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SUMMARY

Plant response to pathogen infection varies within a leaf, yet this heterogeneity is not well 

resolved. We expose Arabidopsis to Pseudomonas syringae or mock treatment and profile >11,000 

individual cells using single-cell RNA sequencing. Integrative analysis of cell populations from 

both treatments identifies distinct pathogen-responsive cell clusters exhibiting transcriptional 

responses ranging from immunity to susceptibility. Pseudotime analyses through pathogen 

infection reveals a continuum of disease progression from an immune to a susceptible state. 

Confocal imaging of promoter-reporter lines for transcripts enriched in immune cell clusters 

shows expression surrounding substomatal cavities colonized or in close proximity to bacterial 

colonies, suggesting that cells within immune clusters represent sites of early pathogen invasion. 

Susceptibility clusters exhibit more general localization and are highly induced at later stages of 

infection. Overall, our work shows cellular heterogeneity within an infected leaf and provides 

insight into plant differential response to infection at a single-cell level.
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In brief

Zhu et al. report the plant response to Pseudomonas infection at single-cell resolution, showing 

that leaves exhibit cell populations at opposing states (immune and susceptible). Immune and 

susceptible cell populations are determined by bacterial colony size and infection time. Their study 

provides a framework for high-resolution exploration of plant host-pathogen interactions.

INTRODUCTION

Plants can be infected by diverse pathogens capable of colonizing roots, vascular tissues, 

and foliar (leaf) tissue. Many plant diseases exhibit variable symptoms. For example, 

inoculation of bacteria or fungal spores using infiltration or spray results in unequal 

symptom development and a relatively small proportion of pathogens successfully invade 

their hosts.1–3 Moreover, different stages of pathogen infection are often observed within 

a leaf.4,5 Heterogeneity in pathogen distribution and, likely, the plant response affects 

symptom development.6 Strains of the bacterial pathogen Pseudomonas syringae have a 

broad host range and can infect many economically important plant species, causing a 

variety of foliar symptoms.7,8

Mechanisms regulating pathogen distribution and colonization on plants can be a 

combination of physical, metabolic, and immune barriers. Physical barriers, such as 

trichomes, the waxy cuticle, plant cell walls, and closed stomatal pores can regulate the 

penetration of pathogens into the plant interior.9,10 Plants can also recognize pathogen 
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molecular features, including damage and effectors, using either surface-localized or 

intracellular immune receptors.11 Surface-localized pattern recognition receptors (PRRs) 

detect microbe-associated molecular patterns (MAMPs) or damage-associated molecular 

patterns (DAMPs), resulting in PRR-triggered immunity (PTI). Immune recognition leads 

to a series of downstream defense responses, including calcium influx, the production 

of reactive oxygen species, defense hormone production, and global transcriptional 

reprogramming.12,13 PTI can be generally induced against diverse pathogens because of 

the conserved nature of MAMPs (e.g., bacterial flagellin and elongation factor Tu, fungal 

chitin).13 However, virulent pathogens secrete metabolites and proteinaceous effectors that 

dampen immunity and establish suitable environments for growth.14 Thus, plant-pathogen 

interactions are a highly dynamic process, resulting in heterogeneous cellular responses.

Past studies investigating plant-pathogen interactions mainly depend on assays from bulk 

tissue (i.e., whole leaf or roots). Although genome-wide transcriptional profiling has 

advanced our understanding of immune responses, cellular responses are averaged across 

entire tissues.15,16 Single-cell RNA sequencing (scRNA-seq) technologies enable massively 

parallel transcriptional profiling of thousands of cells.17–20 scRNA-seq interrogates 

populations at the single-cell level and on a genome-wide scale to profile transcriptomes 

from different cell types and cell states.18,21 The application of scRNA-seq in plants has 

provided new insight into cell identity, function, and development in different tissues.22–27 

With respect to pathogen infection, it remains unclear how large populations of plant cells 

within a tissue respond and how pathogen proximity influences cellular responses at high 

resolution.

In this study, we combined scRNA-seq and live-cell imaging of fluorescent reporters to 

investigate plant cellular responses to pathogen infection. We established a transcriptome 

atlas of Arabidopsis leaf tissue infected with virulent P. syringae. The atlas enabled the 

identification of pathogen-responsive cell clusters at immune, transition, and susceptible 

states. Pseudotime trajectory revealed a continuum of disease progression from an immune 

to a susceptible state. We validated this trajectory using fluorescent transcriptional reporter 

lines expressing either immune or susceptible cell cluster markers identified by scRNA-seq. 

Finally, we identified diverse spatial and temporal patterns of immune and susceptible 

marker genes that can be influenced by pathogen proximity.

RESULTS

scRNA-seq profiling of Arabidopsis leaf tissue infected with P. syringae

To investigate plant responses to pathogen infection at high resolution, we first analyzed 

bacterial distribution within a leaf. We compared the bacterial distribution between wild-

type P. syringae pv. tomato DC3000 3xmCherry with the DC3000 ΔhopQ1 3xmCherry at 0, 

4, 10, and 24 h post-inoculation (hpi; Figure S1). Both bacterial strains behaved identically. 

The hopQ1 effector deletion strain, frequently used as a tool to investigate P. syringae, is 

fully virulent on Arabidopsis and also infects Nicotiana benthamiana.28 Therefore, we used 

virulent P. syringae pv. tomato DC3000 ΔhopQ1 labeled with 3xmCherry (hereafter Pst 
DC3000) for our experiments. Pst DC3000 was inoculated on four-week-old Arabidopsis 
thaliana. We observed patchy distribution of Pst DC3000 as well as differences in colony 
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number and area within a leaf at 24 hpi, suggesting that bacterial colonization is spatially 

variable (Figures 1A–1C). At this infection stage, Arabidopsis leaves do not exhibit visible 

symptoms, but bacteria multiply aggressively.7,29

Pst DC3000 colonizes the intercellular space between mesophyll cells, manipulating them 

to provide more favorable conditions for microbial growth. To characterize the dynamics 

of the interaction between Pst DC3000 and Arabidopsis mesophyll tissue, we enriched for 

mesophyll cells using the Tape-Arabidopsis Sandwich method (Figure 1D).30 Single-cell 

transcriptomes were then profiled from Pst DC3000- and mock-treated samples 24 hpi 

using the 10X Genomics scRNA-seq platform (Figure 1D). We recovered 11,895 single-

cell transcriptomes with a median number of 3,521 genes and 17,017 unique transcripts, 

representing more than 80% of protein-coding genes in the Arabidopsis genome (Figures 

S2A and S2B). Complementing our single-cell datasets, we also performed bulk RNA 

sequencing (RNA-seq) for protoplasts and infiltrated leaves to identify genes modulated in 

response to pathogen infection (n = 890, adjusted p < 0.01, log fold-change > 2), as well 

as genes possibly affected by protoplast generation (n = 7,548, adjusted p < 0.01, log fold-

change > 0.5; Table S1A). There was a strong correlation between merged single-cell and 

bulk protoplasts samples (Spearman’s rho = 0.786 and 0.848 for mock- and bacteria-treated 

samples, respectively; Figure S2C), indicating that protoplasting did not severely affect most 

genes’ expression. We excluded protoplast-inducible genes from further analysis of our 

single-cell dataset.

Using graph-based unsupervised clustering, we identified 18 major cell clusters and 

visualized them on a uniform manifold approximation and projection (UMAP) plot (Figure 

1E). Each cluster contained cells from both Pst DC3000- and mock-treated leaves (Figures 

1E and S2D). To assign cell types, we used a recently published single-cell transcriptomics 

survey of Arabidopsis leaf tissue,23 as well as expression of well-known cell type markers. 

