rj group. The reverse 1is
called an 1induction. To perform a subduction, one
first finds the correspondence between classes of the
two symmetry groups and thereby obtain the character of
the higher symmetry group's representations for each of
the classes of the lower symmetry group. With the

great orthogonality theorem, one can decompose the
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Figure 6.5 Energy level diagram for (S xS3)“SZ:_

3
uncorrelated equivalent methyl groups.
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Figure 6.6 Energy level diagram for S4%S,:

uncorrelated inequivalent methyl groups.
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Figure 6.9 Energy level diagram for Cj3: correlated

inequivalent methyl groups at an arbitrary orientation.



representations into a linear <combination of the
irreducible representations of thé lower group.

"Coalescence diagrams" describing thé'convergence
and separation of representations in the transition
region are shown in Figs. 6.10 - 6.12. Note that it is
not possible to subduce or induce energy level diagrams
between equivalent and inequivalent methyl groups.
This 1is because equivalent methyl groups, whether
uncorrelated or correlated, contain a C, type operation
that is not present in inequivalent methyl groups, and
complete correspondence between classes can never be
achieved.

Coalescence diagrams can also be found between
correlated methyl groups, and between uncorrelated
methyl groups. Such di#grams show the change in the
symmetry of the Hamiltonian with changes in the crystal

orientation. These diagrams are in Figs. 6.13 - 6.16.

6.8 MQ SPECTRA

From the energy level diagram, one can count the

number of transitions that occur for a given quantum
order, excluding accidental degeneracy due to poor
spectral resolution. Table 6.3 lists the number of
transition lines for each quantum order and for each of
the limiting cases. The NQ (6Q) order always contains
one central line with no dipolar information (to first

order) and is excluded from the table. The S-quantum

154



155

(553 x S;a)AAESZ Z\ig

m=3

3
"
[\V)

|

"
O

"
|
N

3 3 3 3
"
'

"
'
W

Ay T A2 E' E”

"
N W

"
O
'

il

3 3 3 3 3
“"

3
"
|

N

3
"
|

w

XBL 8210-2975

Figure 6.10 Coalescence diagram from

uncorrelated,
equivalent methyl groups [(SBXS3)‘82] to correlated
equivalent methyl groups (Dj,).
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inequivalent methyl groups (33XS3) to correlated
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and C3, both of which correspond to correlated,
inequivalent methyl groups but at different crystal

orient:ztion.
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Table 6.3
Number of transitions in the MQ spectrum for each of

the symmetry groups

uncorrelated correlated

S3xS37S, S3%S;3 D3y S3 C3
5Q* 1 2 1 2 2
4Qe 2 4 3 6 7
3Q* 7 14 12 24 28
2Q* 13 : 20 22 36 53
1Q* 20 34 38 60 92
0qQt 6 15 19 36 65

* The entry corresponds to the number of doublets. The
4Q and 2Q orders have in addition ; strong central
line. Note that the nQ (n#0) orders are symmetric
about the order center.

t The entry corresponds to the number of lines. The 0Q

order is not symmetric about the order center.

162



order offers no differentiation between correlated and
uncorrelated motion. (It does tell however whe;her the
methyl groups are‘equiValent.) The 4~quantum spectrum
is sensitive to two-body correlations, and is able to

distinguish the motions.

6.9 INTERMEDIATE REGION - EXCHANGE THEORY

Supposg-we begin with a pair of correlated»mechyl
groups at very low temperature. The methyl protons are
undergoing fast torsional motions but always at ayfixed
relationship with one .another. As the temperature
increases, an occasional slippage of gears can occur,
and the methyl groups ~change configurations. This
slippage §f gears_cah occur in eiﬁher sense; i.e. one
of the methyl gears can slip in the clockwise or
counterclockﬁise - direction (Fig. 6.17). This
0ccasiqnal slippﬁage in éi:he: sense cén be envisioned
L a hopping between: three  equivalent sites

(configurations). Tnus we can apply exchange theory to

this process.

6.9.1 Exchange Operators

Let P represent a slippage of gears 1in one

sense, Then its inverse P~! must be the slippage.in‘

the opposite sense. Properties of the permutation
operators P and P~} are:

(1) p3 =p-3 .,
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Figure 6.17 In becoming wuncorrelated, one of the

methyl groups can slip in a clockwise direction or in a

counterclockwise direction.



(2) p% = p7l,

(3) p, Pl are real, nonsymmetric (non-Hermitian)
and non-unitary,

() (p + P71y is real, symmetric (Hermitian) and

‘"non-unitary.

6.9.2 Master Equation with Exchange

Let p be the initial density operator. The form
of the density vopérator after exchange P can Dbe
determined in the following manner. Let ¢ be the wave
function describing the initial state of the spin
system. The density matrix p is defined as w¢f’ where
here ¢ is written as a column vector. The wavefunction
after exchange by defiﬁition is Py. This implies that
the density oﬁeratot after exchange is (Pw)(PW)f =
waTPT -_PDPT. The change in the density matrix as a
result of exchange is then pop! - 5.

