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Abstract 

Dental-derived stem cells (DSCs) are attractive cell sources due to  
their easy access, superior growth capacity and low immunoge-
nicity. They can respond to multiple extracellular matrix signals, 
which provide biophysical and biochemical cues to regulate the 
fate of residing cells. However, the direct transplantation of DSCs 
suffers from poor proliferation and differentiation toward func-
tional cells and low survival rates due to local inflammation. 
Recently, elegant advances in the design of novel biomaterials 
have been made to give promise to the use of biomimetic bioma-
terials to regulate various cell behaviors, including proliferation, 
differentiation and migration. Biomaterials could be tailored 
with multiple functionalities, e.g., stimuli-responsiveness. There 
is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their poten-
tial applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.
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Introduction
Dental-derived cells, especially those from dental pulp and peri-
odontal ligament, can differentiate into various functional cells. 
These stem cells have significant potential for regenerative medi-
cine and tissue engineering [1–3]. Dental stem cells (DSCs) are a 
subset of adult stem cells capable of transforming into various 
cell types, such as bone, cartilage, muscle and fat cells [4–6]. 
Owing to their regenerative capabilities, DSCs hold substantial 
potential for repairing or regrowing tissues afflicted by disease or 
damage, making them a subject of significant interest within the 
domain of tissue engineering [7]. A pivotal rationale for applying 
DSCs in tissue engineering is their capacity to transform into 
numerous cell types. This versatility enables their utilization in 
various tissue engineering implementations [8, 9]. DSCs have an 
easily accessible source, compared with bone marrow/ 
adipose-derived MSCs, which are most extensively studied in 
current research, facing a severe shortage of donors because the 
harvest of bone marrow/adipose-derived MSCs requires invasive 
surgical procedures [10]. Other limitations include the compli-
cated and long-term separation and culture of bone marrow/ 
adipose-derived MSCs due to the deficient population of MSCs in 
bone marrow and adipose tissue and loss of proliferation and 

multilineage differentiation capacity [11]. DSCs, which can be 
extracted from exfoliated deciduous teeth or discarded dental 
tissues, hold great promise to serve as an alternative cell source 
for tissue engineering [12–14].

DSCs can generate and secret various bioactive factors 
that can stimulate the growth and regeneration of multiple tis-
sues [15, 16]. In addition, DSCs have a solid ability to migrate to 
areas of tissue damage and inflammation, which makes 
them useful for tissue regeneration. The immunomodulatory 
properties of DSCs, including MSCs, have been identified to play 
a crucial role in tissue regeneration. Multiple DSCs can secret 
substantial immunoinhibitory cytokines, including TGF-b and 
IL-10 [17, 18]. Moreover, this process can be enhanced by other 
immunomodulatory cytokines, especially the cytokines secreted 
by macrophages and T cells [19, 20]. Compelling evidence sup-
ports the idea that successful tissue regeneration via stem cells 
hinges on the critical interaction between DSCs and immune 
cells. Additionally, DSCs have been proven to possess many 
immunomodulatory effects, notably the capacity to inhibit the 
activation of immune cells [21].

The ECM is a sophisticated lattice comprising proteins, 
glycoproteins, glycosaminoglycans and various other molecules, 
collectively providing a supportive milieu for the cells in 
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tissues [22]. It acts as a cellular scaffold and facilitates cell com-
munication, tissue structure and repair. Upon encountering the 
ECM, DSCs can detect and react to its myriad physical and bio-
chemical cues [23, 24]. This can influence the behavior of DSCs, 
including their differentiation, migration and survival. For exam-
ple, DSCs may differentiate into different cell types based on the 
specific ECM proteins they encounter, and they may migrate to-
ward areas of tissue damage or inflammation in response to ECM 
signals. In brief, the intricate relationships between DSCs and the 
ECM are essential for the regeneration of tissues. By adhering to 
the ECM and secreting its proteins, DSCs can shape tissue struc-
ture and function and, thus, actively participate in the healing 
and regeneration of injured tissues [25–27].

