Title
Effectiveness of Antimicrobials in the Treatment of Neonatal Diarrhea in Calves: A protocol for a Systematic Review and Meta-analysis. Authors: Bernal Cordoba, Erik Davis Fausak, N. Silva del Rio

Permalink
https://escholarship.org/uc/item/0nw528h4

Author
Fausak, Erik Davis

Publication Date
2019-07-12

Data Availability
The data associated with this publication are in the supplemental files.
Effectiveness of Antimicrobials in the Treatment of Neonatal Diarrhea in Calves: A protocol for a Systematic Review and Meta-analysis:

C. Bernal Cordoba¹, Erik Davis Fausak², N. Silva del Rio¹

Authors

¹Dept. and School: Population Health and Reproduction, UC Davis School of Veterinary Medicine
²University Library, UC Davis
Correspondence: Noelia Silva del Rio, nsilvdelrio@ucdavis.edu

Author Contributions:
NSDR and CBC – Assist to develop search protocol and literature search. Identification of relevant studies, data extraction, data presentation and manuscript preparation.
EDF – Develop search protocol and literature search.
Contributions from other authors TBD

Abstract:

Background: Neonatal diarrhea affects nearly 25% of pre-weaned calves. Prevention through management practices is the preferable approach to control diarrhea. Once calves experience diarrhea, fluids, electrolytes and acid-base balance need to be restored. Severe cases of diarrhea should be treated with antimicrobials but the need of antimicrobials in mild and moderate clinical cases it is still under debate.

Objectives: The objective of this study is to evaluate the efficacy of antimicrobial treatments or the comparative efficacy of antimicrobials treatments in calves with mild, moderate and severe diarrhea.

Design: The search strategy will be based on population (calves with diarrhea), and intervention (antimicrobial therapy). The following data bases will be used: Medline, CAB abstracts, Scopus, and Biosis. The outcomes of interest will be the occurrence and persistence of clinical signs of diarrhea, rate of growth, weight gain, feed efficiency or mortality.

Registration: The protocol has been submitted to SYREAF 12.7.19, and eScholarship, University of California (https://escholarship.org/) 12.7.19.

Amendments from Original Protocol: N/A.

Funding and Support: Partially support from CDFA Antimicrobial Use Stewardship program.
Role of Sponsor or Funder: None.

Introduction

Rationale
Neonatal diarrhea affects nearly 25% of pre-weaned calves. Prevention through management practices is the preferable approach to control diarrhea. Calves undergoing diarrhea may require treatment. The veterinary community agrees that fluids, electrolytes and acid-base balance should be
restored in diarrheic calves. However, the need of antimicrobials to treat and prevent diarrhea in calves is still under debate for moderate and mild cases. Information about the efficacy of antimicrobials should be obtained from randomized controlled studies. At the present multiple antimicrobial drugs and regimes are used to treat diarrhea in calves. The efficacy of antimicrobial treatment regimens will be evaluated to aid veterinarians and dairy producers in their decision making. A systematic review will be conducted to identify relevant literature. Network meta-analysis will be used to combine information from multiple studies and compare treatments.

Objectives
The objective of this study is to evaluate the efficacy of antimicrobial treatments or the comparative efficacy of antimicrobials in calf diarrhea treatments. Only antimicrobials labeled to be use in calf diarrhea in the US will be included in the meta-analysis.

Methods

Eligibility Criteria:
Studies will be eligible if they are primary research articles with either a negative control (placebo, no treatment) or an active comparator (other antimicrobial, a non-antimicrobial treatment). The study population of interest are calves less than 6 months of age. The outcome of interest is clinical cure risk after treatment (or treatment failure). The definition of cure (or failure) will be based on the authors' definition and may include mortality, specific signs of disease (i.e. fecal consistency, fever), unspecific signs of health disorder (i.e. appetite, demeanor), or performance (i.e. growth, weight gain, feed efficiency). Studies failing to report random treatment allocation will remain in the study; however, this will be included as a source of bias and assessed as a source of heterogeneity.

Clinical question
Are antimicrobial treatments effective at reducing the persistence (cure) of clinical signs of diarrhea compared to absence of antimicrobial treatment or alternative non-antimicrobial treatments or other antimicrobial treatments?

