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D I S E A S E S  A N D  D I S O R D E R S

Deep learning–based integration of genetics 
with registry data for stratification of schizophrenia 
and depression
Rosa Lundbye Allesøe1,2, Ron Nudel1,3, Wesley K. Thompson3,4,5, Yunpeng Wang6, 
Merete Nordentoft1,3,7, Anders D. Børglum3,8,9, David M. Hougaard3,10, Thomas Werge3,4,7, 
Simon Rasmussen2*†, Michael Eriksen Benros1,3,11*†

Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and 
observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a 
deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression 
[major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 
case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, 
genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD 
and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the 
curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be pre-
dicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.

INTRODUCTION
The current psychiatric diagnostic categories remain restricted to 
subjective symptoms and subjectively observable signs, in contrast 
to most other medical fields, where diagnoses are often made based 
on quantifiable biomarkers. Schizophrenia (SCZ) and major depres-
sive disorder (MDD) are both severe mental disorders with a large 
impact on the individual’s well-being and are among the biggest 
societal health burdens (1, 2). Within the current diagnostic scheme 
of both SCZ and MDD, large variation exists in terms of treatment 
response, clinical presentation at onset, and disease progression (3). 
Furthermore, both SCZ and MDD have been shown to have poly-
genic architectures, associations with birth-related factors, as well 
as complex overlaps with other mental disorder diagnoses and gen-
eral medical conditions, particularly diseases with immunological 
pathophysiological mechanisms, which could be used for stratifica-
tion and prediction models (4–6). However, most prior studies have 
focused on the overall diagnostic categories and included a limited 
number of features, which might not be adequate to add the desired 
additional clinical value for these highly diverse disorders (6, 7). 

Together, this calls for new and improved diagnoses and evaluations 
in psychiatry that can help stratify patients more efficiently and 
guide clinicians in providing optimal care (6).

For stratification of MDD and SCZ, a limited number of studies 
have applied machine learning for clustering, and no prior studies 
have used a deep learning (DL) framework (8–10). DL methods are 
able to process high-dimensional data and capture nonlinear struc-
tures (6, 11). Specifically, variational autoencoders (VAEs), which 
are based on deep neural networks (NNs), have been highly useful 
for unsupervised learning of structures in large datasets (12). VAEs 
work by compressing high-dimensional data into lower-dimensional 
latent representations through the training of NNs, thereby capturing 
nonlinear correlations in the data. DL has shown promising results 
in identifying biologically relevant low-dimensional information 
from highly heterogeneous data such as transcriptomics, single-cell 
sequencing data, and integration of multiple datasets on human 
microbiome data (13–16). Currently, DL models have mainly been 
used to predict SCZ or MDD from data such as brain imaging via 
magnetic resonance imaging (MRI), genotype data, electroencephalo-
graphic, or social media data (7, 17–21). However, these studies 
generally lack sufficient sample sizes (majority with no more than 
400 cases with up to ~5500 for genetic models), have mainly looked 
at one diagnostic group, and lack true population controls to con-
clude on the generalization of the predictive power. To fully use the 
potential of the DL approach in gaining a deeper understanding 
of the complexity of the mental disorders, integration of more data 
from larger samples sizes is needed.

In this study, we used a large Danish population cohort from the 
Integrative Psychiatric Research Consortium (iPSYCH) of 19,636 indi-
viduals with MDD and/or SCZ including a population control group 
of 22,467 individuals, all genotyped and linked with the Danish 
nationwide registers (table S1). DL models were applied for efficient 
data integration to establish a clinically predictable stratification of 
individuals with MDD and SCZ. Individuals were stratified by all 
available data pertaining to them and their family medical history of 
mental disorders and other medical conditions, as well as birth-related 
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variables, previously identified genetic markers from the literature, 
and the severity of their mental disorders presented by hospital con-
tacts. Using the integrated data, we aimed to achieve a better strati-
fication of possible disorder trajectories to get a more complete 
picture of the complexity between and within SCZ and MDD com-
pared to a background population. Furthermore, by establishing 
new DL prediction models, we investigate the clinical predictability 
of the identified subgroups only including data up until their initial 
diagnosis. Given the size of the cohort and the fact that all individ-
uals were followed from birth, we have increased power to gain new 
insights into the etiologies of these disorders using state-of-the-art 
DL methods.

RESULTS
Data-driven stratification of population controls 
and the severe mental disorders
We applied our DL VAE framework to integrate all the register-based 
and genetic data available (see Materials and Methods and data file S1) 
into a common latent representation to be used in the cluster anal-
ysis. Before clustering, the optimal model hyperparameters were 
determined on a random subset of 6000 individuals from the full 
cohort divided into training (5000) and test (1000) datasets to make 
it feasible for an exhaustive grid search (see Materials and Methods 
and fig. S1). In the cluster analysis of the full cohort of all 42,103 indi-
viduals, referred to as cluster analysis A, we identified an optimum 
of six clusters with an expected clear overall separation with three 
clusters characterized as background population (A-Back_pop1, 
A-Back_pop2, and A-Back_pop3), two clusters as MDD (A-MDD1 
and A-MDD2), and one cluster in which 99% were diagnosed with 
SCZ (A-SCZ1) (Fig. 1, A and B, and fig. S2). Compared to using a 
standard principal components analysis (PCA), a sparse PCA (SPCA), 
a truncated singular value decomposition, or a Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP) 
for reduction, the VAE showed a better separation of population 
control from mental disorders (fig. S3 and table S2). In the feature 
importance analysis, we found that psychiatric disorders and the 
severity of these had the largest impact on the clustering measured 
in the change of adjusted Rand index between subgroups (0.76 and 
0.80), followed by family history and genetics (0.50 and 0.58) 
(table S3).

