
UC Davis
UC Davis Previously Published Works

Title
Enabling Design Space Exploration for RISC-V Secure Compute Environments

Permalink
https://escholarship.org/uc/item/0nt7h5jm

Authors
Akram, Ayaz
Akella, Venkatesh
Peisert, Sean
et al.

Publication Date
2021-06-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nt7h5jm
https://escholarship.org/uc/item/0nt7h5jm#author
https://escholarship.org
http://www.cdlib.org/

Enabling Design Space Exploration for RISC-V Secure Compute
Environments

Ayaz Akram
yazakram@ucdavis.edu
Dept. of CS, UC Davis

Venkatesh Akella
akella@ucdavis.edu

Dept. of ECE, UC Davis

Sean Peisert
sppeisert@lbl.gov

Dept. of CS, UC Davis & Lawrence Berkeley National Lab

Jason Lowe-Power
jlowepower@ucdavis.edu
Dept. of CS, UC Davis

ABSTRACT
Cycle-level architectural simulation of Trusted Execution Environ-
ments (TEEs) can enable extensive design space exploration of these
secure architectures. Existing architectural simulators which sup-
port TEEs are either based on hardware-level implementations or
abstract analytic models. In this paper, we describe the implemen-
tation of the gem5 models necessary to run and evaluate the RISC-
V-based open source TEE, Keystone, and we discuss how this simu-
lation environment opens new avenues for designing and studying
these trusted environments. We show that the Keystone simulations
on gem5 exhibit similar performance as the previous hardware eval-
uations of Keystone. We also describe three simple example use
cases (understanding the reason of trusted execution slowdown,
performance of memory encryption, and micro-architecture im-
pact on trusted execution performance) to demonstrate how the
ability to simulate TEEs can provide useful information about their
behavior in the existing form and also with enhanced designs.

1 INTRODUCTION AND BACKGROUND
Software simulators serve as the first level of the “agile hardware
design stack” [7]. These architectural simulations are useful to it-
erate on high-level architectural tradeoffs and hardware/software
co-design before focusing on the hardware implementation (e.g.,
RTL). Considering the importance of security in computing ar-
chitectures, it is imperative to enable architectural simulation of
hardware for accelerating security such as Trusted Execution En-
vironments (TEEs) [16]. Cycle-level modeling of these TEE-based
architectures can provide useful insights and help in early design
space exploration.

As the community has recently seen, the microarchitectural
implementation affects both performance and security [5, 9, 11].
To co-design the hardware and software security platforms, we
need a microarchitectural simulation infrastructure which can be
used to evaluate both performance and security while providing
flexibility to modify all levels of the stack in an agile way. While
functional-level modeling tools like QEMU [2] can be very fast, they
do not provide detailed timing information. On the other extreme,
cycle-exact models (RTL models) can provide very detailed and
accurate timing information, but they are difficult to modify and

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
CARRV ’21, June 17, 2021, Virtual
© 2021 Akram et al., published under Creative Commons CC-BY 4.0 License.

very slow to simulate. These RTL models are accelerated using
FPGAs (e.g., FireSim [8]), but they are still inflexible.

In this work we focus on RISC-V based TEEs (Keystone [10]
for example) and a widely-used architectural simulator gem5 [12].
Currently, the RISC-V ecosystem provides support to perform func-
tional or RTL level simulation of RISC-V TEEs using QEMU [2]
or FireSim [8]. However, there is no tool or simulator available to
do high-level architectural and microarchitectural studies of RISC-
V TEEs at a cycle-level for early design space exploration. Until
now, researchers have had to rely on analytical modeling or RTL
implementations for their studies involving Keystone [18].

Keystone is proposed as a “customizable” TEE. To fully avail the
benefits of this customizability, simulation support is needed so
that the customized designs can be fully evaluated. A quote from
the original Keystone paper [10]:

“We advocate that the hardware should pro-
vide security primitives instead of point-wise
solutions. . . This motivates the need for Cus-
tomizable TEEs – an abstraction that allows en-
tities that create the hardware, operate it, and
develop applications to configure and deploy
various TEE designs from the same base. . .”

