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Abstract

Deciphering the Thermal and Ionization State of the Intergalactic Medium over the

Past 10 Billion Years

by

Teng Hu

One of the great successes of modern cosmology is the percent-level concordance

between theory and observations of the intergalactic medium (IGM) at z ≳ 1.7. Yet,

the Lyα forest at z < 1.7, which can only be studied via HST UV spectra, has pointed

out a puzzling discrepancy, i.e., the Doppler b-parameters of these absorption lines are,

on average, ∼ 10 km/s wider than those in any existing hydrodynamic simulation. This

discrepancy implies that the low-z IGM might be substantially hotter than expected,

contradicting one of the fundamental predictions in current cosmology that the IGM

should cool down owing to the Hubble expansion after He ii reionization ( z < 2.5).

Moreover, the IGM thermal state degenerates with its ionization state characterized

by the UV background (UVB) photoionization rate, ΓHI, which dictates the abundance

of the Lyα absorbers, dN/dz. Such a degeneracy requires any reliable measurement

to adopt a careful statistical inference procedure. To overcome these difficulties, in this

thesis, a novel machine-learning-based inference framework is employed to jointly measure

the thermal and ionization state of the IGM, using the 2D distribution of b-parameter

and H i column density and dN/dz. This method effectively resolves the degeneracies

between the thermal and ionization state of the IGM and achieves high precision, even

with limited-sized data. I apply this method to 94 archival HST COS and STIS quasar

spectra distributed across the seven redshift bins, yielding a comprehensive evolutionary

history of the IGM thermal and ionization state at z < 1.5. The results suggest that

vii



the IGM may be significantly hotter than previously expected at low-z and is potentially

isothermal, with IGM temperature at mean density, T0 ∼ 30, 000K and power-law index

of the temperature-density, γ ∼ 1.0 at z = 0.1. The inferred thermal history suggests that

this unexpected IGM temperature possibly emerges around z ∼ 1. Additionally, while

the ΓHI measurements align with the theoretical model at z ∼ 1, the values measured at

z < 0.5 are substantially lower than predicted, posing challenges to low-z UV background

synthesis models.
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Chapter 1

Introduction

1.1 The Intergalactic Medium and Cosmic Evolution

Since the dawn of civilization, we humans have been enchanted by the mysteries

of the origin and evolution of the Universe. Today, modern cosmology allows us to

explore the deepest recesses of the cosmos, revealing the earliest observable moments

of the Universe. According to current cosmological models, all baryons were highly

ionized until ”recombination,” which took place 378,000 years after the Big Bang (at

redshift z ∼ 1100, see Ryden 2003, Tanabashi et al. 2018). This event occurred as the

universe expanded and cooled enough for free electrons to combine with protons, forming

neutral hydrogen atoms. This transition made the universe transparent for the first

time. The atoms—primarily hydrogen and helium—then transition to their lowest energy

state (ground state) by emitting photons, a process known as ”photon decoupling.”

These photons are still observable today as the Cosmic Microwave Background (CMB),

which is the oldest direct observation of the Universe(Penzias & Wilson 1965, Planck

Collaboration et al. 2014).

Following recombination and decoupling, the universe entered the ”dark ages,” a
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Introduction Chapter 1

period characterized by the absence of electromagnetic radiation sources, lasting about

one billion years. During this epoch, as the gas cooled, it collapsed into dark matter

halos due to gravitational forces, resulting in the formation of stars and proto-galaxies.

These objects began to emit photons into the space between galaxies filled with low-

density gas, commonly known as the intergalactic medium (IGM). During this process,

photons with sufficient energy may ionize the neutral hydrogen atoms in the IGM. More

specifically, photons with an energy E ≥ 13.6 eV, corresponding to the ionization energy

of the hydrogen(HI→HII), re-ionize the neutral hydrogen in the IGM and convert them

into protons and electrons. This phase transition, known as ”reionization” or ”hydrogen

reionization,” is believed to have completed around z ∼ 6 (Madau et al. 1998, Fan et al.

2006, Faucher-Giguère et al. 2008, Robertson et al. 2015, McGreer et al. 2015).

Alongside hydrogen reionization, neutral helium atoms in the IGM are also re-ionized

by photons with higher energy. The first ionization of helium (from HeI to HeII) requires

24.6 eV, while the double reionization of helium (from HeII to HeIII) demands even more

energy, at 54.4 eV. This substantial difference in ionization energies suggests that helium

reionization might occur at different epochs in the cosmic history compared to hydrogen

reionization. Interestingly, the first ionization of helium actually occurred simultaneously

with hydrogen reionization. While the first ionization of helium requires nearly twice the

ionization energy of hydrogen, the universe contains an order of magnitude fewer helium

atoms at the moment. Therefore, even though there were fewer photons with energy

sufficient to ionize helium (i.e., E ≥ 24.6 eV) compared to those needed for hydrogen

(E ≥ 13.6 eV), the lower abundance of helium means that there are still enough helium-

ionizing photons to ionize helium during the era of hydrogen reionization.

Meanwhile, the first-generation stars did not produce enough photons energetic enough

for the double ionization of helium, causing this process to pause temporarily until more

powerful sources appeared. These sources were the extremely luminous active galactic

2



Introduction Chapter 1

nuclei (AGN), also known as quasars or QSOs. They are powered by supermassive black

holes surrounded by accretion disks, where gas falls into the black hole, releasing vast

amounts of energy through jets and electromagnetic radiation. The intense radiation

from quasars dramatically alters the gas in the IGM. However, due to their radiation

mechanisms, quasars are relatively short-lived, being active for only a few tens of mil-

lions of years. Moreover, because of their substantial mass and structural requirements,

quasars do not emerge until later in cosmic history compared to hydrogen reionization.

The luminosity density of quasars peaks around z ∼ 3 (Worseck et al. 2011, Khaire 2017,

Worseck et al. 2018, Kulkarni et al. 2019), making this epoch the period for the double

ionization of helium (Madau & Meiksin 1994, Miralda-Escudé et al. 2000, McQuinn et al.

2009, Dixon & Furlanetto 2009, Syphers & Shull 2014).

These two reionization events significantly heat the IGM while altering its ionization

state, as the excess energy from the photons is ultimately converted into kinetic energy.

For typical IGM consisting of low-density gas, photoionization heating during these reion-

ization events boosts the gas temperature to the order of O(104K). These heating events,

therefore, leave substantial imprints on the thermal state of the IGM throughout cosmic

history.

After hydrogen reionization (z < 6) the thermal state of the IGM is determined by

the balance between heating from photoionization by the extragalactic UV background

(UVB) and cooling mechanisms, including adiabatic cooling because of the Hubble expan-

sion, radiative recombination cooling, and inverse Compton scattering where electrons

interact with the cosmic microwave background. As a result of these processes, after

the epoch of reionization, the IGM subsequently adheres to the power-law temperature-

density (T -∆) relation:

T (∆) = T0∆
γ−1, (1.1)

3



Introduction Chapter 1

where ∆ = ρ/ρ̄ is the overdensity, T0 is the temperature at mean density ρ̄, and γ is

the power-law index (Hui & Gnedin 1997, McQuinn & Upton Sanderbeck 2016). These

two parameters [T0, γ] thus characterize the thermal state of the IGM, and enable us to

impose constraints on its thermal history at various epochs (Davé & Tripp 2001, Becker

et al. 2011, Rorai et al. 2017, Hiss et al. 2018, Gaikwad et al. 2021), which enhance

our understanding of the IGM thermal evolution and illustrate the intrinsic heating and

cooling mechanisms of the Universe. Fig. 1.1 shows the distribution of T and ∆ for the

Nyx (Almgren et al. 2013) simulation with standard HeII reionization model at z = 1.6.

The power-law fit of the IGM T -∆ relationship is shown as white dashed lines, and the

best-fit thermal state [T0, γ] are given in the texts. The peak temperature in each log∆

bin (log Tpeak,i,log∆i) used for the power law fit are plotted as black dots with the 1-σT,i

error bars are also shown. It can be seen that the tight T -∆ relation is readily apparent.

The detailed fitting method is presented in §2.1.1 The gas cells are divided into four

phases depending on the temperature and density, namely the Warm-Hot-Intergalactic-

Medium (WHIM), Diffuse Lyα, Hot Halo gas, and Condensed 1. The density-weighted

gas phase fractions are shown in the annotation.

Moreover, within the past 10 billion years (z ≲ 1.7), shock heating caused by large-

scale velocity flows, and possibly violent feedback from galaxy formation, converts a

significant fraction of the cool gas (T ∼ 104 K) in IGM into WHIM with T > 105K,

resulting in a noticeable deviation from the tight power-law IGM T -∆ relationship. We

will discuss these WHIM gas and their impacts on the IGM thermal state throughout

this work, mainly in §5.
1Here we follow the definition used in Davé et al. (2010), where the cutoffs are set to be T = 105K

and ∆ = 120, more discussion about the different cutoff used in literature can be found in Gaikwad
et al. (2017b).
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Figure 1.1: The distribution of the IGM gas for Nyx simulation at z = 1.6. The power-law

fit of relationship is shown as the dashed white line, and the best-fit thermal state [T0, γ]

are given in the texts. The peak temperature in each log∆ bin (log Tpeak,i,log∆i) used for

the power law fit are plotted as black dots with the 1-σT,i error bars are also shown. The

density-weighted gas phase fractions are shown in the annotation.
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Figure 1.2: An example of Lyα forest quasar 3C 273 at z=0.158 observed by the HST STIS

E140M grating.

1.2 The Lyman-α Forest and Line Decomposition

The diffuse nature of the IGM makes its corresponding emission lines difficult to ob-

serve, necessitating reliance on absorption features to probe its properties. Even though

The IGM is predominantly ionized after ionization, there remains residual neutral hydro-

gen in the diffuse IGM (with a neutral fraction nHI of the order of O(10−5)). Owing to

the high oscillator strength of the Lyα transition, the Lyα absorption (λLyα = 1215.67 Å)

caused by the residual neutral hydrogen is pronounced despite the low neutral fraction.

As a result, these intervening residual neutral hydrogen across the IGM together give

rise to the Lyα forest, a series of absorption lines in the spectra of distant galaxies or

quasars arising from the Lyα transition of the neutral hydrogen atom in the IGM(Gunn

& Peterson 1965, Lynds 1971). These absorption lines are sensitive to the temperature,

density, and velocity of the residual neutral hydrogen in the IGM, making the Lyα forest

a premier tool for probing the IGM and its thermal state. Fig. 1.2 shows an example

of Lyα forest quasar 3C273 at z=0.158 observed by the Hubble Space Telescope (HST)

space telescope imaging spectrograph (STIS) E140M grating. The figure clearly illus-

trates how neutral hydrogen atoms in the IGM create multiple absorption lines as the

photons emitted by the quasar traverse space towards us.

6



Introduction Chapter 1

Various statistical properties of the Lyα forest are used to measure the IGM thermal

state, including the power spectrum (Theuns et al. 2000, Zaldarriaga et al. 2001, Mc-

Donald et al. 2001, Walther et al. 2017, Khaire et al. 2019, Gaikwad et al. 2021), the

flux probability density function (PDF) (Bolton et al. 2008, Viel et al. 2009, Lee et al.

2015), the transmission curvature (Becker et al. 2011, Boera et al. 2014), the wavelet

decomposition of the forest (Theuns & Zaroubi 2000, Theuns et al. 2002, Lidz et al.

2010, Garzilli et al. 2012, Wolfson et al. 2021), the quasar pair phase angle distribution

(Rorai et al. 2013; 2017), and the decomposition of the Lyα forest (Schaye et al. 1999,

Ricotti et al. 2000, McDonald et al. 2001, Hiss et al. 2018). However, These measure-

ments are typically performed using Lyα forest spectra from ground-based telescopes at

z > 1.6, where the Lyα transition lies above the atmospheric cutoff (λ ∼ 3300Å), which

explains why there are currently very few measurements of the IGM thermal state at

redshift below such limit (i.e. z < 1.6), which is, however, an essential epoch for galaxy

formation. Currently, the only measurements of the IGM thermal state for z < 1.5 come

from Ricotti et al. (2000, see. Fig. 1.4) at z = 0.1, utilizing a dataset with very limited

size (34 Lyα absorption lines). Due to the limited size of this dataset, the associated

error margins on measured temperatures are substantial, with σT0 ≳ 10,000K, the large

error margin implies that our understanding of the IGM thermal state at low-z remains

imprecise.

As an important technique used in this work, the decomposition of the Lyα forest into

the Voigt profiles detailed below. The intrinsic absorption line shape of the Lyα tran-

sition, dictated by the scattering cross-section, approximates a Lorentzian profile. Con-

currently, the thermal motions within the absorbing clouds are described by a Maxwell-

Boltzmann velocity distribution, which exhibits a Gaussian shape. Thus, the observed

Lyα lines can be effectively modeled by a Voigt profile, a convolution of a Lorentz dis-
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tribution and a Gaussian distribution:

V (x) =

∫
G(y;σ)L(x− y; γ)dy (1.2)

where

L(x; γ) =
γ

π(γ2) + x2
, (1.3)

is the Lorentz profile, with γ being the scale factor, and the

G(x) =
1

σ
√
2π

exp(
−x2

2σ2
), (1.4)

is the Gaussian profile, where is the standard deviation.

For a transition line caused by intrinsic quantum effect, its line profile is:

ϕν =
4γul

16π2(ν − νlu)2 + γul2
, (1.5)

where the νlu is the transition frequency, and the γul is a scale factor determined by the

lifetime of the excited state. As for Lyα transition, the intrinsic width caused by the

intrinsic profile is

(∆v)Lyα,FWHM = c
(∆ν)FWHM

νul
=

cγul
2πνul

∼ 0.0121 km/s. (1.6)

For thermal broadening, the distribution of velocities of the gas particles, p(v), follows

the Maxwell distribution, which is Gaussian,

p(v) =
1

σv
√
2π

exp(
−(v − v0)

2

b2
), (1.7)

where v0 is the mean velocity of the gas particles, b =
√
2σv is the Doppler parameter

8
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(or Doppler width), and σv =
√
kBT/m is the standard deviation derived from the pure

thermal motion of the particles. Here, m represents the particle mass, T is the gas

temperature, and kB is the Boltzmann constant. For typical Lyα transition caused by

hydrogen atoms with T ∼ 10,000 K, the Doppler width, b ∼ 13 km/s.

Combing eqns. 1.5, 1.7, and 1.2, we can express the Voigt profile as:

ϕVoigt(ν) =

∫
p(v)ϕintr(ν)dv =

1√
2πσv

∫
4γul

16π2(ν − (1− v/c)νlu)2 + γul2
exp(

−v2

2σv2
)dv.

(1.8)

Given the thermal broadening is much larger than the intrinsic broadening for typical

Lyα lines, i.e., b ≫ (∆v)Lyα,FWHM, we can see γul ≪ σvνul
c

. The Lorentz profile can thus

be approximated by a δ function, i.e.,

4γul
16π2(ν − (1− v/c)νlu)2 + γul2

≈ δ(v − c(1− ν/νul)) (1.9)

Therefore, the Voigt profile becomes:

ϕVoigt(ν) =
1√
2πσν

exp(
−(ν − νul)

2

2σν2
), (1.10)

where σν = σvνul/c. This approximation is generally valid for typical low-redshift

Lyα forest observations (z < 3), which are optically thin. However, it is not appropriate

for high column-density absorbers, as treating the intrinsic profile as a delta function fails

to account for the significant wings of the Lorentzian profile. These high column-density

absorbers are less common in the Lyα forest and are, therefore, beyond the scope of this

thesis.

To model the shape of an absorption profile observed in the Lyα forest spectra, we

begin by calculating the optical depth of the Lyα transmission, τLyα, which can be cal-

9
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culated by:

τLyα = σLyαNHI =
πe2

mec
fLyαϕLyαNHI (1.11)

where σLyα is the cross-section for the Lyα transition, NHI is the neutral hydrogen column-

density, e is the electron charge,me is the electron mass, and fLyα is the oscillator strength

of the Lyα transition. Given the Voigt profile, Eq. 1.10, we thus have

τLyα = τ0,Lyα exp(−v2/b2), (1.12)

where the velocity v corresponds to the frequency shift v = c(νLyα − ν)/νLyα, and the τ0

is the optical depth at line center,

τ0,Lyα =
√
π
e2

mec

fLyαλLyαNHI

b
≃ 0.758(NHI/10

13cm−2)(10km s−1/b). (1.13)

Given the optical depth τ , the observed transmission is then

T = F/C = exp(−τ), (1.14)

where F is the observed flux and C is the spectrum continuum.

Given the above, an absorption profile in a Lyα spectrum can be parameterized by

the neutral hydrogen column density NHI, the thermal broadening Doppler parameter

b, and its position in redshift space, z. The statistics of the Lyα forest line parameters

{b,NHI}, therefore, can be used to constrain the thermal state of the IGM. In this thesis,

the joint 2D b-NHI distribution is employed to constrain the IGM thermal state. The

method is elaborated further in §2.

10
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1.3 The b-parameter Discrepancy at low-z

At high redshifts (z > 2), our theoretical model of the IGM, particularly concerning

its thermal and ionization state, aligns remarkably well with high-resolution Lyα forest

observations (e.g. Bolton & Haehnelt 2007, Becker et al. 2011, Becker & Bolton 2013a,

Hiss et al. 2018, Walther et al. 2019a, Gaikwad et al. 2021). This concordance has

established confidence in these IGM models, leading to further research utilizing the

Lyα forest, e.g., probing cosmology (e.g. Busca et al. 2013), measuring neutrino masses

(e.g. McDonald 2006, Yèche et al. 2017, Garny et al. 2021), and testing alternate models

of dark matter (e.g. Viel et al. 2013, Armengaud et al. 2017, Palanque-Delabrouille et al.

2020, Iršič et al. 2024). However, in the recent decade, low-z (z < 0.5) observations of the

IGM facilitated by the Cosmic Origin Spectrograph (COS) on board the Hubble Space

Telescope (HST) have introduced discrepancies that question our current understanding

of the IGM, and signal an intriguing issue with otherwise stellar concordance between

theory and observations.

This particularly pressing issue in the low-z IGM is the discrepancy between the ob-

served and simulated distributions of the Dopper width, b, of the Lyα forest(Gaikwad

et al. 2017b, Viel et al. 2017, Nasir et al. 2017, Bolton et al. 2022b). Such a discrep-

ancy is illustrated in Fig. 1.3, in which the b-parameters from three simulations Nyx,

Illustris(Genel et al. 2014), and IllustrisTNG(Weinberger et al. 2017) are compared with

those in the low-z Lyα forest quasar spectra Danforth et al. (2016). All these b parame-

ters are obtained from Lyα forest decomposition using automated fitting program VPFIT,

which will be further explained in §2.1.4. The b-parameter is observed to peak at ≃ 32

km/s, which is significantly higher than predicted by simulations (≃ 21 km/s). This dis-

crepancy holds regardless of whether the simulations account for galaxy formation with

various degrees of feedback (e.g Illustris and IllustrisTNG) or without any galaxy forma-
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Figure 1.4: The IGM T0 evolution history based on theory and previous observations.
The blue-shaded region represents the range spanned by T0 and γ from hydrodynam-
ical simulations of a large family of different He ii reionization models. Measurements
from other studies at are displayed in different colours.

tion (Nyx in Fig. 1.3). The larger line widths in observations as compared to simulations

suggest either a significant source of additional turbulence in the IGM of the order of

∼ 10 km/s, which is not captured by current simulations (e.g Nasir et al. 2017, Bolton

et al. 2022b) or, alternatively, the low-z IGM is substantially hotter than expected (e.g

Viel et al. 2017, Nasir et al. 2017), with T0 > 10, 000K at z = 0.1, at least twice the

temperature predicted by theoretical models.

In fact, one of the fundamental predictions of the theory of the IGM is that, a few

hundred million years after the completion of He ii reionization (i.e., at z ∼ 2.5) the IGM

should cool down primarily because of the adiabatic cooling resulting from Hubble expan-

sion as illustrated in Fig. 1.4. This figure illustrates the evolution of IGM temperature

at the mean density, T0, where the cyan-coloured swath, generated from hydrodynamical

simulations with a diverse set of He ii reionization models, shows a remarkable conver-

gence towards a consistent T0 at z < 1. This convergence illustrates that the IGM quickly

loses memory of the thermal impact of He ii reionization, and asymptotes towards a tem-

perature T0 ≃ 5000 K. However, as discussed in §1.2, the lack of observational data over

a span of 10 billion years in cosmic time results in a void in the IGM thermal history,
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leaving the anticipated cooling of the IGM at low-z unconfirmed.

1.4 The UVB and ’Photon Under-Production Crisis’

In addition to the discrepancy in b-parameters, the low-z IGM presents another puz-

zle: the nature of the UVB, characterized by the H i photoionization rate, ΓHI, which

directly affects the abundance of Lyα absorbers in the low-z IGM as well as crucial for

studying the circum-galactic medium (e.g Lehner et al. 2013, Hussain et al. 2017, Chen

et al. 2017, Wotta et al. 2019, Acharya & Khaire 2022). A notable deviation between

the ΓHI deduced from the Lyα forest at z ∼ 0.1 and the forecasts from previous UVB

synthesis models (e.g Haardt & Madau 2012, Faucher-Giguère et al. 2009) lead Kollmeier

et al. (2014) to introduce the problem of a ”photon under-production crisis”, which sug-

gest that the measured ΓHI exceeds the value predicted by UVB synthesis models, which

is shown in the Fig. 1.5. However, such a result has however not been confirmed by

other studies (Shull et al. 2015, Gaikwad et al. 2017a, Fumagalli et al. 2017, Khaire et al.

2019) and recent UVB models (Khaire & Srianand 2015; 2019b, Puchwein et al. 2019,

Faucher-Giguère 2020).

The recent UVB models agree to the extent that the low-z ΓHI measurements favour

UVB dominated by H i ionizing photons from quasars alone and the fraction of ionizing

photons from galaxies at z < 2 is negligibly small (Khaire & Srianand 2019b, Puchwein

et al. 2019, Faucher-Giguère 2020). However, at higher redshifts, z > 3, a substantial

increase in the ionizing escape fraction from galaxies from less than one percent to 15-20

percent is needed (Khaire et al. 2016) even in the presence of a high fraction of low-

luminosity quasars claimed to be present at high-z (Khaire 2017, Finkelstein et al. 2019).

This transition of escape fraction hinges only on the ΓHI measurements at z > 2 and

z < 0.5 whereas there are no measurement of ΓHI at 0.5 < z < 1.8, with a substantial
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Figure 1.5: The ΓHI evolution history based on theory and previous observations.
The higher-than-expected value measured by Kollmeier et al. (2014) is shown as the
orange star.

void of almost five billion years of cosmic time. A part of this lack of measurement, be-

sides the limited data from HST at these redshifts, is caused by the potential degeneracy

between the IGM thermal and ionization state. To overcome this problem, for z < 0.5

ΓHI measurements, previous studies (Gaikwad et al. 2017a, Khaire et al. 2019) leveraged

either post-processing simulations to generate the thermal histories (Gaikwad et al. 2018)

or a huge grid of Nyx simulations (Walther et al. 2017) performed with different thermal

histories of the IGM. It is important to recognize, a full description of the Lyα forest

depends on three parameters T0, γ, and ΓHI. Degeneracies among these variables re-

quire that any reliable data-model comparison must adopt a careful statistical inference

procedure.

1.5 Outline of this Thesis

In this thesis, I investigate the thermal and ionization state of the IGM across seven

redshift bins across 0 < z < 1.5, covering approximately 10 billion years of cosmic

history. To address the challenges outlined earlier, I utilize a novel inference method
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based on neural networks to jointly measure the thermal and ionization state of the IGM

based on the 2D b-NHI distribution. I apply this method to 94 archival HST COS and

STIS quasar spectra distributed across the seven redshift bins, yielding a comprehensive

evolutionary history of the IGM thermal and ionization state. This analysis suggests

that the IGM may be significantly hotter at low-z than previously expected, with this

discrepancy possibly emerging around z ∼ 1. Additionally, I have carefully verified that

this discrepancy is not attributable to feedback from AGN activities or galaxy formation

processes. The detailed statistical methods, data handling, simulations, and results of

these analyses are extensively discussed across three separate chapters in this thesis.

In §2, the inference methodology is extensively detailed and rigorously evaluated.

This section also presents the corresponding hydrodynamical simulations and relevant

post-processing techniques, such as generating mock spectra, forward-modeling based on

observational data, and adjustments to the ultraviolet background (UVB).

In §3, I carry out the first-ever measurements of the IGM thermal and ionization

state at three redshift bins at z = 1, 1.2 and 1.4, based on 12 archival HST STIS quasar

spectra. The results suggest that the IGM might be hotter than expected at z = 1, while

the thermal and ionization state of the IGM are coherent with the theoretical model

at z = 1.2 and 1.4. However, these conclusions are tentative due to the considerable

uncertainties.

In §4, I conduct measurements of the IGM’s thermal and ionization state at redshift

bins of z = 0.1, 0.2, 0.3, and 0.4, based on 82 archival HST COS quasar spectra compiled

by Danforth et al. (2016). The results consistently indicate that the IGM is substantially

hotter than predicted by theoretical models at low-z. Alternative explanations other

than the IGM being too hot are carefully investigated, such as turbulence or resolution

effects.

In §5, I explore the impact of the WHIM on measurements of the low-z IGM thermal

16



Introduction Chapter 1

state based on the b-NHI distribution of the Lyα forest, and check whether the discrepancy

in b parameter can be caused by the feedback. I conclude that the b-NHI distribution is

not sensitive to the WHIM under realistic conditions, and while the Lyα forest hardly

probes feedback, it is significantly influenced by the photoionization rate used in the

simulation.

Throughout this thesis, we write log in place of log10. Cosmology parameters used in

this study (Ωm = 0.319181,Ωbh
2 = 0.022312, h = 0.670386, ns = 0.96, σ8 = 0.8288) are

taken from Planck Collaboration et al. (2014) .

1.6 Permissions and Attributions

The content of §2 and Appendix A is the result of a collaboration with Vikram Khaire,

Joseph F. Hennawi, Michael Walther, Hector Hiss, Justin Alsing, Jose Onorbe, Zarija

Lukic and Frederick Davies, and has previously appeared in Hu et al. (2022).

The content of §3 and Appendix B is produced in collaboration with Vikram Khaire,

Joseph F. Hennawi, Todd M. Tripp, Jose Onorbe, Michael Walther, and Zarija Lukic. It

has previously been published in Hu et al. (2023b).

The content of §4 is done in collaboration with Vikram Khaire, Joseph F. Hennawi,

Todd M. Tripp, Jose Onorbe, Michael Walther, and Zarija Lukic. This study is currently

being prepared for publication.

The content of §5 and Appendix C is created in collaboration with Vikram Khaire,

Joseph F. Hennawi, Jose Onorbe, Michael Walther, Zarija Lukic, and Frederick Davies.

It has previously been published in Hu et al. (2023a).
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Chapter 2

Measuring the Thermal and

Ionization State of the Low-z IGM

using Likelihood-Free Inference

In this Chapter, we follow the method for measuring the IGM thermal state based on

Voigt profile decomposition of the Lyα forest (Schaye et al. 1999, Ricotti et al. 2000,

McDonald et al. 2001). In this approach, a transmission spectrum is treated as a super-

position of multiple discrete Voigt profiles, with each line described by three parameters:

redshift zabs, Doppler broadening b, and neutral hydrogen column density NHI. By study-

ing the statistical properties of these parameters, i.e. the b-NHI distribution, one can

recover the thermal information encoded in the absorption profiles. The majority of past

applications of this method constrained the IGM thermal state by fitting the low-b-NHI

cutoff of the b-NHI distribution (Schaye et al. 1999; 2000, Ricotti et al. 2000, McDonald

et al. 2001, Rudie et al. 2012a, Bolton et al. 2014, Boera et al. 2014, Garzilli et al. 2015;

2018, Rorai et al. 2018, Hiss et al. 2018). The motivation for this approach is that the

Lyα lines are broadened by both thermal motion and non-thermal broadening resulting
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from combinations of Hubble flow, peculiar velocities and turbulence. By isolating the

narrow lines in the Lyα forest that constitutes the lower-cutoff in b-NHI distributions, of

which the line-of-sight component of non-thermal broadening is expected to be zero, the

broadening should be purely thermal, thus allowing one to constrain the IGM thermal

state. However, this method has three crucial drawbacks. First, the IGM thermal state

actually impacts all the lines besides just the narrowest lines. Therefore, by restricting

attention to data in the distribution outskirts, this approach throws away information

and reduces the sensitivity to the IGM thermal state significantly(Rorai et al. 2018, Hiss

et al. 2019). Second, in practice, determining the location of the cutoff is vulnerable to

systematic effects, such as contamination from the narrow metal lines (Rorai et al. 2018,

Hiss et al. 2018). Lastly, the results from this approach critically depend on the choice

of low-b cutoff fitting techniques, where different techniques might result in inconsistent

T0 and γ measurements (Rorai et al. 2018, Hiss et al. 2018).

To overcome these limitations, Hiss et al. (2019) developed a new approach to mea-

sure the IGM thermal state from the full b-NHI distribution based on density estimation

and Bayesian analysis. I further advance the b-NHI distribution emulation by employ-

ing a novel density estimation technique based on machine learning, namely Density-

Estimation Likelihood-Free Inference (DELFI) (see Papamakarios & Murray 2016, Als-

ing et al. 2018, Papamakarios et al. 2018, Lueckmann et al. 2018, Alsing et al. 2019).

In addition, I augment the likelihood function to take into account the absorber number

density dN/dz, making the improved method far more sensitive to the photoionization

rate of hydrogen ΓHI sourced by the UV background.

In this chapter, I introduce our new method, demonstrate its robustness, and perform

an analysis using realistic mock datasets to illustrate the sensitivity to IGM parameters.