Disorder clusters resemble the overall diagnostic categories
When investigating the signatures of the clusters, we found that two of 
the background population clusters, A-Back_pop1 and A-Back_pop2, 
did not have any individuals diagnosed with MDD, SCZ, or other 
mental disorders [Fig. 1B and data file S2 for all P values and confi-
dence intervals (CIs)]. However, A-Back_pop3 had a higher simi-
larity to the three primary mental disorder clusters and included 
individuals with infections [adjusted P value of <0.001 − average 
1.38 per individual (pi)] and family history of mental disorders and 
infections; however, the average number of mental disorders (0.4 pi) 
was far lower compared to the disease clusters (2.7 to 4.4 pi). 
Furthermore, this cluster had a higher average polygenic risk score 
(PRS) for both MDD and SCZ than the two other background clus-
ters (data file S2). The two MDD clusters were mainly separated by 
severity with A-MDD2 having more inpatient hospital contacts, 
suicide attempts, infections, and a higher PRS for MDD compared 
to A-MDD1 (all adjusted P values of <0.001) (data file S2). This 

highlights that, in broad terms, the overall diagnostic categories 
more or less form as separate distinct subgroups when compared to 
a background population, with the only subdivision being severe or 
less severe MDD.

Excluding population controls gave a more detailed 
stratification of depression
To get a deeper picture of possible subgroups within MDD and 
SCZ, we repeated the VAE integration and clustering of mental dis-
order cases only, referred to as cluster analysis B. Here, we identi-
fied seven clusters (fig. S4A), of which six were mainly MDD 
clusters (91 to 100%) and one resembled the A-SCZ1 cluster from 
cluster analysis A (B-SCZ1) (Fig. 2A and data file S3 for all P values 
and CI). Cluster B-MDD1 and B-MDD2 were the most similar of all 
clusters with a cluster distance of only 0.015 (fig. S5A) and were 
mainly distinguished by B-MDD1 having significantly more infec-
tions and other medical conditions and B-MDD2 having a slightly 
higher average of outpatient hospital contacts (Fig. 2A). Overall, the 
severity in terms of hospital contacts, suicide attempts, and mental 
comorbidities increased going from B-MDD1/B-MDD2 to B-MDD6 
and to B-SCZ1. In cluster B-MDD3, 99.7% also had anxiety disorders; 
cluster B-BDD4 had more hospital contacts for MDD, suicide 
attempts, housing days, and infections; in B-MDD5, 99.9% had be-
havioral disorders with onset in childhood and adolescence; and in 
B-MDD6, 94.0% had developmental disorders. Furthermore, both 
B-MDD5 and B-SCZ1 were defined by more parental history of in-
fections and mental disorders as well as more infections in B-MDD5. 
Both clusters were also highly severe in terms of suicide attempts 
and many inpatient hospital contacts for their MDD. Overall, the 
four clusters (B-MDD3, B-MDD5, B-MDD6, and B-SCZ1) with 
one other major mental comorbidity (>90%) had more additional 
mental comorbidities compared to the three other clusters (average 
of 4 to 6 pi compared to 1 to 2 pi).

For all clusters, we only observed some single-nucleotide poly-
morphisms (SNPs) with differences in homozygote/heterozygote 
distributions but not a single SNP or HLA signal that characterized 
the clusters (data file S3). In the SNP distribution and MDD-PRS, 
B-MDD2 was the most genetically different to the other subgroups 
and had a lower genetic load (PRS 3.9 × 10−5, P value of 0.0014), 
whereas A-MDD5 and A-MDD6 had the highest genetic load (PRS 
4.1 × 10−5, P value of 0.0019 and 0.11). When looking at specific 
human leukocyte antigen (HLA) alleles that were at least nomi-
nally significantly associated with SCZ or MDD in previous studies 
(22, 23), we observed that HLA*A0101 was significant in B-MDD2. 
Together, we identified clear subgroups within MDD with distinct 
disorder prognostics and comorbid signatures that highlight the 
high heterogeneity and potential clinical use to move toward a more 
personalized treatment strategy.

Clear stratification of SCZ subgroups in terms of severity 
and comorbidities
For a more detailed stratification of the 3896 patients with SCZ, we 
conducted a subsequent analysis only including the patients diagnosed 
with SCZ referred to as cluster analysis C. We identified seven stable 
SCZ clusters from the latent representation with unique signatures 
across the included datasets (Fig. 2B and fig. S6A). Here, the feature 
importance showed a higher impact on each data modality, mea-
sured by the average change in the identified clusters using ad-
justed Rand index, compared to analyses A and B (0.47 compared to 
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0.44 and 0.38) (table S3). Of these, 62% had been diagnosed with 
MDD as well. In the two clusters, C-SCZ2 and C-SCZ5, all individuals 
were also diagnosed with MDD (single episode or recurrent) with 
C-SCZ5 having more severe MDD in terms of more inpatient and 
outpatient hospital contacts as well as more housing days and 
suicide attempts. C-SCZ5 had, in addition to the MDD diagnosis, a 
significantly higher average number of infections and other immune-
related diseases per individual.

In general, we observed an increase in disorder severity with sig-
nificantly more comorbidities, hospital contacts, suicide attempts, and 
housing days going from C-SCZ1 to C-SCZ7 (all adjusted P values 

<0.05; Fig. 2B and data file S4 for all P values and CI). The least 
severe cluster, C-SCZ1, had no significant fraction of other mental 
comorbidities and was defined by no significant increase in any 
severity measurements. C-SCZ3 was defined by having the most 
hospital contacts for their SCZ spectrum disorder and a higher 
amount of comorbid substance use disorder (21%). C-SCZ4 was 
characterized by a high fraction of multiple different mental disorder 
comorbidities (average of six mental disorder diagnosis pi) and a 
higher fraction of a maternal family history of mental disorders. We 
found that C-SCZ6 had a similar characteristic with B-MDD6 by 
having developmental disorders (89%) and an early average age of 