Direct MSC transplantation to damaged tissues may face 
problems in pilot trials, such as low retention and survival rate in 
target sites, poor differentiation into specific mature tissues, and 
severe local inflammation [28, 29]. Biomaterials are materials 
designed to interact with living tissues and can be used to sup-
port or replace damaged or diseased tissues. Biomaterials can be 
natural or synthetic and can be used in various forms, including 
scaffolds, hydrogels and microspheres. Combining biomaterials 
with DSCs in tissue engineering can protect the DSCs and keep 
them in place until they can integrate into the surrounding tis-
sue, providing a supportive environment for DSCs [30, 31]. The 
combined effects of DSCs and biomaterials have led to substan-
tial advancements in tissue engineering, showcasing the poten-
tial to treat diverse conditions such as inflammatory diseases, 
tissue injuries and degenerative disorders. Hence, it is increas-
ingly essential to consolidate the current progress in applying 
dental-derived materials for tissue engineering, mainly focusing 
on the roles of biomaterials and the host response.

This review summarizes the revolution of biomaterials and 
the interactions between DSCs and biomaterials. We then clas-
sify the host response to the transplantation of biomaterials. We 
hope this review can illuminate the design of novel biomaterials 
in tissue engineering.

Design principles of biomaterials and 
interactions between DSCs and biomaterials
Classification of biomaterials in tissue 
engineering
Biomaterials used in tissue engineering can be classified in a vari-
ety of ways, including by their origin (natural or synthetic), their 
physical properties (such as their mechanical strength or biode-
gradability) and their intended use (such as scaffolds, hydrogels 
or microspheres) [32, 33].

One common way to classify biomaterials is by their origin. 
Natural biomaterials are derived from living organisms or their 
components, while synthetic biomaterials are made entirely 
from nonbiological materials. Natural biomaterials include colla-
gen, chitosan and silk, while synthetic biomaterials include poly-
ethylene, polystyrene and polyethylene terephthalate [34–36]. 
Another way to classify biomaterials is by their physical proper-
ties. Biomaterials can be classified based on their mechanical 
strength, biodegradability and physical characteristics. For 
example, some biomaterials are solid and durable, while others 
are designed to be biodegradable and able to be absorbed by the 
body [37–39].

Significantly, biomaterials can also be categorized according 
to their specified application in tissue engineering. Scaffolds, for 
instance, are three-dimensional constructs providing a frame-
work for cellular growth, which can be employed in the repair or 

regeneration of tissues [40–42]. Haeri and Goldberg [43] devel-
oped an acrylate-based microtubular scaffold to mimic the struc-
ture of natural dentin. The scaffold was made by the templating 
method, in which sacrificial polyvinyl alcohol fiber was placed in-
side the acrylate monomer, followed by the polymerization and 
leaching process. The obtained scaffold can effectively support 
the differentiation of DSCs and the formation of mineralized den-
tin tissue (Figure 1A). Microspheres are small, spherical particles 
that can deliver drugs or cells to specific locations in the body 
[44–46]. Liu et al. reported a vascular endothelial growth factor 
(VEGF) encapsulating poly (L-lactic acid) microsphere (Figure 1B). 
The discussed microsphere has been said to continuously release 
VEGF, promoting the growth and differentiation of dental cells to 
facilitate the regeneration of dental pulp [47]. Hydrogels are 
highly hydrated polymer networks that can deliver cells or drugs 
to specific locations in the body [48–50]. Sharpe et al. [51] reported 
a methacrylated hyaluronate hydrogel loaded with GSK3 inhibi-
tor NP928 to regenerate dentin. The loaded NP928 drug can effec-
tively promote the activity of the Wnt/b-catenin signaling 
pathway, thereby promoting the differentiation of DSCs into min-
eralized dentin tissue (Figure 1C). Yang et al. [52] developed a 
peptide-based self-assemble hydrogel for dental pulp regenera-
tion. The top-left panel of Figure 1D showed the diseased teeth 
with inflamed/necrotic pulp, in which the blood vessels were se-
verely damaged. After the injection of self-assembled hydrogels, 
the bottom-right panel of Figure 1D showed the significant neo-
vascular formation in the regenerated pulp (Figure 1D). Overall, 
the classification of biomaterials in tissue engineering can vary 
depending on the specific characteristics and intended use of the 
materials. Understanding different biomaterials’ properties and 
potential benefits can help researchers design effective therapies 
for various conditions.

Engineered biomaterials mimicking the 
interactions between DSCs and natural ECM
In tissue engineering, designed biomaterials that replicate the 
interactions between DSCs and the ECM can be utilized to aid the 
repair and regeneration of damaged tissue. The ECM is a sophisti-
cated web of proteins and other molecules that encapsulates and 
supports cells within tissues, playing an integral part in uphold-
ing tissue structure and functionality [53–55]. DSCs engage with 
the ECM via integrin receptors located on their surface. These 
integrins are transmembrane proteins that bind to specific ECM 
proteins, like collagen and fibronectin. Such binding enables 
DSCs to anchor themselves and receive signals that regulate their 
behaviors, including their proliferation, differentiation and mi-
gration [56–58].