In this paper, we describe the models and extensions to gem5
necessary to simulate Keystone on RISC-V to enable quantifying
the impact of these customizable TEE designs and evaluate hard-
ware/software co-design. With this simulation support, it is easy
to pick a design and analyze how it applies to different architec-
tures. We extend gem5’s recent full system RISC-V support to also
implement the physical memory protection (PMP) hardware that
Keystone uses to enforce hardware isolation. We also build and
test both the Berkeley Boot Loader (BBL) and OpenSBI as well
as an unmodified version of Keystone’s runtime, Eyrie, on gem5.
We show that the Keystone simulations on gem5 exhibit similar
performance trends as in the work of Lee et al. [10]. Moreover, we
present three example use-cases of this work: understanding the
trusted execution slowdowns, understanding the performance of
hardware support for memory encryption, and understanding the
impact of different microarchitectures on performance of trusted
and untrusted execution on a given set of benchmarks.

The rest of this paper is organized as follows: we provide a back-
ground on Keystone, and RISC-V support in gem5 in Section 2.
Section 3 discusses Keystone’s support in gem5, and Section 4 eval-
uates this support. Section 5 presents different use cases of the

CARRV ’21, June 17, 2021, Virtual Akram et al.

ability to simulate TEEs in gem5 and Section 6 discusses different
possibilities this work has opened up. We conclude in Section 7.

2 BACKGROUND
2.1 RISC-V Isolation Mechanisms
RISC-V Privileged Modes: RISC-V provides three privilege levels
to maintain vertical isolation. The least privileged mode of exe-
cution is user-mode (U-mode), where normal user applications
operate. The next level is supervisor-mode (S-mode), at which oper-
ating system operates. The most privileged mode is machine-mode
(M-mode) at which software like boot-loader operate. M-mode can
also be considered parallel to “system management mode” in x86
architecture.
RISC-V PMP (Physical Memory Protection): RISC-V’s PMP fea-
ture controls access of U (user) and S (supervisor) mode to cer-
tain memory regions. The allowed access (r-w-x) permissions and
the memory region can be configured using a set of PMP address
(pmpaddr) and configuration registers (pmpcfg). These registers
together constitute a PMP entry. PMP supports three addressing
modes which interpret the pmpaddr registers differently to deter-
mine the size of a PMP region. PMP entries can configure PMP
regions of arbitrary sizes (from 4 bytes to entire DRAM). Lower
numbered PMP entries are given priority over higher number PMP
entries. PMP entries define an allow list and every U/S mode access
needs to fall in some PMP range, otherwise an access fault is raised.
VirtualMemoryManagement: RISC-V provides different schemes
for virtual memory management namely Sv39 (3 level page tables),
Sv48 (4 level page tables) for 64-bit systems. Virtual memory is
managed by the S-mode software (e.g., the OS). The ISA provides a
CSR, satp (supervisor address and translation register), to control
address translation, which contains three different fields: MODE
(mode of address translation), ASID (address space identifier), and
PPN (physical page number of page table’s root page).

2.2 RISC-V based TEE – Keystone
Most of the existing TEEs (e.g., SGX and SEV) are closed source and
it will be impossible to simulate all of their implementation details
correctly. Therefore, we focus on Keystone [10] in this work, as it
is an open source RISC-V based Trusted Execution Environment
(TEE). Keystone is proposed as a customizable and modular TEE,
which allows fine-grained TCB (trusted compute based) configu-
ration. Keystone relies on PMP (physical memory protection) to
provide memory protection.
Keystone Security Monitor (SM): Keystone decouples resource
management and security checks by relying on a security moni-
tor (SM), which is M-mode (the most privileged execution mode
in RISC-V) software, to enforce all security guarantees. The se-
curity monitor also manages the isolation boundary between the
enclave and the untrusted OS. By relying on this M-mode soft-
ware, Keystone enables programmability and agile patching in case
bugs/vulnerabilities need to be fixed. When the SM boots, the first
PMP entry is configured to be used by SM. Since the first PMP entry
has the highest priority, it allows SM to stay inaccessible by other
components (operating in U/S mode). The SM also configures the
last PMP entry to cover all memory and configures the permissions
of this entry to allow OS complete access to it.