The inference is built on a suite of cosmological hydrodynamic simulations with different

thermal parameters at redshift z ∼ 0.1. While this method can be applied to the Lyα
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forest at any redshift where the opacity is low enough to make it amenable to Voigt profile

decomposition (e.g. z ≲ 3.4, see Hiss et al. 2018), we choose to focus on z ∼ 0.1 because

we want to quantify the sensitivity of archival Hubble Space Telescope spectra, so as to

perform the first measurements of the IGM thermal state at z < 1.6 in future work. Such

a measurement would directly test the prediction that the IGM cools down at low-z, which

has been challenged by recent observations. To this end, we run a set of cosmological

hydrodynamic simulations with different thermal parameters at redshift z ∼ 0.1, from

which we create mock datasets with the same properties as the Danforth et al. (2016)

low redshift Lyα forest dataset observed with the Cosmic Origins Spectrograph (COS,

Green et al. 2012) on the HST. I demonstrate that the method applied to such a dataset

can reliably and accurately determine the thermal state of the IGM.

This chapter is structured as follows. In §2.1 I introduce our hydrodynamic simula-

tions, parameter grid, and data processing procedures, which include generating Lyα forest

from simulation, forward-modeling and our method to fit Voigt profiles (VPFIT). In §2.2

we present our inference algorithm, including likelihood, emulators, inference results, and

a set of inference tests. Finally, we discuss these results and summarize the highlights of

this study in §2.3.

2.1 Simulations

A set of Nyx cosmological hydrodynamic simulations (see Lukić et al. 2015, Almgren

et al. 2013) is used to model the low-redshift IGM. Nyx is a massively-parallel, cosmo-

logical simulation code primarily developed to simulate the IGM. 1 In Nyx simulations,

the evolution of dark matter is traced by treating dark matter as self gravitating La-

1Nyx simulation is able to run with Adaptive Mesh Refinement (AMR). However, the AMR feature
is not used in this work, since this work focus on the Lyα forest, which distribute nearly the entire
simulation domain rather than isolated concentrations of matter where AMR is more effective.
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Figure 2.1: Temperature-density (T -∆) distribution for the IGM gas in two different
models from Nyx simulation. White dashed lines is the power-law fit to the T -∆
relation, and legends show the best fit values of T0 and γ. Dotted T = 105 K lines
divide the phase diagram into hot and cold region, while only cold gas is used for the
fitting. Density peaks (log Tpeak,i, log∆i) for each bin are plotted as black dot, and
1-σT,i error bars are shown as black bars. The left-hand panel shows a model with
T0 = 4345 K and γ = 1.58, and the right-hand panel shows a model with T0 = 5091 K
and γ = 1.45. The density weighted gas phase fractions are shown in the annotation.

grangian particles, while baryons are modeled as as ideal gas on a uniform Cartesian grid

following an Eulerian approach. The Eulerian gas dynamics equations are solved fol-

lowing a second-order piece-wise parabolic method (PPM), which captures shock waves

accurately.

Nyx includes the main physical processes relevant for modeling the Lyα forest. First

of all, gas in the Nyx is assumed to have a primordial composition with a hydrogen mass

fraction of 0.76, and helium mass fraction of 0.24 and zero metallicity. The recombina-

tion, collisional ionization, dielectric recombination, and cooling are implemented based

on prescriptions given in Lukić et al. (2015). Nyx keeps track of the net loss of ther-

mal energy resulting from atomic collisional processes and takes into account the inverse

Compton cooling off the microwave background. Ionizing radiation is modeled by a spa-

tially homogeneous but time-varying ultraviolet background radiation field (from Haardt
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& Madau 2012) that changes with redshift, while assuming all cells in the simulation are

optically thin. We later make the UV background a free parameter for generating Lyα

forest in post-processing (See §2.1.2). Since Nyx simulations are developed mainly to

study the IGM, no feedback or galaxy formation processes are included, significantly re-

ducing the computational requirement allowing us to run a large ensemble of simulations

varying the thermal parameters (see 2.2.3).

Each Nyx simulation used in this study is initialized at z = 159 and evolves down

to z = 0.03 in a Lbox = 20 cMpc/h simulation domain, using Ncell = 10243 Eulerian

cells and 10243 dark matter particles. The box size is chosen as the best compromise

between computational cost and the need to be converged at least to < 10% on small

scales (large k). More discussion about resolutions and box sizes can be found in Lukić

et al. (2015). We also performed box size convergence tests at low redshift as explained

in appendix A.4.

2.1.1 Thermal Parameters and Simulation Grid

To model the IGM with different thermal state, we use part of the publicly available

Thermal History and Evolution in Reionization Models of Absorption Lines (Thermal

History and Evolution in Reionization Models of Absorption Lines (THERMAL))2 suite

of Nyx simulations (see Hiss et al. 2018, Walther et al. 2019a). We make use of in total

48 models with different thermal histories, and for each model, we generate a simulation

snapshot at z = 0.1, from which we measure the thermal state [log T0,γ]. The thermal

grid is illustrated in the left panel of Fig.2.2, which shows that log(T0/K) spans from 3.2

to 3.95, and γ ranges from 0.86 to 2.41. Here different thermal histories are achieved by

artificially changing the photoheating rates (ϵ) following the method presented in Becker

2For details of THERMAL suite, see http://thermal.joseonorbe.com
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et al. (2011). In this method, ϵ is treated as a function of overdensity, i.e.

ϵ = ϵHM12A∆
B, (2.1)

where ϵHM12 represents the photoheating rate per ion tabulated in Haardt & Madau

(2012), and A and B are parameters that are varied to obtain different thermal histories.

It is noteworthy that the thermal state tends to converge towards low redshifts due to

the cooling and other physical processes in the evolution, and it is therefore difficult to

generate models with a uniform grid of T0 and γ (for more details, see Walther et al.

2019a). Moreover, it is especially challenging to generate models with low T0(< 103.5 K)

and high γ(> 1.9) at low-z, because when one reduces the photoheating rates to obtain

lower T0, the cooling rate from Hubble expansion dominates, and γ asymptotically ap-

proaches values near 1.6 (see McQuinn & Upton Sanderbeck 2016). As a result, the T0-γ

grid has an irregular shape, and there are no models in the high γ low T0 regions. In

addition, such an irregular T0-γ grid is also a result of the original grid of the THERMAL

suite, which is driven by the high-z thermal state analysis in Walther et al. (2019a) that

obtains relatively high temperatures.

To measure the thermal state for each of the 48 models, we fit temperature-density

(T -∆) relation (see Eq. 1.1) to the temperatures and densities in the simulation domain.

While fitting the T -∆ relationship, we noticed broader distributions of the IGM tem-

peratures in low redshift (z < 0.5) compared to high redshift (z > 3). Examples of

low-z IGM temperature-density distributions are illustrated in Fig. 2.1, where we show

2D histograms of T -∆ of gas in each cell for two of our simulations on the thermal

grid at z = 0.1. The gas cells are divided into four phases depending on the temperature

and density, and the density-weighted gas phase fractions are shown in the legends of the

figure, where the diffuse Lyα phase representing the densities and temperatures probed
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Figure 2.2: Thermal grid (blue circles) from snapshots of hydrodynamic simulations
of the THERMAL suite at z = 0.1. The left-hand panel is the γ - T0 grid, whose
shape is determined by the parameters of thermal grid at and the evolution of the
thermal state of the IGM. The right-hand panel is γ - ΓHI grid, showing the thirteen
ΓHI values for each point on the 2D γ - T0 grid.

by the Lyα forest occupies about 40% of the total gas mass, while this percentage can

be up to about 80% or higher at high-z. Therefore at high-z most of the gas lies on or

around the T -∆ power-law relation. Whereas the high-temperature low-density WHIM

phase is negligible at high-z, it appears significantly at low-z, resulting in puffy-looking

gas distribution around the T -∆ power-law (see Fig. 2.1), which makes T -∆ power-law

fitting non-trivial at low-z.

We address this issue by implementing an improved fitting procedure following Vil-

lasenor et al. (2021). First, we extract the temperature T and the overdensity ∆ for each

cell of a simulation and then select gas with −1.5 < log∆ < 0 and T < 105K to avoid

regions significantly deviant from the expected power-law T -∆ relationship. Afterward,

we divide the selected region into 15 equal-width bins in log∆, where the overdensity

log∆i for each bin i is given by the median value of overdensity in the bin. Here we

define the bin temperature log Ti to be the maximum of the marginal temperature distri-

bution P (log T | log∆i) and its effective 1-σT,i interval to be 1/2 of the temperature range
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containing the 68% (16% ∼ 84%) highest probability density. The temperature-density

relationship Eq. (1.1) is then fitted using a least squares linear fit on these (log∆i, log Ti)

pairs weighted by 1/σT,i
2. Examples of temperature-density relationships for two models

in our thermal grid are illustrated in Fig.2.1. Power-law fits of the T -∆ relationship

of our simulations are shown as white dashed lines while their values are given in the

legends texts. The peak temperature in each log∆ bin (log Tpeak,i,log∆i) are plotted as

black dots and 1-σT,i error bars are also shown. Left panel shows a model with T0 = 4353

K and γ = 1.58, while right panel shows another model with T0 = 5091 K and γ = 1.45.

Finally, as will be discussed later in §2.1.2, we let the HI photoionization rate ΓHI be

a free parameter when generating Lyα forest skewers from our simulations. As such,

we add an additional parameter log ΓHI to our thermal grid, extending it to [log T0, γ,

log ΓHI]. The value of ΓHI we used in this study spans from log(ΓHI/s
−1) = -13.834 to

−12.932 in logarithmic steps of 0.075 dex, which gives 13 values in total (see right-hand

panel of Fig.2.2). In total, the 3D thermal grid consists of 48× 13 = 624 models.

2.1.2 Skewers

We generate simulated Lyα spectra by calculating the Lyman-α optical depth (τ)

array along the line-of-sight, which hereafter will be referred as skewers for simplicity.

For each model on the thermal grid, a set of 60,000 skewers are constructed parallel to

the x, y, z axes of the simulation box (20,000 skewers in each direction). For each cell

on these skewers, we extract properties needed for optical depth calculation, including

temperature T , overdensity ∆, and the velocity along the line-of-sight vz. The hydrogen

neutral fraction xHI, which is also needed to generate the synthetic Lyα forest skewers, is

calculated by assuming ionization equilibrium while considering both collisional ioniza-

tion and photoionization. Here the collisional ionization rate is computed based on the
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Figure 2.3: Illustration of one of our forward modeled spectra from Nyx simulation.
The simulated raw spectrum is shown in gray, while a model spectrum based on VPFIT

line fitting (described in § 2.1.4) is shown in blue and the noise vector is plotted in
red. This particular spectrum is forward-modeled in order to model the instrumental
effect and noise properties of one of the HST COS spectra in Danforth et al. (2016)
low redshift dataset.
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gas temperature T . Whereas the photoionization rate ΓHI is set to be a free parameter

in the post-processing of the simulation. Since Nyx does not model radiative transfer,

we approximate the self-shielding of the UV background for optically thick gas following

the method given by Rahmati et al. (2013), which amounts to attenuating ΓHI for cells

containing dense gas.

Given xHI, T , ∆, vz, and ΓHI, we then calculate the optical depth τ in redshift space by

summing contributions from all cells in real space along the line-of-sight following the full

Voigt profile approximation by Tepper-Garćıa (2006). Then F = e−τ gives us continuum

normalized flux of Lyα forest along with skewers. Lastly, we redo the procedure described

above for each ΓHI value to recalculate the skewers. More specifically , we do not re-scale

the τ to obtain skewers for a different ΓHI, which is the standard procedure at higher

redshifts. This is because, whereas the high-z IGM is predominantly photoionized, there

is significantly more shock-heated WHIM gas at low-z, rendering the contribution from

collisional ionization important as shown by Khaire et al. (2019) for the case of Lyα flux

power spectrum. Although, it may not be essential for studying Lyα forest absorption

lines, to be more precise we recalculate skewers for each value of ΓHI.

2.1.3 Forward Modeling of Noise and Resolution

As discussed in §1, we are interested in understanding the constraints on the IGM

achievable with realistic data. To this end, we generate mock datasets with properties

consistent with the Danforth et al. (2016) low redshift Lyα forest dataset, which comprises

82 unique quasar spectra with S/N > 5 observed with the Cosmic Origins Spectrograph

(COS) on the HST. To avoid proximity regions and contamination from lower Ly-β, we

use rest-frame wavelength range 1050 − 1180 Å to identify Lyα forest for each of these

spectra. As a result, we select 34 of Danforth et al. (2016) quasar spectra covering the
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redshift range 0.06 < z < 0.16 of our interest for the study, comprising a total redshift

pathlength of ∆ob = 2.136, which corresponds to our observational dataset for forward

modelling. We choose this redsfhit bin to be the same as the redshift bin used for power

spectrum calculation by Khaire et al. (2019) at z = 0.1 so that we can compare our

future analysis with the results obtained with power spectrum measurements.

The COS has a nominal resolution R ∼ 20000, which corresponds to roughly 15 km/s,

and a non-Gaussian line spread function (LSF) exhibiting significantly broad Lorentzian

wings, which could alter the shape of absorption lines on velocity scales larger than the

resolution quoted above. For low-z IGM with temperatures at mean density T0 ∼ 5000 K,

the b-values for pure thermal broadening (i.e. the narrowest lines in the Lyα forest) are

about 10 ∼ 20 km/s, which means that the corresponding absorption features can not

be fully resolved by COS. Thus, it is crucial to treat the instrumental effect carefully, in-

cluding the peculiar shape of COS LSF. Therefore, we forward model noise and resolution

to make our simulation results statistically comparable with the observation data.

In practice, we make use of tabulated COS LSF and noise vectors from Danforth

et al. (2016) data. For any individual quasar spectrum from the observation dataset,

we first stitch randomly selected simulated skewers without repetition to cover the same

wavelength (in the rest frame 1050− 1180 Å) of that quasar and then rebin the skewers

onto the pixels of the observed spectra. Then we convolve the simulated spectra with

the HST COS line spread function (LSF) while taking into account the grating and

life-time positions used for that specific data spectrum. Here the COS LSF is obtained

from linetools3 and is tabulated for up to 160 pixels in each direction. We interpolate

the LSF onto the wavelengths of the mock spectrum (segment) to obtain a wavelength

dependent LSF. Each output pixel is then modeled as a convolution between the input

stitched skewers and the interpolated LSF for the corresponding wavelength. Afterward,

3For more information, visit https://linetools.readthedocs.io

28



Measuring the Thermal and Ionization State of the Low-z IGM using Likelihood-Free Inference
Chapter 2

the newly generated spectrum is interpolated to the wavelength of the selected COS

spectra. The noise vector of the quasar spectrum is propagated to our simulated spectrum

pixel-by-pixel by sampling from a Gaussian with σ = ψi, with ψi being the data noise

vector value at the ith pixel. In the end, a fixed floor is added to the error vector for all

simulated spectra to avoid an artificial effect in post-processing, which will be discussed

later in §2.1.4.

For each model, we generated 2000 forward-modeled spectra, corresponding to a total

pathlength ∆ztot ∼ 125, from the 60,000 raw skewers4, and fit voigt profiles to each line

in the spectra to obtain the {b,NHI} pairs for our dataset (as described in section § 2.1.4).

For the purpose of illustration, an example of a forward-modeled spectrum is shown in

Fig.2.3 where the simulated spectrum is shown in gray, the model spectrum based on

VPFIT line fitting (see § 2.1.4) is in blue, and the noise vector in red.

2.1.4 VPFIT

To perform the analysis based on the b-NHI distributions, we have to fit the Lyα lines

in our simulated spectra to obtain a set of {b,NHI} pairs for each model. To this end, we

run a line-fitting program on our forward-modeled mock spectra to obtain a set of b-NHI

pairs for each simulation model in our thermal grid. In this work, we use the line-fitting

program VPFIT, which fits a collection of Voigt profiles convolved with the instrument

LSF to spectroscopic data (Carswell & Webb 2014)5. Here, we employ a fully automated

VPFIT wrapper adapted from Hiss et al. (2018), which is built on the VPFIT version

10.2. The wrapper routine controls VPFIT with the help of the VPFIT front-end/back-end

programs RDGEN and AUTOVPIN and fit our simulated spectra automatically.

VPFIT identifies lines automatically and fits each line with three parameters: the

4For each Nyx model, 2000 spectra needs about 20,000 raw skewers, i.e, we randomly pick 20,000
skewers from 60,000.

5VPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
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absorption redshift zabs of the line, its Doppler parameter b, and column density NHI.

VPFIT obtains these parameters for a collection of lines by minimizing the χ2 between

the data and the model spectrum generated from all the fitted lines. While fitting,

VPFIT restrict b and NHI to 1 ≤ b(km/s) ≤ 300 and 11.5 ≤ log(NHI/cm
−2) ≤ 18,

respectively. Our VPFIT wrapper allows us to fit spectra with a custom LSF6. Since

we are working at 0.06 ≤ z ≤ 0.16, the Ly α forest lies completely in the wavelength

range covered exclusively by the COS G130M grating having a central wavelength 1300

Å. We fit our forward-modeled spectra with the same G130M LSF. Furthermore, the

effective resolution of the grating also depends on the COS lifetime position during the

observations, and they are also taken into account while running VPFIT as well as in

forward modelling. An example of model spectrum generated by combining lines fitted

using VPFIT is shown in Fig.4.2 as blue lines.

Moreover, we notice the presence of a significant number of absorption lines with

very low Doppler-b parameters and low column densities NHI after fitting mock as well

as real data with high signal-to-noise ratios (SNR). These weak narrow absorption lines,

however, are not seen in our simulated and forward-modeled spectra. Visual inspection

of these lines indicates that they are spurious and introduced by VPFIT while attempting

to fit artifacts due to flat-fielding, continuum placement, or errors in the data reduction.

These lines are only introduced in spectra of the highest quality, where the extremely high

signal-to-noise ratio (SNR) leads to over-fitting by VPFIT. To avoid this problem, a fixed

floor of value 0.02 is added in quadrature to the error vector of the continuum normalized

flux for all simulated spectra without adding additional noise to the normalized flux. With

such a noise ’floor’, these weak features are essentially removed from the VPFIT output.

6Although our VPFIT wrapper allows us to implement an LSF in VPFIT, only a single LSF can be used
at once, i.e. the wavelength dependence can not be taken into accout. As such, for the input into VPFIT

we use the LSF at the lifetime of the data and evaluated it at the central wavelength of the spectrum
that we are trying to fit. Such treatment is applied to both observed (mock) spectra and stimulated
spectra so as to make sure our statistics are not biased.
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We find this floor value 0.02 via trial and error. In practice, this additional noise floor

mainly removes lines with log(NHI/cm
−2) < 12.5 from our dataset, which is outside our

limits used in likelihood calculations (which will be discussed in §2.2.2) and therefore not

used in this study.

Furthermore, we follow the convention and apply another filter for both b and NHI

in this study, using only b-NHI pairs in region 12.5 ≤ log(NHI/cm
−2) ≤ 14.5 and 0.5 ≤

log(b/km s−1) ≤ 2.5 in our analysis (Schaye et al. 2000, Rudie et al. 2012a, Hiss et al.

2018). Such an limitation is chosen to include the b-NHI distributions for all of our

Nyx models while guaranteeing that the absorbers are not strongly saturated, which

maximizes the sensitivity to IGM thermal state and minimizes the impact of poorly

understood strong absorbers arising from the circumgalactic medium of galaxies.

2.2 Inference Algorithm

Hiss et al. (2019) introduced a Bayesian method to estimate the IGM thermal param-

eters from the joint b-NHI distribution. In this paper, we adopt a similar approach while

employing a new method for b-NHI distribution emulation, namely Density-Estimation

Likelihood-Free Inference (DELFI). In addition, we also include the absorber number

density along the line-of-sight dN/dz in our analysis, i.e. the number of absorption lines

(in some range of b and NHI) per unit path-length along the line-of-sight, which helps

us to better constrain the UV background photoionization rate ΓHI. The reason behind

this is that the b-NHI distribution is less sensitive to ΓHI compared with thermal param-

eters T0 and γ (see Fig.2.5 and §2.2.3), whereas the number density of absorbers (see

Fig.2.4) depends strongly on ΓHI. It is analogous to the fact that the mean flux of the

Lyα forest is sensitive to ΓHI. In this work, we emulate the dN/dz using a Gaussian

process emulator based on our simulations and employ it as a normalization factor in our
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likelihood function. More discussion about this modification is presented in §2.2.2 and

Appendix A.1.

This section is organized as follows, we first introduce our new b-NHI distribution

emulator and then discuss the modifications to the likelihood function. Afterward, we

investigate the relationship between thermal parameters and b-NHI distribution in §2.2.3.

Finally, we present our inference results in §2.2.4 and apply a series of inference tests to

evaluate the statistical validity of our method in §2.2.5.

2.2.1 Emulating the b-NHI distribution with DELFI

In this work, we build our b-NHI distribution emulator following the density-estimation

likelihood-free inference (DELFI) method (Papamakarios & Murray 2016, Alsing et al.

2018, Papamakarios et al. 2018, Lueckmann et al. 2018, Alsing et al. 2019), which turns

inference into a density estimation task by learning the sampling distribution of the

data as a function of the parameters. Compared with the previously used Kernel Density

Estimation (KDE) method in Hiss et al. (2019), this method provides a flexible framework

for conditional density estimation and does not implicitly apply a smoothing kernel to

the training data. It hence is able to deliver higher-fidelity conditional density estimators

given the same training data.

We make use of pydelfi7 − the publicly available python implementation of DELFI

based on neural density estimation (NDE)s and active learning (Alsing et al. 2019).

pydelfi makes use of NDEs to learn the sampling conditional probability distribution

P (d | θ) of the data summaries d, as a function of parameters θ, from a training set

of simulated data summary-parameter pairs {d,θ}. In this work, the parameters θ are

log T0, γ and log ΓHI, and the data summaries d are logNHI and log b8, and the b-NHI dis-

7See https://github.com/justinalsing/pydelfi
8pydelfi also has the option to apply different data compression methods (e.g., Alsing & Wandelt
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tribution is considered as a conditional probability distribution P (b , NHI | T0, γ,ΓHI)

learned from our simulations. More specifically, the b-NHI distribution is modeled as a

Masked Autoregressive Flow (MAF; Papamakarios et al. 2017) neural density estimator,

which is constructed as a stack of five Masked Autoencoders for Density Estimation,

(MADE; Germain et al. 2015), each with two hidden layers with 50 units each and tanh

activation functions. The NDEs are trained by stochastic gradient descent. For more

technical details about MAF and MADE neural network architectures see Germain et al.

(2015), Papamakarios et al. (2017) and Alsing et al. (2019). To prevent over-fitting, the

NDEs are weighted by their relative cross-validation losses and are trained with early-

stopping (see Alsing et al. 2019 for details). For convenience, in this paper we will refer

to the b-NHI distribution emulator discussed above as the DELFI emulator.

As mentioned above, the DELFI emulator is trained on the data summary-parameter

pairs {[log T0, γ, log ΓHI], [b, logNHI]}. For each model, we fit (VPFIT) 2000 simulated

spectra, corresponding to a total pathlength ∆ztot ∼ 123, to get {b,NHI} pairs for the

model, and label these {b,NHI} pairs with their simulation parameters [log T0, γ, log ΓHI].

Our training set therefore consists of all these labeled {b,NHI} pairs for all models on

the thermal grid. Here we quantify the size of data by its total pathlength rather than

number of lines9, because the latter depends on the dN/dz that varies among different

models.

2.2.2 Likelihood function

Hiss et al. (2019) used only the shape of b-NHI distribution to constrain IGM thermal

2018) and active learning methods to optimize the data and parameter space sampling. Here we do
not exploit these features since we have pre-chosen our summary statistics and simulation grid (the
b-NHI distribution) at a fixed grid of thermal parameters.

9It means that the learned b-NHI distribution has a resolution that depends on the dN/dz of the
model. We could instead set the number of {b,NHI} pairs to be fixed while using different total panth-
length for each model. However such a change does not affect the results of our inference method.
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Figure 2.4: An example of emulation of the absorber density dN/dz generated by
the Gaussian emulator sliced at the median value of the posterior from the MCMC
process, where log(T0/K) = 3.69, γ = 1.55, log(ΓHI/s

−1) = -13.30. Top panels are
the 2D dN/dz distributions where Nyx models are shown in blue circle. The top left
panel is the dN/dz on γ-log T0 plane at log(ΓHI/s

−1)= -13.30. The top middle is
log T0-log ΓHI plane at γ = 1.55. The top right is log ΓHI-γ plane at log(T0/K) = 3.69.
Bottom panels are marginalized 1D dN/dz distributions at the thermal parameters
mentioned above. From left to right: dN/dz vs log T0, dN/dz vs log ΓHI, and dN/dz
vs γ.
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parameters, but ignored the normalization, which can be thought of as the total number

of absorption lines in the dataset or equivalently as the line density dN/dz. Here we

generalize the likelihood formalism introduced in Hiss et al. (2019) to include the infor-

mation contained in the absorber density dN/dz (see also Hiss 2019). Our goal is to find

the likelihood of observing a set of absorption lines {bi, NHI,i} given a model with a set

of thermal parameters [log T0
′, γ′, log ΓHI

′]. We first assume that the probability density

function (PDF)s are normalized such that

∫∫
P (b,NHI) dNHI db = 1, (2.2)

where P (b,NHI) is the conditional probability distribution function P (b , NHI | T0′, γ′,ΓHI
′),

for simplicity we write it as P (b,NHI) in the rest of this subsection. We imagine dividing

the b-NHI into a set of infinitesimally fine grid cells, such that the occupation number of

each grid cell is either one or zero. Knowing that our set of observational/mock dataset

{bi, NHI,i} is comprised of n lines, and assuming that there are Ng grid cells in total, the

likelihood for a model with thermal parameters [log T0
′, γ′, log ΓHI

′] can thus be written

as the following product of Poisson probabilities10

L =P (data|model) (2.3)

=

(
n∏

i=1

µi e
−µi

)(
Ng∏
j ̸=i

e−µj

)
,

where the first product is over the occupied cells, and the second product is over the

empty cells. Here the µi is the Poisson rate of occupying a cell in the b-NHI plane with

10In assuming the probability distribution for each grid cell is Poisson, we are implicitly assuming each
b-NHI pair is an uncorrelated draw from the b-NHI distribution. This assumption, also made by Hiss
et al. (2019), amounts to ignoring the spatial correlations between absorption lines. Hiss et al. (2019)
showed that this is a very good approximation and yields unbiased inference as we will also demonstrate
in § 2.2.5)
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area ∆NHIi ×∆bi, i.e.

µi =

(
dN

dz

)
model

P (bi, NHI,i)∆NHI ∆b∆zdata, (2.4)

where P (bi, NHIi) is the probability distribution function evaluated at the point (bi, NHI,i)

using the DELFI b-NHI distribution emulator described in § 5.2.1, and ∆zdata is the total

redshift path covered by the data spectra from which we obtain our data set {b,NHI},

whereas (dN/dz)model is the absorber density of the model which will be further discussed

later in this subsection.

Afterwards, it is easy to show that Eq. (2.3) implies

lnL =
n∑

i=1

ln(µi)−
Ng∑
k=1

µk. (2.5)

Above, the second sum over k is simply an integral of Eq. (2.4) over the b-NHI plane,

while the integral of P (b,NHI) dNHI db over the plane is unity according to Eq. (2.2). As

a result, we can write our likelihood function as

lnL =
n∑

i=1

ln(µi)−
(
dN

dz

)
model

∆zdata. (2.6)

Since Hiss et al. (2019) did not consider the absorber density, the likelihood in their

analysis is simply given by lnLHiss =
∑n

i=1 lnP (bi, NHI,i). In comparison, our likelihood

function Eq. (2.6) can be written as

lnL =
n∑

i=1

lnP (bi, NHI,i) + n ln ξ − ξ, (2.7)

where ξ = (dN/dz)model∆zdata. We can see that the first term remains the same, and

our modification (the implementation of absorber density dN/dz) can be considered as a

36



Measuring the Thermal and Ionization State of the Low-z IGM using Likelihood-Free Inference
Chapter 2

correction term based on the absorber density of the model, the number of lines observed,

and the pathlength of the data set ∆zdata.

As a result of our modification, the likelihood of observing a line with certain line

parameter (b,NHI) now depends not only on the b-NHI distributions of models but also

on absorber densities of the models. Consequently, to evaluate the likelihood L on the

parameter space, we need the ability to evaluate (dN/dz)model at an arbitrary location

on the parameter space. To this end, a Gaussian process emulator (based on George,

see Ambikasaran et al. 2016) is employed to emulate (dN/dz)model by interpolating the

dN/dz of models from Nyx simulations based on their Nmodel/∆zmodel, where ∆zmodel is

the total pathlength of simulated spectra that are fed into VPFIT, and Nmodel is the total

number of lines identified by VPFIT from these spectra. The Gaussian process emulator

is constructed with smoothing lengths of 40% of our thermal grid length11 in log T0 and

log ΓHI and a smoothing length of 80% of thermal grid length in γ. The longer smoothing

length in γ is set to prevent the emulator from over-fitting the noise, considering that γ

has less effect on the absorber density dN/dz compared with T0 and ΓHI (see Fig.2.4),

which makes small fluctuations induced by noise more significant.

The results of our dN/dz emulation are shown in Fig.2.4, where both log T0 and

log ΓHI (left and middle column) have negative correlations with absorber density dN/dz.

This dependence can be explained qualitatively by the fluctuating Gunn-Peterson approx-

imation (FGPA, see Weinberg et al. 1997)

τLyα ∝ nHI ∝ xHInH ∝ n2
HT

−0.7

ΓHI

, (2.8)

where the τLyα denotes the Lyα optical depth and the nH is the hydrogen number density.

This equation implies that both higher temperatures and higher photoionization rates

11The smoothing length is input as an initial guess, which is then refined later in the routine. In
addition, all dimensions in the thermal grid are rescaled to unity in the Gaussian process emulator.
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reduce the Lyα optical depth of gas absorbers in the IGM, leading to lower absorber

density. The wiggles shown in dN/dz vs T0 plot (bottom left panel of Fig.2.4) are effects

of poor interpolation due to lack of models at γ ∼ 1.5 (see top left panel). Moreover, we

notice a weak correlation between γ and dN/dz (see the bottom right panel of Fig.2.4).

