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Abstract

Improved Interior Point Methods for Some Structured Combinatorial Problems

by

Tarun Kathuria

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

Over the last few decades, the design of algorithms for combinatorial problems has benefited
greatly from a continous optimization perspective. In this dissertation, we will focus on
some specific ideas from continous optimization, particularly so-called interior point methods
(IPMs), for the design of efficient algorithms for some combinatorial problems in theoretical
computer science. We will present algorithms for three different applications using these
ideas:

• We first present an improved interior point method algorithm for exact s-t maximum
flow on directed graphs that runs in time O(m4/3+o(1)U1/3) where U is the ratio of the
maximum to minimum capacities on the edges.

• We then design a faster interior point method for the class of semi-definite programs
(SDPs), a class of convex programs that have led to polynomial time algorithms for a
variety of problems in combinatorial optimization, statistics and machine learning. Our
algorithm runs in O(

√
n(mn2+mω+nω) log(1/ε)) time for an SDP with m constraints

and n sized variable matrix, which improves over the previous results in a wide variety
of regimes.

• We present a constructive proof of the Spencer problem by designing a Stieltjes trans-
form based barrier function and running a random walk analyzed using this barrier
function which gives a signing with discrepancy of O(

√
n) with high probability. We

then show that unlike previous such approaches, our approach may generalize to resolve
matrix discrepancy problems.
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Chapter 1

Introduction

Research progress in the design of algorithms for discrete/combinatorial optimization and
continous optimization problems followed largely separate trajectories using a very different
set of tools and techniques. However, over the last two decades, there has been significant
progress in marrying ideas from these two areas leading to significant breakthroughs.

Many of these advancements stem from relaxing the combinatorial optimization problem
of interest, which can be viewed as an optimization problem over the discrete hypercube,
to optimization problems over continous domains which relax the hard combinatorial con-
straints to lie in some Real domain leading to convex optimization problems. Extremely
successful examples of this strategy include relaxation to linear programs and semi-definite
programs. This in particular has been an extremely successful program in the form of Sherali-
Adams LP hierarchy [106] and the sums-of-squares hierarchy [98, 76] which has led to sig-
nificant advancements in the design of approximation algorithms for a variety of NP-hard
problems including max-cut [50] and sparsest-cut [11], which still remain the state-of-the-art.

Further research into this area has focused on analyzing the semi-definite programs spe-
cific to the combinatorial optimization problem and then, instead of using an off-the-shelf
convex program solvers, refining specific convex optimization methods like the multiplica-
tive weights update method combined with specific combinatorial primitives to design faster
algorithms for these problems [8, 7, 108]. Typically however, these improved dependence
on the size of the problem are accomplished by using convex optimization algorithms that
depend polynomially in 1/ε where ε is an error parameter. Then problem specific structure
is exploited to argue that solving these subproblems to low/constant accuracy actually suf-
fice in recovering a good approximate solution to the original combinatorial problem. This
however only works in specific instances and it is in general desirable to ask for improved
dependence on the size of the problem which also guarantees a high-accuracy/exact solution,
i.e., where the algorithm has a polylogarithmic dependence on 1/ε.

Beyond just approximation algorithms for NP-hard problems, the paradigm of view-
ing combinatorial optimization problems as convex optimization problems has also been an
extremely successful strategy for problems which were already known to be solvable in poly-
nomial time by combinatorial methods. A canonical example of such a problem that we will
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be interested in is the maximum flow problem. The maximum flow problem and its dual,
the minimum s-t cut problem, are two of the most well studied problems in combinatorial
optimization which are also taught in undergraduate algorithms courses. These problems are
key algorithmic primitives used extensively throughout both the theory and practice of com-
puter science. Numerous problems in algorithm design efficiently reduce to the maximum
flow problem and techniques developed in the study of this problem have had far reaching
implications, for instance, they are a primitive used in getting a nearly linear time O(

√
log n

approximation algorithm for the aforementioned sparsest cut problem [108, 110].

While [110, 67, 107] gave an algorithm for maximum flow running in time Õ(m/ε) which
indeed suffices for many applications like to that of sparsest cut, it is of significant interest
whether the maximum flow problem can be solved in Õ(m log(1/ε)) time, which in particular

would also give us the maximum flow exactly in Õ(m), by rounding the flow using augmenting
paths.

Finally, another instance where algorithms for combinatorial problems has benefited
greatly from continuous optimization techniques is that of discrepancy theory. The canonical
problem in this area corresponds to a universe of n elements, U , and a set system S compris-
ing of n subsets of this universe. The question is whether we can find a 2-assignment/signing
of each of the elements such that the discrepancy/imbalance in each set is as small as pos-
sible. While random signings give a discrepancy of O(

√
n log n), Spencer [114] showed that

there exists signings with discrepancy O(
√
n), which is tight. Spencer’s argument to argue

the existence of such signings consists of a rather involved pigeonhole principle and it’s not
clear how to algorithmically find such a signing outside of enumerating them. Furthermore,
Spencer actually conjectured that finding such signings should be NP-hard. However, Bansal
[15] showed that one can start a random walk at the origin inside the continuous hypercube
[−1, 1]n and keep taking small martingale steps to eventually terminate at a vertex of the
hypercube, and hence getting a signing, which satisfies the required discrepancy bound.
Since then, nearly all works on algorithms for discrepancy problems have followed a similar
template of designing controlled random walks which ensure the target discrepancy bound
is never violated as we move from the origin towards a vertex of the hypercube. The design
of this control for the random walk however can be seen as somewhat mysterious in many
cases and a common guiding principle for the design of the control would be quite desirable,
especially in making progress on open questions in discrepancy theory.

While there are certainly many other problems where the interplay between discrete
and continuous optimization is quite beneficial, in this dissertation, we will be focused on
using interior point methods, another convex optimization algorithm, to design improved
algorithms for three problem setups- maximum flow on unit capacity graphs, semidefinite
programming and discrepancy theory.
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1.1 Interior Point Methods

For convex optimization problems of the form

min c⊤x

s.t. x ∈ K
Ax = b

where K ⊆ Rn is a convex cone. Interior point methods relax the convex cone constraint into
a barrier function ϕK(x). While [64] proposed the first interior point method for linear pro-
gramming with provable complexity bounds on the runtime of the algorithm, [97] proposed
a general theory of what properties are desirable for barrier functions to facilitate provable
runtime bounds for conic programming. The key property that is desirable for barrier func-
tions for convex cones is that of self-concordance. The notion of self-concordance that we
will use can be found in [103].

Definition 1 (Self-Concordant Barriers). For a convex cone K, we call a C2 function ϕK :
K → R, a self-concordant barrier for K if for any x ∈ K, any y ∈ K such that ∥y − x∥x < 1
and for any v ∈ Rn, we have

1− ∥y − x∥x ≤
∥v∥y
∥v∥x

≤ 1

1− ∥y − x∥x
where ∥u∥2x := u⊤∇2ϕ(x)u for any u ∈ Rn and x ∈ K

In words, this asks for the Hessians of the barrier function to be “ spectrally stable” in
small Riemannian balls around every point, where the Riemannian metric for the manifold
given by K is just the Hessian of the barrier function.

Interior point methods build a “homotopy path”, known as the Central Path, of approxi-
mations to the original conic program by either exactly or approximately tracing minimizers
of the following path of convex programs parameterized by a non-negative real parameter η:

x∗η = arg min
x∈K,Ax=b

ηc⊤x+ ϕK(x)

With some modifications, it is usually easy to find a solution to x∗η with η being very close to
0. Then, via some annealing schedule, the value of η is increased (typically multiplicatively)
followed by using the (approximate) solution to the previous x∗η as a starting point to compute
the x∗η for the new value of η, using Newton’s method or variants. When η is sufficiently
large, x∗η is close to an optima of the original program. Hence, the main challenge remains in
designing a good barrier of K and an annealing schedule which ensures that we can always
approximately trace the path x∗η in order to ensure that we converge in few iterations. The key
parameter that controls the annealing schedule for a barrier is known as the self-concordance
parameter ν defined as

νϕK = sup
x∈K
∇ϕK(x)

⊤∇2ϕK(x)∇ϕK(x)
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The self-concordance theory of [95] suggests that increasing η multiplicatively by a factor
of 1 + ε/

√
ν for some sufficiently small constant ε suffices to trace the central path using

Newton’s method.

1.2 Our Results

In Chapter 2, we will design an interior point method, different than the central path, which
allows us to get an improved runtime of O(m4/3U1/3) for s-t maximum flow. Formally, we
state our main theorem from that chapter.

Theorem 1. There exists an interior point method for solving s-t maximum flow in direction
graphs of O(m4/3+o(1)U1/3) time complexity.

In Chapter 3, we will design an interior point method for Semi-definite Programming
(SDP) which utilizes methods from numerical linear algebra and improvements in rectan-
gular matrix multiplication to speed up the computations that show up in each iteration of
standard IPMs for SDPs. Formally, our theorem is stated next.

Theorem 2. There exists an interior point method that solves a general SDP with n × n
sized variable matrix and m constraints in O(

√
n(mn2 +mω + nω)) time.

We also remark that barring some major breakthrough, it is unlikely that our runtime
can be improved in the interesting parameter regime of n ≤ m ≤ n2.

Finally, in Chapter 4, we will design a random walk inside the hypercube for problems in
discrepancy theory, which is guided by a self-concordant barrier functional for the discrepancy
constraints. While such algorithms have been proposed and analysed before, we will suggest
that unlike previous approaches, our approach may generalize to solving matrix discrepancy
problems.

Theorem 3 (Informal). There exists a random walk based interior point method guided
by a self-concordant barrier potential function for Spencer’s theorem in discrepancy theory.
The random walk also generalizes to a non-commutative setting that may resolve the Matrix
Spencer Problem.
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Chapter 2

Maximum Flow in O(m4/3+o(1)U1/3)
Time

This chapter is based on work obtained independently by the author as well as by Liu-Sidford
and a merger of these results appeared at FOCS 2020 [65]

2.1 Introduction

The s-t maximum flow problem and its dual, the s-t minimum cut on graphs are amongst
the most fundamental problems in combinatorial optimization with a wide range of applica-
tions. Furthermore, they serve as a testbed for new algorithmic concepts which have found
uses in other areas of theoretical computer science and optimization. This is because the
max-flow and min-cut problems demonstrate the prototypical primal-dual relation in linear
programs. In the well-known s-t maximum flow problem we are given a graph G = (V,E)
with m edges and n vertices with edge capacities ue ≤ U , and aim to route as much flow
as possible from s to t while restricting the magnitude of the flow on each edge to its capacity.

Several decades of work in combinatorial algorithms for this problem led to a large set
of results culminating in the work of Goldberg-Rao [52] which gives a running time bound
of O(mmin{m1/2, n2/3} log(n2

m
) logU). This bound remained unimproved for many years. In

a breakthrough paper, Christiano et al [37] show how to compute approximate maximum

flows in Õ(mn1/3 log(U)poly(1/ε)). Their new approach uses electrical flow computations
which are Laplacian linear system solves which can be solved in nearly-linear time [115]
to take steps to minimize a softmax approximation of the congestion of edges via a sec-
ond order approximation. A straightforward analysis leads to a O(

√
m) iteration algorithm.

However, they present an insight by trading off against another potential function and show
that O(m1/3) iterations suffice. This work led to an extensive line of work exploiting Lapla-
cian system solving and continuous optimization techniques for faster max flow algorithms.
Lee et al. [79] also present another O(n1/3poly(1/ε)) iteration algorithm for unit-capacity
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graphs also using electrical flow primitives. Finally Kelner et al. [67] and Sherman [110,
109] present algorithms achieving O(mo(1)poly(1/ε)) iteration algorithm for max-flow and
its variants, which are based on congestion approximators and oblivious routing schemes as
opposed to electrical flow computations. This has now been improved to near linear time
[99, 107]. Crucially this line of work can only guarantee weak approximations to max flow
due to the poly(1/ε) in the iteration complexity.

In order to get highly accurate solutions which depend only polylogarithmically on 1/ε,
work has relied on second-order optimization techniques which use first and second-order in-
formation (the Hessian of the optimization function). To solve the max flow problem to high
accuracy, several works have used interior point methods (IPMs) for linear programming [97,
103]. These algorithms approximate non-negativity/ℓ∞ constraints by approximating them
by a self-concordant barrier, an approximation to an indicator function of the set which
satisfies local smoothness and strong convexity properties and hence can be optimized using
Newton’s method. In particular, Daitch and Spielman [42] show how to combine standard

path-following IPMs and Laplacian linear system solves to obtain Õ(m
√
m log(U/ε)) iter-

ations, matching Goldberg and Rao up to logarithmic factors. The O(
√
m) iterations is a

crucial bottleneck here due to the ℓ∞ norm being approximated by ℓ2 norm to a factor of√
m. Then Lee and Sidford [82] devised a faster IPM using weighted logarithmic barriers to

achieve a Õ(m
√
n log(U/ε) time algorithm. Madry [90, 89] opened up the weighted barriers

based IPM algorithms for max flow to show that instead of ℓ2 norm governing the progress
of each iteration, one can actually make the progress only maintaining bounds on the ℓ4
norm. Combining this with insights from [37], by using another potential function, which
again depends on the energy of the next flow step and carefully tuning the weights in the
barriers, he achieved an Õ(m3/7) iteration algorithm which leads to a Õ(m11/7U1/7 log(m/ε))
time. Note that the algorithm depends polynomially on the maximum capacity edge U and
hence is mainly an improvement for mildly large edge capacities. This work can also be used
to solve min cost flow problems in the same running time [40].

Another line of work beyond IPMs is to solve p-norm regression problems on graphs. Such
problems interpolate between electrical flow problems p = 2, maximum flow problems p =∞
and transshipment problems p = 1. While these problems can also be solved in O(

√
m) iter-

ations to high accuracy using IPMs[97], it was unclear if this iteration complexity could be
improved depending on the value of p. Bubeck et al. [30] showed that for any self-concordant
barrier for the ℓp ball, the iteration complexity has to be at least O(

√
m) thus making progress

using IPMs unlikely. They however showed another homotopy-based method, of which IPMs

are also a part of, can be used to solve the problem in Õp(m
1
2
− 1

p log(1/ε)) iterations, where
Op hides dependencies on p in the runtime. This leads to improvements on the runtime for
constant values of p. Next, Adil et al. [2], inspired by the work of [30] showed that one
can measure the change in p-norm using a second order term based on a different function
which allows them to obtain approximations to the p-norm function in different norms with
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strong condition number. These results can be viewed in the framework of relative convex-
ity [88]. Thus, they can focus on just solving the optimization problem arising from the

residual. Using insights from [37], they arrive at a Õp(m
4/3 log(1/ε)-time algorithm. Then

follow-up work by Kyng et al. [74] opened up the tools used by Spielman and Teng [115]
for ℓ2-norm flow problems to show that one can construct strong preconditioners for the
residual problems for mixed ℓ2-ℓp-norm flow problems, a generalization of ℓp-norm flow and

obtain an Õp(m
1+o(1) log(1/ε) algorithm. These results however do not lead to faster max

flow algorithms however due to their large dependence on p.

However, Liu and Sidford [86] improving on Madry [89] showed that instead of carefully
tuning the weights based on the electrical energy, one can consider the separate problem
of finding a new set of weights under a certain budget constraint to maximize the energy.
They showed that a version of this problem reduce to solving ℓ2-ℓp norm flow problems
and hence can be solved in almost-linear time using the work of [74, 1]. This leads to
a O(m11/8+o(1)U1/4)-time algorithm for max flow. However, this result still relies on the
amount of progress one can take in each iteration being limited to the bounds one can
ensure on the ℓ4 norm of the congestion vector, as opposed to the ideal ℓ∞ norm. We remark
here that there are IPMs for linear programming which only measure centrality in ℓ∞ norm
as opposed to the ℓ2 or ℓ4 norm. In particular [39, 84, 27] show how to take a step with
respect to a softmax function of the duality gap and trace the central path only maintaining
ℓ∞ norm bounds. [119, 118] also designed potential reduction based IPMs which trace the
central path only maintaining centrality in ℓ∞.

Our Contribution

In this work, we devise a faster interior point method for s-t maximum flow in directed
graphs. Precisely, our algorithm runs in time Õ(m4/3+o(1)U). Our algorithm builds on top
of both Madry [89] and Liu-Sidford [86] and is arguably simpler than both in some regards.

In particular, our algorithm is based on potential reduction algorithms which are a kind
of interior point methods for linear programs. These algorithms are based on a potential
function which measures both the duality gap as well as accounts for closeness to the bound-
ary via a barrier function. The algorithms differ from path-following IPMs in that they have
the potential to not strictly follow the path closely but only trace it loosely, which is also
experimentally observed. Usually, the step taken is a scaled gradient step/Newton step on
the potential function. Provided that we can guarantee sufficient decrease of the potential
function and relate the potential function to closeness to optimality, we can show conver-
gence. We refer to [5, 117, 97] for excellent introductions to potential reduction IPMs.

We will however use a different step; instead of a Newton step, we consider taking the
step, subject to augmenting a certain amount of flow in each iteration, which maximizes the
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decrease in the potential function after taking the step. We then show that this optimization
problem can be efficiently solved in Õ(m) time using electrical flow computations. While we
can show that the potential function decreases by a large amount which guarantees that we
can solve the max flow problem in O(

√
m) iterations, we forego writing it in this manner as

we are unable to argue such a statement when the weights and hence the potential function
is also changed. Instead, we stick to keeping track of the centrality of our flow vector while
making sufficient progress. Crucially however, the amount of progress made by our algorithm
only depends on bounds on the ℓ∞ of the congestion vector of the update step rather than
the traditional ℓ2 or ℓ4 norm bounds in [89, 86]. In order to improve the iteration complexity
by obtaining stronger bounds on the ℓ∞ norm of the congestion vector, we show that like in
Liu-Sidford [86], we can change weights on the barrier term for each edge. Instead of using
energy as a potential function to be maximized, inspired by oracles designed for multiplicative
weights algorithms, we use the change in the potential function itself as the quantity to be
maximized subject to a ℓ1 budget constraint on the change in weights. While we are unaware
of how to maximize the ℓ1 constrained problem, we relax it to an ℓq constrained problem,
which we solve using a mixed ℓ2-ℓp norm flow problem using the work of [74, 1]. Combining
this with an application of ’s inequality gives us sufficiently good control on the ℓ1-norm of
the weight change while ensuring that our step has significantly better ℓ∞ norm bounds on
the congestion vector. We believe our potential reduction framework as well as the concept
of changing weights based on the update step might be useful in designing faster algorithms
for max flow beyond our m4/3 running time.

2.2 Preliminaries

Throughout this chapter, we will view graphs as having both forward and backward capac-
ities. Specifically, we will denote by G = (V,E, u), a directed graph with vertex set V of
size n, an edge set E of size m, and two non-negative capacities u−e and u+e for each edge
e ∈ E. For the purpose of this chapter, all edge capacities are bounded by U = 1. Each
edge e = (u, v) has a head vertex u and a tail vertex v. For a vector v ∈ Rm, we define

∥v∥p = (
m∑
i=1

|vi|p)1/p and ∥v∥∞ =
m

max
i=1
|vi| and refer to Diag(v) ∈ Rm×m as the diagonal matrix

with the ith diagonal entry equal to vi.
Maximum Flow Problem Given a graph G, we call any assignment of real values to

the edges of E, i.e., f ∈ Rm, a flow. For a flow vector f , we view fe as the amount of the
flow on edge e and if this value is negative, we interpret it as having a flow of |fe| flowing in
the direction opposite to the edge’s orientation. We say that a flow f is an σ-flow, for some
demands σ ∈ Rn if and only if it satisfies flow conservation constraints with respect to those
demands. That is, we have∑

e∈E+(v)

fe −
∑

e∈E−(v)

fe = σv for every vertex v ∈ V
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where E+(v) and E−(v) is the set of edges of G that are entering and leaving vertex v
respectively. We will require

∑
v∈V

σv = 0.

Furthermore, we say that a σ-flow f is feasible in G if and only if f satisfies the capacity
constraints

−u−e ≤ fe ≤ u+e for each edge e ∈ E

One type of flows that will be of interest to us are s− t flows, where s (the source) and t(the
sink) are two distinguishing vertices of G. Formally, an s− t flow is a σ-flow whose demand
vector σ = Fχs,t, where F is the value of the flow and χs,t is a vector with −1 and +1 at
the coordinates corresponding to s and t respectively and zero elsewhere.

Now, the maximum flow problem corresponds to the problem in which we are given a
directed graph G = (V,E, u) with integer capacities as well as a source vertex s and a sink
vertex t and want to find a feasible s-t flow of maximum value. We will denote this maximum
value F ∗

Residual Graphs A fundamental object in many maximum flow algorithms is the notion
of a residual graph. Given a graph G and a feasible flow σ-flow f in that graph, we define
the residual graph Gf as a graph G = (V,E, û(f)) over the same vertex and edge set as G
and such that, for each edge e = (u, v), it’s forward and backward residual capacities are
defined as

û+e (f) = u+e − fe and û−e (f) = u−e + fe

We will also denote ûe(f) = min{û+e (f), û−e (f)}. When the value of f is clear from context,
we will omit writing it explicitly. Observe that the feasibility of f implies that all residual
capacities are always non-negative.

