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Abstract

Motivation: Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria

and play a fundamental role in coordinating the homeostasis and behavior of biological systems.

Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/

translation feedback loops and involving only a dozen genes, play a central role in maintaining

these oscillations. However, high-throughput gene expression experiments reveal that in a typical

tissue, a much larger fraction (� 10%) of all transcripts oscillate with the day–night cycle and the

oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all tran-

scripts, and perhaps also other molecular species, may bear the potential for circadian oscillations.

Results: To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct

the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10

circadian metabolomic studies conducted in mice using different tissues and under different condi-

tions. We find that over half of protein coding genes in the cell can produce transcripts that are

circadian in at least one set of conditions and similarly for measured metabolites. Genetic or envir-

onmental perturbations can disrupt existing oscillations by changing their amplitudes and phases,

suppressing them or giving rise to novel circadian oscillations. The oscillating species and their

oscillations provide a characteristic signature of the physiological state of the corresponding cell/

tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution

over two trillion day–night cycles to have intrinsic circadian frequency. These oscillating loops are

coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes

form a major hub. Cells can program and re-program their circadian repertoire through epigenetic

and other mechanisms.

Availability and implementation: High-resolution and tissue/condition specific circadian data and

networks available at http://circadiomics.igb.uci.edu.

Contact: pfbaldi@ics.uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Circadian rhythms are pervasive and play a key role in ensuring

homeostatic balance with the environment and coordinating many

aspects of physiology including the sleep/wake cycle, eating, hor-

mone and neurotransmitter secretion and even memory and cogni-

tive function (Eckel-Mahan and Sassone-Corsi, 2009; Froy, 2011;

Gerstner et al., 2009; Takahashi et al., 2008; Yoo et al., 2004).

Disruption of circadian rhythms has been directly linked to health

problems ranging from cancer, to insulin resistance, to diabetes, to

obesity and to premature ageing (Antunes et al., 2010; Froy, 2010;

Karlsson et al., 2001; Knutsson, 2003; Kohsaka et al., 2007;

Kondratov et al., 2006; Lamia et al., 2008; Sharifian et al., 2005;

Shi et al., 2013; Takahashi et al., 2008; Turek et al., 2005).

Research has shown that these circadian rhythms are genetically

encoded by a molecular clock found in nearly every cell, with a mas-

ter clock located in the suprachiasmatic nucleus (SCN) (Moore and

Eichler, 1972; Ralph et al., 1990) of the hypothalamus, coordinating

and interacting with peripheral clocks throughout the body

(Takahashi et al., 2008; Yoo et al., 2004). Central to the cellular

clock and the rhythmicity of SCN neurons as well as other cells are

transcription factors that drive the expression of their own negative

regulators (Partch et al., 2014; Schibler and Sassone-Corsi, 2002).

This results in a negative transcriptional and translational feedback

loop, highly conserved across species, that perpetuates oscillations

in gene expression that occur every 24 h. In mammals, two bHLH

transcription factors, CLOCK and BMAL1 heterodimerize and bind

to conserved E-box sequences in target gene promoters, thus driving

the rhythmic expression of mammalian Period (Per1, Per2 and Per3)

and Cryptochrome (Cry1 and Cry2) genes (Stratmann and Schibler,

2006). PER and CRY proteins form a complex that inhibits subse-

quent CLOCK:BMAL1-mediated gene expression (Brown et al.,

2012; Dibner et al., 2010; Partch et al., 2014). In short, the core of

the clock is driven by only a dozen genes (Yan et al., 2008).

In contrast, gene expression experiments (Andrews et al., 2010;

Eckel-Mahan et al., 2012, 2013; Hughes et al., 2009; Masri et al.,

2014; Miller et al., 2007; Panda et al., 2002; Tognini et al., unpub-

lished data) reveal that a much larger fraction, on the order of 10%,

of all transcripts in the cell are oscillating in a circadian manner and

that the oscillating transcripts differ by cell or tissue type (Panda et

al., 2002; Storch et al., 2002; Yan et al., 2008). Thus, the number of

oscillating transcripts typically extends beyond the core clock.