Security Monitor

Keystone Driver

Enclave Running App Sensitive App

RISCV Cores

Memory

Root of Trust

System Bus

IOMMU
SBI

Runtime

SBI

ioctl () ABI

EPM

U
-m

o
d

e
S-

m
o

d
e

M
-m

o
d

e

PMP

H
a

rd
w

ar
e

Figure 1: High level overview of a Keystone based secure
compute environment

Enclave: An enclave, in the context of Keystone, contains a sensi-
tive user-mode application (eapp), and a supervisor mode runtime
(e.g. Eyrie, seL4). Keystone uses this runtime to manage enclave
application’s resources like virtual memory, system call/trap han-
dling.

There are three steps involved in an enclave’s life-cycle (Figure 1
can help to understand the components that are involved in man-
aging this life cycle):
Enclave Creation: When an untrusted host (through a test runner
application) calls the SM to create an enclave for a user application
(we are assuming a use case where an entire unmodified application
is going to execute in an enclave), the SM first allocates a region
of memory (referred as enclave private memory, EPM), which is
protected and isolated with the help of a PMP entry. This region
of memory is also initialized with enclave’s page table, the S-mode
runtime that the application will be using and the application itself.
At the time of creation of an enclave, the PMP status is also propa-
gated to other cores so that EPM is kept inaccessible by other cores
in the system. At the time of creation of an enclave, the SM may
also validate the initial state of an enclave.
Enclave Execution: When the host calls the SM to execute an en-
clave on a core, the SM will flip the permissions of a PMP entry to
make EPM accessible by that core while the core is executing the
enclave. SM makes sure that the PMP permissions are set correctly
whenever a core exits/enters the enclave.
Enclave Destruction: When a host requests the SM to destroy an
enclave, the SM clears the memory region (EPM) belonging to that
enclave and also frees the PMP entry corresponding to this enclave.
2.3 gem5 and RISC-V
The gem5 simulation framework provides a wide variety of models
of processors (single-cycle, in-order, out-of-order), cache subsys-
tems, and memories [3, 12]. It supports different ISAs and two main
modes of execution, SE-mode (System Emulation) and FS-mode (Full
System). In SE mode, gem5 emulates the simulated program’s sys-
tem calls, thus obviating the need to simulate an operating system.
gem5’s FS mode allows booting an unmodified operating system

Enabling Design Space Exploration for RISC-V Secure Compute Environments CARRV ’21, June 17, 2021, Virtual

which can then run applications as they would on a normal operat-
ing system.

The initial RISC-V ISA support in gem5 by Roelke et al. provided
ability to simulate RV64G in SE mode for single-core systems [15].
Ta et al. provided support for RISC-V synchronization instructions,
thread related syscalls (e.g., futex, clone), and atomic operations to
enable simulation of multi-core systems in gem5 [17].

Later, main parts of the privileged RISC-V ISA were implemented
in gem5 to provide full system support for RISC-V [12]. The full-
system RISC-V in gem5 supports Sv39 paging (39-bit virtual address
space), three-level page table walks and TLB accesses. This provided
support to boot a bare metal OS. Recently this support has been
extended to allow (unmodified) RISC-V Linux kernel booting on
gem5. This ability to simulate RISC-V Linux was made possible
by the addition of CLINT (Core Local Interrupt Controller) and
PLIC (Platform Level Interrupt Controller) devices along with the
ability to generate device tree needed by the boot loader. Both BBL1
(Berkeley Boot Loader) and OpenSBI2 (Open Source Supervisor
Binary Interface) boot-loaders have been tested to run on gem5.