M
en

ta
l d

is
or

de
rs

Se
ve

rit
y

Fa
m

ily
 h

is
to

ry
 a

nd
m

ed
ic

al
 c

on
di

tio
ns

M
ed

ic
al

 b
irt

h 
da

ta

A B

Gaussian distribution

Clustering

Fig. 1. Clear stratification of depression and SCZ from background population subgroups using data-driven DL integration and clustering. (A) Overview of the 
VAE framework for integrating genetic data with all the available register data including their own and family history of diagnostic data for both mental disorders and 
immune-related disease, as well as birth-related measurements, previously identified genetic markers, and the severity of the mental disorders presented by hospital 
contacts, suicide attempts, and housing days. The overview illustrates how the VAE is used to learn the lower-dimensional latent representation for clustering of the indi-
viduals into distinct subgroups. The latent representation of the individuals is additionally used for a two-dimensional UMAP visualization to illustrate the clusters. The 
UMAP visualization is of all the individuals and illustrates the six identified clusters of background population, depression (MDD), and SCZ. Each dot represents a patient, 
and for GDPR (General Data Protection Regulation) purposes, we have masked all single occurrences not in close proximity with other individuals to ensure privacy (less than 
30 individuals were masked in total). (B) Heatmap visualization of the cluster signatures identified in cluster analysis A. Here, we have for mental disorders grouped into 
the ICD-10 block within the F chapter, except for mood disorders that are divided into single-episode MDD, recurrent or single-episode MDD, and BD. The scale illustrates the 
fraction of individuals with at least one diagnosis within the ICD-10 block for that cluster. Both severity and medical birth data are z-score–normalized showing from low to high 
values. For severity, hospital contacts are a combined average of both days admitted and number of admissions. Family history and medical conditions are a combined count of the 
average number of occurrences across all included diagnoses per individual in the cluster. The significance levels are defined as *p < 0.05, **p < 0.001, and ***p < 0.0001.
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diagnosis for most of the comorbid mental disorders as well an early 
SCZ diagnosis of approximately 18 years (figs. S4B and S6B). The 
most severe cluster, C-SCZ7, had the highest average of housing 
days and suicide attempts as well as many comorbidities, within 
both mental disorders and infections. In this analysis, we found no 
significant signal for individual SNPs in the genetics data and only 
a few SNPs with significantly different homozygote/heterozygote 
distributions (data file S4).

Prediction of cluster membership and MDD or  
SCZ diagnostics
To get an estimate of the clinical predictability of the clusters, we 
trained three feed-forward neural network (FFNN) prediction models 
for predictions of cluster membership on data up until their main 
mental disorder diagnosis of MDD or SCZ (prediction models A to C). 
To mimic a clinical situation at the time of diagnosis, we removed 
all disease severity measurements as well as events after the diagnosis 

of either MDD or SCZ including the diagnosis itself from the data 
used as input to the VAE. The time masked data were then used 
directly as input to the FFNN model for evaluating the prediagnostic 
predictability of clusters identified on the full-disorder trajectory. 
Other previous mental diagnoses were therefore still included; how-
ever, a diagnosis with MDD was only included in the prediction of 
the clusters in analysis C, to avoid introducing a biased increase in 
prediction accuracy for the patients with SCZ because of the nature 
of the cohort and the study setup. In addition, individuals without 
genotype data were removed from the prediction analysis to not 
bias the prediction due to imbalanced distribution of missingness 
between cases and controls. Furthermore, we, for comparison, 
trained a prediction model to predict the overall diagnostics groups 
of background, MDD, or SCZ using the same data (overall predic-
tion model). All performance evaluations were done on a test set 
excluded from training and hyperparameter optimization (see 
Materials and Methods).
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Fig. 2. Distinct clinical signatures in both comorbidities and severity measurements for depression and SCZ subgroups. (A) Heatmap visualization of the cluster 
signatures identified in cluster analysis B of depression (MDD) and SCZ. Here, we have mental disorders grouped into the ICD-10 block within the F chapter, except for 
mood disorders that are divided into single-episode MDD, recurrent or single-episode MDD, and BD. The scale illustrates the fraction of individuals with at least one diagnosis 
within the ICD-10 block for that cluster. Both severity and medical birth data are z-score–normalized showing from low to high values. For severity, hospital contacts are 
a combined average of both days admitted and number of admissions. Family history and medical conditions are a combined count of the average number of occurrences 
across all included diagnoses per individual in the cluster. The significance levels are defined as *p < 0.05, **p < 0.001, and ***p < 0.0001. (B) Heatmap visualization of the 
cluster signatures identified in cluster analysis C of SCZ of the same data as described for the heatmaps in (A).
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The first overall prediction model of the current broad clinical 
diagnosis of MDD and SCZ showed good performance with an 
overall AUC of 0.81 (AUC 0.74 for MDD and AUC 0.65 for SCZ), a 
Matthew correlation coefficient (MCC) of 0.39, and an accuracy of 
65.0% (multiclass by-chance accuracy 41.6%) on the test set (Fig. 3A 
and table S4). We identified misclassifications between all three cat-
egories suggesting similarities in the groups when only considering 
data before a possible diagnosis of MDD or SCZ (fig. S8). In predic-
tion model A (Fig. 3C and table S4), we observed a comparable per-
formance with an AUC of 0.83, an MCC of 0.37, and an accuracy of 
49.1% (multiclass by-chance accuracy 21.3%). The highest individual 
cluster AUCs were for the background population clusters with AUCs 
of 0.81 to 0.97 most likely caused by the postdisorder data censoring 
not changing their input data. However, the results further support 
A-Back_pop3 (AUC of 0.81) being a high-risk group as most of the 

misclassifications between the mental disorder clusters and back-
ground population were predicted to be A-Back_pop3 (fig. S2C).

