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Abstract The objective of the Karlsruhe Tritium Neutrino
(KATRIN) experiment is to determine the effective elec-
tron neutrino mass m(νe) with an unprecedented sensitivity
of 0.2eV/c2 (90% C.L.) by precision electron spectroscopy
close to the endpoint of the β-decay of tritium. We present
a consistent theoretical description of the β-electron energy
spectrum in the endpoint region, an accurate model of the
apparatus response function, and the statistical approaches
suited to interpret and analyze tritium β-decay data observed
with KATRIN with the envisaged precision. In addition to
providing detailed analytical expressions for all formulae
used in the presented model framework with the necessary
detail of derivation, we discuss and quantify the impact of
theoretical and experimental corrections on the measured
m(νe). Finally, we outline the statistical methods for param-
eter inference and the construction of confidence intervals
that are appropriate for a neutrino mass measurement with
KATRIN. In this context, we briefly discuss the choice of the
β-energy analysis interval and the distribution of measuring
time within that range.
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1 Introduction

While neutrino oscillation experiments [1–3] have provided
unambiguous evidence of non-zero neutrino masses, the
absolute neutrino mass scale remains an open question.
The primary objective of the Karlsruhe Tritium Neutrino
(KATRIN) experiment is to probe this scale in a direct
kinematic measurement at an unprecedented sensitivity of
0.2eV/c2 (90% C.L.) [4]. The measurement principle is
based on a shape analysis of the tritium β-decay spectrum
by high precision electron spectroscopy. A non-zero neutrino
mass will cause a distortion in the observed spectrum, which
is most pronounced close to the endpoint energy of 18.6 keV.
This technique has been successfully established by the direct
neutrino mass experiments in Mainz and Troitsk, which place
the most stringent direct upper limit on the effective electron
neutrino mass [5–8]:

m(νe) < 2 eV/c2 (95% C.L.). (1)

Improving this limit in m(νe) by a factor of 10 demands an
enhancement in statistical and systematic precision of the
effective observable m2(νe) by a factor of 100. This requires
both an in-depth understanding of the theoretical electron
β-decay spectrum and an accurate knowledge of the experi-
mental response in measuring the spectral shape. In Sect. 3
we explain the KATRIN setup in more detail.

It is the goal of this work to provide a complete and up-to-
date model of the experiment, such that it can be used as either
a prescription or reference for upcoming analyses of tritium
β-decay data observed with KATRIN. For established aspects
of this model, we refer to the appropriate publications. For
those not yet published at all or not in the required detail,
we provide the necessary derivations. The later will mostly
be the case for the description of the experimental response
function, which has been considerably refined during recent
commissioning phases.

In this work we first present a detailed account of the the-
oretical β spectrum of tritium, with an emphasis on molec-
ular effects in T2 (Sect. 2). We then outline the experimen-
tal configuration of KATRIN (Sect. 3), before we elaborate

on the individual characteristics that define the response of
our instrument in Sect. 4. The statistical techniques suited to
determine the effective neutrino mass from a fit of the mod-
eled β spectrum to the measured data are treated in Sect. 5.
A summary of this work is given in Sect. 6.

Throughout this article we use natural units (c = h̄ = 1)
for better readability, except for Sects. 4.7 and 4.8 where we
use SI units instead.

2 Theoretical description of the differential β-decay
spectrum

In this section we compile a comprehensive analytical
description of the differential β-decay spectrum, with specific
focus on gaseous molecular tritium T2, the β emitter used by
KATRIN. We will also evaluate the relevance of various the-
oretical correction terms on the neutrino mass analysis.

In the following, we use the shorthand notation mν =
m(νe) for better readability. Furthermore, we assume there
is no difference between the masses of the neutrinos and the
anti-neutrinos, i.e. mν = m(νe) = m(ν̄e).

In the β-decay of atomic tritium, the surplus energy Q is
shared between the electron’s kinetic energy E , the total neu-
trino energy and the recoil energy Erec of the much heavier
daughter nucleus:

T −→ 3He
+ + e− + ν̄e + Q(T). (2)

In the case of a vanishing neutrino mass, the electron spec-
trum would terminate at the endpoint energy

E0 = Q − Erec. (3)

2.1 Fermi theory

The differential decay rate of a tritium nucleus can be
described with Fermi’s Golden Rule as [9]

(
dΓ

dE

)
nuc

= G2
F |Vud|2
2π3 |Mnuc|2 F(Z , E) p (E + me)

·
∑
i

|Uei |2 ε

√
ε2 − m2

i Θ(ε − mi ). (4)

The Fermi coupling constant GF is projected onto the (u, d)
coupling by the Cabibbo angle θC with |Vud| = cos θC =
0.97425 ± 0.00022 [8].

For tritium β-decay – a super-allowed transition – the
nuclear transition matrix element Mnuc is independent of the
electron energy. It can be divided into a vector (Fermi) part
and an axial (Gamow–Teller) part

|Mnuc|2 = g2
V + 3g2

A, (5)
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with the vector coupling constant gV = 1 and the axial-vector
coupling constant defined by gA/gV = −1.2646 ± 0.0035
in tritium [10].

The classical Fermi function F(Z , E) accounts for the
Coulomb interaction between the outgoing electron and the
daughter nucleus with atomic charge Z (here Z = 2):

F(Z , E) = 2πη

1 − exp(−2πη)
(6)

with the Sommerfeld parameter η = αZ/β; α is the fine
structure constant and β = v/c is the electron velocity rel-
ative to speed of light. Here F(Z , E) is written in the non-
relativistic approximation; the relativistic F(Z , E)rel and its
commonly-used approximation is given in Appendix A.1.

The full spectrum is an incoherent sum over the three
known neutrino mass eigenstates mi (i = 1, 2, 3) with the
intensity of each component defined by the squared magni-
tude of the neutrino mixing matrix elements |Uei |2 [11].

The phase-space factor of the outgoing electron with
momentum p is given by the factor p (E + me). The phase
space of the emitted neutrino is the product of the neutrino

energy ε = E0 − E and the neutrino momentum
√

ε2 − m2
i ,

which determines the shape of the β-electron spectrum near
the tritium endpoint E0. The Heaviside step function Θ

ensures that the kinetic energy cannot become negative.
The full β-decay spectrum is shown in Fig. 1. The depen-

dence of the spectral shape on the effective neutrino mass
close to the endpoint is depicted in Fig. 2.

2.2 Neutrino mass eigenstate splittings

In the KATRIN sensitivity range we can simplify the analy-
sis by considering the effective electron neutrino mass square
m2

ν of a quasi-degenerate model in Eq. (4), given by an inco-
herent sum as

β

Fig. 1 The differential β-electron energy spectrum for the β-decay of
molecular tritium with the endpoint energy E0 of 18.574 keV. The given
units correspond to the decay rate of a single tritium nucleus

β

ν

ν

ν

Fig. 2 The differential β-electron energy spectrum near the endpoint
for the decay of molecular tritium as given by Eq. (4), under the assump-
tion of various neutrino masses mν

m2
ν =

∑
i

|Uei |2 m2
i . (7)

Calculations have shown this approximation of the β-decay
spectrum to be valid, both for the normal and inverted mass
hierarchies [12,13].

2.3 Molecular tritium T2

When we consider the β-decay of gaseous molecular tritium
T2,

T2 −→ 3HeT
+ + e− + ν̄e + Q(T2), (8)

the released energy Q has to be corrected for the differences
in electronic binding energies between the atomic and actual
molecular systems (see [9] for a detailed explanation). The
nuclear recoil also excites a spectrum of rotational and vibra-
tional final states in the daughter molecular system, and gen-
erates excitations of its electronic shell. The neutrino energy
in Eq. (4) has to be corrected by

ε → ε f = E0 − V f − E, (9)

with the endpoint E0(T2) = (18574.00 ± 0.07) eV for
molecular tritium [9,14]. The recoil energy reaches a max-
imum of Erec = 1.72 eV at the β-endpoint, which gives a
fixed endpoint energy E0(T2) = Q(T2) − Erec [9]. The dif-
ferential decay rate, with the additional summation over each
final state f with energy V f and weighing by the transitional
probability Pf to a state f in the daughter molecule, is then:

dΓ

dE
= G2

F |Vud|2
2π3 |Mnuc|2 F(Z , E) · p (E + me)

·
∑
f

P f ε f

√
ε2
f − m2

ν Θ(ε f − mν). (10)
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Fig. 3 Comparison of
molecular final-state
distributions of HeT+ and
HeD+. Sampled from [15,16]
with a 0.1 eV binning for
excitation energies V f ≤ 4 eV
and a 1.0 eV binning for
V f > 4 eV, summed over the
initial angular momenta states
0 ≤ J ≤ 2 according to their
population at a temperature of
T = 30 K

2.4 Excited molecular final states

After the decay, the daughter molecular system is left in an
excited rotational, vibrational and electronic state. According
to theoretical calculations, about 57 % of all T2 β-decays
result in the rovibronically-broadened electronic ground state
with an average excitation energy of about 1.7 eV, while the
others go to the excited electronic states [17]. Each discrete
final state effectively branches into its own β spectrum with
a distinct endpoint energy.

The accuracy of a neutrino mass measurement critically
depends on the knowledge of the distribution of these final
states, which have to be taken from theory. Precise calcu-
lations of the final state distributions of the hydrogen iso-
topologues (T2 → HeT+, DT → HeD+ and HT → HeH+)
have been performed in the endpoint region [15,16]. The dis-
crete energy states and their transition probabilities have been
determined below the dissociation threshold, while continu-
ous distributions are available above the threshold. A com-
prehensive review of the theory of the tritium final-state spec-
trum and current validation efforts can be found in [18].

Figure 3 gives a comparison of the final-state distributions
of HeT+ and HeD+. The differences in their distributions
arise from the mass difference; thus, a precise knowledge
of the source gas isotopological composition and its stabi-
lization on the 0.1 %level are necessary. Laser Raman spec-
troscopy [19] provides two important input parameters for
our source model: the tritium purity εT denoting the fraction
of tritium nuclei,1 and κ denoting the ratio of DT versus HT.