3 KEYSTONE IN GEM5
In this work, we extended the privileged ISA support to add RISC-V
PMP (physical memory protection) hardware in gem5 which en-
ables running Keystone’s Security Monitor (SM) on gem5. Figure 2
provides an overview of the PMP implementation in gem5. There
are three components which interact with each other: the ISA sub-
system, the MMU unit, and the PMP unit. Any read of the PMP
registers returns the registers’ value, and writing to a PMP register
(eventually) triggers a call to update the PMP rules which are main-
tained in a PMP table (set of PMP entries). When a memory access
is made and the MMU (TLB or page table walker) has generated the
physical address corresponding to a program (virtual) address, a
call is made to PMP unit to detect if a PMP check should be made or
not (depending on the current mode of execution) [19]. If a check
is desired, the PMP table is consulted to find out if there is an entry
match/mismatch for both address and the permissions. If no match
is found a fault is raised, otherwise control returns back to MMU
with a successful check.

Keystone’s SM is shipped as a part of both BBL and OpenSBI
bootloaders. We have tested both bootloaders with the SM on gem5.
We further set-up all Keystone components for simulation on gem5
and performed different tests to check the validity of runs. The
components include:

• Bootloader (OpenSBI)
• SM (compiled as a part of OpenSBI)
• Linux kernel (compiled with OpenSBI)
• Keystone driver
• Benchmarks/tests with a test runner application
• Buildroot based disk image

Detailed instructions on how to build these components and
use them with gem5 are provided in https://github.com/darchr/
Keystone-experiments. This repository also contains scripts to
launch gem5 based Keystone experiments using gem5art [4] (a
tool to run gem5 tests in a structured and reproducible way).

1https://github.com/riscv/riscv-pk
2https://github.com/riscv/opensbi

ISA Frontend

pmpUpdateCfg() pmpUpdateAddr()

pmpUpdateRule()

Addr. range and R/W/X

SM's Entry

OS Entry

pmpGetAField()

TLBs

shouldCheckpmp()

Addr. match and
permissions valid?

CreateAddrFault()

return NoFault

PageTable Walker

MISCREG_PMPCFG MISCREG_PMPADDR

MMU

PMP Unit

CSRR/W PMPReg return reg value

check reg type

Physical address

yes
no

yes

no

write

read

Figure 2: PMP implementation in gem5

ae
s

bi
gi
nt

dh
ry
st
on

e

m
in
iz

no
rx

pr
im

es

qs
or
t

sh
a5
12

0

1

2

3 4.3 7.5

Sl
ow

do
w
n in-order-gem5 Lee et al.

Figure 3: Comparison of slowdowns (incurred by trusted ex-
ecution using Keystone) between gem5 and Lee et al. [10].
This slowdown includes enclave creation and management
time as well.

4 VALIDATION
In this section, we validate and evaluate Keystone’s implementation
in gem5. We relied on the following actions for the functional
validation of this implementation:

• We performed physical memory access checks using Linux
Busybox utility to test functionality of PMP, which passed
successfully.

• We successfully ran primary Keystone tests, which, in addi-
tion to performing some basic functionality tests, check if
an enclave access control is violated or not.

• Finally, we successfully tested the workloads used by Lee et
al. [10] and found similar performance results.

In addition to the functional validation, we also validated the perfor-
mance of gem5’s Keystone implementation. To investigate this, we
performed some experiments and collected performance numbers
for Keystone benchmarks on gem5 and compared them with the
performance numbers published in the Keystone paper [10].