Engineered biomaterials that mimic the ECM can be designed 
to provide a similar environment for DSCs to interact with to sup-
port their differentiation, migration and survival. The emulation 
of engineered biomaterials on natural ECM offers a supportive 
microenvironment for DSCs. Biomaterials can be leveraged to 
fabricate scaffolds or similar structures that emulate the physi-
cal and biochemical characteristics of the extracellular matrix 
(ECM). This facilitates the differentiation of DSCs into functional 
cells, vital for tissue engineering and regenerative medicine, 
while shielding them from local inflammation [59–61]. Modifying 
the natural ECM’s stiffness necessitates adjusting matrix protein 
concentration, leading to increased ligand density and decreased 
mesh size [62]. In contrast, the rigidity of synthetic biomaterials 
can be changed without altering ligand density, significantly aid-
ing mechanobiology studies on cells encapsulated in a 3D matrix 
[63–65]. Therefore, material and biological scientists have gained 
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increasing attention from engineered biomaterials, specifically 
supramolecular interaction-crosslinked hydrogels.

Supramolecular hydrogels, with their unique viscoelastic 
properties, have been found to regulate various cell behaviors, in-
cluding proliferation, differentiation, migration and invasion, 
and they can also sustain multiple stem cells for long-term tissue 
regeneration [66, 67]. A broad assortment of integrins act as the 
central receptors associated with mechanosensing. They can 
relay the pressures the ECM imposes from cell membranes to 
numerous intracellular components [68–70]. Considering the 
distinct characteristics of supramolecular hydrogels and the 
mechanosensing-related signaling pathways in stem cells, 
these hydrogels can serve as 3D synthetic stem cell niches. 
These niches can modulate cellular behavior and steer cell des-
tiny [71–73]. The dynamics of the hydrogel assist in reshaping the 
matrix through deformation induced by cell traction forces, thus 
enabling the cells to proliferate, spread out and transform 
following the mechanics of the engineered matrix (Figure 2A). 
When subjected to specific biochemical or mechanical stimuli 
from carefully constructed stem cell niches, stem cells can be 
programmed to differentiate into cell types or to organize into 
distinct tissue forms autonomously [69, 74, 75]. The relayed 
mechanical aspects of the ECM can trigger the activation of 
mechanoresponsive signaling proteins such as focal adhesion ki-
nase, microtubule-associated protein kinase, Ras homolog gene 
family member A and YAP/TAZ signaling. Alternatively, they can 
establish a direct connection with the nucleus to oversee the epi-
genetic transcription of chromatin [63, 76, 77] (Figure 2B). 
Furthermore, the determination of DSC fate can be achieved 

through interactions between cytokines and their receptors (e.g., 
TGF family) and incorporated drugs.

The potential of engineered biomaterials that simulate 
interactions between DSCs and the ECM for tissue engineering is 
substantial, specifically in repairing and regenerating damaged 
tissues. However, more research is warranted to fully 
comprehend these biomaterials’ most effective properties and 
designs to harness their capabilities for tissue repair and 
regeneration.

Stimuli-responsive properties of engineered 
biomaterials
Stimuli-responsive biomaterials are specifically crafted materials 
capable of altering their physical or chemical characteristics 
in reaction to specific triggers like temperature, pH, or light. 
The potential applications of these materials span a wide range, 
including tissue engineering, drug delivery and biosensing.

In tissue engineering, biomaterials that react to stimuli 
can furnish a more dynamic and adaptable environment for cel-
lular growth and differentiation. For instance, a temperature- 
responsive biomaterial could offer varied cell backgrounds based 
on temperature, subsequently impacting cell behavior. 
Biomaterials responding to pH or light can deliver therapeutic 
cells and drugs. He et al. [78] employed a nanocomposite hydrogel 
for tissue regeneration. By integrating the antibiotic moxifloxacin 
hydrochloride and stem cells, the nanocomposite hydrogel be-
came pH-responsive and could precisely deliver and release the 
drug and stem cells in an acidic microenvironment. Han et al. [79] 
crafted a light-responsive nanocomposite hydrogel composed of 