However, the precise extent of this phenomenon, or its applicability

to other molecular species such as metabolites, has not been investi-

gated systematically. While researchers have looked at the common

denominator (the master clock genes and its interactors), little has

been done to systematically understand the unique and possibly

novel oscillations observed in a specific tissue or under a specific set

of perturbations. In a recent study (Eckel-Mahan et al., 2013) where

we contrasted the circadian profiles of both transcripts and metabol-

ites in the liver of mice fed normal-chow and high-fat diets, we

noticed considerable differences associated with a massive reprog-

ramming occurring within the cell. By analyzing not only the tran-

scripts and metabolites that lost their circadian oscillations as a

result of the high-fat diet but also the transcripts and metabolites

that gained novel circadian oscillations as a result of the perturb-

ation, we were able to discover compensatory oscillations in import-

ant molecular species like SREBP1, a transcription factor

responsible for lipid synthesis.

In combination, these results raise several fundamental questions

(Patel et al., 2014). Exactly how pervasive are circadian oscillations

at the molecular level, i.e. how far do they extend beyond the core

clock? What is the overlap in circadian oscillations across different

tissues and conditions? How flexible and programmable are these

oscillations and what are the underlying mechanisms controlling

rhythmicity? To begin to address these questions, we conduct a

large-scale aggregated analysis of multiple circadian transcriptome

and metabolome datasets.

2 Methods

To ensure quality and consistency, we use circadian data from ex-

periments all carried in mice, with at least six time points and, in

most cases, at least three replicates.

2.1 Transcriptome analysis
Time-resolved gene expression microarrays from 16 published

(Andrews et al., 2010; Eckel-Mahan et al., 2013; Hughes et al.,

2009; Masri et al., 2014; Miller et al., 2007; Panda et al., 2002) and

2 unpublished experiments (Tognini et al., unpublished data) were

gathered for analysis. The datasets were downloaded from Circa

(Hughes et al., 2009) or GEO (Edgar et al., 2002) or provided by

the authors. The transcriptomes along with tissue (e.g. liver, muscle)

and condition (e.g. wild-type, knockout, high-fat diet) are listed in

Supplementary Table S1. To compare gene lists across different

microarray platforms/experiments, we used DAVID (Huang et al.,

2009, 2007) for all gene/transcript ID conversions.

2.2 Metabolome analysis
Time-resolved metabolite levels measured using LC/GC chromatog-

raphy were obtained from eight published (Dyar et al., 2014; Eckel-

Mahan et al., 2013; Masri et al., 2014) and two unpublished experi-

ments (Abbondante et al., unpublished data). The metabolomes

along with corresponding tissues and conditions are listed in

Supplementary Table S1. The unique compound identifier reported

by the Metabolon (Durham, NC) system was used to compare the

list of metabolites across the different experiments.

2.3 Circadian analysis
Gene expression and metabolite levels from all experimental datasets

were analyzed using JTK_CYCLE with typical default parameters.

JTK_CYCLE (Hughes et al., 2010) implements a nonparametric stat-

istical test which can be used to determine cycling events in gene ex-

pression and other time series. A gene was considered circadian, if at

least one of its transcripts was found to be circadian by JTK_CYCLE.

To correct for multiple testing, we use the Bonferroni-corrected P val-

ues produced by JTK_CYCLE (Supplementary). Furthermore, all ana-

lyses are conducted at three different cutoffs.

2.4 Creation and analysis of circadian networks
We constructed comprehensive networks maps using CircadiOmics

(Eckel-Mahan et al., 2012). The methods to build these networks are

described in detail in Patel et al. (2012). Briefly, CircadiOmics com-

bines information about molecular species and their interactions from

several databases to provide information-rich and tissue-specific views

of the underlying networks in a circadian context. These networks in-

clude metabolic and enzymatic reactions, protein–protein interactions

and regulatory edges from MotifMap (Daily et al., 2011; Xie et al.,

2009) and published ChIP experiments, along with the time series

profiles available from the corresponding experimental data. Thus,

for instance, through CircadiOmics, we can investigate any particular

experiment to find out whether a transcription factor or enzyme has a
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circadian expression profile or not and which of the genes or metabol-

ites it may control has a circadian profile or not.