Electrical Flows and Laplacian Systems Let G be a graph and let r ∈ Rm
++ be a

vector of edge resistances, where the resistance of edge e is denoted by re. For a flow f ∈ RE

on G, we define the energy of f to be Er(f) = f⊤Rf =
∑
e∈E

ref
2
e where R = Diag(f). For

a demand χ, we define the electrical χ-flow fr to be the χ-flow which minimizes energy
fr = arg min

B⊤f=χ
Er(f), where B ∈ Rm×n is the edge-vertex incidence matrix. This flow

is unique as the energy is a strictly convex function. The Laplacian of a graph G with
resistances r is defined as L = B⊤R−1B. The electrical χ flow is given by the formula
fr = R−1BL†χ. We also define electrical potentials as ϕ = L†χ There is a long line of work
starting from Spielman and Teng which shows how to solve Lϕ = χ in nearly linear time
[115, 71, 66, 100, 41, 73, 75].

p-Norm Flows As mentioned above, a line of work [30, 2, 74] shows how to solve more
general p-norm flow problems. Precisely, given a ”gradient” vector g ∈ RE, resistances
r ∈ RE

+ and a demand vector χ, the problem under consideration is

OPT = min
B⊤f=χ

∑
e∈E

gefe + ref
2
e + |fe|p
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[74] call such a problem as a mixed ℓ2-ℓp-norm flow problem and denote the expression inside
the min as val(f). The main result of the paper is

Theorem 4 (Theorem 1.1 in [74]). For any even p ∈ [ω(1), o(log2/3−o(1) n)] and an initial

solution f (0) such that all parameters are bounded by 2poly(log(n)), we can compute a flow f̃
satisfying the demands χ such that

val(f̃)−OPT ≤ 1

2O(poly(logm))
(val(f (0))−OPT ) + 1

2O(poly(logm))

in 2O(p3/2)m1+O(1/
√
p) time.

We remark that strictly speaking the theorem in [74] states the error to be polynomial
but [86] observe that their proof actually implies quasi-polynomial error as stated above.
While our subproblems that we need to solve to change weights cannot be exactly put into
this form, we show that mild modifications to their techniques can be done to then use their
algorithm as a black-box. Hence, we elaborate on their approach below.

One main thing to establish in their paper is how the p-norm changes when we move
from f to f + δ.

Lemma 1 (Lemma in [74]). We have for any f ∈ RE and δ ∈ RE that

fp
i + pfp−1

i δi + 2−O(p)hp(f
p−2
i , δi) ≤ (fi + δi)

p ≤ fp
i + pfp−1

i δi + 2O(p)hp(f
p−2
i , δi)

where hp(x, δ) = xδ2 + δp

Hence, given an initial solution, it suffices to solve the residual problem of the form

min
B⊤f=0

g(f)⊤δ +
∑
e∈E

hp(f
p−2
i , δi)

where g(f)i = pfp−1
i . Next, they notice that bounding the condition number with respect

to the function hp(·, ·) actually suffices to get linear convergence and hence tolerate quasi-
polynomially low errors. The rest of the paper goes into designing good preconditioners
which allow them to solve the above subproblem quickly.

We will also need some basics about min-max saddle point problems [23]. Given a function
f(x, y) such that dom(f, x) = X and dom(f, y) = Y . The problem we will be interested in
is of the form

min
x∈X

max
y∈Y

f(x, y)

Define the functions fy(y) = min
x∈X

f(x, y) and fx(x) = max
y∈Y

f(x, y) for every fixed y ∈ Y . We

have the following theorem from Section 2.6 in [23]

Theorem 5. If f(x, y) is convex in x and concave in y and let X ,Y be convex and closed.
Then fx is a convex function and fy is a concave function.
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2.3 Warm up :
√
m Iteration Algorithm

In this section, we first set up our IPM framework and show how to recover the
√
m iterations

bound for max flow. In the next section, we will then change the weights to obtain our
improved runtime. Our framework is largely inspired by [89] and [86] and indeed a lot of the
arguments can be reused with some modifications.

IPM Setup

For every edge e = (u, v), we consider assigning two non-negative weights for the forward
and backward edges w+

e and w−
e . Based on the weights and the edge capacities, for any

feasible flow, we define a barrier functional

ϕw(f) = −
∑
e∈E

w+
e log(u+e − fe) + w−

e log(u−e + fe)

IPMs iterate towards the optimal solution by trading off the amount of progress of the
current iterate, i.e., B⊤f = Fχ and the proximity of the point to the constraints measured
through the barrier ϕw(f), known as centrality. Previous IPMs taking a Newton step with
respect to the barrier with a size which ensures that we increase the value of the flow F
by a certain amount. Due to the fact that a Newton step is the minimization of a second
order optimization problem, it can be shown that the step can be computed via electrical
flow computations. Typically, taking a Newton step can be decomposed into progress and
centering steps where one first takes a progress step which increases the flow value which
causes us to lose centrality by some amount. Then one takes a centering step which improves
the centrality without increasing the flow value. Depending on the amount of progress we
can make in each iteration such that we can still recenter determines the number of iterations
our algorithm will take. [89, 86] follow this prototype and loosely speaking the amount of
flow value we can increase in each iteration for the progress step depends on the ℓ∞ norm
of the congestion vector, which measures how much flow we can add before we saturate an
edge. However, the bottleneck ends up being the centering step which requires that the flow
value can only be increased by an amount depending on the ℓ4 norm of the congestion vector
which is a stronger condition than ℓ∞ norm.

[90, 89] notes that when the ℓ∞ and ℓ4 norms of the congestion vector are large then
increasing the resistances of the congested edges increases the energy of the resulting electrical
flow. So he repeatedly increases the weights of the congested edges (called boosting) until the
congested vector has sufficiently small norm. By using electrical energy of the resulting step
as a global potential function and analyzing how it evolves over the progress, centering and
boosting steps, they can control the amount of weight change and number of boosting steps
necessary to reduce the norm of the congestion vector. Carefully trading these quantities
yields their runtime of Õ(m11/7). To improve on this, Liu and Sidford [86] consider the
problem of finding a set of weight increases which maximize the energy of the resulting flow.
As we need to ensure that the weights don’t increase by too much, they place a budget
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constraint on the weight vector. By showing that a small amount of weight change suffices
to obtain good bounds on the congestion vector. Fortunately, this optimization problem ends
up being efficiently solvable in almost linear time by using the mixed ℓ2-ℓp norm flow problem
of [74]. However, this step still essentially requires ℓ4-norm bounds to ensure centering is
possible.

In this chapter, we will consider taking steps with respect to a potential function. The
potential function Φw comes from potential reduction IPM schemes and trades off the duality
gap with the barrier.

Φw(f, s) = m log

(
1 +

f⊤s

m

)
+ ϕw(f)

For self-concordant barriers like weighted log barriers are, the negative gradient −∇ϕw(f) is
feasible for the dual [103] and so for any f ′ feasible for the primal, we have f ′⊤(−∇ϕw(f)) ≥ 0.
We will consider dual ”potential” variables y ∈ RV . Now, like in [89, 86], we consider a
centrality condition

yv − yu =
w+

e

u+e − fe
− w−

e

u−e + fe
for all e = (u, v) (2.1)

If (f, y, w) satisfy the above condition, we call it well-coupled. Also, given a tuple (f, y, w)
and a candidate step f̂ , define the forward and backward congestion vectors ρ+, ρ− ∈ RE as

ρ+e =
|f̂e|

u+e − fe
and ρ−e =

|f̂e|
u−e + fe

for all e ∈ E (2.2)

We can now assume via binary search that we know the optimal flow value F ∗ [89]. [89,
86] consider preconditioning the graph which allows them to ensure that for a well-coupled
point we can ensure sufficient progress. The preconditioning strategy to ensure this is to
add m extra (undirected) edges between s and t of capacity 2U each. So the max flow value
increases at most by 2mU . The following lemma can be seen from the proof of Lemma 4.5
in [86]

Theorem 6. Let (f, y, w) be a well-coupled point for flow value F in a preconditioned graph
G. Then we have for every preconditioned edge e that ûe(f) = min{u+e −fe, u−e +fe} ≥ F ∗−F

7∥w∥1 .

In particular, if ∥w∥1 ≤ 3m, then we have ûe(f) ≥ F ∗−F
21m

. If we also have F ∗ − F ≥ m1/2−η,
then ûe(f) ≥ m−(1/2+η)/21

Now that our setup is complete, we can focus on the step that we will be taking. In this
section, we will keep the weights all fixed to 1, i.e., w+

e = w−
e = 1 for all e ∈ E. Hence

∥w∥1 = 2m. Consider the change in the potential function when we move from f to f + f̂
while keeping the dual variable −∇ϕw(f) = By fixed. This change is

m log

(
1− (f + f̂)⊤∇ϕw(f)

m

)
−m log

(
1− f⊤∇ϕw(f)

m

)
+ ϕw(f + f̂)− ϕw(f)
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We are interested in minimizing this quantity which corresponds to maximizing the decrease
in the potential function value while guaranteeing that we send say δ more units of flow f̂ .
Hence the problem is

arg min
B⊤f̂=δχ

m log

(
1− (f + f̂)⊤∇ϕw(f)

m

)
+ ϕw(f + f̂)

Unfortunately, this problem is not convex as the duality gap term is concave in f̂ . However,
we instead can minimize an upper bound to this term which is convex:

min
B⊤f̂=δχ

ϕw(f + f̂)− (f + f̂)⊤∇ϕw(f)

= min
B⊤f̂=δχ

−
∑
e∈E

w+
e log

(
1− f̂e

u+e − fe

)
+ w−

e log

(
1 +

f̂e
u−e + fe

)
− f̂e

(
w+

e

u+e − fe
− w−

e

u−e + fe

)
as log(1 + x) ≤ x for non-negative x which holds from duality as mentioned above. We
will refer to the value of the problem in the last line as the potential decrement and will
henceforth denote the function inside the minimization as ∆Φw(f, f̂). It is instructive to
first see how the coupling condition changes if we were to take the optimal step of the above
problem, while remaining feasible. To calculate this, from the optimality conditions of the
above program, we can say that there exists a ŷ such that for all e = (u, v)

ŷv − ŷu =

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e

)
−
(

w+
e

u+e − fe
− w−

e

u−e + fe

)

=

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e

)
− (yv − yu)

Hence, if we update y to y + ŷ and f to f + f̂ , we get a flow of value F + δ such that the
coupling condition with respect to the new y and f still hold.

Hence, we can now focus on actually computing the step and showing what δ we can
take to ensure that we still satisfy feasibility, i.e., bounds on the ℓ∞ norm of the congestion
vector. The function we are trying to minimize comprises of a self-concordant barrier term
and a linear term. Unfortunately, we cannot control the condition number of such a function
to optimize it in efficiently over the entire space as this is arguably as hard as the original
problem itself. However, due to self-concordance, the function behaves smoothly enough
(good condition number) in a box around the origin but that seemingly doesn’t help us
solve the problem over the entire space. Fortunately, a fix for this was already found in
[30]. In particular they (smoothly) extend the function quadratically outside a box to ensure
that the (global) smoothness and strong convexity properties inside the box carries over to
that outside the box as well while still arguing that the minimizer is the same provided the
minimizer of the original problem was inside the box. Specifically, the following lemma can
be inferred from Section 2.2 of [30].
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Lemma 2. Given a function f(x) which is L-smooth and µ-strongly convex inside an interval
[−ℓ, ℓ]. Then, we define the quadratic extension of f , defined as

fℓ(x) =


f(x), for − ℓ ≤ x ≤ ℓ

f(−ℓ) + f ′(−ℓ)(x+ ℓ) + 1
2
f ′′(−ℓ)(x+ ℓ)2, for x < −ℓ

f(ℓ) + f ′(ℓ)(x− ℓ) + 1
2
f ′′(ℓ)(x− ℓ)2, for x > ℓ


The function fℓ is C

2, L-smooth and µ-strongly convex. Furthermore, for any convex func-

tion ψ(x) provided x∗ = argmin
x∈X

ψ(x) +
n∑

i=1

f(xi) lies inside
n∏

i=1

[−ℓi, ℓi], then argmin
x∈X

ψ(x) +

n∑
i=1

fℓi(xi) = x∗

Hence, it suffices to consider a δ small enough such that the minimizer is the same as
for the original problem and we can focus on minimizing this quadratic extension of the
function. For minimization, we can use Accelerated Gradient Descent or Newton’s method.

Theorem 7 ([93]). Given a convex function f which satisfies D ⪯ ∇2f(x) ⪯ κD∀x ∈ Rn

with some given fixed diagonal matrix D and some fixed κ. Given an initial point x0 and an
error parameter 0 < ε < 1/2, the accelerated gradient descent (AGD) outputs x such that

f(x)−min
x
f(x) ≤ ε(f(x0)−min

x
f(x))

in O(
√
κ log(κ/ε)) iterations. Each iteration involves computing ∇f at some point x and

projecting the function onto the subspace defined by the constraints and some linear-time
calculations.

Notice that the Hessian of the function in the potential decrement problem is a diagonal
matrix with the eth entry being

w+
e

(u+e − fe − f̂e)2
+

w−
e

(u−e + fe + f̂e)2

So provided ρ+e , ρ
−
e are less than some small constant, the condition number κ of the Hessian

is constant with respect to the diagonal matrix which is ∇2ϕw(f) and hence we can use

Theorem 7 to solve it in Õ(1) to quasi-polynomially good error. Furthermore notice that the
algorithm is just computing a gradient and then doing projection and so can be computing
using a Laplacian linear system solve and hence runs in nearly linear time. Furthermore,
quasi-polynomially small error will suffice for our purposes [90, 89, 86].

Now, we just need to ensure that we can control the ℓ∞-norm of the congestion vector,
as that controls how much flow we can still send without violating constraints. Note further,
that we need to set ℓ while solving the quadratic extension of the potential decrement problem
so that it’s greater than the ℓ∞ norm that we can guarantee. We will want both of these to
be some constants.
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As mentioned above, the point of preconditoning the graph is to ensure that the pre-
conditioned edges themselves can facilitate sufficient progress. To bound the congestion, we
show an analog of Lemma 3.9 in [89].

Lemma 3. Let (f, y, w) be a well-coupled solution with value F and let δ = F ∗−F
1000

√
m
. Let f̂

be the solution to the potential decrement problem. Then we have, ρ+e , ρ
−
e ≤ 0.1 for all edges

e.

Proof. Consider a flow f ′ which sends 2δ
m

units of flow on each of the m/2 preconditioned

edges. Certainly the potential decrement flow f̂ will have smaller potential decrement than
that of f ′ which is

∆Φw(f, f
′)

= −
∑
e∈E

w+
e log

(
1− f ′

e

u+e − fe

)
+ w−

e log

(
1 +

f ′
e

u+e − fe

)
− f ′

e

(
w+

e

u+e − fe
− w−

e

u−e + fe

)

≤
∑
e∈E

w+
e

(
f ′
e

û+e (f)

)2

+ w−
e

(
f ′
e

û−e (f)

)2

≤ ∥w∥1
(

42δ

F ∗ − F

)2

<
0.002∥w∥1

m
≤ 0.004

where the second inequality follows from − log(1− x) ≤ x+ x2 and − log(1 + x) ≤ −x+ x2

for non-negative x and the third inequality follows from plugging in the value of the flow on
the preconditioned edges and using Lemma 6. Finally we use ∥w∥1 = 2m. Now it suffices to
prove a lower bound on the potential decrement in terms of the congestion vector. For this,
we start by considering the inner product of f̂ with the gradient of the ∆Φw(f, f̂)

∑
e∈E

f̂e

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e
− w+

e

u+e − fe
+

w−
e

u−e + fe

)

=
∑
e∈E

(
w+

e f̂
2
e

(û+e − f̂e)û+e
+

w−
e f̂

2
e

(û−e + f̂e)û−e

)

≤
∑
e∈E

1.1

(
w+

e f̂
2
e

(û+e )
2
+
w−

e f̂
2
e

(û−e )
2

)
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≤ 1.1
∑
e∈E

(
w+

e f̂
2
e

(û+e )
2
+
w−

e f̂
2
e

(û−e )
2

)

≤ 2.2
∑
e∈E

−w+
e log

(
1− f ′

e

û+e

)
− w−

e log

(
1 +

f ′
e

û+e

)
− f ′

e

(
w+

e

û+e
− w−

e

û−e

)
= 2.2∆Φw(f, f̂)

≤ 0.0088

where the second-to-last inequality follows from x + x2/2 ≤ − log(1 − x) and −x + x2/2 ≤
− log(1 + x). Strictly speaking, the first inequality only holds for f̂e ≤ ûe(f)/10. However,
instead of considering the inner product of f̂ with the gradient of ∆Φw(f, f̂), we will instead
consider it’s quadratic extension with ℓe = ûe(f)/10 for each edge e. It is easy to see that if
f̂ is outside the box, then also the desired inequality still holds (by computing the value the
quadratic extension takes on f ′ in the cases outside the box). To finish the proof,

∑
e∈E

f̂e

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e
− w+

e

u+e − fe
+

w−
e

u−e + fe

)

=
∑
e∈E

(
w+

e f̂
2
e

(û+e − f̂e)û+e
+

w−
e f̂

2
e

(û−e + f̂e)û−e

)

≥ 9/10
∑
e∈E

(
w+

e f̂
2
e

(û+e )
2
+
w−

e f̂
2
e

(û−e )
2

)
≥ 0.9∥ρ∥2∞

Hence, combining the above, we get that ∥ρ∥∞ ≤ 0.1

Notice that since ∥ρ∥∞ < 0.1, the minimizer of the quadratic smoothened function is
the same as the function without smoothing and hence the new step is well-coupled as per
the argument above. Hence, in every iteration, we decrease the amount of flow that we
could send multiplicatively by a factor of 1− 1/

√
m and hence in

√
m iterations we will get

to a sufficiently small amount of remaining flow that we can round using one iteration of
augmenting paths. This completes our

√
m iteration algorithm.

2.4 Improved m4/3+o(1)U 1/3 Time Algorithm

In this section, we show how to change weights to improve the number of iterations in our
algorithm. We will follow the framework of Liu and Sidford [86] of finding a set of weights
to add under a norm constraint such that the step one would take with respect to the new
set of weights maximizes a potential function. In their case, since the step they are taking
is an electrical flow, the potential function considered is the energy of such a flow. As our
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step is different, we will instead take the potential decrement as the potential function with
respect to the new set of weights. Perhaps surprisingly however, we can make almost all
their arguments go through with minor modifications. Let the initial weights be w and say
we would like to add a set of weights w′. Then we are interested in maximizing the potential
decrement with respect to the new set of weights. This can be seen as similar to designing
oracles for multiplicative weight algorithms for two-player games where a player plays a move
to penalize the other player the most given their current move. Our algorithm first finds
a finds a new set of weights and then takes the potential decrement step with respect to
the new weights. Finally, for better control of the congestion vector, we show that one can
decrease some of the weight increase like in [86]. We first focus on the problem of finding
the new set of weights. We are going to introduce a set r′ ∈ RE

++ of ”resistances” and will
optimize these resistances and then obtain the weights from them. Let w be the current
set of weights and w′ be the set of desired changes. Without loss of generality, assume that
ûe(f) = û+e (f) and now given a resistance vector r′, we define the weight changes as

(w+
e )

′ = r′e(û
+
e (f))

2 and (w−
e )

′ =
(w+

e )
′û−e (f)

û+e (f)

This is the same set of weight changes done in [86] in the context of energy maximization.
This set of weights ensures that our point (f, y, w) is well-coupled with respect to w+w′ as
well, i.e.,

(w+
e )

′

û+e (f)
=

(w−
e )

′

û−e (f)

The problem we would now like to solve is

g(W ) = max
r′>0,∥r′∥1≤W

min
B⊤f̂=δχ

∆Φw+w′(f, f̂)

Here w′ is based on r′ in the form written above. While this is the optimization problem we
would like to solve, we are unable to do so due to the ℓ1 norm constraint on the resistances.
We will however be able to solve a relaxed q-norm version of the problem.

gq(W ) = max
r′>0∥r′∥q≤W

min
B⊤f̂=δχ

∆Φw+w′(f, f̂)

= max
r′>0,∥r′∥q≤W

min
B⊤f̂=δχ

∆Φw(f, f̂) −
∑
e∈E

(w+
e )

′
(
log

(
1− f ′

e

u+ − fe

)
+

f ′
e

u+e − fe

)
+(w−

e )
′
(
log

(
1 +

f ′
e

u+ − fe

)
+

(f−
e )′

u−e + fe

)
Notice that this is a linear (and hence concave) function in w′ and hence in r′ and is closed and
convex in f̂ and the constraints are convex as they are only linear and norm ball constraints.
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Hence, using Theorem 5, we can say that

min
B⊤f̂=δχ

∆Φw(f, f̂)−
∑
e∈E

(w+
e )

′ log

(
1− f ′

e

u+ − fe

)
+ (w−

e )
′ log

(
1 +

f ′
e

u+ − fe

)
− f ′

e

(
(w+

e )
′

u+e − fe
− (w−

e )
′

u−e + fe

)
is concave in r′ and

max
r′>0,∥r′∥q≤W

∆Φw(f, f̂)−
∑
e∈E

(w+
e )

′ log

(
1− f ′

e

u+ − fe

)
+ (w−

e )
′ log

(
1 +

f ′
e

u+ − fe

)
− f ′

e

(
(w+

e )
′

u+e − fe
− (w−

e )
′

u−e + fe

)
is convex in f̂ . Now, as in [86], we use Sion’s minimax lemma to get

min
B⊤f̂=δχ

∆Φw(f, f̂) + max
r′>0,∥r′∥q≤W

−
∑
e∈E

(w+
e )

′ log

(
1− f̂e

u+ − fe

)
+ (w−

e )
′ log

(
1 +

f̂e
u+ − fe

)

− f̂e

(
(w+

e )
′

u+e − fe
− (w−

e )
′

u−e + fe

)

min
B⊤f̂=δχ

∆Φw(f, f̂) +W

[∑
e∈E

ge(f̂)
p

]1/p
(2.3)

where ge(f̂) = (û+e (f))
2 log

(
1− f̂e

û+

)
+ û+e (f)û

−
e (f) log

(
1 + f̂e

û−
e (f)

)
and we plugged in the

value of w′ in terms of r′ and used that max
∥x∥q≤W

y⊤x = W∥y∥p with 1/p + 1/q = 1. As

mentioned above, the function inside the minimization problem is convex. Furthermore,
from the proof of Theorem 5, it can be inferred that any smoothness and strong convexity
properties that the function inside the min-max had carries over on the function after the
maximization. Hence as in Section 2.3, we will consider the quadratic extension of the
function (as a function of f for the function inside the min-max with ℓe = ûe(f)/10. This
is just the quadratic extension of ∆Φw(f, f̂) and the quadratic extension of ge(f). Now, the
strategy will be to consider adding flow using this step while the remaining flow to be routed
F ∗−F ≥ m1/2−η. After which, running m1/2−η iterations of augmenting paths gets us to the
optimal solution. We will need to ensure that that throughout the course of the algorithm
the ℓ1 norm of the weights doesn’t get too large. For doing that, we will first compute the
weight changes and then do a weight reduction procedure [86] in order to always ensure that
∥w∥1 ≤ 3m.