Information Sources:
The information sources used will include:

<table>
<thead>
<tr>
<th>Database</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline</td>
<td>Pubmed</td>
</tr>
<tr>
<td>CAB Abstracts</td>
<td>CAB Direct</td>
</tr>
<tr>
<td>Scopus</td>
<td>Scopus</td>
</tr>
<tr>
<td>Biosis</td>
<td>Web of Science</td>
</tr>
</tbody>
</table>

The research will be restricted to peer-review manuscripts written in English language. Publication date will not be limited.
Search Strategy:
The search strategy will be based on population (calves with scours/diarrhea <6 months of age) and intervention (oral or injectable antimicrobials).
PRISMA-S Template (based on v1.0 retrieved from https://osf.io/2ybwn/)

Databases and Interfaces Searched:

<table>
<thead>
<tr>
<th>Database</th>
<th>Interface</th>
<th>Date Coverage</th>
<th>Date Searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline</td>
<td>Pubmed</td>
<td>1966 to Present</td>
<td>1 July 2019</td>
</tr>
<tr>
<td>CAB Abstracts</td>
<td>CAB Direct</td>
<td>1972 - Current</td>
<td>1 July 2019</td>
</tr>
<tr>
<td>Scopus</td>
<td>Scopus</td>
<td>1970 - Current</td>
<td>2 July 2019</td>
</tr>
<tr>
<td>Biosis</td>
<td>Web of Science</td>
<td>1926 - Current</td>
<td>2 July 2019</td>
</tr>
</tbody>
</table>

Citation Searching And Text Analysis:

Article Citation:

Process: Key articles were identified by Principal Investigator and keywords were mined by finding references in PubMed, CAB Direct, Scopus, and Biosis. Keywords were collected and compared with keywords already utilized. Yale MeSH analyzer was also utilized to compare common Medical Subject Headings across articles. Content expert, Noelia Silva Del Rio, was consulted for identification of key pathogens and antibiotics currently used in calves.

Limits and Restrictions

Date and Time Period: Based on database coverage.

Language: English

Publication status: Published content only.

Species Included: bovine, neonatal (calves)

Study Design: Any prospective trial.

Search Filters:
<table>
<thead>
<tr>
<th>Database</th>
<th>Interface</th>
<th>Search Filters Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline</td>
<td>Pubmed</td>
<td>English</td>
</tr>
<tr>
<td>CAB Abstracts</td>
<td>CAB Direct</td>
<td>English</td>
</tr>
<tr>
<td>Scopus</td>
<td>Scopus</td>
<td>English</td>
</tr>
<tr>
<td>Biosis</td>
<td>Web of Science</td>
<td>English</td>
</tr>
</tbody>
</table>

Full Search Strategy:

Search Database : Pubmed

<table>
<thead>
<tr>
<th>Search ID</th>
<th>Terms (copy and paste)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 (Patient)</td>
<td>“Calf”[tiab] OR “calves”[tiab]</td>
<td>62,249</td>
</tr>
</tbody>
</table>
(treatment)
Search Database: CAB Direct