We assume that both senses of slippage are random

independent processes with the same rate of occurrence

¢ -1 (12)

e Because the exchanges are

characterized by
between equivalent sites, the Hamiltonians before and
after exchange are the same. "Neglecting all other

relaxation effects, the master equation governing the

evolution of the density matrix is:

t -1 -1t
- i{o,H] + ReP p, PP p
T T
: e e

a.

ee
dt
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In superoperator representation, this is written as:

P11 Alr,ir A1z et A ek [0y,
P12 Ar2,11 Ar2,12 e A2, kk P12
—g - - . ° .
dc| : : : :
| Pk | | Akk,11 Akk,12 e Ark,kk JL Pk -

where here k=2Nx2V, Compactly written, this is

;% 5 = An. (2)

The superoperator A is composed of the Liouville’

A
operator g and an exchange superoperator X:

A= iH + X. (3)

Equation (2) represents a set of 2NN

simultaneous linear differential equations:

d . ) 1 t o _-1_-1t
3qtPas YZGIL(HGBGYG Haylsg) * re(Paypss’Pavpss Yoy

?D
e

a8”

vhere (a,8) = {(1,1), (1,2), ..., (2,1), (2,2), ...,
(k,kﬁ. The matrix elements of the superoperators can

be related to those of the Heisenberg operators:

-~

HaB,yG ® HGBGYQ - Hcysés’



- t -1 -1t

1
?e[P P + PQYPGB 24

xaB,yG ay 68 aB,YGJ'
When solving for eigenvalues of the matrix A,
properties of the superoperators to recognize are:

is Hermitian,

N
(1) =®
) A 3 "
(2) X is real non-symmetric,
A .
(3) Thus A is complex non-Hermitian.
A simplification results from the commutation of

Iz with the exchange operators:

e, 1,1 = (7}, 1,] = 0.

This means that the Zeeman quantum number m 1is
conserved under pérmutaCions (exchanges) P and P~l.
Alternatively stated, P and 1=’-1 do not mix blocks of

different m. Thus, each Zeeman manifold can be treated

~8separately.

The exchange oper#tors P and P! in generél do mix
states = Dbelonging to difféfent irreducible
representations; As evident from the <coalescence .
diagrams of Figs. 6.10 - 6.12, this is to be expected
since the states rearrange in the transition between

the two energy level diagrams.: However, some

simplification do result and the symmetry-adapted-

linear-combination(8) (SALC) basis will be adopted.
The solutions to the master equation are found by

A
diagonalizing A. The eigenvalues that result are



complex. Because the equations are linear, the
solutions yield Lorentzian lineshapes with
characteristic frequencies and linewidths. The

imaginary part of the eigenvalue gives the frequency of

transition, and the real part yields the exchange

broadening I = #/2(full-width-half-maximum value). The"

phase of a transition is determined by the initial

conditions, 1i.e. the phase factors of the ‘prépared
density ma:tii p(t=0), where t refers to the evolution
time.

Before performing a computer simulation, numerical
values for the coupling constants are required. This

takes us to the next section.

6.10 1,8-DIMETHYLNAPHTHALENE

The reasons for choosing‘ 1,8—dimethy1naphthalene
(1,8-DMN) for our studies are: (1) the methyl groups
are sterically hindered, and (2) its crystallographic
structure 1is knowﬁ.(13) Presented below are some of
the relevant structural information of this molecule in
the single <crystal form. Complete information is
available from the structure parameters given in
reference [13].

The crystal structure is monoclinie with four
molecules per unit cell and lattice constants a=9.,8354,
b=7.012A, and e¢=16.114A. The angles that a, b and ¢

4xes make with respect to one another are a=90°,
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.8=12A.35' and Y=90". The crystallographic data

presented in reference {13] are in fractional
coordinates x, y, z as referred in this coordinate

system. In order to determine an internuclear distance

Ty the following formula should be used:

)2 2 22

2 .. 2 2 - -
r. (xi xj) a® + (yi Y5 b” + (zi zj) c

1]
+ 2(x.-x.)(z.-z.)abcos38.
1 J 1 J

in Fig. 6.18 is the labeling scheme for 1,8-
DMN molecule, consistent with reference [13]. In the
minimum strain-energy configuration, the carbon
skeleton of the 1,8~-DMN molecule is planar. The methyl
groups are in an eclipsed configuration where the outer
methyl C-H bonds [C(11)-H(11C) and C(12)-H(12C)] lie
roughly in the same plane as the aromatic frame. The

amount of ¢tilt of the outer C-H bonds out of the

aromatic plane is 5° for the C(l11)-H(1llC) bond and

-10.8° for the C(12)-H(12C) bond. Thus the two methyl

groups are not quite mirror images.
The methyl C4 axes are also slightly tilted out of

this plane: the methyl(1l1l) C3 axis [€(1)-Cc(11) bond]

deviates by 0.2°, and the methyl(12) Cy axis [C(8)-(12) .

bond] deviates by =-0.2°, which are negligible.
‘The methyl C3 axes are not parallel; they are
splayed outward to accomodate both methyl groups in

such close proximity. Taking the C(9)-C(10) bond to be
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Figure 6.18

Molecular structure and the labeling
scheme of l,8-dimethylnaphthalene.



the axis of highest symmetry, the methyl(1ll) C3 axis
deviates by =7.4°, and the methyl(12) Cy axis deviates
by +7.4°.