We will take η = 1/6 − o(1) − 1
3
logm(U) and W = m6η. Provided we can ensure that

the ∥w∥1 ≤ 3m throughout the course of the algorithm, that the ℓ∞ of the congestion vector
is always bounded by a constant and that we can solve the resulting step in almost-linear
time, we will obtain an algorithm which runs in time m4/3+o(1)U1/3 time.
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Theorem 8. There exists an algorithm for solving s − t maximum flow in directed graphs
in time m4/3+o(1)U1/3 time.

To summarize, our algorithm starts off with (f, y) = (0, 0) and w+
e = w−

e = 1 for all
edges e. Then in each iteration, starting with a well-coupled (f, y, w) with flow value F
and δ = (F ∗ − F )/m1/2−η and W = m6η we then solve Equation 2.3 (which is the potential
decrement problem with the new weights) problem to obtain f̂ which will be the step we
will take (and has flow value F + δ and then all that remains is to actually find the update
weights w′ which will have a closed form expression in terms of f̂ and then we perform a
weight reduction step to obtain the new w′ which ensures that we still remain well-coupled
for f̂ and repeat while F ∗−F ≥ m1/2−η. Finally, we round the remaining flow using m1/2−η

iterations of augmenting paths. We first state the lemma the proof of which is similar to
Lemma 3

Lemma 4. Let (f, y, w) be a well-coupled solution with value F and let δ = F ∗−F
5000m1/2−η . Let

f̂ be the solution to the potential decrement problem considered in Equation 2.3. Then, we
have for all edges e that ρ+e , ρ

−
e ≤ 0.1 and |f̂e| ≤ 9m−2η

Proof. We follow the strategy used in the proof of Lemma 3. Recall that the problem we
are trying to understand is

min
B⊤f̂=δχ

∆Φw(f, f̂) +W

[∑
e∈E

ge(f̂)
p

]1/p
where ge(f̂) = (û+e (f))

2 log
(
1− f̂e(f)

û+
e (f)

)
+ û+e (f)û

−
e (f) log

(
1 + f̂e

û−
e (f)

)
. As in Lemma 3, we

will consider a flow f ′ which sends 2δ
m

units of flow on each of the m/2 preconditioned edges.

Certainly, the objective value of the above function at f̂ will have a smaller value than that
at f ′. For the first term ∆Φw(f, f̂), running the same argument as in Lemma 3, we get that

∆Φw(f, f̂) ≤ ∥w∥1
(

42δ

F ∗ − F

)2

≤ 0.000071m2η

For the the second term, we use log(1− x) ≤ −x+ x2 and log(1 + x) ≤ x+ x2, to get that

ge(f) ≤ f̂ 2
e

(
1 + û+

e (f)

û+
e (f)

)
≤ 2f̂ 2

e where we have used that û+e (f) ≤ û−e (f). Now, since there is

non-zero flow on the preconditioned edges, we get that

W

[∑
e∈E

ge(f
′)p

]1/p
≤ 2W (δ/m)2mo(1)

≤ 2m6η+o(1)

(
F ∗ − F

5000m(m1/2−η)

)2

≤ 0.0000004m8η−1+o(1)U2



CHAPTER 2. MAXIMUM FLOW IN O(m4/3+o(1)U1/3) TIME 20

using p =
√
log n, the fact that F ∗ − F ≤ mU and the value of δ = F ∗−F

5000m1/2−η . Also using
the value of η, we can see that this term is less than 0.0000001m2η. Hence, combining the
two, we get that the objective value at f̂ is less than 0.000072m2η. As the objective function
is made up of two non-negative quantities, we can obtain two inequalities using this upper
bound by dropping one term from the objective value each time. For the second part, we
ignore the first term of the objective function and lower bound the second term using the
fact that log(1 + x) ≥ x+ x2/2 and log(1− x) ≥ −x+ x2/2

0.000072m2η ≥ W

[∑
e∈E

ge(f̂)
p

]1/p
≥ W |ge(f̂)|

≥ Wf̂ 2
e (1 + û+e (f)/ûe(f))

≥ Wf̂ 2
e

This gives us that |f̂e| ≤ 0.009m−2η by plugging in the value of W = m6η

For the first part now, assume for the sake of contradiction that ρe > 0.1, otherwise we
are done. Now, dropping the second term we want to establish that 1

ûe(f)
≤ 9m2η, which we

will do so by a proof similar to the proof of Lemma 4.3 in [89]. Now using the argument as
in Lemma 3, we get for an edge e = (u, v),
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0.000072m2η ≥ ∆Φw(f, f̂)

≥ 1

2.2

∑
e∈E

f̂e

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e
− w+

e

u+e − fe
+

w−
e

u−e + fe

)

=
1

2.2
f̂⊤Bŷ

=
1

2.2
δχ⊤ŷ

=
F ∗ − F

11000m1/2−η
χ⊤ŷ

≥ χ⊤ŷ/11000

= (ŷs − ŷt)/11000
≥ (ŷu − ŷv)/11000

=
1

11000

(
w+

e

u+e − fe − f̂e
− w−

e

u−e + fe + f̂e
− w+

e

u+e − fe
+

w−
e

u−e + fe

)

≥ 9f̂e
110000

(
w+

e

(u+e − fe)2
+

w−
e

(u−e + fe)2

)
≥ 9ρe

110000ûe(f)

≥ 0.9

110000ûe(f)

where the first and second equalities follows from optimality and feasibility conditions of the
potential decrement problem respectively and the third inequality follows from the condition
that we run the program while the flow left to augment is at least m1/2−η. This implies that
1/ûe(f) ≤ 9m2η. Multiplying this with |f̂e| ≤ 0.009m−2η, we get that ρe ≤ 0.1, which finishes
the proof. We also need to argue the inequality ŷs− ŷt ≥ ŷu− ŷv. The optimality conditions
of

ŷu − ŷv = f̂e

(
w+

e

(u+e − fe − f̂e)(ue − fe)
+

w−
e

(u−e + fe)(u−e + fe + f̂e)

)
and noticing that the quantity in brackets in the right hand side above is non-negative, tells
us that there is a fall in potential along the flow. This along with noticing that the sum of
the potential difference in a directed cycle is zero, tells us that the graph induced by just
the flow f̂ is a DAG. Since, it’s a DAG, it can be decomposed into disjoint s − t paths
along which flow is sent and every edge belongs to one of these paths. Hence, the potential
difference across an edge is less than the potential difference across the whole path which is
the potential difference between s and t and hence, we are done.
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As before, all these arguments go through with the quadratically smoothened cases cases
rather than the original function to still get the same bounds and since ρe ≤ 0.1, the
minimizers of the two are the same which completes the proof.

Next notice that (f, y) are still a well-coupled solution with respect to the new weights
w + w′ as the weights were chosen to ensure that the coupling condition is unchanged.

Lemma 5. Our new weights, after weight reduction, satisfy ∥w′∥1 ≤ m4η+o(1)U ≤ m/2 and
(f + f̂ , y + ŷ) is well-coupled with respect to w + w′

Proof. Using optimality conditions of the program in Equation 2.3, we see that there exists
a ŷ such that

ŷv − ŷu = f̂e

(
w+

e

(û+e − f̂e)û+e
− w−

e

(û−e + f̂e)û−e

)
+Wf̂e

gp−1
e

∥g∥p−1
p

(
û+e

û+e − f̂e
− û−e

û−e + f̂e

)

where g ∈ RE is the vector formed by taking ge(f̂) for the e
th coordinate. We will take

(re)
′ = W

gp−1
e

∥g∥p−1
p

and (w+
e )

′ = W
gp−1
e

∥g∥p−1
p

(û+e )
2 and (w−

e )
′ = W

gp−1
e

∥g∥p−1
p

(û+e û
−
e )

which satisfies the well-coupling condition we want to ensure. Also notice that ∥r∥q = W so
we satisfy the norm ball condition as well. Now, we need to upper bound the ℓ1 norm of w′.
We will take p =

√
logm

∥w′∥1 ≤ m1/p∥w′∥q

≤ mo(1)

(∑
e∈E

(w+
e )

′ + (w−
e )

′

)1/q

≤ 2mo(1)WU2 = O(m6η+o(1)U2)

as û+e , û
−
e ≤ U . Plugging in the value of η, we get that this is less than m/2. Now, we

will perform weight reductions to obtain a new set of weights w′′ such that they still ensure
the coupling condition doesn’t change and we can establish better control on the weights.
The weight reduction is procedure is the same as that in [86] where we find the smallest
non-negative w′′ such that for all edges

(w+
e )

′

û+e − f̂e
− (w−

e )
′

û−e + f̂e
=

(w+
e )

′′

û+e − f̂e
− (w−

e )
′′

û−e + f̂e

Notice that we also have that (w+
e )′

û+
e

= (w−
e )′

û−
e

and

û+e − f̂e
û−e + f̂e

= (1±O(max{ρ+e , ρ−e }))
û+e
û−e
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Hence, it follows that

(w+
e )

′′ + (w−
e )

′′ ≤ O(max{ρ+e , ρ−e })((w+
e )

′ + (w−
e )

′)

As |f̂e| ≤ 9m−2η from Lemma 4, we get

∥w′′∥1 ≤ m−2η
∑
e∈E

Wgp−1
e

∥g∥p−1
p

(û+e + û−e )

≤ O(m4η+o(1)U) ≤ m/2

As before, while this argument is done for the non-quadratically extended function while
we are optimizing the quadartically extended function, as our ρ+e , ρ

−
e ≤ 0.1, the minimizers

are the same and hence the above argument works.

Now, provided that we can show how to solve Equation 2.3 in almost-linear time, we
are done. This is because we run the algorithm for m1/2−η iterations and the ℓ1 norm of
the weights increases by at most m4η+o(1)U in each iteration. Hence the final weights are
∥w∥1 ≤ 2m + m1/2+3η+o(1)U ≤ 5m/2. So we can use Lemma 6 throughout the course of
our algorithm. Also, as mentioned above, notice that the flow f̂ that we augment in every
iteration is just the solution to the potential decrement problem with the new weights. Hence,
from the argument in Section 2.3, we always maintain the well-coupled condition.

To show that we can solve the problem in Equation 2.3, we will appeal to the work of
[74]. As mentioned above, their work establishes Lemma 1 and then shows that for any
function which can be sandwiched in that form plus a quadratic term which is the same
on both sides, one can just minimize the resulting upper bound to get a solution to the
optimization problem with quasi-polynomially low error. Hence, we will focus on showing
that the objective function in our problem can also be sandwiched into terms of this form
after which appealing to their algorithm, we will get a high accuracy solution to our problem
in almost linear time. The first issue that arises is that strictly speaking, their algorithm
only works for minimizing objectives of the form

OPT = min
B⊤f=χ

∑
e∈E

gefe + ref
2
e + |fe|p

whereas for our objective, the p-norm part is not raised to the power p but is just the p-norm
itself. The solution for this however was already given in Liu-Sidford [86] where they show
(Lemma B.3 in their paper) that for sufficiently nice functions minimizing problems of the
form min f(x) + h(g(x)) can be obtained to high accuracy if we can obtain minimizers to
functions of the form f(x) + g(x). The conditions they require on the functions are also
satisfied for our functions and is a straightforward calculation following the proof in their
paper [86]. Hence, we can focus on just showing how to solve the following problem whose
value we denote by OPT

min
B⊤f̂=χ

∑
e∈E

−

(
w+

e log0.1

(
1− f̂e

û+e

)
+ w−

e log0.1

(
1 +

f̂e
û−e

)
+ f̂e

(
w+

e

û+e
− w+

e

û−e

))
+ (ge)0.1(f̂)

p
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Where the subscripts of 0.1 denote that we are solving the quadratically smoothened func-

tion with the box size being ûe(f)/10 for each e and ge(f̂) = (û+e (f))
2 log

(
1− f̂e

û+

)
+

û+e (f)û
−
e (f) log

(
1 + f̂e

û−
e (f)

)
Call the term in the sum for a given edge e as vale(f̂) and the

overall objective function is val(f̂). In particular, we consider for a single edge and prove
the following lemma

Lemma 6. We have the following for any feasible f and δ ≥ 0

δ∂fvale(f) + (0.9)2δ2
(

w+
e

(û+e − f)2
+

w−
e

(û−e + f)2

)
+ 2−O(p)(f 2p−4

e δ2 + δp)

≤ vale(f + δ)− vale(f)

and

vale(f + δ)− vale(f)

≤ δ∂fvale(f) + (1.1)2δ2
(

w+
e

(û+e − f)2
+

w−
e

(û−e + f)2

)
+ 2O(p)(f 2p−4

e δ2 + δp)

where ∂x denotes the derivative of a function with respect to x.

Proof. Note that while we are solving for the quadratically smoothened version of the prob-
lem, we can assume we solve it for the non-smoothened version in the box corresponding to
a congestion of at most 0.1 as the extension is C2 and will ensure that any inequalities we
need henceforth (upto the second order terms) are bounded as well.

There are two terms, one corresponding to the potential decrement term and the other is
a similar expression but raised to the pth power. We tackle the first term first. This is easily
done using Taylor’s theorem. The function is g(x + y) = − log(1− (x + y)/u)− (x + y)/u.
Computing the first two derivatives with respect to y, we get that g′(x + y) = 1

u−x−y
− 1/u

and g′′(x+ y) = 1
(u−x−y)2

. Now, using Taylor’s theorem, we get that

g(x+ y) = g(x) + g′(x)y +
1

2
g′′(x+ ζ)y2

= g(x) + y

(
1

u− x− y
− 1

u

)
+ y2

(
1

(u− x− ζ)2

)
for some ζ such that −u/10 ≤ x+ ζ ≤ u/10 which easily gives us the bounds

g(x) + y

(
1

u− x− y
− 1

u

)
+ (9/10)2y2

(
1

(u− x)2

)
≤ g(x+ y)

g(x+ y) ≤ g(x) + y

(
1

u− x− y
− 1

u

)
+ (11/10)2y2

(
1

(u− x)2

)
The calculation and bounds are similar for − log(1 + x/u) + x/u.
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Now, for the second term, we will largely follow the strategy of [74]. Now for the pth

order term, we have a function g(x) = u21 log(1 − x/u1) + u1u2 log(1 − x/u2). We first use
Lemma 1 with fi = g(x) and δi = g(x+ y)− g(x) to get

g(x+ y)p − g(x)p

≤ pg(x)p−1(g(x+ y)− g(x)) + 2O(p)(g(x)p−2(g(x+ y)− g(x))2 + (g(x+ y)− g(x))p)

Now, adding and subtracting pg(x)p−1yg′(x) from both sides and noticing that g(x + y) −
g(x)− yg′(x) ≤ 0 from concavity of g , we get

g(x+ y)p ≤ g(x)p + pyg(x)p−1g′(x) + 2O(p)(g(x)p−2(g(x+ y)− g(x))2 + (g(x+ y)− g(x))p)

Now, notice that using inequalities of log(1− x/u) and log(1+ x/u), to get x2 ≤ g(x) ≤ 2x2

and we also use Taylor’s theorem get that g(x+ y)− g(x) ≤ 10(|xy|+ |y|2)

g(x+ y)p ≤ g(x)p + pyg(x)p−1g′(x) + 2O(p)(x2p−4(x2y2 + y4) + 2p−1(xpyp + y2p)

≤ g(x)p + pyg′(x) + 2O(p)(x2p−2y2 + y2p)

where we have used (x+y)p ≤ 2p−1(xp+yp) and that y ≤ x because that’s the neighborhood
we are considering. Beyond that neighborhood, we could just do the calculation with the
quadratic extension parts (as we only used upto the second order information so that’s still
preserved)

The proof of the lower bound is similar.

Let re =
(

w+
e

(û+
e −f)2

+ w−
e

(û−
e +f)2

)
Lemma 7. Now, given an initial point f0 such that B⊤f0 = χ and an almost linear time
solver for the following problem

min
B⊤δ=0

∑
e∈E

δeαe + (11/10)22O(p)((re + f 2p−4
e )δ2 + δp)

where the αe vector is the gradient of val at a given point f , we can obtain an f̂ in Õp(1)

calls to the solver such that val(f̂) ≤ OPT + 1/2poly logm

The proof is similar to the proof of the iteration complexity of gradient descent for smooth
and strongly convex function and it follows from [88, 74]. Note that since [74] give an almost
linear time solver for exactly the subproblem in the above lemma provided the resistances
are quasipolynomially bounded, we are done. This is because Section D.1 in [86] already
proves that the resistances are quasi-polynomially bounded.
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2.5 Conclusion

In this chapter, we showed how to use steps inspired by potential reduction IPMs to solve
max flow in directed graphs in O(m4/3+o(1)U1/3) time. After the appearance of this work, an
almost linear time algorithm for maximum flow appeared in [33] after a line of work of [47,
26]. Their work also uses a potential reduction based IPM algorithm. However, they use
ℓ1 augmenting steps and hence takes O(m) iterations but they design highly efficient data
structures which allow the IPM updates to be implemented in mo(1) time per iteration. The
author does, however, believe it should be possible to obtain an almost linear time algorithm
for exact max flow which runs in mo(1) iterations (and is hence efficiently parallelizable) with

each iteration taking Õ(m) time. This would parallel work of [110, 67, 99] which provides
such a result for approximate max flow. It is also an extremely interesting problem if general
linear programs, beyond just unit capacity max flow, can be solved inm1/3 iterations of linear
system solving, improving on the current m1/2 iteration complexity. Such a result likely
requires generalizing ideas from accelerated gradient descent [93] to the Riemannian/IPM
setting and this inherently requires designing another interior point method, different than
the central path, which allows us to argue that the (average) curvature (as measured by the
length integral) of this new trajectory is significantly shorter than that corresponding to the
central path.
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Chapter 3

A Faster IPM for Semi-definite
Programming

This chapter is based on joint work with Haotian Jiang, Yin Tat Lee, Swati Padmanabhan
and Zhao Song and appeared at FOCS 2020 [61]

3.1 Introduction

Semidefinite programs (SDPs) constitute a class of convex optimization problems that op-
timize a linear objective over the intersection of the cone of positive semidefinite matrices
with an affine space. SDPs generalize linear programs and have a plethora of applications
in operations research, control theory, and theoretical computer science [123]. Applications
in theoretical computer science include improved approximation algorithms for fundamental
problems (e.g., Max-Cut [49], coloring 3-colorable graphs [63], and sparsest cut [10]), quan-
tum complexity theory [59], robust learning and estimation [35, 34, 36], and algorithmic
discrepancy and rounding [17, 19, 16]. We formally define SDPs with variable size n×n and
m constraints:

Definition 2 (Semidefinite programming). Given symmetric1 matrices C,A1, · · · , Am ∈
Rn×n and bi ∈ R for all i ∈ [m], the goal is to solve the convex optimization problem

max⟨C,X⟩ subject to X ⪰ 0, ⟨Ai, X⟩ = bi ∀i ∈ [m] (3.1)

where ⟨A,B⟩ :=
∑

i,j Ai,jBi,j is the trace product.

Cutting plane and interior point methods Two prominent methods for solving SDPs,
with runtimes depending logarithmically on the accuracy parameter ϵ, are the cutting plane
method and the interior point method.

1We can assume that C,A1, · · · , Am are symmetric, since given any M ∈ {C,A1, · · · , Am}, we have∑
i,j MijXij =

∑
i,j MijXji =

∑
i,j(M

⊤)ijXij , and therefore we can replace M with (M +M⊤)/2.
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The cutting plane method maintains a convex set containing the optimal solution. In each
iteration, the algorithm queries a separation oracle, which returns a hyperplane that divides
the convex set into two subsets. The convex set is then updated to contain the subset with
the optimal solution. This process is repeated until the volume of the maintained set becomes
small enough and a near-optimal solution can be found. Since Khachiyan proved [68] that
the ellipsoid method solves linear programs in polynomial time, cutting plane methods have
played a crucial role in both discrete and continuous optimization [53, 51].

In contrast, interior point methods add a barrier function to the objective and, by ad-
justing the weight of this barrier function, solve a different optimization problem in each
iteration. The solutions to these successive problems form a well-defined central path. Since
Karmarkar proved [64] that interior point methods can solve linear programs in polynomial
time, these methods have become an active research area. Their number of iterations is
usually the square root of the number of dimensions, as opposed to the linear dependence
on dimensions in cutting plane methods.

Since cutting plane methods use less structural information than interior point methods,
they are slower at solving almost all problems where interior point methods are known to
apply. However, SDPs remain one of the most fundamental optimization problems where
the state of the art is, in fact, the opposite: the current fastest cutting plane methods2 of [83,
62] solve a general SDP in time m(mn2 +m2 + nω), while the fastest SDP solvers based on
interior point methods in the work of [94] and [6] achieve runtimes of

√
n(m2n2+mnω+mω)

and (mn)1/4(m4n2 + m3nω), respectively, which are slower in the most common regime of
m ∈ [n, n2] (see Table 3.1.2). This apparent paradox raises the following natural question:

How fast can SDPs be solved using interior point methods?

Our results

We present a faster interior point method for solving SDPs. Our main result is the following
theorem, the formal version of which is given in Theorem 12.

Theorem 9 (Main result, informal). There is an interior point method that solves a general
SDP with variable size n× n and m constraints in time3 O∗(

√
n(mn2 +mω + nω)).

Our runtime can be roughly interpreted as follows:

•
√
n is the iteration complexity of the interior point method with the log barrier func-

tion.

• mn2 is the input size.