3 Results

3.1 Comparison of transcriptomes
Analysis across different tissue types and conditions reveals surpris-

ingly little overlap between the molecular species that oscillate in

one tissue/condition versus another (Fig. 1) beyond the core clock

genes. The figure displays the matrix of the sizes of all pairwise

intersections of circadian genes across all experiments, color coded

so that darker colors correspond to larger intersections. When the

results of circadian experiments conducted over different tissues and

conditions (listed in Supplementary Table S1) are aggregated with a

stringent oscillatory cutoff (P<0.05), over 13 600 genes are found

to oscillate in at least one tissue or condition in mouse. Thus, a sig-

nificant fraction (�68%) of the protein coding genes in a mamma-

lian genome is capable of generating mRNAs which oscillate in a

circadian fashion in at least one tissue or condition. At a more

stringent P-value cutoff of 0.01, we still find �8650 genes

(Supplementary Fig. S2) exhibiting circadian oscillations in at least

one experiment. And at the even more stringent P-value cutoff of

0.005, we still find �7877 genes (Supplementary Fig. S4) exhibiting

circadian oscillations in at least one experiment. These numbers are

likely to increase in the future as more tissues/conditions are studied

and aggregated. Even comparing transcriptomes from perturbation

Fig. 1. Pairwise comparison matrix across 18 transcriptomic experiments. The numbers correspond to the number of protein coding genes capable of producing

a circadian oscillatory transcript (P�0:05) that are common to both tissues/conditions (i.e. jA \ Bj). The color intensity corresponds to the Tanimoto–Jaccard index

(jA \ Bj=jA [ Bj). In total, there are 13 683 (�67%) protein coding genes that can produce a circadian transcript in at least one tissue or condition
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experiments performed on the same tissue (liver, see Supplementary

Fig. S1) show that a major fraction of genes can produce circadian

transcripts under some condition in that tissue alone. Thus, tissue-

type, environmental, genetic and even diet perturbations all lead to

significant differences in the list of oscillating genes.

3.2 Comparison of metabolomes
Similar results are seen when time-dependent metabolite levels from

different tissues and conditions are aggregated (Fig. 2). The figure dis-

plays the matrix of the sizes of all pairwise intersections of circadian

metabolites. At a P-value cutoff of 0.05, out of the 554 measured

metabolites, we find 376 metabolites oscillating in a circadian manner

in at least one of the conditions. Hence, �67% of the measured me-

tabolites oscillate even when using a relatively small set of tissue/condi-

tions. At a more stringent P-value cutoff of 0.01, we still find �300

metabolites (Supplementary Fig. S3) exhibiting circadian oscillations

in at least one experiment. And at the even more stringent P-value cut-

off of 0.005, we still find �270 metabolites (Supplementary Fig. S5)

exhibiting circadian oscillations in at least one experiment.

Taken together, these results from across tissue and within tissue

comparisons establish that a significant fraction of transcripts and

metabolites is capable of circadian oscillations in at least one type of

tissue or condition. We hypothesize that similar results hold also for

protein levels, although systematic high-throughput circadian prote-

omic measurements are not yet available (see Section 4).

3.3 Circadian oscillations are plastic: effects of

perturbations
We observe that genetic or environmental perturbations tend to dis-

rupt circadian oscillations in given system in several ways. As ex-

pected, such perturbations can:

• Change the amplitude of pre-existing circadian oscillations for

some of the molecular species;

• Change the phase of pre-existing circadian oscillations for some

of the molecular species;
• Disrupt or even suppress the pre-existing oscillations of some of

the molecular species.

Indeed, experiments involving genetic knockouts, diet changes or

even simply different mice strains, show these effects (Fig. 3). For in-

stance, when comparing gene expression in liver tissue from Clock

mutant and wild-type mice (Miller et al., 2007), �1160 genes show

a loss of circadian rhythmicity. However, �400 genes oscillate in

both conditions but with a difference in amplitude or phase

(Fig. 3A). Similarly, when comparing gene expression and metabol-

ite levels in liver tissue from 10-week high-fat-fed versus normal-

chow-fed mice (Eckel-Mahan et al., 2013), �2200 genes and �40

measured metabolites show a loss of circadian rhythmicity, whereas

�1520 genes and �60 measured metabolites oscillate in both condi-

tions, but with a difference in amplitude or phase.