In the equilibrium configuration, assuming the
covalent radius of proton is 0.324, the clearance
between the outer radii of éhe closest intérmethyl
protons is 1.32A, The separation of the methyl C, axes
are determined from the C(1)-C(8) distance (2.543A) and
the C€(11)-c(12) distance (2.9324). The effective
activation barrier to methyi'rotéﬁion for this molecule
has been measured to be 3 kcal/mole.(14)

From Fig. 6.18, one observes that the aromatic

protons H(2) and H(7) are significantly close to the

methyl protons. The average distance of H(2) and H(7)
with the methyl -protons 1is 3.00A, Another wuseful
distance to know is the closest intermolecular proton-

proton distance, which is 6.79A. Both of these

‘distances will be useful when estimating the rf power

required for heteronuclear decoupling.

6.11 COMPUTER SIMULATION OF EXCHANGE PROCESS

We will choose one particular crystal orientation
for discussion. The orientation chosen is where the
methyl C; axes aﬁd H, lie in the same plane and the
polar angles of the'C3 axes with H, are 78° #nd 92°.
The methyl groups are inequivalent and the appropriate

groups are S3XS3 if uncorrelated, and Sq if
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correlated. The dipolar coupling constants for this

crystal orientation are:

uy 10.858 kHz (&)

u, = 14.645 kHz

uncorrelated: v = 8,327 kHz _i"
"correlated: { v = 17.001 kHz 3
w = 3,990 kHz.

The 5-quantum lines are unaffected by exchange.
We will concern ourselves with the 4-quantum spectrum
in the exchange process. The transitions of interest
are between the m=%2 to m=F2 Zeeman manifolds, and m=2}
to m=**3 manifolds. We start with the correlated limit
since it is easier to envision slippage of gears as an
exchange process than the révetae situation.

The secular detgrminant can be constructed given
the matrix elements of the Hamiltonian and :hé exchange
operators in the SALC basis of the correlated symmetry
group.

| For simplicity we dictate that all coherences, or
the élemen:s of the prepared density matrix, assume the
same initial phase and intensity. In the rotating
frame and on resonance, only the dipolar Hamiltonian

needs to be considered in the equation of motion [Eq.

(2)].

6.11.1 Secular Determinant for m=22 to m=*2 Manifolds

The Ay (m=22) manifolds are unaffected by



exchange. These n=4 transitions remain sharp with no
frequency shift.

The E manifold is affected by exchange. The
secular . determinant is 16x16 and will not be shown
here. The actual construction. was done trivially
within a computer program,.liéted in appendix 6.A. The
solutions to the secular determinant were derived from
running a package computer program EIGCC from the IMSL

library. EIGCC is an iterative routine for

- diagonalizing a general complex matrix.

6.11.2 Secular Determinant for m=%*] to m=%3 Manifolds

Only the A, manifold is involved. In general, the
manifolds corresponding to different irreducible
representations are mixed by P .and P"l. Note that
although the A,(m=%1) is mixed with the Ai(m=$1)
states, the secular determinant is not. This exception
occurs when transitions involve the extreme states Ay
(m=23), The origin of this exception arises from‘the
invariance of the extreme states to exchange. Thus the
secular determinant for the &4-quantum order 1is also
block diagonal with respect to the irreducible

represent/ations of the group. For the Al transitions,

it is:

a-A 0 e f
0 b=A e f
= 0
e e c-A g
£ £ g d-2A
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where

a = -i(g-u1 + v + 2w)

., 3
b -x(zuz + v + 2w)

. 2
c = -x(u1 *u, + 2w) - 3
S 1
d = —1[z(u1+u2) + v+ w] - -
e = -iiw
2

f = -ii%(v + w)

g = -i---Z—(u1 + uz) + 1Z'
With the insertion of the coupling constants

listed in Eq. (4) 1into the program EXCH2 listed in

appendix 6.A for the E manifold and EXCHI in appendix

6.B for the Al manifold, the results are shown in Table

6.4, The sharp transition Al(m'tz) to A;(m=%2) at
13.722 xHz is excluded from this table. Since the 4Q
spectrum 1is symmetfic, only half of it is tabulated.
The frequenciesvare measured from the center of the 4Q
order. The lines that are broadened near the center
(at 0 kHz) are also excluded from the table.

The data in Table 6.4 and including the Ay (m=22)
transitions are illustrated in Fig. 6.19. At Te*l sec,
the lines are fairly sharp and correspond to correlated
motion. The most action occurs in the 0.1 = 2 msec
range. As the fate of exchange increasés, the E
transition at 7 kHz mixes with the central E

transitions, broadens and is shifted in frequency
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The frequencies (V) and exchange broadenings (T) for

the 4-quantum order

Table 6.4

E(m=%2) to E(m=%2) and Al(m=t2)

to Al(m=¥2) transitions.