In the calculations provided by Doss et al. [15,16] and
Saenz et al. [20], the higher recoil energies of the lighter
isotopologues are incorporated into their respective energy
spectra that are given relative to the recoil energy of HeT+.
That way, the final-state distributions of each isotopologue
can be summed and weighted according to its abundance in
the source gas. Furthermore, these calculations provide sep-

1 If we denote the fraction of all hydrogen isotopologues X by c(X)

with
∑

X c(X) = 1, then the tritium purity is given by εT = c(T2) +
c(DT)/2 + c(HT)/2.

arate distributions for each initial quantum state of molecu-
lar angular momentum, denoted by the quantum number J .
These must be weighted according to the population of their
respective J states before the β-decay, which is given by a
Boltzmann distribution

PJ (T ) ∝ gsgJ exp

(
−ΔEJ

kBT

)
, (11)

where T is the local temperature of the source gas, kB the
Boltzmann constant and ΔEJ the energy to the electronic
ground state. The rotational degeneracy of the distribution is
given by the factor gJ = (2J + 1), whereas gs accounts for
the spin degeneracy of the nuclei. It is gs = 1 for heteronu-
clear molecules (DT, HT) without spin coupling. For T2 as a
homonuclear molecule, it is given by the ratio λ of molecules
in an ortho (parallel nuclei spins) state or the ratio 1 − λ in
the para states (anti-parallel nuclei spins). Hence, gs = λ for
ortho states with odd J and gs = 1 − λ for para states with
even J [21]. In the KATRIN tritium circulation system the
source gas is forced into thermal equilibrium at T = 300 K
by a permeator membrane,2 resulting in λ � 0.75 [18].

2.5 Exact relativistic three-body calculation

The β spectrum formalism outlined above contains approx-
imations to the exact relativistic calculations of the three-
body phase space density [22,23]. In deriving Eq. (10), the
dependence of the daughter molecule’s recoil energy Erec

on the neutrino mass mi and the final-state spectrum V f is
neglected. This approximation results in a minute shift of
the maximum electron energy, which is on the order of 0.1
meV [23], as depicted in Fig. 4. In the neutrino mass analysis,
such a shift in the energy scale is compensated by the external
constraint of the endpoint E0; thus, the effective two-body
representation of Eq. (10) is an adequate approximation in
the energy region of interest (also see Table 1). A summary of

2 The gas is then injected into the source beam tube and rapidly cooled
down to 30 K. Because the gas spends only a short time (� 1.5 s) at
this temperature, the rotational states cannot equilibrate again.

123



Eur. Phys. J. C (2019) 79 :204 Page 5 of 24 204

β

Fig. 4 Comparison of the differential β-electron energy spectrum of
atomic tritium for the full relativistic kinematic treatment and the non-
relativistic approximation, assuming a neutrino mass of mν = 1 eV

the energy-dependent, higher-order correction terms is given
in Sect. 2.6.

2.6 Additional correction terms

In addition to the Fermi function (F(Z , E)) correction fac-
tors arising from other nuclear and atomic physics effects
must be evaluated and applied multiplicatively. The formulae
and the references to these effects are given in Appendix A.1.
The following is a synopsis.

• Radiative corrections: In addition to the Coulomb inter-
action described by F(Z , E), electromagnetic effects
involving contributions from virtual and real photons give
rise to a correction factor G(E, E0).

• Screening: The unscreened F(Z , E), which describes the
Coulomb interaction between the daughter nucleus and
the departing β-electron, must be corrected by a factor
S(Z , E) that accounts for the screening effect on the
Coulomb field by the 1s-orbital electrons left behind by
the parent molecule.

• Recoil effects: In the relativistic elementary particle treat-
ment of the β-decay (see for instance [23,24]), energy-
dependent recoil effects on the order of 1/M can be cal-
culated, with M being the mass of 3He. These effects –
spectrum shape modification due to a three-body phase
space, weak magnetism and V − A interference – are
typically combined into a common factor R(E, E0, M).

• Finite structure of the nucleus: Because the 3He+ daugh-
ter nucleus is not a point-like object, the Coulomb field
does not scale with an inverse-squared relationship within
the radius, leading to a correction factor L(Z , E). A
proper convolution of the electron and neutrino wave
functions with the nucleonic wave function throughout
the nuclear volume leads to another factor C(Z , E).

• Recoiling Coulomb field: The departing electron does not
propagate in the field of a stationary charge, but one which

is itself recoiling from the electron emission. This effect
introduces another correction factor Q(Z , E, E0, M).

• Orbital-electron interactions: A correction factor I (Z , E)

is introduced to account for possible quantum mechani-
cal interactions between the departing β-electron and the
1s-orbital electrons.

The differential β spectrum, including all the theoretical cor-
rection factors discussed above, can be written as follows:

(
dΓ

dE

)
C

= G2
F |Vud|2
2π3 (g2

V + 3g2
A) Frel(Z , E)

· p (E + me) · S L C I

·
∑
f

G R Q · Pf ε f

√
ε2
f − m2

ν Θ(ε f − mν).

(12)

The corrections connected to the recoil of the daughter
nucleus, namely R and Q, and the radiative corrections G,
depend on the endpoint energy and the phase space of a
specific excited final state. This dependency is reflected in
Eq. (12), as these factors are summed over the possible final
states.

In Fig. 5, a graphical overview of these correction factors
in the energy interval 30 eV below the tritium endpoint is
given. The radiative corrections have the most significant
effect with a pronounced energy dependence, as they deplete
the spectrum completely towards the endpoint. Most other
corrections are negligible in the neutrino mass analysis, as
further detailed in Sect. 4.12 and Table 1.

3 The KATRIN experiment

The experimental setup of KATRIN combines a high-
luminosity windowless gaseous molecular tritium source
(WGTS) with an integrating electrostatic spectrometer of
MAC-E filter (magnetic adiabatic collimation with electro-
static filter) type [25–27], offering a narrow filter width and
a wide solid-angle acceptance at the same time.

The apparatus depicted in Fig. 6 features several major
subsystems. The isotopological composition, temperature,
and density fluctuations of the tritium source are monitored
by a set of calibration devices housed in the rear section (a).
The windowless gaseous tritium source (b) contains a beam
tube of length L = 10 m and diameter d = 90 mm, resid-
ing in a nominal magnetic field of 3.6 T, where re-purified
molecular tritium (T2) is continuously circulated by injection
at the center and pumping at both ends through a closed loop
system [28–30]. To prevent tritiated gas from entering the
spectrometer section, the transport section (c) combines dif-
ferential pumping with cryogenic pumping to reduce the tri-

123



204 Page 6 of 24 Eur. Phys. J. C (2019) 79 :204

Fig. 5 Theoretical correction factors to the differential β-decay spectrum of T2, evaluated in an interval 30 eV below the endpoint E0 and summed
over possible final states

Fig. 6 The KATRIN experimental setup, 70 m in length. The monitor-
ing and calibration section (a) residing at the rear of the high-luminosity
windowless source (b) provides stable and precise monitoring of tritium
gas properties. The transport system (c) magnetically guides the elec-
trons further downstream and prevents tritiated gas from entering the

spectrometer section, which features two spectrometers operating as
MAC-E-filters. The smaller pre-spectrometer (d) acts as a pre-filter for
low energy electrons, and the larger main spectrometer (e) is used for
the energy analysis in the endpoint region. A segmented detector (f)
acts as a counter for the transmitted signal electrons

tium flow by 14 orders of magnitude [31,32]. The β-electrons
are guided through the entire beamline by a magnetic field
[33] into the pre-spectrometer (d), which acts as a pre-filter
that blocks the low-energy electrons of the β-spectrum [34].
The energy analysis around the endpoint region takes place
in the main spectrometer (e), which is operated under ultra-
high vacuum conditions [35] at a retarding voltage of about
−18.6 kV. Both spectrometers are designed as MAC-E fil-
ters, and the main spectrometer achieves a very narrow filter
width (� 1 eV) [9] while providing high luminosity for the
β-electrons. Electrons with sufficient energy pass both the
MAC-E filters and are then counted at a segmented silicon
PIN diode detector (f) [36] with 148 individual pixels. An
integrated β-spectrum is recorded by scanning the retarding
voltage in the endpoint region.

3.1 MAC-E filter principle

The electrons emitted isotropically from tritium β-decay in
the gaseous source are guided adiabatically by magnetic
fields. In the forward direction the β-electrons are confined in
cyclotron motion along the magnetic field lines towards the
MAC-E filter. Along their path to the analyzing plane (cen-
tral plane) of the spectrometer, the magnetic field strength
decreases by several orders of magnitude.3 Due to the con-
servation of magnetic moment in a slowly varying field, most
of the electrons’ transverse momentum is adiabatically trans-

3 The KATRIN main spectrometer employs a set of air coils to allow
fine-shaping of the weak guiding field in the analyzing plane, and to
compensate for influences by the earth’s magnetic field and solenoid
fringe fields [37,38].
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formed into longitudinal momentum. With a high negative
potential (U ≈ −18.6 kV, corresponding to the endpoint
energy of tritium) at its center and most of the electron
momentum being parallel to the magnetic field lines, the
MAC-E filter acts as an electrostatic high-pass energy filter.
Only electrons with positive longitudinal energy (the kinetic
energy in direction of the magnetic field line) along their
entire trajectory are transmitted, while the others are reflected
and re-accelerated towards the entrance of the spectrometer.

The residual transverse energy, which cannot be analyzed
by the filter, is defined by the ratio of the maximum Bmax to
the minimum magnetic field Bmin = BA. This key character-
istic of the MAC-E filter is commonly called the filter width
(or sometimes energy resolution)

ΔE = BA

Bmax
· E γ + 1

2
, (13)

with E being the electron kinetic energy and γ = E
me

+1 the
relativistic gamma factor with the electron rest mass me.