Figure 3 shows a comparison of the slowdown experienced from
enabling trusted execution on two different gem5 CPU models, and
the slowdown numbers taken from the work of Lee et al. [10] for
rv8 benchmark suite [1]. This figure shows that the Keystone simu-
lations on gem5 exhibit similar performance numbers and trends
as in the work of Lee et al. [10]. The slowdown numbers shown
in Figure 3 include benchmark execution as well as the enclave
creation, destruction and management time. dhrystone which has
the smallest execution time in normal (untrusted) execution shows

https://github.com/darchr/Keystone-experiments
https://github.com/darchr/Keystone-experiments

CARRV ’21, June 17, 2021, Virtual Akram et al.

aes bigint dhrystone miniz norx primes qsort sha512
0

2

4
·104

Si
m
ul
at
io
n

Ti
m
e
(s
ec
)

single-cycle single-cycle-Keystone in-order in-order-Keystone

Figure 4: Time taken by gem5 to simulate rv8 [1] benchmarks on a single cycle (TimingSimpleCPU) and an in order (MinorCPU)
CPU models of gem5 with and without Keystone.

aes bigint dhrystone miniz norx primes qsort sha512
0

200
400

Ki
lo

in
st
s.

pe
rs

ec
on

d single-cycle single-cycle-Keystone in-order in-order-Keystone

Figure 5: Kilo simulated instructions per host secondwhile simulating these benchmarks on a single cycle (TimingSimpleCPU)
and an in order (MinorCPU) CPU models of gem5 with and without Keystone.

ae
s

bi
gi
nt

dh
ry
st
on

e

m
in
iz

no
rx

pr
im

es

qs
or
t

sh
a5
12

0
50
100
150

TL
B

m
is
se
s(
pm

i)

untrusted trusted

Figure 6: Comparison for TLB misses (per million instruc-
tions) for untrusted and trusted gem5 runs.

the biggest overhead for trusted execution, because the cost of en-
clave creation, and management becomes more dominant due to
its small execution time. Similar is the case for sha512 and norx ,
which have slightly higher execution time compared to dhrystone ,
but still relatively less in comparison to other workloads.

Figure 4 shows the performance of gem5 itself (i.e., the time
taken by gem5 to perform a simulation). Simulating an in order
CPU (called MinorCPU in gem5) takes more time in comparison to
a single cycle CPU (called TimingSimpleCPU in gem5). It should
be noted that the difference in simulation time of a trusted and
untrusted execution is because of the difference in amount of in-
structions/work that is simulated. Figure 5 which shows thousand
instructions (simulated) per second numbers, provides a more clear
picture, where we can observe that gem5 simulates trusted or un-
trusted system with the same throughput. However, there can be a
difference in throughput for different modeled CPUs.

5 USE CASES
In this section, we discuss some of the use cases of the ability to
simulate secure compute environments.

ae
s

bi
gi
nt

dh
ry
st
on

e

m
in
iz

no
rx

pr
im

es

qs
or
t

sh
a5
12

0
1
2
3

N
or
m
al
iz
ed

In
st
ru
ct
io
ns untrusted trusted

Figure 7: Comparison of instructions for untrusted and
trusted runs (normalized to untrusted count)

5.1 Analyzing microarchitecture to understand
performance

The gem5 simulator has the ability to produce detailed simulated
performance statistics, which can help understanding the perfor-
mance characteristics of secure architectures. Many of these sta-
tistics are hard to collect on the real hardware (e.g., number of
cycles when certain pipeline stages are idle, number of squashed
instructions due to mis-speculation, etc.).

In this section, we investigate the reason for slowdown of the
trusted execution shown in Figure 3. One (potentially) expensive
operation that Keystone performs during enclave context manage-
ment is flushing the TLBs (translation look-aside buffers). So, one
can expect that these flushes would lead to extra TLB misses when a
workload is executing in trusted fashion. Figure 6 shows a compari-
son of the number of TLB misses (per million instructions) between
untrusted and trusted runs. Though, there is a reasonable differ-
ence in the number of TLB misses between the two configurations,
the actual number of TLB misses per million instructions seem to
be low for these workloads (except primes). Figure 7 shows the
total number of committed instructions for untrusted and trusted
configurations (normalized to untrusted configuration). The differ-
ence in the number of instructions seem to correlate well with the
slowdown numbers shown in Figure 3 This indicates that the main
reason of the execution time difference between the trusted and