The predominant predicted identity of cells within each cluster was then used to assign a 

cell type to the whole cluster. We also integrated our single-cell datasets with five previously 

published Arabidopsis leaf scRNA-seq datasets.23–25,31,32 Analysis of the integrated dataset 

suggests that the vast majority of cells profiled in this study are similar in cell type as those 

profiled by others, with the exception of an increased density of Pst DC3000-treated cells 

within the larger mesophyll cell cluster (Figures S2F–S2N). The 18 cell clusters contain 

eight cell types, but exhibit predominant mesophyll identity (~93.7% of all cells, clusters 

M1–M14; Figures 1E, 1F, and S2D).

scRNA-seq reveals cell clusters ranging from immunity to susceptibility within a leaf

Integrative analysis of cells from Pst DC3000- and mock-treatment revealed a large 

subpopulation of cells from infected leaves constituting clusters M1–M5 (Figures S2D, 

S3A, and S3B). More than 70% of cells in clusters M1–M5 were exposed to pathogen 

treatment, representing 34.8% of all cells. Further examination revealed that expression 

of genes induced by bacterial infection in these five clusters were generally higher than 

other clusters (Figure S3C). We refer to these five clusters, M1–M5, as pathogen-responsive 

clusters. Some of the cells in pathogen-responsive clusters were from the mock-treated 

sample (Figures S2D, S3A, and S3B). We then re-clustered cells from mock-treated 
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sample and examined the distribution of cell populations defined from the integrated 

dataset. Cells in clusters M1–M5 still remained their unique character, although they were 

more diffuse than when combined with DC3000-treated cells (Figure S4A). The plants 

used for this study were grown on soil (not in axenic conditions) and we hypothesize 

soil-borne or environmental bacteria that might elicit a defense response from the plant 

as previously described.33 We examined whether impacts from protoplasting could have 

resulted in segmentation of this cell population. Here, we derived a protoplast signature 

score representing scaled expression across the set of genes found to be induced by 

protoplasting (Figure S2E). Although some cell clusters exhibited relatively high protoplast-

related expression, this could not completely explain the separation of cells from treated and 

untreated populations (Figure S2E). Taken together, our results indicate major differential 

shifts in the plant cell response after pathogen exposure.

To investigate the transcriptional reprogramming occurring in each pathogen-responsive 

cluster, we carried out Gene Ontology (GO) analyses. Clusters M1 and M2 exhibited 

enrichment of GO terms related to defense response to bacterium, immune response, and 

response to salicylic acid (SA) (Figure S3D). Clusters M4 and M5 were enriched in terms 

related to response to jasmonic acid (JA) and water transport (Figure S3D). These results 

suggest opposite transcriptional responses in clusters M1 and M2 versus clusters M4 and 

M5. To confirm this result, we calculated immune and susceptibility response scores based 

on gene expression modules for sets of genes known to be involved in immunity or disease 

and were differentially expressed in our bulk RNA-seq analysis (Figure 2A; Table S1B). 

Consistent with the GO analyses, clusters M1 and M2 displayed a higher immune response 

score, while M4 and M5 displayed a higher susceptibility response score (Figure 2A). 

Cluster M3 did not display a strong average response score (Figure 2A).

Next, we analyzed the expression of known genes involved in immunity and susceptibility to 

Pst DC3000 (Figure 2B). Expression of known plant immune-related genes CALMODULIN 
BINDING PROTEIN 60g (CBP60g), ENHANCED DISEASE SUSCEPTIBILITY 5 
(EDS5), FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1) and PATHOGENESIS-
RELATED 1 (PR1) was induced in clusters M1 and M2 compared with non-responsive 

mesophyll cell clusters (M6–M14). In contrast, clusters M4 and M5 displayed induced 

expression of genes in susceptibility including those responded to JA and abscisic 

acid (ABA) (e.g., CHLOROPHYLLASE 1/CORONATINE INDUCED 1 [CORI1], 
CORONATINE INDUCED 3 [CORI3], and ABA INSENSITIVE 1 [ABI1]). Pst DC3000 

induces JA signaling through production of coronatine, but protoplasting can also induce 

JA.34–36 Although pathogen-responsive clusters had low protoplast signature scores, other 

clusters with JA GO term induction had higher protoplast induced scores, which may be 

the result of incomplete gene removal (Figures S2E and S3D). Specific transcripts related 

to both immunity and susceptibility were induced in cluster M3, but at lower magnitude 

compared with clusters M1–M2 and clusters M4–M5, suggesting a transition state between 

immunity and susceptibility (Figures 2A and S4B). Cluster M2 exhibited the strongest 

activation of immune-related genes and related biological processes (Figures 2A, 2B, and 

S3D). These data indicate that M1 and M2 represent immune-activated clusters, M3 is a 

transition cluster, and M4 and M5 represent susceptibility clusters (Figures 2A and 2B). 
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Pst DC3000 is able to cause disease on Arabidopsis and consistent with a compatible 

interaction, M5 represents the largest cluster (14.2% of 11,895 cells; Figure S2D).

Within a tissue, there are multiple points of infection representing different stages of 

disease development. Pseudotime analyses, which aim to order cells relative to a temporal, 

developmental, or treatment axis, have been used to model the trajectory of a biological 

process, with each cell signifying a singular time point along a continuum.37 In order to 

predict the trajectory of pathogen-responsive cellular clusters, we performed pseudotime 

analysis using Monocle 3.37–40 To circumvent influence of different cell types, we used Pst 
DC3000-treated mesophyll cells from clusters M1–M14 to infer the trajectory of disease 

progression. The trajectory was mostly linear, progressing through nonpathogen-responsive 

clusters (M6–M14), followed by immune clusters (M1 and M2), the transition cluster M3 

and ended in the susceptible clusters (M4 and M5; Figure 2C). In order to investigate 

pathogen responsiveness through pseudotime, a signature score was computed to quantify 

the overall impact Pst DC3000 has on each cell using module scores from genes identified 

as differentially expressed in our bulk RNA-seq data. When overlaid upon pseudotime, the 

Pst DC3000 signature score was markedly induced in cells undergoing immunity (clusters 

M1 and M2), then plateaued or decreased through cells experiencing features associated 

with disease susceptibility (clusters M3–M5), consistent with the dynamic nature of plant-

pathogen interactions (Figure 2D). These results indicate in a compatible interaction, disease 

progresses from plant defense, into a transitional state and culminates in susceptibility.

We also sought to identify genes that have dynamic expression patterns relative to the 

imputed pseudotime axis. Here, we again used Monocle 3 to identify genes that vary 

significantly with pseudotime, retrieving 776 loci (Figure S5; Table S1C). We clustered 

these into seven groups, with two clusters having expression profiles consistent with a 

susceptibility response (clusters 2 and 6), while four clusters had profiles consistent with 

immunity or the transition between immunity and susceptibility (clusters 3–5 and 7) (Figure 

S5; Table S1C). Genes within clusters consistent with a susceptibility or immune response 

represent candidates important in disease progression (Figure S5). We also identified unique 

transcripts expressed in immunity, transition, and susceptibility clusters (Figure S4B).

Visualization of immune and susceptible cellular markers during disease progression

We sought to experimentally validate pseudotime predictions and investigate expression 

of immune and susceptible markers through the course of infection. We used surface 

inoculation, which more closely mimics natural infection, on two-week-old Arabidopsis 
seedlings. This protocol also allows inoculation of younger plants to facilitate imaging 

by confocal microscopy. In order to test the experimental setup, we first monitored the 

growth of Pst DC3000-mCherry (Figure 3A). Bacterial titers did not change in the first 

4 hpi, but dramatically increased from 24 to 72 hpi, consistent with previous experiments 

on seedlings and soil-grown plants (Figure 3A, left).7,41 We visualized spatio-temporal 

dynamics of bacterial colonization after surface inoculation. At 24 hpi, spotty fluorescence 

signals were observed (Figure 3A, middle), which was similar to syringe infiltration (Figure 

1A). Visualizing multiple focal planes of bacterial fluorescence signals demonstrated that 

bacteria colonized intercellular space between mesophyll cells by 24 hpi. At 48 and 72 
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hpi, we observed enlarged and merged fluorescent spots, indicating high multiplication of 

bacterial populations at these stages (Figure 3A, middle). Quantification of fluorescence 

intensity per colony showed a continuous increase over time (Figure 3A, right).

We then visualized the expression patterns of cell cluster marker genes and fluorescently 

tagged Pst DC3000 during the course of infection. We selected marker genes that 

showed relatively high and specific expression from scRNA-seq analyses in either immune 

or susceptible clusters. Fluorescent transcriptional reporter lines coupled to a nuclear 

localization signal (NLS) enabled visualization of cell-specific plant responses during 

pathogen infection.

Three immune marker genes were selected: FRK1, AT3G18250 (LIPOPROTEIN 1, 
LipoP1), and CBP60g. FRK1 is a receptor-like kinase that is strongly induced during 

pattern-triggered immunity and at early stages after pathogen infection.42,43 LipoP1 is a 

putative membrane lipoprotein, whose function is unknown. The CBP60g transcription 

factor regulates biosynthesis of the plant defense hormone SA.44,45 All three markers 

displayed high expression in immune clusters M1 and M2, variable expression in the 

transition cluster M3, but low expression in susceptible clusters M4 and M5 (Figures 3B–3D 

left, Figure S7A).