4 Response function of the KATRIN experiment

In the KATRIN experiment, the energy of the β-electrons is
analyzed using the MAC-E filter technique as described in
Sect. 3. For a specific electrostatic retardation potential U ,
the count rate of electrons at the detector can be calculated,
given the probability of an electron with a starting energy
E to traverse the whole apparatus and hit the detector. This
probability is described by the so-called transmission func-
tion T (E,U ). Additional modifications arise from energy
loss and scattering in the source, and reflection of signal elec-
trons propagating from their point of origin until detection.
These effects are incorporated together with the transmis-
sion function into the response function R(E,U ), which is
vital for the neutrino mass analysis as it describes the prop-
agation of signal electrons that contribute to the integrated
β-spectrum.

For illustrative purposes, we first consider a source con-
taining a given number of tritium nuclei (NT) that decay
with an isotropic angular distribution.4 The emitted electrons
are guided by magnetic fields through the spectrometer. The
detection rate at the detector for a given spectrometer poten-
tial U can be expressed as:

Ṅ (U ) = 1

2
NT

E0∫
qU

dΓ

dE
(E0,m

2
ν) · R(E,U ) dE, (14)

4 At a temperature of 30 K and a magnetic field strength of 3.6 T, the
polarization of the tritium nuclei can be neglected.

where the factor of 1
2 incorporates the fact that the response

function R(E,U ) only considers electrons emitted in the
forward direction.

In the following, an analytical description of the response
function of the KATRIN experiment will be laid out. At
first, we derive the transmission function of the MAC-E filter
that is implemented by the main spectrometer (Sect. 4.1). In
Sect. 4.2 we consider energy loss in the source and develop
a first description of the response function. Inhomogeneities
in the MAC-E filter (Sect. 4.3) and the source (Sect. 4.4)
requires extension of the model by a segmentation of the
source and spectrometer volume. Further modifications to
the response function arise from considering the effective
source column density which an individual β-electron tra-
verses (Sect. 4.5), changes to the electron angular distribu-
tion (Sect. 4.6), thermal motion of the source gas (Sect. 4.7),
and energy loss by cyclotron radiation (Sect. 4.8). After
discussing these contributions, in Sect. 4.9 we arrive at a
description of the integrated spectrum that is measured by the
KATRIN experiment. We close the discussion with a general
note on experimental energy uncertainties (Sect. 4.11) and
give a quantitative overview of theoretical corrections and
systematic effects (Sect. 4.12) on the neutrino mass analysis.

4.1 Transmission function of the MAC-E filter

The transmission of β-electrons through the MAC-E filter is
an important characteristic of the measurement and a sig-
nificant part of the response function. In the simplest case,
one can assume that electrons enter the MAC-E filter with
an isotropic angular distribution and propagate adiabatically
towards the detector. In the discussion here we apply the adi-
abatic approximation (see Eq. (15) below), which is fulfilled
in the case of KATRIN.

In general, an electron from the source will reach the detec-
tor if the momentum p‖ parallel to the magnetic field lines
(or the corresponding fraction E‖ of the kinetic energy) is
always positive. The transformation of transverse to parallel
momentum and back in a slowly varying magnetic field B
is governed by the following adiabatic invariant (which cor-
responds to the conserved orbital momentum μ = E⊥/B in
the non-relativistic limit):

p2⊥
B

= const. (15)

In the following discussion we use the general relation
between the transverse momentum p⊥ of an electron with
its transverse kinetic energy E⊥:

p2⊥ = E⊥ (γ + 1) · me (16)
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with the relativistic gamma factor γ = E
me

+ 1, and thereby
define the transverse kinetic energy as:

E⊥ = E sin2 θ. (17)

Similarly, we define the longitudinal kinetic energy as E‖ =
E cos2 θ . The polar angle θ = 	 (p,B) of an electron
momentum to the magnetic field is called the pitch angle.

We can now define the adiabatic transmission condition
for an electron starting at the position zS with a magnetic field
BS = B(zS), an electrostatic potentialUS = U (zS), a kinetic
energy E = E(zS) with a corresponding gamma factor γ ,
and a pitch angle θ = θ(zS). The transmission condition then
reads for all longitudinal positions z:

0 ≤ E‖(z)
= E + qUS − E⊥(z) − qU (z)

= E + qUS − E sin2 θ · B(z)

BS

γ + 1

γ (z) + 1
− qU (z), (18)

where γ (z) corresponds to the gamma factor at an arbitrary
position z along the beam line where the electron has a kinetic
energy E(z) = E‖(z) + E⊥(z) at a magnetic field B(z) and
an electrostatic potential U (z).

Usually in a MAC-E filter the highest retarding potential
U and at the same time the smallest magnetic field BA is
reached in the analyzing plane (located at zap = 0 in our
definition). Secondly we can assume the electrical potential
US at the start to be zero and the relativistic factor in the
analyzing plane at the largest retardation (minimum kinetic
energy) to equal one, γ (zap) = 1. Therefore the transmission
condition in Eq. (18) simplifies to

0 ≤ E − E sin2 θ · BA

BS

γ + 1

2
− qU. (19)

For a given electric potential and magnetic field configuration
of the MAC-E filter, the transmission condition T is thus just
governed by the starting energy E , the starting angle θ and
the retarding voltage U .

T (E, θ,U ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if E

(
1 − sin2 θ · BA

BS
· γ + 1

2

)

−qU > 0
0 else

.

(20)

For an isotropically emitting electron source with angular dis-
tribution ω(θ) dθ = sin θ dθ , we can integrate T (E, θ,U )

over the angle θ and define a response or transmission func-
tion. From here on we associate the remaining energy in the
analyzing plane of the MAC-E filter – the surplus energy –
with the expression E = E − qU .

In the KATRIN setup the maximum magnetic field Bmax

is larger than BS, so that β-electrons emitted at large pitch
angles in the source are reflected magnetically before reach-
ing the detector. The magnetic reflection occurs at the pinch
magnet (with B = Bmax and zero potential), and in the source
the electric potential is zero. The maximum pitch angle of the
transmitted electrons is therefore independent of the electron
energy and given by:

θmax = arcsin

(√
BS

Bmax

)
, (21)

For the standard operating parameters of KATRIN (see
Table 2), θmax evaluates to about 50.8◦. This reflection is
desired by design, since β-electrons emitted with larger pitch
angles have to traverse a longer effective column of source
gas and are therefore more likely to scatter and undergo
energy loss, as detailed in the following sections.

With this additional magnetic reflection after the analyz-
ing plane, the transmission function is given by:

T (E,U ) =
θmax∫

θ=0

T (E, θ,U ) · sin θ dθ

=

⎧⎪⎪⎨
⎪⎪⎩

0 E < 0

1 −
√

1 − E
E

BS
BA

2
γ+1 0 ≤ E ≤ ΔE

1 −
√

1 − BS
Bmax

E > ΔE

, (22)

with the filter width ΔE from Eq. (13). In Fig. 7, the transmis-
sion function is shown for the nominal KATRIN operating
parameters and for the case BS = Bmax. The magnetic reflec-
tion imposes an upper limit on the pitch angle, which reduces
the effective width of the transmission function. As indicated
in Fig. 7, this improves the filter width of the spectrometer
to 0.93 eV, compared with 1.55 eV for θmax = 90◦ without
magnetic reflection.

4.2 Response function and energy loss

In the next step we consider the energy loss when the electron
traverses the gaseous source. The dominant energy loss pro-
cess is the scattering of electrons on gas molecules within
the source. Because the pressure decreases rapidly outside
the source, scattering processes in the transport section or
thereafter are of no concern.

Two ingredients are required to appropriately treat elec-
tron scattering in the source. First, the energy loss function
f̃ (ε, δϑ) describes the probability for a certain energy loss ε

and scattering angle δϑ of the β-electrons to occur in a scat-
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Fig. 7 Transmission function T at a retarding potential of U =
18,545 V with nominal magnetic field configuration ( Bmax

BA
= 20,000).

The transmission condition in Eq. (20) relates the surplus energy to
the pitch angle θ , as shown at the top of the figure. The solid red line
shows the cut-off caused by a magnetic reflection of all electrons with
high pitch angle in the strongest magnetic field at reference conditions
Bmax
BS

= 6.0
3.6 . The dashed blue line shows the transmission function with-

out magnetic reflection

tering process. Because the scattering angles δϑ are small,5

we will neglect them in the following formulae and describe
the scattering energy losses by the function f (ε). Here we do
not consider a dependence of f or Ps on the incident kinetic
energy E of the electrons, since for the KATRIN experiment
the energy range of interest amounts to a very narrow inter-
val of a few times 10 eV below the tritium endpoint only,
where these functions can be considered as independent of
E . The other important ingredients are the scattering prob-
ability functions Ps(θ) for an electron with pitch angle θ to
scatter s times before leaving the source. These scattering
probabilities depend on θ , since electrons with a larger pitch
angle must traverse a longer path, meaning a larger effective
column density, and are thus likely to scatter more often.

With these considerations, the response function no longer
comprises only the transmission function, but is modified as
follows:

R(E,U ) =
E−qU∫
ε=0

θmax∫
θ=0

T (E − ε, θ,U ) · sin θ

·
[
P0(θ) δ(ε) + P1(θ) f (ε)

+ P2(θ) ( f ⊗ f )(ε) + · · ·
]

dθ dε (23)

=
E−qU∫
ε=0

θmax∫
θ=0

T (E − ε, θ,U ) · sin θ

5 As investigated in [39], the direct angular change of β-electrons due to
elastic and inelastic scattering has only negligible effect on the response
function shape.

·
∑
s

Ps(θ) fs(ε) dθ dε. (24)

Electrons leaving the source without scattering (s = 0) do
not lose any energy, hence f0(ε) = δ(ε). For s-fold scatter-
ing, fs(ε) is obtained by convolving the energy loss function
f (ε) s times with itself.

The scattering cross section can be divided into an elastic
and an inelastic component. The inelastic cross section and
the energy loss function for electrons with kinetic energies of
≈ 18.6 keV scattering from tritium molecules have both been
measured in [40,41]. In this work, the inelastic scattering
cross section was determined to be σinel = (3.40 ± 0.07) ×
10−18 cm2 and an empirical model was fit to the energy loss
spectrum.