However, such γ dependence is relatively weak compared with T0 and ΓHI dependencies,

and is likely caused by artifacts due to the emulation. As shown in the top left-hand

panel, we do not have models in low T0 high γ region, the absorber density dN/dz could

thus be over-extrapolated in these regions, further biasing the γ dependence on the whole

parameter space. We performed some tests and found that the weak correlations in γ -

dN/dz vanishes if we do not include the high γ simulations. Therefore, in conclusion,

the marginalized γ - dN/dz correlation shown in Fig. 2.4 is an artifact introduced by our

Gaussian emulator, however, it is too weak to affect our inference results.

2.2.3 Parameter study

A new feature of the DELFI b-NHI distribution emulator is its ability to emulate

b-NHI distributions continuously on the parameter space. With such a feature, we are

now able to illustrate the parameter dependence of the b-NHI distribution and investi-

gate the physics behind these dependence. Fig.2.5 shows emulated b-NHI distributions

with different values of thermal parameters [log T0, γ , log ΓHI]. The top panel shows

b-NHI distributions with increasing T0, where log(T0/K) = 3.25 (left), 3.60 (middle)

and 3.95 (right) respectively, while γ=1.55 and log(ΓHI/s
−1)=-13.36 for all three plots.

Increasing T0 results in the upward shifting of the b-NHI distributions, which can be ex-

plained by the thermal component of the b parameter and the T -∆ relationship Eq. (1.1),

i.e.

bT ∝ (2kT/m)1/2 ∝ (T0∆
γ−1)1/2, (2.9)
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Figure 2.5: Comparisons of b-NHI distributions modeled by DELFI emulator with
different thermal parameters. Top panel shows changes in the b-NHI distribution
with increasing log T0, where log(T0/K) = 3.25 (left), 3.60 (middle) and 3.95 (right)
respectively, while γ=1.55 and log(ΓHI/s

−1)=-13.36 for all three plots. The mid-
dle panel shows changes of the b-NHI distribution where γ =1.15 (left), 1.55 (mid-
dle) and 1.95 (right) respectively, while log(T0/K)=3.60 and log(ΓHI/s

−1)=-13.36 are
fixed. The bottom panel shows b-NHI distributions with decreasing UV background.
log(ΓHI/s

−1)= -13.66 (left), -13.36 (middle) and -13.06 (right), while log T0 and γ
remain unchanged. All pdfs here are normalized to unity. For illustration purposes,
values of pdf are multiplied by 100 in the color bar.
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where higher T0 results in higher IGM temperature, leading to larger b parameters. In

addition, we notice that as the T0 goes up, the b-NHI distribution becomes more concen-

trated, i.e. the distribution becomes tighter, and the pdf values increases. Such behavior

might be explained as follows. There are two components contributing to b parameter,

namely thermal motion and non-thermal broadening. The thermal component is associ-

ated with the IGM temperature and thus follows a distribution determined by T0. On the

other hand, as a result of the small-scale motion of the gas, the non-thermal component

is independent of the temperature and has a large dispersion, leading to broader distri-

bution. At low temperatures, where the thermal contribution is weak, the b parameter

is dominated by the non-thermal component, resulting in broad distribution. As the

temperature goes up, the thermal component dominates over non-thermal broadening,

and the b parameter thus concentrates on a central value of b determined by the IGM

temperature.

The middle panel of Fig.2.5 shows the b-NHI distribution with increasing γ, where

γ =1.15 (left), 1.55 (middle), and 1.95 (right), respectively, while log(T0/K) =3.65 and

log(ΓHI/s
−1)=-13.36 are fixed. These plots indicate that there are degeneracies between

γ and T0, where an increasing γ also shifts b-NHI distributions upwards, which can be un-

derstood from Eq. (2.9) and the fact that at low-z, the Lyα lines originate predominantly

from gas with ∆abs > 1 (∆abs ∼ 10, see Gaikwad et al. 2017b), which results in higher

temperatures at densities of absorbers for models with larger γ. The concentration effect

is also seen in the middle panel, which can be explained in the same way as the upward

shifting of the b-NHI distribution due to increasing γ. It can also be seen from the middle

panel that the γ is correlated with the slope of the low-b cutoff of the b-NHI distribution,

which is consistent with the analytical fit of the low-b cutoff, where the slope can be

approximated by ∆ log b/∆ logN = (γ − 1)/3 (see Rudie et al. 2012a).

The bottom panel of Fig.2.5 shows b-NHI distributions with increasing photoionization
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rate ΓHI, where log(ΓHI/s
−1)= -13.66 (left), -13.36 (middle) and -13.06 (right), while

log T0 and γ remain unchanged. We observe that increasing ΓHI results in a similar but

much weaker effect compared with increasing T0, i.e. the b-NHI distribution slightly shifts

upward and becomes more concentrated with increasing ΓHI. Such effects are because the

photoionization rate ΓHI alters the Lyα optical depth of the IGM. Since the Lyα forest

typically probes regions with optical depth τLyα ∼ 1, given higher ΓHI, it probes regions

with higher temperatures and densities, which can be derived from Eq.(2.8), causing

effects similar to increasing T0. However, such effects are relatively weak, making the

b-NHI distribution less sensitive to the photoionization rate ΓHI.

All these aforementioned parameter dependences (except ΓHI, which is not considered

in previous works ) of the b-NHI distribution are consistent with previous works that

measure the IGM thermal state based on the full b-NHI distribution
12 (Hiss et al. 2019)

and low-b cutoff (Schaye et al. 1999, Rudie et al. 2012a, Bolton et al. 2014, Rorai et al.

2018, Hiss et al. 2018), indicating that our DELFI emulator successfully reproduce the

parameter dependences of the b-NHI distribution. Furthermore, it also implies that our

understanding of the b-NHI distribution agrees with the physics prediction.

2.2.4 Mock Inference Results

Sets of mock spectra are created from our Nyx simulations to test the performance of

our inference algorithm under realistic conditions. These mock spectra sets are generated

from a set of simulated spectra following a forward-modeling approach designed to match

the pathlength, resolution, and noise properties of the Danforth et al. (2016) low-redshift

quasar spectra in one-to-one correspondence as described in §2.1.3. Consequently, each

mock spectra set consists of 34 forward-modeled spectra, which has exactly the same noise

12In Hiss et al. (2019), at z ∼ 2, the Lyα lines originate predominantly from gas with ∆ < 0, causing
different effects when changing γ. However, the physics explanations behind the effect are coherent.
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Figure 2.6: MCMC posterior for one of the models from Nyx simulation (absorbers
shown in Fig.2.7) using the likelihood function Eq. 2.6. Projections of the thermal grid
used for generating models are shown as blue dots, while the true model is shown as
red dot. Inner (outer) black contour represents the projected 2D 1(2)-sigma interval.
The parameters of true model are indicated by red lines in the marginal distributions,
while the dashed black lines indicates the 16, 50, and 84 percentile values of the
posterior. The true parameters are: log(T0/K) = 3.643, γ = 1.591 and log(ΓHI/s

−1)
= -13.458.
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Figure 2.7: The color map is the full b-NHI distribution recovered from the Nyx mock
dataset, which is emulated by our DELFI emulator based on the best-fit parame-
ters (median values of the marginalized MCMC posterior), where log(T0/K) = 3.668,
γ = 1.611 and log(ΓHI/s

−1) =-13.498. Black dots are the mock datasets we used in
the inference. For illustration purposes, values of pdf are multiplied by 100 in the
color bar.
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Figure 2.8: Marginalized 1D distributions of NHI (left-hand panel) and b (right-hand
panel) for the mock dataset (black dots) and the sampling from emulated b-NHI distri-
bution (blue bars) at log(T0/K) = 3.699, γ = 1.549 and log(ΓHI/s

−1) =-13.506. Blue
bars show the average of 5000 sampling from the emulated b-NHI distribution using
MCMC, while the (dark) blue shaded regions represent the 1-σ fluctuation (16%-84%
percentile among 5000 samples).

vectors, instrumental effects, and total pathlength (∆zdata=2.136) as the real observed

dataset, which ensures that the accuracy of our analysis is realistic and achievable when

the method is applied to real data. A set of {b,NHI} pairs, obtained by fitting these

spectra using VPFIT (see §2.1.4), is then used as the ’data’ in the likelihood function

(see Eq.2.3) to infer the posterior distribution for IGM thermal parameters for this mock

dataset.

In this work, we perform inference via Markov chain Monte Carlo (MCMC) sam-

pling using the python package emcee (Foreman-Mackey et al. 2013), which implements

the affine-invariant sampling technique (Goodman & Weare 2010) to sample the poste-

rior probability distribution. Here the posterior is calculated based on the likelihood in

Eq. (2.5), which takes into account the absorber density dN/dz as described in §2.2.2,

while assuming uniform (flat) priors for log T0, γ and log ΓHI, where the boundaries are

chosen to be the range of each respective parameter in 1D. MCMC posteriors obtained
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from the aforementioned mock datasets ({b,NHI} pairs) are shown in Fig.2.6. We ob-

tain log(T0/K) = 3.668+0.075
−0.080, γ = 1.611+0.060

−0.055 and log(ΓHI/s
−1) = −13.497+0.065

−0.066 from

the marginalized distributions, whereas the true parameters are: log(T0/K) = 3.643,

γ = 1.591 and log(ΓHI/s
−1) = −13.458 (red dot and red vertical lines). We recover

the input parameters in very high precision with errors ∆ log(T0/K) = +0.025dex,

∆γ = +1.3%, and ∆ log(ΓHI/s
−1) = −0.039dex, while true parameters (red dot/solid

lines) are all in the 1-σ interval (inner black contours/ black dashed lines) of the poste-

rior. Here the degeneracy between T0 and γ can be quantitatively understood by the T -∆

relationship Eq. (1.1) and the typical overdensity of absorbers ∆abs ∼ 10. More specif-

ically, both higher T0 and γ result in higher temperature of the absorbers, shifting the

b-NHI distribution upward (see Fig.2.5 and relevant discussion in §2.2.3). The degeneracy

between T0 and ΓHI is mainly a result of the degeneracy in the absorber density dN/dz

with respect to the two parameters (see Fig.2.4 and Fig.A.1 as comparison), which is

explained in §2.2.2. It is noteworthy that our inference algorithm provides preeminent

accuracy for all three parameters even under a very realistic condition, where the reso-

lution of spectra is rather low (with lines not fully solved), and the number of data is

limited (with a total pathlength ∆z = 2.136). Such a high sensitivity and precision makes

our inference method a powerful tool in the study of the low-z IGM and Lyα forest.

Fig.2.7 shows the full b-NHI distribution recovered from the mock dataset, which is

emulated by our DELFI emulator based on the best-fit parameters (median values of

the marginalized MCMC posterior). It appears that the PDF (color map) successfully

represents the density distribution of the data points. Furthermore, marginalized 1D

distributions of b and NHI are given in Fig.2.8 for both the mock dataset (black dots)

and random samples from the emulated b-NHI distribution (blue bars). It can be seen that

our emulator successfully reproduces the 1D marginalized b and NHI distribution, though

there is a fluctuations in NHI for the mock dataset at around log(NHI/cm
−2) ∼ 13.5. We
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figured out that such fluctuation is caused by the random error during the generation

of the mock dataset, which can be reduced by increasing the size of the mock datasets.

However, to test the performance of our inference method under realistic conditions, we

fix the size of the mock datasets and bear with such fluctuation in this work.

2.2.5 Inference test

As discussed above, the likelihood function used in our inference algorithm involves

several approximations and emulation/interpolation procedures. Most importantly, our

inference ignores correlations between the lines (see the discussion in Hiss et al. 2019),

and we emulate the b-NHI distribution and the dN/dz with our DELFI and Gaussian

emulators respectively, while both emulations involve interpolations. These procedures

might induce additional uncertainties that are counted in our error budget13, we hence

want to make sure our inference results are valid under these assumptions, and our

interpolation procedures work correctly. Therefore, we perform a series of inference tests

to evaluate the robustness of the entire inference method. An inference test is to carry out

a set of realizations of the inference algorithm based on the mock dataset and inspect the

results to reveal if the inference method returns valid posterior probability distributions,

i.e. whether the ’true model’ is included in a set of probability contours following the

ratio indicated by the posterior.

The inference test is done as follows. First of all, we adopt the same prior as described

in 2.2.4, and construct a regular uniform grid in the parameter space spanning the range

set by our prior. For each realization, we pick a model (set of parameters) on the above

grid, which we refer to as the ‘true model’. and we refer its thermal parameters as ’true

13The uncertainty of the b-NHI distributions emulated by DELFI is also ignored in our analysis. Such
uncertainty is caused by the randomness in the training process, and has not been included in the results.
But since our inference method (and the toy model) does well in the inference test, such randomness
should be smaller than stochastic error shown in our analysis, and should not dominate our error budget.
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Table 2.1: Table of results of the inference test

models Total 68( % ) 95 (% )
random models 480 290 (60.42± 2.29%) 439 (94.67± 1.25%)
single model 200 134 (67.00± 3.50%) 190 (95.00± 1.50%)

parameters’ θθθtrue, We then create a corresponding mock dataset following the prescription

described in §2.2.4. Given the mock dataset, since our priors are flat, we can determine

the corresponding posterior probability distribution by evaluating the likelihood function

L = P (data|model) on the whole parameter space. We then normalize the posterior

function to unity and determine 3D posterior probability contours based on the posterior

(likelihood) distribution. Knowing that the likelihood function is continuous on the

whole domain, the 3D volume integral can hence be substituted by a 1D integral over the

sorted likelihood function. Here we define the probability contours CP and the likelihood

thresholds LP in the following way,

∫∫∫
CP

LdV =

∫ ∞

LP

LdL = P, (2.10)

such that a probability contour CP is simply where L = LP, and any ’model’ with

parameter θθθ being inside a contour CP thus becomes equivalent to L(θθθ) > LP. We further

define the effective 1σ (68%) and 2σ (95%) intervals as the volume between contour pairs

(C0.16, C0.84) and (C0.025, C0.975) respectively. Finally, we judge the performance of our

inference method based on how often the parameters of the ’true model’ θθθtrue falls in these

1(2)-σ interval contour pairs compared to the expectation based on the corresponding

probabilities, i.e. if our posterior distribution is perfect, the true model should land

within the 1σ (2σ) contours 68% (95%) of the time. An example of the distribution of

the likelihood function is shown in Fig.A.2, and more details about the calculation of the

likelihood distribution is presented in Appendix A.2.
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In practice, we perform an inference test on a set of random models on the thermal

grid to test the overall performance of our inference algorithm. We pick 12 models and

execute 40 realizations per model. The result shows that the true values are within the

1-σ (68%) interval for 60.42± 2.29 % (290/480) of the time, and in the 2σ(95%) interval

for 94.67 ± 1.25 % (439/480) of the time, while the upper and lower limits are given

by the ±1σbi error for corresponding binomial distributions. In addition, we carry out

a cross-validation test to ensure our emulators are not affected by over-fitting problem.

Here we select a single model near the center of the parameter space (log(T0/K) = 3.643,

γ = 1.591, and log(ΓHI/s
−1) = -13.458.), and exclude the model14 from the training

dataset. We train our emulators (both b-NHI distribution and dN/dz) based on the

new dataset, and run 200 realizations of our inference method. We observe that the true

values are inside the 1σ (68%) interval for 67.00±3.50% (134/200) of the time, and inside

the 2σ (95%) interval for 95.0 ± 1.50% (190/200) of the time. Results are presented in

Table 2.1. The overall performance indicates that our algorithm passes the inference15.

In the end, to further demonstrate and elaborate on the effectiveness of our infer-

ence algorithm, we created a toy model, which involves entire inference pipeline, (in

Appendix A.3) to test the whole inference algorithm under more controlled conditions,

where the toy b-NHI distribution is analytical, and the parameter dependence is known.

Here the toy b-NHI distribution consists of a multivariate Gaussian distribution parame-

terized by three mock parameters following the parameter dependence discussed in § 2.2.3.

Moreover, these mock parameters also control the line density dN/dz of the model based

14In practice we exclude all models with the same T0 and γ log(T0/K) =3.643 and γ = 1.591), since
we mostly want to test the performance of the b-NHI distribution emulator on the T0-γ plane.

15Our inference method performs better when the model is close to the center of the grid. This might
be because our emulators, both DELFI and Gaussian process emulator, perform better at the center
of the grid where the interpolation is more accurate. Besides, our thermal grid has an irregular shape
on the T0-γ plane, and might thus make the interpolation even harder or distorted when there are no
or only a few models around. Such a problem might be addressed by adding more simulation models,
extending the thermal grid to make sure the region we are interested in always lies at the center of the
grid.
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on the dN/dz map generated by the Gaussian emulator from our Nyx simulation models

(see Appendix A.3 for more details). As a result of this toy model and also the inference

test, we conclude that our inference algorithm is sound.

2.3 Summary

In this hapter, we have presented and evaluated our new method of measuring the

thermal state [T0, γ] and the photoionization rate ΓHI of the low redshift IGM using

its b-NHI distribution and absorber density dN/dz. We made use of a novel machine

learning technique DELFI to build a b-NHI distribution emulator and used a Gaussian

process emulator to simulate the absorber density dN/dz. We trained both emulators

on a dataset generated from a set of Nyx simulations on a large parameter grid. To

test the performance of our inference algorithm under realistic conditions, we applied

forward modeling techniques to model the noise and instrumental effects based on the

HST COS quasar spectra from Danforth et al. (2016). We showed using extensive tests

that our inference method is proficient and reliable. Here we conclude by discussing the

performance and summarizing the essential elements of our new algorithm.

• We used mock datasets to simulate the measurement of the thermal state [T0, γ] of

the low redshift IGM from the full joint b-NHI distribution, for the first time taking

the absorber density dN/dz into account. The latter enables us to constrain the

photoionization rate ΓHI, since only the shape of the b-NHI distribution is insensitive

to this parameter (see Fig.2.5). We also confirm that the dN/dz term we introduced

is consistent with our inference based on the b-NHI distribution alone, and improves

the performance of our inference method (see Appendix A.1).

• Our new inference method successfully recovers thermal parameters of models from
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the Nyx simulation with small uncertainties (in our example, σlog T0 ∼ 0.08 dex,

σγ ∼ 0.06, and σlog ΓHI
∼ 0.07 dex), using a relatively small dataset with ∆z =

2.316. Furthermore, these results are obtained under realistic conditions as we

forward-model the observational effects and noise from the Danforth et al. (2016)

low-z COS quasar spectra while setting the size of our mock datasets to be the

same as the observational dataset (i.e. having the same total pathlength ∆zob).

Considering all these factors, the accuracy and sensitivity we attained in this study

should be achievable when our inference method is applied to real observational

data, making it a powerful tool for studying the Lyα forest.

• Our algorithm passes the inference test (see §2.2.5), indicating that our approxima-

tion and emulation/interpolation are reliable. We also demonstrate the robustness

of our inference method by testing the entire inference pipeline, including emulation

and interpolation procedures on a toy model under better-controlled conditions(see

Appendix A.3).

• The b-NHI distribution (DELFI) emulator successfully emulates both the 2D b-

NHI distributions and 1D marginalized distributions of b and NHI. We find that

the 2D b-NHI distribution shifts upward (towards higher b values) with increasing

T0 and γ, while larger γ also tilts up the low-b cut off. We explain these effects

qualitatively in section § 2.2.3 and show that they are consistent with previous

work.
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Chapter 3

Measurements of the IGM Thermal

and Ionization State during the

Cosmic Afternoon

3.1 Observational Data

In this chapter, we employ the aforementioned method to measure both the thermal

and ionization state of the IGM using quasar spectra obtained from STIS on board HST.

We opt for STIS due to its superior resolution compared with COS and available archival

data. We utilize 12 HST STIS quasar spectra covering 0.9 < z < 1.5, which are selected

from the STIS archive based on their redshift coverage, SNRs, and the availability of metal

identification. For the identification of metal lines, we import the metal identification

from the COS Absorption Survey of Baryon Harbors (CASBaH) project (Tripp 2014,

Prochaska et al. 2019, Burchett et al. 2019, Haislmaier et al. 2021) for five of our spectra,

and make use of the metal identification from Milutinović et al. (2007) for the remaining

seven spectra. We fit these spectra to obtain our {b,NHI} sample using VPFIT (see § 2.1.4)
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Figure 3.1: The HST STIS E230 spectra used in this study. The quasar are shown
as black dots, and the Lyα spectra, with proximity zones removed, are shown as line
segments with their colour indicating the mean SNR (per pixel). The three redshift
bins used in this study are shown by the vertical dashed lines.

and apply the Hu22 method to measure the thermal and ionization state of the IGM in

three redshift bins centering on z = 1, 1.2, and 1.4.

This chapter is structured as follows. We introduce our observational data in § 3.1

together with the data processing procedure, including continuum fitting, Voigt profiles

fitting, and metal masking. In §3.2 we describe our hydrodynamic simulations, parameter

grid, and mock data processing procedures, including generating Lyα forest from simu-

lation, creating mock sightlines, and forward-modeling. In §3.4 we discuss our results.

Lastly, we summarize the chapter in §3.5.

To measure the thermal state of the IGM around z ∼ 1, we make use of the quasar

spectra observed with the HST STIS (Woodgate et al. 1998) using the E230M echelle

mode, which provide spectroscopic coverage from ∼ 1600 Å to 3100 Å. We select such

echelle mode for two reasons. First, as discussed in § 1, its high spectral resolution

is beneficial for our analysis, with R ∼ 30,000, corresponding to ∼ 10 km/s (Kimble

et al. 1998, Medallon & Welty 2023), and its LSF is close to Gaussian and has a weak

dependence on the wavelength, which makes both the Voigt profile fitting (see § 2.1.4)

52



Measurements of the IGM Thermal and Ionization State during the Cosmic Afternoon Chapter 3

and the generation of forward models easier (see § 2.1.3). Secondly, the echelle modes

have higher wavelength coverage compared with first-order grating modes, enabling us

to measure the {b,NHI} of the Lyα absorption lines across a wider redshift range with

constant instrumental effects such as LSF, which makes our analysis across different

redshift bins more robust. We search the archival HST STIS E230M data observed in

the 0.2” × 0.2” slit, and retrieve 12 spectra with average SNR ≳ 5. The details of the

observation, from which our quasar samples are obtained, are summarized in Table 3.1,

and Fig. 3.1 depicts the redshift coverage of the spectra used in this study. The quasars

are shown as black dots, and the spectra are shown as line segments with their colour

indicating the SNR. The redshift bins considered for the measurements are shown by the

vertical dashed lines in Fig. 3.1.

To reduce and combine the STIS spectra, we used the procedure of Tripp et al. (2001)

with CALSTIS v3.4.2. In brief, starting with the CALSTIS x1d files, for each quasar we

combined all exposures, including the coaddition of overlapping regions of adjacent echelle

orders, all with appropriate weighting and using the STIS flags to mask out bad pixels

(see Tripp et al. 2001, for details). We then fit the continuum of these spectra using the

interactive continuum fitting program imported from linetools1. Since we focus on the

Lyα forest in this study, we make use of only the Lyα regions, excluding Lyβ and higher

Lyman series absorption lines at λ < 1050 Å, while also masking the quasar proximity

zones at λ > 1180 Å (see Fig.3.1). As a result, we only use the spectral segment with

rest frame wavelength 1050 < λrest < 1180 Å. The quasar sightlines are chopped and

padded by white noise based on the noise vector of the spectrum before passing into the

VP-fitting program to avoid any complications arising from the edges of the spectra, and

the padded regions are later masked in post-processing. This treatment of the edges is

also applied to the mock forward models to ensure our analysis is consistent.

1For more information, visit https://linetools.readthedocs.io
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Table 3.1: Summary of HST STIS sightlines used in the study

ID zqso Wavelength Obs. date Exp. time Ave. SNR per pix.
(Å) (ksec) (full) (Lyα)

TON153 1.014 2275 - 3110 2001 Jan. 5.3 5.0 4.8
2002 Jun. 8.2

PG1248+401 1.033 2275 - 3110 2002 Jul. 25.2 5.9 5.0
2001 Oct. 28.8

PG1718+481 1.083 1841 - 2673 1999 Nov. 14.1 7.9 9.8

PG1206+459a 1.162 2273 - 3110 2001 Jan. 17.3 7.3 6.4

LBQS1435-0134a 1.309 1985 - 2781 2015 Jun. 20.9 10.6 5.5

PG1241+176 1.283 2275 - 3110 2002 Jun. 19.2 4.7 4.4

PG1522+101a 1.328 1985 - 2781 2015 Mar. 7.7 9.5 7.1
2015 May. 13.2

PG1634+706 1.337 1858 - 2673 1999 May. 14.5 12.9 18.7
2275 - 3110 1999 Jun. 14.5
1858 - 2673 1999 Jun. 26.4

PHL1377a 1.440 2275 - 3110 2002 Jan. 14.0 7.2 5.3
2002 Feb. 28.0

PG1630+377a 1.476 2275 - 3110 2001 Feb. 5.3 10.6 7.5
2001 Oct. 28.8

PG0117+213 1.493 2275 - 3110 2000 Dec. 42.0 7.2 7.5

HE0515-4414 1.713 2275 - 3110 2000 Jan. 31.5 7.9 7.6

a The quasar sightlines on which we use the metal identification from the COS Absorption
Survey of Baryon Harbors (CASBaH).
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Figure 3.2: Illustration of the processed STIS spectrum of PG1206+459. The original
spectrum is shown in gray, while a model spectrum based on VP-fitting is shown in
blue. The noise vector is shown in red, and the masked regions are shown as green
shaded regions. The Lyα lines used for our {b,NHI} dataset are labelled by red vertical
lines.

3.1.1 Voigt-Profile Fitting

In this work, we use the line-fitting program presented in §2.1.4. We implement the

STIS E230M LSF to fit our observational data. Notice that the VP-fitting procedure

is applied to the whole spectral segment, fitting both the Lyα lines and metal lines,

including both intervening metal lines and those from interstellar medium of Milky Way

(MW); for simplicity, hereafter we refer to these collectively as metal lines. The removal

of these metal lines is later discussed in § 3.1.2.

Our VPFIT wrapper is designed to fit spectra using a custom LSF. However, it

is important to note that it accommodates only a single LSF, without accounting for

any wavelength dependency. To address this, we extract the STIS E230M LSF from

linetools and interpolate it to match the central wavelength of the spectrum we aim to
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fit. As previously detailed in § 3.1, the STIS 230M exhibits a Gaussian-like LSF, which

shows minimal variation across different wavelengths. Consequently, our approach of

employing a singular LSF in the VP-fitting process does not introduce significant errors.

To ensure consistency and avoid statistical biases, we apply the same fitting methodology

to both our observational data and forward-modelled mock.

One of our STIS spectra, PG1206 is shown as an example of the VP-fitting procedure

in Fig. 3.2. The original spectrum is shown in grey, and the model based on VP-fitting is

shown in blue. The noise vector of the original spectrum is shown in red, and the masked

regions due to metal line detection are shown as green shaded regions. The Lyα lines

used for our {b,NHI} dataset (after all filters) are labelled by red vertical lines.

3.1.2 Metal Identification

As previously mentioned, our VP-fitting procedure fits all absorption lines including

Lyα lines and metal lines. For our analysis based on the {b,NHI} of the Lyα forest,

it is critical to filter out these metal lines. To this end, we make use of archival metal

identification data presented in Milutinović et al. (2007) for seven of our quasar sightlines

and use metal identification from the CASBaH survey (Tripp 2014, Prochaska et al. 2019,

Burchett et al. 2019, Haislmaier et al. 2021) for the rest five spectra (see notes of the

Table. 3.1). For each spectrum, we create a mask to cover the vicinity of each metal

line based on the aforementioned metal identification. These masked regions are initially

aligned with the central wavelength of the metal lines reported in the literature, while

their initial widths are set to be ∆v = 30 km/s in velocity space. Such a value is chosen

based on the resolution of STIS E230M, which corresponds to ∼ 10 km/s. We then

apply the masks to our VP-fit results to filter out potential metal lines. To do so, we

first locate the absorption line region characterized by Fline,fit ≤ 0.99, where the Fline,fit
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stands for the normalized flux given by the VP-fit model (the blue line in Fig. 3.2). If any

absorption line region overlaps with the initial mask, we increase the width of the mask

to cover the detected line, while the increment is given by the full width at half maximum

(FWHM) of the detected line, approximated by FWHM = b/0.6, where the b is given by

VPFIT. Lastly, we adjust the masks manually to fill the small gaps (with ∆v = 30 km/s)

between the masked regions and make sure all absorption lines close to (the original)

metal masks reported by our VP-fitting procedure are masked. The aforementioned

masking procedure is needed based on the fact that our VP-fitting procedure does not

match the line identified in the literature exactly, due to the different spectra2 used

for metal identification and different post-processing procedures, including coaddition,

continuum fitting, and data smoothing used in our data. The aforementioned masking

procedure makes sure that all potential metal contamination is removed. Afterwards, we

manually masked a few gap regions in our quasar spectra resulting in the failure of the

VPFIT caused by Damped Lyα absorption systems (DLAs). These masks are generated

in post-processing, which means that we first apply VPFIT to the spectra assuming all

lines are HI Lyα and remove the absorption lines that fall within the masked regions,

same as done for finding overlapped lines with metal masks. In the end, we subtract the

metal mask from our total pathlength and obtain ∆z =2.097. Our full sample of quasar

segments and their corresponding masks are presented in Appendix B.1.

With our imposed cuts on the {b,NHI}, we find that 40 out of 341 lines are masked

for our whole sample, and that leaves us with a {b,NHI} dataset consisting of 301 Lyα

absorption lines. We divide the 301 Lyα absorbers into three redshift bins: 0.9 < z < 1.1,

1.1 < z < 1.3 and 1.3 < z < 1.5 centered at z = 1, 1.2 and 1.4, respectively, according

to their central wavelength as determined by VPFIT. This provides us with the number

of Lyα lines to be 102, 160 and 39 and redshift path of 0.762, 0.972 and 0.363 in the

2HST COS spectra are used in CASBaH project to identify the metal lines.
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Table 3.2: Summary of the of the observational dataset

z bins ∆z Number bm/km s−1 log(NHI,m/cm
−2)

0.9 ≤ z ≤ 1.1 0.762 102 31.74 13.48

1.1 < z ≤ 1.3 0.972 160 28.83 13.37

1.3 < z ≤ 1.5 0.363 39 29.69 13.48

The numbers of identified Lyα lines in each redshift, the total pathlength ∆z, and the median

value bm and logNHI,m.

bins centred at z = 1, 1.2 and 1.4, respectively. In Table 3.2 we summarize our {b,NHI}

dataset for each redshift bin, with redshift pathlength, number of final Lyα lines as well

as median values for the b and NHI in each bin.