Enabling Design Space Exploration for RISC-V Secure Compute Environments CARRV ’21, June 17, 2021, Virtual

aes bigint dhrystone miniz norx primes qsort sha512
0

0.5

1

N
or
m
al
iz
ed

Ti
m
e

NoEncrypt Encrypt30 Encrypt60 Encrypt90

Figure 8: Impact of different encryption latencies on performancewhen only enclave accesses are encrypted. The performance
implications of single cycle and in order CPU are similar.

untrusted configurations for these benchmarks is the difference
in the number of executed instructions which corresponds to the
extra work done to create, initialize, and manage the enclave. This
ability to analyze a large set of architectural or microarchitectural
events can open doors for security properties’ analysis as well.

5.2 Performance of memory encryption
In this subsection, we present a use-case of adding new hardware
structures for security and show the ability to study the potential
impact of such structures.

We model a memory encryption engine, with different encryp-
tion/decryption latencies, which will encrypt cache blocks belong-
ing to an enclave whenever they leave the last level cache. The
blocks are decrypted on their way back to caches.

We assume direct mode encryption, which can expose the en-
cryption latency to read accesses and can affect overall performance.
One could imagine a part of this latency consumed for providing
some kind of integrity protection as well. For example, a MAC can
be computed for each block and can used to later authenticate the
validity of that block. However, we do not model any integrity
protection scheme in this work.

Figure 8 shows execution time for four different configurations:
trusted with encryption disabled (NoEncrypt), trusted with encryp-
tion enabled and encryption latency of 30 cycles (Encrypt30), 60
cycles (Encrypt60), and 90 cycles (Encrypt90). As shown in Fig-
ure 8, the performance impact of encryption for rv8 benchmarks is
mostly small. These experiments are performed on default gem5
configuration for single cycle (TimingSimpleCPU) and in order
(MinorCPU) CPUs. The largest slowdown is 32% for primes with 90
cycles encryption latency. This is an expected behavior as most of
these workloads are not memory intensive.

We further studied the impact of adding memory encryption
on two microbenchmarks which load from and store to array of
different sizes (8MB, 16MB, 32MB, 64MB, 128MB). These load and
store operation are independent. Figure 8 shows the slowdown of
these microbenchamrks (relative to no encryption) with different
array sizes, A noteworthy point is that this test is performed on a
simulated system which models an in order pipeline and has a last
level cache of size 32MB. Therefore, the slowdown observed due to
encryption for array size 32MB and under is very small. For 64MB
and 128MB, the slowdown is around 16% for both loads and stores.

We performed a second experiment with memory encryption
design. We evaluate systems in which only a subset of memory is
encrypted. For example, solutions like AMD’S SME (secure memory
encryption) transparently encrypt all memory with a single key.

0 20 40 60 80 100 120 140
1

1.05
1.1
1.15

Array Sizes in MB (accessed 1000 times)

Sl
ow

do
w
n
re
la
tiv

e
to

no
en
cr
yp

tio
n

loads
stores

Figure 9: Encryption slowdown for independent load and
store operations for different array sizes with an encryption
latency of 30 cycles.

ae
s

bi
gi
nt

dh
ry
st
on

e

m
in
iz

no
rx

pr
im

es

qs
or
t

sh
a5
12

0

0.5

1

1.5

N
or
m
al
iz
ed

Ti
m
e

NoEncr EncrEncl EncrPMP EncrAll

Figure 10: Enclave vs all memory encryption

The alternatives include encrypting accesses of only sensitive ap-
plications (e.g., enclaves) or somewhere in between. To understand
how these choices might impact performance, we compared the
execution time of three different configurations relative to no en-
cryption. EncrEncl means that only the memory accesses belonging
to an enclave are encrypted. In case of Keystone, this means that
any physical memory access which passes a PMP check and does
not fall in the first or last PMP entry. EncrPMP encrypts all memory
accesses that required a PMP check and have passed the check.
EncrAll encrypts all memory accesses even if they do not require a
PMP check (e.g., M mode accesses). The encryption latency used
for all three configurations is 30 cycles. Figure 10 shows that the
slowdown increases if we move towards EncrAll configuration;
however, the difference is small. We conclude that selective encryp-
tion will not provide much benefit (in terms of performance) over
transparently encrypting everything for these workloads.