The latter is parameterized by a low-energy Gaussian and
a high-energy Lorentzian part:

f (ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 · exp

(
−2

(
ε − ε1

ω1

)2
)

ε < εc

A2 · ω2
2

ω2
2 + 4(ε − ε2)2

ε ≥ εc

, (25)

with A1 = (0.204 ± 0.001) eV−1, A2 = (0.0556 ±
0.0003) eV−1, ω1 = (1.85±0.02) eV, ω2 = (12.5±0.1) eV,
ε2 = (14.30±0.02) eV and a fixed ε1 = 12.6 eV. To obtain a
continuous transition between the two parts of f (ε), a value
εc = 14.09 eV was chosen. The Gaussian part summarizes
the energy loss due to (discrete) excitation processes, while
the Lorentzian part describes the energy loss due to ionization
of tritium molecules.

This parameterization of the energy loss function is used
for the response model presented in this paper. However, the
parameters are not precise enough for KATRIN to meet its
physics goals. Dedicated electron gun measurements with
the full experimental KATRIN setup have been planned for
the determination of the inelastic scattering cross section and
the energy loss function with higher precision; the analysis
of these data will involve a sophisticated deconvolution tech-
nique [42].

At σel = 0.29×10−18 cm2, the total cross section of elas-
tic scattering of 18.6 keV electrons with molecular hydro-
gen isotopologues is smaller than that for inelastic scattering
by an order of magnitude [43,44]. In addition, the elasti-
cally scattered electrons are strongly forward peaked with
a median scattering angle of θ scat = 2.1◦ near the tritium
endpoint energy. The energy loss due to elastic scattering is
given by the relation

ΔEscat = 2
me

MT2

E · (1 − cos θscat) . (26)
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f1 = f(ε) — the energy loss prob-
ability of electrons scattered once. Shown is the normalized
probability distribution,

∫ ∞
0 f1(ε) dε = 1.

⊗

(a)Energy loss function

(b)Convolved energy loss function f2 = f(ε) ⊗ f(ε) — the
energy loss probability of electrons scattered twice.

Fig. 8 Theoretical energy loss function for elastic and inelastic scat-
tering processes, shown as a probability density function. The leftmost
enlarged region (ε � 0.01 eV) is dominated by elastic scattering, and
the region at higher energy is due to inelastic excitation and ionization,
as parameterized by Aseev et al. [40]

With an angular distribution for elastic scattering of molec-
ular hydrogen by electron impact based on [45], the corre-
sponding median energy loss amounts to ΔE = 2.3 meV.
The energy loss function, containing the elastic and inelas-
tic components weighted by their individual cross section, is
shown in Fig. 8.

The elastic energy loss component can be accurately cal-
culated. Due to its narrow width and steep slope, ∼ meV bin-
ning is required for incorporating it accurately in the response
function, thereby increasing computational cost consider-
ably. We will neglect the elastic scattering component in neu-
trino mass measurements as the associated systematic error
on an m2

ν is minute (∼ 5.10−5eV2, see Table 1).

4.3 Radial inhomogeneity of the electromagnetic field

To calculate the transmission and response functions of the
KATRIN setup as explained in Sects. 4.1 and 4.2, it is in
principle sufficient to only consider the axial position of an
electron to identify the initial conditions such as electromag-
netic fields or scattering probabilities. In the case of the main
spectrometer, radial dependencies must be incorporated in
the description of the magnetic field and the electrostatic
potential in the analyzing plane. Additional radial dependen-
cies in the source are discussed in Sect. 4.4; these are then

incorporated into the model together with the spectrometer
effects.

In order to achieve a MAC-E filter width in the eV-regime,
a reduction of the magnetic field strength in the analyzing
plane on the order of BA

Bmax
≈ ΔE

E ≈ 10−4 is required (see
Eq. (13)). Consequently the diameter of the flux-tube area A
is drastically increased due to the conservation of magnetic
flux Φ = const ≈ B · A. When nominal field settings are
applied (see Table 2), the projection of the detector surface
with radius rdet = 4.5 cm has a radius of about 4 m in the ana-
lyzing plane. A larger (smaller) magnetic field in the analyz-
ing plane BA shifts the transmission edge to a larger (lower)
energy, see Eq. (20). This effect is even more pronounced for
larger electron pitch angles. Consequently, the transmission
function (see Eq. (22)) is also widened or narrowed. Utiliz-
ing a set of magnetic field compensation coils, operated with
an optimal current distribution, around the spectrometer ves-
sel, the spread of the radial inhomogeneity of the magnetic
field is minimized to a few μ T when an optimized current
distribution is applied [37,38]. The resulting variation in the
filter width in the analyzing plane due to the magnetic field
inhomogeneity is thus reduced to about 10 meV [46].

In the case of the electrostatic potential, unavoidable radial
variation arises from the design of the spectrometer. To ful-
fill the transmission condition in Eq. (19), the electrode seg-
ments at the entrance and exit are operated on a more posi-
tive potential than in the central region close to the analyzing
plane.6 Depending on the final potential setting, the radial
potential variation in the analyzing plane is expected to be of
order 1 V [39]. In comparison, azimuthal variations are negli-
gible. It is possible to considerably reduce the radial potential
inhomogeneity by operating the MAC-E filter at larger BA.
However, this would require better knowledge of the mag-
netic field in the analyzing plane [46] and also increase the
filter width.

Even with these optimizations of the setup, the small radial
variations in the electromagnetic fields at the analyzing plane,
as shown in Fig. 9, cannot be neglected. The segmentation
of the KATRIN main detector into annuli of pixels allows us
to incorporate such radial variations in the response function
model for each individual detector pixel. Because the tritium
source also features radial variations of certain parameters,
this segmentation is combined with a full segmentation of
the source volume as described in Sect. 4.4. Dependencies
of the electromagnetic field are typically averaged over the
surface area of a pixel. The specific detector geometry with
thinner annuli towards outer radii (each with equal surface
area) helps minimize the potential variation within individual
annuli, despite the increasing steepness of the potential.

6 It is required that E‖ reaches its global minimum in the analyzing
plane, which is achieved by optimizing the electromagnetic conditions
in the spectrometer. See [37] for details.
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Table 1 Impact of individual
theoretical and experimental
model corrections on the
measured squared neutrino mass
m2

ν, if neglected or
approximated. The analysis
energy window is restricted to
[E0 − 30 eV; E0 + 5 eV]. For
mν a true value of 200 meV is
assumed

Source of systematic shift Systematic shift Δsyst(m2
ν)

Neglected effect or model component (×10−5 eV2)

Relativistic description of Ea
rec 0.03

Neutrino mixing with 3 mass eigenstates (inv. hierarchy) 0.04

Relativistic Fermi function Frel(Z , E)a 0.19

Radiative corrections (G) 214.10

Screening correction (S) −2.82

Recoil, weak magnetism, V − A interference corr. (R) −0.12

Finite nucl. ext. corr. (LC) <0.01

Recoiling Coulomb field corr. (Q) −0.02

Orbital electron exch. corr. (I ) −0.02

Calculate G, R, Q for each final stateb 13.50

Energy loss due to elastic e− − T2 scattering −5.20

Transmission function T � (non-isotropic angular distr.) 1027.51

Energy loss due to cyclotron radiation −2939.43

Radial dependence of analyzing magnetic field in R j (E,U )c 904.20

Radial dependence of retarding potential in R j (E,U ) 8470.47

Doppler effect (thermal and bulk velocity neglected) −1554.46

Doppler effect (only bulk gas velocity neglected) 117.81

Doppler effect (only approximated by smearing the FSD) 101.41

aInstead of using the non-relativistic variant.
bInstead of pulling these effects outside the FSD summation in Eq. (12).
cWith a central analyzing magnetic field Bana = 3.6 × 10−4T

Table 2 Key operational and derived parameters of KATRIN as defined
in the technical design report [4]

Parameter Value

Column density N = 5 × 1017 cm−2

Active source cross-section AS = 53 cm2

Magnetic field strength
(source)

BS = 3.6 T

Magnetic field strength
(analyzing plane)

BA = 3.10−4 T

Magnetic field strength
(maximum)

Bmax = 6.0 T

Inelastic scattering cross
section

σinel = 3.45 × 10−18 cm2

Scattering probabilities P0 = 41.33%

P1 = 29.27%

P2 = 16.73%

P3 = 7.91%

P4 = 3.18%

Detector efficiency εdet = 0.9

4.4 Source volume segmentation and effects

In addition to radial dependencies of the analyzing plane
parameters that govern the energy analysis of the β-electrons
(Sect. 4.3), the tritium source also features radial and axial

Fig. 9 The calculated radial inhomogeneity of the electrostatic poten-
tial and the magnetic field in the analyzing plane of the main spectrome-
ter, for the standard setting of U = −18,600 V and BA = 0.3 mT. The
plot shows the offset in the potential and the magnetic field values in the
spectrometer center. The vertical dashed lines mark the corresponding
outer radii of annuli mapped to the 13 detector rings

dependencies of its parameters. In the following, we will
briefly outline the most relevant source parameters that are
required to accurately model the differential β spectrum and
the response function. These parameters include the beam
tube temperature Tbt, the magnetic field strength BS, plasma
potentials UP, the particle density ρ and the bulk velocity
u of the gas, all of which may vary slightly in longitudinal,
radial and azimuthal directions. The complex gas dynamic
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simulations, which are needed to calculate these local source
parameters, are described in comprehensive detail in [47,48].

In order to model accurately these effects for each indi-
vidual detector pixel, the simulation source model is parti-
tioned to match the detector geometry. It is partitioned lon-
gitudinally into NL slices and segmented radially into NR

annuli (rings) of NS segments each, resulting in a total of
NL · NR · NS segments (see Fig. 10). The geometry of these
segments is chosen in such a way, that a longitudinal stack
of segments is magnetically projected7 onto a correspond-
ing detector pixel. Note that all detector pixels have identical
surface area, which leads to broader annuli at the center and
thinner annuli towards larger radii. In the following, we index
the longitudinal slices by the subscript i and radial/azimuthal
segments with their corresponding detector pixel by the sub-
script j .