More importantly perhaps, perturbations can also:

• Create new circadian oscillations in many molecular species that

were not oscillating in the control case.

Unlike the changes above, the massive creation of new oscillations,

all at the same frequency, in such complex systems is puzzling and

requires further analysis and explanations (see also Section 4).

3.4 Emergence of new oscillations
When comparing liver samples from Clock mutant and wild-type mice

(Miller et al., 2007), �240 genes oscillate in the mutants but not in the

controls (Fig. 3A). Interestingly, these new oscillations arise in spite of

mutating the Clock gene. Similarly, when comparing liver samples

from mice fed with high-fat chow versus normal-chow (Eckel-Mahan

et al., 2013), �1110 genes and �40 measured metabolites oscillate in

the high-fat but not in the normal-chow condition (Fig. 3B). Important

transcription factors, enzymes and metabolites are found among the

new oscillating species. For example, SREBF1 a key transcription fac-

tor regulating enzymes involved in lipid synthesis shows a new, robust

(P ¼ 0:00001), circadian oscillation in the high-fat condition.

Fig. 2. Pairwise comparison matrix across 10 metabolomic experiments. The

numbers correspond to the number of oscillating genes/metabolites (P�0:05)

that are common to both tissues/conditions (i.e. jA \ Bj). The color intensity cor-

responds to the Tanimoto–Jaccard index (jA \ Bj=jA [ Bj). In total, there are 376

(�68%) measured metabolites that oscillate in at least one tissue or condition

A B C

Fig. 3. First row: Venn diagrams comparing (A) wild-type and Clock mutant

liver gene expression, as an example of genetic perturbation; (B) normal-

chow fed and high-fat fed liver gene expression, as an example of environ-

mental perturbation and (C) C57BL/6J and C57/B6 þ Black Swiss liver gene

expression, as an example of ‘strain perturbation’. In all cases, there is mas-

sive reprogramming leading to a large number of new oscillations. Second

row: histogram showing the changes in amplitudes. Third row: histogram

showing the changes in phases (measured in hours)
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Remarkably, novel oscillations are also seen in data collected

from the same tissue of wild-type mice but corresponding to differ-

ent genetic strains. Specifically, a comparison of liver tissue from

C57BL/6J (Eckel-Mahan et al., 2013) and C57/B6þBlack Swiss

(Masri et al., 2014) mice strains uncovers �2840 genes that oscillate

only in C57BL/6J, �890 genes that oscillate only in C57/B6þBlack

Swiss and �900 genes that oscillate in both strains (Fig. 3C). This is

also true when comparing liver samples from two animals with a

slightly different mixture of C57/B6 and Black Swiss strains (see

Liver Sirt1 WT and Liver Sirt6 WT in Fig. 1). Note that this may in

part also explain why differences in oscillatory behavior are seen in

assays that are presumed to be identical (e.g. ‘wild-type liver tissue’)

but in reality are not, due to significant differences between wild-

type strains (Yalcin et al., 2012) and the environments in which the

mice are raised. Even the concept of ‘normal chow’ is vague and can

differ substantially from one laboratory to another.

In aggregate, these results suggest that the physiological state of

a cell or a tissue is strongly characterized by its circadian profile, es-

sentially the list of molecular species that oscillate in a circadian

fashion and the characteristics of their oscillations (e.g. phases and

amplitudes). Furthermore, one can predict that any significant per-

turbation (genetic, epigenetic or environmental) will significantly

change this profile, by changing amplitudes and phases of existing

oscillations and by introducing novel oscillations.

3.5 Web server and visualization
All the transcriptome and metabolome data used in the analyses pre-

sented here have been imported into the CircadiOmics database and

web server (Patel et al., 2012) and can be analyzed and visualized

online at: http://circadiomics.igb.uci.edu. CircadiOmics produces

high-resolution biological networks displaying, for instance,

metabolites, enzymes, transcription factors and their interactions

and concentration changes over time throughout the circadian cycle

(Fig. 4).