2[62] improves upon the runtime of [83] in terms of the dependence on log(n/ϵ), while the polynomial
factors are the same in both runtimes.

3We use O∗ to hide no(1) and logO(1)(n/ϵ) factors and Õ to hide logO(1)(n/ϵ) factors, where ϵ is the
accuracy parameter.
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• mω is the cost of inverting the Hessian of the log barrier.

• nω is the cost of inverting the slack matrix.

Thus, the terms in the runtime of our algorithm arise as a natural barrier to further speeding
up SDP solvers. See Section 3.1, 3.1, and 3.1 for more detail.

Table 3.1.1 compares our result with previous SDP solvers. The first takeaway of this
table and Theorem 9 is that our interior point method always runs faster than that in [94]
and is faster than that in [95] and [6] when m ≥ n1/13. A second consequence is that
whenever m ≥

√
n, our interior point method is faster than the current fastest cutting

plane method [83, 62]. We note that n ≤ m ≤ n2 is satisfied in most SDP applications
known to us, such as classical combinatorial optimization problems over graphs, experiment
design problems in statistics and machine learning, and sum-of-squares problems. An explicit
comparison to previous algorithms in the cases of m = n and m = n2 is shown in Table 3.1.2.
We also include two works in Table 3.1.1 that contain results which appeared after the
publication of our work which contains improvements when m = Ω(n2) however our result
remains the state of the art in the n ≤ m ≤ n2 regime.

Year References Method #Iters Cost per iter
1979 [111, 127, 68] CPM m2 mn2 +m2 + nω

1988 [69, 96] CPM m mn2 +m3.5 + nω

1989 [120] CPM m mn2 +mω + nω

1992 [94] IPM
√
n m2n2 +mnω +mω

1994 [95, 6] IPM (mn)1/4 m4n2 +m3nω

2003 [72] CPM m mn2 +mω + nω

2015 [83] CPM m mn2 +m2 + nω

2020 [62] CPM m mn2 +m2 + nω

2020 Our result IPM
√
n mn2 +mω + nω

2022 [57] IPM
√
n m2 + n2 + (mω + n2ω)n−1/2

2023 [124] IPM n2 + n3/2m1/4 mn2 + nω

Table 3.1.1: Summary of key SDP algorithms. CPM stands for cutting plane method, and
IPM, interior point method. n is the size of the variable matrix, and m ≤ n2 is the number
of constraints. Runtimes hide no(1), mo(1) and poly log(1/ϵ) factors, where ϵ is the accuracy
parameter. [6] simplifies the proofs in [95, Section 5.5]. Neither [6] nor [95] explicitly analyzed
their runtimes, and their runtimes shown here are our best estimates.

Even in the more general case where the SDP might not be dense, where nnz(A) is the
input size (i.e., the total number of non-zeroes in all matrices Ai for i ∈ [m] and C), our
interior point method runs faster than the current fastest cutting plane methods[83, 62],
which run in time O∗(m(nnz(A) +m2 + nω)).
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Year References Method Runtime
m = n m = n2

1979 [111, 127, 68] CPM n5 n8

1988 [69, 96] CPM n4.5 n9

1989 [120] CPM n4 n6.746

1992 [94] IPM n4.5 n6.5

1994 [95, 6] IPM n6.5 n10.75

2003 [72] CPM n4 n6.746

2015 [83] CPM n4 n6

2020 [62] CPM n4 n6

2020 Our result IPM n3.5 n5.246

Table 3.1.2: Total runtimes for the algorithms in Table 3.1.1 for SDPs when m = n and m =
n2, where n is the size of matrices, and m is the number of constraints. The runtimes shown
in the table hide no(1), mo(1) and poly log(1/ϵ) factors, where ϵ is the accuracy parameter
and assume ω to equal its currently best known upper bound of 2.373.

Theorem 10 (Comparison with Cutting Plane Method). When m ≥ n, there is an interior
point method that solves an SDP with n×n matrices, m constraints, and nnz(A) input size,
faster than the current best cutting plane method [83, 62], over all regimes of nnz(A).

Technique overview

Interior point method for solving SDPs

By removing redundant constraints, we can, without loss of generality, assume m ≤ n2 in
the primal formulation of the SDP (3.1). Thereafter, instead of solving the primal SDP,
which has variable size n× n, we solve its dual formulation, which has dimension m ≤ n2:

min b⊤y subject to S =
m∑
i=1

yiAi − C, and S ⪰ 0. (3.2)

Interior point methods solve (3.2) by minimizing the penalized objective function:

min
y∈Rm

fη(y), where fη(y) := η · b⊤y + ϕ(y), (3.3)

where η > 0 is a parameter and ϕ : Rm → R is a barrier function that approaches infinity
as y approaches the boundary of the feasible set {y ∈ Rm :

∑m
i=1 yiAi ⪰ C}. These methods

first obtain an approximate minimizer of fη for some small η > 0, which they then use as
an initial point to minimize f(1+c)η, for some constant c > 0, via the Newton method. This
process repeats until the parameter η in (3.3) becomes sufficiently large, at which point the
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minimizer of fη is provably close to the optimal solution of (3.2). The iterates y generated by
this method follow a central path. Different choices of the barrier function ϕ lead to different
run times in solving (3.3), as we next describe.

The log barrier Nesterov and Nemirovski [94] use the log barrier function,

ϕ(y) = g(y) := − log det

(
m∑
i=1

yiAi − C

)
, (3.4)

in (3.3) and, in O(
√
n log(n/ϵ)) iterations, obtain a feasible dual solution y that satisfies

b⊤y ≤ b⊤y∗ + ϵ, where y∗ ∈ Rm is the optimal solution for (3.2). Within each iteration,
the costliest step is to compute the inverse of the Hessian of the log barrier function for the
Newton step. For each (j, k) ∈ [m]× [m], the (j, k)-th entry of H is given by

Hj,k = tr[S−1AjS
−1Ak]. (3.5)

The analysis of [94] first computes S−1/2AjS
−1/2 for all j ∈ [m], which takes time O∗(mnω),

and then calculates the m2 trace products tr[S−1AjS
−1Ak] for all (j, k) ∈ [m] × [m], each

of which takes O(n2) time. Inverting the Hessian costs O∗(mω), which results in a total
runtime of O∗(

√
n(m2n2 +mnω +mω)).

The volumetric barrier Vaidya [120] introduced the volumetric barrier for a polyhedral
set {x ∈ Rn : Ax ≥ c}, where A ∈ Rm×n and c ∈ Rm. Nesterov and Nemirovski [95] studied
the following extension of the volumetric barrier to the convex subset {y ∈ Rm :

∑m
i=1 yiAi ⪰

C} of the polyhedral cone:

V (y) =
1

2
log det(∇2g(y)),

where g(y) is the log barrier function defined in (3.4). They proved that choosing ϕ(y) =√
nV (y) in (3.3) makes the interior point method converge in Õ(

√
mn1/4) iterations, which

is smaller than the Õ(
√
n) iteration complexity of [94] when m ≤

√
n. They also studied the

combined volumetric-logarithmic barrier

Vρ(y) = V (y) + ρ · g(y)

and showed that taking ϕ(y) =
√
n/m · Vρ(y) for ρ = (m − 1)/(n − 1) yields an iteration

complexity of Õ((mn)1/4). when m ≤ n, this iteration complexity is lower than Õ(
√
n)

of [94]. We refer readers to the much simpler proofs in [6] for these results.
However, the volumetric barrier (and thus the combined volumetric-logarithmic barrier)

leads to complicated expressions for the gradient and Hessian that make each iteration costly.
For instance, the Hessian of the volumetric barrier is

∇2V (y) = 2Q(y) +R(y)− 2T (y),
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where Q(y), R(y), and T (y) are m×m matrices such that for each (j, k) ∈ [m]× [m],

Q(y)j,k = tr
[
AH−1A⊤ ((S−1AjS

−1AkS
−1
)
⊗̂S−1

)]
,

R(y)j,k = tr
[
AH−1A⊤ ((S−1AjS

−1
)
⊗̂
(
S−1AkS

−1
))]

, (3.6)

T (y)j,k = tr
[
AH−1A⊤ ((S−1AjS

−1
)
⊗̂S−1

)
AH−1A⊤ ((S−1AkS

−1
)
⊗̂S−1

)]
.

Here, A ∈ Rn2×m is the n2 ×m matrix whose ith column is obtained by flattening Ai into a
vector of length n2, and ⊗̂ is the symmetric Kronecker product

A⊗̂B :=
1

2
(A⊗B +B ⊗ A),

where ⊗ is the Kronecker product (see Section 3.2for formal definition). Due to the compli-
cated formulas in (3.6), efficient computation of Newton step in each iteration of the interior
point method is difficult; in fact, each iteration runs slower than the Nesterov-Nemirovski
interior point method by a factor of m2. Since most applications of SDPs known to us
have the number of constraints m be at least linear in n, the total runtime of interior point
methods based on the volumetric barrier and the combined volumetric-logarithmic barrier
is inevitably slow.

Our techniques

Given the inefficiency of implementing the volumetric and volumetric-logarithmic barriers
discussed above, this work uses the log barrier in (3.4). We now describe some of our key
techniques that improve the runtime of the Nesterov-Nemirovski interior point method [94].

Hessian computation using fast rectangular matrix multiplication As noted in
Section 3.1, the runtime bottleneck in [94] is computing the inverse of the Hessian of the log
barrier function, where the Hessian is described in (3.5). In [94], each of these m2 entries is
computed separately, resulting in a runtime of O(m2n2) per iteration.

Instead contrast, we show below how to group these computations using rectangular
matrix multiplication. The expression from (3.5) can be re-written as

Hj,k = tr[S−1/2AjS
−1/2 · S−1/2AkS

−1/2]. (3.7)

We first compute the key quantity S−1/2AjS
−1/2 ∈ Rn×n for all j ∈ [m] by stacking all

matrices Aj ∈ Rn×n into a tall matrix of sizemn×n, and then compute the product of S−1/2 ∈
Rn×n with this tall matrix. This matrix product can be computed in time Tmat(n,mn, n)

4

using fast rectangular matrix multiplication. We then flatten each S−1/2AjS
−1/2 into a row

vector of length n2 and stack all m vectors to form a matrix B of size m× n2, i.e., the j-th
row of B is Bj = vec(S−1/2AjS

−1/2). It follows that the Hessian can be computed as

H = BB⊤, (3.8)

4See Section 3.3 for the definition.
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which takes time Tmat(m,n
2,m) by applying fast rectangular matrix multiplication. By

leveraging recent developments in this area [46], this approach already improves upon the
runtime in [94].

Thus far, we have reduced the per iteration cost of O∗(m2n2 +mnω) for Hessian compu-
tation down to

Tmat(n,mn, n) + Tmat(m,n
2,m).

Low rank update on the slack matrix The fast rectangular matrix multiplication
approach noted above, however, is still not very efficient, because the Hessian must be
computed from scratch in each iteration of the interior point method. If there are T iterations
in total, it then takes time

T · (Tmat(n,mn, n) + Tmat(m,n
2,m)).

To further improve the runtime, we need to efficiently update the Hessian for the current
iteration from the Hessian computed in the previous one. Generally, this is not possible,
as the slack matrix S ∈ Rn×n in (3.7) might change arbitrarily in the Nesterov-Nemirovski
interior point method.

To overcome this problem, we propose a new interior point method that maintains an
approximate slack matrix S̃ ∈ Rn×n, which is a spectral approximation of the true slack
matrix S ∈ Rn×n such that S̃ admits a low-rank update in each iteration. Where needed,
we will now use the subscript t to denote a matrix in the t-th iteration. Our algorithm
updates only the directions in which S̃t deviates too much from St+1; the changes to St for
the remaining directions are not propagated in S̃t. This process of selective update ensures
a low-rank change in S̃t even when St suffers from a full-rank update; it also guarantees
the proximity of the algorithm’s iterates to the central path. Specifically, for each iteration
t ∈ [T ], we define the difference matrix

Zt = S
−1/2
t S̃tS

−1/2
t − I ∈ Rn×n,

which intuitively captures how far the approximate slack matrix S̃t is from the true slack
matrix St. We maintain the invariant ∥Zt∥op ≤ c for some sufficiently small constant c > 0.

In the (t + 1)-th iteration when St gets updated to St+1, our construction of S̃t+1 involves
a novel approach of zeroing out some of the largest eigenvalues of |Zt| to bound the rank of
the update on the approximate slack matrix.

We prove that with this approach, the updates on S̃ ∈ Rn×n over all T = Õ(
√
n) iterations

satisfy the following rank inequality (see Theorem 14for the formal statement).

Theorem 11 (Rank inequality, informal version). Let S̃1, S̃2, · · · , S̃T ∈ Rn×n denote the
sequence of approximate slack matrices generated in our interior point method. For each
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t ∈ [T − 1], denote by rt = rank(S̃t+1− S̃t) the rank of the update on S̃t. Then, the sequence
r1, r2, · · · , rT satisfies

T∑
t=1

√
rt = Õ(T ).

The key component to proving Theorem 11 is the potential function Φ : Rn×n → R≥0

Φ(Z) :=
n∑

ℓ=1

|λ(Z)|[ℓ]√
ℓ

,

where |λ(Z)|[ℓ] is the ℓ-th in the list of eigenvalues of Z ∈ Rn×n sorted in decreasing order
of their absolute values. We show an upper bound on the increase in this potential when
S is updated, a lower bound on its decrease when S̃ is updated, and combine the two with
non-negativity of the potential to obtain Theorem 11.

Specifically, first we prove that whenever S is updated in an iteration, the potential
function increases by at most Õ(1) (see Lemma 21). The proof of this statement crucially
uses the structural property of interior point method that slack matrices in consecutive steps
are sufficiently close to each other. Formally, for any iteration t ∈ [T ], we show in Theorem 13
that the consecutive slack matrices St and St+1 satisfy

∥S−1/2
t St+1S

−1/2
t − I∥F = O(1) (3.9)

and combine this bound with the Hoffman-Wielandt theorem [56], which relates the ℓ2
distance between the spectrum of two matrices with the Frobenius norm of their difference
(see Fact 2). Next, when S̃ gets updated, we prove that our method of zeroing out the rt
largest eigenvalues of |Zt|, thereby incurring a rank-rt update to S̃t, results in a potential

decrease of at least Õ(
√
rt) (see Lemma 22).

Maintaining rectangular matrix multiplication for Hessian computation. Given
the low-rank update on S̃ described above, we show how to efficiently update the approximate
Hessian H̃, defined as

H̃j,k = tr[S̃−1AjS̃
−1Ak] (3.10)

for each entry (j, k) ∈ [m]× [m]. The approximate slack matrix S̃ being a spectral approxi-

mation of the true slack matrix S implies that the approximate Hessian H̃ is also a spectral
approximation of the true Hessian H (see Lemma 17). This approximate Hessian therefore
suffices for our algorithm to approximately follow the central path.

To efficiently update the approximate Hessian H̃ in (3.10), we notice that a rank-r update

on S̃ implies a rank-r update on S̃−1 via the Woodbury matrix identity (see Fact 4). The

change in S̃−1 can be expressed as

∆(S̃−1) = V+V
⊤
+ − V−V ⊤

− , (3.11)



CHAPTER 3. A FASTER IPM FOR SEMI-DEFINITE PROGRAMMING 35

where V+, V− ∈ Rn×r. Plugging (3.11) into (3.10), we can express ∆H̃j,k as the sum of

multiple terms, among the costliest of which are those of the form tr[S̃−1AjV V
⊤Ak], where

V ∈ Rn×r is either V+ or V−. We compute tr[S̃−1AjV V
⊤Ak] for all (j, k) ∈ [m] × [m] in

time Tmat(r, n,mn) by first computing V ⊤Ak for all k ∈ [m] by horizontally concatenating

all Ak’s into a wide matrix of size n×mn. We then compute the product of S̃−1/2 with AjV
for all j ∈ [m], which can be done in time Tmat(n, n,mr), which equals Tmat(n,mr, n) (see

Lemma 8). Finally, by flattening each S̃−1/2AjV into a vector of length nr and stacking all

these vectors to form a matrix B̃ ∈ Rm×nr with j-th row

B̃j = vec(S̃−1/2AjV ),

the task of computing tr[S̃−1AjV V
⊤Ak] for all (j, k) ∈ [m]× [m] reduces to computing B̃B̃⊤,

which costs Tmat(m,nr,m).
In this way, we reduce the runtime of T · (Tmat(n,mn, n)+Tmat(m,n

2,m)) for computing
the Hessian using fast rectangular matrix multiplication down to

T∑
t=1

(Tmat(rt, n,mn) + Tmat(n,mrt, n) + Tmat(m,nrt,m)) , (3.12)

where rt is the rank of the update on S̃t. Applying Theorem 11 with several properties of
fast rectangular matrix multiplication that we prove in Section 3.3 , we upper bound the
runtime in (3.12) by

O∗(
√
n(mn2 +mω + nω)),

which implies Theorem 9. In Section 3.1 and 3.1, we discuss bottlenecks to further improving
our runtime.

Bottlenecks of our interior point method

In most cases, the costliest term in our runtime is the per iteration cost of mn2, which cor-
responds to reading the entire input in each iteration. Our subsequent discussions therefore
focus on the steps in our algorithm that require at least mn2 time per iteration.

Slack matrix computation. When y is updated in each iteration of our interior point
method, we need to compute the true slack matrix S as

S =
∑
i∈[m]

yiAi − C.

Computing S is needed to update the approximate slack matrix S̃ so that S̃ remains a
spectral approximation to S. As S might suffer from full-rank changes, it naturally requires
mn2 time to compute in each iteration. This is the first appearance of the mn2 cost per
iteration.
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Gradient computation. Recall from (3.3) that our interior point method follows the
central path defined via the penalized objective function

min
y∈Rm

fη(y) where fη(y) := ηb⊤y + ϕ(y),

for a parameter η > 0 and ϕ(y) = − log detS. In each iteration, to perform the Newton
step, the gradient of the penalized objective is computed as

gη(y)j = η · bj − tr[S−1Aj] (3.13)

for each coordinate j ∈ [m]. Even if we are given S−1, it still requires mn2 time to compute
(3.13) for all j ∈ [m]. This is the second appearance of the per iteration cost of mn2.

Approximate Hessian computation. Recall from Section 3.1 that updating the approx-
imate slack matrix S by rank r means the time needed to update the approximate Hessian
is dominated by computing the term

∆j,k = tr[S̃−1/2AjV · V ⊤AkS̃
−1/2],

where V ∈ Rn×r is a tall, skinny matrix that comes from the spectral decomposition of
∆S̃−1. Computing ∆j,k for all (j, k) ∈ [m]× [m] requires reading at least Aj for all j ∈ [m],
which takes time mn2. This is the third bottleneck that leads to the mn2 term in the cost
per iteration.

LP techniques unlikely to improve SDP runtime

The preceding discussion of bottlenecks suggests that reading the entire input in each iter-
ation, which takes mn2 time per iteration, stands as a natural barrier to further improving
the runtime of SDP solvers based on interior point methods.

In the context of linear programming (LP), several recent results [38, 29] yield faster
interior point methods that bypass reading the entire input in every iteration. Two tech-
niques crucial to these results are: (1) showing that the Hessian (projection matrix) admits
low-rank updates, and (2) speeding computation of the Hessian via sampling.

We now describe these techniques in the context of SDP and argue that they are unlikely
to improve our runtime.

Showing that the Hessian admits low-rank updates. We saw in Section 3.1 that
constructing an approximate slack matrix S̃ that admits low-rank updates in each iterations
leveraged the fact that the true slack matrix S changes “slowly” throughout our interior
point method as described in (3.9). One natural question that follows is whether a similar
upper bound can be obtained for the Hessian. If such a result could be proved, then one
could maintain an approximate Hessian that admitted low-rank updates, which would speed



CHAPTER 3. A FASTER IPM FOR SEMI-DEFINITE PROGRAMMING 37

up the approximate Hessian computation. Indeed, in the context of LP, such a bound for
the Hessian can be proved (e.g., [29, Lemma 47]).

Unfortunately, it is impossible to prove such a statement for the Hessian in the context
of SDP. To show this, it is convenient to express the Hessian using the Kronecker product
(Section 3.2)as

H = A⊤ · (S−1 ⊗ S−1) · A,

where A ∈ Rn2×m is the n2 ×m matrix whose ith column is obtained by flattening Ai into
a vector of length n2. By proper scaling, we can assume without loss of generality that the
current slack matrix is S = I, and the slack matrix in the next iteration is Snew = I +∆S,
which satisfies ∥∆S∥F = c for some tiny constant c > 0. Consider the simple example where
A = I (we are assuming here that m = n2 so that A is a square matrix), which implies that
the change in the Hessian can be approximately computed as∥∥H−1/2∆HH−1/2

∥∥2
F
≈ tr

[
((I −∆S)⊗ (I −∆S)− I ⊗ I)2

]
≈ tr

[
(I ⊗∆S +∆S ⊗ I)2

]
≥ 2 · tr[I2] · tr

[
(∆S)2

]
= 2n ∥∆S∥2F ≫ 1.

This large change indicates that we are unlikely to obtain an approximation to the Hessian
that admits low-rank updates, which is a key difference between LP and SDP.

Sampling for faster Hessian computation. Recall from (3.8) that the Hessian can be
computed as

H = B · B⊤,

where the jth row of B ∈ Rm×n2
is Bj = vec(S−1/2AjS

−1/2) for all j ∈ [m]. We might
attempt to approximately compute H faster by sampling a subset of columns of B indexed
by L ⊆ [n2] and compute the product for only the sampled columns. This could reduce
the dimension of the matrix multiplication and speed up the Hessian computation. Indeed,
sampling techniques have been successfully used to obtain faster LP solvers [38, 29].

For SDP, however, sampling is unlikely to speed up the Hessian computation. In general,
we must sample at least m columns (i.e. |L| ≥ m) of B to spectrally approximate H or
the computed matrix will not be full rank. However, this requires computing the entries of
S−1/2AjS

−1/2 that correspond to L ⊆ [n2] for all j ∈ [m], which requires reading all Aj’s and
thus still takes O(mn2) time.