At a retarding potential U , the detection rate for a specific
detector pixel j can then be stated as

Ṅ j (U ) = 1

2

NL−1∑
i=0

NT,i

E0∫
qU

dΓ

dE
(E0,m

2
ν) Ri, j (E,U ) dE,

(27)

where NT,i is the number of tritium nuclei (assuming that
the gas density has no radial or azimuthal dependence). The
response function Ri, j (E,U ) depends on the index i (i.e. the
axial position) and the index j (i.e. the radial/azimuthal posi-
tion) of the source segment. With the indices i, j we can
describe the dependence on local source parameters such
as the magnetic field. The most significant effect on the
response is caused by the scattering probabilities, as detailed
in Sect. 4.2. The index j further describes non-uniformities
of the retarding potential U and the magnetic field BA in the
spectrometer (see Fig. 9).

4.5 Scattering probabilities

As discussed in Sect. 4.2, inelastic scattering results in an
energy loss that directly affects the energy analysis of the
signal electrons, and needs to be incorporated accurately into
the analytical description. Changes to the angular distribution
of the emitted electrons due to scattering processes, which
also modify the response function, are discussed in Sect. 4.6.

The scattering probability for β-electrons is considerably
different depending on their starting position in the 10 m long
source beam tube, as visualized in Fig. 11. The longitudinal
segmentation of the source volume in our model allows us to
incorporate this behavior. The probability Ps for an electron

7 The β-electrons are guided from source to detector by magnetic field
lines, so each detector pixel maps a certain stack of source segments.

to leave the source after scattering exactly s times depends
on the total cross section σ and the effective column density
Neff that the electron traverses. This effective column density
depends not only on the electron’s starting position z inside
the source and the axial density distribution ρ(z), but also on
the starting pitch angle θ in the source (Eq. (21)):

Neff(z, θ) = 1

cos(θ)
·

L/2∫
z

ρ(z′) dz′. (28)

L denotes the length of the source beam tube with −L/2 ≤
z ≤ L/2. The nominal column density is then given by N =
Neff(z = −L/2, θ = 0).

Because of the low probability to scatter off a single tritium
molecule, the number of scatterings during propagation can
be calculated according to a Poisson distribution:

Ps(z, θ) = (Neff(z, θ) · σ )s

s! · exp(−Neff(z, θ) · σ). (29)

The mean scattering probabilities for a specific position z can
be calculated using the isotropic angular distribution ω(θ) =
sin θ and the maximum pitch angle θmax:

Ps(z) = 1

1 − cos(θmax)

θmax∫
θ=0

sin(θ) Ps(z, θ) dθ. (30)

This integration assumes that the angular distribution is not
significantly affected by the small angular change in the dis-
cussed scattering processes. A higher total column density
N , as well as a larger θmax, would provide a larger number of
β-electrons at the exit of the source and at the detector. How-
ever, they also raise the proportion of scattered over unscat-
tered electrons, thereby increasing the systematic uncertain-
ties due to energy loss, and at some point, limiting the β-
electron detection rate close to the endpoint. The optimal
design values of N = 5.1017 cm−2 and θmax = 50.8◦ [4]
balance these effects.

4.6 Response function for non-scattered electrons

The transmission function in Eq. (22) describes the transmis-
sion probability of isotropically emitted electrons. Even if we
consider only non-scattered electrons, the β-electrons do not
follow an isotropic angular distribution before entering the
spectrometer due to the pitch angle dependence of the s-fold
scattering probabilities Ps(z, θ) in the source (see Sect. 4.5).

Following the description in [39], the zero-scattering (s =
0) transmission function needs to be modified to the form:

T �
s=0(E,U ) = R(E,U )

∣∣∣∣ E < 10 eV
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Fig. 10 In the numerical
model, the source is partitioned
in such a way that each
radial/azimuthal segment (index
j) in the source, consisting of
stacked longitudinal slices
(index i), corresponds to the part
of the magnetic flux tube seen
by the matching detector pixel
(index j). (Diagram not drawn
to scale)

Fig. 11 The response function R(E, qU ) at a retarding energy of
qU = 18,545 eV. The dash-dotted and dashed curves show the
response function close to the front (spectrometer-facing, z = + 4 m)
vs. rear (z = − 4 m) of the WGTS, which has a length of 10 m in
total. An averaged version, weighted by the gas density in each source
segment, is shown as the solid curve

=
θmax∫

θ=0

T (E, θ,U ) · sin θ P0(θ) dθ. (31)

The zero-scattering probability P0(θ) is computed by aver-
aging P0(z, θ) over z. Figure 12 illustrates the resulting dif-
ference in the response function. The surplus energy range
E < 10 eV corresponds to the steep increase in the response
function at low energies as shown in Fig. 11, where energy
loss from inelastic scattering does not contribute.

4.7 Doppler effect

The thermal translational motion and the bulk gas flow of the
β-emitting tritium molecules in the WGTS lead to a Doppler
broadening of the electron energy spectrum, which further
modifies the response function model that was derived in
Sect. 4.2 and thereafter. These two effects can be expressed
as a convolution of the differential spectrum dΓ

dE with a broad-
ening kernel g, denoted by the subscript D:

(
dΓ

dE

)
D

=
(
g ⊗ dΓ

dE

)
(Elab) (32)

Fig. 12 The transmission edge of the response function. The dashed
curve is calculated with an isotropic angular distribution, and the solid
curve with a realistic angular distribution for unscattered electrons

=
+∞∫

−∞
g(Ecms, Elab)

dΓ

dE
(Ecms) dEcms , (33)

with Ecms being the electron kinetic energy in the β-emitter’s
rest frame (which is approximately the center-of-mass sys-
tem), and Elab the electron energy in the laboratory frame.

The magnitude of the thermal tritium gas velocity fol-
lows a Maxwell-Boltzmann distribution. However, consid-
ering only the velocity component vM that is parallel to the
electron emission direction, the thermal velocity distribution
of the tritium isotopologue mass M is described by a Gaus-
sian

g(vM) = 1√
2πσv

· e
− 1

2

(
vM
σv

)2

, (34)

which centers around vM = 0 with a standard deviation σv =√
kBTbt/M . For the component of the bulk gas velocity u that

is parallel to the electron emission direction with pitch angle
θ , the mean vM is shifted by cos θ · u. Integrating over all
emission directions up to θmax, the expression expands to

g(vM) = 1

(1 − cos θmax)
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Fig. 13 Convolution kernels describing the Doppler broadening of the
β spectrum due to the thermal motion and bulk velocity u of the source
gas. A temperature of Tbt = 30 K is assumed, leading to a Gaussian
broadening with σE ≈ 94 meV at Ecms = 18,575 eV

·
1∫

cos θmax

1√
2πσv

· e
− 1

2

(
vM−cos θ ·u

σv

)2

d cos θ. (35)

Using the Gaussian error function this expression can be
rewritten as

g(vM) = 1

(1 − cos θmax) · 2u

· erf

(
vM − cos θmax · u√

2 σv

,
vM − u√

2 σv

)
. (36)

Finally, the tritium gas velocity distribution g(vM) can be
translated into an electron energy distribution g(Ecms, Elab).
Using the Lorentz factors and the electron velocities defined
in the CMS and lab frames, we can write

g(Ecms, Elab) = g(vM)

γcms me ve,cms
(37)

with

vM ≈ ve,lab − ve,cms

1 − ve,lab · ve,cms/c2 .

The standard deviation of this convolution kernel evaluates
to

σE = σv γcms me ve,cms

= √
(Ecms + 2me) Ecms · kBTbt/M . (38)

Withσv ≈ 203 m/s for T2 molecules atTbt = 30 K and the
weighted mean bulk velocity at nominal source conditions
being ū ≈ 13 m/s, thermal Doppler broadening clearly is a
dominating effect. The standard deviation of the broadening
function g(Ecms, Elab) at a fixed bulk velocity u = 0 for
Tbt = 30 K and E ≈ E0 evaluates to σE ≈ 94 meV (also
see Fig. 13). This value can be interpreted as a significant

smearing of the energy scale. Its implication for the neutrino
mass measurement is shown in Table 1.

4.8 Cyclotron radiation

As electrons move from the source to the spectrometer sec-
tion in KATRIN, they lose energy through cyclotron radi-
ation. In contrast to energy loss due to scattering with tri-
tium gas (Sect. 4.5), this energy loss process applies to the
entire trajectory of an electron as it traverses the experimental
beamline [49].

For a particle with kinetic energy E spending a time Δt
in a fixed magnetic field B, the cyclotron energy loss is (in
SI units):

ΔEcycl
⊥ = − q4

3πc3ε0me
3 · B2 · E⊥

γ + 1

2
· Δt. (39)

In general, cyclotron radiation reduces the transverse momen-
tum component of the particle.8 Consequently, the losses
are maximal for large pitch angles and vanish completely
at θ = 0◦.

For complex geometric and magnetic field configurations
as in the KATRIN experiment, the overall cyclotron energy
loss can be computed using a particle tracking simulation
framework such as Kassiopeia [50]. By this means, the
cyclotron energy loss from the source to the analyzing point
in the main spectrometer can be obtained as a function of
the electron’s starting position z and pitch angle θ . Parti-
cles starting in the rear of the source will lose more energy
due to their longer path through the whole setup. The total
cyclotron energy loss can be up to 85 meV for electrons with
the maximum pitch angle θmax = 50.8◦.

Because the resulting decrease in the angle Δθ due to
the loss of transverse momentum is of order 10−6 or less,
it can be neglected. We thus consider the loss of cyclotron
energy ΔEcycl(θ, z) to be a decrease in the total electron
kinetic energy E . Essentially, this effect causes a shift of the
electron transmission condition (see Eq. (20))

T cycl
i (E, θ,U ) = T (E − ΔEcycl(θ, z), θ,U ) (40)

with the index i denoting the longitudinal slice where the
electron starts from the source position z (see Fig. 10).

The influence of the cyclotron energy loss on the averaged
response function is shown in Fig. 14.