Differences in the predictability of MDD and SCZ subgroups 
before diagnosis
The SCZ subgroups in cluster analysis C were easier to predict with 
an AUC of 0.79, an MCC 0.29, and 40.5% accuracy (cluster AUCs 
ranging from 0.70 for C-SCZ1 to 0.86 for C-SCZ6) than the MDD 
subgroups in cluster analysis B with an AUC of 0.72, an MCC of 
0.17, and 31.4% accuracy (cluster AUCs ranging from 0.54 for 
B-MDD4 to 0.80 for B-MDD2) (Fig. 4, A and C, and table S4). In 
general, we found that most clusters in both analyses B and C were 
highly similar in their data up until diagnosis, but specifically for 
cluster analysis B, some clusters were more or less identical, making 
prediction a complicated task (figs. S5 and S7). With the decrease in 

A B

C D

Fig. 3. High predictability of subgroups and the broad diagnoses of depression and SCZ from a background population with clear impact from family history 
and genetics. (A) ROC-AUC or AUC for the performance of the prediction model and specifically for each of the diagnostic categories of control, depression (MDD), and 
SCZ. The model performance was calculated on the basis of the prediction on the randomly sampled test set. (B) The reduction in prediction accuracy across all categories 
in the prediction model when removing each of the datasets completely from the prediction on the test set. The dataset was removed by setting all features to the mean 
for continuous data (zero as the data are z-score–normalized) and to missing for categorical features (a zero vector in the one-hot encoding) and passing the test data 
through the pretrained prediction model. (C) ROC curves for prediction model A of the six clusters identified in cluster analysis A of all individuals with MDD, SCZ, and the 
background population, again showing the overall model performance across all clusters and the individual cluster performances. (D) The dataset-specific accuracy 
reduction for prediction model A calculated the same way as in (B). The colors are linked to the dataset.
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overall model performance, these results highlight that, in particular, 
individuals diagnosed with MDD were more homogeneous at the 
time of diagnosis, making the prediction of subgroup trajectories 
more difficult compared to the easier prediction task of diseased 
versus healthy.

Feature importance for the prediction models
In both prediction models, which included the control population, 
the family history of diagnoses and genetics had the highest impact 
on the model accuracy; when removed, we observe a reduction in 
accuracy of 24.4 and 26.9% for the overall prediction model and 
prediction model A, respectively. Similarly, both models had ge-
nomics as the second most important feature with a reduction of 
16.0 and 24.1%, followed by medical birth data with 9.5 and 7.6% 
(Fig. 3, B and D, and table S5). This pattern was also observed for 

prediction model B, with a 19% reduction for family history and a 
17.2% reduction for genotype data. However, the patient’s own prior 
diagnoses of mental disorders and other medical comorbidities 
proved to be the third most important feature, with a 9.8% reduc-
tion (Fig. 4B and table S5). For prediction model C, we found that, 
in contrast to the other prediction models, the family diagnoses were 
among the least important (only 0.38% reduction), whereas the most 
important was the mental disorder diagnoses with a 23.2% reduc-
tion, followed by the genotype data with an 8.1% reduction (Fig. 4D 
and table S5). This shows that the prediction of SCZ subgroups is 
mainly based on earlier mental diagnoses. The general increase in 
the importance of each dataset in the prediction of the more detailed 
stratification suggests, as expected, that the clusters have a more 
complex structure that requires more variables to predict and thus 
removing a dataset causes a larger decrease in predictive power.

A

C

B

D

Fig. 4. Subgroups within SCZ are easier to predict than within depression when only considering data before diagnosis. (A) ROC-AUC or AUC for the performance 
of the prediction model of the clusters identified in cluster analysis B of depression (MDD) and SCZ and the performance for each of the seven clusters. The model performance 
was calculated on the basis of the prediction on the randomly sampled test set. (B) The reduction in prediction accuracy across all categories in the prediction model 
when removing each of the datasets completely from the prediction on the test set. The dataset was removed by setting all features to the mean for continuous data (zero 
as the data are z-score–normalized) and to missing for categorical features (a zero vector in the one-hot encoding) and passing the test data through the pretrained 
prediction model. (C) ROC curves for prediction model C of the seven clusters identified in cluster analysis C of all individuals with MDD, SCZ, and the background popu-
lation, again showing the overall model performance across all clusters and the individual cluster performances. (D) The dataset-specific accuracy reduction for prediction 
model B calculated the same way as in (B). The colors are linked to the dataset.
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DISCUSSION
In this first large-scale case-cohort study of 19,636 individuals with 
severe mental disorders and 22,467 population controls using DL 
for integration of genetics and registry data, we identified distinct 
subgroups with unique disorder severities and comorbidity signa-
tures. Furthermore, we showed different predictability of the sub-
groups when only using data up until diagnosis ranging from AUC 
0.55 to 0.97. Our DL data-driven stratification analysis clearly 
demonstrates the heterogeneity and overlap within and between 
mental disorder diagnostic categories of MDD and SCZ. Further-
more, several subgroups show high clinical predictability with an 
AUC above 0.8 for B-MDD2, C-SCZ4, C-SCZ6, and C-SCZ7. 
The important features defining our subgroups and used to predict 
them span both the pragmatic (based on disease-relevant features) 
and biological (based on causal factors) classifications, as described 
in the disease subtype framework recently proposed by Dahl and 
Zaitlen (24). This emphasizes the importance of our approach in 
the translational setting.