Using a previously characterized transcriptional reporter pFRK1::NLS-3xmVENUS46 and 

newly generated transgenic lines pLipoP1/pCBP60g::NLS-3xmCitrine, we observed low 

fluorescence signals in mock-inoculated Arabidopsis true leaves (Mock, Figures 3B–3D). A 

time course experiment was able to detect FRK1 expression at earlier time points (4 and 

10 h), but the induction was weaker and not significant from the mock inoculation (Figure 

S6A). FRK1 expression was strongly induced at 24 hpi and dramatically downregulated 

at 48 and 72 hpi (Figure 3B). FRK1 was previously shown to be strongly induced 2 h post-

syringe infiltration with Pst DC3000 using qPCR.43 These results suggest that the expression 

of FRK1 at 24 hpi represents an early infection stage using surface inoculation. We observed 

the expression of LipoP1 and CBP60g was highly induced at 24–48 hpi (Figures 3C and 

3D). All three immune markers FRK1, CBP60g, and LipoP1 exhibited more localized 

induction at 24 hpi. The expression of all immune markers was significantly reduced at 72 

hpi when plants exhibited chlorosis and water-soaked symptoms (Figures 3B–3D). A second 

independent transgenic line of pLipoP1::NLS-3xmCitrine exhibited a similar expression 

pattern, but had more robust expression at 72 h (Figure S6C). Compared with CBP60g 
and FRK1, LipoP1 exhibited stronger expression in the transition cluster M3, which might 

result in stochasticity of the late expression of this gene in different lines (Figures 3C and 

S6C). We screened four transcriptional reporter lines of CBP60g (Figure S7F). Three of 

them (22-1, 22-18, and 22-23) had similar pattern of expression and exhibited localized 

expression surrounding bacterial colonies at 24 hpi. In contrast, one CBP60g line (22-4) was 

induced at 24 h but did not exhibit localized expression (Figure S7F). Together, these data 

highlight activation of immune marker genes at early infection stages and downregulation at 

late stages, consistent with the pseudotime trajectory.

We explored expression of three susceptibility marker genes strongly expressed in clusters 

M4 and M5: EXPANSIN 10 (EXPA10), PLASMA MEMBRANE INTRINSIC PROTEIN 
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1;4 (PIP1;4), and IAA-leu-resistant-like 5 (ILL5). EXPA10 belongs to the expansin gene 

family whose members are able to induce cell wall loosening through a non-enzymatic 

function and have been implicated in plant-pathogen interactions.47,48 PIP1;4 is a plasma 

membrane localized aquaporin. Of the 13 PIP family members in Arabidopsis, 10 were 

significantly induced in clusters M4 and M5. Aquaporins are membrane channels that 

facilitate the transport of water and small neutral molecules (H2O, H2O2, and CO2).49 

ILL5 is most similar to ILL3, which encodes an amidohydrolase, involved in converting 

indole-3-acetic acid (IAA) from an amino acid conjugate to a free form to increase auxin 

signaling.50,51 All three markers displayed high expression in susceptibility clusters M4 and 

M5 (Figures 4A–4C, left; Figure S7B). EXPA10 and ILL5 had relatively weak expression 

in the transition cluster M3 and low expression in immune clusters M1 and M2 (Figures 4A 

and 4C). In contrast, PIP1;4 was expressed in clusters M1–M3, but at a lower level than M4 

and M5 (Figure 4B).

We examined the expression of two independent transgenic lines for each susceptibility 

marker after inoculation with Pst DC3000 and observed similar results for both lines 

(pEXPA10::NLS-3xmCitrine, pPIP1;4::NLS-3xmCitrine, pILL5::NLS-3xmCitrine; Figures 

4A–4C and S6D–S6F). The EXPA10 and PIP1;4 transcriptional reporter lines exhibited 

low levels of expression in mock-inoculated plants and increasing levels of expression after 

inoculation, peaking at 72 hpi (Figures 4A, 4B, S6D, and S6E). A time course experiment 

was able to detect EXPA10 induction at 10 h, but at a lower level than the 24, 48, or 72 hpi 

time points (Figures 4A, S6B, and S6D). The ILL5 transcriptional reporter lines exhibited 

low levels of expression in mock-inoculated plants and increasing levels of expression, 

peaking at 48 hpi (Figures 4C and S6F). ILL5 expression decreased slightly at 72 hpi 

but was still higher than 24 hpi (Figures 4C and S6F). Thus, the susceptible markers are 

activated after bacterial infection and strongly induced during later infection stages. These 

data highlight expression of susceptibility genes at later infection stages, consistent with the 

pseudotime trajectory.

Immune and susceptible marker genes exhibit diverse patterns of spatial expression

Bacteria exhibit heterogeneity in colonization of a leaf after both syringe and surface 

inoculation (Figures 1A and 3A). Our transcriptional reporter lines enabled us to probe 

marker gene expression with high sensitivity and at single-cell resolution. Therefore, we 

investigated where pathogen-responsive cells are spatially localized after surface inoculation 

with Pst DC3000. First, we examined expression of the FRK1 immune marker gene at 24 

hpi when it showed highest expression (Figure 3B). FRK1 was rarely expressed in mock 

samples, but was frequently observed in cells surrounding substomatal cavities colonized 

by bacteria (Figure 5A; Video S1). P. syringae uses stomatal pores to enter the leaf 

interior and colonize the substomatal cavity early during infection.52 We quantified confocal 

micrographs to determine the spatial localization of FRK1 expressing cells. Ninety-one 

percent of cells expressing FRK1 after Pst DC3000 inoculation surrounded substomatal 

cavities (Figure 5B). Next, we quantified the proximity of FRK1 expressing cells to bacterial 

colonies. Seventy-five percent of FRK1 expressing cells were proximal (<15 μm) to bacterial 

colonies (Figure 5C). These data demonstrate that FRK1, which is known to be one of 
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the earliest PTI marker genes, exhibits strong and specific expression at sites of bacterial 

invasion.

In contrast to FRK1, the LipoP1 transcriptional reporter line exhibited dynamic changes 

in spatial expression patterns during the course of infection. LipoP1 is expressed in guard 

cells, which flank stomatal pores, in the absence of pathogen infection (Figure 3C and 

S6C). At 24 hpi, 60% of LipoP1-expressing cells were proximal to bacterial colonies (<15 

μm; Figure S7C). However, LipoP1 exhibited variable spatial expression at 48 and 72 hpi, 

either generally induced in all cells or highly induced in cells surrounding bacterial colonies, 

possibly because of unsynchronized bacterial infection within different leaves. We analyzed 

the expression pattern of LipoP1 over time using bacterial fluorescence intensity as a proxy 

for bacterial colony size. In particular, we observed two patterns of LipoP1 expression in 

cells surrounding bacterial colonies: a robust expression pattern surrounding colonies with 

a fluorescence intensity less than 300 pixels/mm2 (bundled pattern) as well as expression 

at the margins of larger colonies with a fluorescence intensity greater than 400 pixels/mm2 

(marginal expression, Figures 5D–5F). Bundled and marginal LipoP1 expression patterns 

were significantly higher than in uncolonized regions (Figure S7D). Plant cells at the center 

of marginal pattern did not exhibit chlorophyll autofluorescence, which indicates they died 

because of severe bacterial colonization. Collectively, these results suggest different LipoP1 
expression patterns are associated with bacterial population size.

CPB60g encodes a master immune transcription factor that works in parallel with SARD1 

to regulate the synthesis of the plant defense hormone SA.44,53 In the absence of pathogen 

infection, CBP60g is generally expressed with low levels in all cells. After Pst DC3000 

inoculation, the CPB60g transcriptional reporter line exhibited similar induction patterns to 

LipoP1, including general, bundled, and marginal patterns (Figures 5G and 5H). The general 

induction of CPB60g may be reflective of its role in SA biogenesis and transcriptional 

regulation of NPR1, which are critical for within-leaf and systemic immune responses.44,53

The intriguing spatial association of immune marker expression and bacterial colonization 

prompted us investigate if expression of susceptibility markers were spatially associated 

with bacterial colonization. We observed more broad induction of expression of the 

susceptibility marker EXPA10 in large areas of the leaf that were proximal to regions 

robustly colonized by bacteria (Figure 5I), which contrasts with the more specific expression 

of the immune markers FRK1, LipoP1, and CBP60g. This EXPA10 pattern of induction 

in sections of the leaf was most striking at 24 hpi before more uniform colonization of 

the leaf with larger bacterial colonies (Figures 3A and 5I). Reporter lines for EXPA10 and 

PIP1;4 exhibited detectable expression in epidermal and mesophyll cells in the absence 

of pathogen infection (Figure 4, S6E, and S6F). In contrast, ILL5 was mainly expressed 

in guard cells in leaves without bacterial infection, but strongly induced at 48–72 hpi in 

epidermal, mesophyll, and guard cells (Figures 5J and 5K). Collectively, the transcriptional 

reporter lines representing immune and susceptible markers reveal distinct patterns of spatial 

and temporal expression during disease progression.
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DISCUSSION

Plants respond to pathogen infection in a heterogeneous manner. Here, we revealed 

heterogeneity of plant responses at single-cell resolution using scRNA-seq coupled with 

confocal imaging of transcriptional reporter lines. Individual plant cells at immune, 

susceptible, or transition states highlighted the gradient of responses within an infected leaf. 