T(sec) "v(kHz) I'(kHz)
1x10”7 60.235 (Ap) 0.003
44.758  (A)) 0.0001
36.805 (A]) 0.0002
1 x10~% 61.545 (A;) 1.157
44.780 (A;) 0.032
36.814 (A;) 0.025
2x10”% 62.171 (4;) 0.825
44.802 (A)) 0.032
36.831 (A]) 0.034
26.777 (A,)  14.109
5.626 (E} 14.33
1x10"3 62.485 (A)) 0.188
44.825  (A;) 0.009
36.871 (A)) 0.017
26.401 (Ay) 2.785
T6.91  (EJ 2.08
210”3 62.496 (A;) 0.095
464.825 (A;) 0.005
36.875 (A)) 0.009
26.386 (A,) 1.392
7.05 (E} 1.03
1 62.500 (A)) 0.0002
44.825 (A)) 0.0
36.876 (A;) 0.0
26.381 (A,) 0.003
7.099 (E} 0.002
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4-Quantum Order

A A A Al re=1x107s
l (uncorrelated)
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. -4 o
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3 1 |1 1 1 1 ] :
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Figure 6.19 Computer simulation of one half of the &4-

quantum region showing the broadening and merging of

lines as correlation sets in.



‘toward the order center as it disappears. The outer

four A; transitions are mixed and shifted in frequency
toward each other as the transition line at 26 kHz
broadens and disappears. At Te=10-7 sec, fast exchange
is occuring  and the spectrum corresponds to

uncorrelated motion.

6.12 1,8-DIMETHYLNAPHTHALENE-D, IN A NEMATIC LIQUID

CRYSTAL

A convenient method for molecular isolatom is the
dissolution of the desired molecules in a nematic
liquid erystal solvent. Its applicability is
restricted to the narrow temperature ~range of the
nematic'phase. In the nematic phase, the long axis of
the liquid crystal moléculés have a defined direction
when placed in a magnetic field. The transiational
freedom averages intermolecular couplings to zero and
retains’ only intramolecular couplings. Molecular
reorientation of the solute in the 1liquid crystal
matfix does occur :nd scales down the intramolecular
dipolar couplings. This scaling of coupling constants
by restricted molecular reorientation is described by
order parametefs, the number of them depending on the
structural symmetry of the solute molecule..

The MQ spectrum for 1,8-dimethylnaphthalene-d6
(1,8-DHN-d6).dissolved astman #15320 liquid crystal

at room temperature is shown in Fig. 6.20. From this
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FREQUENCY (-‘23% = |3.67 KH2)

8L 832-8303

Figure 6.20

MQ spectrum of 1,8-dime:hylnaphchalene-ds
dissolved in a nematic liquid crystal at 25°c.



spectrum, we wish to determine whether the methyl

groups are correlated in motion. It is not obvious a

priori whether the methyl groups are equivalent. Their

equivalency relies on the molecular reorientation that

occurs in the 1liquid crystalline matrix. [See section
6.6.) |

Figure 6.20 shows CVo‘doublets in the 4-quantum
region. Referring to Table 6.3, we see immediately

that this corresponds to the group (S3XS3)"S , implying

2
equivalent and uncorrelated methyl groups.

Often the objeét is to obtain molecular structural
information by iterating on the couplings and the order
parameters. ﬂowever in our case we know the molecular
structure beforehand. We can use this extra.piece of
information to solve directly for the order parameters
which informs us of the type of molecularlreorientation
occuring in the liquid crystal matrix. |

To extract coupling constants from the &4- and 5-
quantum orders, an iteration routine MQITER(g) is
used. This routine requires as inputs the experimental
transition frequencies and an initial guess of the
coupling constants. The latter input requires
épecification of tﬁe type of motion that the methyl
groups are experiencing. The resulting couplings from
iterating on the 4- and 5-quantum orders are used to
generate the 3-quantum order, which is then compared

with the experimental 3-quantum spectrum. The best fit
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for these orders corresponds to equivalent and
uncorrelated methyl groups (as expected) with dipolar
couplings (Fig. 6.21):

| u= 1.196 kHz (5)

v = -1.223 kHz.

Here u and v are scaled by the order pParameters.
For 1,8-DMN-d6, the molecular point group 1is
c2v‘ For sz molecules, there are two order

parame:ers:(IS) Saa and Sbb-s where a,b, and ¢ are

cc?
the axes of the molecular frame. The a-axis is taken
to be the one of highest Symmetry, the b-axis 1is
defined here to lie also in the aromatic Plane, and the
c-axis 1is perpendicular to the aromatic plane (Fig.
6.18).

The motionally averaged dipolar Hamiltonian can be

expressed as:

wvhere 2z refers to the direction of the external
magnetic field. For molecules having more than one
configuration, in the limic of fast conformational
changes all configurations contribute to the observgd

coupling constants:

<p..> = L7 p(® (6)
ij N, 4 lizz
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Figure 6.21 MQ spectrum of the 3- to 6-quantum region

presented with the theoretical stick spectrum for

uncorrelated equivalent methyl groups.



where n, is the number of configurations., 1In general,
each configuration may differ in symmetry and thus may
have a different set of order parameters. In our case,
the methyl reorientation about the C; axes does not
affect the order Parameters since they hop about
equivalent positions. Hence each configuration must
have the same order Parameters, which can then be
factored out of the summation. The spacial part of Hy,

is then:(IS)

(3c0328§?:-1)
<D..> = K[ s .
1] aa o r3
ij
. (coszeg;;-coszeg;i)
* (Sp-s ) L i ] (7)
a rs.
1]

For the intramethyl coupling u there are six
configurations to be averaged, and for the intermethyl
coupling v there are nine. Inserting Eq. (7) into (6)

given the observed coupling constants <D..> in Eq. (5),
1] .

and calculating ..

1j

result in an unique solution for the order parameters:

Sga = 0.037

Sbb-Scc' -0.291.

The relation § €s - S implies that the
aa bb ce

molecular reorientation in the liquid crystal solvent

8 from the crystallographic data
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is predominantly about an axié in the bc-plane. We
deduce however that since 1,8-DMN is planar, the open
volume required for a rotation about the c-axis is less
than for about the b-axis (or about the a-axis). Thus
we assert that the.reorientation is pfedominantly about
the c-axis. Also, this reorientation equalizes both
methyl groups, which is consistent with the obtained MQ
spectrum.

To summarize, the number of lines in the 4-quantum
order allows us to determine that the methyl groups on
1,8-DMN at room temperature are uncorrelated and
equivalent in the nematic liquid crystalline
environment. Since 1,8-DMN 1is planar, to minimize
steric hindrance between solute and solvent we can
expect the aromatic plane tc l!ie along the direction of
the long axis.bf the liquig c*yst&l. C;nsidering the
amount of free volume required, ;t can be argued that
the molecular reorientation is predominantly about an
axis perpendicular to the aromatic plane. The above

affirmations are in agreement with the measured order

parameters.

6.13 l,8-DIMETHYLNAPHTHALENE-D10

The practical advantages and disadvantages of MQ
spectroscopy on the molecule 1,8-DMN-d6 can be compared
with those of single-quantum (SQ) spectroscopy on 1,8~

DMN-d ;4. In both cases, an isolated molecular system
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is simulated by diluting the desired guest molecule in
a perdeuteréﬁed host which preserves the molecular and
crystal structure. The power required for proton-
deuteron decoupling 1is roughly the same for Both
cases. The advantages and disadvantages of MQ NMR on
1,8-DMN-d6 is first discussed. The SQ spectroscopy of
1,8-DMN-d10 is analyzed and the significance of
impurity concentration is examined.

For the MQ experiment, the wise choice for the
guest molecule 1is 1,8—DMN-d6 where the uninteresting
aromatic positions are deuterated. The advantages are:
(1) it requires a lower deuteration level, and (2) it
has the capability of separating the desired signal
from impurity signal. The previous sections have shown
‘tha: thé, 4Q order 1is sensitive to correlation of
motion. It is highly improbable that the perdeuterated
host impurities will contribute to the 4Q spectrum =
the probability of four or more impurity protons.én the
same molecule is extremely small.  Thus che purity
requirement of the host is not stringen:._ The
impurities of the guest molecule will contribute to the
4Q region, but if the purity is reasonably high (>902)
the purity level again is noﬁ critical.

The disadvantage of a MQ experiment is that it is
'@ two-dimensional experiment. Hence for a given data
acquisition time, it is inherently a lower seﬁsitivity

experiment, with noise in t; as well as in tz.(le) To
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get the same amount of sensitivity as in an one-
dimengional SQ experiment, perfect selective excitation
of the desired quantum order ana a full two-dimensional
data acquisition are required.

For SQ spectroscopy to be fe#sible, a two-proton
system with oné proton on‘each methyl group (and the
rest of tﬁe positions deuterated) is the most
convenient choice. Single-quantum spectroscopy on thgg
system can give 1information on the correlation of
motion.

The advantage of SQ NMR is that it is a simple
one-dimensional experimenﬁ, provided the magnet
inhomogeneity is small compared to the dipolar
broadening. The pulse sequence invlees one pulse, or
at best a two;pulse splid echo sequence.‘17) (The
solid echo experiment is preferred to minimize linear
phase distortion and since most solids have a decay
time comparabie to the receiver deadtime.)

The major problem of SQ NMR is that the desired SQ
signal will overlap with impurity signal. If the
dilution level is high (which is desirable for better
isolation of guest molecules), the impurities of the
host contribute a signifi:ant amount of signal. The
details of this matter will be discussed separately in
section 6.13.2.

We make the case for pr:ferring a powder sample to

(18)  rpe

a single crystal. experimental problems
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associated with a single cfysta} are: (1) a crystal may
undergo crystal structural phase transitions as
temperature is iowered, and (2) cracking of crystal may
result 1if the cooling.or heating of the ﬁample occurs
too quickly. 1In using a powder, it becomes unnecessary

to know the crystal orientation, nor to know the number

of molecules in the unit cell and their relative

crientation in the unit cell. Though the S/N is lower
for avpovder per frequency bandwidth, :hevéingularities
(that occur at 6=90°) in the powder spectrum should be
sharp and the peak S/N should be substantial, excludiﬁg

dominant impurity signal contributions.