5.3 Micro-architecture impact on performance
of trusted execution

The final use-case discusses how changing the microarchitecture
can impact performance of the trusted execution and how would it
relate to the performance of the untrusted execution on the same

CARRV ’21, June 17, 2021, Virtual Akram et al.

Figure 11:Microarchitecture impact on performance of secure compute environments. In the legend entries SC: single cycle, IO:
in-order, def: default configuration from Table 1, fu540: fu540-like configuration from Table 1, and large: large configuration
from Table 1. ‘trust-ov’ stands for overhead of trusted execution.

Table 1: Main feature of the configurations tested on gem5

Feature default fu540-like large
Dcache size 32KB 32KB 512KB
Dcache assoc. 8 8 8
L2 cache N/A 2MB 16MB
L2 cache assoc. N/A 16 32
DTLB entries 64 128 2048

platform. A secure computer architect can be interested in this kind
of analysis while working on a new system. Cycle-level simulation
is a quick way to perform this kind of design space exploration.

As an experiment, we picked single cycle (TimingSimpleCPU)
and in order (MinorCPU) CPUs of gem5 and configured their mem-
ory and cache subsystems in three different ways (thus leading to
six total configurations). The three memory and cache subsystems
refer to def (default gem5 configuration), fu540 (fu540 like config-
uration), and large (a configuration with large structures and low
latencies). Table 1 provides some details of these configurations.

We executed rv8 benchmarks in untrusted and trusted manner
for all the six configurations, thus leading to 12 runs for a single
benchmark. Figure 11 shows the execution time for all of these runs
for each benchmark. We can observe that the overall execution time
goes down as we move towards more aggressive configurations,
however the ratio of trusted to untrusted execution time for each
configuration stays similar. In other words, even on aggressive
configuration, trusted execution incurs similar performance penalty
(relative to untrusted execution) as it does on a simple configuration.

6 DISCUSSION
Importantly, the ability to simulate secure compute environments
in cycle-level simulators like gem5 can enable new ways to evaluate
security of computer architectures. The gem5 simulator provides
an ability to inspect architectural and microarchitectural state at
any point in time, which can reveal important information about
the vulnerability of the system.

We envision that this work can provide an opportunity to per-
form a quantified vulnerability analysis for TEEs and other secure
compute environments. Prior work has proposed techniques to eval-
uate the vulnerabilities in architectures in a systematic way. For

instance, Mukherjee et al. proposed a metric, Architecture Vulnera-
bility Factor (AVF), to estimate vulnerability of hardware structures
to produce errors because of faults [14], and Demme et al. proposed
ways to measure the possibility of information leakage because of
side channel attacks through a metric called Side-channel Vulnera-
bility Factor, SVF [6]. SVF measures correlation between what can
be observed by an attacker and the execution pattern of a victim.
This helps to estimate a system’s vulnerability to side channels.

Similar to these vulnerability factors, we imagine developing
ways to estimate the exposure of a systems’ architectural and mi-
croarchitectural state to un-trusted entities in a simulated environ-
ment. Being able to simulate secure environments at a reasonable
detail provides us an opportunity to observe the state of an entire
system or parts of a system (e.g., only the trusted components) at
any point of execution to perform the types of analyses referred
above. Moreover, researchers have previously used gem5 to evalu-
ate speculative execution attacks (like Spectre and Meltdown) [13]
or to evaluate defence mechanisms against these attacks [20, 21].
Thus, we believe that enabling architectural cycle-level simulation
for an open source trusted execution environment will open novel
research directions for the future.