Immune markers exhibit diverse spatial and temporal expression patterns, while susceptible 

markers exhibit more expansive and sustained expression patterns in response to virulent Pst 
DC3000 (Figure 6). These data indicate that virulent bacteria are able to reprogram larger 

sections of the leaf toward susceptibility.

Our understanding of host-pathogen interactions is largely influenced by assays investigating 

whole-tissue samples. However, even after uniform inoculation, pathogens exhibit uneven 

penetration into the leaf interior and variable colonization within a tissue, which 

should result in variable host responses. For example, spores from the fungal pathogen 

Zymoseptoria tritici are able to continuously germinate on wheat leaves and their hyphae 

penetrate stomata for up to 10 days, resulting in multiple asynchronized infection stages 

at any given time.4,5,54 P. syringae also exhibits uneven distribution on bean leaf surfaces, 

forming aggregates at leaf veins, crevices, trichomes, and occasionally stomata.55 Similarly, 

we were able to visualize uneven colonization patterns of Pst DC3000 after syringe and 

surface inoculation on Arabidopsis (Figures 1A and 3A). Our scRNA-seq analyses were able 

to simultaneously identify cell clusters exhibiting opposing biological processes (immunity 

and susceptibility) at 24 hpi, indicating asynchronous infection stages even early during 

infection (Figure 2).

Although Pst DC3000 is virulent on Arabidopsis, the pathogen can still induce damage and 

carries MAMPs that can be perceived by plant PRRs (flagellin, elongation factor Tu and 

3′OH fatty acid epitopes), resulting in localized immune-activated cell clusters. Previous 

research has found purified MAMP treatment can initiate transcriptional responses within 

5 min and Pst DC3000 infiltration within 2 h.56,57 The pseudotime trajectory of our scRNA-

seq data placed the immunity cell clusters at an early stage of disease progression (Figure 

2D). We identified two immune cell clusters (Figure 2), possibly due to waves of PTI 

transcriptional responses.56 Consistent with these observations, our immune transcriptional 

reporter lines were also highly expressed at early infection time points (Figure 3). FRK1 
is a well-known early marker gene of PTI.43,46,57 We found that FRK1 expression was 

activated in cells surrounding substomatal cavities colonized by Pst DC3000 (Figures 3B 

and 5A–5C). Pst DC3000 uses stomatal pores to enter leaves and substomatal cavities are 

an early site of pathogen colonization.52 Similarly, the highly induced immune markers 

LipoP1 and CBP60g exhibited proximal expression to bacterial colonies during infection 

(Figures 5D–5H and S7C–S7E). The clustering of immune markers in cells surrounding 

bacteria may indicate that these bacterial colonies carry or create sufficient MAMPs/DAMPs 

to induce defense. A similar spatial expression pattern of the immune gene PR1 was also 

observed around the infection site during effector-triggered immunity.58,59 Compared with 

expression surrounding bacterial colonies, the immune marker CBP60g exhibited weaker, 

but general induction, in most cells at all infection stages, consistent with its role in inducing 
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SA synthesis whose accumulation is required for defense within a leaf as well as systemic 

immune responses (Figure 5G).44,53

Plant pathogens deliver effectors into host cells to dampen immune responses and promote 

susceptibility.14,60 The timing and number of cells targeted for effector delivery also 

varies, but can occur within 75–90 min after bacterial infiltration on Arabidopsis.61,62 

Transcriptional profiling of Arabidopsis infected by virulent Pst DC3000 detected effector-

mediated suppression of PTI and upregulation of genes contributing to susceptibility by 6 

h.57,63 Our scRNA-seq and promoter-reporter line investigations identified clusters of cells 

exhibiting patterns consistent with a compatible or susceptible interaction that peaked later 

during infection (Figures 2 and 4). For example, genes involved in water transport and 

ABA related processes were enriched in susceptible (M4 and M5) clusters. Recently, it 

has been reported that the HopM1 and AvrE effector family are responsible for apoplastic 

water-soaking phenotypes as a result of their ability to manipulate ABA signaling to induce 

stomatal closure.64–66 Unlike the localized expression of immune markers, susceptibility 

markers exhibited more general expression, indicating more global reprogramming of the 

leaf to a susceptible state over time. The susceptibility markers EXPA10 and PIP1;4 encode 

members of gene families that function in cell wall enlargement/expansion and water 

transport under normal conditions, respectively.47,49 During infection these processes can 

be manipulated by pathogens to create favorable environments for proliferation and disease 

development.3,48

Transcriptional profiling of entire tissues can mask cells at opposing response trajectories 

by averaging signals across thousands of cells. Comparing gene regulation in immune 

(M1 and M2) and susceptible (M4 and M5) clusters has resulted in the identification 

of candidates (Figures S4B–S5; Table S1C), including specific members of large gene 

families, involved in foliar plant-pathogen interactions. Genes regulating plant immune 

perception and signaling have been well characterized over the past 30 years, but 

identification of susceptibility genes has lagged behind.67 Susceptibility genes are attractive 

targets to modify for developing disease resistant crops because of advances in genome 

editing technologies and decreased regulatory oversight.60,68 Future advancements in high-

resolution spatial transcriptomics enabling profiling of both plant and pathogen tissues, 

will facilitate investigating gene expression in a positional context in complex tissues.33,69 

Detailed characterization of cellular states throughout disease development will enable a 

comprehensive understanding of mechanisms regulating disease progression.

Limitations of the study

Plant scRNA-seq experiments require generating protoplasts, a process that will induce 

transcriptional changes. Although we controlled for protoplast induced genes, it is likely that 

some defense gene induction will not be detectable. A single scRNA-seq experiment was 

conducted per treatment on pooled samples of 10 plants each for mock treatment and 10 

plants each for pathogen treatment.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Gitta Coaker (glcoaker@ucdavis.edu).

Materials availability—Seeds of transgenic plants generated in this study are deposited 

in Arabidopsis Biological Research Center (ABRC, stock number: see key resources table). 

Plasmids used to generate transgenic plants are deposited in Addgene (Addgene ID: see key 

resources table).

Data and code availability

• Single-cell and bulk RNA-seq datasets generated in this study have 

been deposited at Gene Expression Omnibus (GSE213625). Original 

microscopy images have been deposited in Zenodo (https://doi.org/10.5281/

zenodo.7686553).

• All original code has been deposited at Zenodo (https://doi.org/10.5281/

zenodo.7888124).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Plant material and growth conditions—Arabidopsis thaliana ecotype Columbia Col-0 

was used in single-cell RNA sequencing, bacterial growth curves and plant transformation. 

The transcriptional reporter line pFRK1::NLS-3xmVENUS in the Col-0 background was 

obtained from Professor Niko Geldner’s lab.46

Arabidopsis thaliana seeds (Col-0 or transgenic lines) were stratified for 2 days in the dark 

at 4°C before sowing onto soil or half-strength (1/2) Murashige and Skoog (MS) medium. 

Seeds were also surface-sterilized with disinfection solution (50% Bleach, 0.1% Tween 20) 

for 8 min and 75% ethanol for 1 min, washed thoroughly in sterile water for 4 times before 

sowing onto 1/2 MS medium. Four-week-old A. thaliana Col-0 used for scRNA-seq and 

plant transformation were grown in a controlled environment chamber at 22°C and 70% 

relative humidity with 10 h light/14 h dark photoperiod (100 μM m−2 s−1). Ten to 14-day-old 

seedlings grown on 1/2 MS were incubated at 22°C under long-day conditions with 16 h 

light/8 h dark cycles. Seedlings were used for microscopy analyses.