3.2 Simulations

We utilize a set of Nyx cosmological hydrodynamic simulations from THERMAL

suite, both described in§2.1. To model the Lyα forest at z ∼ 1. We rescale the tempera-

ture for a set of models to model the Lyα forest in extremely hot IGM, which is favoured

by our inference result, as described in §3.3. In addition, we implement the STIS LSF in

the forward-modelling procedures, and use the different UVB photoionization rate ΓHI

in the post-processing due to the different redshift compared with §2. For other relevant

post-processing procedures, such as generating mock spectra, and forward-modeling we

follow the prescription discussed in §2.1, if no special treatment is needed.

3.2.1 T0-rescaling models

As will be discussed later in § 3.3, our data favour models with high T0 at z = 1.0

and z = 1.4, which is hard to generate based on the aforementioned procedure. This
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is because, as suggested by Eq. 2.1, our method alters the IGM thermal history of the

simulation model by varying the heat released by the H i photoionization. However, the

results of such a heating procedure fade away in low z, where the IGM is dominated by

the adiabatic cooling caused by Hubble expansion (McQuinn 2016). As a result, the T0

of the IGM at z < 1.5 becomes insensitive to the heat input in our method for models

with high T0. To this end, we rescale the IGM temperature to model the IGM with high

temperature. For z = 1.0, we select six simulation snapshots with 3.75 ≤ log T0 ≤ 3.9,

which has T0 close to the Nyx model 00 with A = 1, B = 0 (see Eq. 2.1) at z = 1.0,

and multiply their temperature T (at each simulation cell) by 2.5 and 3 respectively

to generate 12 new models. The other properties of the simulation remain unchanged,

and since we rescaled the temperature of all simulation cells uniformly the whole ∆-T

distribution of the simulation model still follows the power law ∆-T relationship Eq. 1.1

with the T0 rescaled. The [T0, γ] of original models and models with rescaled T0 are

illustrated in Fig. 3.6, where THERMAL Nyx models are plotted as blue dots, and

the models with rescaled temperature are shown as orange dots. the model rescaled to

2.5×T0 and 3.0×T0 are shown in orange and red respectively. Such temperature rescaling

procedures are also applied to z = 1.4 models, where our preliminary results also favour

hot models, and the corresponding models are shown in Fig. 3.4.

3.2.2 Varying the UVB ΓHI

Since we want to measure the ionization state of the IGM, we let the HI photoion-

ization rate ΓHI be a free parameter when generating Lyα forest skewers from our simu-

lations. As such, we add an additional parameter log ΓHI to our thermal grid, extending

it to [log T0, γ, log ΓHI]. Such procedure is done in the post-processing of the simulation,

at the time when the simulated slightlines are generated (see § 2.1.2). The value of ΓHI
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Figure 3.3: Volume weighted T -∆ distribution for three simulations models at z = 1.0.
The left panel is the Nyx model 00 with T0 = 6971 K, γ = 1.60, and the middle panel
is the Nyx model 02 with T0 = 13630 K, γ = 1.58. The right panel shows the
model generated by multiplying the temperature in model 00 by two, resulting in a
T0 = 13871 K and γ =1.59 according to our ∆ − T fitting procedure. The best-fit
power-law relationship is shown as grey dashed lines. The log T for each bin are plotted
as black dots, with the 1-σT error bars shown as black bars. The volume-weighted
gas phase fractions are shown in the annotations. The fraction of diffuse Lyα gas and
the values of T0 and γ in the rescaled model (the right panel) agree within a percent
level to the actual model shown in the middle panel.
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we used in this study spans from log(ΓHI/s
−1) = -11.2 to -12.8 in logarithmic steps of 0.2

dex, which gives 9 values in total. These values are fixed for all redshift bins.

3.2.3 Forward Modeling of Noise and Resolution

In this section, we aim to measure the thermal and ionization state of the IGM at

z ∼ 1. To this end, we generate mock datasets with properties consistent with our STIS

E230M quasar spectra, which comprise 12 unique quasar spectra. To this end, we use

the forward-modeling procedure as described in §2.1.3, but with altered LSF and noise

based on the observational data.

For low-z IGM with temperatures at mean density T0 ∼ 5000 K, the b-values for

pure thermal broadening (i.e. the narrowest lines in the Lyα forest) are b ∼ 9 km/s,

corresponding to a full width at half maximum (FWHM)∼ b/0.6 ∼ 15 km/s. Such ab-

sorption features can not be fully resolved by STIS, which has a resolution of roughly 10

km/s. Thus, it is crucial to treat the instrumental effect carefully. Therefore, we forward

model noise and resolution to make our simulation results statistically comparable with

the observation data. In practice, we make use of tabulated STIS E230M LSF obtained

from linetools and noise vectors from our quasar sample. For any individual quasar

spectrum from the observation dataset, we first stitch randomly selected simulated skew-

ers without repetition to cover the same wavelength of the quasar and then rebin the

skewers onto the wavelength grid of the observed spectra. Then we convolve the sim-

ulated spectra with the HST STIS LSF while taking into account the grating and slits

used for that specific data spectrum. The STIS LSF is tabulated for up to 160 pixels

in each direction. We interpolate the LSF onto the wavelengths of the mock spectrum

(segment) to obtain a wavelength-dependent LSF. Each output pixel is then modelled

as a convolution between the input stitched skewers and the interpolated LSF for the
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corresponding wavelength. Afterwards, the newly generated spectrum is interpolated to

the wavelength of the selected STIS spectra. The noise vector of the quasar spectrum is

propagated to our simulated spectrum pixel-by-pixel by sampling from a Gaussian with

σ = ψi, with ψi being the data noise vector value at the ith pixel. In the end, a fixed

floor of 0.02 in quadrature is added to the error vector for all simulated spectra to avoid

artificial effects in post-processing, as discussed in §2.1.4.

For each model, including both Nyx model from the THERMAL suite and those

generated by rescaling the temperature, we generated 1000 mock spectra, from the 15,000

raw skewers3. The total pathlength of the dataset for each model is roughly ∆ztot ∼ 100.

We then fit Voigt profiles to each line in the spectra to obtain the {b,NHI} dataset used

for the training of the b-NHI distribution emulator, which will be discussed in § 5.2.1.

For the purpose of illustration, an example of a forward-modelled spectrum is shown in

Fig. 4.2 where the simulated spectrum is shown in grey, the model spectrum based on

VPFIT line fitting is in blue, and the noise vector in red.

3.3 Inference Results

We applied the inference method described in §2.2 to our dataset at three redshift

bins to measure the IGM thermal and ionization state at z = 1.4, 1.2, and 1.0. The

difference is that, in this work, we train the neural networks based on {b,NHI} dataset

forward-modelled based on the STIS spectra described in §3.1. The neural networks are

trained on mock dataset at z = 1.4, 1.2, and 1.0 individually.

The resulting MCMC posteriors are presented in Fig. 3.4, Fig. 3.5 and Fig. 3.6 re-

spectively. Projections of the thermal grid used for generating models are shown as blue

dots. The inner (outer) black contour represents the projected 2D 1(2)-sigma interval.

3Generating 1000 spectra requires about 10,000 raw skewers, which are randomly selected from the
total 15,000 skewers for each model.
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Table 3.3: Summary of the inference results

z bins log(T0/K) γ log (ΓHI/s
−1)

1.3 < z ≤ 1.5 4.119+0.152
−0.253 1.341+0.208

−0.258 −11.789+0.181
−0.147

1.1 < z ≤ 1.3 3.791+0.106
−0.107 1.704+0.092

−0.094 −11.984+0.089
−0.088

0.9 ≤ z ≤ 1.1 4.132+0.115
−0.103 1.357+0.102

−0.151 −12.320+0.103
−0.115

The inference results i.e., median values of the marginalized 1D posteriors for each parameter,

for all three redshift bins. The errors are given by the 1-σ error (16-84%) of the marginalized

1D posteriors.

The dashed black lines indicate the 16, 50, and 84 percentile values of the marginalized

1D posterior. For z = 1.0 and 1.4, our preliminary results indicate that the observational

data favour models with high temperature, and the MCMC posterior is truncated at the

boundary of the parameter space. As described in § 3.2.1, these models with high tem-

peratures are hard to model due to the heating mechanism used in the Nyx simulation.

We thus manually rescale the temperature of some of the Nyx models and extend the

parameter grid for our inference procedure. With these rescaled models, we are able to

measure the thermal and ionization state of the IGM. The parameter grids that contains

the rescaled models are shown in Fig. 3.4 and Fig. 3.6 for z=1.4 and z=1.0 respectively.

The Nyx models used for temperature rescaling are shown as green dots, and the models

with 2.5 and 3.0 times T0 are shown as orange and red dots respectively.

We summarize the inference results (median values of the marginalized 1D posteriors

for each parameter) in Table. 3.3. The {b,NHI} data and the corresponding b-NHI dis-

tributions emulated by our DELFI emulator are shown in Fig. 4.8, and the likelihood

contours corresponding to 80, 60, 40, and 20 cumulative percentiles are plotted as grey

dashed lines. These plots show good agreement between the observational data and the

emulated b-NHI distributions. We notice the inference result at z = 1.4 has huge uncer-
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tainty due to the lack of observational data. However, the precision is still satisfactory,

given the fact that our {b,NHI} sample at this redshift bin contains only 39 data points.

Such a size is comparable with the one used in Ricotti et al. (2000), whereas the error

bar is much smaller (see Fig. 3.11), which mainly because of our novel method using full

b-NHI distribution (see Hiss et al. 2019, for the relevant discussion).

Based on the marginalized 2D posteriors, we observe that our results across all red-

shift bins exhibit the anticipated degeneracies between parameters. Specifically, T0 is

degenerate with both γ and ΓHI, as indicated in Hu22. To further assess the goodness of

our inference results, we plot the marginalized 1D b and NHI distributions of our sample

in Fig. 3.8, Fig. 3.9, and Fig. 3.10 for each redshift bin, and compare them with 5000

mock datasets with the same size, sampled from the b-NHI distributions emulated based

on the median values of the MCMC posteriors. The blue bars indicate the mean value of

the number of lines that fall in each bin for the 5000 datasets, whereas the blue shaded

regions represent the 1-σ uncertainty calculated from the 5000 datasets. From the results,

it is evident that our inference method adeptly recovers both the 2D and marginalized

1D distributions of {b,NHI}, even though the limited data size, particularly at z = 1.4,

leads to noticeable fluctuations, which are underscored by the substantial 1-σ error bar

in the marginalized 1D distributions in both b and NHI distributions.

As illustrated in Fig. 3.8, Fig. 3.9, and Fig. 3.10, our 1D b-parameter distributions

emulated for best fit [T0, γ, ΓHI] are in good match with the observations, highlighting

the robustness of our inference and suggesting that there is no severe discrepancy in b

distribution as opposed to the what is seen at z < 0.5 (Gaikwad et al. 2017b, Viel et al.

2017). Note that this z < 0.5 b-parameter discrepancy arises from studies based on COS

low-z Lyα spectra (Danforth et al. 2016), however, in reality, the spectral resolution and

LSF of COS may not be very good for accurate b-parameter measurements, especially

for small b values. In contrast, old studies on higher-resolution STIS spectra, although
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with high uncertainty, found observed b-parameter in good agreement with predictions

from cosmological simulations (see Fig. 3 in Davé & Tripp 2001). This consistency

implies that the b-parameter discrepancy found in the literature may be an artifact of

the limited spectral resolution provided by COS, which will be further investigated in

our future work. It also suggest that it might be beneficial to study the Lyα forest with

the higher-resolution spectra obtained with STIS.

3.3.1 Evolution of the thermal state of the IGM

In Fig. 3.11 we summarize the T0, γ evolution across three redshift bins, and compare

them with archival from previous studies at higher z (Ricotti et al. 2000, Hiss et al. 2018,

Walther et al. 2019b, Gaikwad et al. 2021). Our results and their 1-σ uncertainties are

shown as filled red data points and error bars. As a benchmark for current theoretical

models, we plot the IGM thermal history spanned by all potential Helium reionization

models (Oñorbe et al. 2017b;a) as the cyan-shaded region.

To further assess how well do our low-z results agree with previous results, in Fig. 3.12,

we fit a power law relationship between T0 and z (blue dashed line), i.e., log T0(z) =

c1z+ c2, where c1, c2 are fitting coefficients obtained from a least squares linear fit based

on all previous T0 measurements in between 1.5 ≤ z ≤ 3.0 (i.e., not including our

measurements). Such a power law fit is a reasonable approximation in between 1.0 ≤

z ≤ 3.0 (see the prediction of low-z T0 in Upton Sanderbeck et al. 2016, McQuinn &

Upton Sanderbeck 2016). The power law relationship (blue dashed line in Fig. 3.12)

suggests that our measurements at z = 1.2 and 1.4 are consistent with previous results.

However, a noticeable discrepancy in T0 emerges at z = 1.0, where our measurement

of T0 13500 K is significantly higher than best-fit power-law relationship predicted by

previous measurements. Such a discrepancy suggests that the IGM may be far hotter
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Figure 3.4: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 1.4. Projections of the thermal grid used for generating models are
shown as blue dots. The Nyx models used for temperature rescaling are shown as
green dots, and the models with 2.5 and 3.0 times T0 are shown as orange and red dots
respectively. The inner (outer) black contour represents the projected 2D 1(2)-sigma
interval. The dashed black lines indicate the 16, 50, and 84 percentile values of the
marginalized 1D posterior.

66



Measurements of the IGM Thermal and Ionization State during the Cosmic Afternoon Chapter 3

log(T0/K) = 3.791+0.106
0.107

0.8

1.2

1.6

2.0

2.4

 = 1.704+0.092
0.094

3.6 3.8 4.0 4.2

log(T0/K)

12.8

12.4

12.0

11.6

11.2

lo
g(

H
I/s

1 )

0.8 1.2 1.6 2.0 2.4 12
.8

12
.4

12
.0

11
.6

11
.2

log( HI/s 1)

log( HI/s 1) = 11.984+0.089
0.088

Figure 3.5: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 1.2. Projections of the thermal grid used for generating models are
shown as blue dots, while the true model is shown as red dots. The inner (outer) black
contour represents the projected 2D 1(2)-sigma interval. Red lines in the marginal
distributions indicate the parameters of true models, while the dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Figure 3.6: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 1.0. Projections of the thermal grid used for generating models are
shown as blue dots. The Nyx models used for temperature rescaling are shown as
green dots, and the models with 2.5 and 3.0 times T0 are shown as orange and red dots
respectively. The inner (outer) black contour represents the projected 2D 1(2)-sigma
interval. The dashed black lines indicate the 16, 50, and 84 percentile values of the
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Figure 3.8: The marginalized 1D b and NHI distributions of our are compared with
5000 mock datasets with the same size, sampled from the b-NHI distributions emulated
based on the median values of the MCMC posteriors. The black dots represent our
{b,NHI} data at z =1.4. The blue bars indicate the mean value of the number of lines
that fall in each bin for the 5000 datasets, whereas the blue shaded regions represent
the 1-σ uncertainty calculated from the 5000 datasets.
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Figure 3.9: The marginalized 1D b and NHI distributions of our are compared with
5000 mock datasets with the same size, sampled from the b-NHI distributions emulated
based on the median values of the MCMC posteriors. The black dots represent our
{b,NHI} data at z =1.2. The blue bars indicate the mean value of the number of lines
that fall in each bin for the 5000 datasets, whereas the blue shaded regions represent
the 1-σ uncertainty calculated from the 5000 datasets.
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Figure 3.10: The marginalized 1D b and NHI distributions of our are compared with
5000 mock datasets with the same size, sampled from the b-NHI distributions emulated
based on the median values of the MCMC posteriors. The black dots represent our
{b,NHI} data at z =1.0. The blue bars indicate the mean value of the number of lines
that fall in each bin for the 5000 datasets, whereas the blue shaded regions represent
the 1-σ uncertainty calculated from the 5000 datasets.
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Figure 3.11: Evolution history of T0 (top) and log ΓHI (bottom) based on our inference
results using the STIS data. Our results are shown as red dots, while measurements
from other studies are displayed in different colours. The error bars stand for the
1-σ error. The blue-shaded region in the top panel represents the range spanned by
T0 from hydrodynamical simulations of a large family of different HeII reionization
models. The mock measurements based on Nyx simulation are shown in blue.
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Figure 3.12: The evolution of T0 in the IGM across 0.9 < z < 3.5, with results from
previous studies shown in comparison. The power law fit of log(T0/K) obtained by
fitting all previous results in between 0.9 < z < 3.0 are plotted as dark cyan dashed
line.

than expected at z ∼ 1.0, implying the existence of extra heating sources that are not

included in our current IGM model, which becomes crucial at z ∼ 1.0. Summarizing

the T0 measurements across all three redshift bins, two potential thermal histories for

the IGM emerge: (1) The IGM might undergo a cooling phase around z ∼ 1.2 before

heating up to 13500 K at z ∼ 1.0, which is not unfeasible given the significantly large

time span of ∼ 700 Myr between these two redshifts. (2) Alternatively, the IGM could

consistently maintain a high temperature since z ∼ 1.5. However due to the substantial

error bars in T0 in all three redshift bins, no definitive conclusion can be made until

further investigation with larger datasets.

To further investigate the possibe change of the IGM thermal state from z = 1.2 to

z = 1.0, in Fig. 3.13, we over-plot the likelihood contours of the b-NHI distribution at

z = 1.2 on top of the {b,NHI} dataset and the corresponding b-NHI distribution at z = 1.0.

It can be seen that the {b,NHI} dataset and the corresponding b-NHI distribution at

z = 1.0 lies above the likelihood contours of the b-NHI distribution at z = 1.2, suggesting
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Figure 3.13: The likelihood contours of the b-NHI distribution at z = 1.2 on top of the
{b,NHI} dataset and the corresponding b-NHI distribution at z = 1.0. The likelihood
contours corresponding to 80,60,40, and 20 cumulative percentiles are plotted as gray
dashed lines.

that our observational data indeed favour a rapid change in the IGM thermal state

between 1.0 < z < 1.2. More discussion on this unexpected high T0 is present in § 3.4.1.

As for γ, our results for z = 1.4 and 1.2 align with this trend as outlined in McQuinn

(2016), in which the value of γ tends to decrease towards lower redshifts. However, the

result at z = 1.0 indicates a reduced γ. The cause of this discrepancy remains unclear,

but it is worth noting that such a trend of T0 and γ, i.e., high T0, low γ, is consistent with

the T0-γ degeneracy shown in the inference posterior (see the 2D marginalized posterior

contours in T0-γ plane in Fig. 3.6). As a result, it is likely that the inference results

at z = 1.0, which yields high T0 and low γ are caused by inference uncertainty and

degeneracy. On the other hand, it is also possible that the IGM starts to heat up at

z ∼ 1.0, leading to both increasing T0 and decreasing γ. In this case, the inconsistencies

observed in both γ and T0 have a common root cause.

To illustrate the evolution of the IGM thermal and ionization state, we over-plot the

three MCMC posterior on top of each other in Fig. 3.14, where the 2D marginalized

posterior for z = 1.4 are shown in green, the one for z = 1.2 is plotted in blue, and the
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Figure 3.14: The MCMC posteriors obtained by our inference method for all three
redshift bins. The z = 1.0 posterior is shown in black, the z = 1.2 posterior is shown
in blue, and the z = 1.4 posterior is shown in green.
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one for z = 1.0 is shown in black. From the T0-γ plane, we observe a clear turnover

for both T0 and γ at z = 1.0, suggesting a reverse evolution trend at z ∼ 1.0. Such

synchronization between the evolution of T0 and γ is important for us to understand the

origin of the discrepancy, and relevant discussion is presented in § 3.4.1.

3.3.2 Evolution of the H i photoionization rate and UVB

Our measurements fill in the ΓHI evolution history between 0.0 < z < 1.7. In the

bottom panel of Fig. 3.11 we show our ΓHI measurements across our three redshift bins,

compared with previous studies (Davé & Tripp 2001, Bolton 2007, Becker & Bolton

2013b, Kollmeier et al. 2014, Gaikwad et al. 2017b, Khaire et al. 2019). Our inference

results indicate that the ΓHI is in good agreement with the UVB model presented in

Khaire & Srianand (2019b) in all three redshift bins.

It is worth noting that for z < 3, the UVB model of Khaire & Srianand (2019b)

is dominated by photons emitted by quasars alone i.e., the escape fraction on ionizing

photons from galaxies is negligible at z < 3. Our ΓHI measurements support the same

conclusion that galaxies are not the main source of ionizing photons at z < 3. The

same conclusion can be drawn from the new UVB models of Puchwein et al. (2019) and

Faucher-Giguère (2020) because their ΓHI values align very well with the UVB model of

(Khaire & Srianand 2019b) at z < 2. This is mainly because all three UVB models use

updated quasar luminosity functions at z < 3 (as presented in Croom et al. 2009, Ross

et al. 2013, Palanque-Delabrouille et al. 2013) after Khaire & Srianand (2015) pointed

out that previous UVB models (Haardt & Madau 2012, Faucher-Giguère et al. 2009) used

old quasar luminosity functions that predict factor two smaller ionizing emissivity. The

consistency of our new ΓHI measurements in the previously unexplored redshift range with

recent UVB models attests to the robustness of these UVB synthesis models, especially
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in the aspect of hydrogen ionizing part of the UVB.

3.4 Discussion

3.4.1 The discrepancy in T0

In this section, we delve into the observed discrepancy in IGM thermal state at

z ∼ 1.0. First of all, we notice a coherence between the high T0 measured at z ∼ 1 and

the high b-values observed at z ∼ 0.1, based on the COS Lyα forest dataset (Danforth

et al. 2016), where the observed b-parameter significantly surpass the predicted value

based on various simulations (Gaikwad et al. 2017b, Viel et al. 2017, Nasir et al. 2017,

Bolton et al. 2022b;a). Quantitatively, Viel et al. (2017) compares the marginalized b

distribution with various simulations, showing that the b distribution at z ∼ 0.1 can be

best recovered by the hydrodynamic simulations (P-GADGET-3, see Springel et al. 2005)

with T0 ≳ 10000 K, while the theoretical model dictates that the T0 ∼ 5000 at z = 0.1.

The similarity of required IGM temperature at both z = 0.1 and 1.0 suggests that the

discrepancy at z ∼ 0.1 may be related the one at z ∼ 1, indicating a persistent trend from

z ∼ 1.0 to 0.1. Additionally, it also suggests that the discrepancy observed at z = 0.1

may not be attributable to the limited resolution of the COS.

The simplest explanation for these discrepancies is the thermal broadening caused by

a higher-than-expected IGM temperature, which requires the existence of extra heating

sources. If this is true, our understanding of IGM physics will be changed drastically,

highlighting a severe need to investigate processes that are possibly responsible for it,

such as dark matter annihilation (Araya & Padilla 2014, Bolton et al. 2022a), gamma-ray

sources (Puchwein et al. 2012), or feedback from galaxy formation, whose effects are not

fully understood in low-z (see Springel et al. 2005, Croton et al. 2006a, Sijacki et al.
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2007a, Hopkins et al. 2008a, Tillman et al. 2023b;a, Hu et al. 2023a).

Another possible explanation instead of extra heating is the presence of unexpected

non-thermal broadening mechanisms affecting the b-parameter of the Lyα forest, such as

micro-turbulence motion in the IGM induced by jet or feedback (Gaikwad et al. 2017b,

Viel et al. 2017, Nasir et al. 2017, Bolton et al. 2022b). However, these non-thermal

broadening models fail to account for the unexpected trend in γ observed in our results,

where the γ are lower than expected at z = 1.0. To further investigate this, we plan to

apply our inference method to the COS Lyα forest dataset at z ≤ 0.5, which should help

to break the degeneracy between T0 and γ, thereby providing deeper insight into the b

discrepancy observed at z ∼ 0.1.

3.4.2 Forecast based on mock observations

In this section, we make realistic forecasts for our future measurements with more

abundant observational data. Given the amount of the newfound bright objects expected

in upcoming surveys including Gaia DR3 (Gaia Collaboration et al. 2016; 2023). With

a realistic amount of the observation from HST STIS, i.e., ∼ 50 orbits, we expect the

path length coverage for each redshift bin to be significantly extended. Here we assess the

constraining power based on total pathlength ∆z = 2 for each redshift bin, corresponding

to three times the current data size or roughly 15 spectra for each redshift bin, while

assuming the characteristic SNRs of the data do not change. We pick forward-modelled

mock spectra from our mock dataset at each redshift bin and generate mock observational

data with total pathlength ∆z=2. The Nyx model used here is the one with the thermal

state that is closest to the inference results presented in § 3.3. The inference results

obtained from these mock observations and their 1-σ error bars are shown in Fig. 3.11 as

blue dots. It can be seen that with ∆z = 2, the 1-σ errors for T0 become roughly ∼ 1500
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K, and the 1-σ errors for γ become roughly ∼ 0.08. These results will help us to confirm

whether the IGM cools down as predicted.

3.4.3 The effect of potential contamination

In spite of the careful masking procedure, our {b,NHI} dataset still encounters po-

tential contaminants, including blended lines and unidentified metal lines, especially for

the metal masks obtained from Milutinović et al. (2007), since their metal identification

might not be complete. Here we briefly discuss the potential effects of these contam-

inants. It is well known that ionic metal line transitions mainly contribute to narrow

absorption lines with b ≤ 10 km/s (Schaye et al. 1999, Rudie et al. 2012b, Hiss et al.

2018). As a result, the metal line contaminants tend to bias our inference toward lower

T0. To this end, these contaminants shall not affect the main and most important result

of this paper, i.e., the IGM seems to be hotter than expected at low-z, especially at

z = 1.0. For these blended lines, in this paper, we adopt a more conservative metal

masking, where we manually filter out all suspicious lines close to the masked regions

(see the masks in Appendix B.1). As for a more detailed quantitative analysis, we plan

to identify all Lyα lines using the Lyβ (or higher transitions) forest (see e.g. Rudie et al.

2012b). We plan to do this in future by combining our data set with other archival and

upcoming data form HST.

3.4.4 The effect of SNRs of the spectra

We notice that a few quasar sightlines in our sample have relatively low SNRs (see

Table. 3.1), and it is unknown whether our results are biased by these spectra. Hence, in

this section, we test the effect of these low-SNR sightlines on our inference results. To do

that, we exclude three quasar spectra from our sample which have relatively lower SNR
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(≤ 5), while the remaining spectra all have SNR >5. We exclude TON153, PG1248+401

and PG1241+176 from the observational data and obtain a new {b,NHI} dataset, which

provides 25 fewer Lyα lines compared with the old one and reduces the total pathlength

∆z by 0.24. We generate new mock datasets based on the nine spectra with SNR >

7, and train our emulators based on the new dataset. The outcomes indicate that even

after excluding low SNR spectra from our data (and correspondingly in our mock data),

the results remain consistent across each redshift bin. Such a result is important for our

future work, suggesting that it is possible to make use of relatively low SNR data to

obtain higher total pathlength and analyse the evolution of the thermal and ionization

state on finer redshift bins, such that we could pinpoint the onset of the discrepancy in

T0 (or b-parameter) between the observation and simulation more precisely.

3.5 Summary

In this chapter, we make use of 12 archival STIS E230M quasar spectra, from which

we obtain the b-NHI distribution distribution and line density dN/dz over the redshift

range 0.9 < z < 1.5 in three redshift bins. We then measure the thermal and ionization

state of the IGM following a machine-learning-based inference method presented in Hu22

for this redshift range for the first time. Below we summarize our resutls:

• We Voigt-profile fit the Lyα in all 12 quasar spectra using a fully automated VPFIT

wrapper and obtain {b,NHI} for 341 lines. We use the metal identifications from the

CASBaH project and combine them with the metal identification from Milutinović

et al. (2007) to generate our metal masks, filtering out 40 contaminants besides

Lyα absorption lines, and obtain a final sample of 301 Lyα lines across a total

pathlength of ∆z =2.097.
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• We employ the Hu22 inference method, which simultaneously measures [T0, γ,ΓHI]

from the b-NHI distribution and dN/dz, with the help of neural density estimators

and Gaussian process emulators trained on a suite of 51 Nyx simulations each

having a different IGM thermal history. It enables us to measure the IGM thermal

and ionization state with high precision even with limited data.

• We obtain [log(T0/K), γ] = [4.119+0.152
−0.253, 1.341

+0.208
−0.258] at z = 1.4 and [log(T0/K), γ] =

[3.791+0.106
−0.107, 1.704

+0.092
−0.094] at z = 1.2. These two measurements agree with the theo-

retical model (Fig. 3.11 and 3.12), suggesting that the thermal state of the IGM

evolves as expected from z = 1.4 to z = 1.2.

• Nevertheless, our results yield [log(T0/K), γ] = [4.132+0.115
−0.103, 1.357

+0.102
−0.151 ] at z = 1,

suggesting an unexpectedly high IGM temperature and low γ, which is against the

trend predicted by the current theoretical models of the IGM. Such high T0 poten-

tially suggests the existence of extra heating or unexpected non-thermal broadening

at z ∼ 1.0.

• Based on our measurements, it is possible that the IGM experiences a cooling

phase until z ∼ 1.2 from z ∼ 3, and then it gets heated up to 13500 K at z = 1 in

approximately 700 Myr. Alternatively, the IGM temperature might have remained

consistently high since z ∼ 2. However, due to significant uncertainties in T0 for

all three redshift bins, a definitive conclusion cannot be reached without further

investigation.

• The inference results of γ suggest that it also goes through unexpected evolution at

z ∼ 1. However, while it is likely that such a trend is caused by extra heating that

causes the discrepancy in T0, it is also possible that it is due to inference degeneracy

between T0 and γ.
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• We compare our findings with previous work, which reports unanticipated high

b-parameters compared with various simulations based on observational data at

z ∼ 0.1. These high b values, if caused by thermal broadening, correspond to an

IGM temperature with T0 ∼ 10000 K. This convergence towards a higher IGM tem-

perature aligns with our findings and suggests that the discrepancy in b-parameter

observed at z ∼ 0.1 (Gaikwad et al. 2017b, Viel et al. 2017) could be related to the

one we have identified in this study. It further implies that the observed discrepancy

may emerge around z ∼ 1.0 and persist down to z ∼ 0.