5.13.1 Single-Quantum Spectrum

If the system is uncorrelated, we expect on the
average one unique dipolar coupling constant. The nine
configurations possible are shown in Fig. 6.22, where
it is assumed that the methyl group can only hop
between equilibrium orientations. The dipolar

Hamiltonian for this case is just:

1

Hp = vl 11,0 = 30T Tp* i 1,0
s vvlz.
The extreme eigenstates |++> and |--> are shifted
by %v, the symmetric eigenstate —l(l*-> + | =+>)

by =~ —lv,and the antisymmetric state -l(|+-> - |=+>) is
V2 2
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Figure 6.22 Assuming random hopping only between

equilibrium positions, f-~r uncorrelated motion the
methyl groups have andom relationship. For
correlated motion there are only three possible initial
conditions, and three possible configurations each.
Note that configurations b and ¢ are indistinguishable
by NMR.
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unshifted.

Assuming the methyl geometry is unaltered by
deuteration, the coupling constant can be calculated.
The coupling for 6=0°, which is the maximum inherent
value possible, is: |

Vo ™ 5.784 kHz.
The SQ spectrum for this ﬁolecule is then a doublet
with a separation of (/2 + %)v, or 11.0?2 kBz for 6=0°
[Fig. 6.23(a)].

If the system is correlated in motion, on the
average there are two unique dipolar coupling
constants. The two constants arise from the fact that
there are two initial configurations possible [Fig.
6.22(b)]. (Actually there are three; however, two of
them are NMR equivalent but are enantiomers.) The

superimposed Hamiltonian is:

The coupling constants for 6=0° are:

vy = 10.535 kiHz

w, ® 3.408 kHz

The SQ spectrum is a superposition of two doublets with

separations (/2 « %)v and (/7 + %)w, or 20.167 and
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(a) Uncorrelated Maction

I l 1

-10 o 10
v (kHz)

(b) Correlated Motion

-10 o | 10
v (k Hz ) XBL 8210-2927
Figure 6.23 = The single-quantum spectrum for 1,8~

dimethylnapthalene-dlo molecule at orientation =90°
undergoing (a) wuncorrelated motion, resulting in a
doublet, and (b) correlated motion, showing two
doublets with one doublet having twice the intensity of

the other.
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6.524 kHz for 8=0° [Fig. 6.23(b)].

The dispersion function of a powder pattern is

given by:(lg)

d
£(v) = (<22, 7, ~d <v<-Ltq
d o 20
o
- 2v ‘1/2 2V -1/2 1 1
SRR i EC T
o o
oo
(2 . 1)7h, 14 <wa
d 20 o
o
where d, <correspoands to the approp:iate coupling
constant at 6=0°,. The singularities occur at 2d_/2,

which corresponds to d at 6=90°,. Calculated dipolar
powder patterns for uncérrelated and correlated motion
of 1,8-DHN-d10 are shown in Fig. 6.24. Measurement of
the splittings between singularities of a powder

pattern yields the coupling constant at 6=0°,

6.13.2 Impurity Content

The motivation for including this section stemmed
from measurements made on 1,8-DHN—d10 showing impurity
signal comparable to or larger than the desired signal,
even at a high host purity level of 99.0Z and at a 52
dilution. This came rather as a surprise at first.
The arguments to be discussed below will clearly show
why SQ spectroscopy requires high purity samples.

The level of sample purity can be estimated



(a) Uncorrelated Motion
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Figure 6.24 The single-quantum powder spectrum for
l1,8-dimethylnaphthalene-d,, undergoing (a) uncorrelated
motion, and (b) correlated motion, showing a

superposition of two powder patterns.
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assuming a statistical distribution of proton
attachments. Generalizing, suppése theré are N
molecules with m sites each, totaling a number of aN
sites. The questionm 1is: what is the probability that
each molecule with m sites will have k impurities?
This can be abstractéd to the following pfoblem.
Suppose there are a total of =mN objects, where x of
them are of one kind and y of them of another kind.
What 1is the ﬁrobability of picking m objects such that
k of them are of the y type, assumiag k<y
and (m-k) <x? Through combinatorial arguments, this

probability 1is found to be:

y x

P(m,k) = EE%é%gﬁl

m

Listed 1in Table 6.5 are the probabilities for
typical impurity levels. The pefcentage refers to the
numberbof sites occupied by an i{impurity and not molar
percent. The notation P(m,k) 1is interpreted as the
probability of 1,8-DMN having k impurity protoms. PFor
1,8-DMN, the number of sgites 1is m=12. The tabulated
values assume N=100 molecules, which 1is large enough to
yield values close to those of N+,

Note that a portion of P(12,2) has protons in the
desired location. This amount 1is (li)-l or 1/66,
implyiang P(12,2) should be multiplied by 65/66 to give

the correct impurity content.
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Table 6.5
Probability P(m,k) of m sites being

impurities

occupied by

impurity content P(12,1) P(12,2) P(12,3)
102 0.38. 0.23 0.17

12 0.11  0.006 2x10”%4

0.5%2 0.06 0.001 1x10”3
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The calculation of impurity content of the
starting guest material 18 more complicated. It
depends oun the selectivity of the deuteration
procedure. Thus the proton attachment 1is no longer a

statistical problem. Fortunately, the purity

requirement is less stringent since the guest molecule

will be 1in 1low abundance. For example, 1f the net
effect of the selectivity and extraction procedure 1is
902 effective, then roughly >10% of the sites are
occupied by mislocated protons and the desired signal
1s <90Z of the expected value. (Compare this to a
randonm deucération composing of 38% single-proton
impurity, 2327 two-proton impurity and 172 three-proton
impurity.) For the rough estimate that we want to make
this modification can be neglected. Note that part df
this reduction 1is counteracted by the perdeuterated
host having the desired proton actachmen:.

Given Table 6.5, the comparison of the size of
impurity signal from the host versus the desired guest
signal can be made for a given guest dilution.

A 52 molar dilution 13 a reasonable amount for
effecting 1isolation of guest molecules. (Considering
cdbic-cloaesc-packing structure, 22 dilution is
optimal. But if the nearest intermolecular distance 1is

greater than the intramolecular distances, 5% dilution

is tolerable.) When the dilution is high, the impurity.

of the guest compound can be neglected.
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lg signal size is proportional to the

The total
number of proton occupied sites. At 5% dilution, 952
of the molecules are hosts. Assuming a host impurity
level of 12, the number of sites corresponding ‘to
ﬁinglé—proton host moleucles is (0.11)95%7 = 10%, to
two-proton hosts 1is 2(0.06)95% = 1z; and to three-
proton hosts is 3(0.016)95Z = 0.05%Z. Compare this to
the number of guest proton sites, which is at best
(2)52 = 102%. The rest of the sites contribute to
deute;ium signal. Thus even at 52 molar dilution and
with a 992 host purity level, the impurity signal is
comparable to the desired signal.

To improve the above situation, one may either

increase the amount of guest molecules (which may

result in intermolecular broadening) or decrease the
impurity content of the host. Let us consider the
latter.

Suppose the host impurity level is ultra-low at
0.52. At 5% dilution, the number of host_‘impurity
sites is 5% single-proton, 0.2%2 two-proton and
negligible three-proton. The desired signal again
derives from 102 of the sites. Thus at 0.5%Z host
impurity level, the desired signal is twice as large as
the impurity signal, which is tolerable.

| It is worth mentioning that it is very difficult
to get higher than 99.52 purity since most commercial

starting materials (D,0) are graded at 99.52.
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6.13.3 Conclusion

Provided the sﬁmple purity is high enough, it 1is
feasible to perform SQ NMR spectroscopy on the
selectively deuterated I,S-DMNfdlo diluted in a
petdeuter;ted matrix. The observation of correlation
of motion of two methyl groups is then an one-pulse
experiment with heteronuclear decoupling. A powder
sample of 1,8—DHN-dlo is preferable to a single crystal
for experimental ease and to remove the need to know
the unit cell structure. In contrast to the single
crystal spectrum, the powder ﬁpectrum is also
unaffected by the fact that in the slow motional limit,
the methyl groups <can no 1longer be treated as an
averaged specie,.

A preliminary measurement on a powder sample of 5Z
dilution in a host of 99% purity fesulted in a smearing
out of the powder pattern by impurity signal. A simple
calculation assuming statistical pr?ton attachments
reveals the importance of high purity requirement of

the host compound.
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APPENDIX 6.A

Computer listings of‘programs EXCH2 and HARDMAT

EXCH2 diagonalizes the superoperator A for the
four-quantum transitions in the E manifolq. The NMR
pgrmuration group S5 and the dipolar couplings for the
orientation specified in section 6.11 are assumed. It
requires as inputs only the exchange times ("tau").

HARDMAT is called within EXCH2 to create a "hard
copy" of the cqnstructed 16x16 superoperator A. This

subroutine was supplied by Jim Murdoch.
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call ;er:mt(s.tiue.teu)




e

<all eigec(s,16,16,1,v,2,15, 9k, 1er)

199

¢
T type £74, TéT T
824 format(/,%x,” jer = 7 ,15,/)
[3 : .
orint £12, tau __ N
Bl LormatlInl 7., " TAU = ,elz.e7 o T
erirt 505 ) e ) o

TTEEETTT TTormdt T/ 7, elgervalues .. .. o777

srint S@6, w

451 for=zt (2elz.€) T T
c
o TeR T=1VI€ T o T
stm=v
T T30S 1211 . Tt T
o¢ sum=sum + z(i.;)':onjg(z(i,J)) o

sCsum=sqgreisur
do GF 1=1,16

S T T L ITET(LL, T 7 sqsum

1eo ccntinue

-
title="NCRVAIIZES EIGENVECTCRS®
call EerdmaTtlz, TICTe, YETT

c

T tyre S¢9

cac fcrmat(/,” do you want acotner tau ? (¥=z0,1=yes) “,3)

- “Taccepl ¥, ITau N T -
if/itac .ne. ) go to 2@

. -
erd




sudbroutine hardmat(p,title,tau)