Bacterial strains and growth conditions—Pseudomonas syringae pv. tomato DC3000 

ΔhopQ1 and wild-type Pst DC3000 were labeled with 3xmCherry (attTn7-3xmCherry, 

Pst DC3000-mCherry) using the site-specific Tn7 3xmCherry vector.70 Tn7 3xmCherry 

was transformed into competent cells of Pseudomonas syringae by electroporation. Cell 

suspensions were plated on nutrient yeast glycerol agar NYGA medium containing 100 

μg/mL of rifampicin and 50 μg/mL of spectinomycin. After incubating two days at 28°C, 

bacterial colonies were screened. For all inoculations, bacteria were cultured overnight 
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at 28°C on NYGA medium containing 100 μg/mL of rifampicin and 50 μg/mL of 

spectinomycin.

METHOD DETAILS

Bacterial inoculation and quantification—Cells from an overnight culture of Pst 
DC3000-3xmCherry or Pst DC3000 ΔhopQ1-3xmCherry were collected and resuspended 

in 10 mM MgCl2. For scRNA-seq, protoplast bulk RNA-seq, leaf bulk RNA-seq samples, 

and bacterial growth curves, leaves of four-week-old A. thaliana were syringe infiltrated 

with a bacterial suspension of OD600 = 0.0001. Inoculated plants were kept under ambient 

humidity for 1 h to allow evaporation of excess water on the leaf surface. Then plants 

were covered with a transparent dome to maintain high humidity and incubated in growth 

chamber for 24 h. For seedling flood inoculation, two-week-old plants on ½ MS medium 

were flood inoculated using 40 mL of the bacterial suspension of OD600 = 0.01 with 0.02% 

Silwet L-77 per 100 mm x 100 mm square petri dish (Fisherbrand). The bacterial suspension 

was removed after 20-30 s incubation at room temperature. Inoculated plants were sealed 

with 3 M Micropore tape (3 M, St. Paul, MN, U.S.A.) and incubated in a growth chamber.

Bacterial titers after flood inoculation were determined as colony-forming units (CFU) per 

milligram. In brief, three plants were cut roots away as one biological repeat, and 5-7 repeats 

were taken for each time. After measuring the weight of the aerial parts of each repeat, 

samples were ground and diluted in 5 mM MgCl2. The bacterial suspensions were then 

plated on (NYGA) medium containing 100 μg/mL of rifampicin. Colonies were counted 

at each time point after incubation at 28°C. Bacterial titers after syringe infiltration were 

determined as described previously.71 Briefly, one leaf disk was taken from one inoculated 

plant using a cork borer (6 mm in diameter) and ground in 400 μl of 5 mM MgCl2. This 

served as one repeat, and 5-7 repeats were performed for each experiment. The bacterial 

suspensions were then diluted and plated on NYGA medium containing 100 μg/mL of 

rifampicin. Colonies were counted at each time point after incubation at 28°C.

Protoplast isolation—Protoplasts were isolated from Arabidopsis leaves infiltrated by 

bacteria and 10 mM MgCl2 (Mock) using Tape-Arabidopsis Sandwich method as described 

previously.30 The adaxial side of 10-20 infiltrated leaves (from 10 plants) for each treatment 

was stabilized on the time tape and the abaxial side was adhered to the Magic tape (3M). 

The abaxial side was removed by carefully pulling off the Magic tape. Peeled leaves were 

immediately immersed in a petri dish containing 10 mL of enzyme solution (1.5% Cellulase 

Onuzuka R-10 (Yakult, Japan), 0.3% Macerozyme R-10, (Yakult, Japan), 0.4 M Mannitol, 

20 mM KCl, 20 mM MES (2-(N-Morpholino)ethanesulfonic acid hydrate) pH 5.7, 10 mM 

CaCl2, and 0.1% BSA). After digesting for 100 min with gentle shaking, the protoplast 

suspension was filtered through 40 μm cell strainer (BD Falcon 352340) into a round-

bottomed 50 mL tube and centrifuged at 100x g for 1 min at 22°C using a swinging rotor. 

Protoplast pellets were gently resuspended in 10 mL of CS-sucrose buffer (0.4 M sucrose, 

20 mM MES pH 5.7, 20 mM KCl) and centrifuged at 100x g for 2 min at 22°C. Intact 

and healthy protoplasts remained suspended in the upper layer. The upper layer suspension 

was then transferred into a clean round-bottomed tube and gently mixed with 10 mL of 

protoplast buffer (0.4 M Mannitol, 20 mM KCl, 20 mM MES pH 5.7, and 0.1% BSA). After 
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centrifuging at 100x g for 2 min at 4°C using a swinging rotor, the supernatant was removed 

without disturbing the loosely packed protoplast pellets. The protoplast concentration was 

determined using a hemocytometer and the viability was checked using trypan blue solution. 

The protoplast sample from each treatment (DC3000 and mock) was divided for scRNA-seq 

and bulk RNA-seq.

scRNA-seq library preparation and sequencing—The protoplast suspension was 

diluted to a final concentration of 1000 cells/μL. A total of 40, 000 cells were loaded into a 

microfluidic chip (10X Genomics) with v3 chemistry to capture ~10,000 cells per sample. 

Protoplasts were barcoded with a Chromium Controller (10X Genomics). mRNA was 

reverse transcribed and cDNA libraries were constructed with a Chromium Single Cell 3’ 

reagent kit V3 (10X Genomics) according to the manufacturer’s instructions. Eleven cycles 

were used for cDNA amplification and 10 cycles were used for final library amplification. 

cDNA and final library quality was assessed using a Bioanalyzer 2100 High Sensitivity 

DNA Chip (Agilent). Sequencing of paired-end 150 bp reads was performed with a NovaSeq 

6000 instrument (Illumina) at the University of California Davis Genome Center. Protoplasts 

from DC3000 treatment and mock inoculation were each barcoded on a single Chromium 

Controller.

RNA extraction, bulk RNA-seq library preparation and sequencing—Total RNA 

was extracted with TRIzol (Fisher #15596018), following the manufacturer’s instructions, 

for intact infiltrated leaves as well as leaf protoplasts isolated using the above mentioned 

method for scRNA-seq. DNase treatments were performed with RQ1 RNase-Free DNase 

(Promega #PR-M6101). Three biological replicates were performed for samples of Pst 
DC3000- or mock-infiltrated leaves, and one repeat was made for leaf protoplasts of each 

sample. cDNA libraries were prepared with QuantSeq FWD kit (Lexogen), according to 

the manufacturer’s protocol. The fragment size distribution was evaluated by a Bioanalyzer 

2100 (Agilent). The library pool was treated using Exonuclease VII (NEB), SPRI-bead 

purified with KapaPure beads (Kapa Biosystems /Roche), quantified via qPCR with a 

Kapa Library Quant kit (Kapa Biosystems) on a QuantStudio 5 RT-PCR system (Applied 

Biosystems). Sequencing was performed at the University of California Davis Genome 

Center using a HiSeq 4000 (Illumina) platform with single-end 100 bp reads.

Bulk RNA-seq data analysis—Raw fastq files for three bulk RNA-seq replicates each 

for Pst DC3000- and mock-inoculated leaves, as well as one bulk RNA-seq replicate from 

protoplasts isolated from Pst DC3000- and mock-inoculated leaves were trimmed using 

TrimGalore (stringency = 4, default parameters otherwise) and aligned to the Arabidopsis 
thaliana reference genome (Araport11) and quantified using STAR. Differential expression 

metrics for protoplasting and bacterial-induced changes were evaluated using the glmQLFit 

method from the edgeR package (Bioconductor v3.12), using a design matrix that takes 

into consideration the interaction between these two variables. Genes determined to be 

significantly altered by protoplasting were identified using a relatively liberal set of criteria, 

i.e. having log-fold change values > 0.5 and adjusted (BH) p-values less than 0.05, and 

were removed from dimension reduction and integration analyses. Genes determined to be 
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significantly affected by Pst DC3000 were those having log-fold change values >2 and 

adjusted (BH) p values less than 0.01, unless otherwise specified.

scRNA-seq data initial processing and integration—Raw fastq files for the two 

samples generated in this study (Mock, Pst DC3000) were processed using Cellranger 

(v6.0.1; 10x Genomics, Pleasanton, CA) using default parameters (and an expected cell # 

equal to 10,000), mapping to the Araport11 Arabidopsis reference genome. The output from 

Cellranger was further processed using the Velocyto (v0.17.15) algorithm,72 using default 

parameters, to generate spliced and unspliced counts matrices. For each cell, the percentage 

of reads mapping to mitochondrial, and chloroplast genes was computed. Cells were then 

filtered for those having a spliced mitochondrial read percentage of less than 1%, as well 

as a total spliced Unique Molecular Identifier (UMI) count within a dataset dependent 

threshold, bounded at the high end by 50,000 counts, and at the low end by 10% of the UMI 

count of the 100th most spliced transcript-rich cell for that dataset.73

Cells were normalized using the SCTransform method (Seurat, v3.9.9005). A recent 

Arabidopsis leaf single-cell RNA-seq dataset23 was used to annotate cell types for all cells 

in this dataset using the label transfer pipeline (Seurat). Genes that were identified as being 

significantly influenced by protoplasting (see Bulk RNA-seq data analysis) were excluded 

from further analysis.

The Pst DC3000 and mock-inoculated datasets were then integrated using the anchor 

method (Seurat). Fifty principal components were calculated for the integrated dataset, 

used to cluster the cells (Louvain method, resolution 0.8) and further dimensionally reduce 

the gene expression space using Uniform Manifold Approximation and Projection (Seurat), 

using 50 Principal Components and default parameters (Table S2).

Pseudobulk analysis—A pseudobulk value for each gene was calculated as the sum of 

all counts from all cells for that gene within either the Mock- or Pst 3000-treated single-cell 

datasets. These values were then used to compare against whole-tissue or pooled-protoplast 

bulk RNA-seq data to verify that the single-cell datasets coarsely resemble bulk RNA-seq 

datasets.

Signature score computation—A Pst DC3000 signature score was computed as a 

composite metric quantifying the overall impact that P. syringae has on each cell. Here, 

the Seurat AddModuleScore function was used to define a pair of module score for genes 

up- or down-regulated by Pst DC3000 (from bulk RNA-seq data), with the signature score 

defined as the Pst DC3000-up module score subtracted from the Pst DC3000-down module 

score. Similarly, an Immunity Response Score was defined as a composite signature score 

quantifying the general state that each cell was in with respect to disease progression 

based on sets of genes known to be induced/involved in immune response (Immunity) 

and in advanced disease (Susceptibility). These genes were filtered for those that were 

found to be differentially expressed from our bulk RNA-seq analysis (see above). Immune 

and Susceptibility module scores were then computed using the AddModuleScore function 

(Seurat), and the Response Score was defined as the Susceptibility score subtracted from the 

Immunity score. Similarly, we also generated a protoplast signature score for those genes 
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induced or repressed by protoplasting, generating another compound signature score for the 

overall effect of protoplasting (Figure S2)

Cluster-specific marker loci—Marker genes specifically expressed in each cell cluster 

were determined using the FindAllMarkers function (Seurat) (Table S1D). Significant 

markers were defined as those having a log-fold change (compared to all other clusters) 

greater than 0.25, and an adjusted (BH) p-value (wilcoxon rank sum test) less than 0.01. 

Log-fold change values between Mock- and Pst 3000-treated single-cell transcriptomes 

were computed for all superclusters (Immunity, Susceptibility, Transition, etc.) using the 

FindMarkers function (Seurat), with significance calculated using the DESeq2 (v1.30.1) 

method on the unnormalized counts.

GO term enrichment—For each cluster, a stringent set of marker loci was computed 

using the FindAllMarkers function in Seurat. GO term enrichment analysis was then 

performed using the topGO R package (Bioconductor version 3.12) for these marker genes, 

using all expressed genes (excluding those induced by protoplasting) as background. GO 

enrichment was calculated as the number of significant genes divided by the number of 

expected genes for each GO term.

Pseudotime inference—SCTransform-normalized expression values for spliced 

transcripts in mesophyll cells (excluding Seurat cluster 16, which seemed distinct from 

other mesophyll cells) were filtered from the Pst DC3000 dataset and re-embedded in a 

low-dimensional UMAP space using the Monocle 3 (v1.0.0) pipeline (using 5 principal 

components, the correlation distance metric, and a minimum distance of 0.01). A cell 

trajectory was then imputed using Monocle 3, defining the starting cell as that with the 

lowest Pst DC3000-expression score (a measure of how influenced the cell is by pathogen 

expression, empirically determined using bulk RNA-seq expression data) within the cluster 

with the lowest mean Pst DC3000 signature score, and a minimum branch length of 

15. Pseudotime was projected onto this cell trajectory for Pst DC3000 mesophyll cells. 

Genes that vary significantly with pseudotime were computed with the graph_test function 

(Monocle 3), using “principal graph” as the neighbor_graph parameter. Genes were selected 

as significant as those having a Morans I value greater than 0.2 (Table S1C).

Generation of transgenic lines—Genes for the generation of reporter lines were 

selected based on their enrichment in clusters M1-M5 (adjusted p-value from the 

FindAllMarkers Seurat function less than 0.01, and a log-fold change greater than 1), 

relatively specific expression from scRNA-seq analyses in either immune or susceptible 

clusters and potentially interesting functions from the literature. Promoters (~ 2 kb upstream 

of the start codon) of LipoP1 (AT3G18250, 2210 bp), CBP60g (AT5G26920, 2183 bp), 

EXPA10 (AT1G26770, 2025 bp), PIP1;4 (AT4G00430, 2151 bp) and ILL5 (AT1G51780, 

2089 bp) were PCR-amplified and fused to a nuclear localization signal (NLS) in pENTR 

vectors using In-Fusion HD Cloning Plus (Clontech). See Table S3 for primer details. The 

resulting constructs were recombined with binary destination vector pMpGWB12374 bearing 

3xmCitrine using Gateway Cloning Technology (Invitrogen). All plasmids were transformed 

into Agrobacterium tumefaciens GV3101 strain and then transformed into A. thaliana Col-0 

Zhu et al. Page 16

Cell Rep. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by floral dipping method.75 Seedlings of transgenic plants were screened on ½ MS plates 

supplemented with 25 μg/mL of hygromycin and 100 μg/mL of carbenicillin. Ten to fifteen 

independent T1 lines were analyzed for mCitrine fluorescence, and 3-5 T2 lines expressing 

mCitrine were selected for bacterial infection. Transgenic plants T2 or T3 (1-2 independent 

lines) with similar induction patterns after bacterial infection were selected for further 

experiments.

Confocal settings and image processing—Confocal imaging was performed on 

either a Leica TCS SP8 or Zeiss LSM 980 with Airyscan 2 laser scanning microscope. 

Pictures were taken with a 20x (Leica TCS SP8 or Zeiss LSM 980), 10x dry immersion 

objectives (Leica TCS SP8), as well as 5x immersion objective for tile-scan with 10% 

overlap (Leica TCS SP8). The following excitation and emission parameters were used for 

different fluorophores: mVENUS/mCitrine 488 nm, 493 – 540 nm; mCherry 552 nm, 586 – 

635 nm; chlorophyll 638 nm, 650 -720 nm on Leica TCS SP8. mCitrine 488 nm, 490 – 543 

nm; mCherry 561nm, 570 – 640 nm on Zeiss LSM 980. Sequential scanning was applied 

to avoid fluorescence interference between channels. Time-course confocal images of each 

transcriptional reporter line were taken under identical settings (lens, laser power, pinhole 

size, detector gain, and interval of Z stack) for comparison of fluorescence intensity over 

time. Different microscope settings were applied for different transcriptional reporter lines 

according to the expression level of transgenes in plants.