Related work

Linear Programming. Linear Programming is a class of fundamental problems in convex
optimization. There is a long list of work focused on fast algorithms for linear programming
[43, 68, 64, 121, 122, 81, 80, 113, 77, 38, 28, 29].
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Cutting Plane Method. Cutting plane method is a class of optimization methods that
iteratively refine a convex set that contains the optimal solution by querying a separation
oracle. Since its introduction in the 1950s, there has been a long line of work on obtaining
fast cutting plane methods [111, 127, 68, 69, 96, 120, 12, 24, 83, 62].

First-Order SDP Algorithms. As the focus of this work, cutting plane methods and
interior point methods solve SDPs in time that depends logarithmically on 1/ϵ, where ϵ is
the accuracy parameter. A third class of algorithms, the first-order methods, solve SDPs
at runtimes that depend polynomially on 1/ϵ. While having worse dependence on 1/ϵ com-
pared to IPM and CPM, these first-order algorithms usually have better dependence on the
dimension. There is a long list of work on first-order methods for general SDP or special
classes of SDP (e.g. Max-Cut SDP [9, 48, 4, 32, 78, 128], positive SDPs [58, 101, 3, 60].)

3.2 Preliminaries

Notation

For any integer d, we use [d] to denote the set {1, 2, · · · , d}. We use Sn×n to denote the set of
symmetric n×n matrices, Sn×n

≥0 for the set of n×n positive semidefinite matrices, and Sn×n
>0

for the set of n × n positive definite matrices. For two matrices A,B ∈ Sn×n, the notation
A ⪯ B means that B − A ∈ Sn×n

≥0 . When clear from the context, we use 0 to denote the
all-zeroes matrix (e.g. A ⪰ 0). For a vector v ∈ Rn, we use diag(v) to denote the diagonal
n × n matrix with diag(v)i,i = vi. For A,B ∈ Sn×n, we define the inner product to be the
trace product of A and B, defined as ⟨A,B⟩ := tr[A⊤B] =

∑
i,j∈[n]Ai,jBi,j. For two matrices

A ∈ Rm×n and B ∈ Rk×l, the Kronecker product of A and B, denoted as A ⊗ B, is defined
as the mk × nl block matrix whose (i, j) block is Ai,jB, for all (i, j) ∈ [m]× [n].

Throughout this chapter, unless otherwise specified, m denotes the number of constraints
for the primal SDP (3.1), and the variable matrix X is of size n×n. The number of non-zero
entries in all the Ai and C of (3.1) is denoted by nnz(A).

Useful facts

Linear algebra. Some matrix norms we frequently use in this chapter are the Frobenius
and operator norms, defined as follows. The Frobenius norm of a matrix A ∈ Rn×n is defined
to be ∥A∥F :=

√
tr[A⊤A]. The operator (or spectral) norm ∥A∥op of A ∈ Rn×n is defined

to be the largest singular value of A. In the case of symmetric matrices (which is what
we encounter in this work), this can be shown to equal the largest absolute eigenvalue of
the matrix. A property of trace we frequently use is the following: given matrices A1 ∈
Rm×n1 , A2 ∈ Rn1×n2 , . . . , Ak ∈ Rnk−1×nk , the trace of their product is invariant under cyclic
permutation tr[A1A2 . . . Ak] = tr[A2A3 . . . AkA1] = · · · = tr[AkA1 . . . Ak−2Ak−1]. A matrix
A ∈ Rn×n is called normal if A commutes with its transpose, i.e. AA⊤ = A⊤A. We note
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that all symmetric n × n matrices are normal. Two matrices A,B ∈ Rn×n are said to be
similar if there exists a nonsingular matrix S ∈ Rn×n such that A = S−1BS. In particular,
if matrices A and B are similar, then they have the same set of eigenvalues. We use the
following simple fact involving Loewner ordering: given two invertible matrices A and B
satisfying 1

α
B ⪯ A ⪯ αB for some α > 0, we have 1

α
B−1 ⪯ A−1 ⪯ αB−1. We further need

the following facts.

Fact 1 (Generalized Lieb-Thirring Inequality [44, 3, 60]). Given a symmetric matrix B, a
positive semi-definite matrix A and α ∈ [0, 1], we have

tr[AαBA1−αB] ≤ tr[AB2].

Fact 2 (Hoffman-Wielandt Theorem, [54, 56]). Let A,E ∈ Rn×n such that A and A+E are

both normal matrices. Let λ1, λ2, . . . , λn be the eigenvalues of A, and let λ̂1, λ̂2, . . . , λ̂n be the
eigenvalues of A + E in any order. There is a permutation σ of the integers 1, . . . , n such
that

∑
i∈[n] |λ̂σ(i) − λi|2 ≤ ∥E∥2F = tr[E∗E].

Fact 3 (Corollary of the Hoffman-Wielandt Theorem, [56]). Let A,E ∈ Rn×n such that
A is Hermitian and A + E is normal. Let λ1, . . . , λn be the eigenvalues of A arranged in
increasing order λ1 ≤ . . . ≤ λn. Let λ̂1, . . . , λ̂n be the eigenvalues of A + E, ordered so that
Re(λ̂1) ≤ . . . ≤ Re(λ̂n). Then,

∑
i∈[n] |λ̂i − λi|2 ≤ ∥E∥2F .

Fact 4 (Woodbury matrix identity, [126, 125]). Given matrices A ∈ Rn×n, U ∈ Rn×k,
C ∈ Rk×k, and V ∈ Rk×n, such that A, C, and A+ UCV are invertible, we have

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1.

3.3 Matrix Multiplication

The main goal of this section is to derive upper bounds on the time to perform the following
two rectangular matrix multiplication tasks (Lemma 13, 14, and 15):

• Multiplying a matrix of dimensions m× n2 with one of dimensions n2 ×m,

• Multiplying a matrix of dimensions n×mn with one of dimensions mn× n.
Besides being crucial to the runtime analysis of our interior point method in Section 3.7,
these results (as well as several intermediate results) might be of independent interest.

Exponent of matrix multiplication

We need the following definitions to describe the cost of certain fundamental matrix opera-
tions we use.

Definition 3. Define Tmat(n, r,m) to be the number of operations needed to compute the
product of matrices of dimensions n× r and r ×m.
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Definition 4. We define the function ω(k) to be the minimum value such that Tmat(n, n
k, n) =

nω(k)+o(1). We overload notation and use ω to denote the cost of multiplying two n× n ma-
trices. Thus, we have ω(1) = ω.

The following is a basic property of Tmat that we frequently use.

Lemma 8 ([31, 25]). For any three positive integers n,m, r, we have

Tmat(n, r,m) = O(Tmat(n,m, r)) = O(Tmat(m,n, r)).

We refer to Table 3 in [46] for the latest upper bounds on ω(k) for different values of k.
In particular, we need the following upper bounds in our work.

Lemma 9 ([46]). We have:

• ω = ω(1) ≤ 2.372927,

• ω(1.5) ≤ 2.79654,

• ω(1.75) ≤ 3.02159,

• ω(2) ≤ 3.251640.

Technical results for matrix multiplication

In this section, we derive some technical results on Tmat and ω that we extensively use for our
runtime analysis. Some of these results can be derived using tensors, and we demonstrate
this in Section 3.10. We hope that the use of tensors can yield better runtimes for this
problem in future.

Lemma 10 (Sub-linearity). For any p ≥ q ≥ 1, we have

ω(p) ≤ p− q + ω(q).

Proof. We assume that np and nq are integers for notational simplicity. Consider multiplying
an n×np matrix with an np×n matrix. One can cut the n×np matrix into np−q rectangular
blocks of size n × nq and the np × n matrix into np−q rectangular blocks of size nq × n,
and compute the multiplication of the corresponding blocks. This approach takes time
np−q+ω(q)+o(1), from which the desired inequality immediately follows.

Key to our analysis is the following lemma, which establishes the convexity of ω(k).

Lemma 11 (Convexity). The fast rectangular matrix multiplication time exponent ω(k) as
defined in Definition 4 is convex in k.
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Proof. Let k = α · p + (1 − α) · q for α ∈ (0, 1). For notational simplicity, we assume that
np, nq and nk are all integers. Consider a rectangular matrix of dimensions n × nk. Since
αp ≤ k, we can tile this rectangular matrix with matrices of dimensions nα×nαp. Then, the
product of this tiled matrix with another similarly tiled matrix of dimensions nk × n can be
obtained by viewing it as a multiplication of a matrix of dimensions n/nα×nk/nαp with one
of dimensions nk/nαp × n1/α, where each “element” of these two matrices is itself a matrix
of dimensions nα × nαp. With this recursion in tow, we obtain the following upper bound.

Tmat(n, n
k, n) ≤Tmat(n

α, nαp, nα) · Tmat(n/n
α, nk/nαp, n/nα)

=Tmat(n
α, nαp, nα) · Tmat(n

(1−α), n(1−α)q, n(1−α))

≤nα·ω(p)+o(1) · n(1−α)·ω(q)+o(1).

The final step above follows from denotingm = nα and observing that multiplying matrices of
dimensions nα×nα·p costs, by Definition 4, mω(p)+o(1), which is exactly nα(ω(p)+o(1)). Applying
Definition 4 and comparing exponents, this implies that

ω(k) ≤ α · ω(p) + (1− α) · ω(q),

which proves the convexity of the function ω(k).

Claim 1. ω(1.68568) ≤ 2.96370.

Proof. We can upper bound ω(1.68568) in the following sense

ω(1.68568) = ω(0.25728 · 1.5 + (1− 0.25728) · 1.75)
≤ 0.25728 · ω(1.5) + (1− 0.25728) · ω(1.75)
≤ 0.25728 · 2.79654 + (1− 0.25728) · 3.02159
≤ 2.96370,

where the first step follows from convexity of ω (Lemma 11), the third step follows from
ω(1.5) ≤ 2.79654 and ω(1.75) ≤ 3.02159 (Lemma 9).

Lemma 12. Let Tmat be defined as in Definition 3. Then for any positive integers h, ℓ, and
k, we have

Tmat(h, ℓk, h) ≤ O(Tmat(hk, ℓ, hk)).

Proof. Given any matrices A,B⊤ ∈ Rh×ℓk, by Definition 3, the cost of computing the ma-
trix product AB is Tmat(h, ℓk, h). We now show how to compute this product in time
O(Tmat(hk, ℓ, hk)). We cut A and B⊤ into k sub-matrices each of size h × ℓ, i.e. A =
(A1, · · · , Ak) and B⊤ = (B⊤

1 , · · · , B⊤
k ), where each Ai, B

⊤
i ∈ Rh×ℓ for all i ∈ [k]. By per-

forming matrix multiplication blockwise, we can write

AB =
k∑

i=1

AiBi.
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Next, we stack the k matrices A1, · · · , Ak vertically to form a matrix A′ ∈ Rhk×ℓ. Similarly,
we stack the k matrices B1, · · · , Bk horizontally to form a matrix B′ = (B1, · · · , Bk) ∈ Rℓ×hk.
By Definition 3, we can compute A′B′ ∈ Rhk,hk in time Tmat(hk, ℓ, hk). To complete the proof,
we note that we can derive AB from A′B′ as follows: for each j ∈ [k], the jth diagonal block
of A′B′ of size h× h is exactly AjBj, and summing up the k diagonal h× h blocks of A′B′

gives AB.

General upper bound on Tmat(n,mn, n) and Tmat(m,n
2,m)

Lemma 13. Let Tmat be defined as in Definition 3.
If m ≥ n, then we have

Tmat(n,mn, n) ≤ O(Tmat(m,n
2,m)).

If m ≤ n, then we have

Tmat(m,n
2,m) ≤ O(Tmat(n,mn, n)).

Proof. We only prove the case of m ≥ n, as the other case where m < n is similar. This is
an immediate consequence of Lemma 12 by taking h = n, ℓ = n2, and k = ⌊m/n⌋, where k
is a positive integer because m ≥ n.

In the next lemma, we derive upper bounds on the term Tmat(m,n
2,m) when m ≥ n and

Tmat(n,mn, n) when m < n, which is crucial to our runtime analysis.

Lemma 14. Let Tmat be defined as in Definition 3 and ω be defined as in Definition 4.
Property I. We have

Tmat(n,mn, n) ≤ O(mnω+o(1)).

Property II. We have

Tmat(m,n
2,m) ≤ O

(√
n
(
mn2 +mω

))
.

Proof. Property I.
Recall from Definition 3 that Tmat(n,mn, n) is the cost of multiplying a matrix of size

n × mn with one of size mn × n. We can cut each of the matrices into m sub-matrices
of size n × n each. The product in question then can be obtained by multiplying these
sub-matrices. Since there are m of them, and each product of an n × n submatrix with
another n× n submatrix costs, by definition, nω+o(1), we get Tmat(n,mn, n) ≤ O(mnω+o(1)),
as claimed.

Property II.
Let m = na, where a ∈ (0,∞). By definition, Tmat(m,n

2,m) is the cost of multiplying
a matrix of size m × n2 with one of size n2 × m. Expressing n2 as m2/a then gives, by
Definition 4, that

Tmat(m,n
2,m) = mω(2/a)+o(1) = na·ω(2/a)+o(1)
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Property II is then an immediate consequence of the following inequality, which we prove
next:

ω(2/a) < max(1 + 2.5/a, ω(1) + 0.5/a) ∀a ∈ (0,∞). (3.14)

Define b = 2/a ∈ (0,∞). Then the desired inequality in (3.14) can be expressed in terms of
b as

ω(b) < max(1 + 5b/4, ω(1) + b/4) ∀b ∈ (0,∞). (3.15)

Notice that the RHS of (3.15) is a maximum of two linear functions of b and these intersect
at b∗ = ω(1)−1. By the convexity of ω( · ) as proved in Lemma 11, it suffices to verify (3.15)
at the endpoints b → 0, b → ∞ and b = b∗. In the case where b = δ for any δ < 1, (3.15)
follows immediately from the observation that ω(δ) < ω(1). We next argue about the case
b→∞. By Lemma 9 we have ω(2) ≤ 3.252. Using Lemma 10, we have ω(b) ≤ b− 2+ω(2).
Combining these two facts implies that for any b > 2, we have

ω(b) ≤ b− 2 + ω(2) ≤ 1 + 5b/4,

which again satisfies (3.15). The final case is b = b∗ = ω(1)−1, for which (3.15) is equivalent
to

ω(ω(1)− 1) < 5ω(1)/4− 1/4. (3.16)

By Lemma 9, we have that ω(1)− 2 ∈ [0, 0.372927]. Then to prove (3.16), it is sufficient to
show that

ω(t+ 1) < 5t/4 + 9/4 ∀t ∈ [0, 0.372927]. (3.17)

By the convexity of ω( · ) as proved in Lemma 11, the upper bound of ω(2) ≤ 3.251640 in
Lemma 9, and recalling that ω(1) = t+ 2 for t ∈ [0, 0.372927], we have for k ∈ [1, 2],

ω(k) ≤ ω(1) + (k − 1) · (3.251640− (t+ 2)) = t+ 2 + (k − 1) · (1.251640− t).

In particular, using this inequality for k = t+ 1, we have

ω(t+ 1)− 5t/4− 9/4 ≤ (t+ 2) + t · (1.251640− t)− 5t/4− 9/4

= −t2 + 1.00164t− 1/4,

which is negative on the entire interval [0, 0.372927]. This establishes (3.17) and finishes the
proof.
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Specific upper bound on Tmat(m,n
2,m)

Lemma 15. For any two positive integers n and m, we have

Tmat(m,n
2,m) = o

(
m3 +mn2.37

)
.

Proof. Letm = na where a ∈ (0,∞). Recall that Tmat(m,n
2,m) = mω(2/a)+o(1) = naω(2/a)+o(1).

We consider the following two cases according to the range of a.
Case 1: a ∈ [1.18647,∞). In this case, we have ω(2/a) ≤ ω(2/1.18647) ≤ ω(1.68568) <

3, where the last inequality follows from Claim 1. This implies that

Tmat(m,n
2,m) = o(n3a) = o(m3). (3.18)

Case 2: a ∈ (0, 1.18647]. In this case, we have 2/a ∈ [1.68567,∞). Consider the linear
function

y(t) = 1 + 2.37 · t
2
. (3.19)

By Claim 1, we have

ω(1.68567) < 2.997 ≤ y(1.68567). (3.20)

By Lemma 9, we have

ω(2) < 3.37 = y(2). (3.21)

An application of Lemma 10 then gives, for any t ≥ 2, the inequality

ω(t) ≤ t− 2 + ω(2) < t− 2 + y(2) ≤ y(t), (3.22)

where the last inequality is by definition of y(t) from (3.19). Therefore, combining the
convexity of ω( · ), as proved in Lemma 11, with (3.20), (3.21), and (3.22), we conclude that
for any t ∈ [1.68567,∞), the function ω is bounded from above by the affine function y,
expressed as follows.

ω(t) < y(t) = 1 + 2.37 · t
2
.

This implies that

Tmat(m,n
2,m) = na·ω(2/a)+o(1) = o(na+2.37) = o(mn3.27). (3.23)

Combining the results from (3.18) and (3.23) finishes the proof of the lemma.
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3.4 Main Theorem

In this section, we give the formal statement of our main result.

Theorem 12 (Main result, formal). Consider a semidefinite program with variable size n×n
and m constraints (assume there are no redundant constraints):

max⟨C,X⟩ subject to X ⪰ 0, ⟨Ai, X⟩ = bi for all i ∈ [m]. (3.24)

Assume that any feasible solution X ∈ Sn×n
≥0 satisfies ∥X∥op ≤ R. Then for any error

parameter 0 < δ ≤ 0.01, there is an interior point method that outputs in time O∗(
√
n(mn2+

mω + nω) log(n/δ)) a positive semidefinite matrix X ∈ Rn×n
≥0 such that

⟨C,X⟩ ≥ ⟨C,X∗⟩ − δ · ∥C∥op ·R and
∑
i∈[m]

∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ ≤ 4nδ · (R

∑
i∈[m]

∥Ai∥1 + ∥b∥1),

where ω is the exponent of matrix multiplication, X∗ is any optimal solution to the semidef-
inite program in (3.24), and ∥Ai∥1 is the Schatten 1-norm of matrix Ai.

The proof of Theorem 12 is given in the subsequent sections.

3.5 Approximate Central Path via Approximate

Hessian

Main result for approximate central path

Our main result of this section is the following.

Theorem 13 (Approximate central path). Consider a semidefinite program as in Defini-
tion 2 with no redundant constraints. Assume that any feasible solution X ∈ Sn×n

≥0 satisfies
∥X∥op ≤ R. Then for any error parameter 0 < δ ≤ 0.01 and Newton step size ϵN sat-

isfying
√
δ < ϵN ≤ 0.1, Algorithm 1 outputs, in T = 40

ϵN

√
n log(n/δ) iterations, a positive

semidefinite matrix X ∈ Rn×n
≥0 that satisfies

⟨C,X⟩ ≥ ⟨C,X∗⟩ − δ · ∥C∥op ·R and
∑
i∈[m]

∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ ≤ 4nδ · (R

∑
i∈[m]

∥Ai∥1 + ∥b∥1),

(3.25)

where X∗ is any optimal solution to the semidefinite program in Definition 2, and ∥Ai∥1 is
the Schatten 1-norm of matrix Ai. Further, in each iteration of Algorithm 1, the following
invariant holds for αH = 1.03:

∥S−1/2SnewS
−1/2 − I∥F ≤ αH · ϵN . (3.26)
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Proof. At the start of Algorithm 1, Lemma 25 is called to modify the semidefinite program
to obtain an initial dual solution y for the modified SDP that is close to the dual central
path at η = 1/(n+2). This ensures that the invariant gη(y)

⊤H(y)−1gη(y) ≤ ϵ2N holds at the
start of the algorithm. Therefore, by Lemma 18 and Lemma 19, this invariant continues to
hold throughout the run of the algorithm. Therefore, after T = 40

ϵN

√
n log

(
n
δ

)
iterations, the

step size η in Algorithm 1 grows to η = (1 + ϵN
20

√
n
)T/(n + 2) ≥ 2n/δ2. It then follows from

Lemma 20 that

b⊤y ≤ b⊤y∗ +
n

η
· (1 + 2ϵN) ≤ b⊤y∗ + δ2.

Thus when the algorithm stops, the dual solution y has duality gap at most δ2 for the
modified SDP. Lemma 25 then shows how to obtain an approximate solution to the original
SDP that satisfies the guarantees in (3.25).

To prove (3.26), define ∆S = Snew − S ∈ Rn×n and δy = ynew − y ∈ Rm. For each i ∈ [n],
we use δy,i to denote the i-th coordinate of vector δy. We rewrite ∥S−1/2SnewS

−1/2 − I∥2F as

∥S−1/2SnewS
−1/2 − I∥2F = tr

[
(S−1/2(∆S)S

−1/2)2
]

= tr

[
S−1

(
m∑
i=1

δy,iAi

)
S−1

(
m∑
j=1

δy,jAj

)]

=
m∑

i,j=1

δy,iδy,jtr[S
−1AiS

−1Aj]

= (δy)
⊤H(y)δy

= gη(y)
⊤H̃(y)−1H(y)H̃(y)−1gη(y), (3.27)

where we used the fact that ∆S =
∑m

i=1(δy)iAi. It then follows from Lemma 18 and the
invariant gη(y)

⊤H(y)−1gη(y) ≤ ϵ2N that

gη(y)
⊤H̃(y)−1H(y)H̃(y)−1gη(y) ≤ α2

H · ϵ2N , (3.28)

where αH = 1.03. Combining Equation (3.27) with Inequality (3.28) completes the proof of
the theorem.

Table 3.5.1: Summary of parameters in approximate central path for SDP.