8 In the non-relativistic case, the power loss due to cyclotron radiation
amounts to Ė⊥ = −0.39/s T2 · E⊥ · B2.
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Fig. 14 The impact of energy losses due to cyclotron radiation on the
shape of the response function near the transmission edge

4.9 Expected integrated spectrum signal rate

Earlier in this section we have laid out the different con-
tributions to the response function of the experiment, which
describes the probability for β-electrons to arrive at the detec-
tor where they contribute to the measured integrated spec-
trum. The response function describes the energy analysis
at the spectrometer (Sects. 4.1 and 4.3), energy loss caused
by scattering in the tritium source (Sects. 4.2 and 4.5), and
additional corrections (Sect. 4.6 and following).

Combining the response function with the description of
the differential spectrum that was developed in Sect. 2, the
integrated spectrum signal rate observed on a single detec-
tor pixel j for a retarding potential setting U can finally be
expressed as

Ṅ sig
j (U ) = 1

2
εdet, j ·

NL−1∑
i=0

NT,i

·
∞∫

qU

(
dΓ

dE

)
C,D

(m2
ν, E0) · Ri, j (E,U ) dE .

(41)

This expression incorporates all theoretical corrections (see
Eq. (12) with subscript C) and the Doppler broadening (see
Eq. (33) with subscript D) of the differential spectrum dΓ

dE
(see Eq. (10)), and the full response function which incor-
porates the energy loss as a result of source scattering and
cyclotron radiation:

Ri, j (E,U ) =
E∫

ε=0

θmax∫
θ=0

∑
s

T cycl
s,i, j (E − ε, θ,U )

· Ps,i (θ) fs(ε) dε sin θ dθ. (42)

The response function depends on the path traversed by the
β-electron between its origin in source segment (i, j) and

the target detector pixel j (see Fig. 10 for the segmenta-
tion schema). The detection efficiency εdet, j is an energy-
dependent quantity, which needs to be measured for each
pixel j . Its value is between ≈ 90% and 95% [36].

To first order (due to nearly constant magnetic field and
tritium concentration in the source), the integrated signal rate
in Eq. (41) depends on Nσ – which can be accurately deter-
mined by calibration measurements with a photoelectron
source – but is independent of the longitudinal gas density
profile ρ(z) which cannot be measured directly (see [47,48]
for simulation results).

4.10 Scan of the integrated spectrum

A scan of the integrated β spectrum comprises a set of detec-
tor pixel event counts N j (Uk), observed at various retard-
ing potential settings Uk for the duration of Δtk each, with
k ∈ {1 . . . nk}. In the following, the indices j and k are con-
densed by writing N jk = N j (Uk), with N jk denoting the
event count on a single detector pixel j for a specific retard-
ing potential setting k.

The observed event count N obs
jk is a Poisson-distributed

quantity with the expectation value given by

E[N obs
jk ] = Δtk ·

(
Ṅ sig

j (Uk) + Ṅ bg
j

)
, (43)

where Ṅ bg
j is an energy-independent background rate com-

ponent (possibly with a radial dependency indicated by the
index j).

KATRIN will be operated for a duration of 5 calendar
years in order to collect 3 live years of spectrum data over
multiple runs.

4.11 Energy uncertainties

At the end of this section we will briefly discuss the influence
of energy uncertainties on the neutrino mass measurement. In
general, any fluctuation with variance σ 2 induces a spectrum
shape deformation which – if not considered in the analysis –
is indistinguishable to first order from a shift of the measured
value of m2

ν in the negative direction with Δm2
ν = −2σ 2

[11]. This shift of Δm2
ν also holds if an accounted fluctuation

or distribution of true variance σ 2
true is described wrongly in

the analysis by the variance σ 2
ana = σ 2

true − σ 2.
Different sources of fluctuations and distributions with

uncertainties can be distinguished. One group comprises β-
decay and source physics, such as molecular final states, scat-
tering processes and the Doppler effect (all discussed in this
work). Others are experimental systematics originating in the
energy measurement, which have to be studied during com-
missioning of the setup and then incorporated into the model.
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An example is the distortion of the spectrometer transmission
function due to retarding-voltage fluctuations [51,52].

4.12 Impact of theoretical and experimental corrections

In Table 1 we review and quantify the impact of theoreti-
cal corrections to the differential β-spectrum, discussed in
Sect. 2, and of experimental corrections which have been
introduced above. Many individual model components can
be safely neglected, while others need to be considered
more accurately, such as the radial dependence of retarding
potentials (Sect. 4.3), energy loss due to cyclotron radiation
(Sect. 4.8) or the Doppler effect (Sect. 4.7).

5 Measurement of the neutrino mass

Having compiled a complete description of the theoretical β-
decay spectrum and the response function of KATRIN into
a parameterizable model, we will now outline the statistical
terms and methods required for actual neutrino mass mea-
surements. In the next (Sect. 5.1 and 5.2) we review the pro-
cess of parameter inference (model fitting) and the construc-
tion of confidence intervals in the case of a KATRIN neutrino
mass analysis, and we explain the relation between observed
data, fit parameters and their uncertainties. After introducing
Frequentist methods of inferringm2

ν we give an example of a
Bayesian approach in Sect. 5.3. We briefly list statistical and
systematic uncertainty contributors for KATRIN in Sect. 5.4
and in that context discuss the relevance of the choice of the
energy analysis interval in Sect. 5.5 and the distribution of
accounted measuring time among that interval in Sect. 5.6.
In Sect. 5.7 we give an explanation of negative m2

ν estimates
and provide a non-physical extension of the β-decay spec-
trum model.

5.1 Parameter inference

The statistical technique for analyzing β-decay spectrum data
is well established. By comparing the observed number of
counts N obs

jk on each pixel j for each experimental setting k
with the prediction from the spectrum and response model
N jk(Uk,m2

ν, E0, . . . ) (see Eqs. (41) and (43)),m2
ν and other

unknown model parameters can be inferred. In the case of
a KATRIN-like neutrino mass measurement, a continuous
model that depends on m2

ν is fit to unbinned spectral shape
data. The method of least squares is most commonly applied.

The probability to have an observed outcome Nobs =(
N obs

1,1 . . . N obs
n j ,nk

)
, given the predicted number of counts

Npre(θ) defined by a set of model parameters θ

= (m2
ν, E0, . . . ), is the likelihood function

L(θ |Nobs) =
∏
jk

Poisson
(
N obs

jk |N pre
jk (θ)

)
. (44)

A set of parameter point estimates θ̂ is obtained by maxi-
mizing the likelihood L . Equivalently, a minimization of the
negative log-likelihood − ln L can be performed, which is
often more practical numerically.

If the number of observed events N obs
jk is large enough (�

25), so that the Poisson distribution can be approximated by
a Gaussian, that expression is approximately a χ2 function:

−2 ln L ≈ χ2 =
∑
jk

(
N obs

jk − N pre
jk (θ)

σ jk

)2

. (45)

In case of σ jk =
√
N pre

jk , the above χ2 equals the Pearson’s

chi-square statistic [53].
Our parameter of interest is m2

ν, which distorts the spec-
trum shape close to the endpoint. Because the fitted β-
spectrum shape essentially only depends on m2

ν, with χ2

being approximately parabolic in m2
ν, it is the preferred fit

parameter over mν [54].
Other model parameters are nuisance parameters. In

KATRIN-like experiments typically three such quantities are
treated as free fit parameters:

• The tritium endpoint energy E0, the maximum electron
energy assuming a vanishing neutrino mass, has to be
estimated from the data, due to uncertainties in the mea-
sured T+/3He+ mass difference [55] and in the experi-
mental energy scale.

• The signal amplitude Asig, a multiplicative factor close to

1, is applied to the predicted signal rate9 Ṅ sig
j to correct

for any energy-independent model uncertainty. E0 and
Asig are estimated from the slope of the spectrum at lower
energies of the analysis interval (≈ 30−40 eV below the
endpoint), where the absolute signal rate is highest.

• The background rate amplitude Abg is another normal-
ization factor, which is applied to the background model
component Ṅ bg

j . It is estimated using the data from retard-
ing potentials above the tritium endpoint, where no sig-
nal is expected. Note that we assume a constant back-
ground rate without retarding potential dependence in
the energy interval near the tritium endpoint. However,
such an energy dependence could be incorporated into
the model using additional data above the endpoint.

Considering only the aforementioned four model param-
eters, the predicted number of electrons on a detector pixel

9 Deviations from unity arise mainly from incomplete knowledge of
the tritium column density and the detector efficiency (see Eq. (41)).

123



Eur. Phys. J. C (2019) 79 :204 Page 17 of 24 204

ν

ν

Fig. 15 Frequentist confidence belt (95% C.L.) constructed according
to the unified approach by Feldman and Cousins [57]. In this example,
the horizontal ranges (green dashed lines) are constructed by choosing
95% of the m2

ν estimates from an ensemble test with fixed true m2
ν,

following the ordering principle. These horizontal ranges define the
edges of the confidence belt (blue solid lines). The subsequent result of
an actual neutrino mass measurement (x-axis, indicated by red dotted
lines) is used to select the vertical intersections with the confidence belt
to determine the reporting of an upper limit (e.g. in case ofm2

ν = 0 eV2)
or a two-sided confidence interval (e.g. in case of m2

ν = 0.07 eV2)

j for a retarding potential setting k in a counting period Δtk
is given by

N pre
jk (m2

ν, E0, Asig, Abg)

= Δtk ·
(
Asig · Ṅ sig

j (Uk,m
2
ν, E0) + Abg · Ṅ bg

j

)
.

(46)

A point estimate for this set of parameters, obtained from
maximizing the likelihood (or minimizing χ2) is denoted in
the following as (m̂2

ν, Ê0,̂Asig, Âbg).
Depending on the method of treating systematic uncertain-

ties, the number of free (or constrained) model parameters
can be higher.

5.2 Confidence intervals

Due to the stochastic nature of the observed data, a sin-
gle parameter point estimate by itself cannot relate to the
unknown true value of a parameter. In parameter inference,
a confidence interval defines an interval of parameter values
that contain the true value of the parameter to a certain pro-
portion (confidence level), assuming an infinite number of
independent experiments. Various methods of constructing
such intervals exist.