Quantification of bacterial colony number, area, and fluorescence intensity was performed 

with the Imaris software (https://imaris.oxinst.com/). In brief, the Surface Model tool was 

used to quantify colony number and area of an entire image. Background subtraction was 

used to manually adjust threshold until all visible fluorescently-labeled bacteria colonies 

were detected. Then the detected colonies were counted and surface area measured. The 

Spot tool was used to build spots for each fluorescence domain to quantify fluorescence 

intensity. Quantification was determined by measurement of mean fluorescence intensity per 

spot (fluorescence intensity/nucleus). Algorithm settings of Different Spot Sizes were used 

due to variable nuclei size in different cell types of plant leaves. Background subtraction 

function was used for spot detection. To classify spots, “Quality (pixel intensity of a spot 

center)” filter was used to manually adjust threshold until all visible fluorescently-labeled 

nuclei were detected. Spot regions were determined by manually adjusting threshold of 

absolute intensity detection to ensure complete coverage of fluorescently-labeled nuclei.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with Graphpad Prism 9.0 software (https://

www.graphpad.com/) or in R. The data are presented as mean ± SD, and “n” represents 

number of analyzed images from at least 3 plants. One-way ANOVA with Tukey’s test was 

used for multiple comparisons. Two tailed Student’s t-test was used to compare means for 

two groups. Details about the statistical analyses are described in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The plant response to bacterial infection is profiled at single-cell resolution

• In a susceptible interaction, leaves contain cell populations at opposing states

• Immune markers exhibit diverse spatial and temporal expression patterns

• Susceptible markers exhibit general and sustained expression patterns
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Figure 1. Single-cell RNA-seq profiling of Arabidopsis infected with Pseudomonas syringae
(A) Confocal micrograph of a representative image of an Arabidopsis leaf 24 h post-

infiltration (hpi) with mCherry-tagged Pst DC3000 ΔhopQ1 (Pst DC3000). The image is 

a maximum projection from 21 confocal z stacks. Chlorophyll autofluorescence is shown in 

gray. Scale bar: 100 μm.

(B and C) Pst DC3000 colony number and area in infiltrated leaf tissue shown in (A). 

Boxplot shows median with minimum and maximum values indicated (n = 10 images from 4 

plants).
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(D) Overview of the scRNA-seq experiment. Four-week-old Arabidopsis Col-0 was 

infiltrated with Pst DC3000 or 10 mM MgCl2. Twenty-four hours post-infiltration, 

protoplasts were prepared using the Tape-Arabidopsis Sandwich method. Cells were isolated 

on the 10X Genomics Chromium chip and sequenced using the Illumina NovaSeq6000 

platform.

(E and F) Single-cell uniform manifold approximation and projection (UMAP) plots from 

both Pst DC3000 and mock-treated samples, colored according to cluster identities (E) and 

cell types (F). M, mesophyll; B, bundle sheath; P, parenchyma and procambium; G, guard 

cells; C, companion cells.

See also Figures S1 and S2 and Tables S1A and S2.
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Figure 2. scRNA-seq reveals a continuum of disease progression from immune to susceptible 
responses within leaf tissue
(A) UMAP plot visualizing the magnitude of response to pathogen infection. Dashed line 

outlines the pathogen-responsive clusters (M1–M5). Immune and susceptibility response 

scores were calculated as gene expression modules (STAR Methods) on the basis of the 

cell-specific expression of sets of genes known to be involved in immunity or susceptibility 

that were differentially expressed in our bulk RNA-seq analysis. Blue (negative values) 

indicates more immune-like, red (positive values) indicates more susceptible-like.
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(B) Dot plot of the relative expression and percent of cells expressing known plant immunity 

or susceptibility genes across different cell populations in the integrated scRNA-seq data at 

24 hpi with Pst DC3000.

(C) Pseudotime trajectory through mesophyll cells shows directed transition from immunity 

(M1 and M2) to susceptibility (M4 and M5). Mesophyll cells in clusters M1–M14 were 

re-embedded in low-dimensional space, then subjected to trajectory inference using the 

Monocle 3 package (STAR Methods). An initial cell was chosen as having the lowest 

DC3000-induced expression signature. Cells colored by their cluster membership, with 

green cells belonging to non-responsive mesophyll cells (other), blue cells belonging to 

immune clusters, orange cells corresponding to the transition cluster, and red cells belonging 

to susceptibility clusters.

(D) DC3000 induction signature throughout pseudotime. Pseudotime values computed 

from the trajectory shown in (C). A DC3000 signature score was defined as the module 

score (STAR Methods) for genes repressed by DC3000 from our bulk RNA-seq analysis, 

subtracted from the module scores for those genes that were induced. Cells are colored as in 

(C), on the basis of their cluster membership.

See also Figures S2–S5 and Table S1.
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Figure 3. Temporal dynamics of immune marker expression during Pseudomonas infection
(A) Analysis of bacterial growth over three days post-flood inoculation. Two-week-old 

Arabidopsis seedlings grown on Murashige-Skoog plates were surfaceinoculated with 

mCherry-tagged Pst DC3000 at concentration of 1×107 colony-forming units/mL (CFU/

mL). Left: analyses of bacterial growth over time. Middle: confocal micrograph of 

representative images of mock or Pst DC3000-inoculated Arabidopsis leaves over time. 

Chlorophyll autofluorescence is shown in blue. Right: bacterial populations were determined 

by quantifying mean fluorescence intensity (FI; mean gray values) per colony. Boxplots 

show median with minimum and maximum values (n = 3 images from 3 plants). Different 

letters indicate statistically significant differences (p < 0.0001, ANOVA with Tukey test). 

Scale bars: 1 mm.

(B–D) The immune markers FRK1 (B), LipoP1 (C), and CBP60g (D) are highly expressed 

at early infection stages but downregulated at late stages. Promoterreporter lines for 

each immune marker were generated by fusion to a 3xfluorophore possessing a nuclear 

localization signal (NLS). Left: feature plot of immune markers in pathogen-responsive 

clusters. Dashed line outlines clusters M1–M3. Middle: representative images of immune 

marker expression at different infection stages. Plants were inoculated as described in (A) 

and mock images are taken at 24 h. Pictures are maximum projections from confocal z 
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stacks. Right: mean florescence intensity per nucleus was calculated and boxplot shows 

median with minimum and maximum values (n = 6 images from 3 plants). Different letters 

indicate statistically significant differences (p < 0.0001, ANOVA with Tukey test). Scale 

bars: 25 μm. All experiments were repeated at least two times with similar results.

See also Figure S6.
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Figure 4. Temporal dynamics of susceptible marker expression during Pseudomonas infection
(A–C) The susceptible markers EXPA10 (A), PIP1;4 (B), and ILL5 (C) are highly 

induced at late infection stages. Promoter-reporter lines for each marker were generated 

by fusion to a 3xfluorophore possessing a nuclear localization signal (NLS). Left: feature 

plot of susceptible markers in pathogen-responsive clusters. Dashed line outlines clusters 

M4 and M5. Middle: representative images of susceptible marker expression at different 

infection stages. Two-week-old Arabidopsis seedlings grown on Murashige-Skoog plates 

were surface-inoculated with mCherry-tagged Pst DC3000, and mock images were taken at 

24 h. Pictures are maximum projections from confocal z stacks. Right: mean florescence 

intensity (FI; mean gray values) per nucleus was calculated and boxplot shows median 

with minimum and maximum values indicated (n = 6 images from 3 plants). Different 

letters indicate statistically significant differences (p < 0.0001, ANOVA with Tukey test). All 

experiments were repeated at least two times with similar results. Scale bars: 25 μm.

See also Figure S6.
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Figure 5. Spatial dynamics of immune and susceptible marker expression after Pseudomonas 
infection
(A–C) The immune marker FRK1 is induced in surrounding cells of substomatal 

cavities colonized by Pseudomonas syringae DC3000. Two-week old Arabidopsis 
pFRK1::NLS-3xmVENUS seedlings were flood-inoculated with mCherry-tagged Pst 
DC3000. (A) At 24 hpi, whole seedlings were fixed and cleared using ClearSee. Green 

asterisks indicate stomata. Left: a single image of bright field channel. Middle: maximum 

projections of z stack of mVENUS and mCherry signals. Each yellow dot indicates a single 

nucleus. Right: merged image. Scale bar: 20 μm. (B) Percentage of FRK1 expressing cells 
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surrounding a substomatal cavity (+) or not (−) at 24 hpi. Boxplot shows median with 

minimum and maximum values indicated (n = 7 images from 4 plants). ****p < 0.0001 

by two-tailed, unpaired Student’s t test. (C) Percentage of FRK1 expressing cells that are 

proximal (<15 μm) or distal (>15 μm) to a bacterial colony 24 hpi. Data were analyzed as 

described in (B).

(D) The immune marker LipoP1 is expressed in bundled and marginal patterns surrounding 

bacterial colonies. Arabidopsis pLipoP1::NLS-3xmCitrine seedlings were inoculated as 

described in (A). Representative images of LipoP1 expression at 48 and 72 h in DC3000-

treated samples. Pictures are maximum projections of a z stack of mCitrine, mCherry, and 

chlorophyll autofluorescence signals. Chlorophyll autofluorescence is shown in gray. Scale 

bars: 50 μm.

(E) Number of LipoP1-expressing patterns at 24, 48, and 72 h in DC3000-treated samples. 

At least 8 images from 3 plants were analyzed at each time point.

(F) Number of LipoP1-expressing patterns at different average florescence intensities (FIs) 

of bacterial colonies. Twenty-four images taken at 48 and 72 hpi were analyzed.

(G) The immune marker CBP60g is expressed in bundled and marginal patterns during late 

infection. Arabidopsis pCBP60g::NLS-3xmCitrine seedlings were inoculated as described in 

(A). Representative images of CBP60g expression at 48 and 72 hpi. Pictures are maximum 

projections of a z stack of mCitrine, mCherry, and chlorophyll autofluorescence signals. 

Chlorophyll autofluorescence is shown in gray. Scale bars: 50 μm.

(H) Number of CBP60g expressing patterns at 24, 48, and 72 hpi. At least 7 images from 3 

plants were analyzed at each time point.

(I) Expression of the susceptible marker EXPA10 in a larger area of the leaf proximal to 

DC3000 colonies at 24 hpi. Maximum projections of z stack of mVENUS, mCherry, and 

chlorophyll autofluorescence signals. Scale bars: 1 mm.

(J) The susceptible marker ILL5 is expressed in guard cells before inoculation and broadly 

expressed after infection. Arabidopsis pILL5::NLS-3xmCitrine seedlings were inoculated 

as described in (A). Representative images of ILL5 expression at 48 h in mock- or DC3000-

treated samples. Maximum projections of z stack of mCitrine signals were combined with 

single image of bright-field channel. Scale bar: 20 μm.

(K) Number of ILL5 expressing cells at 24 h in mock- or DC3000-treated samples. Boxplot 

shows median with minimum and maximum values indicated (n = 6 images from 3 plants). p 

< 0.0001, ANOVA with Tukey test. All experiments were repeated at least twice with similar 

results.

See also Figure S7, Video S1.
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Figure 6. Spatial and temporal model of immune and susceptible marker gene expression
Immune and susceptible cell cluster markers exhibit diverse spatial and temporal expression 

patterns. Immune markers are highly induced at early infection stages, with in close 

proximity to bacterial colonies. At later time points (after 48 h), the FRK1 marker is no 

longer expressed, while other immune markers, including LipoP1 and CBP60g, exhibit 

bundled and marginal expression patterns. Susceptible cell cluster markers exhibit basal 

expression that is broadly induced after infection throughout the leaf and peaks at late 

stages.
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Created with BioRender.com.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Pseudomonas syringae pv. tomato DC3000 Cuppels76 N/A

Pseudomonas syringae pv. tomato DC3000 
ΔhopQ1

Wei et al.28 N/A

Pseudomonas syringae pv. tomato DC3000 
ΔhopQ1 - 3xmCherry

This study N/A

Pseudomonas syringae pv. tomato DC3000 - 
3xmCherry

This study N/A

Escherichia coli strain DH5a Fisher Cat# 11319019

Agrobacterium tumefaciens strain GV3101 Coppinger et al.84 N/A

Chemicals, peptides, and recombinant proteins

Cellulase Onuzuka R10 Yakult Cat# L0012

Macerozyme R10 Yakult Cat# L0021

Mannitol Sigma Cat# M4125-5KG

MES (2-(N-Morpholino)ethanesulfonic acid 
hydrate)

Fisher Cat# BP300-100

Bovine Serum Albumin (BSA) Fisher Cat# BP1600-100

Sucrose Fisher Cat# BP220-212

Tween-20 Fisher Cat# BP337-500

Silwet-77 Bioworld (Fisher) Cat# NC0138454

β-mercaptoethanol Amersco (VWR) Cat# M131-100ML

KCl Mallinckrodt Cat# 6858

MS medium RPI (Fisher) Cat# 50-213-423

Trizol Invitrogen (Fisher) Cat# 15596018

Dulbecco’s Phosphate-buffered saline (DPBS, 
1X)

Cellgro Cat# 21-031-CV

Xylitol Fisher Cat# AAA1694422

Sodium deoxycholate Sigma Cat# D6750-500G

Urea Fisher Cat# U15-3

Paraformaldehyde Sigma Cat# P6148

Rifampicin Fisher Cat# BP2679-5

Spectinomycin Sigma Cat# 56757010GM

Hygromycin Gibco (Fisher) Cat# 10687010

Carbenicillin Fisher Cat# BP2648-5

MgCl2 Fisher Cat# M35-212

Sodium Hydroxide Fisher Cat# S230-500

Critical commercial assays

In-Fusion HD Cloning Plus Clontech/Takara Cat# 638910

pENTR Directional TOPO Cloning kit Invitrogen Cat# K2400-20
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gateway Cloning Technology LR Invitrogen Cat# 11791-020

RQ1 RNase-Free DNase Promega Cat# M6101

Chromium Single Cell 3’ reagent kit V3 10X Genomics Cat# PN-1000268

QuantSeq FWD kit Lexogen Cat# 015

Kapa Library Quantification kit Kapa Biosystems/Roche Cat# 07960484001

Deposited data

scRNA-seq and bulk RNA-seq datasets This study GSE213625

Original microscopy images This study https://doi.org/10.5281/zenodo.7686553

Original code This study https://doi.org/10.5281/zenodo.7888124

Experimental models: Organisms/strains

Arabidopsis thaliana: Col-0 wild-type ABRC (Arabidopsis Biological Resource Center) CS70000

Arabidopsis: pFRK1::NLS-3xmVENUS Zhou et al.46 N/A

Arabidopsis: pLipop1::NLS-3xmCitrine (Line 
1, 19-10-5)

This study ABRC: CS73265

Arabidopsis: pLipop1::NLS-3xmCitrine (Line 
2, 19-15-1)

This study ABRC: CS73266

Arabidopsis: pCBP60g::NLS-3xmCitrine 
(Line 1, 22-4)

This study ABRC: CS73260

Arabidopsis: pCBP60g::NLS-3xmCitrine 
(Line 2, 22-1)

This study ABRC: CS73408

Arabidopsis: pEXPA10::NLS-3xmCitrine 
(Line 1, 16-7-3)

This study ABRC: CS73261

Arabidopsis: pEXPA10::NLS-3xmCitrine 
(Line 2, 16-8)

This study ABRC: CS73262

Arabidopsis: pPIP1;4::NLS-3xmCitrine (Line 
1, 23-4)

This study ABRC: CS73267

Arabidopsis: pPIP1;4::NLS-3xmCitrine (Line 
2, 23-5)

This study ABRC: CS73268

Arabidopsis: pILL5::NLS-3xmCitrine (Line 1, 
4-5-1)

This study ABRC: CS73263

Arabidopsis: pILL5::NLS-3xmCitrine (Line 2, 
4-1-3)

This study ABRC: CS73264

Oligonucleotides

All primers are listed in Table S3 This study N/A

Recombinant DNA

pLipop1::NLS-3xmCitrine This study Addgene: 192522

pCBP60g::NLS-3xmCitrine This study Addgene: 192521

pPIP1;4::NLS-3xmCitrine This study Addgene: 192524

pILL5::NLS-3xmCitrine This study Addgene: 192525

pEXPA10::NLS-3xmCitrine This study Addgene: 192523

Software and algorithms

Leica Application Suite X (v3.4.2.18368) Leica Microsystems https://www.leica-microsystems.com/

Zeiss Zen 2.3 SP1 FP1 (v14.0.12.201) Zeiss https://www.zeiss.com/corporate/int/
home.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Prism (v9.2.0) GraphPad https://www.graphpad.com

Imaris (v8.0) Oxford Instruments Imaris https://imaris.oxinst.com/

Geneious Prime (v2021.1.1) Geneious www.geneious.com

R/RStudio (v1.4.1103) R CoreTeam77 RStudio Team78 https://www.r-project.org/

Seurat (v3.9.9005) Hao et al.79 https://github.com/satijalab/seurat

TrimGalore https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/

https://github.com/FelixKrueger/
TrimGalore

EdgeR (v3.12) McCarthy et al.80 Robinson et al.81 https://bioconductor.org/packages/
release/bioc/html/edgeR.html

Cellranger (v6.0.1) 10x Genomics https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/
latest/installation

Velocyto (v0.17.15) La Manno et al.72 http://velocyto.org/

Monocle 3 (v1.0.0) Trapnell et al.37 Qiu et al.40 https://github.com/cole-trapnell-lab/
monocle3

DESeq2 (v1.30.1) Love et al.82 https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

topGO (v3.12) Alexa and Rahnenfuhrer83 https://bioconductor.org/packages/
release/bioc/html/topGO.html
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