7 CONCLUSION
In this work, we show that the cycle-level architectural simulation
of secure architectures can be impactful as it opens practical ways
to perform design space exploration of these architectures from
both a performance and security perspective. We added support
to run RISC-V based secure execution environments in gem5 and
performed some experiments using Keystone and presented some
use cases to make a case for the usability of simulation support
for trusted environments. We look forward to the future research
opportunities enabled by this new simulation infrastructure.

ACKNOWLEDGEMENT
This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231 and the
National Science Foundation under Grant No. CNS1925724. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of the sponsors of this work. We would also like to thank the
gem5 community and especially Peter Yuen for his work on RISC-V
full system Linux boot support in gem5.

Enabling Design Space Exploration for RISC-V Secure Compute Environments CARRV ’21, June 17, 2021, Virtual

REFERENCES
[1] 2021. rv8-bench. https://github.com/michaeljclark/rv8-bench. https://github.

com/michaeljclark/rv8-bench [Online; accessed 5-May-2021].
[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In USENIX

Annual Technical Conference, FREENIX Track. Anaheim, CA, 41–46.
[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 Simulator. ACM SIGARCH Computer Architecture
News 39, 2 (May 2011), 1–7.

[4] Bobby R Bruce, Ayaz Akram, Hoa Nguyen, Kyle Roarty, Mahyar Samani, Mar-
jan Friborz, Trivikram Reddy, Matthew D Sinclair, and Jason Lowe-Power. 2021.
Enabling Reproducible and Agile Full-System Simulation. In 2021 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
183–193.

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.
A systematic evaluation of transient execution attacks and defenses. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 249–266.

[6] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.
Side-channel vulnerability factor: A metric for measuring information leakage.
In 2012 39th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 106–117.

[7] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (2019), 48–60.

[8] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation
in the public cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 29–42.

[9] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[10] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[11] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[12] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[13] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel T King, and
Christopher J Nitta. 2018. Position Paper: A case for exposing extra-architectural
state in the ISA. In Proceedings of the 7th International Workshop on Hardware
and Architectural Support for Security and Privacy. 1–6.

[14] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt,
and Todd Austin. 2003. A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
IEEE, 29–40.

[15] Alec Roelke and Mircea R Stan. 2017. Risc5: Implementing the RISC-V ISA in
gem5. In First Workshop on Computer Architecture Research with RISC-V (CARRV).

[16] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall, Antoine
Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas Bhatia. 2021. Toward
Confidential Cloud Computing: Extending hardware-enforced cryptographic
protection to data while in use. Queue 19, 1 (2021), 49–76.

[17] Tuan Ta, Lin Cheng, and Christopher Batten. 2018. Simulating multi-core RISC-V
systems in gem5. In Workshop on Computer Architecture Research with RISC-V.

[18] Justin Tullos, Scott Graham, and Pranav Patel. 2021. Applied Analytical Model for
Latency Evaluation of RISC-V Security Monitor. In 16th International Conference
on Cyber Warfare and Security. Academic Conferences Limited, 354.

[19] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patterson, and Krste
Asanovic. 2015. The risc-v instruction set manual volume 2: Privileged architecture
version 1.7. Technical Report. University of California at Berkeley Berkeley
United States.

[20] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution
invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 428–441.

[21] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative taint tracking (stt) a comprehensive
protection for speculatively accessed data. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 954–968.

https://github.com/michaeljclark/rv8-bench
https://github.com/michaeljclark/rv8-bench
https://github.com/michaeljclark/rv8-bench

	Abstract
	1 Introduction and Background
	2 Background
	2.1 RISC-V Isolation Mechanisms
	2.2 RISC-V based TEE – Keystone
	2.3 gem5 and RISC-V

	3 Keystone in gem5
	4 Validation
	5 Use Cases
	5.1 Analyzing microarchitecture to understand performance
	5.2 Performance of memory encryption
	5.3 Micro-architecture impact on performance of trusted execution

	6 Discussion
	7 Conclusion
	References