4 Discussion

Previous gene expression studies conducted with single conditions

have already revealed that a significant fraction of the transcriptome

can oscillated in a circadian fashion in simple organisms: a third of

the transcriptome in the plant Arabidopsis thaliana (Covington et

al., 2008; Harmer et al., 2000), 64% of the transcriptome in the

cyanobacterium Synechococcus elongatus (Vijayan et al., 2009) and

almost the entire transcriptome in the marine unicellular alga

Ostreococcus tauri (Monnier et al., 2010). In a recent independent

study conducted in 12 mouse organs, 43% of all protein coding

genes showed circadian rhythms in transcription somewhere in the

body (Zhang et al., 2014). Here, we have extended these studies by

aggregating and analyzing both high-throughput transcriptomic and

metabolomic data in a mammalian system over multiple tissues and

conditions, revealing that a large fraction of the molecular species in

a mouse cell/tissue is capable of circadian oscillations under at least

some set of conditions. Furthermore, while the experiments used

here were conducted using tissue preparations, it is reasonable to

infer that even more diversity in oscillations would be observed if

one were to aggregate experiments done at the level of single cells

both within tissues and across tissues, as well as many other condi-

tions. Thus, our results provide only lower bounds on the total num-

ber of transcripts or metabolites that could be found to oscillate in a

circadian manner under at least one set of conditions by the same

methods. Additional non-transcriptional circadian oscillations, for

instance, in the levels of post-translationally modified proteins, are

Fig. 4. Network and concentration time series visualization showing how the transcription factors in the clock can drive the oscillations of enzymes and corres-

ponding metabolites. In CircadiOmics, users can select an experiment and a specific gene or metabolite and visualize the molecular network in the vicinity of the

corresponding node, as well as the time series of the corresponding concentrations. Each box represents a molecular species with, when available, a plot of the

time series of its concentration throughout the day–night cycle in the control (blue) and perturbed condition (red)
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also known to exist (O’Neill et al., 2011; van Ooijen and Millar,

2012) leading us to conjecture that almost any molecular species in

the cell is potentially capable of circadian oscillations.

To better interpret these puzzling results, we briefly develop a

coupled circadian-oscillators framework logically articulated around

four questions: (i) what are the oscillators? (ii) what are their periods?

(iii) how are they coupled? and (iv) what is the role of the clock?

4.1 Coupled circadian-oscillators framework
4.1.1 Molecular loops as oscillators

The first observation is that a transcript (or any other molecular spe-

cies) cannot oscillate in isolation. What really oscillate are entire

loops of interacting molecular species comprising different kinds of

interactions such as regulatory (transcriptional), protein–protein

and enzymatic interactions. Oscillatory loops typically contain an

odd number of negative interactions (Fig. 5). Biological network

contain a large number of such directed loops and thus many poten-

tial oscillators. For instance, in a network consisting of 21 826

genes/proteins with 120 988 edges (114 493 regulatory edges and

6495 physical protein–protein interactions), we found over 3600

directed loops of size 3 and over 71 100 directed loops of size 4 (see

also Supplementary Table S3). These numbers are not meant to be

precise, as it is well known that there are several sources of noise in

reconstructed biological networks, but they are indicative of the gen-

eral trends and it is reasonable to estimate that the number of poten-

tial oscillators in the cell is in the 105 range.