200

€
c displays 1€x1€ complex ratrices on one fpage
c
. .__.ccrplex p'ZSEz o e .
- dimension mag(1€),150(16),11(16),1r(1€)
character*Sp title
c
18d43(1,3)=(j-1)%ust + 1
3 _
e —..__..Dst=1E -
e
gi=4 .2%tac(1.2)
rad=18¢. 7 p1
3
dec 12 J=1.nst
_— Ji=J-1 ——— - — S
11(3)=33/4 + 1
12 tr(3)=mod {33, 4) + 1
¢
grint 129, title,tau :
129 fcrmat{1b1,//,%2,8,° for tau = “,e14.€,//)
¢
—" 7 7T Tprmd 11e, ] (11(4),1r (). 3=1,08t)
112 fcrrmat(7x,16(° (°,11,°, ,11.7)7))
e
grinst 111
111 ferrat(1x,130 /1h=))
c
- "do S@ {st.pst T~ T~ Tt T T Tt T
dc 4% j=1,pst
1)=tpdx(i,))
zz=real (p(1}))
yy=airag(p(i}))
. _ zz=cabs(p(1})) ) _ -
1£(z32 .1t. @.2821) gc tec 3%
17(xx) 24,321,324
21 1t(yy) 33,32,2z2
Ry tpB())=¢c2
g0 to 48
2 —Aopn())=-se___
g0 tc 42
24 ph=atani(yy,zx) ® rad
tpa())=ph + sign(2.%,ph)
go to 4¢ .
s 1gh( )=
__ 4¢ -mag( 1)a190@. * 23 + sign(@.8,22) _
€ "7 mag(})amize($555559,7ag()))
print 112, 11(1),tm(1),(rag(3). j=1,ast)
112 terrat(ib?, " (°,11,%,°,11,7) ‘,1617)
print 116, (1pB(J), 3i=1,z8t) ¥
11¢ fcrrat(72,1617)
=9 continue_
3
returs _ . ' I

end

e - me v e em——. = - . eme - > ——— —e o - ——— e - = m— e -

G e —————. mem e ® e . e e - . ——————— A — ———— @ W S s @ = e e - — - .-
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APPENDIX 6.8

Computer listing for program EXCH1

EXCH1 diagonalizeé the superoperator A for the
four-quantum transitibhslinvolving thé A, m=%1 and m=é3
manifolds. The NMR permutation group S3 1is assumed.
The programs asks ,for the matrix elements of the

Liouville operator H and the exchange times as inputs.
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202

aszcept *,{tau

I?Titey .3e. &' 70 to o0
(4 I

ecd

T "7 progra=m exchl -
[ .
— 374 ¢taTizifz thé 3T ©-2 tremsitions T T T T/ ¢ T
¢
cotplex ala.4',w(&),2(&.4)
dinmersior vx(_l?_;_.g}_fé 4) L
c
tyoe £¢1 : v
el — orntFTT. ‘ezte?r the Im'a‘i:i’xiar"/_eIen'—.é:'Ts_o.’"tﬁ"s':ii‘e—";er’e"t’é’r"f-. . T
1 e e o oo 'Y _‘ ) . ®
o 27 J=1.( - -
do 22 1-1 e -
- Ttyze £22,
c@? far=at.Sx, Al Al0% 41,7 2 CLs)
—— =" agcent ¥T,aclL,J T T — - e T
20 cortizue .
c
10 type 23
T ECS Par=atT77, €Erter a valde 3T tau: L3, —
accent ®*,tau n .
zw—p—ng
20 4¢ 1=1,! __ .
37 T TT=7ap1Z.0.7,28(2.37) |
e ‘3,31-272 3V - 2.2/tau
T 7T alT .L_7=a("’.4. - s3ref2.9;/taw T - - T/ -
(4. 4'za.4,4' - 1 3/tau
To FT =T, ¥ T - - - - -
hpl—l-l
———————‘r—-rw—r—-r—f - -
€2 cfj 1)=a S 7 L
_ call eig-c(a,4.4,1,9,2,4,9x,17)
——— C P ST : —- .
tyze £.4, ler B
- T T5s=atl .5z, .efr = ,1i9,/
¢
S 5 & 3 25 § RN ¥ P T CoT o TrmrT T
£io for=at(. ,,” tau = °,e11.2} o
——— - —epi{pt AT T T T T - At
£2¢ "or-at’/l ‘ elgcerzvalues ..... . /i
srict ¢S, w
£A5 2cr=3t(2e12.5) - .-
¢
10 7¢ ‘=1,4 L
T gumETLR - ) )
do £2..1=!,4 -
<< SUm=sGT ¢ Z11.,J)°coB glzZli,]))
scsum=scrt(s. )
“do0 EF {24 - ="
£ z(4,3)=2:4.3) / sasum 5
— 7 coatirue T '
¢ _
::ri.rt j=1" Ml -
& 27 format(//,” nnrmalized e1,20VeLtors .eeco’y/) v
SP1nt S8 (2 (T, )T, T=T,4T, 1=1.,4] T
%2¢& 2ormat(4(22,27€. 4;) o
¢
tzpe_€uQ.
TS Tor=at(/, a0 JO0J4 wacLt arotcer tad 7 (J=00,13,€5/ %)
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