<table>
<thead>
<tr>
<th>Search ID</th>
<th>Terms (copy and paste)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (disease)</td>
<td>Ti: (diarrh* OR scour* OR escherich* OR salmonell* OR enterobact* OR clostrid* OR Escherichia OR Salmonella OR Coronavirus OR Rotavirus OR Cryptosporidiosis OR Malabsorption OR scours OR scouring OR diarrh* OR starvation OR perfringens OR gastroenteritis OR coronavirus OR Enterobacter OR clostridiales OR clostridiaceae OR clostridia OR protozoal) or od: ("Escherichia%20coli" OR "Clostridium" OR "Salmonella" OR "Clostridium%20perfringens" OR "Enterobacteriaceae" OR "Enterobacteriales" OR "prokaryotes" OR "calf diarrhoea rotavirus" OR "betacoronavirus" OR "norovirus" OR "Eimeria") OR de: ("salmonellosis" OR "diarrhoea" OR "Escherichia%20infections" OR "cryptosporidiosis" OR "Intestinal%20diseases")</td>
<td>282,615</td>
</tr>
<tr>
<td>#2 (population)</td>
<td>Ti: (calf OR calves) OR de: ("calves" or "calf diseases")</td>
<td>66,381</td>
</tr>
<tr>
<td>#3</td>
<td>Ti:(oxtetracycline OR tetracycline OR antibiotic* OR antimicrobial* OR antinfective OR therapy OR sulfachlorpyridazine OR sulphachlorpyridazine OR sulfanomide* OR strepto-hefa OR sulphamethysulphone OR sulfadimidine OR sulpha OR sulfamethazine OR sulfachlorpyridazine OR sulphamezathine OR clav* OR gentamycin* OR cephamycin OR cephalosporins OR fluoroquinolone OR enrofloxacin OR marbofloxacin OR amox* OR Penicillin OR Ampicillin OR trimethoprim* OR probiotic OR hydrotetracycline OR oxytetracin OR bisolvomycin OR pyridazines OR antibiotic* OR antimicrobial* OR antinfective OR anti-infective OR amox* OR ampicillin OR penicillin OR clavul* OR chlorotetracycline OR aureomycin* OR biomycin OR streptomycin* OR aminoglycoside* OR estreptomicina OR OR sulphonamides OR sulfadimidine OR tetracycline OR sustamycin OR achrmycin OR tetrabid OR procaine OR neomycin OR fradiomycin OR chloramphenicol OR cloranfenicol OR kloramfenikol OR kloramphenicol OR chloromycin OR kloramfenikol OR florfenicol OR florphenicol OR trimethoprim OR ditrim OR tribrisen OR prophylactic OR sulphonamides OR GentaM* OR furazolidone OR nifurazolidone OR apramycin OR fluoroquinolone OR enrofloxacin OR bayrill OR endrofloxacin OR marbofloxacin OR zeniquin OR danofloxacin OR advocin OR Neomycin OR L640876 OR ceftiofur OR Furazolidone OR "milk replacer" OR "oral administration" OR "prophylaxis" OR "streptomycin" OR "aminoglycoside" OR "ampicillin" OR "antiinfective %20agents" OR "beta-lactam%20antibiotics" OR "ceftiofur" OR "cephalosporins" OR "clavulanic acid" OR "penicillins" OR "tetracyclines" OR "chlorotetracycline" OR "milk%20substitutes" OR "treatment" OR "substitutes" OR "electrolytes" OR "sulfadiazine" OR "trimethoprim" OR "Drug therapy" OR "Antibacterial%20agents" OR "fluoroquinolone%20antibiotics" OR "metronidazole" OR "drug %20combinations" OR "furazolidone" OR "Chloramphenicol" OR "Neomycin" OR "sulfadiazine" OR "Sulfonamides" OR "trimethoprim" OR "beta-lactam%20antibiotics" OR "aminoglycoside%20antibiotics" OR "Tetracyclines" OR "antibacterial%20agents" OR "therapeutic %20agents" OR "therapeutic%20diets")</td>
<td>622,664</td>
</tr>
</tbody>
</table>