Notation Choice Appearance Meaning

αH 1.03 Lemma 18 Approx. factor α−1
H ·H ⪯ H̃ ⪯ αH ·H

ϵN 0.1 Lemma 19 Upper bound on Newton step size (g⊤η H
−1gη)

1/2

ϵS 0.01 Algorithm 2 Approx. error (1− ϵS) · S ⪯ S̃ ⪯ (1 + ϵS) · S
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Algorithm 1

1: procedure Main(n,m, δ, ϵN , C, A, b) ▷ C ∈ Sn×n, {Ai}mi=1 ∈ Sn×n, vector b ∈ Rm, error
parameter 0 < δ < 0.1, Newton step size parameter 0 < ϵN < 0.1

2: Modify the SDP and obtain an initial dual solution y according to Lemma 25
3: η ← 1/(n+ 2)
4: T ← 40

ϵN

√
n log

(
n
δ

)
5: S̃ ← S ←

∑
i∈[m] yiAi − C.

6: for iter = 1→ T do
7: ηnew ← η

(
1 + ϵN

20
√
n

)
8: for j = 1, · · · ,m do ▷ Gradient computation
9: gηnew(y)j ← ηnew · bj − tr[S−1 · Aj]
10: end for
11: for j = 1, · · · ,m do ▷ Hessian computation
12: for k = 1, · · · ,m do
13: H̃j,k(y)← tr[S̃−1 · Aj · S̃−1 · Ak]
14: end for
15: end for
16: δy ← −H̃(y)−1gηnew(y) ▷ Update on y
17: ynew ← y + δy ▷ Approximate Newton step
18: Snew ←

∑
i∈[m](ynew)iAi − C

19: S̃new ← ApproxSlackUpdate(Snew, S̃) ▷ Approximate slack computation

20: y ← ynew, S ← Snew, S̃ ← S̃new ▷ Update variables
21: end for
22: Return an approximate solution to the original SDP according to Lemma 25
23: end procedure

Approximate slack update

Lemma 16. Given positive definite matrices Snew, S̃ ∈ Sn×n
>0 and any parameter 0 < ϵS <

0.01, there is an algorithm (procedure ApproxSlackUpdate in Algorithm 2) that takes

O(nω+o(1)) time to output a positive definite matrix S̃new ∈ Sn×n
>0 such that

∥S−1/2
new S̃newS

−1/2
new − I∥op ≤ ϵS. (3.29)

Proof. The runtime of O(nω+o(1)) is by the spectral decomposition Z = U · Λ · U⊤, the
costliest step in the algorithm. To prove (3.29), we notice that λnew are the eigenvalues

of S
−1/2
new S̃newS

−1/2
new − I and by the algorithm description (lines 6 - 13), the upper bound

(λnew)i ≤ ϵS holds for each i ∈ [n].



CHAPTER 3. A FASTER IPM FOR SEMI-DEFINITE PROGRAMMING 48

Algorithm 2 Approximate Slack Update

1: procedure ApproxSlackUpdate(Snew, S̃) ▷ Snew, S̃ ∈ Sn×n
≥0 are positive definite

matrices
2: ϵS ← 0.01 ▷ Spectral approximation constant
3: Zmid ← S

−1/2
new · S̃ · S−1/2

new − I
4: Compute spectral decomposition Zmid = U · Λ · U⊤

5: ▷ Λ = diag(λ1, · · · , λn) are the eigenvalues of Zmid, and U ∈ Rn×n is orthogonal
6: Let π : [n]→ [n] be a sorting permutation such that |λπ(i)| ≥ |λπ(i+1)|
7: if |λπ(1)| ≤ ϵS then

8: S̃new ← S̃
9: else
10: r ← 1
11: while |λπ(2r)| > ϵS or |λπ(2r)| > (1− 1/ log n)|λπ(r)| do
12: r ← r + 1
13: end while

14: (λnew)π(i) ←

{
0 if i = 1, 2, · · · , 2r;
λπ(i) otherwise.

15: S̃new ← S̃ + S
1/2
new · U · diag(λnew − λ) · U⊤ · S1/2

new

16: end if
17: return S̃new

18: end procedure

Closeness of slack implies closeness of Hessian

Lemma 17. Given symmetric matrices A1, · · · , Am ∈ Sn×n, and positive definite matrices
S̃, S ∈ Sn×n

>0 , define matrices H̃ ∈ Rm×m and H ∈ Rm×m as

H̃j,k = tr[S̃−1AjS̃
−1Ak] and Hj,k = tr[S−1AjS

−1Ak].

Then both H̃ and H are positive semidefinite. For any accuracy parameter αS ≥ 1, if

α−1
S · S ⪯ S̃ ⪯ αS · S,

then we have that

α−2
S ·H ⪯ H̃ ⪯ α2

S ·H.

Proof. For any vector v ∈ Rn, we define A(v) =
∑m

i=1 viAi. We can rewrite v⊤Hv as follows.

v⊤Hv =
m∑
i=1

m∑
j=1

vivjHi,j =
m∑
i=1

m∑
j=1

vivjtr[S
−1AiS

−1Aj] = tr[S−1/2A(v)S−1A(v)S−1/2].

(3.30)
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Similarly, we have

v⊤H̃v = tr[S̃−1/2A(v)S̃−1A(v)S̃−1/2]. (3.31)

As the RHS of (3.30) and (3.31) are non-negative, both H̃ and H are positive semidefinite.

Since S̃ ⪯ αS · S, we have S−1 ⪯ αS · S̃−1 (see Section 3.2), which gives the following
inequalities

tr[S−1/2A(v)S−1A(v)S−1/2] ≤ αS · tr[S−1/2A(v)S̃−1A(v)S−1/2]

≤ α2
S · tr[S̃−1/2A(v)S̃−1A(v)S̃−1/2], (3.32)

where the first inequality follows from viewing tr[S−1/2A(v)S−1A(v)S−1/2] as
∑n

i=1 u
⊤
i S

−1ui
for ui = A(v)S−1/2ei and the second inequality follows similarly, after using the cyclic per-

mutation property of trace. Similarly, using α−1
S · S ⪯ S̃, we have

tr[S−1/2A(v)S−1A(v)S−1/2] ≥ α−2
S · tr[S̃

−1/2A(v)S̃−1A(v)S̃−1/2]. (3.33)

Combining (3.32) and (3.33) with (3.30) and (3.31) along with the fact that v can be any
arbitrary n-dimensional vector finishes the proof of the lemma.

Approximate Hessian maintenance

Lemma 18. In each iteration of Algorithm 1, for αH = 1.03, the approximate Hessian H̃(y)
satisfies that

α−1
H H(y) ⪯ H̃(y) ⪯ αH ·H(y).

Proof. By Lemma 16, given as input two positive definite matrices Snew and S̃, Algorithm 2
outputs a matrix S̃new such that

∥S−1/2
new S̃newS

−1/2
new − I∥op ≤ ϵS,

where ϵS = 0.01 as in Algorithm 2. By definition of operator norm, this implies that in each
iteration of Algorithm 1, we have, for αS = 1.011,

α−1
S · S ⪯ S̃ ⪯ αS · S.

The statement of this lemma then follows from Lemma 17.

Invariance of Newton step size

The following lemma is standard in the theory of interior point methods (e.g. see [102]).
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Lemma 19 (Invariance of Newton step [102]). Given any parameters 1 ≤ αH ≤ 1.03 and
0 < ϵN ≤ 1/10, suppose that gη(y)

⊤H(y)−1gη(y) ≤ ϵ2N holds for some feasible dual solution

y ∈ Rm and parameter η > 0, and positive definite matrix H̃ ∈ Sn×n
>0 satisfies

α−1
H H(y) ⪯ H̃ ⪯ αHH(y)

Then ηnew = η(1 + ϵN
20

√
n
) and ynew = y − H̃−1gηnew(y) satisfy

gηnew(ynew)
⊤H(ynew)

−1gηnew(ynew) ≤ ϵ2N .

Approximate optimality

The following lemma is also standard in interior point method.

Lemma 20 (Approximate optimality [102]). Suppose 0 < ϵN ≤ 1/10, dual feasible solution
y ∈ Rm, and parameter η ≥ 1 satisfy the following bound on Newton step size:

gη(y)
⊤H(y)−1gη(y) ≤ ϵ2N .

Let y∗ be an optimal solution to the dual formulation (3.2). Then we have

b⊤y ≤ b⊤y∗ +
n

η
· (1 + 2ϵN).

3.6 Low-rank Update

Crucial to being able to efficiently approximate the Hessian in each iteration is the condition
that the rank of the update be not too large. We formalize this idea in the following theorem,
essential to the runtime analysis in Section 3.7.

Theorem 14 (Rank inequality). Let r0 = n and ri be the rank of the update to the approx-

imate slack matrix S̃ when calling Algorithm 2 in iteration i of Algorithm 1. Then, over T
iterations of Algorithm 1, the ranks ri satisfy the inequality

T∑
i=0

√
ri ≤ O(T log1.5 n).

The rest of this section is devoted to proving Theorem 14. To this end, we define the
“error” matrix Z ∈ Rn×n as follows

Z = S−1/2S̃S−1/2 − I (3.34)

and the potential function Φ : Rn×n → R

Φ(Z) =
n∑

i=1

|λ(Z)|[i]√
i

, (3.35)
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where |λ(Z)|[i] denotes the i’th entry in the list of absolute eigenvalues of Z sorted in descend-
ing order. The following lemma bounds, from above, the change in the potential described
by Equation (3.35), when S is updated to Snew.

Lemma 21 (Potential change when S changes). Suppose matrices S, Snew and S̃ satisfy the
inequalities

∥S−1/2SnewS
−1/2 − I∥F ≤ 0.02 and ∥S−1/2S̃S−1/2 − I∥op ≤ 0.01. (3.36)

Define matrices Z = S−1/2S̃S−1/2 − I and Zmid = (Snew)
−1/2S̃(Snew)

−1/2 − I. Then we have

Φ(Zmid)− Φ(Z) ≤
√
log n.

Proof. Our goal is to prove
n∑

i=1

(λ(Z)[i] − λ(Zmid)[i])
2 ≤ 10−3. (3.37)

We first show that the lemma statement is implied by (3.37). We rearrange the order of
the eigenvalues of Zmid and Z so that λ(Zmid)i and λ(Z)i are the ith largest eigenvalues of
Zmid and Z, respectively. For each i ∈ [n], denote ∆i = λ(Zmid)i − λ(Z)i. Then (3.37) is
equivalent to ∥∆∥22 ≤ 10−3. Let τ be the descending order of the magnitudes of eigenvalues
of Zmid, i.e. |λ(Zmid)τ(1)| ≥ · · · ≥ |λ(Zmid)τ(n)|. The potential change Φ(Zmid)−Φ(Z) can be
upper bounded as

Φ(Zmid) =
n∑

i=1

1√
i
|λ(Zmid)τ(i)|

≤
n∑

i=1

(
1√
i
|λ(Z)τ(i)|+

1√
i
|∆τ(i)|

)

≤ Φ(Z) +

(
n∑

i=1

1

i

)1/2( n∑
i=1

|∆i|2
)1/2

≤ Φ(Z) +
√

log n,

where the third line follows from∑
i

1√
i
|λ(Z)τ(i)| ≤

∑
i

1√
i
|λ(Z)|[i]

and Cauchy-Schwarz inequality. This proves the lemma.
The remaining part of this proof is therefore devoted to proving (3.37). Define W =

S
−1/2
new S1/2. Then, we can express Zmid in terms of Z and W in the following way.

Zmid = (Snew)
−1/2S̃(Snew)

−1/2 − I
= (Snew)

−1/2S1/2S−1/2S̃S−1/2S1/2(Snew)
−1/2 − I

= WZW⊤ +WW⊤ − I. (3.38)
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Let λ(M)[i] denote the i’th (ordered) eigenvalue of a matrix M . We then have

n∑
i=1

(λ(Zmid)[i] − λ(WZW⊤)[i])
2 ≤ ∥Zmid −WZW⊤∥2F

= ∥W⊤W − I∥2F , (3.39)

where the first inequality is by Fact 3 (which is applicable here because Zmid and WZW⊤

are both normal matrices) and the second step is by (3.38). Denote the eigenvalues of
S−1/2SnewS

−1/2 by {νi}ni=1. Then the first assumption in (3.36) implies that
∑

i∈[n](νi−1)2 ≤
4× 10−4. It follows that

∥W⊤W − I∥2F = ∥S1/2S−1
newS

1/2 − I∥2F =
∑
i∈[n]

(1/νi − 1)2 ≤ 5× 10−4, (3.40)

where the last inequality is because the first assumption from (3.36) implies νi ≥ 0.98 for all
i ∈ [n]. Plugging (3.40) into the right hand side of (3.39), we have

n∑
i=1

(λ(Zmid)[i] − λ(WZW⊤)[i])
2 ≤ 5× 10−4. (3.41)

LetW = UΣV ⊤ be the singular value decomposition ofW , with U and V being n×n unitary
matrices. Because of the invariance of the Frobenius norm under unitary transformation,
(3.40) is then equivalent to

∥Σ2 − I∥F =
n∑

i=1

(σ2
i − 1)2 ≤ 5× 10−4. (3.42)

Since U and V are unitary, the matrix WZW⊤ = UΣV ⊤ZV ΣU⊤ is similar to ΣV ⊤ZV Σ,
and the matrix Z ′ = V ⊤ZV is similar to Z. Therefore,

n∑
i=1

(λ(WZW⊤)[i] − λ(Z)[i])2 =
n∑

i=1

(λ(ΣZ ′Σ)[i] − λ(Z ′)[i])
2

≤ ∥ΣZ ′Σ− Z ′∥2F , (3.43)

where the last inequality is by Fact 3. We rewrite the Frobenius norm as

∥ΣZ ′Σ− Z ′∥F = ∥(Σ− I)Z ′(Σ− I) + (Σ− I)Z ′ + Z ′(Σ− I)∥F
≤ ∥(Σ− I)Z ′(Σ− I)∥F + 2∥(Σ− I)Z ′∥F . (3.44)
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The first term can be bounded as:

∥(Σ− I)Z ′(Σ− I)∥2F = tr[(Σ− I)Z ′(Σ− I)2Z ′(Σ− I)]
≤ tr[(Σ− I)4 · (Z ′)2]

≤ 0.012 · tr[(Σ− I)4]

=
n∑

i=1

(σi − 1)4

≤ 5× 10−8, (3.45)

The first inequality above uses Fact 1, the second used the observation that ∥Z ′∥op = ∥Z∥op ≤
0.01, and the last inequality follows from (3.42) and the fact that

∑n
i=1(σi−1)4 ≤

∑n
i=1(σ

2
i −

1)2. Similarly, we can bound the second term as

∥(Σ− I)Z ′∥2F = tr[(Σ− I)(Z ′)2(Σ− I)]
≤ tr[(Σ− I)2(Z ′)2]

≤ 0.012 · tr[(Σ− I)2] ≤ 10−7. (3.46)

It follows from (3.43), (3.44) and (3.46) that

n∑
i=1

(λ(WZW⊤)[i] − λ(Z)[i])2 ≤ 10−6. (3.47)

Combining (3.41) and (3.47), we get that
∑n

i=1(λ(Z)[i]−λ(Zmid)[i])
2 ≤ 10−3 which establishes

(3.37). This completes the proof of the lemma.

Lemma 22 (Potential change when S̃ changes). Given positive definite matrices Snew, S̃ ∈
Sn
>0, let S̃new and r be generated during the run of Algorithm 2 when the inputs are Snew and S̃.

Define the matrices Zmid = (Snew)
−1/2S̃(Snew)

−1/2−I and Znew = (Snew)
−1/2S̃new(Snew)

−1/2−
I. Then we have

Φ(Zmid)− Φ(Znew) ≥
10−4

log n

√
r.

Proof. The setup of the lemma considers the eigenvalues of Z when S̃ changes. For the
sake of notational convenience, we define y = |λ(Zmid)|, the vector of absolute values of

eigenvalues of Zmid = S
−1/2
new S̃S

−1/2
new − I. Recall from Table 3.5.1 that ϵS = 0.01. We consider

two cases below.

Case 1. There does not exist an i ≤ n/2 that satisfies the two conditions y[2i] < ϵS and
y[2i] < (1− 1/10 log n)y[i]. In this case, we have r = n/2. We consider two sub-cases.

• Case (a). For all i ∈ [n], we have y[i] ≥ ϵS. In this case, we change all n coordinates
of y, and the change in each coordinate contributes to a potential decrease of at least
ϵS/
√
n. Therefore, we have Φ(Zmid)− Φ(Znew) ≥ ϵS

√
n ≥ 10−4

logn

√
r.
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• Case (b). There exists a minimum index i ≤ n/2 such that y[2j] < ϵS holds for all
j in the range i ≤ j ≤ n/2. In this case, for all j in the above range, we have that
y[2j] ≥ (1− 1/10 log n)y[j]. In particular, picking j = i, 2i, · · · gives

y[n] ≥ y[i] · (1− 1/(10 log n))⌈logn⌉ ≥ ϵS/10.

Recalling that our notation y[i] denotes the i’th absolute eigenvalue in decreasing order,
we use the above inequality and repeat the argument from the previous sub-case to
conclude that Φ(Zmid)− Φ(Znew) ≥ ϵS/10 ·

√
n ≥ 10−4

logn
·
√
r.

Case 2. There exists an index i for which both the conditions y[2i] < ϵS and y[2i] <
(1− 1/10 log n)y[i] are satisfied. By definition, r ≤ n/2 is the smallest such index. Consider
the index j such that for all j′ < j, we have y[j′] ≥ ϵS and for all j′ ≥ j, we have y[j] < ϵS.
By the same argument as in Case 1(b), we can prove y[r] ≥ ϵS/10. Moreover, y[2r] < (1 −
1/10 log n)y[r] by definition of r. Denote by ynew the vector of magnitudes of the eigenvalues
of Znew. Since ynew[i] is set to 0 for each i ∈ [2r], we have ynew[i] = y[i+2r] ≤ y[i]. Further,

y[2r] < (1− 1/10 log n)y[r] implies that for each i ∈ [r], we have

y[i] − ynew[i] ≥
1

10 log n
· y[r] ≥

10−2ϵS
log n

=
10−4

log n
,

where ϵS = 0.01 by Table 3.5.1. Therefore, we can bound, from below, the decrease in
potential function as

Φ(Zmid)− Φ(Znew) ≥
r∑

i=1

y[i] − ynew[i]√
i

≥ 10−4

log n

√
r.

This finishes the proof of the lemma.

Proof of Theorem 14. Recall the definition of the potential function in (3.35) for an error
matrix Z ∈ Sn×n:

Φ(Z) =
n∑

i=1

|λ(Z)|[i]√
i

.

Let S(i) and S̃(i) be the true and approximate slack matrices in the ith iteration of Algo-
rithm 1. Define Z(i) = (S(i))−1/2S̃(i)(S(i))−1/2− I and Z

(i)
mid = (S(i+1))−1/2S̃(i)(S(i+1))−1/2− I.

By Lemma 21, we have that

Φ(Z
(i)
mid)− Φ(Z(i)) ≤

√
log n.

From Lemma 22, we have the following potential decrease:

Φ(Z
(i)
mid)− Φ(Z(i+1)) ≥ 10−4

log n

√
ri.



CHAPTER 3. A FASTER IPM FOR SEMI-DEFINITE PROGRAMMING 55

These together imply that

Φ(Z(i+1))− Φ(Z(i)) ≤
√

log n− 10−4

log n

√
ri. (3.48)

We note that Φ(Z(0)) = 0 as we initialized S̃ = S in the beginning of the algorithm, and that
the potential function Φ(Z) is always non-negative. The theorem then follows by summing
up (3.48) over all T iterations.

3.7 Runtime Analysis

Our main result of this section is the following bound on the runtime of Algorithm 1.

Theorem 15 (Runtime bound). The total runtime of Algorithm 1 for solving an SDP with
variable size n × n and m constraints is at most O∗ (

√
n (mn2 +max(m,n)ω)), where ω is

the matrix multiplication exponent as defined in Definition 4.

To prove Theorem 15, we first upper bound the runtime in terms of fast rectangular
matrix multiplication times. The iteration complexity of Algorithm 1 is T = Õ(

√
n).

Lemma 23 (Total cost). The total runtime of Algorithm 1 over T iterations is upper bounded
as

TTotal ≤ O∗ (min
(
n · nnz(A),mn2.5

)
+
√
nmax(m,n)ω (3.49)

+
T∑
i=0

(Tmat(n,mri, n) + Tmat(m,nri,m)), (3.50)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, ri, as

defined in Theorem 14, is the rank of the update to the approximation slack matrix S̃ in
iteration i, and ω and Tmat are defined in Definitions 4 and 3, respectively.

Remark 1. A more careful analysis can improve the first term in the RHS of (3.49) to√
n · nnz(A)1−γ · (mn2)γ for γ = 1

2(3−ω(1))
. For the purpose of this work, however, we will

only need the simpler bound given in Lemma 23.

Proof. The total runtime of Algorithm 1 consists of two parts:

• Part 1. The time to compute the approximate Hessian H̃(y) (which we abbreviate as

H̃) in Line 11 - 15.

• Part 2. The total cost of operations other than computing the approximate Hessian.
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Part 1.
We analyze the cost of computing the approximate Hessian H̃.
Part 1a. Initialization.
We start with computing H̃ in the first iteration of the algorithm. Each entry of H̃

involves the computation

H̃j,k = tr
[
(S̃−1/2AjS̃

−1/2)(S̃−1/2AkS̃
−1/2)

]
.