Figure 1. Design principles of biomaterials and interactions between DSCs and biomaterials. (A) The cross-sectioning SEM image of the 
microstructures of tubular scaffolds. Reproduced with permission from Ref. [43], Copyright 2014, Elsevier. (B) Schematic illustration of the synthesis 
and fabrication of microsphere. Reproduced with permission from Ref. [47], Copyright 2016, Elsevier. (C) The design of methacrylate hyaluronate-based 
hydrogel combined with NP928 drug. Reproduced with permission from Ref. [51], Copyright 2022, International & American Associations for Dental 
Research. (D) The fabrication of peptide-based self-assemble hydrogel for dental tissue engineering. Reproduced with permission from Ref. [52], 
Copyright 2021, Elsevier.
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PNIPAM and PDA NPs, which underwent phase transitions and 
volume changes under near-infrared (NIR) light. This enabled 
NIR light to induce drug and stem cell release and facilitate heal-
ing, thereby serving the diverse needs of biomedical applications.

Translational potential of biomaterials
Biomaterials possess an extensive array of potential medical uses, 
encompassing tissue engineering, drug delivery and medical 
implants. Nevertheless, the transition of biomaterials from re-
search labs to clinical settings necessitates rigorous testing to vali-
date their safety and effectiveness [80]. A critical aspect of the 
translational potential of biomaterials is their biocompatibility, 
which refers to their ability to interact with biological systems 
without causing an adverse response. For medical applications, 
biomaterials must be biocompatible, nontoxic, noninflammatory 
and nonimmunogenic. Another critical factor in the translational 
potential of biomaterials is their ability to be manufactured at 
scale and at a reasonable cost. Biomaterials that are difficult or ex-
pensive to manufacture may not be practical for clinical applica-
tions [81]. Some biomaterials may be classified as medical devices, 
with a shorter approval process than drugs or biologics. However, 
even medical devices may require significant testing and docu-
mentation to demonstrate safety and efficacy.

Host response to the transplantation of 
biomaterials
Effects of cell-laden engineered biomaterials on 
local inflammation
Local defects or damaged tissues can initiate the release of a se-
ries of damage-associated molecular patterns, which will recruit 

various immune cells and activate the release of inflammatory 
cytokines, thereby causing severe local inflammation [82–86]. 
The ability of DSCs to modulate the immune response positions 
them as a promising therapeutic choice for an array of 
conditions, such as inflammatory diseases, tissue damage and 
degenerative disorders. Commonly utilized in tissue engineering 
and regenerative medicine for repairing and regrowing damaged 
tissue, DSCs are also under investigation for their potential 
application in treating autoimmune diseases and combating 
transplant rejection.

The immunomodulatory properties of DSCs can be mediated 
by various signaling, including cytokines, chemokines and 
growth factors [87–89]. These molecules can regulate the 
immune response and mitigate inflammation by restraining 
immune cells’ activation and growth, including T and B cells 
[90, 91]. Nishimura et al. [92] demonstrated that DSCs could 
promote the polarization of macrophages to M2 phenotype and 
prevent periodontal bone loss through paracrine. More precisely, 
they can discharge extracellular vesicles (EVs) that house immu-
noinhibitory miRNAs and proteins, subsequently restraining the 
release of inflammatory cytokines from immune cells and pro-
moting polarization towards prohealing subtypes. Additionally, 
they can spur the formation of regulatory T cells, which are ben-
eficial in dampening immune responses and lessening inflamma-
tion. Zheng et al. found that the miRNAs in the exosomes 
secreted by DSCs can change the balance of Th17 and Treg cells 
and reverse the immune imbalance in periodontitis. The delivery 
of DSCs and their EVs via engineered biomaterials holds great 
therapeutic potential in tissue engineering and regenerative 
medicine. It identified a series of candidate biomolecules in EVs, 
which can significantly promote tissue regeneration or inhibit lo-
cal inflammation. Although it is hard to get FDA approval for the 
combinational delivery of DSCs and EVs, the identified candidate 
biomolecules in EVs, including miRNAs, cytokines and enzymes, 
can be synthesized in vitro and used for synergistic therapy 
with DSCs.

Engineered biomaterials can be deliberately designed to work 
with DSCs to further control local inflammation, aiding tissue re-
pair and regeneration. Inflammation is a multifaceted process 
that entails activating immune cells and generating a variety 
of signaling molecules, including cytokines and chemokines 
[93–95]. However, excessive or prolonged inflammation can lead 
to tissue damage and scarring and can also interfere with the re-
pair and regeneration of damaged tissue. Engineered biomateri-
als can be designed to modulate local inflammation in various 
ways. These biomaterials can be tailored to discharge anti- 
inflammatory entities like cytokines or growth factors, which can 
help mitigate inflammation. The pore size of such materials can 
significantly influence the degree of immune cell penetration. 
For instance, the pore size of hydrogels can be manipulated 
through various strategies, such as tweaking the crosslinking 
density or employing templating techniques [96]. Pore size can 
affect multiple properties of hydrogels, including their mechani-
cal strength, permeability and ability to support cell adhesion 
and proliferation [97]. When it comes to the fact that the smaller 
pore sizes can create physical barriers that limit the movement 
of cells, as well as reduce the availability of nutrients and oxygen 
that cells need to survive and increase [98].