| #4 | La: English | 8,146,590 |

| #5 | #1 AND #2 AND #3 AND #4 | 1,717 |
Search Database: Scopus

<table>
<thead>
<tr>
<th>Search ID</th>
<th>Terms (copy and paste)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>(TITL-ABS-KEY (diarrh* OR scour* OR gastroenteritis OR escherich* OR salmonell* OR enterobact* OR clostrid* OR Escherichia OR Salmonella OR Coronavirus OR Rotavirus OR Cryptosporidiosis OR Malabsorption OR starvation OR perfringens OR coronavirus OR Enterobacter OR clostridiales OR protozoal))</td>
<td>1,097,488</td>
</tr>
<tr>
<td>#2</td>
<td>(Title(Calf OR Calves))</td>
<td>30,691</td>
</tr>
<tr>
<td>Search ID</td>
<td>Terms (copy and paste)</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>#3</td>
<td>(TITL-ABS-KEY(oxytetracycline OR tetracycline OR antibiotic* OR antimicrobial* OR antiinfective OR therapy OR sulphamethylphenasole OR sulfadimidine OR sulphanomide* OR strepto-hefa OR sulphamethylphenasole OR sulfadimidine OR sulphadimidine OR sulfamethazine OR sulfachloropyridazine OR sulphamezathine OR clav* OR gentamycin* OR cephamycin OR cephalosporin* OR fluoroquinolone OR enrofloxacin OR marbofloxacin OR amox* OR Penicillin* OR Ampicillin* OR trim* OR therapy OR probiotic OR hydrotetracycline OR oxytetracin OR bisolvomycin OR pyridazines OR anti-infective OR chlortetracycline OR aureomycin* OR biomyacin OR streptomycin* OR aminoglycoside* OR estreptomicina OR sustamycin OR achromycin OR tetrabid OR procaine OR neomycin OR fradiomycin OR chloramphenicol OR cloranfenicol OR kloramfenikol OR chloromycetin OR kloramfenikol OR florfenicol OR trihydrate OR aminobenzylpenicillin OR ks-r1 OR sultamicillin OR sulbactam OR unasyn OR ceftiofur OR naxcel OR U-24769 OR trimethoprim OR ditrim OR tribrissen OR prophylactic OR sulphamethylphenasole OR Gentam* OR furazolidone OR nifurazolidone OR apramycin OR fluoroquinolone OR baytril OR endrofloxacin OR zeniquin OR danofloxacin OR advocin OR Neomycin OR L640876 OR ceftiofur OR Furazolidone OR {milk replacer})</td>
<td>5,659,887</td>
</tr>
<tr>
<td>#4</td>
<td>Language (English)</td>
<td>64,418,516</td>
</tr>
<tr>
<td>#1 AND #2 AND #3 AND #4</td>
<td></td>
<td>992</td>
</tr>
<tr>
<td>#1</td>
<td>(Ti=(diarrh* OR scour* OR escherich* OR salmonell* OR enterobact* OR clostrid* OR gastroenteritis OR Escherichia OR Salmonella OR Coronavirus OR Rotavirus OR Cryptosporidiosis OR Malabsorption OR starvation OR perfringens OR gastroenteritis OR coronavirus OR Enterobacter OR clostridiales OR protozoal) AND LANGUAGE: (English))</td>
<td>251,111</td>
</tr>
<tr>
<td>#2</td>
<td>Ti=calves OR calf AND LANGUAGE: (English)</td>
<td>33,207</td>
</tr>
<tr>
<td>#3</td>
<td>(Ti=(oxytetracycline OR tetracycline OR antibiotic* OR antimicrobial* OR antiinfective OR therapy OR sulph* OR sulfa* OR clav* OR gent* OR cepha* OR fluoroquinolone OR enrofloxacin OR marbofloxacin OR amox* OR Pen* OR Amp* OR trim* OR therapy OR probiotic OR hydrotetracycline OR oxytetracin OR bisolvomycin OR pyridazines OR anti-infective OR chlorotetracycline OR aure* OR biomy* OR streptomycin* OR aminoglycoside* OR estreptomicina OR sustamycin OR achromycin OR tetrabid OR procaine OR neomycin OR fradiomycin OR chlor* OR clor* OR kloramfenikol OR florfenicol OR florfenicol OR trich* OR trime* OR trimethoprim OR ditrim OR tribrisen OR prophylactic OR sultamicillin OR sulbactam OR unasyn OR ceftiofur OR naxcel OR U-24769 OR trimethoprim OR ditrim OR tribrisen OR prophylactic OR sulphamethylphenasole OR Gentam* OR furazolidone OR nifurazolidone OR apramycin OR fluoroquinolone OR baytril OR endrofloxacin OR zeniquin OR danofloxacin OR advocin OR Neomycin OR L640876 OR ceftiofur OR Furazolidone OR “milk replacer”) AND LANGUAGE: (English))</td>
<td>1,225,576</td>
</tr>
<tr>
<td>#4</td>
<td>#1 AND #2 AND #3</td>
<td>221</td>
</tr>
</tbody>
</table>

Search Designers:
Erik Fausak was the librarian who designed the search strategy with input and reference citation list from content expert, Dr. Noelia Silva Del Rio.

Peer Review:
Two peer reviewers examined CAB and Pubmed search strategy, gave input that was applied to search strategy. Deanna Johnson and Megan Van Noord.
<table>
<thead>
<tr>
<th>Total Records</th>
<th>Total Records after deduplication</th>
<th>Deduplication software/methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,868</td>
<td>2,707</td>
<td>Mendeley, matches across fields and gives confidence. All suggested merges were approved.</td>
</tr>
</tbody>
</table>

Study Records:
Studies will be exported from Mendeley (Mendeley Ltd.) into a systematic review management software (DistillerSR, Evidence Partners Inc.; Ottawa, ON, Canada). Duplicates will be deleted.