4.1.2 Circadian periodicity

In the complex molecular circuitry of a cell, having many loops–and

thus many potential oscillators– does not explain why a large frac-

tion of them would oscillate with a circadian frequency. When a

complex physical system with many components is perturbed in

many different ways, one does not expect to see each time a different

subset of its component oscillating at the same constant frequency,

unless this frequency is deeply built-in into the system as a resonant

frequency. Indeed, high time resolution circadian data (Hughes et

al., 2009) show that most oscillating genes have a period of �24 h,

with some genes oscillating at harmonic periods of about 12 h and

8 h. Very short periods (e.g. periodicity of one hour or less) and

periods not commensurate with the day–night cycle (e.g. periodicity

of 7 h) are not observed as they are probably not physiological. The

key question then is why so many loops exhibit the same 24-h peri-

odicity? We believe evolution provides the answer to this question

as the world is drastically different during the day and the night, for

instance in terms of temperature, light, winds and predators. Thus

paying attention to these differences is likely to have conferred

major survival benefits to the corresponding organisms in the course

of evolution. It is important to note that some of the earliest unicel-

lular precursors of current living systems were highly circadian. For

example, Cyanobacteria which were present 3.4 billion years ago

are highly circadian (Vijayan et al., 2009) since they use photosyn-

thesis. Thus circadian oscillations at the molecular level were dis-

covered very early by evolution and subsequently refined and

propagated throughout the tree of life over two trillion day–night

cycles (Supplementary). Thus evolution has deeply sculpted the re-

lentless circadian rhythm into many of the molecular oscillators pre-

sent in each cell, so that the circadian frequency is the main resonant

frequency of these networks.

4.1.3 Coupling of the oscillators and cellular programming/

reprogramming

Armed with an understanding or what the oscillators are and why

they may have a built-in resonant period of 24 h, we can now con-

sider how these oscillators are coupled to each other and how biolo-

gical systems can manipulate the oscillatory landscape and its

couplings to adapt to internal or external perturbations.

Many different biological mechanisms couple these oscillators

together, but at the root of the coupling, there is always the sharing

of vertices (or even edges or paths) between oscillating loops form-

ing an intricate network of coupled circadian oscillators. The cou-

plings in such a network are likely to be non-linear, heterogeneous

and condition specific. Reprogramming at the cellular level

(Obviously reprogramming occurs at many levels and may involve,

for instance hormonal signals triggered by the SCN and cell-to-cell

communication within a tissue) occurs by (i) suppressing existing

molecular interactions thereby breaking loops; (ii) enabling new mo-

lecular interactions thereby creating new loops or (iii) changing the

sign of existing molecular interactions thereby modifying the oscilla-

tory behavior of existing loops.

There are several possible non-exclusive mechanisms by which

the cell can create, suppress or modify interactions between the dif-

ferent species to rapidly reprogram its oscillatory repertoire. For in-

stance, dynamic changes in the epigenome, like methylation,

acetylation and chromatin remodeling can play a central role in se-

lecting the fraction of oscillating species. An epigenetic modification

in the promoter of a gene can prevent the expression of a gene per-

manently, thus suppressing the oscillatory behavior of all the loops

containing the corresponding transcript or protein. Removing the

modification has the opposite effect. Recent studies have also identi-

fied circadian long-range interactions (Aguilar-Arnal et al., 2013)

and the role of CLOCK protein as a histone acetyltransferase (Doi et

al., 2006). Similarly, a post-translational modification may enable

the interaction of two proteins and thus the creation of correspond-

ing loops. Furthermore, nodes or edges associated with many loops

act as hubs that can couple and simultaneously influence many other

oscillators.

4.1.4 Role of molecular hubs and the clock

Molecular hubs associated with highly connected species usually af-

fect many oscillating loops and are capable of setting up cascades of

Fig. 5. (1) A cycle between four molecular species with an even number of

negative interactions. Increasing the concentration of A, increases the con-

centration of B, which decreases the concentration of C, which increases the

concentration of D, which further increases the concentration of A (and vice

versa if the concentration of A is decreased). Thus in general, such a system

does not oscillate and will tend to converge to one of several fixed-point at-

tractors. (2) A cycle between four molecular species with an odd number of

negative interactions. Increasing the concentration of A, increases the con-

centration of B, which decreases the concentration of C, which decreases the

concentration of D, which then decreases the concentration of A. Thus such a

system will tend to oscillate. (3) Example of two interlocked cycles one of

length three and another of length four sharing one edge (between C and D)

with fixed-point attractors. Changing the sign of the shared interaction cre-

ates two oscillatory loops, exemplifying how a small change can have a large

effect
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changes in amplitude, phase and oscillatory behavior. An example is

provided by nicotinamide adenine dinucleotideþ, a metabolite that

participates in many reactions and plays a central role in regulating

circadian rhythms (Nakahata et al., 2008; Peek et al., 2013; Ramsey

et al., 2009). Not surprisingly, transcription factors also tend to be-

have like hubs, and the clock itself behaves as a central hub inter-

secting many loops and helping cellular reprogramming and the

selection of a significant fraction of which loops actually oscillate

under a given set of internal and external conditions (Fig. 4).