On the other hand, larger pore sizes in hydrogels can promote 
immune cell infiltration. The larger pore sizes allow for increased 
diffusion of molecules and nutrients and create more cell space. 
Furthermore, larger pore sizes could potentially encourage the 
development of blood vessels, which would enhance the supply 

Figure 2. Schematic illustration of the interactions between DSCs and 
biomaterials. (A) The matrix remodeling via the cell traction force- 
induced deformation. (B) The mechanism of biomaterials-mediated 
determination of DSC fate: the activation of mechanoresponsive 
signaling proteins via transduced mechanics of the ECM, the 
interactions between cytokines and their receptors (e.g., TGF family) and 
loaded drugs.
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of oxygen and nutrients to the cells [99]. Lin et al. designed a chi-
tosan hydrogel encapsulating exosomes from DSCs to treat peri-
odontitis by immunoregulating macrophage polarization [100]. 
The formulated hydrogel can suppress the pro-inflammatory po-
larization (M1) of macrophages while fostering the pro-healing 
polarization (M2) of macrophages (Figure 3A). Hydrogels can ad-
ditionally serve as drug reservoirs to attract DSCs from host tis-
sue and guide their development for successful tissue 
regeneration. Yang et al. engineered an injectable and thermo-
sensitive hydrogel to foster periodontal regeneration [101]. The 
reported hydrogel was loaded with aspirin and erythropoietin, 
which can prevent bone resorption and reduce local inflamma-
tion (Figure 3B). They can suppress the activation and prolifera-
tion of immune cells, reducing inflammation. Lee et al. reported 
the design of cell niches with appropriate stiffness to maximize 
the production of Treg cells from naïve T cells [102]. The designed 
PDMS substrates with a stiffness of 100 kPa can effectively induce 
the formation of Treg cells (Figure 3C). Liu et al. [103] developed a 
hydrogel conjugated with PD-L1 to suppress local inflammation 
and promote fracture healing. The obtained hydrogel can 
effectively suppress the activation of T cells only in the local 
transplantation sites without any systematic immunoinhibitory 
side effects (Figure 3D).

Effects of biomaterial degradation on 
therapeutic outcomes
Biomaterial degradation refers to the process by which 
biomaterials break down or are broken down by the body over 

time [104–106]. The degradation of biomaterials can affect thera-
peutic outcomes in tissue engineering, as the rate and extent of 
degradation can influence the behavior of cells and the overall 
effectiveness of the therapy [107]. The degradation rate of bioma-
terials must be carefully balanced, as both too fast and too slow 
degradation can compromise therapeutic outcomes [108, 109]. 
Among all biomaterials used for the delivery and therapy of DSCs 
in tissue engineering and regenerative medicine, polylactic acid 
(PLA) is a biodegradable polymer widely used as a scaffold mate-
rial in tissue engineering [110, 111]. If PLA degrades too slowly, it 
may hinder tissue regeneration by occupying space that new 
cells need to infiltrate and grow.

Conversely, if it degrades too quickly, the scaffold may lose its 
mechanical strength before the new tissue fully matures, 
potentially leading to collapse or insufficient support. Moreover, 
collagen is a naturally occurring protein with excellent biocom-
patibility and biodegradability [112–114]. Its degradation is 
mainly controlled by enzymatic processes, such as those medi-
ated by matrix metalloproteinases [115–117]. If the collagen 
degrades too slowly, fibrous tissue may develop around the 
implant, causing inflammation and impeding the proper func-
tioning of the engineered tissue. If it degrades too quickly, the 
cells may not have enough time to migrate, proliferate and differ-
entiate, resulting in poor tissue integration.