• We successfully measure the ΓHI at three redshif bins, reporting log(ΓHI/s
−1) =

−11.789+0.181
−0.147, −11.984+0.089

−0.088, and −12.320+0.103
−0.115 at z = 1.4, 1.2 and 1.0 respectively.

These measurements agree well with the theoretical values based on recent UVB

synthesis models (Khaire & Srianand 2019b, Puchwein et al. 2019, Faucher-Giguère

2020), reinstating the fact that low-z UV background (at z < 3) is dominated by

radiation from quasars alone.

• By excluding three spectra with relatively low SNRs from our quasar sample, we

confirm that our results are not sensitive to the SNR of the dataset, suggesting that

it is feasible to conduct our analysis on larger quasar samples with lower SNR to

make finer measurements of the IGM thermal and ionization state, so as to pinpoint

the onset of the discrepancy in the IGM thermal state between the observation and

simulation more precisely.

• We perform mock measurements using realistic datasets based on Nyx simulation

to forecast the constraining power for our future work. The results demonstrate

that with redshift pathlength ∆z ∼ 2.0 for each redshift bin, three times the current

data size, we will be able to constrain the T0 within ± 1500 K. This precision will

help us to constrain the thermal history of the IGM in 0.9 < z < 1.5, and confirm
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whether the IGM cools down as expected at z ∼ 1.0.
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Chapter 4

Measurements of the IGM Thermal

and Ionization State IGM at z < 0.5

In this Chapter, we employ the inference method presented in §2.2 to precisely measure

both the thermal and ionization state of the IGM in four redshift bins from z = 0.06

to 0.48, using 82 archival HST COS quasar spectra reduced by Danforth et al. (2016,

hereafter D16), which also provide the corresponding metal identification. To keep con-

sistency in our analysis, instead of using the {b,NHI} dataset from D16, we fit these

spectra to obtain our {b,NHI} sample using our own line fitting program, which is also

applied to our forward-modelled mock spectra (see § 2.1.4). Our measurements suggest

that the IGM at z < 0.5 are way much hotter than expected and close to isothermal,

with T0 ∼ 30000K, and γ ∼ 1.1 at z=0.1. Interestingly, owing to the degeneracy between

IGM thermal parameters and ΓHI, if the IGM temperatures are higher than expected,

the resulting lower ΓHI values inferred could pose a challenge to existing UV background

synthesis models (Khaire & Srianand 2019a, Puchwein et al. 2019, Faucher-Giguère 2020).

As an alternative explanation, small-scale turbulence could have similar effects on

the b-NHI distribution of the Lyα forest. Therefore, we model the IGM small-scale tur-
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bulence by a Gaussian velocity component along the line-of-sight, vtur, and add it to

our simulation in post-processing. We assume a standard IGM evolution, i.e, with T0

approaching 5000K and γ approaching 1.6 at z = 0. We generate a simulation parameter

grid consisting of different vtur and ΓHI values. we apply the aforementioned inference

method on this parameters grid and obtain that,

This paper is organized as follows. In Section 4.1, we introduce our observational

data and the data processing procedures, which include continuum fitting, Voigt profile

fitting, and metal masking. Section 4.2 describes our hydrodynamic simulations, the

parameter grid, and mock data processing procedures, such as generating the Lyman-

alpha forest from simulations, creating mock sightlines, and forward-modelling. Our

results are discussed in Section 4.4, and we summarize the key findings of this study in

Section 4.5.

4.1 Observational Data

The dataset we analyze is the publicly available compilation1 of high signal-to-noise

ratio HST/COS spectra published by Danforth et al. (2016). Consisting of 82 quasar

spectra observed between 2009 and 2013 with the G130M (900 ∼ 1450 Å) and G160M

(1360 ∼ 1775 Å ) gratings, this dataset represents the largest publicly available low

redshift ultraviolet (UV) survey of the Lyα forest to date. The nominal resolution of COS

is R ∼ 12, 000 − 20, 000 depending on the wavelength and grating, which corresponds

to roughly 15 ∼ 25 km s−1, and has a non-Gaussian LSF2. Individual spectra were

co-added, taking into account all exposures and gratings, and then continuum-fitted by

Danforth et al. (2016). We then use our automated VP(Voigt-Profile)-fitting program,

1http://archive.stsci.edu/prepds/igm/
2For reference see https://hst-docs.stsci.edu/display/COSIHB/3.3+The+COS+Line-Spread+

Function
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Figure 4.1: The HST COS spectra used in this study. The quasar are shown as black
dots, and the Lyα spectra, with proximity zones removed, are shown as line segments
with their colour indicating the mean SNR (per pixel), and the gaps represent the
masked regions. The four redshift bins used in this study are shown by the vertical
dashed lines.

which is described in § 2.1.4, to identify and fit all absorption and emission lines in the

aforementioned spectra set.

To ensure that our {b,NHI} dataset contains only the Lyα forest line, we mask all

intervening metal absorbers identified by Danforth et al. (2016), which include both

intervening metal lines and the lines arising from the MW absorbers at z = 0. We mask

all emission lines, whereas the mask is adjusted by eye to include the full emission profiles,

and gaps in the wavelength coverage. The procedures for generating masks are detailed

in §4.1.2.

In this study, we focus exclusively on the Lyα forest. Therefore, we utilize only

the Lyα regions, omitting Lyβ and higher Lyman series absorption lines at wavelengths

shorter than 1050 Å, and masking the quasar proximity zones at wavelengths greater than

1180 Å (see Fig.4.1). This limits our analysis to the spectral segment with rest frame

wavelengths between 1050 Å and 1180 Å. To mitigate edge effects at the spectral edges,
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quasar sightlines are segmented and padded with white noise based on the noise vector

of the spectrum before being fed into the VP-fitting program. These padded regions are

subsequently masked in post-processing. We apply similar edge treatments to the mock

forward models to maintain consistency in our analysis.

We show the redshift path that is covered by the data segments (after all masking)

in Fig. 4.1. The lines are coloured based on the sightline SNR, and the gaps in the

spectra correspond to masked regions. It is noticeable that some gaps appear at the

same wavelength for different sightlines. These lines are caused by metal absorbers in

the MW, which always lies at z ∼ 0.

4.1.1 Voigt-Profile Fitting

In this work, we use the line-fitting program presented in §2.1.4. Such a VP-fitting

procedure is applied to the whole spectral segment, fitting both the Lyα lines and metal

lines, including both intervening metal lines and those from interstellar medium of MW;

for simplicity, hereafter we refer to these collectively as metal lines. The removal of these

metal lines is later discussed in § 4.1.2.

Our VPFIT wrapper is designed to incorporate with custom LSF, which is important

for COS due to its non-Gaussian LSF. In addition, the effective resolution of the HST

COS gratings also depends on its lifetime position during the observations, and they

are also taken into account in our VP-fitting program3, as well as in our forward mod-

elling procedures (see §2.1.3). Such VP-fitting program is applied to both observed and

stimulated spectra so as to make sure our statistics are not biased.

The D16 Lyα forest quasar spectra consists of sightlines from both COS G130M and

G160M grating, which have wavelength coverage 900 ∼ 1450 Å and 1360 ∼ 1775 Å

3Although our VPFIT wrapper is compatible with LSF in VPFIT, only a single LSF without wavelength
dependence can be used at once. As such, for the input into VPFIT, we use the LSF at the lifetime of
the data and evaluate it at the central wavelength of the spectrum that we are trying to fit.
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respectively. These spectra are co-added, making the actual LSF/resolution complicated

at the overlapping wavelength. After inspecting the flux and noise of individual exposure

covering the overlapping region, we decide to VP-fit the spectra segment at 0.06 < z <

0.16 using G130M LSF only and fit the spectra in all other bins using the G160M LSF

only. In practice, such an arrangement only affects the redshift bin centering at z = 0.2,

and it prevents us from chopping the spectra in the middle of the redshift bin, which

causes more edge effects, inducing potential errors. This arrangement is also applied to

our forward modelling procedures (see §2.1.3).

During our VP-fitting procedure, we observed weak artificial lines in the HST COS

spectra that were absent from our forward-modelled mock spectra. A visual assessment

suggests that these minor features are artefacts arising from issues like flat fielding, con-

tinuum placement, or data reduction, especially in spectra with high SNR. Therefore, we

introduced a fixed ’floor’ of 0.02 in quadrature to the normalized flux noise vector across

all spectra, effectively adding robustness without increasing the noise in the normalized

flux. This adjustment was derived through trial and error, according to the presence

of absorption lines with low b and NHI identified by VPFIT in the highest SNR spectra.

These faint, narrow lines, absent in our simulated and forward-modelled sightlines, pri-

marily affect lines with logNHI/cm
−2 < 12.5 in our dataset, which are excluded from

inference. For consistency, we applied the same noise floor to the simulated datasets in

data processing (see § 2.1.3).

One of our COS spectra, phl1811, and the corresponding VP-fitting profile with metal

masking are shown in Fig, 4.2. The continuum normalized spectrum is plotted in gray,

and the fit to the unmasked spectrum is shown in blue and consists of the identified Lyα

absorbers. The parts of the fitted spectrum shown in orange illustrates the segments that

were masked based on the metal identifications reported in Danforth et al. (2016). The

Lyα lines used for our {b,NHI} dataset (after all filters) are labelled by red vertical lines.
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Figure 4.2: A segment of HST COS quasar spectra phl1811, with flux shown in grey
and noise plotted in red. Metal line identification and masks are indicated by orange
shaded regions, and the fit models of Lyα forest are shown in blue, while locations of
the corresponding Lyα lines are indicated by red vertical lines. The fitting procedure
is done by the automated program VPFIT, with the corresponding COS LSF taken
into account.
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4.1.2 Metal Identification

As previously mentioned, our VP-fitting procedure fits all absorption lines, including

Lyα and metal lines. For our analysis, which focuses on the {b,NHI} of the Lyα forest,

it is crucial to exclude these metal lines. We utilize archival metal identification data

presented in D16. For each spectrum, we create a mask around each identified metal

line, which initially centers on the reported wavelengths of the metal lines and has a

default width of ∆v = 50 km/s, which is chosen based on the resolution of COS, i.e.,

15 ∼ 25 km/s. We then refine these masks according to our VP-fit results, which is

needed since our VP-fitting results do not all match the D16 metal IDs precisely, due

to the different VP-fitting procedures used in this work compared to D16. We start by

locating absorption regions where the fitted normalized flux, Fline,fit, is less than or equal

to 0.99 (as depicted by the blue line in Fig. 4.2). If an absorption line region overlaps with

a mask, we extend the mask’s width to fully cover the line, using the full width at half

maximum (FWHM) of the detected line, calculated as 2
√
ln 2b, where b is determined by

VPFIT. We then manually adjust the masks to bridge small gaps ( ≲ 50 km/s) between

masked regions to ensure full coverage of all lines close to the identified metal lines

to ensure that all potential contamination is eliminated. Additionally, we manually

mask regions affected by Damped Lyα absorption systems (DLAs), which disrupt VPFIT

results. These post-processing masks are created after initially applying VPFIT under

the assumption that all absorption lines are Lyα, and later, any absorption lines within

these regions are excluded from our {b,NHI} dataset. The metal masks are subtracted

from our total pathlength, resulting in a net pathlength of ∆z =4.42 for all four redshift

bins. The complete set of quasar segments and their corresponding masks are detailed

in Appendix B.1.

With our imposed limit on the {b,NHI}, we find that 84 out of 741 lines are masked
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Table 4.1: Summary of the of the observational dataset

z bins ∆z Number bm/km s−1 log(NHI,m/cm
−2)

0.06 ≤ z ≤ 0.16 1.79 270 34.27 13.22

0.16 < z ≤ 0.26 1.30 201 36.05 13.14

0.26 < z ≤ 0.36 0.78 102 32.44 13.30

0.36 < z ≤ 0.48 0.56 84 32.29 13.31

The numbers of identified Lyα lines in each redshift, the total pathlength ∆z, and the median

value bm and logNHI,m.

for our whole sample, and that leaves us with a {b,NHI} dataset consisting of 657 Lyα

absorption lines. We divide the 657 Lyα absorbers into four redshift bins: 0.06 < z <

0.16, 0.16 < z < 0.26, 0.26 < z < 3.6, and 0.36 < z < 0.48 respectively, according to

their central wavelength as given by VPFIT. Such ranges for these bins are selected to

ensure their pathlength-weighted redshift centers at z = 0.1, 0.2, 0.3, and 0.4, matching

the central redshift of our simulation snapshot. This provides us with the number of Lyα

lines to be 270, 201,102 and 84 and redshift pathlength ∆z = 1.79, 1.30, 0.77 and 0.56

in the bins centred at z = 0.1, 0.2 0.3 and 0.4, respectively. In Table 4.1 we summarize

our {b,NHI} dataset for each redshift bin, with redshift pathlength, number of final Lyα

lines as well as median values for the b and NHI in each bin.

4.2 Simulations

We utilize a set of Nyx cosmological hydrodynamic simulations from THERMAL

suite, both described in§2.1. To model the Lyα forest at z < 0.5. We rescale the

temperature for a set of models to model the Lyα forest in extremely hot IGM, which is

favoured by our inference result, which will be discussed in below. For other relevant post-
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processing procedures, such as generating mock spectra, forward-modeling, and UVB

variation, we follow the prescription discussed in §2.1.

4.2.1 T0-rescaling models

As will be discussed later in § 4.3, our data favour models with high T0 at z =

0.1, 0.2, 0.3 and 0.4. These extremely hot models are challenging to generate at low-z

solely by varying the H i photoheating rate, since the IGM is dominated by the adiabatic

cooling caused by Hubble expansion at this epoch, and the heat injection caused by H i

photoionization fades away quickly (McQuinn 2016), As a result, the T0 of the IGM at

low-z is insensitive to the H i photoheating. To address this, we rescale the IGM tem-

perature to model the IGM with high temperature. For each redshift bin, we divide the

models into γ bins with ∆γ = 0.1 and select the simulation with highest T0 in each γ

bins, and multiply their temperature T (at each simulation cell) by [
√
2, 2, 2

√
2, 4, 4

√
2, 8]

respectively to generate 66 new models. The other properties of the simulation remain

unchanged, and since we rescaled the temperature of all simulation cells uniformly the

whole ∆-T distribution of the simulation model still follows the power law ∆-T relation-

ship Eq. 1.1 with the T0 rescaled. The rescaling procedure are demonstrated in Fig. 4.3,

and the [T0, γ] of original models and models with rescaled T0 are illustrated in Fig. 4.4,

where the original models are shown as blue dots, and the model with rescaled T0 are

shown in orange. Such temperature rescaling procedures are also applied to all four

redshift bins.

4.3 Infernce Results

We applied the inference method described in §2.2 to our dataset at four redshift bins

to measure the IGM thermal and ionization state at z = 0.1, 0.2, 0.3 and 0.4. In this
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Figure 4.3: Volume-weighted T -∆ distribution for four simulation models at z = 0.1.
The left panel presents the Nyx model 00 with T0 = 4100 K and γ = 1.60, while the
middle panel features the Nyx model 02 with T0 = 7984 K and γ = 1.59. The right
panel displays a model derived by doubling the temperature in model 00, resulting in
T0 = 8247 K and γ = 1.61, as determined by our ∆−T fitting procedure. The best-fit
power-law relationships are depicted as grey dashed lines. The log T for each bin is
represented by black dots, accompanied by 1-σT error bars in black. Volume-weighted
gas phase fractions are annotated.

work, the neural networks are trained based on {b,NHI} dataset forward-modelled based

on the COS dataset described in §3.1. The neural networks are trained on mock datasets

at z = 0.1, 0.2, 0.3 and 0.4 separately.

The MCMC posteriors are presented in Fig. 4.4, Fig. 4.5, Fig. 4.6 and Fig. 4.7 re-

spectively. In these figures, projections of the Nyx models from the THERMAL suite

are plot as blue dots, while models with rescaled temperatures are depicted as orange

dots (detailed in § 4.2.1). The inner and outer black contours indicate the 1-sigma and

2-sigma projected 2D intervals, respectively. The dashed black lines mark the 16th, 50th,

and 84th percentile values of the marginalized 1D posteriors. From the marginalized 2D

posteriors, it is evident that our results across all redshift bins show the expected de-

generacies between parameters. Specifically, T0 exhibits degeneracy with both γ and ΓHI

(see Hu et al. 2022, for relevant discussion).
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Figure 4.4: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 0.1. Projections of the thermal grid used for generating models are
shown as blue dots. The THERMAL Nyx models are plotted as blue dots, and
the models with rescaled temperature are shown as orange dots. The inner (outer)
black contour represents the projected 2D 1(2)-sigma interval. The dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Figure 4.5: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 0.2. Projections of the thermal grid used for generating models are
shown as blue dots. The THERMAL Nyx models are plotted as blue dots, and
the models with rescaled temperature are shown as orange dots. The inner (outer)
black contour represents the projected 2D 1(2)-sigma interval. The dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Figure 4.6: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 0.3. Projections of the thermal grid used for generating models are
shown as blue dots. The THERMAL Nyx models are plotted as blue dots, and
the models with rescaled temperature are shown as orange dots. The inner (outer)
black contour represents the projected 2D 1(2)-sigma interval. The dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Figure 4.7: The MCMC posterior obtained by our inference method using our {b,NHI}
dataset at z = 0.4. Projections of the thermal grid used for generating models are
shown as blue dots. The THERMAL Nyx models are plotted as blue dots, and
the models with rescaled temperature are shown as orange dots. The inner (outer)
black contour represents the projected 2D 1(2)-sigma interval. The dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Table 4.2: Summary of the inference results

z bins log(T0/K) γ log (ΓHI/s
−1)

0.06 < z ≤ 0.16 4.45+0.08
−0.12 1.06+0.13

−0.09 −13.70+0.10
−0.08

0.16 < z ≤ 0.26 4.27+0.12
−0.19 1.33+0.18

−0.12 −13.35+0.18
−0.13

0.26 ≤ z ≤ 0.36 4.36+0.12
−0.12 1.13+0.12

−0.13 −13.23+0.16
−0.14

0.36 ≤ z ≤ 0.48 4.42+0.08
−0.11 1.04+0.13

−0.10 −13.15+0.14
−0.13

The inference results i.e., median values of the marginalized 1D posteriors for each parameter,

for all four redshift bins. The errors are given by the 1-σ error (16-84%) of the marginalized

1D posteriors.

We tabulate our inference results (median values of the marginalized 1D posteriors

for each parameter) in Table. 4.2. Our inference results show that the temperature of

the IGM is much higher than expected and is nearly isothermal, with T0 approaching

30, 000K, and γ approaching 1.0 at z = 0.1. In addition, the ΓHI values we inferred are

lower than the theoretical model (Khaire & Srianand 2019b). Such a result is a manifes-

tation of the aforementioned b-parameter distribution discrepancy, but now expressed as

a quantitative measurement, which fully accounts for the parameter degeneracies with γ

and ΓHI. The results will be further discussed in the following section.

The {b,NHI} data obtained from the COS spectra and the corresponding b-NHI dis-

tributions emulated by our DELFI emulator are shown in Fig. 4.8, and the likelihood

contours corresponding to 80, 60, 40, and 20 cumulative percentiles are plotted as grey

dashed lines. These plots show good agreement between the observational data and the

b-NHI distributions emulated by DELFI, while the precision is satisfactory, given the size

of our {b,NHI} sample is fairly limited especially for the bin at z = 0.4.

To further evaluate the reliability of our inference results, we plot the marginalized

1D distributions of b and NHI for our sample at the z = 0.1 bin in Fig. 4.9. We compare
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dots are the {b,NHI} data. The likelihood contours corresponding to 80,60,40, and 20
cumulative percentiles CDF are plotted as gray solid lines. For illustration purposes,
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the 1D marginalized b distributions to these from 5000 mock datasets of the same size,

each sampled from the b-NHI distributions emulated at the median values of the MCMC

posteriors. The blue bars represent the average number of lines per bin across the 5000

datasets, while the blue shaded areas denote the 1-σ uncertainty derived from these

datasets. The results clearly demonstrate that our inference method effectively recaptures

the marginalized 1D distributions of {b,NHI}. Due to the limited data size, there are

fluctuations in the results, which are reflected by the 1-σ error bars in the marginalized

1D distributions for both b and NHI.

4.3.1 Evolution of the thermal state of the IGM

We summarize the evolution of T0, γ and ΓHI across four redshift bins in Fig. 4.10, in

which we also present results from previous studies at higher redshifts (Hu et al. 2023b,

Hiss et al. 2018, Walther et al. 2019b, Gaikwad et al. 2021). Our measurements, along

with their 1-σ uncertainties, are shown as filled red data points with error bars. As a

reference for current theoretical cosmology models, we plot the IGM thermal histories

98



Measurements of the IGM Thermal and Ionization State IGM at z < 0.5 Chapter 4

12.6 12.9 13.2 13.5 13.8 14.1 14.4
log NHI/cm 2

0

10

20

30

40

co
un

t

0 30 60 90 120 150
b (km/s)

0

20

40

60

80

100

co
un

t

z= 0.1 COS sample
Sampled from PDF

Figure 4.9: The marginalized 1D b and NHI distributions of the data sample at z = 0.1
compared with 5000 mock datasets with the same size, sampled from the b-NHI dis-
tributions emulated based on the median values of the MCMC posteriors. The black
dots represent our {b,NHI} data, and the blue bars indicate the mean value of the
number of lines that fall in each bin for the 5000 datasets, whereas the blue shaded
regions represent the 1-σ uncertainty calculated from the 5000 datasets.

permitted by different Helium reionization models (Oñorbe et al. 2017b;a) as cyan-shaded

region.

Our measurements indicate a significant discrepancy in T0 at z < 0.5, where our

observed T0 ∼ 30, 000 K at z = 0.1 is substantially higher than the values predicted by

cosmological simulations. We also notice that these higher-than-expected IGM temper-

atures, which exhibit an increasing trend towards lower redshifts, align with Hu et al.

(2023b, blue data points in Fig. 4.10), which suggests an IGM T0 ∼ 13,500 K at z = 1.0.

If the IGM is indeed much hotter than expected, such high IGM temperature requires the

existence of additional heating sources not accounted for in current IGM models, partic-

ularly relevant around z ∼ 1.0. Further discussion on this unexpected high temperature

can be found in § 3.4.1.

In addition, our measurements indicate that γ is significantly lower than expected at

low-z, with γ ∼ 1.0 at z = 0.1, suggesting that the low-z IGM may be nearly isothermal,

which might put important constraints on the aforementioned heating mechanism that
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Figure 4.10: Evolution history of T0 (top), γ(middle) and log ΓHI (bottom) based
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caused the observed extremely high IGM temperature. However, due to the uncertainties

in our measurements and the known degeneracy between T0 and γ (Hu et al. 2022), it

remains uncertain whether the IGM is truly isothermal at low redshifts.

4.3.2 Evolution of the H i photoionization rate and UVB

Our measurements also provide insights into the ΓHI evolution at z < 0.5. In the

bottom panel of Fig. 4.10, we display our ΓHI measurements across four redshift bins,

compared with measurements from previous studies (Davé & Tripp 2001, Bolton 2007,

Becker & Bolton 2013b, Kollmeier et al. 2014, Gaikwad et al. 2017b, Khaire et al. 2019,

Hu et al. 2023b). We report ΓHI=−13.70+0.10
−0.08, −13.35+0.18

−0.13, −13.23+0.16
−0.14, and −13.15+0.14

−0.13

at z = 0.1, 0.2, 0.3 and 0.4 respectively, which are noticeably lower than the predictions

of the UVB model presented in Khaire & Srianand (2019b), which align well with other

low-z measurements derived using the Lyα power spectrum (Gaikwad et al. 2017a, Khaire

et al. 2019) using the D16 low-z Lyα forest spectra. It is important to note, however,

that the studies by Gaikwad et al. (2017a) and Khaire et al. (2019) do not fully take into

account the degeneracy between the ionization and thermal state of the IGM. In their

analyses, ΓHI is measured using cosmological simulations with a standard thermal history,

specifically with a T0 ∼ 5000 K and γ ∼ 1.6 at z = 0.1. Nevertheless, both higher IGM

temperatures and ΓHI levels suppress the formation of Lyα absorbers, leading to increased

flux and altering the power spectrum. If the IGM is indeed hotter than expected, the

corresponding ΓHI value required to match the observed power spectrum would be lower.

Therefore, it is crucial to break the degeneracy between the ionization and thermal state

of the IGM.

In addition, our ΓHI measurements agree well with Davé & Tripp (2001) measure-

ment using HST STIS data, which, however, suggests that the b parameter of the low-z
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Lyα forest align well with the simulation. It is possible that the different constraints on

the b parameter are caused by the resolution effects, which differ for the COS and STIS,

where the latter has a significantly higher resolution and a better LSF shape. We will

leave the relevant discussion to §4.4.3.

4.4 Discussion

4.4.1 The discrepancy in T0 and γ

Many previous studies based on the low-z Lyα forest have pointed out that the ob-

served b-parameter significantly surpasses the predicted value based on various simula-

tions (Gaikwad et al. 2017b, Viel et al. 2017, Nasir et al. 2017, Bolton et al. 2022b;a).

Quantitatively, Viel et al. (2017) compares the marginalized b distribution with various

simulations, showing that the b distribution at z ∼ 0.1 can be best recovered by the

hydrodynamic simulations (P-GADGET-3, see Springel et al. 2005) with T0 ≳ 10000 K,

while the theoretical model dictates that the T0 ∼ 5000 at z = 0.1.

Our results favour an even hotter and isothermal IGM with T0 ∼ 30, 000K and γ ∼ 1.0

at z = 0.1, and our results are mainly consistent across four different redshift bins.

Such results are obtained by taking the full b-NHI distribution into account, rather than

only matching the b parameter. To investigate this issue, in Fig. 4.11 we plot the b-

NHI distribution recovered from our inference results and compare it with a model with

parameters [log T0, γ, log(ΓHI/s
−1)] = [4.0,1.55,-13.3], which represent model favoured

by previous study based solely on the b distribution. It can be seen that, the model with

higher T0 and lower γ fit the observational data better at high NHI end.

Furthermore, as mentioned in §4.3, the unexpected thermal state of the IGM at low

redshifts may be attributed to an unknown heating mechanism. It is also plausible that
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Figure 4.11: Joint b-NHI distributions emulated by our DELFI emulator based on the
median values of the marginalized MCMC posterior at z = 0.1 vs the one recovered
from [log T0, γ, log(ΓHI/s

−1)] = [4.0,1.55,-13.3], which represent model favoured by
previous study based solely on the b distribution. Black dots are the {b,NHI} data.
The likelihood contours corresponding to 80,60,40, and 20 cumulative percentiles CDF
are plotted as gray solid lines.

the discrepancies observed at z ∼ 0.1 and z ∼ 1 originate from the same heating source.

Thus, we hypothesize that this heating mechanism becomes significant around z ∼ 1 and

persists down to z = 0. If this hypothesis holds true, it would dramatically alter our

understanding of IGM physics, underscoring an urgent need to explore potential causes,

such as dark matter annihilation (Araya & Padilla 2014, Bolton et al. 2022a), gamma-ray

sources (Puchwein et al. 2012), or feedback mechanisms from galaxy formation, which

remain poorly understood at low redshifts (see Springel et al. 2005, Croton et al. 2006a,

Sijacki et al. 2007a, Hopkins et al. 2008a, Tillman et al. 2023b;a, Hu et al. 2023a).

Another potential heating mechanism is the dust heating Inoue & Kamaya (2010),

Bolton et al. (2022c), which also also reduce the γ of the IGM since dust heating scales

as udust ∝ ∆1/3−(1−γ)/6. As suggested by Ménard et al. (2010), the dust might be more

abundant in the IGM than we previously thought. In addition, Chen & Oh (2024) shows

that the dust can survive the galactic wind and thus possibly be transported to the IGM.
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4.4.2 The effect of the Turbulence

An alternative explanation of the observed higher-than-expected b-parameter is the

existence of small-scale turbulence in the low-z IGM, which increases the width of the

observed Lyα lines (Nasir et al. 2017, Viel et al. 2017, Gaikwad et al. 2017b, Bolton

et al. 2022a). In this section, we assess such a hypothesis quantitatively by applying our

inference method to the COS Lyα forest dataset at z ≤ 0.5, with fiducial thermal history

and flexible small scale IGM turbulence.

In practice, we model the small turbulence in the IGM by adding a Gaussian com-

ponent N(0, σv) to the peculiar velocity along line-of-sight, where σv is the standard

deviation in km/s. Such a velocity component is added to each simulation grid with

∆L= 0.024 Mpc/h. To quantitatively constrain the turbulence, we post-process the sim-

ulation and generate skewers with σv = 3,6,9,12,15,18,21,24,27 km/s. Since we consider

the turbulence as an alternative explanation to the high-than-expected IGM tempera-

ture, here, we use the standard Nyx model with [T0,γ] ∼ [4000K, 1.6] at z = 0. For each

σv value, we generate forward-modelled mock spectra with 11 different UVB photoion-

ization rate, ΓHI, following the prescription given in §2.1. We then apply our inference

framework on the σv-ΓHI parameter gird following the procedure discussed in §5.2. To

monitor the evolution of such turbulence, we conduct the inference at all four redshift

bins individually, and obtain that σv = 14,17,12,11 km/s for z = 0.1, 0.2, 0.3 and 0.4;

while the corresponding log(ΓHI/s
−1) = −13.1,−12.9,−12.8, and -12.7. Such a σv is

coherent with the one derived in Bolton et al. (2022c), which yield σv ∼ 15 km/s at

z = 0.1. The inference results are shown in Fig. 4.12, and the evolution history of vtur

and log ΓHI are shown in Fig. 4.13. Interestingly, it can be seen that the vtur required to

match the observation increases toward low-z, suggesting that the discrepancy between

the observation and simulation in b-parameter must be caused by continuous sources that
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increase toward low-z.