Using the Neyman construction [56] (a Frequentist method),
ensembles of pseudo-experiments are sampled for a range of
true values of m2

ν, leading to the construction of a confi-
dence belt (see Fig. 15). Incorporating an ordering principle
proposed by Feldman and Cousins [57], empty confidence
intervals for non-physical estimates of m2

ν can be avoided,
while ensuring correct Frequentist coverage.

When parameter point estimates are constructed follow-
ing the maximum likelihood ordering principle, the profile
likelihood ratio [58] can be used to estimate their uncertain-
ties. With this method the 1σ uncertainty of a parameter
estimate is identified by those parameter values where the
likelihood has decreased to half its maximum value, while
profiling (maximizing) with respect to any involved nuisance
parameter. Equivalently, a chi-square curve can be scanned
for parameter values with Δχ2 = 1, again profiling over
nuisance parameters.

5.3 Bayesian statistics

Bayesian inference is typically based on the posterior PDF
(probability density function) of a parameter of interest.
Using Bayes’ theorem, the posterior distribution p(θ) of a
set of parameters θ is given by the likelihood L(θ) and a prior
probability π(θ):

p(θ) ∝ L(θ) · π(θ). (47)

In contrast to Frequentist approaches, which make a state-
ment about the repeatability of an experiment, Bayesian
statistics inevitably introduce the concepts of probability,
belief and credibility. The prior probability π(θ) has to be
chosen by the analyst, based on prior belief. In the case of
m2

ν, an objective option is the flat uniform prior (possibly
zero for m2

ν < 0 eV2), or a normalizable Gaussian distribu-
tion that reflects the results from previous measurements.

Fortunately, KATRIN’s m2
ν posterior PDF is rather insen-

sitive to the choice of prior on m2
ν. Assuming, for instance,

a true value of m2
ν = 0 eV2, a Gaussian prior with mean

μπ = 0 eV2 and σπ = 1 eV2 (or a value on the order of
the Mainz or Troitsk upper limits) will be outweighed by the
KATRIN likelihood function. It will thus have no significant
effect on the derived Bayesian upper limit compared to a prior
that is flat in m2

ν. This underlines the improved sensitivity of
the experiment.

The posterior distributions can be obtained practically
with Markov-chain Monte Carlo (MCMC) methods [59].
With proper adjustments, this class of algorithms is capable
of efficiently traversing high-dimensional parameter spaces
and sampling from posterior probability distributions of an
unknown quantity such as m2

ν. From these distributions, any
choice of credibility interval [θ1, θ2], with P = ∫ θ2

θ1
p(θ) dθ

being the confidence level, can be constructed.
When considering the distribution of only a subspace of

all parameters, one speaks of a marginal posterior distribu-
tion. To determine the one-dimensional posterior distribu-
tion of m2

ν, the four-dimensional posterior distribution of
(m2

ν, E0, Asig, Abg) is marginalized over the three nuisance
parameters.
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Fig. 16 Scatter plots for
pair-wise parameter
combinations (m2

ν, E0, Asig,
Abg) and their respective
marginalized posterior
distributions as the diagonal
elements for 3 years of live
measurement time. The solid
contours indicate 95% C.L.
regions. Instead of randomized
data, the likelihood sampled in
this MCMC example was
formulated based on a null
hypothesis with fiducial input
values m2

ν = 0 eV2,
E0 = 18,575 eV, Asig = 1.0,
Abg · Ṅ bg = 10 mcps. Flat priors
were used with m2

ν ≥ 0 eV

Figure 16 shows the result of a MCMC sampling of the
posterior distribution that uses the basic Metropolis-Hastings
[60] algorithm. The underlying model is based on Eq. (44)
with its standard four model parameters (m2

ν, E0, Asig, Abg),
using flat priors and the constraint m2

ν ≥ 0 eV2. In this rep-
resentation, the correlations between these parameters can
be assessed easily. The correlation matrix of this particular
example evaluates to:

m2
ν E0 Asig Abg

m2
ν 1

E0 0.698 1
Asig −0.581 −0.953 1
Abg 0.396 −0.022 0.077 1

A comparison of Bayesian and Frequentist confidence
intervals for various estimates of m2

ν is given in Fig. 17.
For positive estimates, the different methods yield similar
results.

5.4 Statistical and systematic uncertainties

Traditionally, the statistical uncertainty σstat(m2
ν) is identi-

fied with the spread of an m2
ν estimate caused by the ran-

domness of the observed data (spectrum count rates N obs
k ),

and usually decreases when data are taken (as 1/
√
Nk or

1/
√

Δtk). A systematic uncertainty σsyst(m2
ν), by contrast,

represents an uncertainty in the m2
ν estimate due to an uncer-

tainty in the spectrum or response model which does not scale
with the amount of data taken in general.

Fig. 17 Marginalized likelihood functions for various estimates ofm2
ν

from representative Asimov data sets(In a representative Asimov data
set [61] statistical fluctuations are suppressed, effectively replacing the
number of (generated) observed events N obs

jk by their expectation value

N pre
jk .). Top panel: m̂2

ν = −0.05 eV2. Middle panel: m̂2
ν = 0.0 eV2.

Bottom panel: m̂2
ν = 0.05 eV2 (m̂ν = 225 meV). The horizontal bars

indicate 95 % C.L.Frequentist central confidence intervals (Classic),
Feldman and Cousins (Unified) respecting the physical boundarym2

ν ≥
0 eV2, and Bayesian credibility intervals (Bayesian) with a flat prior
for m2

ν ≥ 0 eV2. In the non-physical region the likelihood is calculated
relying on Eq. (51)

Providing a comprehensive review of all systematics of
KATRIN – some of which are not adequately quantifiable
until final commissioning and characterization of the experi-
mental apparatus – is beyond the scope of this article. Among
the major systematic contributors are the final state distribu-
tion (Sect. 2.4), the shape of the energy loss function and
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Fig. 18 Statistical, systematic and total 1σ uncertainty of m2
ν on the

left vertical axis, and 90% C.L. sensitivities of mν on the right vertical
axis, plotted over the effective measuring time. Thirty-six live months
(3 live years) correspond to 5 calendar years of KATRIN operation

the inelastic scattering cross section (Sect. 4.2), the source-
gas column density (Sect. 4.4), and high-voltage fluctuations
(Sect. 4.11).

The total systematics budget of KATRIN is conservatively
evaluated to a maximum value of σsyst(m2

ν) ≈ 0.017 eV2 [4].
Accordingly, KATRIN’s setup and configuration are cho-
sen in such a way that the statistical uncertainty, after an
envisaged data-taking period of five calendar years, reaches
σstat(m2

ν) ≈ σsyst(m2
ν) ≈ 0.017 eV2, as depicted in Fig. 18.

These values are commonly translated into a 90% C.L. sen-
sitivity of

S(mν) =
√

1.645 · σtot(m2
ν) ≈ 200 meV (48)

with the total uncertainty on m2
ν

σtot(m
2
ν) =

√
σ 2

stat(m
2
ν) + σ 2

syst(m
2
ν). (49)

5.5 Choice of the analysis energy interval

The optimal choice of the lower spectrum energy threshold
for analysis is primarily determined by the ratio of the statis-
tical and systematic uncertainties. Neither one should dom-
inate. With the differential spectrum rising quadratically as
the filter energy qU is lowered (for E0−E � mν), the statis-
tical uncertainty on the observed number of signal electrons

σstat

(
N sig

j (qUk)
)

decreases. On the other hand, systematic

uncertainties due to energy-loss processes or electronic exci-
tations of the daughter molecule increase at lower energies.
Assuming the design operational configuration of KATRIN
(see Table 2), a lower threshold of E0 − 30 eV will lead
to the desired alignment of statistical and total systematic
uncertainties (σstat(m2

ν) ≈ σsyst(m2
ν) ). As shown in Fig. 19,

the spectrum in this energy range is mainly populated with
electrons that have scattered off the source gas at most once.

Fig. 19 The expected β-spectrum rate with different shaded areas
depicting the fraction of scattered and unscattered electrons. The lower
baseline comprises the 10 mcps energy-independent background com-
ponent. Starting from the right, the shaded areas comprise signal β-
electrons that are unscattered, scattered once, twice, and thrice

5.6 Measuring time distribution

The distribution of measuring time Δtk over a range of retard-
ing potentials is of particular importance. Because the statis-
tical uncertainties of the observed Poissonian rates are given
by

σ(Ṅ ) = √
N/ t =

√
Ṅ/ t, (50)

more measuring time should be allocated to those regions of
the spectrum that are most effective for estimating the param-
eters of interest and the correlated nuisance parameters.

Figure 20 illustrates the relative spectrum rates with a
measuring time distribution in the energy interval of [E0 −
30 eV, E0 + 5 eV]. In the case of m̂2

ν, sufficient measuring
time must be spent on the region slightly below the end-
point, where the spectral distortion due to a non-zero mν

is most prominent. This is also the region with a signal-to-
background ratio between 2:1 and 1:1. Accordingly, for sce-
narios of elevated background, this feature of the measuring
time distribution must be adapted and shifted to slightly lower
energies.