In particular, the main transcription factors in the clock, Clock

and Bmal1, are densely connected (see Supplementary Tables S2

and S3). They are known to bind to a single or pair of E-box sites.

E-box sites are short (canonical sequence CACGTG) and frequent in

the genome (Fig. 6). With a stringent Bayesian Branch Length Score

(Xie et al., 2009) greater than 1, we found over 23 800 conserved

E-box sites in the mouse genome using MotifMap– several of which

are in the promoters of transcription factors. Using time-resolved

ChIP-seq data for BMAL1, Rey et al. (2011) identified 2049 E-box

binding sites in mouse liver. Among these, �60% (1319) showed

a rhythmic binding of BMAL1 and 13% of all BMAL1 sites had a

pair of E-box elements with spacers of 6–7 base pairs. Thus, in

a given environment, cells can reveal or hide a fraction of E-box sites

thereby controlling which loops are directly, or indirectly, affected

and possibly entrained by Clock and Bmal1.

To further understand the factors that confer to the cell its circa-

dian reprogramming capabilities, we analyzed the role of the core

clock genes in the context of the underlying global molecular net-

work. Using a network with regulatory and protein–protein inter-

action edges, we calculated the distance of all nodes from Clock or

Bmal1 and also the total number of directed loops that contain

Clock or Bmal1. We found that �10% of genes are one hop away

and �60–70% genes are two hops away from Clock or Bmal1 (see

Supplementary Table S2). In addition, �10% of genes are connected

to Clock or Bmal1 through a directed loop (see Supplementary

Table S3) of size 6 or less. In short, in this network of coupled oscil-

lators, Clock and Bmal1 form a central hub coupling and modulat-

ing many other circadian oscillators.

4.2 Formal models of coupled oscillators networks
Formal models of circadian oscillators and coupled oscillators (Baldi

and Meir, 1990; Brandt et al., 2006; Goel and Ermentrout, 2002;

Goldbeter, 1997; Strogatz, 2000) are briefly discussed in

Supplementary Material.

4.3 Differential gene expression analysis
A simple consequence of having so many transcripts oscillating, or

with the potential for oscillating, is that some caution should be

exercised when drawing differential conclusions from gene expres-

sion experiments, especially when these are conducted at a single

time point, which is the majority of the cases. While one cannot

reasonably expect that all expression experiments be carried at mul-

tiple time points along the circadian cycle, it is clear that circadian

oscillations of transcripts can impact the lists of genes that appear to

be differentially expressed between two conditions and their

interpretation.

4.4 Conclusion
At the behavioral level, circadian rhythms are paradoxically both re-

lentless and flexible. Relentless because they turn us into robots exe-

cuting the same routine every 24 hours. Flexible because this routine

is elastic and let us accommodate, for instance, an occasional early

meal or a late bedtime without suffering major consequences.

Remarkably, these paradoxical features of pervasiveness and plasti-

city are found at multiple levels of biological organization, including

tissues, cells and molecular networks as shown in this work.

Two trillion night-and-day cycles during the course of evolution

have deeply sculpted the molecular networks of the cell and made

24-h oscillations pervasive. Aggregation of high-throughput

transcriptomic and metabolomic experiments across tissue types and

conditions indeed reveal that a large fraction of the molecular net-

work of a cell is primed for and potentially capable of oscillating in a

circadian manner. In a given environment taken in its broadest sense

(to include for instance genetic modifications or inter-cell/inter-organ

communications), through epigenetic and other modifications, a cell

or tissue selects which fraction of molecular species out of its entire

repertoire exhibit circadian oscillations, including entirely novel oscil-

lations with respect to the corresponding control case.

Ongoing and future work should provide the data to better

model and understand networks of coupled-circadian oscillators,

predict how they respond to perturbations and use these responses

to explain biology and direct therapeutic intervention.
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