In addition, we notice that with the standard thermal model and altered small-scale

velocity, our inference method suggests higher ΓHI values. This is mainly because, while

the σv has no noticeable impact on the dN/dz, both T0 and ΓHI have similar correlation

on the dN/dz, i.e., both higher T0 and ΓHI suppress the formation of the HI absorbers

in the IGM, causing degeneracy in the inference results.

4.4.3 The effect of the Resolution

Furthermore, we assess whether the observed discrepancy in the b-parameter could

be caused by the overestimation or underestimation of the HST COS resolution. Firstly,

we aim to determine the required resolution of HST COS to observe the aforementioned

discrepancy if the incorrect COS LSF is the sole factor, i.e., if the IGM is neither hotter

than expected nor affected by additional turbulence.

Similar to the analysis presented in §4.4.2, we perform our inference method on a 2D

parameter grid consisting of resolution and UV background ΓHI. To do so, we assume that

the ’True’ COS LSF is unknown and forward-model our mock spectra using 10 different

Gaussian LSF with resolution (FWHM) ∼ 10-100 km/s. Such procedure is applied

all standard Nyx models (model T000, with T0 ∼ 4000 and γ ∼ 1.6 at z=0.1) with

11 different ΓHI discussed in §2.1. To make these forward-modelled mocks comparable

to our observation, our VP-fitting program still uses the tabulated COS LSF for both

data and mocks, as presented in §2.1.4. In Fig. 4.14, we plot the distributions of the

b parameters for both observed and mock data, which are forward-modeled based on

various resolutions across the redshift range 0.06 < z < 0.16. Both the observational and

mock datasets are fitted using our VP-fitting program, based on the reported resolution

of HST COS. We observe that the peaks of the b distributions shift to larger values as
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Figure 4.12: Posteriors obtained by applying our inference method on the vtur-ΓHI

grid at z = 0.1, 0.2, 0.3 and 0.4. Projections of the parameter grid used for generat-
ing models are shown as blue dots. The inner (outer) black contour represents the
projected 2D 1(2)-sigma interval. The dashed black lines indicate the 16, 50, and 84
percentile values of the marginalized 1D posterior.
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Figure 4.14: Comparisons of distributions of b parameters of the observation and
mock data forwarded-modelled based on various resolutions over a redshift range
0.06 < z < 0.16. Both the observation and the mock data are fitted using our
VP-fitting program based on the reported HST COS resolution.

the resolution increases. Notably, the peak of the observed b distribution aligns with the

mock data forward-modeled with a resolution of approximately 40 ∼ 50 km/s.

We then run our inference method to find the resolution required to obtain the ob-

served b-NHI distribution, and the inference result is shown in Fig. 4.15. Given the

observed b distribution peaking at ∼ 30 km/s, our inference method suggests that the

required resolution (FWHM) is about 40km/s, which corresponds to a resolution R ∼

7,000, while the reported R for HST COS is 12,000 to 16,000.

In Ghavamian et al. (2009), the reported COS LSF is carefully examined using

the COS spectra of the O9 Ib supergiant star Sk 155 in the Small Magellanic Cloud

(V=12.4), where the COS spectra are compared with those observed with STIS E140H

spec (R∼114,000), which are then convolved with the modeled COS LSF. The close

alignment between these spectra confirms the high accuracy of the reported COS LSF.

Here, we follow the aforementioned method and compare the COS spectra with the
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Figure 4.15: Posteriors obtained by applying our inference method on the
Resolution-ΓHI grid at z = 0.1. Projections of the parameter grid used for gener-
ating models are shown as blue dots. The inner (outer) black contour represents the
projected 2D 1(2)-sigma interval. The dashed black lines indicate the 16, 50, and 84
percentile values of the marginalized 1D posterior.

higher-resolution STIS E140M spectra, which covers 1144∼1729 Å and has a reported

resolution of approximately 45,000—roughly three times that of the COS. We use the

STIS E140M as intrinsic spectra and convolved them with the HST COS LSF as tabulated

in linetools. This allows us to compare the reported COS LSF with the actual COS

spectra to determine if the reported HST COS resolution is accurate.

To this end, we utilize STIS E140M spectra of the object PHL1811, PG1216, 3c273,

and H1821 (Lacki & Charlton 2010, Tripp et al. 2008), whose COS spectra are also

examined in this work, and perform a detailed comparison. Visual inspection suggests

that convolving these very high-resolution STIS E140H spectra with the COS LSF models

leads to an excellent match to the observed COS FUV spectra. Fig. 4.16 shows a segment

of the COS G130M spectrum of PHL1811 (red) compared with the corresponding STIS

E140M spectrum convolved COS G130M LSF (blue). The green shaded region indicates
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Figure 4.16: A segment of the COS G130M spectrum of PHL1811 (red) compared
with the corresponding STIS E140M spectrum convolved COS G130M LSF (blue).
The green shaded region indicates the masked region due to the existence of metal
absorption lines.

the masked region due to the existence of metal lines, and it can be seen that for these

narrow metal lines, the high-resolution STIS spectrum convolved with COS LSF matches

well with the observed COS spectrum, suggesting that the reported COS LSF model is

accurate.

In addition, we also compare the b-parameters fitted from both COS and STIS spectra

and check if there are systematic bias, which indicates the over- or underestimation of the

COS LSF. In Fig. 4.17, we plot the b parameters of absorption lines observed in both the

HST COS spectrum and the HST STIS spectrum of the object PHL1811, while the STIS

spectrum is convolved with the COS LSF. The red dots represent the b parameters fitted

from the COS spectrum observed with the G130M grating, while the blue dots come from

the STIS E140M spectrum after convolution with the COS G130M LSF. Both spectra

are fitted based on the reported HST COS G130M LSF. The comparison reveals that

the b-parameters from the STIS spectrum, once convolved with the COS LSF, are not

systematically lower than those derived from the direct COS spectrum. This suggests

that the reported COS LSF is reliable, confirming its effectiveness in replicating higher-

resolution spectral features. We therefore conclude that the observed discrepancy in the
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Figure 4.17: The b parameters of the lines observed in the spectrum of PHL1811,
where the red dots are fitted from the HST COS spectrum observed with G130M
grating, and the blue dots are fitted from the HST STIS E140M spectrum convolved
with COS G130M LSF. Both spectra are fitted using our VP-fitting program based
on the reported HST COS G130M LSF.

b parameter can not be caused by inaccurate resolution of the HST COS.

4.5 Summary

In this paper, we make use of 82 archival HST G130/G160 quasar spectra, from which

we obtain the b-NHI distribution distribution and line density dN/dz over the redshift

range 0.06 < z < 0.48 in four redshift bins. We then measure the thermal and ionization

state of the IGM following a machine-learning-based inference method presented in Hu

et al. (2022) for this redshift range for the first time.

We summarize our results in below:

• We Voigt-profile fit the Lyα in all 82 quasar spectra using a fully automated VPFIT

wrapper and obtain {b,NHI} for 657 lines. We use the metal identifications from
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the D16 to generate our metal masks, filtering out 84 contaminants besides Lyα

absorption lines, and obtain a final sample of 657 Lyα lines across a total pathlength

of ∆z =4.43.

• We employ the Hu22 inference method, which simultaneously measures [T0, γ,ΓHI]

from the b-NHI distribution and dN/dz, with the help of neural density estimators

and Gaussian process emulators trained on a suite of 51 Nyx simulations each

having a different IGM thermal history. It enables us to measure the IGM thermal

and ionization state with high precision even with limited data.

• We obtain [log(T0/K), γ] = [ 4.45+0.08
−0.12 ,1.06+0.13

−0.09], [ 4.27
+0.12
−0.19 ,1.33+0.18

−0.12 ], [4.36+0.12
−0.12

,1.13+0.12
−0.13] and [ 4.42+0.08

−0.11 ,1.04+0.13
−0.10 ] at z = 0.1, 0.2, 0.3 and 0.4 respectively. These

measurements suggest that the IGM might be much hotter than expected and close

to isothermal.

• We compare our findings with previous work, which reports unanticipated high

b-parameters compared with various simulations based on observational data at

z ∼ 0.1, and these high b values, if caused by thermal broadening, correspond to

an IGM temperature with T0 ∼10,000 K. However, these research analysed solely

the b distribution and ignored the degeneracy between γ and T0. By comparing the

corresponding b-NHI distribution emulated by DELFI, we conclude that our models

with T0 ∼ 30,000 K and γ ∼ 1 at z = 0.1 fit the observation better for absorber

with larger NHI.

• Our results might be attributed to an unknown heating mechanism. It is also

plausible that the discrepancies observed at z ∼ 0.1 and z ∼ 1 originate from the

same heating source. Thus, we hypothesize that this heating mechanism becomes

significant around z ∼ 1 and persists down to z = 0. If this hypothesis holds true,
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it would dramatically alter our understanding of IGM physics, underscoring an

urgent need to explore potential causes, such as dark matter annihilation (Araya

& Padilla 2014, Bolton et al. 2022a), gamma-ray sources (Puchwein et al. 2012), or

feedback mechanisms from galaxy formation, which remain poorly understood at

low redshifts (Springel et al. 2005, Croton et al. 2006a, Sijacki et al. 2007a, Hopkins

et al. 2008a, Tillman et al. 2023b;a, Hu et al. 2023a).

• We successfully measure the ΓHI at four redshif bins, reporting log(ΓHI/s
−1) =

−13.70+0.10
−0.08, −13.35+0.18

−0.13, −13.23+0.16
−0.14, and −13.15+0.14

−0.13 at z = 0.1, 0.2, 0.3 and 0.4

respectively. These measurements are noticeably lower than the predictions of the

UVB model presented in Khaire & Srianand (2019b), and the measurements of

Gaikwad et al. (2017b), Khaire et al. (2019) using the Lyα power spectrum based

on D16, but agree with the measurements made by Davé & Tripp (2001) based on

the STIS data. However, it is worth mentioning that all previous measurements do

not take the potential degeneracy between the IGM thermal and ionization state

into account.

• An alternative explanation of the observed higher-than-expected b parameter is the

existence of small-scale turbulence in the low-z IGM, which increases the width of

the observed Lyα lines. To this end, we perform our inference method on a vtur-ΓHI

grid to conclude that if the observed discrepancy is indeed caused by turbulence in

small-scale, it would need velocity dispersion with σv ∼ 14, 18, 11, and 10 km/s at

z = 0.1, 0.2, 0.3 and 0.4 respectively. Furthermore, the increase in σv towards low-

z implies that the discrepancy between observed and simulations in b-parameters,

whether caused by turbulence, must be driven by continuous sources that intensify

towards low-z.

• In addition, we evaluate whether the observed effect can be caused by overesti-
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mation of the COS resolution. We find that it requires an effective resolution of

∼ 45 km/s (R ∼7,000) to cause the observed b-NHI distribution. Furthermore,

we perform a detailed comparison between the HST COS spectrum and the spec-

trum observed with HST STIS E140M, which has a much higher resolution, for

four objects. The comparison suggests that the reported COS resolution (LSF) is

reliable, and the observed discrepancy in the b-parameter could not be caused by

the resolution effects solely.
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The Impact of the WHIM on the

IGM Thermal State Determined

from the Low-z Lyman-α Forest

In this paper, we adopt the Hu22 inference method to investigate the impact of the WHIM

on measurements of the IGM thermal state, [T0, γ], based on the b-NHI distribution of

the Lyα forest. Firstly, we assess the effectiveness of [T0, γ] as IGM parameters at low-z

by comparing its performance as neural network training labels against the photoheating

labels [A,B] (see § C.1). These latter labels are photoheating rate rescaling factors used

to generate the Nyx simulation suite with various thermal histories (see e.g Becker et al.

2011). Since our emulators are trained on these Nyx simulations generated by varying

[A,B], the inference method is naturally inclined to retrieve these photoheating labels.

On the other hand, if shock heating at low-z causes the T -∆ distribution of the Lyα

absorbers to deviate from the power-law relationship, the effectiveness of [T0, γ] as labels

could be compromised. Thus, our comparison between these two sets of labels provides

insight into the robustness of [T0, γ] as IGM parameters at low-z, in the presence of
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substantial shock heating.

Afterwards, we explore the potential effects of different feedback mechanisms, which

are associated with WHIM, on measurements of the IGM thermal state, [T0, γ]. In terms

of our inference methodology, the question becomes: what would happen if we used a

simulation grid without feedback to interpret a Universe that includes feedback? Would

this lead to unbiased [T0, γ]? To answer these questions, we apply the Hu22 inference

methodology to mock data drawn from the Illustris (Genel et al. 2014) and IllustrisTNG

(Weinberger et al. 2017) simulations at z = 0.1. These two simulations incorporate galaxy

formation models and feedback mechanisms that are not included in the Nyx simulation,

which heat up the IGM substantially at low-z, and transform the cool diffuse Lyα gas

into WHIM more effectively compared with Nyx simulation (see Fig. 5.2). We examine

the inference results based on these two simulations and explore whether feedback biases

the measurement of the thermal state [T0, γ].

To further investigate this problem, we explore the specific impacts of shock heat-

ing and other astrophysical processes, such as AGN feedback and UV background pho-

toionization, on the physical properties of the Lyα forest at z = 0.1. Within the three

aforementioned simulations, we identify simulated Lyα absorbers in the simulations and

establish a direct correlation between the physical properties of these absorbers (including

temperature T , overdensity ∆, and line-of-sight velocity vlos) and the observed Lyα line

parameters (b, NHI) derived from the absorption lines detected in corresponding mock

spectra. We then examine the distributions of ∆ and T of these simulated Lyα absorbers

across the three aforementioned simulations to study the detailed effects of the feedback

and UV background photoionization rate, ΓHI, on the Lyα forest.

This chapter is organized as follows: In section § 5.1, we outline the simulations

and associated processes applied to generate synthetic Lyα forest. It includes post-

processing, forward-modeling, and Voigt profile fitting. The inference framework and
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Table 5.1: Parameters of cosmology and T −∆ relation (at z = 0.1)

Parameters Nyx IllustrisTNG Illustris
Ωm 0.3192 0.3089 0.2726
ΩΛ 0.6808 0.6911 0.7274
Ωb 0.0496 0.0486 0.0456
h 0.670 0.677 0.704
σ8 0.8288 0.8159 0.809
ns 0.96 0.97 0.963
T0 4093 K 4241 K 4292 K
γ 1.588 1.593 1.577

results for all three simulations are then presented in in § 5.2. Section § 5.3 is dedicated

to the investigation of the physical characteristics of low-redshift Lyα forest absorbers

in all three simulations. Finally, in § 5.4, we present a summary and discussion of our

findings. For the sake of brevity, we use log as a shorthand to denote log10 throughout

the paper.

5.1 Simulations

In this paper, we utilize the inference framework described in Hu22, which employs the

b-NHI distribution emulator built on neural networks trained on a set of Nyx simulations.

We also use galaxy formation simulations IllustrisTNG and Illustris to investigate the

low-z Lyα forest under different feedback mechanisms. Since this work focuses on the low

redshift Lyα forest, we use z = 0.1 simulation snapshots for all three simulations. In this

section, we first provide a description of the simulations and the implemented physical

models, followed by the (mock) data processing procedures employed in our study. This

includes the generation of simulated line-of-sight (LOS) of Lyα forest (hereafter referred

to as skewers for simplicity), forward modelling, and the Voigt profile fitting of Lyα lines.

The cosmological parameters and thermal state of the three simulations are summarized

in Table 5.1.
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Figure 5.1: Examples of simulation skewers for IllustrisTNG (left) and Illustris (right)
simulations, probing the structure generated by the same initial condition, while the
two simulations are post-processed to share the same UV backgrounds photoionization
rate, ΓHI. The flux is plotted in black on the top panel, while the temperature T ,
overdensity ∆, and velocity along LOS vlos are shown in black in the second, third,
and bottom panels consecutively.

5.1.1 Nyx

Nyx is an adaptive mesh, massively parallel, cosmological simulation code primarily

developed to simulate the IGM (Almgren et al. 2013, Lukić et al. 2015).

5.1.2 IllustrisTNG and Illustris

To evaluate the effectiveness of the IGM thermal state [T0, γ] as the IGM param-

eters and test the efficacy of our inference framework on the realistic IGM, which can

be affected by astrophysical processes that are not included in Nyx simulation such as

galaxy formation and AGN feedback, we employ Illustris (Genel et al. 2014) and Illus-

trisTNG (Weinberger et al. 2017, Nelson et al. 2019) simulations, and use them as mock

observational data in our inference method.
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The IllustrisTNG and Illustris are cosmological hydrodynamic simulations powered

by the arepo code (Springel 2010). This code employs a moving mesh approach to

solve hydrodynamics through the Euler equations, and it computes gravitational forces

on a quasi-Lagrangian moving Voronoi mesh via the tree-PM method. Both simulations

incorporate a wide range of astrophysical processes for galaxy formation, such as star

formation, stellar and AGN feedback, galactic winds, and chemical enrichment (Springel

et al. 2018, Naiman et al. 2018, Marinacci et al. 2018). They utilize the UV background

detailed in Faucher-Giguère et al. (2009) for photoionization heating and cooling. Other

processes for modelling the Lyα forest, like collisional ionization and inverse Compton

cooling from the cosmic microwave background, are also taken into account.

The primary distinction between IllustrisTNG and Illustris lies in their AGN feedback

mechanisms, especially regarding AGN feedback. Both simulations implement AGN

feedback in two modes based on the gas accretion rate onto the central supermassive

black hole: the ‘quasar-mode’ at high accretion rates (Springel 2005, Hopkins et al.

2008b, Debuhr et al. 2011) and the ‘radio-mode’ at low rates (Croton et al. 2006b,

Bower et al. 2006, Sijacki et al. 2007b). While both use continuous thermal feedback

in ‘quasar-mode’, their ‘radio-mode’ implementations differ. Illustris employs a bubble

model for radio-mode feedback, accumulating substantial feedback energy for explosive

release, often ejecting excessive hot gas (Genel et al. 2014). Conversely, IllustrisTNG

models this feedback as a kinetic wind, injecting momentum into neighbouring regions

from the central black hole. This approach better replicates astrophysical properties like

star formation rates and galaxy colour distributions (Nelson et al. 2018, Pillepich et al.

2018a;b).

Both the IllustrisTNG and Illustris simulations we used in this study have box sizes

of 75 cMpc/h and 18203 baryon and dark matter particles. Since arepo is a moving

mesh code, we convert the Voronoi mesh outputs to 18203 cartesian grids by dumping the
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smoothed quantities such as temperature1, density, and velocities on grids to generate

Lyα forest skewers. A Gaussian kernel with a size equal to 2.5 times the radius of each

Voronoi cell is applied for the smoothing, assuming each Voronoi cell is spherical. We

then generate skewers for IllustrisTNG and Illustris simulations following the approach

discussed in § 2.1. In Fig. 5.1, we plot two simulation skewers for IllustrisTNG and

Illustris respectively, while the two simulations are post-processed to share the same

UV backgrounds photoionization rate, ΓHI (see § 5.1.3 for more discussion). The flux

(e−τ ) is plotted in the top panel, and the temperature, over-density, and line-of-sight

velocity profiles are shown in the second, third, and bottom panels consecutively. It

is worth mentioning that the two skewers probe the structure generated by the same

initial condition, suggesting that the differences in T , ∆, and vlos are primarily caused by

different feedback strengths. Specifically, the Illustris exhibits higher temperatures due

to its stronger feedback, which results in weaker absorption features given the same UV

backgrounds. More discussion on the differences between Lyα forest in IllustrisTNG and

Illustris simulations can be found in Khaire et al. (2023a) and Khaire et al. (2023b).

Such a fitting procedure is applied to all simulations used in this study, including all

Nyx models and IllustrisTNG and Illustris simulations. The best-fit power law relation-

ship based on [T0, γ] and the T -∆ distributions are illustrated in Fig. 5.2. The figure

shows that although the three simulations yield very different overall T -∆ distributions,

their thermal state T0 and γ are however similar.

Furthermore, as described in Hu22, we vary the UV background photoionization rate,

ΓHI, of the Nyx simulations in post-processing when the simulation skewers are generated,

extending the parameter grid to [log T0, γ, log ΓHI]. The value of ΓHI we used in this study

1As presented in Appendix A of Martizzi et al. (2019), there exists a bug that affects the IGM
temperature of the IllustrisTNG simulation. However, its effect on the Lyα forest is minimal because
the bug predominantly impacts the gas with the lowest density. Consequently, we continue to use the
uncorrected temperature for the IllustrisTNG simulation.
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Figure 5.2: Volume weighted T -∆ distribution for all three simulations at z = 0.1.
The log T for each bin are plotted as black dots, and the 1-σT error bars are shown
as black bars. The best-fit power-law relationship is shown as white dashed lines.
The Nyx (left) model is the default model which has log(T0/K) = 3.612, γ = 1.588;
and IllustrisTNG (middle) yields log(T0/K) = 3.627, γ = 1.593; whereas Illustris
(right) has log(T0/K) = 3.633, γ = 1.577. The gas phase fractions are shown in the
annotation.

spans from log(ΓHI/s
−1) = -13.834 to -12.932 in logarithmic steps of 0.075 dex, which

gives 13 values in total (see the right panel of Fig. 2.2). The range of ΓHI used here covers

more than twice the range obtained by UV background models of Khaire & Srianand

(2019a) at z = 0.1, achieved by varying the spectral energy distribution of quasars. Note

that the range also coves more than 2σ uncertainty in the ΓHI measurements (Gaikwad

et al. 2017b, Khaire et al. 2019). In total, the 3D thermal grid consists of 48× 13 = 624

Nyx models.

As mentioned earlier, T0 and γ characterize the IGM thermal state at z ≳ 2, where

the IGM is dominated by the power law T -∆ relationship. However, their efficacy as

parameters for the IGM thermal state remains uncertain at z ≲ 1, where a significant

fraction of the gas deviates from the power-law T -∆ relationship due to shock heating

and feedback. In this paper, we evaluate the effectiveness of the thermal state [T0,γ]
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as IGM parameterization at low-z using the inference framework presented in Hu22,

and we make use of the photoheating parameters [A,B] as an alternative set of labels

as a comparison. These labels are particularly relevant since all Nyx models used in

the training procedure of our neural network, which is the major component of our

inference method, are generated by varying [A,B]. This suggests that our inference

framework should be capable of recovering the values of [A,B] efficiently. Therefore,

[A,B] are particularly useful in the evaluation of the [T0, γ]. More information about the

photoheating labels [A,B] is presented in Appendix. C.1.

5.1.3 Photoioniztion rate ΓHI and dN/dz

It is noteworthy that the three simulations used in this study by default have different

UV background photoionization rates ΓHI (for Nyx, here we are referring to the default

model with log(T0/K) = 3.612 and γ = 1.588.) This is because the photoionization

rate ΓHI are tuned in post-processing across all three simulations to ensure they exhibit

the same absorber density dN/dz as the one we measured from D16 dataset at z = 0.1.

Specifically, we apply the aforementioned VP-fitting procedure to D16 spectra (segments)

with 0.06 < z < 0.16, and obtain dN/dz=167.3 for absorbers within the limits 12.5 ≤

log(NHI/cm
−2) ≤ 14.5 and 0.5 ≤ log(b/km s−1) ≤ 2.5. Such matching of dN/dz is

analogous to the matching of the mean flux of simulations at high-z for optically thin

absorbers (Lukić et al. 2015). To match this dN/dz, we tune the photoionization rate,

following the prescription described in § 2.1, and set log(ΓHI, /s
−1) = -13.093, -13.021,

-13.414 for Nyx, IllustrisTNG and Illustris respectively (see Fig. 5.3). Such mismatch in

ΓHI is caused by the degeneracy between the photoionization rate and different feedback

recipes used in the simulations. Since both the UV background and feedback suppress

the formation of Lyα absorbers (Khaire et al. 2023a). More specifically, the feedback
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heats up the IGM, converting a significant amount of the diffuse Lyα gas into WHIM,

which reduces the Lyα transmission caused by the neutral hydrogen H i in the cool diffuse

Lyα gas. To this end, simulations with stronger feedback exhibit lower dN/dz under the

same ΓHI.

We measure the dN/dz for the three simulations, including all Nyx simulation mod-

els and IllustrisTNG and Illustris, each based on its respective set of 1000 forward-

modelled mock spectra. The relationships between UV background photoionization rate

and dN/dz for all three models are shown in Fig. 5.3, where the dN/dz for Nyx is plotted

in blue, IllustrisTNG in green, and Illustris in red, while the dN/dz for the D16 data

at z = 0.1 is shown as the horizontal dash-dotted grey line. Fig. 5.3 demonstrates that

while Illustis has the strongest feedback, which causes more gas to be collisionally ion-

ized, reducing the Lyα absorption, it requires the lowest ΓHI to match the dN/dz to the

observed value, and IllustrisTNG, with mild feedback, has higher for the same UV back-

ground. Interestingly, whereas Nyx employs no feedback mechanism, it requires slightly

lower ΓHI compared with IllustrisTNG, which implements feedback, to achieve the same

dN/dz. Such a trend, which is opposite to the correlation between dN/dz and feedback

strength (as seen between Illustris and IllustrisTNG), is caused by the small difference in

the ∆, T distributions in Nyx and IllustrisTNG. More specifically, IllustrisTNG exhibits

a slightly higher mass fraction of the diffuse Lyα gas in the particular ∆, T range that

is probed by the Lyα forest2. It is possible that while the mild feedback in the Illus-

trisTNG simulation results in a slightly higher WHIM fraction compared with Nyx, it

also produces more gas with T ∼ 104.5K and ∆ ∼ 10, which is the ∆, T range probed

by the Lyα forest at z = 0.1 (see § 5.3). However, the detailed astrophysical mechanism

2This is different from the mass-weighted or volume-weighted diffuse Lyα fraction, fLyα, which is
defined to include all gas with T ≤ 105K and ∆ ≤ 120 following Davé et al. (2010). Instead, the gas
probed by the observed HST COS Lyα Forest has a narrow range of ∆ and T which also depends on
the ΓHI value used in the simulation (See § 5.3 for more details).
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leading to this specific ∆-T distribution in IllustrisTNG at z = 0.1 is still unclear, and

we leave it to our future work.

If not otherwise specified, the three simulations used in this study, including Illustris,

IllustrisTNG, and Nyx default model, are tuned to have the same Lyα line densities,

with dN/dz = 167.3, which is the same value we measured from the D16 dataset.

5.2 Inference Method

5.2.1 Emulating the {b,NHI} Distribution

In this work, we make use of the inference framework following Hu22, which measures

the thermal state and the photoionization rate ΓHI of the low redshift IGM using its b-

NHI distribution and absorber line density dN/dz.

To perform our analysis under realistic conditions, all tests performed in this paper

are based on mock datasets consisting of 34 forward-modelled spectra, each corresponding

to one of the 34 D16 quasar spectra, which gives these datasets the same pathlength as

the observation dataset with ∆zob = 2.136. Each of the mock datasets is constructed by

randomly selecting 34 spectra from the 1000 forward-modelled spectra, while making sure

that each of the 34 D16 quasar spectra is represented exactly once, thereby maintaining

the integrity and representativeness of our mock datasets.

5.2.2 Inference test

An inference test is an effective method to evaluate the robustness of a given inference

algorithm, which usually consists of approximations and emulation/interpolation proce-

dures that might induce additional uncertainties, altering the error budget. In practice,

an inference test can be conducted by performing a set of realizations of the inference
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Figure 5.3: dN/dz vs ΓHI for all three simulations at z=0.1. Nyx (default model) is
shown in blue, IllustrisTNG in green, and Illustris in red, while the observed dN/dz
calculated from D16 dataset for the corresponding redshift are shown in the horizontal
grey dash-dotted line. The ΓHI values used for each simulation to match the observed
dN/dz are indicated by vertical dashed lines with the corresponding colour.
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method using mock datasets and evaluating the robustness of the resulting posterior prob-

ability distributions, which can be quantified by the coverage probability Pcov (Prangle

et al. 2014, Ziegel & Gneiting 2014, Morrison & Simon 2018, Sellentin & Starck 2019),

the proportion of the time that the true parameters used to generate a mock dataset are

contained within the posterior contour corresponding to a certain probability level Pinf.

Such calculations can be performed for many different probability levels, resulting in a

series of coverage probabilities. For perfect inference, this coverage probability Pcov is

always equal to the probability level of the chosen posterior contour Pinf (shown as the

black dashed line in Fig. 5.4).

In this study, we make use of the inference test described in Wolfson et al. (2022),

which calculates the coverage probability based on the MCMC posteriors. Compared

with the one used in Hu22, this inference test algorithm is more precise and automatically

returns full coverage probabilities from 0 to 1 rather than coverage probabilities at only

a few specific probability levels.

To evaluate the effectiveness of [T0, γ, log ΓHI] as IGM parameters for inference at

low-z, where the IGM T -∆ distribution is no longer characterized by the power-law

relationship, we perform inference tests based on different sets of labels. We compare

the result of the inference test based on labels [T0, γ, log ΓHI] with the one based on the

photoheating labels [A, B, log ΓHI]. As discussed in § 2.1, the comparison between these

two sets of labels sheds light on the efficacy of [T0, γ] as IGM parameters at low-z, where

the pervasive shock heating causes significant dispersion in the IGM T -∆ distribution.

For each set of labels, we ran 300 realizations of our inference method, each based

on a model randomly chosen from the grid. We exclude models that are close to the

boundaries to mitigate boundary effects caused by the hard cutoff of the inference prior,

which leads to the truncation of the posteriors. For [T0, γ, log ΓHI] gird, we specify

3.3 < log(T0/K) < 3.9, 1.0 < γ < 2.3, −13.75 < log(ΓHI/s
−1) < −13.0. We then
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Figure 5.4: Coverage probability Pcov for inference tests based on different labels.
The x-axis stands for the inferred probability Pinf, and the y-axis shows the coverage
probability Pcov for the true parameters to fall in the contour corresponding to Pinf.
Blue: Inference test based on the thermal state [T0,γ, log ΓHI], Red: Inference test
based on the photoheating label [A,B,log ΓHI]. The shaded regions indicate the 1-σ
error for Pcov.

calculate the full coverage probabilities based on all 300 MCMC posteriors.