It first costs O∗(nω) to invert S̃. Then the cost of computing the key module of the ap-

proximate Hessian, S̃−1/2AjS̃
−1/2 for all j ∈ [m], is obtained by stacking the matrices Aj

together:

TS̃−1/2Aj S̃−1/2 for all j∈[m] ≤ O(Tmat(n,mn, n)). (3.51)

Vectorizing the matrices S̃−1/2AjS̃
−1/2 into row vectors of length n2, for each j ∈ [m], and

stacking these rows vertically to form a matrix B of dimensions m × n2, one observes that
H̃ = BB⊤. We therefore have,

Tcomputing H̃ from B ≤ O(Tmat(m,n
2,m)). (3.52)

Combining (3.51), (3.52), and the initial cost of inverting S̃ gives the following cost for

computing H̃ for the first iteration:

Tpart 1a ≤ O∗(Tmat(m,n
2,m) + Tmat(n,mn, n) + nω). (3.53)

Part 1b. Accumulating low-rank changes over all the iterations
Once the approximate Hessian in the first iteration has been computed, every next it-

eration has the approximate Hessian computed using a rank ri update to the approximate
slack matrix S̃ (see Line 15 of Algorithm 2). If the update from S̃ to S̃new has rank ri, Fact 4
implies that we can compute, in time O(nω+o(1)), the n × ri matrices V+ and V− satisfying

S̃−1
new = S̃−1+V+V

⊤
+ −V−V ⊤

− . The cost of updating H̃ is then dominated by the computation

of tr[S̃−1/2AjV V
⊤AkS̃

−1/2], where V ∈ Rn×ri is either V+ or V−. We note that

TAjV for all j∈[m] ≤ O∗
(
min

(
ri · nnz(A),mn2r

ω−2+o(1)
i

))
, (3.54)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, and the
second term in the minimum is obtained by stacking the matrices Aj together and splitting

it and V into matrices of dimensions ri× ri. Further, pre-multiplying S̃−1/2 with AjV for all
j ∈ [m] essentially involves computing the matrix product of an n×n matrix and an n×mri
matrix, which, by Definition 3, costs Tmat(n,mri, n). This, together with (3.54), gives

TS̃−1/2AjV for all j ∈ [m] ≤ O∗
(
Tmat(n,mri, n) + min

(
ri · nnz(A),mn2r

ω−2+o(1)
i

))
. (3.55)
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The final step is to vectorize all the matrices S̃−1/2AjV , for each j ∈ [m], and stack these
vertically to get an m × nri matrix B, which gives the update to Hessian to be computed
as BB⊤. This costs, by definition, Tmat(m,nri,m). Combining this with (3.55) gives the
following run time for one update to the approximate Hessian:

Trank ri Hess. update ≤ O∗ (Tmat(n,mri, n) + min
(
ri · nnz(A),mn2rω−2

i

)
+ Tmat(m,nri,m) + nω

)
(3.56)

Using this bound over all T = Õ(
√
n) iterations, and applying

∑T
i=0

√
ri ≤ Õ(

√
n) from

Theorem 14, gives

Tpart 1b ≤ O∗

(
min(n · nnz(A),mn2.5) +

√
n · nω +

T∑
i=1

(Tmat(n,mri, n) + Tmat(m,nri,m))

)
.

(3.57)

Combining Part 1a and 1b.
Combining (3.53) and (3.57), we have

Tpart 1 ≤ Tpart 1a + Tpart 1b

≤ O∗

(
min(n · nnz(A),mn2.5) +

√
n · nω +

T∑
i=0

(Tmat(n,mri, n) + Tmat(m,nri,m))

)
,

(3.58)

where we incorporated the bound from (3.53) into the i = 0 case.
Part 2.
Observe that there are four operations performed in Algorithm 1 other than computing

H̃:

• Part 2a. computing the gradient gη(y)

• Part 2b. inverting the approximate Hessian H̃

• Part 2c. updating the dual variables ynew and S(ynew)

• Part 2d. computing the new approximate slack matrix S̃(ynew)

Part 2a. The i’th coordinate of the gradient is expressed as gη(y)i = ηbi − tr[S−1Ai].
The cost per iteration of computing this quantity equals O(nnz(A) + nω+o(1)), where the
second term comes from inverting the matrix S.

Part 2b. The cost of inverting the approximate Hessian H̃ is O(mω+o(1)) per iteration.

Part 2c. The cost of updating the dual variable ynew = y − H̃−1gηnew(y), given H̃−1

and gηnew(y), is O(m
2) per iteration. The cost of computing the new slack matrix Snew =∑

i∈[m](ynew)iAi − C is O(nnz(A)) per iteration.
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Part 2d. The per iteration cost of updating the approximate slack matrix S̃new is
O(nω+o(1)) by Lemma 16.

Combining Part 2a, 2b, 2c and 2d.
The total cost of operations other than computing the Hessian over the T = Õ(

√
n)

iterations is therefore bounded by

Tpart 2 ≤ Tpart 2a + Tpart 2b + Tpart 2c + Tpart 2d

≤ O∗(
√
n(nnz(A) + max(m,n)ω)). (3.59)

Combining Part 1 and Part 2.
Combining (3.58) and (3.59) and using r0 = n finishes the proof of the lemma.

Ttotal ≤ Tpart 1 + Tpart 2

≤ O∗ (min
(
n · nnz(A),mn2.5

)
+
√
nmax(m,n)ω

+
T∑
i=0

(Tmat(n,mri, n) + Tmat(m,nri,m))

Lemma 24. Let Tmat be as defined in Definition 3. Let T = Õ(
√
n) and {r1, · · · , rT} be a

sequence that satisfies

T∑
i=1

√
ri ≤ O(T log1.5 n)

Property I. We have

T∑
i=1

Tmat(m,nri,m) ≤ O∗(
√
nmax(mω, nω) + Tmat(m,n

2,m)),

Property II. We have

T∑
i=1

Tmat(n,mri, n) ≤ O∗(
√
nmax(mω, nω) + Tmat(n,mn, n)).

Proof. We give only the proof of Property I, as the proof of Property II is similar. Let
m = na. For each i ∈ [T ], let ri = nbi , where bi ∈ [0, 1]. Then

Tmat(m,nri,m) = Tmat(n
a, n1+bi , na) = naω((1+bi)/a)+o(1). (3.60)

For each number k ∈ {0, 1, · · · , log n}, define the set of iterations

Ik = {i ∈ [T ] : 2k ≤ ri ≤ 2k+1}.
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Then our assumption on the sequence {r1, · · · , rT} can be expressed as
∑logn

k=0 |Ik| ·2k/2 ≤
O(T log1.5 n). This implies that for each k{0, 1, · · · , log n}, we have |Ik| ≤ O(T log1.5 n/2k/2).
Next, taking the summation of Eq. (3.60) over all i ∈ [T ], we have

T∑
i=1

Tmat(m,nri,m) =
T∑
i=1

na·ω((1+bi)/a)

=

logn∑
k=0

∑
i∈Ik

na·ω((1+bi)/a)

≤ O(log n) ·max
k

max
i∈Ik

T log1.5 n

2k/2
· na·ω((1+bi)/a)

≤ Õ(1) ·max
k

max
2k≤nbi≤2k+1

√
n

2k/2
· na·ω((1+bi)/a)

≤ Õ(1) · max
bi∈[0,1]

n1/2−bi/2+a·ω((1+bi)/a),

where the fourth step follows from T = Õ(
√
n). To bound the exponent on n above, we

define the function g,

g(bi) = 1/2− bi/2 + a · ω((1 + bi)/a). (3.61)

This function is convex in bi due to the convexity of the function ω (Lemma 11). Therefore,
over the interval bi ∈ [0, 1], the maximum of g is attained at one of the end points. We
simply evaluate this function at the end points.

Case 1. Consider the case bi = 0. In this case, we have g(0) = 1/2 + aω(1/a). We
consider the following two subcases. Case 1a. If a ≥ 1, then we have

g(0) = 1/2 + a · ω(1/a) ≤ 1/2 + aω(1) = 1/2 + aω

Case 1b. If a ∈ (0, 1), then we define k = 1/a > 1. It follows from Lemma 10 and
ω > 1, that

g(0) = 1/2 + a · ω(1/a) = 1/2 + ω(k)/k ≤ 1/2 + (k − 1 + ω)/k ≤ 1/2 + ω.

Combining both Case 1a and Case 1b, we have that

ng(0) ≤ max(n1/2+aω, n1/2+ω) ≤
√
n ·max(mω, nω).

Case 2 Consider the other case of bi = 1. In this case, g(1) = 1/2 − 1/2 + aω(2/a) =
aω(2/a).

We now finish the proof by combining Case 1 and Case 2 as follows.

max
bi∈[0,1]

n1/2−bi+a·ω((1+bi)/a) ≤
√
nmax(mω, nω) + na·ω(2/a).
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Proof of Theorem 15. In light of Lemma 24, the upper bound on runtime given in Lemma 23
can be written as

TTotal ≤ O∗ (min
{
n · nnz(A),mn2.5

}
+
√
nmax(m,n)ω + Tmat(n,mn, n) + Tmat(m,n

2,m)
)
.

(3.62)

Combining this with 14, we have the following upper bound on the total runtime of
Algorithm 1:

TTotal ≤ O∗ (min
{
n · nnz(A),mn2.5

}
+
√
nmax(m,n)ω +

√
n
(
mn2 +mω

))
≤ O∗ (√n (mn2 +max(m,n)ω

))
.

This finishes the proof of the theorem.

3.8 Comparison with Cutting Plane Method

In this section, we prove Theorem 10, restated below.

Theorem 10 (Comparison with Cutting Plane Method). When m ≥ n, there is an interior
point method that solves an SDP with n×n matrices, m constraints, and nnz(A) input size,
faster than the current best cutting plane method [83, 62], over all regimes of nnz(A).

Remark 2. In the dense case with nnz(A) = Θ(mn2), Algorithm 1 is faster than the cutting
plane method whenever m ≥

√
n.

Proof of Theorem 10. Recall that the current best runtime of the cutting plane method for
solving an SDP (3.1) is TCP = O∗(m · nnz(A) +mn2.372927 +m3) [83, 62], where 2.372927 is
the current best upper bound on the exponent of matrix multiplication ω. By Lemma 23
and 24, we have the following upper bound on the total runtime of Algorithm 1:

TTotal ≤ O∗ (min
{
n · nnz(A),mn2.5

}
+
√
nmax(m,n)ω + Tmat(n,mn, n) + Tmat(m,n

2,m)
)

Since m ≥ n by assumption, Lemma 13 and 13 further simplify the runtime to

TTotal ≤ O∗ (min
{
n · nnz(A),mn2.5

}
+
√
nmω + Tmat(m,n

2,m)
)

(3.63)

Note that min {n · nnz(A),mn2.5} ≤ m·nnz(A) ≤ O(TCP) and that
√
nmω = o(m3) ≤ o(TCP)

since m ≥ n. Furthermore, Lemma 15 states that Tmat(m,n
2,m) = o(m3 + mn2.37) ≤

o(TCP). Since each term on the RHS of (3.63) is upper bounded by TCP, we make the stated
conclusion.
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3.9 Initialization

Lemma 25 (Initialization). Consider a semidefinite program as in Definition 2 of dimension
n× n with m constraints, and assume that it has the following properties.

1. Bounded diameter: for any X ⪰ 0 with ⟨Ai, X⟩ = bi for all i ∈ [m], we have ∥X∥op ≤
R.

2. Lipschitz objective: ∥C∥op ≤ L.

For any 0 < δ ≤ 1, the following modified semidefinite program

max
X⪰0

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi,∀i ∈ [m+ 1],

where

Ai =

Ai 0n 0n
0⊤n 0 0
0⊤n 0 bi

R
− tr[Ai]

 , ∀i ∈ [m],

Am+1 =

In 0n 0n
0⊤n 1 0
0⊤n 0 0

 , b =

[
1
R
b

n+ 1

]
, C =

C · δ
L

0n 0n
0⊤n 0 0
0⊤n 0 −1

 ,
satisfies the following statements.

1. The following are feasible primal and dual solutions:

X = In+2 , y =

[
0m
1

]
, S =

In − C · δ
L

0n 0
0⊤n 1 0
0⊤n 0 1

 .
2. For any feasible primal and dual solutions (X, y, S) with duality gap at most δ2, the

matrix X̂ = R ·X [n]×[n], where X [n]×[n] is the top-left n×n block submatrix of X, is an
approximate solution to the original semidefinite program in the following sense:

⟨C, X̂⟩ ≥ ⟨C,X∗⟩ − LR · δ,
X̂ ⪰ 0,∑

i∈[m]

∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ ≤ 4nδ · (R

∑
i∈[m]

∥Ai∥1 + ∥b∥1),

where X∗ is any optimal solution to the original SDP and ∥A∥1 denotes the Schatten
1-norm of a matrix A.
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Proof. For the first result, straightforward calculations show that ⟨Ai, X⟩ = bi for all i ∈
[m+1], and that

∑
i∈[m+1] yiAi−S = C. Now we prove the second result. Denote OPT and

OPT the optimal values of the original and modified SDP respectively. Our first goal is to
establish a lower bound for OPT in terms of OPT. For any optimal solution X ∈ Sn×n of
the original SDP, consider the following matrix X ∈ R(n+2)×(n+2)

X =

 1
R
X 0n 0n
0⊤n n+ 1− 1

R
tr[X] 0

0⊤n 0 0

 .
Notice that X is a feasible primal solution to the modified SDP, and that

OPT ≥ ⟨C,X⟩ = δ

LR
· ⟨C,X⟩ = δ

LR
· OPT,

where the first step follows because the modified SDP is a maximization problem, and the
final step is because X is an optimal solution to the original SDP.

Given a feasible primal solution X ∈ R(n+2)×(n+2) of the modified SDP with duality gap

δ2, we could assume X =

X [n]×[n] 0n 0n
0⊤n τ 0
0⊤n 0 θ

 without loss of generality, where τ, θ ≥ 0.

This is because if the entries of X other than the diagonal and the top-left n× n block are
not 0, then we could zero these entries out and the matrix remains feasible and positive
semidefinite. We thus immediately have X̂ ⪰ 0. Notice that

δ

L
· ⟨C,X [n]×[n]⟩ − θ = ⟨C,X⟩ ≥ OPT− δ2 ≥ δ

LR
· OPT− δ2. (3.64)

Therefore, we can lower bound the objective value for X [n]×[n] in the original SDP as

⟨C, X̂⟩ = R · ⟨C,X [n]×[n]⟩ ≥ OPT− LR · δ,

where the last inequality follows from (3.64). By matrix Hölder inequality, we have

δ

L
· ⟨C,X [n]×[n]⟩ ≤

δ

L
· ∥C∥op · tr

[
X [n]×[n]

]
≤ δ

L
· ∥C∥op · ⟨Am+1, X⟩

≤ (n+ 1)δ,

where in the last step follows from ∥C∥op ≤ L and bm+1 = n+ 1. We can thus upper bound
θ as

θ ≤ δ

L
· ⟨C,X [n]×[n]⟩+ δ2 − δ

LR
· OPT ≤ (2n+ 1)δ + δ2 ≤ 4nδ, (3.65)
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where the first step follows from (3.64), the second step follows from OPT ≥ −∥C∥op ·
∥X∗∥1 ≥ −nLR where ∥·∥1 is the Schatten 1-norm, and the last step follows from δ ≤ 1 ≤ n.
Notice that by the feasiblity of X for the modified SDP, we have

⟨Ai, X [n]×[n]⟩+ (
1

R
· bi − tr[Ai])θ =

1

R
· bi.

This implies that∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ = |(bi −R · tr[Ai])θ| ≤ 4nδ · (R ∥Ai∥1 + |bi|),

where the final step follows from the upper bound of θ in (3.65). Summing the above
inequality up over all i ∈ [m] finishes the proof of the lemma.

3.10 Matrix Multiplication: A Tensor Approach

The main goal of this section is to rederive, using tensors, some of the technical results from
Section 3.3. In particular, we use tensors to derive upper bounds on the time to perform the
following two rectangular matrix multiplication tasks (Lemma 34 and 35):

• Multiplying a matrix of dimensions m× n2 with one of dimensions n2 ×m,

• Multiplying a matrix of dimensions n×mn with one of dimensions mn× n.
Our hope is that these techniques will eventually be useful in further improving the results
of this work.

Exponent of matrix multiplication

We recall two definitions to describe the cost of certain fundamental matrix operations, along
with their properties.

Definition 5. Define Tmat(n, r,m) to be the number of operations needed to compute the
product of matrices of dimensions n× r and r ×m.

Definition 6. We define the function ω(k) to be the minimum value such that Tmat(n, n
k, n) =

nω(k)+o(1). We overload notation and use ω to denote the exponent of matrix multiplication
(in other words, the cost of multiplying two n× n matrices is nω), and let α denote the dual
exponent of matrix multiplication. Thus, we have ω(1) = ω and ω(α) = 2.

Lemma 26 ([46]). We have :

• ω = ω(1) ≤ 2.372927,

• ω(1.5) ≤ 2.79654,

• ω(1.75) ≤ 3.02159,

• ω(2) ≤ 3.251640.

Lemma 27 ([31, 25]). For any three positive integers n,m, r, we have

Tmat(n, r,m) = O(Tmat(n,m, r)) = O(Tmat(m,n, r)).
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Matrix multiplication tensor

The rank of a tensor T , denoted as R(T ), is the minimum number of simple tensors that sum
up to T . For any two tensors S = (Si,j,k)i,j,k and T = (Ta,b,c)a,b,c, we write S ≤ T if there exist
three matrices A,B and C (of appropriate sizes) such that Si,j,k =

∑
a,b,cAi,aBj,bCk,cTa,b,c

for all i, j, k. For any i, j, k, denote ei,j,k the tensor with 1 in the (i, j, k)-th entry, and 0
elsewhere.

Definition 7 (Matrix-multiplication tensor). For any three positive integers a, b, c, we define

⟨a, b, c⟩ :=
∑
i∈[a]

∑
j∈[b]

∑
k∈[c]

ei(b−1)+j,j(c−1)+k,k(a−1)+i

to be the matrix-multiplication tensor corresponding to multiplying a matrix of size a×b with
one of size b× c.

It’s not hard to show that for any ni and mi where i = 1, 2, 3, we have

⟨n1, n2, n3⟩ ⊗ ⟨m1,m2,m3⟩ = ⟨n1m1, n2m2, n3m3⟩.

Let ⟨n⟩ =
∑

i∈[n] ei,i,i be the identity tensor. For any three tensors S, T1 and T2, if T1 ≤ T2,
then we have

S ⊗ T1 ≤ S ⊗ T2.

Lemma 28 (Monotonicity of tensor rank, [116]). Tensor rank is monotone under the relation
≤, i.e. if T1 ≤ T2, then we have

R(T1) ≤ R(T2).

Lemma 29 (Sub-multiplicity of tensor rank, [116]). For any tensors T1 and T2, we have

R(T1 ⊗ T2) ≤ R(T1) ·R(T2).

Lemma 30. The tensor rank of a matrix multiplication tensor is equal to the cost of multi-
plying the two corresponding sized matrices up to some constant factor, i.e.,

R(⟨a, b, c⟩) = Θ(Tmat(a, b, c)).

Implication of matrix multiplication technique

Lemma 31 (Sub-linearity). For any p ≥ q ≥ 1, we have

ω(p) ≤ p− q + ω(q).
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Proof. We have

⟨n, np, n⟩ = ⟨n, nq, n⟩ ⊗ ⟨1, np−q, 1⟩.

Applying tensor rank on both sides

R(⟨n, np, n⟩) = R(⟨n, nq, n⟩ ⊗ ⟨1, np−q, 1⟩)
≤ R(⟨n, nq, n⟩) ·R(⟨1, np−q, 1⟩),

where the last line follows from Lemma 29. Applying Lemma 30, we have

Tmat(n, n
p, n) ≤ O(1) · Tmat(n, n

q, n) · np−q

Using the definition of ω(p), we have

nω(p)+o(1) ≤ O(1) · nω(q)+o(1) · np−q.

Comparing the exponent on both sides completes the proof.

The next lemma establishes the convexity of ω(k) as a function of k.

Lemma 32 (Convexity of ω(k)). The fast rectangular matrix multiplication time exponent
ω(k) as defined in Definition 6 is convex in k.

Proof. Let k = α · p+ (1− α) · q for α ∈ (0, 1). We have

⟨n, nk, n⟩ = ⟨nα, nα·p, nα⟩ ⊗ ⟨n1−α, n(1−α)p, n1−α⟩.

Applying the tensor rank on both sides,

R(⟨n, nk, n⟩) = R(⟨nα, nα·p, nα⟩ ⊗ ⟨n1−α, n(1−α)p, n1−α⟩)
≤ R(⟨nα, nα·p, nα⟩) ·R(⟨n1−α, n(1−α)p, n1−α⟩),

where the last line follows from Lemma 29. By Lemma 30, we have

Tmat(n, n
k, n) ≤ O(1) · Tmat(n

α, nαp, nα) · Tmat(n
1−α, n(1−α)p, n1−α)

By definition of ω(·), we have

nω(k)+o(1) ≤ O(1) · nα·ω(p) · n(1−α)ω(1−p).

By comparing the exponent, we know that

ω(k) ≤ α · ω(p) + (1− α) · ω(1− p).
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Lemma 33. Let Tmat be defined as in Definition 5. Then for any positive integers a, b, c and
k, we have

Tmat(a, bk, c) ≤ O(Tmat(ak, b, ck)).

Proof. Notice that

⟨1, k, 1⟩ ≤ ⟨k, 1, k⟩.

Therefore, we have

⟨a, bk, c⟩ = ⟨a, b, c⟩ ⊗ ⟨1, k, 1⟩
≤ ⟨a, b, c⟩ ⊗ ⟨k, 1, k⟩
=⟨ak, b, ck⟩.

It then follows from Lemma 28 that

R(⟨a, bk, c⟩) ≤ R(⟨ak, b, ck⟩).

Finally, using Lemma 30 gives

Tmat(a, bk, c) ≤ O(Tmat(ak, b, ck)).

Thus we complete the proof.

General bound on Tmat(n,mn, n) and Tmat(m,n
2,m)

Lemma 34. Let Tmat be defined as in Definition 5.
If m ≥ n, then we have

Tmat(n,mn, n) ≤ O(Tmat(m,n
2,m)).

If m ≤ n, then we have

Tmat(m,n
2,m) ≤ O(Tmat(n,mn, n)).

Proof. We only prove the case of m ≥ n, as the other case where m < n is similar. This
is an immediate consequence of Lemma 33 by taking a = c = n, b = n2, and k = ⌊m/n⌋,
where k is a positive integer because m ≥ n.