The measuring time distribution can be further optimized
to provide even better statistical leverage on the model param-
eters fit to the spectrum shape (see Sect. 5.1), reducing the
statistical uncertainty σ

opti
stat

(
m2

ν

)
< 0.015 eV2 for nomi-

nal experimental conditions [62]. An example is shown in
Fig. 21, which describes a rather sparse measuring time dis-
tribution with only four features, covering distinct retarding
energy regions qU . The peak at the lower end of the anal-
ysis energy interval (≈ −30 eV) is best suited to measure
E0 and Asig due to the higher absolute spectrum rates. At
qU − E0 ≈ −14.0 eV the correlation between E0 and Asig

is broken. m2
ν is measured through the β spectrum shape dis-

tortion around qU − E0 ≈ −4.5 eV, where about one third
of the overall measuring time is invested. Abg is measured
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ν

ν

ν

ν

Fig. 20 An illustration of a hypothetical neutrino mass signal, using
toy data simulated for mν = 350 meV (red points + stat. error bars),
compared against the theoretical model expectations for mν = 0 meV
(blue solid line), mν = 350 meV (green dashed line) at nominal back-
ground of Rbg = 10 mcps, and mν = 350 meV at elevated background
Rbg = 100 mcps (orange dash-dotted line). Top panel: The absolute
rate

∑
j Ṅ jk(Uk) = Nk(Uk) is plotted against the retarding energy

qUk relative to the endpoint energy E0. Middle panel: The relative rate
difference near the endpoint energy. Under the nominal background

conditions, the largest deficit in rate due to a non-zero neutrino mass
is expected to be about 4 eV below the endpoint, where the signal-
to-background ratio is ≈ 1. For the scenario of a higher background
rate, this point of maximal distortion is shifted to lower energies. The
shaded bands indicate the statistical uncertainties. Bottom panel: The
measuring time Δtk attributed to each retarding potential setting Uk .
The Poisson uncertainty of the generated toy rates Ṅk is directly related
to the measuring time through σ(Ṅk) =

√
Ṅk / Δtk

using data beyond the endpoint energy E0, where no β-decay
signal is expected. Note that all four of these parameters are
correlated, so the measuring time cannot be shifted arbitrarily
between these four regions of retarding energy.

This more focused model allows a lower statistical uncer-
tainty of the measured m2

ν, however, it bears a higher risk
of overseeing unexpected spectrum shape distortions in the
neglected regions of the β-decay spectrum. To safeguard
against such spectral deviations from the model and against
unexpected systematics, a more uniform distribution, such
as the one first shown in Fig. 20, seems more appropriate, at
least for the initial data-taking period.

5.7 Negative m2
ν estimates

The true value of m2
ν is expected to be very close to m2

ν =
0 eV2 [63]. Assuming non-tachyonic neutrinos, the physical
lower limit of the effective neutrino mass squared is given by
the neutrino mass eigenstate splittings, measured by neutrino
oscillation experiments [11].

Fig. 21 The measuring time Δtk attributed to various retarding poten-
tial settings Uk in a more sparse, statistically optimized distribution

In order to allow the estimator m̂2
ν to follow statistical

fluctuations of the data beyond the physical boundary in a
χ2 parameter fit, a non-physical continuous extension of the
spectrum model can be introduced. It modifies the differential
β spectrum in Eq. (12) by

ε f

√
ε2
f − m2

ν −→
(

ε f + μ e−ε f /μ−1
) √

ε2
f − m2

ν (51)
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β
ν

ν

ν

Fig. 22 Extrapolation of the differential β spectrum model for differ-
ent values of the measured neutrino mass squared, including an non-
physical value of m̂2

ν = −1 eV2 (dashed red line)

with μ = k
√−m2

ν for m2
ν < 0 and μ = 0 for m2

ν > 0 (see
Fig. 22). The factor k ≈ 0.72 is adjusted based on numerical
calculations to make the χ2(m2

ν) function (and negative log-
likelihood respectively) symmetric around its minimum. A
similar extrapolation scheme was used in the analysis of the
Mainz and Troitsk neutrino mass experiments [5,6].

For the construction of physical mν confidence intervals
such a non-physical continuation of the model is not required.
The unified approach ensures correct Frequentist coverage
while allowing to respect parameter boundaries in the fit [57].
In a Bayesian framework the physical constraint is typically
realized through a prior π(m2

ν) = 0 for m2
ν < 0 eV2.

6 Conclusion

Usingβ spectroscopy, the KATRIN experiment aims to probe
the absolute neutrino mass scale with an unprecedented sub-
eV sensitivity. Both the statistical and systematic uncertain-
ties of the model parameter of interest, the squared elec-
tron neutrino mass m2

ν, are required to be on the order of
O(0.01 eV2). This demands a solid understanding and con-
sistent implementation of the theoretical β-decay spectrum
model and the experimental response function.

With this work, an effort was made to summarize the β

spectrum calculation with all known theoretical corrections
relevant for spectroscopy in the endpoint region. Further-
more, a response function model of the KATRIN experi-
ment was outlined, including its dependencies on source-gas
dynamics and the spectrometer electromagnetic configura-
tion. Finally, the statistical methods applicable to the intended
measurement were investigated and concrete examples of
their application to the KATRIN neutrino mass measurement
were given.

In Sect. 4.12, an overview of the impact of various model
components on the measured squared neutrino mass was
given. The purpose is to provide a quantitative measure of

their relative importance, indicating components that are neg-
ligible in the neutrino mass analysis. Among the most impor-
tant effects are the radial dependencies of analyzing magnetic
field and retarding potential, energy loss of signal electrons
due to cyclotron motion and the Doppler broadening of the
electron β-spectrum due to the source gas thermal motion.

The calculations presented here are implemented as part of
a common C++ simulation and analysis software framework
called Kasper, which is used by the KATRIN collaboration
to investigate the effect of model corrections and possible
systematics, and to optimize the operational parameters of
the setup for the neutrino mass measurement [39,62,64–66].

During the ongoing commissioning measurement cam-
paign of the KATRIN experiment, many aspects of the
current response model will be verified with experimental
data. The results of recent investigations are described in
[38,49,67]. This thorough characterization of the complex
setup will allow a quantitative evaluation of the systematic
effects in the neutrino mass analysis at KATRIN.
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A Appendix

A.1 Theoretical corrections to the β spectrum shape

The calculation of many theoretical corrections follows the
comprehensive summary of [68]. Consequently, a similar
nomenclature was chosen in this article.

Nomenclature

Natural units (h̄ = c = 1) are used unless stated otherwise.

W = (E + me)/me

Electron total energy in units of me
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W0 = (E0 − V f + me)/me

Endpoint energy in units of me

with V f the rovibrational final state energy

p =
√
W 2 − 1

Electron momentum in units of me

β = p/W

α = e2/h̄c

Fine structure constant

η = αZ/β,

Sommerfeld parameter

γ =
√

1 − (αZ)2

Rn = 2.8840 × 10−3 · me

Nuclear radius of 3He in units of me

M = 5497.885 · me

Mass of 3He in units of me

λt = |gA/gV| = 1.265

Ratio between vector and axial coupling constants

The nuclear radius Rn of 3He is given by the Elton formula
[69]. The value for λt is derived from the half-life of tritium
by Simkovic et al. [22].

Fermi function

A fully relativistic description of the Fermi function is given
by

Frel(Z ,W ) = 4

(2pRn)2(1−γ )
· |Γ (γ + iη)|2
{Γ (2γ + 1)}2 · eπη, (A.1)

with the complex Gamma function Γ . A commonly used
approximate, yet sufficiently accurate for our purpose,
expression for Eq. (A.1) is [70]

Fapp(Z ,W ) = F(Z ,W ) · (1.002037 − 0.001427 · p/W )

(A.2)

with F(Z ,W ) denoting the classical Fermi function (equa-
tion (6)).

Radiative corrections due to virtual and real photons

Radiative corrections, denoted by the multiplicative factor
G, are implemented according to equation 20 of [71]:

G(W,W0) =
(
W0 − W

)2α

π
t (β)

·
(

1 + 2α

π
·
{
t (β)

[
ln(2) − 3

2
+ W0 − W

W

]

+ 1

4

[
t (β) + 1

]
·
[

2(1 + β2) + 2 ln(1 − β)

+ (W0 − W )2

6W 2

]
− 2+ 1

2
β − 17

36
β2+ 5

6
β3

})

(A.3)

with

t (β) = 1

β
· tanh−1 β − 1.

Screening by the Coulomb field of the daughter nucleus

The calculation of the screening correction factor S follows
[72]:

S(Z ,W ) = W̄

W

(
p̄

p

)−1+2γ

· eπ(η̄ − η) |Γ (γ + iη̄)|2
|Γ (γ + iη)|2 ,

(A.4)

where

W̄ = W − V0/me,

p̄ =
√
W̄ 2 − 1,

η̄ = αZW̄/ p̄,

with the nuclear screening potential V0 = 76(10) eV of the
final-state orbital electron cloud of the daughter 3He atom
after β-decay, as determined by Hargrove et al. [73].

Exchange with the orbital 1s electron

The effect of an orbital electron exchange I is calculated
according to Haxton [74]. Considering only the ground state
of the daughter 3He+ ion:

I (Z ,W ) = 1 + 729

256
a(τ )2 + 27

16
a(τ ) , (A.5)

where

a(τ ) = exp

(
2τ · arctan

(
−2

τ

)) (
τ 2

1 + 1
4τ 2

)2

,

with τ = −2α/p.

Recoil effects

In the relativistic description of the three-body phase space,
the spectral change due to recoil effects, including those from
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weak magnetism and V − A interference, is reflected by the
correction factor R [75]:

R(W,W0) = 1 +
(
AW − B

W

)
/C, (A.6)

where

A = 2(5λ2
t + λtμ + 1)/M,

B = 2λt (μ + λt )/M,

C = 1 + 3λ2
t − bW0,

with μ = 5.107 being the difference between the magnetic
moments of helion and triton.

Finite nuclear extension

The two correction factors L and C , considering the finite
structure of the daughter nucleus, are given by Wilkinson
[76]. L accounts for the scaling of the Coulomb field within
the nucleus:

L(Z ,W ) = 1 + 13

60
(αZ)2

− WRnαZ

15
· 41 − 26γ

2γ − 1

− αZ Rγ

30W
· 17 − 2γ

2γ − 1
. (A.7)

The convolution of the electron and neutrino wave functions
with the nucleonic wave function throughout the nuclear vol-
ume leads to C :

C(Z ,W ) = 1 + C0 + C1 · W + C2 · W 2, (A.8)

with

C0 = −233

630
(αZ)2 − 1

5
(W0Rn)

2 + 2

35
(W0RnαZ),

C1 = −21

35
RnαZ + 4

9
W0R

2
n,

C2 = −4

9
R2

n .

Recoiling Coulomb field

The correction factor Q, describing the recoil of the charge
distribution by the emitted lepton, is calculated according to
Wilkinson [77]:

Q(Z ,W,W0) = 1 − παZ

Mp

(
1 + 1 − λ2

t

1 + 3λ2
t

· W0 − W

3W

)
.

(A.9)
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