The results of the inference tests are shown in Fig. 5.4, where the x-axis stands

for inferred probability Pinf, and the y-axis shows the coverage probability, Pcov. The

shaded regions indicate the 1-σ error for Pcov, which is calculated based on the binomial

distribution. The y = x black-dash line represents a perfect inference test. It can be

seen that for Nyx simulations, our inference method is mildly over-confident, and the

thermal state [T0, γ] (blue) performs slightly better than the photoheating labels [A,B]

(red), i.e., Pcov/Pinf is closer to unity. Quantitatively, for inference based on the thermal

state [T0, γ], the 68% contour contains the true parameters 61.2 ± 2.8% of the time,

and the 95% contour contains the true parameters 90.4± 1.6% of the time. The results

show that the [T0, γ] are still robust inference labels for the IGM at low-z, although the

shock heating alters the T -∆ distribution. This further suggests that shock heating alone

does not significantly change our understanding in determining the thermal state of the
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IGM using the Lyα forest. Lastly, while the general efficacy of the inference framework

remains robust, we attribute its imperfections to two primary sources: deficiencies within

the neural network used in our inference algorithm, and the boundary effects caused by

the truncation of the posteriors when hitting the boundary.

5.2.3 Inference results for IllustrisTNG and Illustris

In this section, we employ the IllustrisTNG and Illustris simulations as mock observa-

tional data to explore the impacts of feedback, mainly AGN feedback, on the IGM ther-

mal state [T0, γ]. More specifically, we evaluate the robustness of our inference method,

built on the Nyx thermal grid without galaxy formation and feedback, when applied to

observational data derived from a (mock) Universe with substantial feedback associated

with galaxy formation and AGN activities. The investigation is broken down into two

separate inquiries. First, it explores the extent to which feedback associated with galaxy

formation and AGN activities impacts the Lyα forest. Second, it investigates how, given

the presence of these effects, the feedback influences the inferred parameters [T0, γ].

Following the forward-modelling prescription described in § 2.1.3, we generate mock

datasets with ∆z=2.136, the pathlength of D16 dataset at z = 0.1, for both simulations

(see Fig. 5.6), and run our inference method on each dataset. As discussed in § 5.1.3,

a degeneracy exists between the strength of the AGN feedback implemented in the sim-

ulations and the UV background photoionization rate ΓHI, both of which suppress the

abundance of absorbers, hence reducing the dN/dz (see Khaire et al. 2023a, for more

details). Given that our inference method primarily derives the photoionization rate ΓHI

based on the dN/dz, the resulting ΓHI always aligns with the value that generates the

equivalent dN/dz in the Nyx simulation (see § 5.1.3). Since here we use IllustrisTNG and

Illustris simulations with their dN/dz matched to the D16 low-z dataset, the inferred
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Figure 5.5: Posteriors obtained by using IllustrisTNG (left) and Illustris (right) as
mock observational data in our inference method. Projections of the thermal grid
used for generating models are shown as blue dots. The inner (outer) black contour
represents the projected 2D 1(2)-sigma interval. The true parameters for the sim-
ulations, obtained by fitting the T -∆ distributions of the simulations, are indicated
by the red dot (lines) in the (marginal) distributions, while the dashed black lines
indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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Figure 5.6: Joint b-NHI distributions recovered from the inference results for Illus-
trisTNG (left) and Illustris (right) simulations, emulated by our DELFI emulator
based on the median values of the marginalized MCMC posterior. Black dots are
the mock datasets we used in the inference. The contours correspond to cumulative
probabilities of 68%, 95% and 99.7%. For illustration purposes, the values of the pdf
are multiplied by 100 in the colour bar.
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ΓHI always disagrees with the true values used to generate the IllustrisTNG and Illustris

simulations. To this end, we conduct our inference test in 2D without considering the

accuracy with which we recover the photoionization rate ΓHI. Posterior distributions for

the thermal parameters obtained from our inference applied to Illustris and IllustrisTNG

are shown in Fig. 5.5, where we have marginalized over ΓHI. For these two mock datasets,

we infer that [log(T0/K), γ] = [3.586+0.149
−0.074, 1.658

+0.060
−0.128] for IllustrisTNG ([3.627,1.593]),

and [log(T0/K), γ] = [3.696+0.080
−0.102, 1.485

+0.093
−0.094] for Illustris ([3.633,1.577]), while the true

parameters for the two simulations, [T0, γ]fit, are given in parentheses respectively.

It can be seen that the true parameters [T0, γ]fit, obtained by fitting the T -∆ distri-

butions of the simulations, are within 1-σ errors (1D marginalized) for both simulations,

and the 1-σ errors for both the IllustrisTNG and Illustris simulations are slightly larger

than those for Nyx simulations, which is caused by the intrinsic difference between Nyx,

IllustrisTNG and Illustris simulations, where the latter two are based on completely dif-

ferent hydrodynamic codes. In Fig. 5.6, we present both the mock datasets used for

inference and the b-NHI distributions emulated based on the inference results. The plots

highlight strong agreement between the emulated b-NHI distributions and the respective

mock dataset for each simulation.

Nevertheless, it is worth mentioning that the inferred thermal state for IllustrisTNG

and Illustris presented above are based on realistic conditions, with total pathlength

∆z = 2.136. Such a small ∆z makes the inference result vulnerable to randomness in-

duced by the selection of mock datasets. To address this issue, here we conduct our

inference on IllustrisTNG and Illustris simulations, using datasets with much larger

pathlength, specifically with ∆z = 42.47, which is 20 times the size of the obser-

vational dataset. The inference results yield [log(T0/K), γ] = [3.605+0.031
−0.027, 1.657

+0.022
−0.024]

for IllustrisTNG ([3.627,1.59]), and [log(T0/K), γ] = [3.680+0.019
−0.020, 1.483

+0.021
−0.021] for Illustris

([3.633,1.58]), while the true parameters for the two simulations, [T0, γ]inf, are given in
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Figure 5.7: Corner plots for IllustrisTNG (left) and Illustris (right), based on the larger
mock dataset, with ∆z = 42.72, corresponding 20 times the observational dataset.
Projections of the thermal grid used for generating models are shown as blue dots.
The inner (outer) black contour represents the projected 2D 1(2)-sigma interval. The
true parameters for the simulations, obtained by fitting the T -∆ distributions of the
simulations, are indicated by the red dot (lines) in the (marginal) distributions, while
the dashed black lines indicate the 16, 50, and 84 percentile values of the posterior.

parentheses. The resulting corner plots are presented in Fig. 5.7. These results are used

as our inferred thermal state [T0, γ]inf for IllustrisTNG and Illustris simulations in the

following part of this study. It is noticeable that the inferred T0 for Illustris is higher

than the true value with an error ∆ log(T0/K) = 0.047 dex, while the γ is below the true

value, with ∆γ = −0.094. For IllustrisTNG, the offsets between the [T0, γ]inf and [T0, γ]fit

are smaller, with ∆ log(T0/K) = −0.022 dex, ∆γ = 0.064. We notice that these offsets

are smaller than the typical inference precision obtained based on realistic datasets, as

shown in Fig. 5.5, which report the marginalized 1D 1-σ error in log T0, σlog T0 , ∼ 0.1 dex

and the marginalized 1D 1-σ error in γ, σγ, ∼ 0.1. For both simulations we observe the

offsets ∆ log T0 ≲ 0.5σlog T0 , and ∆γ ≲ σγ.

To check the robustness of these results, we use the IllustrisTNG and Illustris simu-

lations as mock observational data and perform inference tests using two different sets of
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’true parameters’: the [T0, γ]fit obtained from our power law fits the ∆− T distribution

of the simulations (see Fig. 5.2), and the [T0, γ]inf given by our inference method when

applied to an extremely large mock dataset, as described above. Given that the inferred

ΓHI for both IllustrisTNG and Illustris simulations consistently deviates from the actual

values, owing to the previously mentioned degeneracy between the photoheating rate and

feedback strength, any inference tests incorporating the ΓHI from these two simulations

will surely fail. To this end, we focus on the inference results on the T0-γ plane and con-

duct marginalized inference tests by marginalizing the posteriors over the ΓHI, in which

2D marginalized contours levels are modelled by Gaussian mixture models. For each

simulation, we run 100 realizations on each set of ’true parameters’, and run inference

tests on the obtained posteriors. The results are shown in Fig. 5.8, indicating that our

inference method is over-confident for both sets of ’true parameters’. While the infer-

ence method is not able to recover the thermal state [T0, γ]fit, the thermal state [T0, γ]inf

significantly improves the outcome of the inference test. These results suggest that our

inference method is able to robustly recover the [T0, γ] with small biases, for simulations

that include feedback mechanisms.

The inference tests imply that there exist offsets for the inferred parameters [T0, γ]inf

for IllustrisTNG and Illustris, where ∆ log(T0/K) = −0.022 dex, ∆γ = 0.064 for Il-

lustrisTNG and ∆ log(T0/K) = 0.047 dex, ∆γ = −0.094 for Illustris. However, these

offset are insignificant, with ∆ log T0 ≲ 0.5σlog T0 , and ∆γ ≲ σγ. However, it is unclear

whether the observed differences between [T0, γ]inf and [T0, γ]fit can be attributable to the

intrinsic difference between the Nyx, IllustrisTNG, and Illustris simulations, or if they

arise from potential degeneracy between the IGM thermal state [T0, γ] and the feedback

mechanism implemented in the simulation. Nevertheless, the latter hypothesis seems to

contrast with the results based on the various statistics of the low-z Lyα forest presented

in Khaire et al. (2023a), which suggests that the impacts from different feedback models
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Figure 5.8: Marginalized coverage probability Pinf for inference tests using Illus-
trisTNG (left) and Illustris (right) simulations as mock observational data. The x-axis
stands for the inferred probability Pinf, and the y-axis shows the probability for the
parameters of the true model to fall in the contour corresponding to Pcov. The shaded
regions indicate the 1− σ error for Pcov. Inference tests with the true parameters set
by [T0, γ]inf are shown in blue, while inference tests with the true parameters set by
[T0, γ]fit are shown in red.

are not distinguishable via the Lyα forest under realistic scenarios, i.e., forward-modelled

using the D16 COS dataset. The only exception is the case of the Lyα flux power spec-

trum at small scales, where minor deviations are observed in both simulations(see Khaire

et al. 2023b, for the dN/dz around massive halos). To further explore this problem, we

examine the physical properties of low -z Lyα absorbers in the following section.

5.3 Low-z Lyα Forests and Simulated Absorbers

5.3.1 Identifying the simulated Lyα absorbers

To understand whether the low-z Lyα forest effectively probes the WHIM, we attempt

to identify the simulated Lyα absorbers, i.e., the nHI peaks in the simulation skewers,

that give rise to the Lyα lines detected in the mock spectra. This approach allows us to
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Figure 5.9: Illustration of a segment of one of the forward-modelled mock spectra (top
panel) with the absorption lines detected by VPFIT and the corresponding skewer.
The top panel depicts the flux (black), noise vector (green), and the model fitted by
VPFIT (blue). The central wavelength of Lyα lines identified by VPFIT are indicated by
orange vertical lines, and the corresponding simulated absorbers are indicated by or-
ange dashed lines in the second panel (and all other panels below). The logNHI,fit, bfit
reported by VPFIT are given in the annotation, together with the logNHI,sim, bthermal

calculated based on the simulation. The second panel depicts the neutral hydrogen
density nHI, while the shaded regions represent the identified Lyα absorbers along
LOS, which are used as the integral ranges while computing the NHI,sim. The orange
vertical dashed lines show the nHI peaks of the confirmed simulated Lyα absorbers,
while the purple vertical dashed lines show the potential simulated Lyα absorbers that
do not cause detectable Lyα lines.
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Figure 5.9: The grey horizontal dashed line represents the minimal H i peak density,
nHI,min = 10−12 cm−3. The third, fourth and fifth panels show the overdensity ∆,
temperature T and LOS velocity vlos. The brown horizontal dashed line in the fourth
panel stands for T = 105 K. left: A Lyα absorbers in the diffuse Lyα phase. right: A
Lyα absorbers in the WHIM phase.

directly examine the physical properties (T , ∆, and nHI) of these simulated Lyα absorbers

and draw a direct correspondence between them and the line parameters ({b,NHI}) of

their corresponding Lyα lines detected in the mock spectra. In this section, we chose

to focus on the simulated Lyα absorbers in the Nyx simulation at z = 0.1 (with default

thermal history, i.e., log(T0/K) = 3.612, and γ = 1.588 at z = 0.1). For clarification,

within the context of this study, the terms ’simulated Lyα absorbers’ or simply ’simulated

absorbers’ are used to denote the nHI peaks that give rise to the Lyα absorption lines in

the mock spectra detected by VPFIT.

Our approach for identifying simulated Lyα absorbers works as follows. Firstly, we

include the physical properties, including temperature T , over-density ∆, velocity along

LOS vlos, and the neutral fraction xHI in our skewers and stitch them in the forward-

modelling procedure (see § 2.1.3). We interpolate the stitched skewer onto the forward-

modelled wavelength grid, and calculated the neutral hydrogen density nHI for each

simulation cell, based on the neutral fraction xHI, over-density ∆, and the mean hydrogen

density n̄H . Subsequently, we scan the stitched skewers (in real space) for nHI peaks,

and classify these with nHI > 10−12 cm−3 as potential simulated Lyα absorbers. The

minimal peak H i density is derived from both the minimal H i column density for the

detected lines NHI,min = 1012.5cm−2 (see § 2.1.3) and the maximal length for simulated

absorbers labs, max = 0.5 Mpc/h, which is consistent with previous studies that attempt to

characterize the structures giving rise to the Lyα forest at z = 0.1 (Bolton et al. 2022b,

Tillman et al. 2023b). Given these two parameters, the requisite minimum H i peak

density for simulated absorbers to yield observable Lyα absorption lines is computed as
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nHI,min =
NHI,min

labs, max
= 1012.5cm−2

0.5Mpc/h
∼ 10−12 cm−3, which effectively filters out nHI peaks that

give rise to Lyα absorption lines below our sensitivity. We then determine the physical

size for each potential simulated absorber along the LOS, labs, using a threshold at which

nHI drops below 1% of its peak value, while restricting the maximal size to be labs, max =

0.5 Mpc/h. We calculate the H i column densities of the simulated Lyα absorbers,

NHI, sim, by integrating the nHI over the ranges set by aforementioned threshold. We

observed that the resulting NHI is not particularly sensitive to labs, because the nHI peak

is so narrow that the majority of the neutral hydrogen comes from the peak region (see

Fig. 5.9).

After identifying the potential Lyα absorbers, we extract their LOS velocity from

the simulation cells, and compute the central wavelength of the expected absorption

lines in redshift space, accounting for the redshift caused by its LOS velocity. For each

anticipated absorption line originating from an nHI peak, we check whether its central

wavelength lies within ± 50km/s of the central wavelength of any Lyα lines detected in

the mock spectrum. If so, we confirm the identification of a simulated Lyα absorber,

and take the T and ∆ at the nHI peak as its values, which is valid since the nHI peak is

so narrow that the majority of the NHI comes from the region close to the peak. While

theoretically, the Lyα lines are expected to be caused by multiple nHI peaks in real space

(Garzilli et al. 2015), we discover that at z = 0.1, each Lyα line detected in the mock

spectra with 12.5 ≤ log(NHI/cm
−2) ≤ 14.5 predominantly originates from one single nHI

peak in the simulation. It is not a resolution effect, since the simulation (Nyx) has a grid

length ∼ 0.02 Mpc/h, while the simulated absorbers have sizes ∼ 0.5 Mpc/h. As such,

we only consider the nHI peak with the highest nHI value if multiple nHI peaks contribute

to the same detected absorption line.

Fig. 5.9 showcases examples of the simulated Lyα absorbers, alongside their corre-

sponding absorption lines in the mock spectra and the related simulation skewers. The
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top panel depicts the flux (black), noise vector (green), and the model fitted by VPFIT

(blue). The central wavelength of Lyα lines identified by VPFIT are indicated by orange

vertical lines, and the corresponding simulated absorbers are indicated by orange dashed

lines in the second panel (and all other panels below). The logNHI,fit, bfit reported by

VPFIT are given in the annotation, together with the logNHI,sim, bthermal calculated based

on the simulation, whereas the bthermal = (2kT/mHI)
1/2 is the thermal component of the

b-parameters computed based on the T of the simulated Lyα absorbers (see eq. 5.1 ).

The second panel depicts the neutral hydrogen density nHI, while the shaded regions

represent the identified Lyα absorbers along LOS, which are used as the integral ranges

while computing the NHI,sim. The orange vertical dashed lines show the nHI peaks of

the confirmed simulated Lyα absorbers, while the purple vertical dashed lines show the

potential simulated Lyα absorbers that do not cause detectable Lyα lines. The grey

horizontal dashed line represents the minimal H i peak density, nHI,min = 10−12 cm−3.

The third, fourth and fifth panels show the overdensity ∆, temperature log T and LOS

velocity vlos (black solid lines). The brown horizontal dashed line in the fourth panel

stands for T = 105 K, which divides the cool diffuse Lyα gas and the WHIM. The left

panel shows a simulated Lyα absorber in the diffuse Lyα phase, while the right left panel

shows a simulated Lyα absorber arising from the WHIM phase.

We perform the identification procedure for all 1000 mock spectra, discovering 34011

potential simulated Lyα absorbers,i.e., nHI peaks, among which 10510 are identified as

simulated Lyα absorbers and matched to their respective absorption lines identified by

VPFIT. The discrepancy between potential and confirmed Lyα absorbers is due to the

inclusion of minor nHI peaks, that are too weak to cause any detectable Lyα line, which

is indicated by purple vertical lines in the left panel of Fig. 5.9. Lastly, approximately

2% of the lines detected by VPFIT could not be matched to any simulated Lyα absorber.

These anomalies could potentially result from false identification of the VPFIT induced
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by noise. Nonetheless, given the rarity of these cases, omitting them should not influence

our statistical results or conclusions.

To validate our identification method, we compare the observed line parameters, re-

ported by VPFIT, with the values calculated from the simulation. In Fig. 5.10, we show-

case the NHI,fit (left) and bfit (right) for all Lyα lines fitted by VPFIT, compared with the

NHI,sim and bthermal respectively, both calculated from the corresponding simulated Lyα

absorbers identified in the Nyx simulation. The left panel indicates a strong correlation

between the fitted NHI,fit and the NHI,sim calculated from the simulation, implying that

the nHI peaks identified by our method are indeed the simulated Lyα absorbers respon-

sible for the Lyα lines detected in the mock spectra. The right panel demonstrates that

the bulk of bfit lies above the dashed line representing bfit = bthermal. This result aligns

with the nature of the b-parameter, as given by

b =
√
b2thermal + b2notherm, (5.1)

where the bnotherm is the non-thermal component of the b-parameter resulting from com-

binations of Hubble flow, peculiar velocities and turbulence in the IGM. Eq. 5.1 demon-

strates that the bthermal is the lower limit of the b-parameter, which corresponds to the

lower right cutoff of the b-NHI distribution (see the colour maps in Fig. 2.7 and Fig. 5.6 as

examples. More discussions on this topic can be found in Schaye et al. 1999, Rudie et al.

2012a, Bolton et al. 2014, and Hu22). Furthermore, the right panel of Fig. 5.10 gives a

rough correlation between the bfit and bthermal and provides an approximate estimation

of the strength of the non-thermal broadening of the Lyα lines at z = 0.1. It suggests

that for the Nyx simulation, the non-thermal contribution to the b-parameter can be

modelled by a ’turbulent’ motion in the IGM with bnotherm ∼ 20 km/s (indicated by the

black dash-dot line in Fig. 5.10).
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Figure 5.10: The observed variables NHI,fit, bfit fitted by VPFIT compared with the
physical quantities NHI,sim and bthermal of the simulated absorbers identified in the
simulation skewers, where the NHI,sim is calculated by integrating the nHI of the ab-
sorbers along the LOS, and the bthermal is computed by assuming the broadening of the
Lyα lines are pure thermal. left: NHIfit vs NHI,sim. right: bfit vs bthermal. The dash-dot
line in the right panel represents the b-parameter resulting from the combination of
the thermal component bthermal and turbulence in the IGM with bnotherm = 20 km/s.
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Figure 5.11: Distributions of ∆ and T of the simulated Lyα absorbers in the Nyx sim-
ulation, compared with the full simulation. The ensemble consists of 10510 absorbers,
all obtained from the 1000 spectra discussed in § 5.3.1. The top panels show the
1D distributions of T (right) and ∆(left) for the whole simulation (green) compared
with simulated Lyα absorbers (blue). The medians of the T and ∆ for the simulated
absorbers are indicated by dashed black lines. The bottom panels plot the 2d T -∆
distributions for the Lyα absorbers(left) and for the whole simulation(right), while
the contours for 1,3-σ (68% and 99.7%) of the T -∆ distribution of the absorbers are
shown in both panels. The volume-weighted gas phases for absorbers and the whole
simulation are given in the left panel and the right panel respectively. The best-fit
power-law T -∆ relationships are given in the bottom panels as comparisons.
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We summarize the (∆, T ) for the ensemble of simulated Lyα absorbers identified in the

Nyx simulation in Fig. 5.11. Considering that we have established one-to-one correspon-

dence between the simulated absorbers and observed (mock) absorption lines, we employ

a consistent filter to both sets, which selects Lyα lines with, 12.5 ≤ log(NHI/cm
−2) ≤ 14.5

and 0.5 ≤ log(b/km s−1) ≤ 2.5 (see § 2.1.3). In the upper panels, we plot the volume-

weighted 1D marginal distributions of ∆ and T for all simulation grid cells, juxtaposed

with the 1D distributions of ∆ and T for the simulated Lyα absorbers, showing that

the simulated Lyα absorbers, in general, have higher temperature and over-density, com-

pared with the full simulation. The peaks of the ∆ and T distributions of the simulated

Lyα absorber highlight the specific range of ∆ and T to which the Lyα forest is sensitive

at z = 0.1. More specifically, the Lyα forest is most sensitive to the IGM characterized

by log∆ = 0.92 and T = 104.27K. It is worth mentioning that, the Lyα optical depth

τLyα is dependent on ΓHI. Consequently, the regions to which the Lyα forest is sensitive

also depend on ΓHI. This point will be fully discussed later in § 5.3.3.

The bottom left panel of Fig. 5.11 shows the (volume-weighted) T -∆ distributions

for simulated Lyα absorbers (left), and all grid cells in the simulation (right), while the

volume-weighted gas fractions3 are given in annotations for simulated absorbers and the

whole simulation in the left and the right panel respectively. The black contours in both

panels illustrate the 1 and 3 σ (68% and 99.7%) contours for the T -∆ distribution of the

simulated Lyα absorbers. The T -∆ distribution of the simulated Lyα absorbers appears

to be scattered at low-z, extending into the WHIM phase, due to the pervasive effects

of shock heating. As per the gas phase fractions of the Lyα absorbers shown in the

3As previously mentioned, for each simulated Lyα absorber, we use the T and ∆ at its nHI peak,
which dominates the Lyα absorption. To this end, when calculating the volume-weighted gas fractions,
we do not take the physical size into account, but instead, only consider the one simulation cell where
the nHI reaches its maximum. This is reasonable since typical nHI peaks seen in this study are so narrow
that most of the NHI comes from the peak cell. As a result, the so-called volume-weighted gas fractions
for simulated absorbers are effectively unweighted. This approach is used for all gas fractions related to
simulated Lyα absorbers throughout this paper.
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bottom left panel, approximately 7% of the absorbers originate from the WHIM phase,

suggesting that the low-z Lyα forest does probe the WHIM (see the right panel of Fig. 5.9

as an example), although its sensitivity is notably limited given the small fraction of lines

arising from this phase. Such a result aligns with Tepper-Garćıa et al. (2012) regarding

the detectability of the Broad Lyα Absorbers (BLAs) at low-z under realistic conditions.

5.3.2 Simulated Lyα Absorbers in IllustrisTNG and Illustirs

To further study the effects of the feedback mechanisms on the Lyα forest at z = 0.1,

we identify the simulated Lyα absorbers in both the IllustrisTNG and Illustris simula-

tions, and pair them to the corresponding absorption lines present in the mock spectra,

following the method outlined in section 5.3.1. For each simulation,we carry out the

identification process across 1000 mock spectra and summarize the physical properties of

the simulated absorbers. It is worth mentioning that here the IllustrisTNG and Illustris

simulations are tuned to have identical dN/dz, which requires different ΓHI values (see

§ 5.1.3).

We plot the marginalized 1D distributions of the ∆ and T for both IllustrisTNG (top)

and Illustris (bottom) in Fig. 5.12. The plots show that the overall distributions of T and

∆ for the two simulations are evidently different due to their different feedback recipes.

For instance, the extreme feedback in Illustris simulation results in much more WHIM

compared with IllustrisTNG, causing a secondary peak in its T distribution. However,

the distributions of T and ∆ for the absorbers in both simulations are comparable, with

log(Tmed/K) =4.33, log∆med =0.97 for IllustrisTNG, and log(Tmed/K) = 4.16, log∆med =

0.72 for Illustris. Moreover, we discover that the differences in log(Tmed/K) and log∆med

for the three simulations are actually caused by the different ΓHI values used for the three

simulations. The relevant discussion is presented in § 5.3.3.
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Figure 5.12: Marginalized 1D ∆ and T distributions of the simulated Lyα absorbers in
the IllustrisTNG (top) and Illustris (bottom) simulation. The medians of the T and ∆
for the simulated absorbers are indicated by dashed black lines. The overall ∆ and T
distributions of the full simulations are plotted as comparisons. The two simulations
share the same dN/dz, which is the same value observed in the D16 dataset.
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Figure 5.13: T -∆ distributions of the Lyα absorbers in the IllustrisTNG (top) and
Illustirs (bottom) simulations, compared with the T -∆ distributions of full simulations
(right). The contours for 1,3-σ (68% and 99.7%) of the T -∆ distribution of the
absorbers are shown in both panels. The volume-weighted gas phases for absorbers and
the whole simulation are given in the left panel and the right panel respectively. The
best-fit power-law T -∆ relationships are given as comparisons. The two simulations
are dN/dz matched.
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The (volume-weighted) 2D T -∆ distributions for simulated Lyα absorbers in both

IllustrisTNG (top) and Illustris (bottom) simulations are shown in the left column of

Fig. 5.13, whereas the (volume-weighted) 2D T -∆ distributions for the whole simulations

are given in the right column as comparisons. The volume-weighted gas fractions are given

in the annotation for simulated absorbers and full simulation in the left and the right

panels respectively. For the simulated Lyα absorbers, 12.2% (10.7%) of the Lyα absorbers

arise from the WHIM for IllustrisTNG (Illustris), while the value for Nyx simulation is

approximately 7%. The 1 and 3-σ (68% and 99.7%) contours for the T -∆ distributions

for the simulated Lyα absorbers are also given in the Figure, showing that their T -∆

distributions are more scattered compared with these in Nyx simulation, especially for

the WHIM phase absorbers. These differences are caused by stronger shock heating in

IllustrisTNG and Illustris simulations compared with Nyx simulation, caused by their

feedback mechanisms. However, while the (volume-weighted) WHIM fractions for the

two simulations are remarkably different, 9.8% for IllustrisTNG and 38.0% for Illustris,

the WHIM fractions for the Lyα absorbers are similar, both around 11%. Furthermore,

in § 5.3.3 we demonstrate that the small difference in WHIM fractions for simulated

absorbers in the two simulations actually arises from the different ΓHI values used in the

two simulations. Such a fact implies that the low-z Lyα forest does not probe the WHIM

effectively under realistic conditions, which is consistent with the conclusion drawn by

Khaire et al. (2023a).

5.3.3 Simulations under the same ΓHI

Considering that the calculation of the Lyα optical depth τLyα involves ΓHI, and given

that the observed absorption feature (i.e., the Lyα forest) consistently probes regions

with τLyα ∼ 1, it follows that the T and ∆ of these regions probed by the Lyα forest,
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are influenced by the ΓHI values. Such an argument can be qualitatively demonstrated

by the fluctuating Gunn-Peterson approximation (FGPA, see Weinberg et al. 1997)

τLyα ∝ xHInH ∝ n2
HT

−0.7

ΓHI

∝ ∆2.7−γ

ΓHI

∝ T 2/(γ−1)−0.7

ΓHI

, (5.2)

where the τLyα denotes the Lyα optical depth and the nH is the hydrogen number density.

Since the Lyα forest always probes the region with τLyα ∼ 1, the last two terms in eq. 5.2

suggest that the ΓHI is in positive correlation with ∆ and T respectively, given the γ ∼ 1.6

at z = 0.1.

In our analysis, the three simulations are tuned to match dN/dz. However, due to

the degeneracy between ΓHI and feedback mechanisms, each simulation ends up with a

distinct ΓHI value (refer to § 5.1.3). As a result, the T and ∆ distributions of the simulated

Lyα absorbers in these simulations are influenced not just by the feedback but also by

the varying ΓHI values. To isolate and examine solely the impact of feedback, we post-

process the IllustrisTNG and Illustris simulations to align with the ΓHI value used in Nyx,

set at log(ΓHI/s
−1) = −13.093. With this consistent ΓHI across the three simulations,

we re-perform the analysis from the prior section and summarize the results below. It

is worth mentioning that the overall T -∆ distributions of simulations are determined

by the cooling and heating processes during their evolution and are not altered by the

post-processing of the ΓHI.

We plot the marginalized ∆ and T distributions and their median values for Lyα ab-

sorbers in Nyx, IllustrisTNG, and Illustris simulations with the same dN/dz in Fig. 5.14.

Interestingly, for simulations with the same dN/dz, the T and ∆ for absorbers are

correlated with its ΓHI. More specifically, with ΓHI,Illustris < ΓHI,Nyx < ΓHI,IllustrisTNG

(see Fig. 5.3 ), we obtain Tmed,Illustris < Tmed,Nyx < Tmed,IllustrisTNG and ∆med,Illustris <

∆med,Nyx < ∆med,IllustrisTNG.
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We plot the marginalized ∆ and T distributions and their median values for Lyα

absorbers in the three simulations under the same ΓHI in Fig. 5.15. Under the same ΓHI,

the T and ∆ distributions for simulated absorbers in all three simulations become almost

identical, having nearly the same median values for T and ∆ respectively. Such a result

suggests that while feedback evidently affects the overall T -∆ distributions of the low-z

IGM (see Fig. 5.2), their impacts on the physical properties of the low-z Lyα forest (i.e.,

the T and ∆ distributions) are not distinguishable under realistic conditions.