In previous studies, the predictive power of the model for a diag-
nosis of MDD and SCZ ranges between 0.54 and 0.95 in AUC or 
45 to 99% accuracy (7, 17, 19). However, it was common for most 
models to have a questionable model evaluation and selection biases 
(7) and a low sample size of approximately 10 to 400 cases (up to 
~5500 for genetic models) compared to ~4000 and ~16,000 cases of 
SCZ and MDD in our study, respectively. Furthermore, a direct 
comparison of the performances is not possible because our models 
are cross-diagnostic and the data types used in the studies are mostly 
different to ours, i.e., MRI and EGG (Electrogastrogram) data or 
models only relying on genetic data. In a real clinical setting, models 
that only predict one diagnosis compared to healthy individuals are 
not as clinically useful and would be comparable to our distinction 
of cases from population controls with an AUC of 0.81. However, 
our model has the improvement of a realistic control group as this 
also includes individuals with mental disorders, other than MDD and 
SCZ, thus being closer to a real clinical setting. As we also show here, 
cross-diagnostic signals exist between the mental disorders and a true 
population control group, which our prediction model encompasses. 
Therefore, there is a need for a better understanding of the cross-
diagnosis similarities and differences to build a model that resembles 
a real clinical setting as many patients will likely present a continuum 
of symptoms within multiple mental disorders.

We identified an overlap in the characteristics of the subgroups 
identified within MDD to those within SCZ. For instance, we iden-
tified that both the MDD and SCZ cluster with high fraction of 
behavioral disorders, where B-MDD5 and C-SCZ7 had significantly 
more infections and other medical conditions compared to most 
other clusters as well as a lower maternal age. Similarly, we observed 
a high similarity between the two clusters with developmental 
disorders, B-MDD6 and C-SCZ6, with an earlier age at diagnosis 
across all comorbidities and a high predictability before diagnosis 
compared to the other clusters (AUC 0.77 and 0.86, respectively). 
This suggests that the subgroups of individuals where the majority 
is diagnosed with developmental disorders, mainly autism, tend to 
get their MDD or SCZ diagnosis earlier compared to the other sub-
groups. Consequently, the majority of the individuals in these clusters 
had a diagnosis that was given before MDD or SCZ diagnosis, which 
could improve the prediction.

For the prediction of clusters based on prediagnostic data, we do 
note that this will include partially overlapping data used for both 

clustering and prediction. While this is similar to a clinical applica-
tion of such a prediction model of full-disorder trajectories, in a strict 
machine learning sense, this can result in an overestimation of the 
predictive performance. This potential effect on the performance 
measures is likely minor as most of the clusters were strongly driven 
by postdiagnostic features, such as hospital contacts, that were not 
included in the prediction models. Nonetheless, this should be con-
sidered when interpreting our performances compared with studies 
not using prediction for prediagnostic subgroup evaluation.

In all three cluster analyses, we did not find individual SNPs that 
were significantly overrepresented in the mental disorder subgroups 
or an overall separation in the genetic load of all SNPs. However, we 
did identify some significant differences in the distributions of the 
number of homozygote and heterozygote alleles for each SNP. Fur-
thermore, the SNP distributions had predictive power in all the pre-
diction models. This could be due to the fact that the presence or 
absence of a single SNP is not a strong enough signal to define the 
path of an entire subpopulation, and the underlying genetic signal is 
more likely to be a more complex combination of different genetic 
signatures (25, 26). These were likely captured by the prediction 
model and resulted in the observed large impact of genomics data 
on the predictive power. This highlights the importance of the 
underlying genetics and their role in the prognostics of mental 
disorders. Overall, the signal from all combined HLA alleles was 
not strong.

One of the strengths of this study is the size of the cohort and the 
fact that it is a nationwide population-based cohort, which eliminates 
the majority of selection biases. However, the MDD cases are defined 
by having at least one visit to a hospital and, thus, only include the 
most severe MDD cases. Those with a less severe depression diag-
nosis will only have visits to general practitioners (GPs) and will not 
be registered in the hospital-based registers. This might explain some 
of the homogeneity we observe in the data before diagnosis and why 
many of these individuals might resemble the individuals diagnosed 
with SCZ. It is also likely that the background population individuals 
in the high-risk A-Back_pop3 cluster have been diagnosed with de-
pression by their GP without being severely depressed, at least not 
within the time constrained of the study. From the data available in 
this analysis, we also have only a snapshot of the diagnosis data and 
an age of the first diagnosis. Some important differences might be 
observed in the number of repeated infections or severity of the 
infections for which data were not available to us.

Using DL approaches, we identified clinically distinct subgroups 
within both MDD and SCZ underlining the potential added values 
of a deeper stratification rather than only using the broad diagnostic 
categories. With this study being conducted on one of the largest 
cohorts in the field, we have shown that we can predict the most 
likely subgroup of either background population or MDD and SCZ 
as well as predict the specific subgroup within MDD and SCZ. With 
more detailed clinical information, such as omics data, EGG and 
MRI data, detailed clinical health records, and clinical assessments 
data with more information on treatment responses from clinical 
cohorts, the potential response differences within the subgroups 
can be further addressed. Thus, integrating the models presented in 
this study with further large-scale studies with more detailed molec-
ular profiles and psychopathology would allow us to investigate 
the exact mechanisms involved and gain further insights into this 
proof-of-concept study. With further insights into the subgroups, 
these clinical prediction models can assist clinicians in the diagnosis 
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and prognostics of patients with mental disorders providing 
more standardized and personalized care to the benefit of the indi-
vidual patient.

MATERIALS AND METHODS
Cohort and experimental setup
The data in this study are from the large Danish population-based 
case-cohort sample (iPSYCH2012) from the iPSYCH (27). The 
iPSYCH2012 case-cohort sample consists of 87,764 Danish indi-
viduals who were born in Denmark between 1981 and 2005 and had 
dry blood spots from samples taken at birth available from the 
Danish Neonatal Screening Biobank (28). In this cohort, there are 
57,764 people with at least one major mental disorder and 30,000 in-
dividuals who were randomly sampled from the population without 
regard for the psychiatric disorders. The mental disorders included 
in the iPSYCH cohort are autism spectrum disorder (F84.0-1, F84.5, 
and F84.8-9), attention-deficit/hyperactivity disorder (ADHD) (F90.0), 
SCZ (F20), bipolar disorder (BD) (F31), and MDD (F32 and F33). 
Genotyping, data cleaning, and imputation were described in detail 
by Schork et al. (29). For this study, we only included the individuals 
diagnosed with SCZ and/or MDD based on the International Clas-
sification of Diseases (ICD) 10 F20 and F32-F33 [ICD-8 codes 295.x9 
(excl 295.79) for SCZ and 296.09, 296.29, 298.09, and 300.49 for 
MDD]. This included 19,636 individuals with either MDD or SCZ, 
of whom 15,740 were diagnosed with MDD and 3896 were diagnosed 
with SCZ. Furthermore, a population control group of approximately 
the same size, 22,467, was randomly selected from the control pop-
ulation in the iPSYCH cohort, not including individuals with either 
of the two focus diagnoses. From the Danish Psychiatric Central 
Research Register (30), we included all psychiatric diagnoses in 
ICD-10/ICD-8 codes including information on the age of diagnosis 
and psychiatric-related hospital contacts. In addition, registered in-
fections, autoimmune diseases, the medical birth registry including 
complications and birth weight, and a selected number of other dis-
eases were included. For the family history of the included individual, 
we only included parental psychiatric diagnoses, and siblings were in-
cluded as a combined count of how many with the specific diagnoses. 
All data from the registers were included up until 2016 for mental 
disorders and 2012 for infections and autoimmune diseases. A total 
of 1185 variables were included before preprocessing of the data.

Preprocessing of data
The genotype data were included as the genotypes of risk alleles to-
ward MDD, SCZ, bipolar spectrum disorder (BD), autism, ADHD, 
suicide ideation, autoimmune diseases, or infections such as influ-
enza, human immunodeficiency virus, and hepatitis. The alleles were 
identified from the genome-wide association study (GWAS) catalog 
(31) and only included if the risk allele was specified. Note that, with 
regard to the genetic data, individuals who failed the genetic quality 
control as described in Schork et al. (29) were treated as having 
missing data. The quality control included removal of individuals 
with non-European descent as well as related individuals. We addi-
tionally ran a PCA using SmartPCA (32) on the 31,863 individuals 
with genotype data together with part of the HapMap sample 
[Japanese (JPT), Chinese (CHB), Yoruba (YRI), and European (CEU) 
descent] (33) to test for any major ancestral structure among the 
individuals in the 516 included SNPs. The cohort clustered with the 
European individuals, as expected, and showed no clear indication 

of ancestral structures (fig. S9). Furthermore, we found that none of the 
10 first PCs were strongly correlated with the clusters (all PCC < 0.1). 
The genotype and HLA alleles were both included as being either 
homozygote for the allele, heterozygote, or not having the allele. 
The continuous data variables such as age of diagnosis, the number 
of hospitalizations, patient contacts, and birth measures were all 
normalized and centered around zero by z-score normalization per 
feature. Missing continuous data were encoded as the mean, which, 
for z-score–normalized data, is zero. The categorical data, genotype, 
HLA, and family history, were one-hot–encoded and flattened for 
input to the model. All missing categorical data were encoded as a 
zero vector. We only included data that were observed in at least 1% 
of the individuals in the analysis, and therefore, we had a small dif-
ference in the number of features including analyses A to C with 
668, 692, and 711 features in A to C, respectively (see data file S1 for 
the full list). For the prediction models, we applied an individual-
based age masking of the input data to resemble a clinical setting at 
the time of the diagnosis with either MDD or SCZ. This included 
masking of all diagnosis given after the exact age of MDD and SCZ 
including the diagnosis itself. Therefore, individuals with previous 
mental disorder diagnoses would still have these available for the 
prediction. Previous diagnoses of MDD were excluded from all pre-
diction models that included both patients with MDD and SCZ as 
this would create a bias because only patients with SCZ could have 
this diagnosis after the masking. All severity measurements (hospital 
contacts and suicide attempts) were removed as these were available 
as a total sum of contacts and not individual events.

DL model
The DL model used to integrate the data was a VAE (12). A VAE 
consists of an encoder network, followed by a latent layer of size NL 
that is passed on to a decoder of the same sizes as the encoder layers 
arranged in reversed order. The model framework was built to 
account for a variable number of fully connected hidden layers in 
both the encoder and decoder. Each hidden layer included both 
batch normalization (34) and dropout (P = 0.1) (35) with Leaky 
Rectified Linear Units (36) as activation function. The latent layer 
was built from sampling from a Gaussian distribution N(0,I) of two 
fully connected layers of the means () and SDs (), both of size NL.

When training the model, each dataset was merged to one input 
layer including both categorical and continuous variables and passed 
through the network. The reconstruction error was calculated sepa-
rately for categorical and continuous datasets by splitting up the 
reconstructed output vector. The loss functions applied were cross-
entropy for categorical data and mean-squared error for continuous 
data as implemented in PyTorch. For the categorical variables, we 
avoided back propagating of missing values using the ignore index 
implementation in PyTorch. For continuous variables, we set the 
reconstructions for all missing values to zero to match the input, so 
these would not contribute to the loss. In addition, the sampling of 
the latent layer was constrained to the Gaussian distribution by 
penalizing the deviance by adding the Kullback-Leibler divergence 
(KLD) to the loss. The final loss was defined as

	​ L  = ​ E​ cat​​ + ​E​ con​​ + ​W​ KLD​​ × KLD​	

Here, Ecat and Econ are the normalized reconstruction error for 
the continuous and categorical data. WKLD is a weight put on the KLD 
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defined as WKLD =  × NL
−1, for which we used a  of 0.0001 for the 

final model. The KLD was defined as

	​ KLD  =  − ​ 1 ─ 2 ​ × ∑ 1 + ln( ) −  − ​	

The VAE model was trained with the Adam optimizer (37) and 
used the same settings to train three models for each analysis referred 
to as models A, B, and C. Between the models, the only changes in 
the training parameters were the batch size due to the differences in 
the sizes of the subsets of the data. Here, we used a batch size of 30, 
15, and 10 for models A to C, respectively. We increased the batch 
size by a factor of 1.5 during training after every 50 epochs and used 
KLD warm-up by slowly increasing WKLD from zero to  × NL-1 
at epochs 4, 6, 8, and 10 (38). The number of training epochs was 
determined to be 250 based on early stopping on the test set de-
scribed under the hyperparameter testing. Hereafter, the latent 
representation of each individual was obtained by passing them 
through the trained VAE and extracting the  layer. The VAE was 
implemented using PyTorch (v.1.4.0) (39).

Hyperparameter selection and stability testing
To identify the optimal parameters in terms of reconstruction accu-
racy, cluster capability, and model stability, different combinations 
of size of hidden layers, number of hidden layers, and size of latent 
space were evaluated. For the number of hidden neurons, we tested 
the sizes 400, 600, and 800, with the number of layers ranging 
between 1 and 3 with the same number of hidden neurons in each 
layer. The number of latent neurons used was 10, 20, or 40. We did 
an exhaustive search of all combinations on a randomly selected 
sample of 5000 individuals from the whole dataset for training and 
another 1000 individuals as a test set. The model performance was 
then evaluated in terms of test log-likelihood and reconstruction 
accuracy as well as reconstruction accuracy on the training data. An 
accurate reconstruction was for categorical variables defined as the 
class with the highest probability corresponding to the class given 
by the input. For continuous variables, the accuracy was assessed by 
comparing the reconstructed array with the input array using cosine 
similarity for each feature. Only nonmissing values were used when 
calculating the accuracy in the reconstruction. The performance of the 
model was also assessed by comparing the ability to cluster the data 
in terms of the intercluster separation calculated as the sum of squared 
distances (see more detail under the “Clustering” section). We chose 
the number of training epochs based on the lowest test error during 
training and rounded up to the nearest 100 epochs to ensure suffi-
cient training to learn the complexity of the data. The stability of the 
model was evaluated by repeating training three times with the same 
hyperparameters and calculating the difference in cosine similarity 
to all other individuals for each individual in the dataset. If the model 
produced the same result, the average change in cosine similarity 
should be zero. The model with the average change closest to zero is 
then considered the most stable. The final model was then selected 
on the basis of all the above performance measures by selecting the 
model with the highest total rank across all tests. From this analysis, 
the optimal network architecture was found to be two hidden layers 
of 800 neurons and a latent space size of 40 dimensions (fig. S1).

Clustering
The clustering of the data was done using k-means, and all cluster-
ing and testing were done using Python scikit-learn (v.0.21.3) (40). 

The optimal number of clusters for the k-means approach was 
determined using the silhouette score to measure the spread of the 
clusters as well as the elbow method using the sum of squared dis-
tances to measure the intercluster separation as implemented in the 
scikit-learn package. From the latter, the optimal number of clusters 
was determined by first calculating the sum of squared distances 
(SSDs) of every number of clusters. From the SSD for the smallest 
and largest number of clusters, we then fitted a linear line and se-
lected the optimal cluster number as the one with the largest distance 
to this line. The final clusters were selected on the basis of k-means 
clustering on a consensus matrix of repeated clustering of the latent 
space using the same parameters to ensure stable clusters.

Comparing PCA and UMAP-based reduction for clustering
We tested whether performing the dimensionality reduction before 
the cluster analysis using other methods would give similar results. 
Here, we used a PCA, UMAP (41), SPCA, and truncated singular 
value decomposition (TSVD) with the same reduction size (40 di-
mensions) (fig. S3). Here, we identified some overlap in cluster sig-
natures when identifying the same number of clusters with adjusted 
Rand indices of 0.35, 0.23, 0.40, and 0.42 for PCA, UMAP, SPCA, 
and TSVD, respectively, using Python SciPy (v.1.3.1) (42). However, 
these clusters had a worse separation of population control from 
mental disorders. Using PCA and UMAP, we only found one clear 
background population (98 to 100%) cluster and two mixed (17 to 
85% in background population clusters for PCA and 18 to 90% for 
UMAP) (fig. S3 and table S2). When based on UMAP reduction, no 
clusters were identified without any background population (3 to 
13% in the remaining three clusters). SPCA and TSVD were both 
closer to the VAE clustering in the distribution of diagnoses in the 
main disorder groups (two 100% MDD with between 6 and 8% or 
between 12 and 14% SCZ and one SCZ cluster with 44 to 47% MDD). 
However, the background clusters had a higher percent of the cases 
with only 83 to 86% as background. This highlights the added value 
of using the VAE for dataset reduction with the two sparse methods, 
SPCA and TSVD, showing better performance compared with 
PCA and UMAP.

Assessment of impact of genotype missingness on clustering
The VAE integration can handle missing data by not using that in-
formation in the generation of the latent space. In our analysis, we 
had 10% of the individuals not having genotype data available 
because of failed QC (quality control). Of these, the majority was 
within the background population group, which had 18% missing 
data. We tested our VAE integration and cluster analysis without 
including these individuals and were able to identify the same six 
groups of three background groups, two MDD subgroups, and one 
SCZ subgroup (fig. S10). Therefore, we concluded that our method 
is stable and can handle a high percent missingness that is unevenly 
distributed between the labels included in the analysis.

Feature importance on clustering
We calculated the impact of each data modality on the clustering by 
setting each of the datasets to missing before VAE integration. We 
then recalculated the clusters by using the same k-means approach. 
The impact was then calculated from the adjusted Rand index 
between the true labels and the labels identified with the dataset 
set to missing. The reported impact is the change from a perfect 
overlap of 1.
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Polygenic risk score calculation
PRSs for MDD and SCZ were calculated for iPSYCH individuals 
using PRSice2 v2.3.3 (43) and summary statistics from a meta-analysis 
of GWAS of MDD and SCZ. The summary statistics were based 
on Psychiatric Genomics Consortium samples from which Danish 
samples were excluded before meta-analysis. The MDD sample in-
cluded 49,982 cases and 136,871 controls, and the SCZ sample in-
cluded 34,129 cases and 45,512 controls (44, 45). We included all 
SNPs in the calculation using a P value threshold of 1 and used a 
clumping r2 threshold of 0.1 in a window of 250 kilo–base pairs. 
The “--score” sum method was used to calculate the scores. Otherwise, 
the default parameters were used.

Statistical analysis
The identification of cluster-defining variables was done using a 
chi-square test for categorical variables using Python SciPy (v.1.3.1) 
(42). For the mental diagnoses, calculation was done by combining 
all diagnoses within the same block in the ICD-10 system and ICD-8 
codes included in the corresponding ICD-10 block, and calculating 
the fraction of the individuals in a given cluster with at least one 
diagnosis within each block in the chapter. For the other medical 
conditions, these were combined into infections and others (migraine, 
diabetes, etc.) by counting the average number of each type of the 
two conditions each individual had within each cluster. The same 
calculation was done for the family history separated both into mental 
diagnoses and other medical conditions and infections as well as 
parental and maternal. For siblings, only mental diagnosis for MDD, 
BPD, SCZ, or any was available and included as a fraction of indi-
viduals with siblings with a diagnosis within each cluster. Calcula-
tion of genetic signals for both disorder-related phenotype SNPs 
and HLA alleles was done as the number of alleles out of all possible 
alleles within each cluster. All statistical tests for these were calculated 
as categorical with a one-sided chi-square test for identification of 
overrepresentation and cluster defining of diagnoses for each cluster. 
Furthermore, we also calculated whether there was a difference in 
the distribution of being a homozygote and being a heterozygote for 
each SNP with a two-sided chi-square test. For the medical birth 
data and severity variables, the numbers were included as the z-score–
normalized values. For the medical birth data, a two-sided Student’s 
t test was used to calculate whether a significant higher or lower, 
e.g., birth weight was defining the cluster. The hospital contacts for 
the severity measurements were combined as an average across all 
variables for the disorder (such as number of contacts and days 
admitted). For MDD, these were separated into outpatient and 
inpatient hospital contacts, and the statistics were done with a 
one-sided Student’s t test to test whether a higher severity was de-
fining the cluster. All tests were corrected for multiple testing using 
Bonferroni correction, and all the P values reported are corrected.

Cluster visualization and distances
We applied UMAP (41) on the latent representations for visualizing 
the clusters in two dimensions to capture potential nonlinear struc-
tures. The reduction was only applied for visualization purposes 
and not used to define the clusters or infer any relationships or dis-
tances between clusters. Cluster distances are computed as the cor-
relation distance between the mean values of each cluster pair using 
the “distance.correlation” from the SciPy python package (v.1.3.1) 
(42). The distance between clusters ranges from 0 to 1, with 1 being 
the maximum distance.

Prediction models
The prediction models for the subsequent prediction of cluster labels 
and main disorder group (MDD, SZC, or background population 
control) were performed using an FFNN implemented using Python 
PyTorch (v.1.4.0) (39). We initially also tested the performance using 
a random forest model, using scikit-learn (v.0.21.3) (40); however, 
it was unable to handle the class imbalance compared to the perfor-
mance of the FFNN with overprediction of the largest class (MCC 
of 0.26 in analysis A). We trained the model on 80% of the data and 
used the remaining 20% as a test set to evaluate the model. In the 
training, we used 10% of the data as a validation set for the hyper-
parameter optimization. The data were split using the train_test_
split function implemented in Python scikit-learn (v.0.21.3) (40) 
to ensure equal splits across classes. Furthermore, we used the 
WeightedRandomSampler in PyTorch to account for class imbalance. 
We used the same implementations of activation function, dropout, 
and batch normalization as in the VAE and cross-entropy for loss 
calculation. The hyperparameter optimization was done with a full 
grid search of all combinations, and the model with the lowest pre-
diction error on the validation set was used to evaluate the model. 
Early stopping was applied by saving the model with the lowest 
validation error during the 200 epochs of model training. On the 
basis of the performance of the VAE, we only tested prediction 
models with two hidden layers with the sizes [64, 32], [128, 64], or 
[256, 128]. Furthermore, we tested the learning rate (0.001 or 0.0001) 
and the batch size with different ranges depending on the analysis 
([40, 50, 100] for analysis A, [20, 30, 40, 50] for analysis B, and 
[5, 10, 20, 25] for analysis C). The best-performing model was eval-
uated on the test set by calculating the receiver operating character-
istic area under the curve (ROC-AUC or AUC) of the predictive 
power of each of the clusters individually and across all clusters. 
Furthermore, we calculated the overall accuracy and the MCC 
for each model. All performance calculations were done using the 
scikit-learn implementations. For all randomizations, the seed was 
set to 42. In the prediction model, all individuals with missing 
genetic data were removed in analysis A due to the large bias in the 
distribution between background and cases that only our VAE inte-
gration and clustering could account for. This removed around 10% 
of the individuals from the model, leaving 31,863 individuals in total. 
For analysis A, the optimal hyperparameter for the best-performing 
model on the validation set was a batch size of 100, a learning rate of 
0.0001, and two layers of 256 and 128 neurons. For the second model 
in analysis A on predicting MDD, SCZ, or background, we used the 
same hyperparameters identified for prediction of the cluster mem-
bership. For analysis B, we found the optimal hyperparameters to 
have a batch size of 50, a learning rate of 0.0001, and two layers of 
256 and 128 neurons cluster membership, which were also used in 
the MDD or SCZ prediction. Last, the parameters for the prediction 
model in analysis C were a batch size of 10, a learning rate of 0.0001, 
and two layers of 256 and 128.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi7293

View/request a protocol for this paper from Bio-protocol.
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