In the next lemma, we derive upper bounds on the term Tmat(m,n
2,m) when m ≥ n and

Tmat(n,mn, n) when m < n, which is crucial to our runtime analysis.



CHAPTER 3. A FASTER IPM FOR SEMI-DEFINITE PROGRAMMING 67

Lemma 35. Let Tmat be defined as in Definition 5 and ω be defined as in Definition 6.
Property I. We have

Tmat(n,mn, n) ≤ O(mnω+o(1)).

Property II. We have

Tmat(m,n
2,m) ≤ O

(√
n
(
mn2 +mω

))
.

Proof. Property I.
Since

⟨n,mn, n⟩ = ⟨n, n, n⟩ ⊗ ⟨1,m, 1⟩.

Applying the tensor rank on both sides, we have

R(⟨n,mn, n⟩) = R(⟨n, n, n⟩ ⊗ ⟨1,m, 1⟩)
≤ R(⟨n, n, n⟩) ·R(⟨1,m, 1⟩)

Thus, we complete the proof.
Property II.
Let m = na, where a ∈ (0,∞). We have

⟨m,n2,m⟩ = ⟨na, (na)2/a, na⟩

It implies that

Tmat(m,n
2,m) = na·ω(2/a)+o(1)

The Property II is then an immediate consequence of the following inequality, which we
prove next:

ω(2/a) < max(1 + 2.5/a, ω(1) + 0.5/a) ∀a ∈ (0,∞).

Define b = 2/a ∈ (0,∞). Then the above desired inequality can be expressed in terms of b
as

ω(b) < max(1 + 5b/4, ω(1) + b/4) ∀b ∈ (0,∞). (3.66)

Notice that the RHS of (3.15) is a maximum of two linear functions of b and these intersect
at b∗ = ω(1)−1. By the convexity of ω( · ) as proved in Lemma 32, it suffices to verify (3.15)
at the endpoints b → 0, b → ∞ and b = b∗. In the case where b = δ for any δ < 1, (3.15)
follows immediately from the observation that ω(δ) < ω(1). For the case b→∞, by Lemma
26 we have ω(2) ≤ 3.252. It then follows from Lemma 31 that for any b > 2, we have

ω(b) ≤ b− 2 + ω(2) ≤ 1 + 5b/4.
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The final case is where b = b∗ = ω(1)− 1, for which (3.15) is equivalent to

ω(ω(1)− 1) < 5ω(1)/4− 1/4. (3.67)

By Lemma 26, we have that ω(1)− 2 ∈ [0, 0.372927]. Then to prove (3.67), it is sufficient to
show that

ω(t+ 1) < 5t/4 + 9/4 ∀t ∈ [0, 0.372927]. (3.68)

By the convexity of ω( · ) as proved in Lemma 32 and the upper bound of ω(2) ≤ 3.251640
in Lemma 26, we have for k ∈ [1, 2],

ω(k) ≤ ω(1) + (k − 1) · (3.251640− (t+ 2)) = t+ 2 + (k − 1) · (1.251640− t).

In particular, using this inequality for k = t+ 1, we have

ω(t+ 1)− 5t/4− 9/4 ≤ (t+ 2) + t · (1.251640− t)− 5t/4− 9/4

= −t2 + 1.00164t− 1/4,

which is negative on the entire interval [0, 0.372927]. This establishes (3.68) and finishes the
proof of the lemma.
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Chapter 4

An IPM Inspired Approach to
Discrepancy

In this chapter, we first describe an interior point method style algorithm for the usual
Spencer problem. While this approach is heavily inspired from previous algorithms and
analyses of the usual Spencer problem, we remark that our “covariance control” is different
than the previous approaches and unlike the previous controls which seemed intrinsic to
the case of diagonal matrices/polyhedral constraint sets, our approach generalizes to non-
commutative settings and we show that this suggests a natural approach to resolving matrix
discrepancy problems. We first describe the usual Spencer problem and a conjectured non-
commutative generalization that has been dubbed the Matrix Spencer problem.

Problem 1 (Spencer Problem). Given a universe of n elements, denoted U = {1, . . . , n}
and n subsets of U denoted S = {S1, . . . , Sn}. Our goal is to find a signing of the elements
such that the imbalance/discrepancy across all subsets in S is small. Mathematically,

disc(S) := min
x∈{±1}n

n
max
i=1

∣∣∣∣∣∑
j∈Si

xj

∣∣∣∣∣
One can more generally consider the setup of a given matrix A ∈ [−1, 1]n×n and ask for a
signing x ∈ {±1}n so that ∥Ax∥∞ is small.

If we pick a signing at random, Chernoff bound combined with union bound over the n
sets tells us that with high probability, the discrepancy is O(

√
n log n). Spencer [114] showed

that there exists a signing which achieves a discrepancy of O(
√
n). This demonstrates an

improvement from O(
√
n log n) from O(

√
n), which is tight.

As there are examples, like the Hadamard matrix, where such signings are exponentially
rare, Spencer [114] actually conjectured that it should be hard to find such a signing in poly-
nomial time. Starting from work of Bansal [15], however, a myriad of different algorithmic
proofs have emerged [87, 104, 45, 85]. A feature common to all these proofs is the crucial use
of the facet structure of the discrepancy constraint set, i.e., that the discrepancy set is defined
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by only O(n) linear constraints. As we are allowed to “move” in an O(n) dimensional space,
one can always square off the O(n) linear constraints with an O(n) dimensional subspace to
argue the existence of sufficient degrees of freedom to move in. We note that this intuition
while exact for the random walk based approaches, is also intrinsic to another approach due
to Rothvoss [104] and Eldan-Singh [45] as well. This approach appears to require the use of
Sidak-Khatri Lemma/Gaussian Correlation Inequality [112, 70, 105] which again crucially
uses the O(n) facet structure to argue the existence of good partial signing. This reliance on
the facet structure of these approaches seem to prevent its use for more general discrepancy
problems defined in the space of matrices, for instance, for the so-called Matrix Spencer
problem, which we state next.

Problem 2 (Matrix Spencer Problem). Given a set of n symmetric matrices A1, . . . , An ∈
Rn×n such that ∥Ai∥S∞ ≤ 1, find

min
x∈{±1}n

∥∥∥∥∥
n∑

i=1

xiAi

∥∥∥∥∥
S∞

One can recover the Spencer problem by taking each column of the matrix A in the
Spencer problem, and making that into a diagonal matrix Ai.

As in the Spencer problem, we can show that a random signing gives a bound of
O(
√
n log n) using Matrix Concentration Inequalities and it is conjectured [129, 92] that

here, again, a bound of O(
√
n) is possible. The conjecture was known to hold for constant

block-sized block diagonal matrices [85] as well as when the rank of each Ai is at most O(
√
n)

[55]. It was observed by the author that combining a recent refined matrix concentration
inequality due to [14] can be combined with Rothvoss’ result to argue the conjecture being
true in certain cases. This observation was also used by [20] who additionally noticed that
this condition holds true if we assume Ai have rank at most n/(log n)3. It is important to
remark that the rank constraint is somewhat unnatural for this problem as in the setting of
diagonal matrices of rank at most n/(log n)3, a result of Banascyzk [13] already implies a
bound of

√
n/ log n.

As mentioned, the Rothvoss [104] and Eldan-Singh [45] approaches also crucially rely
on the polyhedral nature of the Spencer problem by looking at the rows of the matrix A,
although [55] use a well-known connection of feasibility of SDPs and quantum communication
to establish the Matrix Spencer conjecture for matrices of rank at most

√
n. For the Matrix

Spencer problem, one would need to apply the Gaussian Correlation Inequality on eO(n)

convex sets in order to capture the spectrahedral set defined by the operator norm constraint.
The other class of algorithmic proofs of Spencer’s problem are based on random walks

starting from the origin and iteratively moving towards a vertex of the discrete hypercube
of dimension n, freezing when we get too close to a face of the discrete hypercube. Variants
of these random walk based approaches have also been successful for other discrepancy
problems like improvements to the Beck-Fiala and Komlos problems [18, 21]. The walks
usually pick a subspace of dimension say n/2 and take a small Gaussian step in that chosen
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subspace. The crucial point is that the subspace can be adaptively chosen at every point in
order to ensure that the discrepancy doesn’t become too large, by blocking out directions
where the discrepancy is large. The success of this approach relies on showing that one
can always find a subspace to move in which keeps the increase in discrepancy to be small,
per step. Levy et al. [85] present such an algorithm which is analyzed using the log-sum-
exp potential that shows up in the multiplicative weights update method. The algorithm
proceeds in each time step t, essentially by looking at O(n) rows with the largest discrepancy
and picking the subspace to move in to be orthogonal to the corresponding rows ai and also
move orthogonal to the current point xt. This certainly ensures that we keep increasing the
norm of the current point x⃗t (which can be at most

√
n as we will stop when we hit a vertex

of the hypercube) and using a decreasing rearrangement/Markov argument to say that the
log-sum-exp of the discrepancy vector, which can be just viewed as a smooth proxy to the
ℓ∞ norm of the discrepancy vector, grows slowly and never crosses the target discrepancy
bound of O(

√
n). Notice however, that this yet again exploits the polyhedral structure of

the problem as it uses the fact that we can always pick O(n) rows to walk orthogonal to and
not change the discrepancy on those rows and such an argument is likely not possible in the
spectrahedral setting of Matrix Spencer.

4.1 Yet Another Algorithm for Spencer’s Theorem

We now present another algorithm which can also be used to recover Spencer’s theorem and
show how that covariance control has a direct analogue in the spectrahedral setting and also
motivates how the refined matrix concentration inequalities of [14] should be helpful as was
also used by [20]. The analysis, but not the algorithm, here is somewhat similar to that of [85]
but will be analyzed using the Stieltjes barrier. An algorithm similar to [85] but analyzed via
the Stieltjes barrier also seems to have appeared in an unpublished note of Yin Tat Lee and
Mohit Singh. The use of the Stieltjes barrier to capture a smooth proxy of the operator norm
in order to bypass a log n dependence stemming from the use of the exponential moment is
well known and successfully implemented in the context of spectral sparsification [22] and the
Kadison-Singer problem , which is implied by another matrix discrepancy problem known
as Weaver’s discrepancy problem [91]. We have a target discrepancy of c

√
n for some c > 1

and will define 2n constraints of the form c
√
n− a⊤i x and c

√
n+ a⊤i x which can be used to

define a polytope. For notational convenience, we just consider c
√
n − a⊤i x and the other

sided constraints are completely similar. Now, instead of exploiting the polytope structure
crucially, we’ll set up a self-concordant barrier for these constraints based on a moment of
the resolvent. For any given point x(t) ∈ (−1, 1)n, we will denote si(t) = c

√
n− a⊤i x(t) and

let S(t) = Diag(s(t)), the diagonal matrix of dimension n×n which collects all the si(t). As
we will only walk in the set of alive coordinates, denoted by L(t) ⊆ [n], being those which
don’t have a coordinate being 1 or -1 and denote AL(t) ∈ Rm×L(t) as the A matrix restricted
to the columns in L(t). We will use S(t) to “rescale” AL(t) and then take a step based on
that, which can be seen as being inspired by affine scaling based interior point methods. We
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will then pick our subspace to be orthogonal to the current point x(t) as well as orthogonal
to the top n/4 right singular vectors of S(t)−1AL(t). Our potential will be

Algorithm 3 Algorithm For Spencer’s Problem

Require: n ≥ 10
Input: A ∈ Rn×n

x(0) = 0⃗n
δ = 1/n2

t = 0
L(t) = {1, . . . , n}
while L(t) ̸= ∅ do

P1(x(t)) = {x|xi = 0 for i ̸∈ L(t)}
P2(x(t)) = {x|x ⊥ x(t)}
P3(x(t)) =

{
x|x ⊥ top n/4 right singular vectors of S(t)−1AL(t)

}
P (x(t)) = P1(x(t)) ∩ P2(x(t)) ∩ P3(x(t))
x(t+ δ) = x(t) +

√
δN(0, P (x(t)))

t = t+ δ
xi(t) = sgn(xi(t)) for i ∈ L(t) such that |x(t)2 − 1| ≤ 1/n
L(t) = L(t) \ {i ∈ L(t)| |x(t)2 − 1| ≤ 1/n}

end while

ϕ(x) =
n∑

i=1

(c
√
n− a⊤i x)−p

for some even p ≥ 2. It is easy to see that these potentials are self-concordant. The analysis
of Algorithm 3 relies on the following lemma.

Lemma 36. Given a point xt ∈ [−1, 1]n such that si(t) > 0 for all i and hence ϕ(xt) <∞.
Based on the update in Algorithm 3, we have, with probability ≥ 1− e−n,

ϕ(xt+δ)− ϕ(xt) ≤ O(n1−2/p)δϕ(xt)
1+2/p

Proof. First note that the update, with probability ≥ 1 − e−n, satisfies a⊤i (x(t + δ) −
x(t))/si(t) < 0.1, hence, the second order approximation to the potential is good, i.e., we
have,

ϕ(x(t+ δ))− ϕ(x(t)) ≤ ⟨∇ϕ(x(t)), x(t+ δ)− x(t)⟩+ ∥x(t+ δ)− x(t))∥2∇2ϕ(x(t))
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We can now understand the update to the potential in expectation.

E [ϕ(x(t+ δ))− ϕ(x(t))] ≤ E
[
(x(t+ δ)− x(t))⊤∇2ϕ(x(t))x(t+ δ)− x(t)

]
(4.1)

≤ p(p+ 1)Tr[A⊤S(t)−(p+2)AP (x(t))]δ (4.2)

≤ 2p2Tr[(S(t)−1A)⊤S(t)−pS(t)−1AP (x(t))]δ (4.3)

= 2p2Tr[S(t)−pS(t)−1AP (x(t))(S(t)−1A)⊤]δ (4.4)

≤ 2p2Tr[S(t)−p]∥S(t)−1AP (x(t))(S(t)−1A)⊤∥S∞ (4.5)

where the last inequality follows from Holder’s inequality.
As P (x(t)) is orthogonal to the top n/4 right singular vectors of S(t)−1A, due to a

standard decreasing rearrangement/Markov inequality argument, we have

∥S(t)−1AP (x(t))(S(t)−1A)⊤∥S∞ ≤
1

n/4
Tr[S(t)−1A(S(t)−1A)⊤]

≤ 4

n

n∑
i=1

si(t)
−2∥ai∥22

≤ 4
n∑

i=1

si(t)
−2

≤ 4n1−2/p

(
n∑

i=1

si(t)
−p

)2/p

(by Holder’s inequality)

Plugging this back in Equation 4.5, we get,

E [ϕ(x(t+ δ))− ϕ(x(t))] ≤ O(p2n1−2/p)ϕ(x(t))1+2/pδ (4.6)

So we have with high probability, ϕ(x(t+ δ))− ϕ(x(t)) ≤ O(p2n1−2/p)ϕ(x(t))1+2/p.

We now prove our main theorem.

Theorem 16. Algorithm 3 terminates at a vertex of the hypercube and the output signing
satisfies ∥Ax(1)∥∞ ≤ O(

√
n)

Proof. As the ℓ2 norm squared of x(t) increases by O(δn) in every iteration, we terminate
in at most O(1/δ) iterations. Now, integrating Equation 4.6, we get

ϕ(x(0))−2/p − ϕ(x(1))−2/p ≤ O(pn1−2/p)

=⇒ ϕ(x(1))−2/p ≥ ϕ(x(0))−2/p −O(pn1−2/p)

=⇒ ϕ(x(1))−2/p ≥ (n1−p/2/cp)−2/p −O(pn1−2/p)

=⇒ ϕ(x(1))−2/p ≥ c2n1−2/p −O(pn1−2/p)

Hence, taking p to be any even constant greater than or equal to 2 and taking c to be a large
enough constant, we have ϕ(x(1))−2/p > 0 and hence ϕ(x(1)) <∞. As the potential doesn’t
blow up to ∞ throughout the process, we are done.
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While the algorithm proposed takes small Gaussian steps, freezing whenever we get too
close to a vertex of the hypercube and thus naturally gives us a full signing at the end,
the author can prove that the same “algorithm” without constraining to remain inside the
hypercube can also be used to establish a sufficient condition for Rothvoss’ [104] convex
program to find partial signings.

Precisely, while Rothvoss’ [Rot17(Theorem 8)] says that if there is a subspace of di-
mension at least (1 − 1/1000)n where the Gaussian volume of the discrepancy body is at
least e−n/1000, one can actually show that instead of picking a single subspace of sufficiently
large dimension, it would suffice to run a covariance controlled, mean zero Brownian motion
upto time 1 such that the control on the covariance corresponds to a projection matrix of
dimension ≥ (1− 1/1000)n and argue that at the time 1, this continous martingale satisfies
the discrepancy bound with high probability, then Rothvoss’ algorithm finds a good partial
signing.

We remark now that the control for the covariance of the Gaussian update we picked
in every iteration was inspired by affine scaling the matrix A such that the current slack
“looks like” the all ones point and doesn’t use the facet structure unlike previous approaches
to Spencer’s problem. Furthermore, as we walk orthogonal to the top O(n) right singular
vectors of S(t)−1A, we are ensuring that the covariance of the update to the “rescaled
discrepancy vector” is kept small. Hence, it is natural to consider whether for the Matrix
Spencer problem, trying to keep the covariance of the Gaussian update of the discrepancy
matrix small is a good strategy. It is however not clear how to exploit such a strategy to
bound the actual operator norm of the discrepancy matrix.

This is where the refined matrix concentration inequalities of Bandiera-Boedihardjo-van
Handel [14] come into the picture. We state their main result next.

Theorem 17. Given matrices A1, . . . , An ∈ Rd×d, we have

E

[∥∥∥∥∥
n∑

i=1

giAi

∥∥∥∥∥
S∞

]
≤

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥
1/2

S∞

+O

∥∥∥∥∥
n∑

i=1

vec(Ai)vec(Ai)
⊤

∥∥∥∥∥
1/2

S∞

 (log d)3/2

where g1, . . . , gn are independent standard Gaussian random variables.

Note that the term multiplying the (log d)3/2 is exactly the norm of the n2 × n2 sized
covariance matrix of the entries of the Gaussian matrix

∑
i giAi and is also equivalent to

the norm of AA⊤ where A ∈ Rn2×n is the matrix formed by stacking vec(Ai) column-
wise. Hence, if we can find a subspace of dimension n/1000 to truncate such that the
Gaussian discrepancy matrix satisfies a norm bound of O(

√
n), then Rothvoss’ algorithm

will find a good partial signing. Certainly based on Theorem 17, one can ask whether a
similar decreasing rearrangement/Markov’s inequality trick to truncate the top n/1000 right
singular vectors of A ∈ Rn2×n, the matrix with vec(Ai) stacked together, which is just a
factorization of the covariance matrix of the Gaussian discrepancy matrix, leads to the norm
of this covariance matrix to be bounded by n/(log n)3, then Rothvoss’ algorithm would
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succeed in finding good partial signings. This observation was used by the authors of [20],
who additionally realised that such a condition holds if one assumes that the rank of each
matrix Ai is bounded by n/(log n)3.

Essentially, now it seems that if we take a large Gaussian step, i.e., of Euclidean norm
Θ(
√
n), we incur log n factors due to requiring a log n moment of the random matrix or of the

resolvent of the random matrix like in [14] however, if we take many small Gaussian steps,
each of which has the subspace to truncate chosen adaptively, then we can use a constant
moment of the resolvent to avoid log n factors in the norm, at least in the diagonal case. It
is then natural to ask whether there is an analogue of the algorithm in the usual Spencer
setting, for the matrix Spencer setting. We next propose one such algorithm which is again
inspired by affine scaling style algorithms for semi-definite programming. We conjecture that
exactly the algorithm as in Algorithm 4 should also suffice to establish the Matrix Spencer
bound of O(

√
n). Here A(S)L(t) ∈ Rn2×L(t) is the matrix formed by taking vec(S−1/2AiS

−1/2)
corresponding to the active elements L(t) and stacking them column-wise. We remark that
A(S) also plays a crucial role in Chapter 3 for Interior Point Methods for Semi-definite
programming.

Algorithm 4 Conjectured Algorithm For Matrix Spencer

Require: n ≥ 10
Input: A1, . . . , An ∈ Rn×n

x(0) = 0⃗n
δ = 1/n
t = 0
L(t) = {1, . . . , n}
while L(t) ̸= ∅ do

P1(x(t)) = {x|xi = 0 for i ̸∈ L(t)}
P2(x(t)) = {x|x ⊥ x(t)}
P3(x(t)) =

{
x|x ⊥ top n/4 right singular vectors of A(S)L(t)

}
P (x(t)) = P1(x(t)) ∩ P2(x(t)) ∩ P3(x(t))
x(t+ δ) = x(t) +

√
δN(0, P (x(t)))

t = t+ δ
xi(t) = sgn(xi(t)) for i ∈ L(t) such that |x(t)2 − 1| ≤ 1/n
L(t) = L(t) \ {i ∈ L(t)| |x(t)2 − 1| ≤ 1/n}

end while

The analysis of such an algorithm likely requires tools similar but more general than that
which were used in [14] and we leave that for future work.
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[25] Markus Bläser. “Fast matrix multiplication”. In: Theory of Computing (2013), pp. 1–
60.

[26] Jan van den Brand et al. “Faster maxflow via improved dynamic spectral vertex
sparsifiers”. In: STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of
Computing, ed. by Stefano Leonardi and Anupam Gupta. ACM, 2022, pp. 543–556.



BIBLIOGRAPHY 78

[27] Jan van den Brand et al. “Solving Tall Dense Linear Programs in Nearly Linear
Time”. In: STOC (2020).

[28] Jan van den Brand. “A Deterministic Linear Program Solver in Current Matrix Mul-
tiplication Time”. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). 2020.

[29] Jan van den Brand et al. “Solving Tall Dense Linear Programs in Nearly Linear Time”.
In: 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC). 2020.
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