Clearance of biomaterials in vivo
The clearance of biomaterials in vivo is a crucial aspect of their 
biocompatibility and safety, as it determines how the body 

Figure 3. Host response to the transplantation of biomaterials. (A) The design of chitosan hydrogel loaded with exosomes secreted by DSCs. 
Reproduced with permission from Ref. [100], Copyright 2020, Elsevier. (B) Schematic illustration of the injectable and thermosensitive hydrogel. 
Reproduced with permission from Ref. [101], Copyright 2019, Elsevier. (C) The design of PDMS substrates with appropriate stiffness for forming treg 
cells. Reproduced with permission from Ref. [102], Copyright 2018, Wiley. (D) The design of PD-L1 conjugated hydrogel for the suppression of T cell 
activation. Reproduced with permission from Ref. [103], Copyright 2022, Elsevier.
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processes and eliminates these materials after they have fulfilled 
their therapeutic purpose [118, 119]. Various factors can influ-
ence the clearance of biomaterials, including their chemical 
composition, physical structure, surface properties and degrada-
tion behavior [120]. Biomaterials can be designed to be biodegrad-
able, meaning the body can break them down into smaller 
molecules that can be safely metabolized or excreted [107, 121]. 
The rate and extent of biomaterial clearance in vivo can vary be-
cause of its chemical composition, physical structure and surface 
properties. They can be classified into three major types in 
DSCs-mediated tissue engineering and regenerative medicine: 
nanoparticles, microparticles and hydrogels. The clearance of 
nanoparticles is strongly influenced by their size, shape, surface 
charge and surface modifications. Nanoparticles featuring hy-
drophilic coatings, like polyethylene glycol, are less prone to swift 
elimination by the reticuloendothelial system and can hence 
maintain their presence in the bloodstream for extended dura-
tions [122–124]. Nanoparticles can be cleared from the body 
through various routes, including renal excretion (for smaller 
particles), hepatobiliary clearance (for larger particles), or uptake 
and degradation by immune cells (especially for particles recog-
nized as foreign by the immune system). Microparticles are more 
extensive than nanoparticles and can be cleared through biodeg-
radation, phagocytosis by immune cells and excretion via the 
lymphatic system. For example, microparticles made of poly (lac-
tic-co-glycolic acid) are biodegradable and can be gradually bro-
ken down into smaller molecules that can be metabolized or 
excreted [125–127]. For other polymers, such as PGA (polyglyco-
lide) and PLA (polylactide), the acidic degradation products can 
cause adverse effects by lowering the pH and inducing an inflam-
matory response. But most of their products are small molecules 
that can enter the tricarboxylic-acid cycle or are metabolized by 
the kidneys. They are excreted as carbon dioxide and water or via 
urine. Most inorganic particles in devices are elements required 
for homeostasis and the continuance of physiological processes. 
Of the following elements, Mg, Zn, Fe, Si, Ge, W and Mo, the most 
concerning ones are Mg and Si due to their degradation product, 
hydrogen gas that can damage the surrounding tissues [107, 121– 
123]. The clearance of hydrogels depends on their degradation 
behavior, which can be influenced by hydrolytic or enzymatic 
degradation, swelling and dissolution. For example, hyaluronic 
acid-based hydrogels can be degraded by hyaluronidases, 
enzymes naturally present in the body and the resulting degrada-
tion products can be safely metabolized or excreted [128–130].

Conclusion and perspectives
In summary, we comprehensively review DSCs from biomaterial 
design to host response. Based on their applications, biomaterials 
can be designed into different types of scaffolds, microspheres 
and hydrogels. They can be further tailored through engineering 
methodology to mimic the interactions between DSCs and natu-
ral ECM. Engineered biomaterials significantly overcome the lim-
itations of natural biomaterials, thereby improving the outcomes 
in tissue engineering and regenerative medicine. However, the 
designed biomaterials must combine physical, biological and me-
chanical properties while providing the necessary mediators and 
signaling to appropriate targets to induce tissue regeneration. 
Another aspect to be focused on is host response after the trans-
plantation of biomaterials. Engineered biomaterials should have 
good immunoregulatory properties, fast degradation and easy 
clearance. There is an emerging need to design more and more 
tools, such as chemistry, materials and biology, to construct 

better biomaterials to support cell fate determination and tissue 
regeneration.

Further research is needed to understand biomaterials’ opti-
mal properties and designs to maximize their potential for modu-
lating local inflammation and supporting tissue repair and 
regeneration before translating in vitro and in vivo results into 
clinical trials. Understanding the optimal degradation rate and 
extent of biomaterials still needs further improvement to maxi-
mize their potential for tissue repair and regeneration. Finally, 
the optimal clearance rate and volume of biomaterials are re-
quired to minimize potential adverse effects and maximize their 
potential for tissue repair and regeneration.
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