In Fig. 5.16, we plot the 2D T -∆ distributions of the simulated Lyα absorbers in

IllustrisTNG (left) and Illustris (right), under the same ΓHI. While the overall IGM

T -∆ distributions for the two simulations are evidently different (see Fig. 5.2), the T -∆

distributions of the simulated Lyα absorbers in these two simulations are similar, and

the gas phase fractions for absorbers in both simulations are almost identical, suggesting

that the small difference in the WHIM fractions of the simulated absorbers shown in

Fig. 5.13 are caused by different ΓHI values. Such results indicate that the ΓHI has a much

stronger impact on the Lyα forest compared with the feedback mechanisms implemented

in IllustrisTNG and Illustris simulations.

5.4 Summary and Discussion

In this paper, we explore the effects of the WHIM, which causes significant disper-

sion in the IGM T -∆ distribution, on the low-z Lyα forest and the IGM thermal state

[T0, γ] measured from it. We first evaluate the effectiveness of [T0, γ] as IGM parameters

under the inference framework presented in Hu22, and compare its performance with the

photoheating labels [A,B]. We discover that the thermal state [T0, γ] still parameterizes

the IGM effectively in spite of the dispersion in the IGM T -∆ distribution. We further

apply the inference method to IllustrisTNG and Illustris simulations which implement
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Figure 5.14: Marginalized 1d distribution of T (left), and ∆ (right) of the simulated
Lyα absorbers identified in Nyx (blue), IllustrisTNG (green), and Illustris (yellow)
simulations. The medians of log T and log∆ are indicated by vertical dashed lines.
The three simulations are turned to have identical dN/dz.
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Figure 5.15: Marginalized 1d distribution of T (left), and ∆ (right) of the simulated
Lyα absorbers identified in Nyx (blue), IllustrisTNG (green), and Illustris (yellow)
simulations. The medians of log T and log∆ are indicated by vertical dashed lines.
The three simulations used here are post-processed to have the same UV background
photoionization rate, with ΓHI =-13.093.

Figure 5.16: T -∆ distributions of the simulated Lyα absorbers in the IllustrisTNG
(left) and Illustirs (right) simulations under the same ΓHI. The contours for 1,3-σ
(68% and 99.7%) of the T -∆ distribution of the absorbers are shown in both panels.
The volume-weighted gas phase fractions for absorbers in both simulations are given
respectively.
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different variants of feedback, potentially making them better approximations to the real

Universe. We discover that the [T0,γ] of these two simulations can be recovered using

the inference method within reasonable offsets. Considering the inference results and the

huge difference across the three simulations in the IGM WHIM fractions, we conclude

that the Lyα forest does not probe the WHIM effectively under realistic conditions, and

the IGM thermal state [T0,γ] is not affected by the shock heating caused by AGN feed-

back and other astrophysical processes significantly at z = 0.1. To further confirm our

conclusion, we identified the Lyα absorbers in all three simulations at z = 0.1, and pair

them to the corresponding absorption lines identified in the mock spectra. The physical

properties of the simulated Lyα absorbers support our conclusion that the observable

Lyα forest are not affected by the substantial WHIM in the low-z, and the thermal state

[T0, γ] measured from the Lyα forest remains solid. In this section, we summarize our

paper and present our discussion as follows.

• We compare the performance of [T0, γ] as neural network training labels against the

photoheating labels [A,B], i.e. the photoheating rate rescaling factors used to gen-

erate the Nyx simulation suite with various thermal histories. Given that the [A,B]

parameters were actually used to generate the simulation outputs, one might expect

that they would serve as a better set of labels than [T0, γ]. However, the inference

results show the efficacy of these two sets of labels are comparable, suggesting that

the [T0, γ], which parameterize the power law T -∆ relationship, still effectively

characterize the Lyα observables at low-z, notwithstanding the dispersion in the

T -∆ distribution induced by shock heating at low-z.

• We explored the degree to which the presence of feedback can influence or bias the

inference of the IGM thermal state parameters from the b-NHI distribution. In the

context of our inference framework, this question becomes: what would happen if
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we used a simulation grid without feedback to infer the thermal state of a Universe

that has strong feedback? Would the feedback lead to biased inference? To ad-

dress these questions, we apply our inference procedure trained on Nyx simulations

without feedback to mock datasets from the IllustrisTNG and Illustris simulations

which include feedback, whereby the latter serve as potential proxies for the real

Universe. We find that the [T0,γ] of IllustrisTNG and Illustris can be recovered

within small offset, where ∆ log(T0/K) = −0.022 dex, ∆γ = 0.064 for IllustrisTNG

and ∆ log(T0/K) = 0.047 dex, ∆γ = −0.094 for Illustris. These offsets are smaller

than the typical precision afforded by a realistic dataset, i.e., ∆ log T0 ≲ 0.5 σlog T0 ,

and ∆γ ≲ σγ.

• We developed a method to identify regions in the simulation responsible for the

Lyα absorption lines identified via Voigt-profile fitting, allowing us to determine

their temperature T and overdensity ∆ from the simulation skewers. For the Nyx

simulations, the simulated Lyα absorbers have a median density log∆median =

0.92, a median temperature Tmedian = 104.27K, and about 7% of the simulated Lyα

absorbers have T > 105, making them outliers from the power-law T -∆ relationship.

This low fraction is consistent with the previous study of Tepper-Garćıa et al. (2012)

on the low-z BLAs.

• As pointed out in previous work (Bolton et al. 2022a, Khaire et al. 2023a, Tillman

et al. 2023a), the Lyα forest is affected by the UV background, which impacts

the dN/dz. Nevertheless, we observe that the temperature and overdensity of the

region probed by the low-z Lyα forest are also affected by the UV background

photoionization rate ΓHI used in the simulation. For dN/dz matched simulations,

the T and ∆ of the simulated Lyα absorbers are correlated with its ΓHI respectively.

Specifically, the Lyα forest probes regions with higher T and ∆ given a higher ΓHI.
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This is because for Lyα absorbers with τLyα ∼1, the fluctuating Gunn-Peterson

approximation implies that ΓHI ∝ ∆2.7−γ ∝ T 2/(γ−1)−0.7, where γ ∼ 1.6.

• We post-processing the three simulations to share the same ΓHI, allowing us to ex-

plore the effects of different mechanisms. Under the same ΓHI, the T and ∆ distri-

butions of the simulated Lyα absorbers across all three simulations become almost

indistinguishable, converging to nearly identical median values, while the overall

IGM T -∆ distributions remain different among the simulations, due to their dis-

tinct feedback mechanisms. For the WHIM fractions, the volume-weighted WHIM

fractions for IllustrisTNG and Illustris stand at 9.8% and 38.0%, respectively, but

the WHIM fractions for the simulated Lyα absorbers in both simulations are nearly

identical, averaging around 11.6%. This suggests that while feedback significantly

alters the low-z IGM T -∆ distribution, especially the WHIM phase gas, their im-

pacts on the low-z Lyα forest is indistinguishable under realistic conditions. Such

a conclusion aligns with the results derived from various statistics of the low-z Lyα

forest by Khaire et al. (2023a).
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Conclusion and Outlook

In this thesis, I measure the thermal and ionization state of the IGM across seven red-

shift bins from 0 < z < 1.5, spanning approximately 10 billion years in cosmic history. I

utilize a novel inference method developed based on neural networks to jointly measure

the thermal and ionization state of the IGM. This approach leverages the 2D b-NHI dis-

tribution and Lyα line abundance dN/dz to break parameter degeneracy and achieve

high-precision measurements even with limited observational data.

I apply this method to 94 archival HST COS and STIS quasar spectra distributed

across these seven redshift bins, providing a detailed evolutionary history of the low-z

IGM thermal and ionization state. The results indicate that the IGM may be significantly

hotter at low-z than previously expected, potentially reaching an isothermal state with

mean density temperatures T0 around ∼ 30, 000K and a power-law index γ ∼ 1.0 at

z = 0.1. In addition, the results also suggest that the unexpected thermal state of the

IGM potentially emerges at z ∼ 1.

Additionally, while the inferred ΓHI align with theoretical models at z ∼ 1, the ΓHI

measured at z < 0.5 lies substantially below the values given by the theoretical model,

challenging the current understanding of the UVB models at z < 0.5.
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As an alternative explanation of the observed higher-than-expected b-parameter, I

model the micro-turbulence in the low-z IGM using a Gaussian velocity dispersion. I

demonstrate that this approach increases the observed b-parameter. The inference re-

sults suggest that it would need velocity dispersion with σv ∼ 14, 18, 11, and 10 km/s

in small scale at z = 0.1, 0.2, 0.3 and 0.4. Such increasing turbulence towards low-z

further suggests the discrepancy observed in the b-parameters, whether caused by micro-

turbulence or not, gets stronger towards low-z.

Furthermore, I have rigorously verified that the observed discrepancies in the b-

parameter are not due to feedback from AGN activities or galaxy formation processes,

including extreme feedback models. This strengthens the argument that the observed

discrepancies in the b-parameter are likely caused by unrecognized physical mechanisms,

potentially involving additional heating or turbulence.

Looking forward, there are approximately 30 COS spectra and 20 STIS spectra not

analyzed in this thesis due to the absence of metal identification. Once the metals are

identified, these spectra can be readily used to measure the IGM thermal and ionization

state. Meanwhile, we are preparing to submit a new HST proposal to acquire additional

Lyα forest spectra at z ∼ 1, a pivotal period in the thermal evolution history of the

IGM. According to this thesis, this epoch is crucial as it marks the onset of the observed

discrepancies in the b-parameter, which could eventaully lead to the discovery of new

physics in the low-z IGM.

Furthermore, we plan to extend our inference methodology to simulations which in-

corporate more sophisticated and diverse feedback and heating mechanisms, such as the

EAGLE simulation (Schaye et al. 2015) and CAMELS (Villaescusa-Navarro et al. 2021)

projects. This expansion will enhance our understanding of how various feedback and

heating processes influence the Lyα forest and the IGM, which may potentially resolve

the discrepancies between simulations and observations regarding the b-parameter.
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Appendix

A.1 Inference Without Absorber Density dN/dz

In this section we provide more details about the inference without using the absorber
density. In such a case, the likelihood function would simply be the first term of Eq.(2.7),
i.e.

lnL =
n∑

i=1

lnP (bi, NHI,i). (A.1)

Such likelihood function is evaluated based on our b-NHI distribution emulator solely. To
make better comparison, we use the same mock dataset and training dataset as used in
§2.2.4. The MCMC posterior is given in Fig.A.1, where we obtain log(T0K) = 3.709+0.058

−0.073,
γ = 1.550+0.066

−0.068 and log(ΓHI/s
−1) = 13.401+0.097

−0.090 from the marginalized distributions,
whereas the true parameters are: log(T0K) = 3.643, γ = 1.591 and log(ΓHI/s

−1) = 13.458.
In comparison, the posterior obtained using Eq.(2.5), which takes into account the
dN/dz, is shown in blue in Fig.A.1. As we show here, the two inference results are
coherent, but our modified inference algorithm (green posteriors) perform better. By im-
plementing the dN/dz feature, our modified inference algorithm provides more accurate
results in both T0 and ΓHI, and reduce the uncertain in ΓHI significantly. Furthermore,
the inference without absorber density dose not pass the inference where the true model
falls in the 1-σ (68%) interval for about 50% of the time.

In short, by employing the absorber density we not only evidently reduce the uncer-
tainty in ΓHI but also increase the accuracy in other parameters since the modification
adds more information to the Bayesian analysis by matching the absorber density.

A.2 Inference test likelihood calculation

To calculate contours of cumulative probability distribution with high dimensionality
is challenging in computation power. In our case, the parameter grid size is 1003 and we
have to compute the probability density function P (b , NHI | T0, γ,ΓHI) many hundreds
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Figure A.1: MCMC posterior (black) for the Nyx model discussed in §2.2.4 based
on the likelihood function without the absorber density Eq.( A.1). Projections of
the true model is shown as red dot. Inner(outer) contours represents the projected
2D 1(2)-sigma interval. The parameters of true model are indicated by red lines in
the marginal distributions, while the dashed black lines indicates the 16, 50, and
84 percentile values of the posterior. The true parameters are: log(T0/K) = 3.643,
γ = 1.591 and log(ΓHI/s

−1) = -13.458. In comparison, the posterior obtained using
Eq.(2.5), which takes into account the dN/dz, is shown in blue, while the medians of
the posterior are shown in blue on the top right.
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Figure A.2: Example of the distribution of the likelihood function sliced at the loca-
tion of the true parameters (Ptrue, indicated by red dashed lines). The parameters
corresponding to the maximum likelihood model Pmax are indicated by blue solid lines.
Values of both Ptrue and Pmax are given in the up right. Calculation implies that the
true parameters are in both the effective 1σ 68%) and 2σ (95%) intervals.
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Figure A.3: The KDE based PDF of b-NHI distribution of one of the toy models which
is a 2D Gaussian distribution parameterized by Tmock, γmock and Γmock in analogy with
thermal parameters T0, γ , ΓHI. The parameters of the toy model is shown in the
right bottom corner of the plot. For illustration purposes, values of pdf are multiplied
by 100 in the color bar.

times (i.e. the number of lines in the data set) to evaluate the likelihood function on a
single point on the parameter grid (see Eq. 2.5). However, due to the structure of the
b-NHI PDF calculated by our DELFI emulator, we are able to save time by computing
the likelihood function on the whole grid simultaneously, with help of vector operations
implemented in python, though such treatment requires reconstruction of the likelihood
function and needs extra amounts of memory. In comparison, our code is much faster
than the MCMC prescription which would require a very long chain to interpolate the
likelihood function on the whole grid to achieve the same precision. An example of the
distribution of the likelihood function is shown in Fig.A.2.

A.3 Toy model

To verify the performance of our emulators in a clean environment, we build a toy
model with a mock data set which roughly simulates the behavior of our real model.
Here the toy b-NHI distributions consist of 2D Gaussian distributions parameterized by
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Figure A.4: The thermal grid used in our toy model. The left-hand panel is the γ -
T0 grid and the right-hand panel is γ - ΓHI slice showing the 7 ΓHI values we have for
each point on the 2D γ - T0 grid.

Tmock and γmock, Γmock in analogy with thermal parameters T0, γ and ΓHI. Here we
follow the parameter dependence discussed in §2.2.3, i.e. both Tmock and γmock sets
the y-axis location of the center of the Gaussian, while γmock also sets the tilted angle
of the Gaussian, and the Γmock controls the density of data points for each model, in
analogy with the ΓHI which determines the absorber density dN/dz. For convenience,
we set these mock parameters to be dimensionless. We tune these parameters in a
way that the ‘b-NHI distribution’ of our toy model falls roughly in the same range as
the Nyx simulation, and we adopt absorber density emulated by our dN/dz emulator
based on our Nyx simulations, so that the mock dN/dz follows the relationship between
thermal parameters and absorber density in our Nyx simulation. We in total generate
7x7x7 = 343 (see Fig.A.4) models spanning the thermal grid. An example of the b-
NHI distribution of a toy model is shown in Fig.A.3, which is generated based on the
Kernel Density Estimation (KDE) of the mock dataset using a smoothing bandwidth
(σlogNmock

, σlog bmock
) = (0.08, 0.32). Such choice of bandwidth is taken from Hiss et al.

(2019).
For each toy model with different mock thermal parameters, we first generate a set of

2000 ‘imaginary’ pathlength ∆zi, each of which equals to a randomly chosen observation
spectra in Danforth et al. (2016) low-z Lyα dataset (i.e. for each model we generate
a set of 2000 ∆zi but without actual spectra). For each ‘imaginary’ pathlength ∆zi
we generate a set of mock ‘b-N ’ pairs (lines), sampling from the b-NHI distribution,
while the number of lines Ni follows a Poisson distribution Pois(λi) with Poisson rate
λi = ∆zi × (dN/dz)model, where the (dN/dz)model is the absorber density of that model.
The total number of lines for the model is thus Ntot =

∑2000
i Ni. At this point we obtain a

training dataset with the same structure as the one described in §5.2.1, which consists of
‘b-N ’ pairs labeled by thermal parameters. We then train the DELFI (b-NHI distribution)
and Gaussian (dN/dz) emulators based on the above dataset, and test our whole inference
algorithm on the toy model following the prescription given in §2.2.4. An example of the
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Figure A.5: MCMC posterior for the fit of the b-NHI distribution from one of the
toy models (absorbers shown as black points in Fig.A.6) using the likelihood function
(Eq. 2.6) from DELFI and our Gaussian emulator (see § 2.2.2). Projections of the
thermal grid used for generating models are shown as blue circles. Inner(outer) black
contour represents the projected 2D 1(2)-sigma interval. The parameters of true
model are indicated by red lines in the corner plot, while the dashed black lines
indicates the 16, 50, and 84 percentile value of the posterior. The true parameters
are: log Tmock = 3.59, γmock = 1.63 and log Γmock = −13.12.
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Figure A.6: The ‘best fit’ model b-NHI distribution for the Gaussian toy model emu-
lated by DELFI. It is emulated based on the best-fit parameters (median values of the
marginalized MCMC posterior), which is shown in the right bottom corner of the plot.
The true parameters are: log(Tmock = 3.59, γmock = 1.63 and log(Γmock = -13.12. For
illustration purposes, values of pdf are multiplied by 100 in the color bar.
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Table A.1: Table of results of the inference test for the toy model
models Total 68( % ) 95 (% )
3D toy model 240 165 (68.75± 2.92%) 225 (93.75± 1.67%)
2D toy model 300 199 (66.33± 2.67%) 284 (94.67± 1.33%)

inference result is shown below, including the MCMC posteriors (Fig.A.5) and the ’best
fit’ b-NHI distribution recovered from mock dataset (Fig.A.6). As a comparison, the KDE
based PDF of the b-NHI distribution of the model is shown in Fig.A.3.

In the end, we perform inference test on our toy model for both 3D and 2D (without
ΓHI) models to test the robustness of our whole inference pipeline following the method
discussed in §2.2.5, and the results are given in table A.1, showing that our inference
algorithm passes the inference test perfectly for an idealized model. Moreover, the infer-
ence on toy model of b-NHI distribution performs slightly better than on Nyx simulation
(see Appendix A.3). The reason could be that the toy model b-NHI distributions are 2D
Gaussian distributions that solely depends on the thermal parameters Tmock and γmock,
which is equivalent to say that the b-NHI distribution fully preserved the thermal infor-
mation of the IGM, however, in the Nyx simulation the b-NHI distributions are affected
by the complex astrophysical processes in the diffuse IGM, resulting in the loss of the
thermal information.

Combining all results shown above, we conclude that our inference algorithm is able to
recover the mock parameters with extraordinary accuracy under idealized condition, and
our entire pipeline including b-NHI distribution emulation, dN/dz emulation, likelihood
function and inference pipeline is robust.

A.4 Convergence test

Lukić et al. (2015) demonstrated that the b parameter of Lyα forest is sensitive to the
simulation resolution, and its distribution converges for simulation finer than L10N512
simulation (i.e., box size L = 10h−1 Mpc and N = 5123 dark matter particles and baryon
grids which gives the resolution of 20 h−1 kpc) while the box size itself does not affect line
parameters of the Lyα forest. Whereas above mentioned tests are done at redshift ∼ 3,
it is worthy to further investigate impact of the boxsize and resolution of the simulation
on the Lyα forest at lower redshifts, since the nonlinear evolution at low redshift can
affect the Lyα forest.

Here, we perform a convergence test at redshift z = 0.5 to to check if our results are
independent of the simulation box-size at low redshift. To test the convergence we use
two Nyx boxes; L20N1024 (box-size = 20 h−1 Mpc, N = 10243 dark matter particles and
baryon grids i.e resolution of 20 h−1 kpc), and L100N4096 (box-size 100 h1− Mpc and
N = 40963 dark matter particles and baryon grids, resolution of 24 h−1 kpc). These two
simulation boxes are ran following the same procedures given in section §2.1. In Fig. A.7,
we plot the temperature T , overdensity ∆, and velocity along line-of-sight vlos of these
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Figure A.7: From left to right, the 1D marginalized distribution of the temperature
T , overdensity ∆, and velocity along line-of-sight vlos. The unfilled histogram in the
left most panel shows the CDF of the temperature distribution. The L100N4096 box
are shown in blue, while the L20N1024 box are shown in green.
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Figure A.8: The 1D marginalized NHI(left) and b(right) parameters of the two simula-
tions. The relative differences are shown in the bottom panels. The L100N4096 box is
shown in blue, while the L20N1024 box is shown in green. The peak of b parameters
are given in the text.
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Figure A.9: The 2D KDE maps of b-NHI distributions for simulations L100N4096
(left-hand panel) and L20N1024 (middle panel). The right-hand panel shows the
relative difference ∆P = (PL100/PL20 − 1). To avoid division by zero, we apply a
threshold and only include regions integrating up to 75% for PL20. The KDE maps
are made from 20000 data points for each simulation, and the RMS and standard
deviation of of the relative difference map are given in the right-hand panel. Details
of the calculations are given in the text.

two simulations. We can see the distributions of T and ∆ are alike for both while the
small box L20N1024 simulation has much smaller line-of-sight velocity. This is expected
since line-of-sight velocities are dominated by the large scale modes that exist only in the
large box simulations. However, these large velocities are because of bulk motion and
therefore do not affect the parameters of the Lyα forest lines.

For both simulations, we follow the forward modeling and line fitting procedures
discussed in Section §2.1, except that here we use a Gaussian LSF with fixed resolution
R=3.5 km/s and assume a SNR=100. Such choices of resolution and SNR assure that the
Lyα forest are fully resolved and the box-size effect are independent of resolution and in-
strument. For both simulations, we use the photoionization rate log ΓHI(s

−1) = −13.308.
The 1D marginalized distributions of Doppler parameter b and column density NHI of
both simulations are presented in Fig. A.8. The NHI distribution of the two simulations
are in excellent agreement with each other, with the relative difference ∆P (N) < 10%.
The b parameter have very similar distributions for both simulations, where the two dis-
tributions agree with each other near the peak, with relative difference ∆P (b) < 25%,
and the difference increases as log b becomes smaller than 1.0 or larger than 2.0, which
however have very small contribution in the total cumulative distribution. The peak
values of the b parameter for both simulations are given in Fig. A.8, where the b distri-
butions give bpeak = 18.3 km/s and 17.2km/s for L100N4096 and L20N1024 simulations
respectively. We count the dN/dz for both simulations, L20N1024 gives dN/dz= 750,
and L100N4096 gives dN/dz= 700. The difference in dN/dz is about 7%. Furthermore,
we plot the 2D b-NHI distribution in Fig. A.9 for both simulations. These are 2D KDE
maps each generated by 20000 data points collected from the {b,NHI} dataset following
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the procedures described in Section §2.1. In the right most panel of Fig. A.9, we plot
the relative difference of the KDE map, given by ∆P = (PL100/PL20 − 1), where the
PL100 and PL20 stand for the KDE for L100N4096 and L20N1024 simulations respec-
tively. To avoid division by zero, we apply a small threshold and only include regions
with PL20 > PTH, where

∫∞
PTH

PdP = 75%. We quantify the overall relative difference
by calculating the root mean square and standard deviation of the ∆P . As shown in
Fig. A.9, the relative differences in the 2D b-NHI distribution are small and only about
5%. Therefore we conclude, even at z ∼ 0.5 box-sizes do not affect the parameters of
Lyα forest significantly.
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Appendix

B.1 Observational data and Metal masks

In this Appendix, we present our observational spectra and the corresponding masks
for the 12 archival HST STIS spectra. The original spectrum (normalized) is shown in
grey, and the model based on VP-fitting is shown in blue. The noise vector of the original
spectrum is shown in red, and the masked regions due to metal line detection are shown
as green shaded regions. The Lyα lines used for our {b,NHI} dataset (after all filters)
are labelled by red vertical lines.
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Figure B.1: Illustration of the processed STIS spectrum of HE0515-4414. The original
spectrum is shown in gray, while a model spectrum based on line fitting (described in
§ 2.1.4) is shown in blue. The noise vector of the original spectrum is shown in red,
and the masked regions are shown as a green shaded region. The Lyα lines used for
our {b,NHI} dataset are labelled by red vertical line.
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Fig. B.1 continued. Spectrum of PG0117+213.
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Fig. B.1 continued. Spectrum of PG1522+101.
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Fig. B.1 continued. Spectrum of PG1634+706.
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Fig. B.1 continued. Spectrum of PG1718+481.
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Fig. B.1 continued. Spectrum for PHL1377.
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Fig. B.1 continued. Spectrum of PG1248+401.
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Fig. B.1 continued. Spectrum of LBQS1435-0134.
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Fig. B.1 continued. Spectrum of PG1241+176.
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Fig. B.1 continued. Spectrum of PG1630+377.
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Appendix

C.1 Inference based on the Photoheating labels [A,B]

In this section, we present our inference results using the framework where different
Nyx models are labelled by the photoheating parameters [A,B] instead of the thermal
state [T0, γ], and the inference method returns [A,B, log ΓHI]. The inference is con-
ducted following the procedures described in § 5.2, based on the DELFI b-NHI distri-
bution emulator trained on training dataset labelled by [A,B, log ΓHI], which returns
P (b , NHI | A,B, log ΓHI).

The simulation grid, parameterized by the photoheating labels [A,B], is given in
Fig. C.3. An example of the MCMC posterior obtained based on the aforementioned
likelihood function is given in Fig. C.1. The inference method returns A =1.321 (1.0),
B = −0.190 (0.0), ΓHI = −13.160 (-13.093), whereas the true values are given in the
parentheses. The posterior appears compact, with the medians of the marginalized pos-
teriors landing within 1-σ errors for all three parameters. The b-NHI distribution recov-
ered from the mock dataset is presented in Fig. C.2, which is emulated by our DELFI
b-NHI distribution emulator based on the inferred parameters.

We perform an inference test following the § 5.2.2, in which we also exclude models
that are too close to the parameter boundaries to avoid the truncation of the resulting
posteriors. Specifically, we only use models with 3.3 < log(T0/K) < 3.9, 1.0 < γ < 2.3,
−13.75 < log(ΓHI/s

−1) < −13.0. The result of the inference test is shown in Fig. 5.4. The
performance looks comparable to the one based on the thermal state [T0, γ], suggesting
that [T0, γ] are still effective IGM parameters at low-z, notwithstanding the substan-
tial dispersion in the IGM T -∆ distribution induced by pervasive shock heating at this
redshift.
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Figure C.1: An example of posterior obtained by our inference method based on [T0,
γ, ΓHI()]. Projections of the thermal grid used for generating models are shown as
blue dots, while the true model is shown as red dots. The inner (outer) black contour
represents the projected 2D 1(2)-sigma interval. The parameters of true models are
indicated by red lines in the marginal distributions, while the dashed black lines
indicate the 16, 50, and 84 percentile values of the posterior. The true parameters
are: A = 1.0 and B =0.0, log(ΓHI/s

−1) = -13.093.
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Figure C.2: The colour map is the full b-NHI distribution recovered from the Nyx
mock dataset, which is emulated by our DELFI emulator based on the best-fit param-
eters (median values of the marginalized MCMC posterior), where A = 3.695 (1.0)
and B = 1.507 (0.0) and log(ΓHI/s

−1) =-13.237 (-13.093), the true parameters are
given in parentheses. Black dots are the mock datasets we used in the inference. The
contours correspond to cumulative probabilities of 68%, 95% and 99.7%. For illustra-
tion purposes, the values of pdf are multiplied by 100 in the colour bar.
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Figure C.3: Parameters grid (blue circles) from snapshots of hydrodynamic simula-
tions of the THERMAL suite at z = 0.1 parameterized by the thermal state [A,B]
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Miralda-Escudé J., Haehnelt M., Rees M. J., 2000, ApJ, 530, 1

Morrison J., Simon N., 2018, Journal of Computational and Graphical Statistics, 27, 648

Naiman J. P., et al., 2018, MNRAS, 477, 1206

Nasir F., Bolton J. S., Viel M., Kim T.-S., Haehnelt M. G., Puchwein E., Sijacki D.,
2017, MNRAS, 471, 1056

183

http://dx.doi.org/10.1088/0004-637X/718/1/199
https://ui.adsabs.harvard.edu/abs/2010ApJ...718..199L
http://dx.doi.org/10.1093/mnras/stu2377
http://adsabs.harvard.edu/abs/2015MNRAS.446.3697L
http://dx.doi.org/10.1086/180695
http://adsabs.harvard.edu/abs/1971ApJ...164L..73L
http://dx.doi.org/10.1086/187546
http://adsabs.harvard.edu/abs/1994ApJ...433L..53M
http://dx.doi.org/10.1086/305523
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..106M
http://dx.doi.org/10.1093/mnras/sty2206
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5113M
http://dx.doi.org/10.1093/mnras/stz1106
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.3766M
http://dx.doi.org/10.1103/PhysRevD.74.103512
https://ui.adsabs.harvard.edu/abs/2006PhRvD..74j3512M
http://dx.doi.org/10.1086/323426
http://adsabs.harvard.edu/abs/2001ApJ...562...52M
http://dx.doi.org/10.1093/mnras/stu2449
http://adsabs.harvard.edu/abs/2015MNRAS.447..499M
http://dx.doi.org/10.1146/annurev-astro-082214-122355
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..313M
http://dx.doi.org/10.1093/mnras/stv2675
http://adsabs.harvard.edu/abs/2016MNRAS.456...47M
http://dx.doi.org/10.1088/0004-637X/694/2/842
http://adsabs.harvard.edu/abs/2009ApJ...694..842M
http://dx.doi.org/10.1111/j.1365-2966.2010.16486.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405.1025M
http://dx.doi.org/10.1111/j.1365-2966.2007.12097.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.382.1094M
http://dx.doi.org/10.1086/308330
http://adsabs.harvard.edu/abs/2000ApJ...530....1M
http://dx.doi.org/10.1080/10618600.2017.1411270
http://dx.doi.org/10.1093/mnras/sty618
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.1206N
http://dx.doi.org/10.1093/mnras/stx1648
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.1056N


Nelson D., et al., 2018, MNRAS, 475, 624

Nelson D., et al., 2019, Computational Astrophysics and Cosmology, 6, 2
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