Selection Process:
The process to select relevant records will include the following steps:

Title screening:
- a. Does the title describe the use of an antimicrobial treatment?
- b. Does the title indicate cattle as the subject of study?

Abstract screening:
- c. Does the study describe a controlled trial?
- d. Does the abstract describe a study of diarrhea in calves?
- e. Does the study describe one or more intervention groups of an antimicrobial treatment regimen?
- f. Are antimicrobial treatments given after the diagnosis of diarrhea?
- g. Does the study describe an outcome related to clinical cure or performance (i.e. growth)?

If the answers above are yes then, full manuscripts will be evaluated. A record will only need one reviewer to indicate it is relevant to be forwarded to the full-text relevance screening. Excluded records will be evaluated by two reviewers. If there is no consensus between the two reviewers, a third reviewer will be consulted.

Data Collection Process:
Citation searches will be collected using a citation management software (Mendely Ltd.). Eligible publications after title/abstract screening will be acquired as full manuscripts with the assistance of the UC Davis librarian. Relevant data will be extracted into a spreadsheet form (Excel 2010, Microsoft Corp., Redmond, WA).
The spreadsheet form will capture the following information:
- Population: location, year, calves age, weight, and breed.
- Eligibility criteria based on author’s definition (i.e. scours, fever, unspecific signs of health disorder).
- Individuals evaluating clinical signs of health disorder prior to enrollment (researcher / owner / veterinarian / other).
- Individuals applying treatments (researcher / owner / veterinarian / other)
- Individuals evaluating clinical signs of health disorder after treatment (researcher / owner / veterinarian / other).
- Description of treatment protocol implemented (drug type, dose, route, frequency).
- Definition of treatment effectiveness (cure) based on author’s definition (i.e. fecal score, fever).
- Time when outcomes were measured relative to treatment onset.
- Intervention of interest and the comparator group(s) (i.e. type of drug, route, dose, frequency).
- Results of binary (i.e. mortality and clinical cure) and continuous (i.e. time to cure, growth, intake and feed efficiency) outcomes will be extracted including: sample sizes, raw data or relative measure (RR, OR), effect size, variation of effect size, other variables controlled in the analysis such as age, breed, season or other.

The possible metrics will be extracted following the order below:
1. Adjusted summary effect size.
2. Unadjusted summary effect size.
3. Arm level risk of the outcome or mean of the outcome.

Risk of bias in Individual Studies:
Cochrane ROB 2.0 tool will be modified to evaluate the risk of bias (Higgins et al., 2016). https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool.

1. Randomization process: It is expected that some studies will not report randomization. Thus, randomization without describing the allocation approach will not be considered a risk of bias.
2. Deviations from intended interventions: Reasons for trial exclusion after intervention will be evaluated.
3. Missing outcome data: Bias due to loss to follow-up data will be evaluated, but it might not be relevant in randomized calf trials.
4. Measurement of the outcome: The outcome assessors might not be blinded to interventions but if the outcome is unlikely to be biased (i.e. temperature-fever) it will be listed as a low risk of bias.
5. Bias in selection of the reported results: Time to event (clinical cure), and differences in proportions of calves across studies.

Data Synthesis:

Network meta-analysis. Based on the approach described by NICE Decision Support Unit, a generalized linear modeling framework with a logit link will be used for the binary outcomes (clinical cure and mortality; Dias et al., 2014). The software of choice to perform the data analysis will be Stata (Statacorp LP; College Station, TX).

Meta-bias(es): Publication bias in the network of evidence will be carried out as described by Mavridis et al. (2014) and presented as a funnel plot.

Confidence in Cumulative Evidence: The quality of evidence for each outcome will be assessed using GRADE (GRADE, 2015, Puhan et al., 2014), while considering the nature of the network meta-analysis (Jansen et al., 2011). If feasible, we will use the CIINeMA (Confidence In Network Meta-Analysis) web-based application platform, to evaluate the impact of risk of bias on study results.

Discussion:
The proposed systematic review and network meta-analysis will summarize the current evidence regarding the efficacy of antimicrobials used for the treatment of diarrhea in calves. It is anticipated that results will assist producers and veterinarians to make evidence-based decisions when treating calves. Lastly, the proposed systematic review will assist researchers to identify current gaps in knowledge related to the efficacy of antimicrobials to treat diarrhea in calves.

References:

