
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Automated Registration of Image Pairs with Dramatically Inconsistent Appearance

Permalink
https://escholarship.org/uc/item/0nz6r315

Author
Kwon, Youngwook Paul

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nz6r315
https://escholarship.org
http://www.cdlib.org/

Automated Registration of Image Pairs with Dramatically Inconsistent
Appearance

by

Youngwook Paul Kwon

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sara McMains, Chair
Professor Alice M. Agogino
Professor Alexei A. Efros

Fall 2017

Automated Registration of Image Pairs with Dramatically Inconsistent
Appearance

Copyright 2017
by

Youngwook Paul Kwon

1

Abstract

Automated Registration of Image Pairs with Dramatically Inconsistent Appearance

by

Youngwook Paul Kwon

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

The objective of this research is to advance the state of the art in image matching algorithms,
especially with regard to input image pairs that include dramatically inconsistent appearance
(e.g., different sensor modalities, significant intensity/color changes, different times such as
day/night and years apart, etc.). We denote this range of input as disparate input. To
handle disparate input, one should be able to capture the underlying aspects not affected by
superficial changes to appearance.

To this end, we present a novel image descriptor based on the distribution of line segments
in an image; we call it DUDE (DUality Descriptor). By exploiting line-point duality, DUDE
descriptors are computationally efficient and robust to unstable line segment detection. Our
experiments show that DUDE can provide more true-positive correspondences for challenging
disparate datasets.

Beyond traditional image matching, we have designed an effective autograding system
for multiview engineering drawings that also uses DUDE to improve its performance. The
autograding system needs to be able to compare drawings that may include appearance
changes due to students’ mistakes, but also needs to differentiate between allowable and
erroneous translation and/or scale changes.

In the addition to hand-crafted descriptors, this research also investigates data-driven
descriptors generated by new deep learning based approaches. Due to the lack of labeled
disparate imagery datasets, it is still challenging to effectively target disparate input using
deep learning approaches. Therefore we introduce an aggressive data augmentation strategy
called Artificial Intensity Remapping (AIR). By applying AIR to standard datasets, one can
obtain models that are more effective for registration of disparate data. Finally, we compare
the DUDE descriptor to a deep learning based descriptor powered by AIR.

i

To my beloved parents

ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1

2 Background and Previous Work 5
2.1 Feature detection and matching . 5
2.2 Transformation model estimation . 8

3 Linear Feature Matching Without Descriptors 11
3.1 Introduction . 11
3.2 Algorithm . 11

3.2.1 Line Segment Detection . 11
3.2.2 Line Segment Merging . 11
3.2.3 Transformation . 16
3.2.4 Matching Score . 17
3.2.5 Filtering . 20

3.3 Results . 20
3.4 Summary . 32

4 Linear Feature Matching With DUDE Descriptor 33
4.1 Introduction . 33
4.2 Proposed Method . 33

4.2.1 Feature detection . 34
4.2.2 Feature description . 36
4.2.3 Feature Matching . 40

4.3 Experimental Results . 42
4.3.1 Evaluating detections . 42
4.3.2 Evaluating descriptors . 44
4.3.3 Shape matching using DUDE . 46

iii

4.3.4 Geometric characteristics of DUDE 48
4.4 Conclusion . 50

5 Autograder for Multiview Drawing Using DUDE 52
5.1 Introduction . 52

5.1.1 Missing and Incorrect Lines . 54
5.1.2 Mismatched View Scales . 54
5.1.3 Misaligned Views . 54
5.1.4 Views in Incorrect Relative Locations 55

5.2 Related work . 56
5.3 Algorithm . 57

5.3.1 Single View Transformation Estimation 57
5.3.2 Application to Multiview Drawings 62

5.4 Grading Checks . 62
5.4.1 Element Comparison . 63
5.4.2 Front-Right View Alignment . 63
5.4.3 Front-Top View Alignment . 63
5.4.4 Uniform Scale . 63
5.4.5 Mirroring . 63
5.4.6 Rotation / Skew . 65

5.5 Computational Improvement . 65
5.5.1 Filtering . 65

5.5.1.1 Attribute and Vertex Degree Filtering 65
5.5.1.2 Transformation Filtering . 65
5.5.1.3 Connectivity Filtering . 66

5.5.2 DUDE-based choice . 66
5.6 Implementation Issues . 68

5.6.1 Converting from dwg to dxf . 69
5.6.2 Loading dxf in MATLAB . 69
5.6.3 Merging Elements . 69
5.6.4 Pre-defining Layer Names . 69

5.7 Results . 69
5.7.1 Grading result visualization . 71
5.7.2 Comparison with human grading . 71

5.8 Conclusion . 73

6 Deep Learning Based Image Matching 77
6.1 Introduction . 77
6.2 Datasets . 78
6.3 Artificial Intensity Remapping . 81
6.4 Experiments . 83

6.4.1 Setup . 83

iv

6.4.2 Network training . 83
6.4.3 Evaluation . 85

6.5 Comparison with DUDE . 87
6.6 Summary . 88

7 Conclusion and Future Work 89

A Histogram comparison 91

B Objective loss functions 92

Bibliography 93

v

List of Figures

1.1 Example image pairs with weakly consistent appearance: [a, left] different ranges;
[a, right] different scales; [b, left] CT (Computed Tomography) and MR (Magnetic
Resonance) [Kelman et al., 2007]; [b, right] Google Earth and SAR (Synthetic
Aperture Radar) [Sandia National Laboratories, 2016]; [c] Somewhere in Liver-
more in 2004 and 2012; [d] Google Earth and Google Map. 2

1.2 Public datasets . 3

2.1 Two types of Siamese network for image matching; (a) similarity: learning a
vector embedding D(x) for an input x, and (b) embedding: learning a real-valued
similarity function f(x1, x2) for an input pair x1 and x2 8

3.1 Line segment detector and Canny edge extractor (example 1). 12
3.2 Line segment detector and Canny edge extractor (example 2). 12
3.3 Line segment merging step. 13
3.4 The angular distance ∆θ and the perpendicular distance ∆d 13
3.5 Examples of the scores Col(s, s′) for six sample input pairs 14
3.6 Projection to 1D parametric space. 15
3.7 (a) and (b) show the detected lines using LSD. The coloring is just for visual help

to distinguish individual line segments; (c) shows the 30 longest segments after
the merging step. 15

3.8 The three line segments highlighted in red in the two images is the choice that
yields the optimal transformation T ∗. The three circles in each image indicate
the intersection points of the three chosen segments. The circle color represents
correspondence between the points. 18

3.9 (a) shows the registration result using the optimal transformation T ∗. (b) visu-
alizes how S and S ′ are finally matched. 19

3.10 Result comparison: (a) Our algorithm (b) Fedorov et al. [2003b] 19
3.11 Our input dataset. 24
3.12 Result: greentest . 25
3.13 Result: circular_road . 26
3.14 Result: mountain . 27
3.15 Result: depth . 28

vi

3.16 Result: coast . 29
3.17 Result: livermore1 . 30
3.18 Result: map . 31

4.1 An example of two disparate images and their line segments: An EO (Elctro-
Optical) and a SAR (Synthetic Aperture Radar) image respectively from Sandia
National Laboratories [2016] (top), initial line segments from LSD [Grompone von
Gioi et al., 2012] (middle), and the proposed randomly merged line segments
(bottom). 34

4.2 Merging criterion for the randomized merging process; [a] shortest distance (in
pixel), [b] perpendicular distance (in pixel), and [c] angle (in degree) between line
segment i and j. 35

4.3 Dual representation r, θ, f1, f2 of a line segment 37
4.4 An example of f -binning for a line segment with endpoints f1 = −0.4, f2 = 0.1

and six bins. 38
4.5 The summary of DUDE descriptor process. 38
4.6 2D visualization of DUDE . 39
4.7 Three example DUDE descriptors . 39
4.8 Line segment perturbation. In addition to the originally detected line segments,

we intentionally duplicate each one d times while randomly perturbing its end-
points within ±3 pixels. By doing so, we blur the DUDE descriptors and make
them less sensitive to unstable endpoint detection. 40

4.9 Line segment coverage calculation. We sample points on s1 and calculate the
closest distance from each sample point to s2, and check if the distance is within
a threshold. The coverage score between two segments, c(s1, s2), is the fraction
of the number of “covered” sample points (green) to the total number of sample
points. 41

4.10 Threshold for our coverage metric C(Si, Sj) (x-axis). Correct matches are shown
in green, and incorrect matches are shown in red. Generally if C(Si, Sj) is less
than around 0.4, the match is highly likely incorrect. 41

4.11 Three examples of correctly matched features and relevant line segments. A red
circle represents a feature, and green line segments are those within a feature. . 42

4.12 Repeatability curves. Five detection systems are compared: SIFT(DoG), MSER,
SYM-I, SYM-G, and MMID (ours). For a given image pair (left column), re-
peatability (y-axis) is computed when considering top-k (x-axis). 43

4.13 Precision(y)-Recall(x) curves comparing performance of descriptors: SIFT, SYM-
D, JSPEC, DUDE, DUDE-F. The plots and example choices follow Bansal and
Daniilidis [2013]. For each image pair (each column), and when using different
feature detection types (each row), Precision-Recall curves are illustrated. 45

vii

4.14 Matching of lines in the presence of unstable endpoint locations and noise: two
sets of lines (a and b), and the matching result (c). Correspondences are shown
both as the same number and color. Unmatched lines are shown in gray with no
number. 48

4.15 Rotation (b) and scale (d) invariance: [b] Colors and numbers mark matching
pairs; line segment 8 is the only one that is not matched correctly. [d] Both
colors and thin gray lines mark matching pairs. Circles show histogram radius.
Note that there are different numbers of line segments detected. 49

4.16 DUDE interpretations of the parallel and orthogonal line segments. 50

5.1 3D geometry represented in multiview drawings in Figure 5.2 52
5.2 An example of a formal multiview drawing. Note that in multiview engineering

drawings the views are not labeled; the placement and alignment communicates
the relative viewpoints. 53

5.3 Two classes of mistakes. Note that the labels on the views are not present in the
actual multiview drawing. 54

5.4 Two more classes of mistakes. Note that the labels on the views are not present
in the actual multiview drawing. 55

5.5 An example of (a) a solution drawing and (b) a student’s drawings and (c) their
naïve comparison. Because they have different scales, translations, and offsets, a
naïve comparison does not work. 56

5.6 An example pair of views for transformation estimation. 58
5.7 (a) Even if we align the two views in terms of scale and translation, it is not easy

to compare them at a glance; here half the elements still appear to be slightly off.
(b) In fact, most elements match perfectly if the correct affine transformation is
applied. The real problem is mirroring and two lines that only partially differ. . 59

5.8 We estimate the transformation for each view individually using RANSAC. By
applying the transformations to the views in Ds, we get the transformed version
D′s. Then the elements of D′s and Dt can be compared one by one. 64

5.9 DUDE descriptor frame for a given point. 67
5.10 DUDE matching . 67
5.11 Comparing the solution to a student’s drawing. To be compared to Dt, all views

in Ds are scaled 1.7 times larger. The top, front, and right views are translated (-
33.8, +186.2), (-33.8, +39), and (+187.7, +39), respectively. All views have zero
rotation and skew. By aligning them, the algorithm finds incorrect and missing
lines, which are represented in blue and dark red. 70

5.12 Color coded difficulty. The elements that are most frequently “missing” are shown
in dark red, and those less frequently missing are shown in light red (a and c).
The elements that are most frequently “incorrect” are shown in dark blue, and
those less frequently incorrect shown in light blue (b). The numbers in the color
bar indicate the fraction of student submissions that made the mistake for each
element. 72

viii

5.13 Comparison with human grading results. 73
5.14 Two examples of category B. Even though different rubrics are applied, errors are

identified. 74
5.15 Two examples of category C. While a human grader failed to notice these mistakes,

our autograding system found them. 75
5.16 An example of category D. Our algorithm failed to estimate an appropriate trans-

formation for the front view of the solution drawing. Note that the student
drawing (b) has multiple mistakes in the front view. 76

6.1 Examples of AIR: one original patch (leftmost) and its seven derived patches . . 78
6.2 Examples of different datasets: Statue of Liberty (LY), Notre Dame (ND), Half

Dome in Yosemite (YO) are from Brown et al. [2011]. Our disparate sets, MU1
and MU2, include images cropped from Hauagge and Snavely [2012] and others,
and Razakarivony and Jurie [2015], respectively. 79

6.3 Joint distribution of corresponding pixel intensities. Hotter colors reflect more
frequent occurrence. (a-e): Original patches (intensities ∈ [0, 255]). (f-j): Pre-
processed patches (intensities ∈ [-.3, .3]). 80

6.4 Examples of AIR generation and application. 82
6.5 Training process of an example model training using LY and ND with a validation

set from YO. The real curves are shown in light colors (light red for AUC and
light blue for loss). To visualize their trends, we smooth them using exponential
smoothing, and mark them in darker red and darker blue colors. 84

6.6 Precision-recall curves for each non-disparate test set. 86
6.7 Precision-recall curves for each disparate test set. 87

ix

List of Tables

4.1 Repeatability . 44
4.2 Descriptor mean average precision (mAP) evaluation and comparison 45

5.1 Computation time comparison. 68

6.1 Architectural comparison with the most closely related work: C(w, s, n) denotes
a convolution layer with n filters of size w × w and stride s; B(w, s, n) denotes
C(w, s, n) with batch normalization; P(w) denotes a pooling layer of size w × w
with stride w. 82

6.2 AUC of precision-recall curves for cross-subset MVS test (bold denotes top per-
formance). 86

6.3 AUC of precision-recall curves for disparate test (bold denotes top performance). 86
6.4 Mean average precision (mAP) evaluation and comparison between AIR-augmented

deep-learning descriptor and DUDE. DUDE is comparable to AIR-augmented
deep-learning descriptor when using SIFT as the detector, and a bit better in the
case of a hypothetical perfect detector as represented by GRID. 88

x

Acknowledgments

I would like to express my deepest and sincere appreciation to my research adviser,
Professor Sara McMains. I’ve always been fascinated with the intersection of mechanical
engineering and computer science, and I feel grateful to have an adviser where our research
interests are aligned. Professor McMains has been incredibly knowledgeable, supportive, and
innovative in furthering my interest in both disciplines, and I’ve learned so much working
with her on interesting and thought-provoking research projects. Her research acumen has
been critical to my success, and throughout the process, she has been always one of the most
kindest and patient advisers.

I would also like to thank Professor Alexei A. Efros and Professor Alice M. Agogino
for being on my dissertation committee. Professor Efros and Professor Agogino have al-
ways been an inspiration to my work, and I’ve always admired their passion and meaningful
contributions to society. I’m also grateful to the members of my qualifying exam commit-
tee including Professor David Dornfeld, Professor Dennis K. Lieu, and Professor Jonathan
Shewchuk. They provided insightful suggestions to my research proposal.

In Summer 2012, I completed my first summer internship at Lawrence Livermore National
Laboratory. My dissertation topic arose out of this experience, so it will always remain a
pleasant memory. I want to thank Sheila Vaidya, a group director, for extending this research
opportunity. I’m also grateful to Goran Konjevod, my mentor, was incredibly brilliant and
supportive and Hyojin Kim, one of my co-workers for interesting and intellectual discussions.

In addition, I would like to express my appreciation towards my labmates, Xiang Li, Bodi
Yuan, Zhongyin Hu, Sushrut Pavanaskar, Yusuke Yasui, Sushrut Pande, and Peter Cottle for
enriching my life in Berkeley. I’ll never forget the engaging conversations on research ideas,
projects, papers, conferences, life at Berkeley, and beyond. The Korean Graduate Student
Association also made my years at UC Berkeley the most memorable period in my life by
fostering a sense of community and unforgettable friendships.

While I was finishing my dissertation, Phantom AI, an early stage autonomous driving
startup, provided the unique opportunity to work on an exciting project marking my first
contribution to the real world incorporating my research. I feel grateful to work with many
talented and supportive team members, and it’s been exciting to work with everyone towards
the same goal.

My research was funded by National Science Foundation, Lawrence Livermore National
Lab, and the Office of Teaching and Learning at UC Berkeley. Finally, I would like to thank
the Mechanical Engineering and Computer Science departments for their supports including
several scholarship opportunities.

1

Chapter 1

Introduction

Image matching is the task of finding a set of features in one image that can be identified as
the same features in the counterpart image for a given input image pair. This task is one of
the most important and fundamental tasks for diverse applications such as image stitching
[Brown and Lowe, 2003], shape matching [Belongie et al., 2002], medical image registration
[Stewart et al., 2003], and so on.

An extremely useful paradigm is to use local features. Specifically, feature-based methods
typically require feature detection and feature description steps. A feature detector detects
salient features (e.g., corner points, keypoints, or blob-like regions) in an image that are likely
to be detected in the counterpart image. A feature descriptor encodes the local appearance
of the detected feature (e.g., a sub-patch around a feature) with a vector of a finite size.
Generally, detection and description are done individually for each image. Then, one can
find matches based on descriptor similarity, which is defined by a certain similarity metric
(e.g., Euclidean distance).

We can divide the difficulties encountered during image registration into two categories.
First, even though an image pair contains the same scene or object, the images may in-

clude range and/or scale changes as shown in Figure 1.1a. In other words, viewpoint changes
may cause geometric transformations (e.g., affine transformations, or in a more general case,
homographies). Due to the viewpoint changes, a naïve approach such as excerpting a sub-
patch from image 1 with a fixed window size and comparing it within image 2 in a sliding
window manner would not work. Much research has addressed the difficulty due to view-
point changes, and therefore image feature matching is relatively robust for images taken
with the same sensors under the same conditions but with only view point changes (e.g.,
image panorama stitching).

However, there are still many challenging images where existing methods fail. Difficulties
often arise from weakly consistent appearance such as: images from different modalities,
where the different modalities of sensors may even lead to some features being completely
absent in one modality, or gradient reversals or other extreme changes in appearance (Fig-
ure 1.1b); images taken years apart (Figure 1.1c); drawings vs. photos (Figure 1.1d); etc.
Automatically finding and matching correspondences between these images is still quite dif-

CHAPTER 1. INTRODUCTION 2

(a) Different scene ranges and scales

(b) Different sensors

(c) Different time (d) Different types

Figure 1.1. Example image pairs with weakly consistent appearance: [a, left] different ranges;
[a, right] different scales; [b, left] CT (Computed Tomography) and MR (Magnetic Reso-
nance) [Kelman et al., 2007]; [b, right] Google Earth and SAR (Synthetic Aperture Radar)
[Sandia National Laboratories, 2016]; [c] Somewhere in Livermore in 2004 and 2012; [d]
Google Earth and Google Map.

ficult. We denote the cause of these difficulties as disparate appearance.
Let’s consider how the feature detection and feature description steps relate the two types

of difficulties. To overcome view change difficulties, feature detectors are more critical to
successful performance than feature descriptors, since it is important to recognize candidate
regions of interest (ROIs) invariant to transformations that input images may have. If one
can successfully find and normalize a good set of candidate ROIs, the corresponding ROIs
would have similar appearance. So, feature descriptors may not play as important a role as
feature detections.

In the case of disparate appearance, not only is detection challenging, but also descriptors
need to capture the underlying aspects not affected by superficial changes to appearance. In
other words, even with an almost perfect level of feature detection given, performance may
still be poor. This dissertation focuses more on the latter challenge, and therefore more on
descriptors than detectors.

To visually show the two types of difficulty, we give examples from some well-known and
publicly accessible datasets in Figure 1.2. The Oxford dataset in Figure 1.2a and the Brown
dataset in Figure 1.2b mainly cover the first category of view point changes, whereas the

CHAPTER 1. INTRODUCTION 3

(a) View point (including zoom and rotation) [Visual Geometry Group, University of Oxford, 2016]

(b) View point [Brown et al., 2011]

(c) Illumination [Wang et al., 2011]

(d) Architecture (time, photo vs. drawing, and so on) [Hauagge and Snavely, 2012]

(e) Kelman (sensor, time, and so on) [Kelman et al., 2007]

Figure 1.2. Public datasets

illumination dataset in Figure 1.2c, the architecture dataset in Figure 1.2d, and the Kelman
dataset in Figure 1.2e cover the second category of disparate appearance.

In considering the disparate appearance challenge, we consider two questions: (1) what
information tends to be consistently preserved across different modalities despite significant
appearance changes (e.g., reversal of brightness and darkness, partial absence of edges, etc.),
and (2) how can we capture and describe the information effectively and efficiently without
being affected by local appearance?

Inspired by the first question, we propose detecting (hundreds or thousands of) line
segments from a given image and exploiting them as input to our descriptor, because lines
will be preserved despite reversals of intensities. Since those detected line segments capture
the shape structures in images — even when images do not include well-defined shapes with
closed boundaries such as in aerial images — if one can describe a point in one image by

CHAPTER 1. INTRODUCTION 4

relying on its geometric position relative to (hundreds or thousands of) line segments, then
the description can be consistent in the counterpart image. In Chapter 3, we investigate if
line segments can be appropriate cues for image matching. We extract line segments from
an image and use them for registration. We search for corresponding line segments and
estimate the transformation using RANSAC [Fischler and Bolles, 1981]. Even though we
show meaningful results using line segments, this method has a limitation in that the search
space is huge. This limitation motivates the second question mentioned above.

To answer the second question, we propose a novel descriptor system, DUDE (DUality
DEscriptor), that uses a histogram based on a weighted transform of lines to an r-θ dual
space (or parameter space) of lines. By exploiting line-point duality, DUDE captures geo-
metric relationships very efficiently. Our experiments show that the DUDE descriptor can
be distinctive within an image and consistent across different modalities, which are the key
characteristics of good descriptors. We introduce DUDE in Chapter 4.

DUDE is not limited to image matching. In Chapter 5, we introduce an application of
DUDE to compare multi-view engineering drawings for grading, where solution and student
drawings may differ in scale and translation. Using DUDE, we develop an educational
autograding system that can differentiate between allowable transformations (i.e., distance
between adjacent views) and student errors (i.e., distances between features in a single view).

So far, we have discussed mainly hand-crafted descriptors. More recently, approaches
exploiting deep learning to generate descriptors show impressive performance [Simo-Serra
et al., 2015; Zagoruyko and Komodakis, 2015; Kumar et al., 2016; Lin et al., 2016; Balntas
et al., 2016; Yi et al., 2016]. Motivated by such trends, we propose deep-learning-based
descriptors that are effective for disparate input in Chapter 6. This research is novel in
that we achieve this not by learning from a target disparate-appearance dataset but from a
non-disparate-appearance dataset.

Under this strategy, although the explicit goal is to propose a better descriptor embedding
for disparate input, the key is closely related to better generalization. To learn effectively
from a non-disparate-appearance dataset, we need to ensure that the learning process does
not overfit to the training data, so that it will be robust to extremely diverse input. In many
cases in machine learning research, evaluation of an algorithm is conducted by separating
a single dataset into training and test sets. Despite this separation, the sets may reflect
undesired and unintended correlation (e.g., a certain type of sensor), which will lead to the
trained models being less robust for images in the wild.

For better generalization, we introduce a new data augmentation strategy, Artificial
Intensity Remapping (AIR) in Chapter 6. Our experiments show that a model powered by
AIR outperforms not only for standard (unimodal) datasets but also for disparate-appearance
datasets. We compare our hand-crafted descriptor DUDE to multiple deep-learning based
descriptors powered by AIR.

Prior to starting our journey, we provide an overview of the literature in the next chapter.

5

Chapter 2

Background and Previous Work

2.1 Feature detection and matching
Zitová and Flusser [2003] broadly divide feature matching techniques into area-based and
feature-based approaches. Area-based methods focus more on feature matching than feature
detection. Area-based methods usually do not attempt to detect salient objects in images,
but try to find correspondences by comparing fixed certain windows (windows of a predefined
size or even entire images) in the reference image with sliding windows in the other image.
We can compare the two windows using correlation-like methods, Fourier methods, etc.
Area-based methods are especially vulnerable to changes in images. For example, since even
the shape of a window (usually a rectangle) in the reference image can be distorted by a
transformation, then it may be naive to expect to find a good correspondence with the
window of the original shape in the sensed image.

Due to the limitation of area-based approaches, much research has been focused on
feature-based approaches, putting more emphasis on the feature detection and description
stages, and therefore, making an effort to detect distinctive features. Feature descriptors
and similarity measures for them are used for the matching stage.

Many image feature detectors and descriptors have been proposed. Examples of fea-
ture detectors include Harris corner detector [Harris and Stephens, 1988], LoG (Laplacian of
Gaussian) [Lindeberg, 1998], DoG (Difference of Gaussian) [Lowe, 2004], Harris-affine [Miko-
lajczyk and Schmid, 2004], Hessian-affine [Mikolajczyk et al., 2005], and MSER (Maximally
Stable Extremal Region) [Matas et al., 2002].

One of the most popular feature descriptors is SIFT [Lowe, 2004]. Mikolajczyk and
Schmid [2005] conducted a performance evaluation of local descriptors, and SIFT showed the
overall best results. Many other descriptors can be found in Wang et al. [2011]; Mikolajczyk
and Schmid [2004]; Van De Sande et al. [2010].

These local feature detectors and descriptors have sophisticated designs to make them
robust to scale, illumination, and large view angle changes. Nevertheless, they do not exhibit
a similar level of repeatability and consistency across disparate images such as the ones we

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 6

are targeting.
Relatively less research has been devoted to matching and aligning these kinds of image

pairs. Stewart et al. [2003] present an algorithm to find an overall transformation from a
single correspondence, based on local descriptor distance and region growing. Kelman et al.
[2007] build an experimental dataset of images including different modalities and extreme
illumination changes, and present the SIFT-GM (Gradient Mirroring) and SIFT-GMEP
(Gradient Mirroring and Edge Precursors) descriptors, which are variations of SIFT to adapt
to different modalities. Irani and Anandan [1998] estimate the transformation (e.g., affine)
parameters to register images with locally determined information. Their assumption is that
when a pixel of one image approaches the correct location in the counterpart image, their
local similarity (e.g., normalized-correlation) will be maximized and the similarity surface
around the correct location will have a concave shape.

Shechtman and Irani [2007] propose Local Self-Similarities (LSS) that highlight intra-
image changes. The strategy is successful in detecting patterns across different image prop-
erties (colors, textures, etc.), but it does not provide rotational invariance. Another approach
is using dense descriptors. Typically these incur high costs in time and memory usage even
just for encoding the descriptors. Matching two sets of dense descriptors also requires an op-
timization process. The dense descriptor DAISY [Tola et al., 2010] emphasizes its descriptor
calculation efficiency, but it does not provide rotation invariance. DSIFT [Vedaldi and Fulk-
erson, 2010] does not provide scale invariance. Above all, using dense versions of a descriptor
(e.g., DSIFT) with optimization techniques would be more useful when its sparse version
(e.g., SIFT) guarantees a certain level of performance — for the purpose of acquiring higher
numbers of dense feature matches (as in optical flow). Unfortunately, such performance has
not been demonstrated on the challenging image pairs we target.

Compared to point and region features, line features have received less attention. Schmid
and Zisserman [1997a] propose a method to match line segments across views (even with a
wide baseline). However, the algorithm requires known epipolar geometry between the views.
A line descriptor named MSLD (Mean-Standard deviation Line Descriptor) was proposed by
Wang et al. [2009b]. They define Pixel Support Regions (PSR) of line segments, subdivide the
PSRs into sub-regions, and characterize the sub-regions using a SIFT-like strategy. Because
the resulting descriptor sizes vary with line lengths, they normalize the descriptors using
mean and standard deviation.

Line Signature [Wang et al., 2009a] by Wang et al. and Bunch Of Lines Descriptor
(BOLD) [Tombari et al., 2013] by Tombari et al. create a descriptor for a line segment by
clustering a small number (e.g., 10) of the nearest line segments into local groups, and then
encoding pairwise geometric relationships between the line segment and each segment in the
cluster. However, the geometric primitives determined by small numbers of line segment
endpoints typically vary across image modalities (e.g., disconnected short segments). In
addition, because the segment-pair-based geometric relationships can be computationally
expensive, a line segment cluster typically consists of only a small number of line segments.

More successful disparate image matching is reported by Hauagge and Snavely [2012] and
Bansal and Daniilidis [2013]. Hauagge and Snavely [Hauagge and Snavely, 2012] present fea-

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 7

ture detection and descriptors based on local symmetries. They also present a challenging
dataset, mostly architectural scenes that include symmetric shapes, exhibiting dramatic vari-
ations in lighting, time, modality, etc. Using the same dataset, Bansal and Daniilidis [2013]
present a method analyzing the eigen-spectrum of the joint image graph constructed from
all pixels in images, and achieve impressive experimental results. However, Hauagge and
Snavely [2012] may not be suitable for images that do not include symmetric objects, and
Bansal and Daniilidis [2013] is highly expensive both in memory and in time for eigen de-
composition of a huge matrix, which is impractical for most images. We evaluate our method
following their evaluation standards and show DUDE can achieve similar performance with
more efficient computation.

A Siamese network [Bromley et al., 1993] is a general deep-learning (or neural) network
for learning pairwise similarity, used in various applications including evaluating image patch
similarity [Simo-Serra et al., 2015; Zagoruyko and Komodakis, 2015; Kumar et al., 2016; Lin
et al., 2016; Yi et al., 2016], image retrieval [Qi et al., 2016], signature verification [Bromley
et al., 1993], and face verification [Taigman et al., 2014]. As a variant of Siamese networks,
Triplet networks are used by Balntas et al. [2016].

Broadly there are two approaches in using Siamese networks: learning a descriptor em-
bedding (Figure 2.1a) or learning pairwise similarity itself (Figure 2.1b). In both cases,
there are two identical branches (“towers”) in the network that share exactly the same set
of weights W . Training data consists of a set of patch pairs (x1, x2) with their binary labels
l ∈ 0, 1 reflecting whether a pair corresponds (true sample) or not (false sample).

In the embedding case, as in traditional descriptors, the resulting descriptors should work
for L2 (Euclidean) distance. In the similarity case, additional layer(s) (“metric network(s)”)
that infer a real-value output from the output of the two towers can be seen as learning
a metric as well. Although the similarity approach may show slightly better performance
with its greater flexibility because it also learns its own descriptor distance metric, note that
one needs to go through the full architecture to compare two patches. In contrast, in the
embedding approach, one can calculate descriptors a priori, so that for any given pair, only
an L2 calculation is required.

Two state-of-the-art approaches are described in Simo-Serra et al. [2015] and Kumar et al.
[2016]. Simo-Serra et al. [2015] proposes an embedding architecture and showed promising
results. Kumar et al. [2016] proposes an additional term called global loss in loss functions,
and tested its efficacy using several combinations of both cases (embedding and similarity)
and different architectures (Siamese and Triplet networks), and reported overall better per-
formance with Triplet networks than Siamese networks. To compare Simo-Serra et al. [2015];
Kumar et al. [2016] and our work, we limit the scope of this paper to Siamese networks for
embedding. However, AIR is not limited to Siamese networks; AIR is compatible with any
types of network or objective function as a data augmentation strategy.

Since deep neural networks need to be trained on a huge number of training images
to achieve satisfactory performance, data augmentation can boost performance. Multiple
combinations of horizontal/vertical flipping, cropping, color jittering, etc. are popularly used.
In the object recognition research literature [Graham, 2014; Goodfellow et al., 2013; Lin

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 8

tower tower𝑊

𝑥1 𝑥2 𝑦 = 1

𝐷 𝑥1 − 𝐷(𝑥2) 2
𝑤𝑖𝑡ℎ 𝑦

𝐷(𝑥1) 𝐷(𝑥2)

(a) embedding

tower tower𝑊

metric network

𝑥1 𝑥2

𝑓 𝑥1, 𝑥2 𝑤𝑖𝑡ℎ 𝑦

𝑦 = 1

(b) similarity

Figure 2.1. Two types of Siamese network for image matching; (a) similarity: learning a
vector embedding D(x) for an input x, and (b) embedding: learning a real-valued similarity
function f(x1, x2) for an input pair x1 and x2

et al., 2013; Springenberg et al., 2015], data augmentation strategies are typically limited
to translation and horizontal flipping (vertical flipping is seldom used in object recognition,
since vertically flipped objects such as cats and pedestrians rarely occur).

A more complex strategy can be found in Krizhevsky et al. [2012], which uses principal
component analysis (PCA) to guide altering RGB channel values in training images. This
strategy reduced the top-1 error rate by over 1% in the ImageNet 2012 competition. An open
source library for deep learning computation, Tensorflow [Tensorflow TM, 2016], provides
built-in functions to adjust the contrast, brightness, hue, and saturation of images for the
purpose of data augmentation. However, these methods are not appropriate to augment data
in descriptor embedding applications; this is because the PCA method [Krizhevsky et al.,
2012] and the built-in Tensorflow functions add or multiply a (random) constant value to
all pixels in a training image. In descriptor embedding, since mean and standard deviation
normalization (to zero mean and unit variance) is a standard preprocessing step for the
purpose of normalizing possible illumination or contrast changes, simply adjusting all pixels
by adding or multiplying by a constant value does not have any effect after the normalization
preprocessing.

2.2 Transformation model estimation
Our main purpose in finding correspondences is to register a given pair of images, which
requires estimating a transformation between the images. In this section, we provide an
overview of possible transformations.

There are various types of transformations such as similarity transforms, affine trans-
forms, projective transforms, and transforms with higher degrees of freedom such as polyno-
mial models.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 9

Similarity transforms include translation, rotation, uniform scaling, and any compositions
thereof. Using homogeneous coordinates, a similarity transform can be written asx′y′

1

 =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

xy
1

.

(2.1)

where (x′, y′) is a corresponding point in the reference image, (x, y) is its corresponding point
in the sensed image, θ is the rotation angle, (tx, ty) is the translation vector, and s is the scale
factor. A non-rigid transformation that preserves distances after mapping can be regarded
as a special case of the similarity transform with scale of 1. Under similarity transforms,
shapes of objects are preserved.

Affine transformations are a superset of similarity transforms that also include scaling
with different aspect ratios, reflection, skew, and compositions thereof. Sets of parallel lines
remain parallel after an affine transformation. Using homogeneous coordinates, an affine
transform can be written asx′y′

1

 =

a11 a12 a13
a21 a22 a23
0 0 1

xy
1

 (2.2)

=

1 0 tx
0 1 ty
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 k 0
0 1 0
0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

,

(2.3)

where sx and sy are the scale factors in the x and y axes respectively, and k is the skew factor.
Because this model has six degrees of freedom, at least three non-collinear corresponding
pairs are required to solve the system.

Projective transformations (called homography) can represent any mapping in projective
space. Using homogeneous coordinates, a projective transformation can be written asx′y′

z′

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

.

(2.4)

Note that, because the projective transformation matrix is a homogeneous matrix, it has
eight degrees of freedom. At least four linearly independent corresponding pairs are required
to solve the system.

We restrict our research to these global mappings such as similarity, affine, and projec-
tive transformation, which can cover a large range of geometric transformations with a few
parameters in a simple and global manner. For some applications, local mappings [Zitová
and Flusser, 2003] are required, for example, if objects in the scene are flexible and have
distortion, as in medical imaging applications. These types of transformation are beyond
the scope of our current work.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 10

In this section, we discussed various transformation assuming we have true corresponding
points. Note that the feature detection and feature description steps provide only a set
of (usually noisy) candidate corresponding points. There are several ways to filter false
candidates such as RANSAC [Fischler and Bolles, 1981], which we will explain and apply in
Chapter 3 and Chapter 5. Even though there exist such post-processes, it is still important
to hae good feature detectors and descriptors, since bad input to those post-processes can
render the post-process results meaningless, and better input can yield better performance
(speed and accuracy) of post-processes.

11

Chapter 3

Linear Feature Matching Without
Descriptors

3.1 Introduction
In this chapter, we investigate if line segments can be appropriate cues for image matching.
We extract line segments from an image and use them for registration. We search for
corresponding line segments and estimate the image transformation using RANSAC [Fischler
and Bolles, 1981].

3.2 Algorithm

3.2.1 Line Segment Detection

To detect line segments in images, we have chosen to use the Line Segment Detector (LSD)
algorithm [Grompone von Gioi et al., 2012], while others use a Hough transform [Dubrofsky
and Woodham, 2008; Habib and Alruzouq, 2004] or a Canny edge extractor [Coiras et al.,
2000; Schmid and Zisserman, 1997b]. The Hough transform extracts not line segments but
full lines in images, from which the line segments would need to be extracted. The Canny
edge extractor [Canny, 1986] requires a threshold parameter δ, and the detected edges are
not guaranteed to be linear. The LSD algorithm detects line segments and runs in linear
time without parameter tuning. Figure 3.1 and 3.2 show the results of the LSD compared
to the Canny edge extractor.

3.2.2 Line Segment Merging

The line segments detected using LSD are incomplete input for us in the sense that a single
salient and useful line segment may be detected as a few broken and/or overlapped segments.
To deal with this issue, we add a merging step. Figure 3.3 illustrates the results of our

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 12

(a) Input image (b) LSD (c) Canny, δ = 0.2 (d) Canny, δ = 0.5

Figure 3.1. Line segment detector and Canny edge extractor (example 1).

(a) Input image (b) LSD

(c) Canny, δ = 0.2 (d) Canny, δ = 0.5

Figure 3.2. Line segment detector and Canny edge extractor (example 2).

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 13

(a) Before merging (b) After merging

Figure 3.3. Line segment merging step.

s

s′

d

d′

∆θ ∆d = max(d, d′)

Figure 3.4. The angular distance ∆θ and the perpendicular distance ∆d

procedure. We merge two line segments if they are (i) collinear (within a threshold) and (ii)
overlapped. We describe as follows how to check the collinearity and overlap for two given
line segments s and s′.

First, we define a distance function Dθd(s, s
′) over two line segments s and s′. This

definition is based on that of Coiras et al. [2000], but modified from a non-symmetric distance
to a symmetric distance. As illustrated in Figure 3.4, for two given line segments s and s′,
we can calculate the angular difference ∆θ, and the perpendicular distance ∆d, where ∆θ
is the acute angle that s and s′ (or their extended lines) make, and ∆d is the maximum of
two perpendicular distances: the distance from the midpoint of s to the line containing s′
(d′ in Figure 3.4), and the distance from the midpoint of s′ to the line containing s (d in
Figure 3.4). Then we define the distance function Dθd(s, s

′) between the two line segments
s and s′ as:

Dθd(s, s
′) =

1√
2

√
(
∆θ

θδ
)2 + (

∆d

dδ
)2 , (3.1)

where θδ and dδ are thresholds for angular difference and perpendicular distance, respectively.
We set θδ = 5◦, dδ = 5. For example, if s and s′ are collinear, then ∆θ = 0, and ∆d = 0, and
therefore, Dθd(s, s

′) = 0 (and vice versa). As ∆θ or ∆d increases, Dθd(s, s
′) increases. If s

and s′ differ by ∆θ = θδ, and ∆d = dδ, then Dθd(s, s
′) = 1.

Then we define a collinearity score Col(s, s′), which represents how collinear two given
line segments s and s′ are, as below:

Col(s, s′) =

{
1−Dθd(s, s

′), if Dθd(s, s
′) ≤ 1,

0, otherwise.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 14

100 150 200 250 300
350

400

450

500

550

(a)
100 150 200 250 300

350

400

450

500

550

(b)
100 150 200 250 300

350

400

450

500

550

(c)

100 150 200 250 300
350

400

450

500

550

(d)
100 150 200 250 300

350

400

450

500

550

(e)
100 150 200 250 300

350

400

450

500

550

(f)

Col(s, s′) Dθd(s, s
′) ∆d ∆θ

(a) 0.885 0.115 0.635 1.2◦
(b) 0.854 0.146 0.740 1.6◦
(c) 0.800 0.200 0.756 2.7◦
(d) 0.124 0.876 3.098 12.3◦
(e) 0 3.515 23.575 18◦
(f) 0 5.003 35.320 4.7◦

Figure 3.5. Examples of the scores Col(s, s′) for six sample input pairs

Thus, if the distance between s and s′ is zero (or, s and s′ are collinear), the collinearity
score is equal to 1. If the distance is greater than 1, the collinearity score is zero. Figure 3.5
shows example scores of different line segment pairs. We regard s and s′ as collinear for the
merging step if Col(s, s′) is non-zero. The strictness of the collinearity test can be adjusted
by the thresholds θδ and dδ.

The merging step is done as follows. Let S be the entire set of detected segments from
an image. For a given line segment s, let Scol(s) be the set of all segments collinear with s:

Scol(s) = {si | Col(s, si) 6= 0,∀si ∈ S}. (3.2)

To check the overlap condition, we project all segments in Scol onto a virtual parallel line as
illustrated in Figure 3.6. The two endpoints of each segment si ∈ Scol can be represented
as two parametric real numbers, left(si) and right(si) (left(si) < right(si)). The smaller
parametric number is considered to be “lexicographically left.” We examine overlaps using
the parametric numbers. When the left point of a segment sj starts before the right point of
a collinear segment si, or left(sj) ≤ right(si), we merge si and sj. The two end points of the

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 15

...

0

-1.3
-0.8

1.2

projection parameter

collinear segments

Figure 3.6. Projection to 1D parametric space.

(a) Line segments from LSD
superimposed on image

(b) Segments only (c) Segments after merging

Figure 3.7. (a) and (b) show the detected lines using LSD. The coloring is just for visual help
to distinguish individual line segments; (c) shows the 30 longest segments after the merging
step.

new merged line are min(left(si), left(sj)) and max(right(si), right(sj)) (the lexicographically
leftmost and rightmost points). Figure 3.7 illustrates the result of the merging step.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 16

3.2.3 Transformation

We follow Hartley and Zisserman [2003] to solve the affine transformation between two
images. Because an affine transformation has six degrees of freedom, one can solve an affine
transformation from three control point pairs (CPPs) as follows. Given that a CPP of a point
p in image 1 and p′ in image 2 (p and p′ are represented as 3 × 1 vectors in homogeneous
coordinates), the 3× 3 affine transformation T : p→ p′ satisfies:

p′ = Tp. (3.3)

Then the affine transformation T that maps the points {p1,p2,p3} to {p′1,p′2,p′3} respec-
tively is uniquely solved by:

P ′ = TP (3.4)

or equivalently

T = P ′P−1 (3.5)

where

P :=
[
p1 | p2 | p3

]
(3.6)

P ′ :=
[
p′1 | p′2 | p′3

]
. (3.7)

Note that P, P ′ and T are all 3 × 3 matrices. In order for T to exist, P must be full rank,
i.e., {p1,p2,p3} should not be collinear.

We check all the possible transformations that can be acquired from the detected line
segments’ information, instead of estimating the transformation based on a feature descrip-
tion, because we assume that the two input images may include severe changes, in which
case there is no appropriate point-level descriptor.

Let S and S ′ be the sets of detected line segments from image 1 and image 2, respectively.
We choose any three non-parallel segments {si, sj, sk} ∈ S and {s′l, s′m, s′n} ∈ S ′ from each
set as candidates to check for correspondence. Both sets of three non-parallel segments (or
their extended full lines) yield three intersection points, which we order counter-clockwise
and denote (p1,p2,p3) and (p′1,p

′
2,p

′
3), respectively. In this setting, note that we do not

know which point corresponds to which; there are three possible cases: the three points
(p1,p2,p3) may correspond to (p′1,p

′
2,p

′
3), (p′2,p

′
3,p

′
1) or (p′3,p

′
1,p

′
2). Because we exclude

the reflection transformations (aerial images are always collected above the ground), the
counter-clockwise order itself should be preserved.

Denote a case C: (p1,p2,p3)C and (p′1,p
′
2,p

′
3)C . Hypothesizing that these are true

corresponding CPPs, we solve for the affine transformation TC using equation 3.5. We
repeat this process, testing every combination of three segments chosen from S and S ′. We
will discuss how to evaluate a matching score of score(TC) in section 3.2.4. The optimal
transformation T ∗ is the one with the best matching score:

T ∗ = arg max
C

score(TC). (3.8)

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 17

This process requires a huge number of calculations because the number of possible com-
binations is so large. In order to reduce computation, we limit the search to the most
promising candidates by selecting the triples of segments only from the longest 30 line seg-
ments each in S and S ′. Since the evaluation process is independent, parallel computation
can be easily applied.

3.2.4 Matching Score

In this section, we define the matching score function score(TC) for a given hypothesis
transformation TC . Let STC be the transformation of S by TC . The idea is that if TC is a
true transformation, STC and S ′ will be in harmony. In other words, many common segments
in STC and S ′ will be collinear.

For a segment s ∈ STC , define a function best(s, S ′) as:

best(s, S ′) = max
s′∈S′

(Col(s, s′)). (3.9)

This function searches for the segment s′ ∈ S ′ that is most collinear with s. Then we define
a matching score function:

scoreS→S′(TC) =
1

|STC |
∑
s∈STC

(best(s, S ′)), (3.10)

where |STC | is the cardinality of STC .
Note that S can be transformed into the coordinate system of S ′ by TC , and S ′ can

be transformed into the coordinate system of S by TC−1. Since the mapping score is not
symmetric, we calculate the mapping score for the latter direction as well:

scoreS′→S(TC
−1) =

1

|S ′TC−1|
∑

s′∈S′TC−1

(best(s′, S)) . (3.11)

The final mapping score is their average:

score(TC) =
1

2
scoreS→S′(TC) +

1

2
scoreS′→S(TC

−1) . (3.12)

Figure 3.8 visualizes the choice of the three line segments (per image) that yields the
transformation with the best matching score. It also shows the three intersections in each
image, for which there are three possible ways to pair them. The color of these points (red,
green, and blue) represents the pairing relationship. Figure 3.9 shows the registration result
and how S and S ′ are finally matched. In Figure 3.10, we compare our result with Fedorov
et al. [2003a]’s work [Fedorov et al., 2003b] and image registration using SIFT (open source
[Vedaldi and Fulkerson, 2010]), two algorithms whose implementations we can access.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 18

(a) A choice of three line segments from Im-
age 1, and their intersections.

(b) A choice of three line segment choice from Image 2,
and their intersections.

Figure 3.8. The three line segments highlighted in red in the two images is the choice
that yields the optimal transformation T ∗. The three circles in each image indicate the
intersection points of the three chosen segments. The circle color represents correspondence
between the points.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 19

(a) Registered image (b) Registered line segments

Figure 3.9. (a) shows the registration result using the optimal transformation T ∗. (b)
visualizes how S and S ′ are finally matched.

(a) Our algorithm (b) Fedorov et al. [2003b] (c) Vedaldi and Fulkerson
[2010]

Figure 3.10. Result comparison: (a) Our algorithm (b) Fedorov et al. [2003b]
(c) SIFT implemented by Vedaldi and Fulkerson [2010]

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 20

3.2.5 Filtering

For the purpose of reducing unnecessary computation, before measuring a score of the hy-
pothesis transformation TC , we examine TC by decomposing it into the six elements of the
affine transformation: tx (translation in x), ty (translation in y), sx (scale in x), sy (scale
in y), θ (rotation angle), k (shear). The “true” transformation should have these elements
in certain limited ranges. For example, a tx or ty so large that it means that the two input
images are not even overlapped is not appropriate. If TC has a very large sx or sy, it is highly
likely to be a wrong answer. The rules we use are as follows, considering TC to be valid only
when:

• translation: |tx|, |ty| < min(image height, image width);

• scale: 1/3 < sx, sy < 3;

• skew: |k| < 0.2; and

• rotation: no constraint.

If TC violates one of these conditions, we do not need to calculate its matching score. We
discard the choice and keep repeating the process with another choice. If we have stricter
rules, we can save more computations by discarding more frequently.

3.3 Results
We collect image pairs from various sources, and demonstrate them in Figure 3.11. From
Figure 3.12 to Figure 3.18, we show our results compared to Fedorov et al. [2003b] and
Vedaldi and Fulkerson [2010]. We order the input image pairs in registration difficulty order,
from the easiest to hardest. As the registration difficulty increases, other algorithms start to
fail. We show that our registration algorithm is outstanding, especially for the input images
of high registration difficulty.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 21

(a) greentest: Different frames from an aerial video. Courtesy of Lawrence Livermore National
Laboratory (LLNL).

(b) circular_road: Different frames from an aerial video. Courtesy of LLNL.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 22

(c) mountain: Google Satellite (left) and Google Earth (right).

(d) depth_map: A LiDAR depth (left) and an estimated depth (right). Reproduced from Kim
et al. [2014a].

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 23

(e) coast: Unknown somewhere. Excerpt from Google image search.

(f) livermore1: A random location in Livermore in different years. Excerpt from Google
Earth.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 24

(g) livermore2: A random location in Livermore in 2004 and 2012. Excerpt from Google Earth.

(h) map: Google map (left) and Google Satellite (right) of a random location in San Francisco

Figure 3.11. Our input dataset.

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 25

(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.12. Result: greentest

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 26

(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.13. Result: circular_road

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 27

(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.14. Result: mountain

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 28

(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.15. Result: depth

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 29

(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.16. Result: coast

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 30

(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b]

Registration Failure

(d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.17. Result: livermore1

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 31

(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b]

Registration Failure

(d) SIFT by Vedaldi and Fulkerson [2010]

Figure 3.18. Result: map

CHAPTER 3. LINEAR FEATURE MATCHING WITHOUT DESCRIPTORS 32

3.4 Summary
We propose a new segment-based registration system for disparate images with a wide range
of registration difficulties. In the first step of our registration process, we detect line segments
in each image using the LSD algorithm. Next we conduct the merging step on the detected
line segments. Finally, using the merged line segments as input, we generate possible hy-
pothesis affine transformations by choosing three segments in each image. After scoring each
hypothesis transformation based on the score metric, the highest-scoring one is selected.

This algorithm can easily be extended to projective transformations or higher degrees
of transformations by choosing four or more segments instead of three, and then solving a
hypothesis transformation based on the choice. This is exactly the same procedure; however,
it will have a larger searching space and more intense computation.

33

Chapter 4

Linear Feature Matching With DUDE
Descriptor

4.1 Introduction
In the previous chapter, we showed that the distribution of line segments can be an important
tool to enable image registration in cases of dramatically inconsistent appearance. However,
since examining huge numbers of combinations is computationally very expensive, we discuss
how we can create a computationally efficient descriptor for line segments. We propose a
novel descriptor system named DUDE (DUality DEscriptor) that uses a histogram based
on a weighted transform of lines to an r-θ dual space (or parameter space) of lines. By
exploiting line-point duality, DUDE captures geometric relationships very efficiently. Our
experimental results show that DUDE shows equivalent or better performance to that of the
state-of-the-art with significantly less computation cost.

This chapter includes three main factors. First, to acquire repeatable and consistent
line segments across disparate images, we employ a method called ensemble of randomized
segmentation originally proposed for image segmentation [Kim et al., 2014b] to generate
multiple line configurations. Its randomized merging process allows us to collect as many
consistent lines as possible between images. Second, by exploiting a dual space, we provide a
computationally efficient methodology to capture the relative geometric distributions of line
segments in an image. Third, we introduce two additional methods to filter matches that are
likely incorrect: exploiting intentional random perturbation of line segments and checking a
similarity measure of two sets of line segments. These processes enable us to identify more
stable and robust matches.

4.2 Proposed Method
Before we describe our proposed feature detector and descriptor in detail, we remind read-
ers that the definitions and background about feature detection and description appear in

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 34

Figure 4.1. An example of two disparate images and their line segments: An EO (Elctro-
Optical) and a SAR (Synthetic Aperture Radar) image respectively from Sandia National
Laboratories [2016] (top), initial line segments from LSD [Grompone von Gioi et al., 2012]
(middle), and the proposed randomly merged line segments (bottom).

Section 2.1.

4.2.1 Feature detection

Similar to other well-known features (e.g., Difference of Gaussian, SIFT), we denote each
feature as [xi, yi, si, θi] for its location, scale and orientation, respectively. Our primitive
idea is to derive one feature from one line segment so that (xi, yi) is its midpoint, si is a
half of the length, and θi is the angle of the line segment. One could simply use the initial
line segments detected; however, in the case of disparate imagery, most initial line segments
are inconsistent across images (i.e., low repeatability), due to dramatic appearance changes.
Consequently, corresponding line segments yield different locations and scales, as shown in
Figure 4.1 (middle row).

To guarantee consistent feature extraction for disparate imagery, we propose generating
multiple segmentations of line segments from the initial line segments by randomly merging

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 35

si
(a)

(b) (c)

sj

Figure 4.2. Merging criterion for the randomized merging process; [a] shortest distance (in
pixel), [b] perpendicular distance (in pixel), and [c] angle (in degree) between line segment
i and j.

the lines, motivated by the ensemble creation strategy through randomization [Kim et al.,
2014b], a strategy designed for image segmentation. Before describing how we adapt this
approach to our problem, let’s discuss image segmentation briefly. It is quite common that
state-of-the-art image segmentation methods begin with a set of superpixels [Achanta et al.,
2012] (perceptually meaningful atomic regions, well-aligned with edges). Image segmentation
can be thought of as grouping image superpixels; many different metrics to calculate similar-
ity between two adjacent superpixels and different schemes to cluster superpixels based on
such metrics has been proposed. The key idea of Kim et al. [2014b] is to merge superpixels
step by step in a hierarchical manner, and re-calculate similarities at each hierarchical level
until convergence. They showed that such hierarchical segmentation randomized the order
of merging and generated different image segmentation results. Interestingly, this process
can be applied to our line segment merging process, albeit in a very different application.
In our case, “line segments” are compared to “superpixels” and generating multiple “merged
line segments” can be compared to generating multiple “image segments.” We build multiple
bottom-up hierarchical merging processes from the initial line segments (# hierarchies = 10
in our case). These processes allows us to explore as many potential line merging config-
urations as possible. The bottom images in Figure 4.1 show that such merging processes
produce more corresponding consistent features across images, increasing repeatability rates,
compared to an initial line segment detection result.

The line merging process is as follows. We again extract a set of initial line segments
from an image using the Line Segment Detector (LSD) algorithm [Grompone von Gioi et al.,
2012]. Given the initial line segments, we build a graph where each node represents a line
segment (as if superpixel in the image segmentation application), and each edge connects
two neighboring line segments with a corresponding weight (merging criterion). Then we
incrementally merge line segments as in Kim et al. [2014b]. While constructing a hierarchy,
we update the graph and compute new edge weights. The merging criterion between line
segment i and j consists of three terms: shortest distance δ1,i,j, perpendicular distance δ2,i,j,
and angle δ3,i,j between the two line segments (Fig. 4.2). The edge weight wi,j is computed
as

wi,j = max(0, (1− δ1,i,j/α)) ·max(0, (1− δ2,i,j/β)) ·max(0, (1− δ3,i,j/γ)) (4.1)

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 36

where α, β and γ are predefined thresholds (we used 80, 16, and 15◦). Once all hierarchies are
constructed, all merged line segments are integrated and any duplicates (two merged lines
that are almost the same) are removed. The merged line segments from the hierarchies are
then used for extracting line features. Note that we discussed a different method of merging
lines in Equation (3.1) that relied on midpoints, and thus merged overlapped lines. In this
section, since we aim to produce more various lines, we modified the merging criterion to use
the edge weights in Equation (4.1), which is more flexible than the former (Equation (3.1)):
for example, consider two line segments that are not overlapped, but collinear. With the
former (Equation (3.1)), regardless of how far they are from each other, as long as the two
line segments are collinear, they are merged. However, with the latter (Equation (4.1)), α
can control how much the two line segments are targets of merging based on their shortest
distance δ1,i,j. Finally, we create features from the merged line segments. Since we generate a
number of variously merged line segments, our extracted features include various midpoints
and scales. Specifically, for each (final) line segment, we take its midpoint as a feature
location (x, y), and its radius as feature scale (s) and its orientation as feature orientation
(θ). We will denote our feature detection described above as MMID (Merged-Midpoints).

4.2.2 Feature description

The main idea of the DUDE descriptor is to take advantage of line-point duality by trans-
forming lines into points in dual space. An infinite line l in 2D has two degrees of freedom,
which can be represented by a number of different duality transforms. We use r-θ dual
space, which encodes the two degrees of freedom as the normal angle θ measured from the
coordinate frame’s x-axis and the orthogonal distance r from the origin (Figure 4.3a). We
denote this:

l→ (r, θ) where x cos θ + y sin θ − r = 0. (4.2)

Such a line can be uniquely represented one of two ways, as either (r ∈ R, θ ∈ [0, π)) or
(r ∈ R ≥ 0, θ ∈ [0, 2π)), where R represents the set of real numbers. We follow the latter
convention.

Because the parameters, r and θ, are for an infinite line, collinear line segments s1 and
s2 share the same r and θ. In order to encode where a line segment occurs on an infinite
line l, we introduce another variable f , which represents how far an endpoint is from the
orthogonal projection onto l from a feature point pf (Figure 4.3b). We calculate f as cos(ψ),
where ψ is the angle between the orthogonal vector to l from pf and the vector from pf to
the endpoint. Naturally, f has a value in [−1,+1].

Now we can denote a line segment as [r, θ, f1, f2] where f1 < f2, instead of [x1, y1, x2, y2].
This representation emphasizes co-linearity. In Figure 4.3b, two line segments l1 and l2 share
the same r and θ, but different f values.

Our descriptor design is as follows. For a given feature [xi, yi, si, θi], we first identify
a set of line segments Si that are within a circle whose center is (xi, yi), and radius qsi,

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 37

l1

l2

pf
θf

θ

r

(a) r and θ

l1

l2

pf
θf

ψ1ψ2

0

0.3
1

-0
.73

f2

f1

(b) f

Figure 4.3. Dual representation r, θ, f1, f2 of a line segment

where q is a parameter for local range of interest. (We regard a line segment as within a
circle if any part of the line segment lies within the circle.) Then we define a 3D histogram.
The first dimension for binning relates to r. We uniformly divide [0, qsi] into nr bins. The
second dimension for binning relates to θ; we uniformly divide [0, 2π) into nθ bins. The third
dimension for binning, which relates to f1 and f2, is somewhat different. As shown in Figure
4.4, we divide the range from 0 to 1 (and also to -1 symmetrically) into bins using a log scale.
Because f1 and f2 denote the range of each line segment, segments are binned as a range,
contributing to bins by the coverage percentage. In Figure 4.4, we provide an example of
the range histogram when nf = 6, f1 = −0.4 and f2 = 0.1. In this manner, each [r, θ, f1, f2]
of s ∈ Si is accumulated in the 3D histogram. By concatenating the (r, θ, f) dimensions of
the 3D histogram to form a 1D vector, we have a (nr × nθ × nf)-dimension descriptor. We
set q = 10, nr = 5, nθ = 5, and nf = 10 for our experiments.

Figure 4.5 illustrates the summary of the whole process. For a given feature (x, y, r and
θ) are shown as the center of the blue circle, its diameter, and its line indicator, respectively
(top left). Red line segments are the line segments in the image within the feature region.
For each line segment sj, we calculate its (rj, θj, f

1
j , f

2
j) and identify relevant (r, θ)-bins

(bottom left) and f bins (top right) cylindrical bins. DUDE descriptors can be thought of as
3D cylindrical bins (bottom right). For visualization purposes, we superimpose the f -bins
inside the 2D (r, θ)-bins as in Figure 4.6. Note that, for a segment, the 2D visualization
approximately indicates where the (infinite) line containing that segment is (r, θ)-bin and
how long the segment is (f)-bins. Using this visualization scheme, we illustrate three example
descriptors (at manually chosen feature points) for a disparate image pair in Figure 4.7, which
shows DUDE descriptors are consistent across corresponding features, and at the same time,

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 38

0 0.26 0.59 1-0.26-0.59-1
f-bin

-0.4 0.1

1.00.43 0.38

Figure 4.4. An example of f -binning for a line segment with endpoints f1 = −0.4, f2 = 0.1
and six bins.

Figure 4.5. The summary of DUDE descriptor process.

distinguishable within an image.
There are two underlying difficulties for any line-based approach to overcome. First, there

is the case that one long line segment in an image is detected as multiple short segments
in the counterpart image. We lessen this disconnected detection problem by the nature of
our descriptor design. Because collinear line segments share the same r and θ, and their
f ranges are accumulated, the disconnection does not cause much difference in descriptors.
Secondly, slight changes of endpoints can cause changes in r and θ values. We solve this
problem by intentional perturbation of endpoints. We duplicate each segment d times, while
randomly perturbing the endpoints of the additional segments within ±3 pixels, both in

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 39

Figure 4.6. 2D visualization of DUDE

Figure 4.7. Three example DUDE descriptors

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 40

Figure 4.8. Line segment perturbation. In addition to the originally detected line segments,
we intentionally duplicate each one d times while randomly perturbing its endpoints within
±3 pixels. By doing so, we blur the DUDE descriptors and make them less sensitive to
unstable endpoint detection.

x and y. Figure 4.8 shows an example of perturbed line segments (d = 2). This can be
regarded as blurring the histograms and making them less sensitive to unstable endpoint
detection.

4.2.3 Feature Matching

Matching consists of pairing every di ∈ D1 with the most similar d1NN(i) ∈ D2 (in other
words, the nearest neighbor (1NN) in D2). We use the χ2 histogram similarity metric
for descriptor similarity measure, which is more suitable to our histogram design than the
Euclidean distance (L2). (See Appendix A for the definitions of the χ2 metric and other
possible histogram similarity metrics.)

We conduct two additional processes to identify trustworthy matches. First, we can
actively exploit the randomness (from our intentional perturbation) not only in encoding
descriptors but also in matching descriptors. Thanks to the randomness in our descriptors,
we may acquire different matching pairs every time. We hypothesize that those matches
which are preserved over several trials are more stable and highly likely correct. Therefore, we
conduct the descriptor encoding and matching steps k times, and remove unstable matches.
The intentional perturbation makes descriptors not only less sensitive to endpoint detection,
but also provides information about which matching pairs are more likely correct.

As an optional further enhancement, one can thoroughly check each match by examining
two sets of line segments related to the matched features. In other words, because the
matches are acquired only by the similarity of descriptors, one can confirm the match after
directly comparing the two set of line segments related to the matched features.

For this purpose, we define a similarity metric for two sets of line segments, C(S1, S2).
First, for s1 ∈ S1 and s2 ∈ S2, we define a “coverage” metric, c(s1, s2): we uniformly sample
points on s1 and check, for each sample point, if the (closest) distance from it to s2 is less

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 41

s2

s1

Figure 4.9. Line segment coverage calculation. We sample points on s1 and calculate the
closest distance from each sample point to s2, and check if the distance is within a threshold.
The coverage score between two segments, c(s1, s2), is the fraction of the number of “covered”
sample points (green) to the total number of sample points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

correct matches

incorrect matches

Figure 4.10. Threshold for our coverage metric C(Si, Sj) (x-axis). Correct matches are shown
in green, and incorrect matches are shown in red. Generally if C(Si, Sj) is less than around
0.4, the match is highly likely incorrect.

than a certain threshold (Figure 4.9); c(s1, s2) is the fraction of the number of “within”
sample points to the total number of sample points. Note that this metric is not symmetric.

Then, we define overlap of a segment s1 by a set S2:

C(s1, S2) =
∑
s2∈S2

c(s1, s2). (4.3)

We say s1 is covered by S2 if C(s1, S2) ≥ τ (we use τ = 0.5). Finally, we define similarity
of a set S1 to a set S2, C(S1, S2) as the fraction of covered segments in S1 by S2. Because
this metric is not symmetric, we calculate the average of C(S1, S2) and C(S2, S1).

Using a randomly chosen image pair input, for a set of matches, we plot the distribution
of the similarity, and visualize correct matches with green and incorrect matches with red
in Figure 4.10. We found that 0.3 – 0.5 is a reasonable range. We remove matches whose
scores are less than a threshold ρ = 0.4.

There are a few things to note. First, because we regard this second enhancement by
the coverage computation as optional, in the evaluation section, we measure performance
with and without it: DUDE denotes the matching results without it, and DUDE-F (filtered)
denotes the matching results with it. Second, even though one could do this examination
for the n1 × n2 feature combinations from the beginning without any kind of descriptors,
with the help of DUDE descriptors, we only need to conduct the test less than or equal to

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 42

Figure 4.11. Three examples of correctly matched features and relevant line segments. A
red circle represents a feature, and green line segments are those within a feature.

n1 times. Third, noting that our descriptor operates in dual space, the C(Si, Sj) check can
be regarded as a confirmation process done in the primal space.

We illustrate three example matches in Figure 4.11. Each red circle represents a feature.
Green line segments are the ones within a feature. Using dual parameters, we encode DUDE
descriptors that capture the distribution of line segments relative to feature points. They
are matched based on the similarity of their DUDE descriptors, if the matches are preserved
throughout k trials. Optionally, one can remove those matches whose line similarity scores
are less than the threshold ρ.

4.3 Experimental Results
To evaluate the efficacy of our detection and description, we follow the same evaluation
strategy of Hauagge and Snavely [2012] and Bansal and Daniilidis [2013], as well as using the
same dataset introduce by Hauagge and Snavely [2012], which exhibits dramatic appearance
changes.

4.3.1 Evaluating detections

Repeatability is a common measure indicating an ability for a feature detector to provide
common feature points between image pairs, calculated as the fraction of the number of

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 43

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0 50 100 150 200 250 300

0

0.2

0.4

0.6

SIFT(DoG) MSER SYM-I SYM-G MMID

Figure 4.12. Repeatability curves. Five detection systems are compared: SIFT(DoG),
MSER, SYM-I, SYM-G, and MMID (ours). For a given image pair (left column), repeata-
bility (y-axis) is computed when considering top-k (x-axis).

repeatedly detected features over the total number of features.
To determine if fi ∈ F1 and fj ∈ F2 are repeatedly detected, the overlap measure

introduced by Mikolajczyk et al. [2005] is widely used. In addition, because this overlap
metric is more forgiving of larger features, the actual overlap computation is done after an
additional normalizing step (see Hauagge and Snavely [2012]). For the overlap measure, we
set the same threshold, 0.6, as in Hauagge and Snavely [2012] and Bansal and Daniilidis
[2013].

Note that simply producing a larger numbers of features can increase repeatability. There-
fore the repeatability for evaluation should be computed and compared only by considering
“top-k” detections. To select a subset of k detections, one can sort features by scale fac-

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 44

Scale Score

100 200 100 200

MSER 0.087 0.103 - -
SIFT (DoG) 0.144 0.153 0.050 0.078

SYM-I 0.135 0.184 0.173 0.206
SYM-G 0.173 0.228 0.227 0.281
JSPEC 0.287 0.292 - -
MMID 0.217 0.310 - -

Table 4.1. Repeatability

tors in decreasing order (larger features are preferred), or by some response scores (stronger
features are preferred). However, like MSER or JSPEC, our detection does not define a
response score, so we only use scale ordering.

We compare the performance of five detection systems: SIFT(DoG), MSER, SYM-I,
SYM-G and MMID (ours). Figure 4.12 shows repeatability curves generated by varying k
values (x-axis). We also provide the performance table suggested by Hauagge and Snavely
[2012] (and also used by Bansal and Daniilidis [2013]) in Table 4.1, which indicates the
average repeatability over the entire 46 image pairs when k = 100 and k = 200, respectively.

There are a few things to note. First, JSPEC requires significantly higher computation
cost in time and space. Second, the repeatability should be understood carefully. Repeatabil-
ity is only one aspect of feature detection, and it can be easily biased (e.g., to the number of
detections or density of detections) and Table 4.1 represents only two cross-sections (k = 100
or k = 200). A detection with higher repeatability does not always mean a better input for
feature descriptors. Because the final goal is to find a better set of correct correspondences,
the evaluation should be also considered in combination with descriptors, as in the next
section. Nevertheless, it is of course a good sign that our detection shows very good repeata-
bility.

4.3.2 Evaluating descriptors

We conduct descriptor evaluation in a similar manner to Hauagge and Snavely [2012] and
Bansal and Daniilidis [2013]. Each of the matches paired by descriptor similarity has a
standard NNDR (Nearest Neighbor Distance Ratio) score [Lowe, 2004]. By varying the
threshold on the NNDR score, and identifying which matches are correct (with a known
ground truth transformation), we can obtain a precision-recall curve.

As in Hauagge and Snavely [2012] and Bansal and Daniilidis [2013], to evaluate the
efficacy of detection and description separately, we compare the results from different com-
binations, as seen in the Table 4.2. The column headings list the different feature detection

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 45

M
M
ID

SY
M
-I

SI
F
T

G
R
ID

t

Recall
SIFT SYM-D JSPEC DUDE DUDE(F)

Figure 4.13. Precision(y)-Recall(x) curves comparing performance of descriptors: SIFT,
SYM-D, JSPEC, DUDE, DUDE-F. The plots and example choices follow Bansal and Dani-
ilidis [2013]. For each image pair (each column), and when using different feature detection
types (each row), Precision-Recall curves are illustrated.

GRID SIFT MMID SYM-I SYM-G JSPEC

SIFT 0.49 0.21 0.24 0.28 0.25 0.61
SYMD 0.41 0.22 0.26 0.20 0.25 -

SIFT-SYMD 0.58 0.28 - 0.35 0.36 -
DUDE 0.63 0.35 0.42 0.40 - -

DUDE-F 0.65 0.52 0.57 0.62 - -

Table 4.2. Descriptor mean average precision (mAP) evaluation and comparison

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 46

types tested (GRID, SIFT [Lowe, 2004], MMID (ours), SYM-I and SYM-G [Hauagge and
Snavely, 2012], JSPEC [Bansal and Daniilidis, 2013]), and the row headings list the different
descriptor types (SIFT [Lowe, 2004], SYMD and SIFT-SYMD [Hauagge and Snavely, 2012],
DUDE and DUDE-F (ours)). The detection type GRID is an artificially made-up feature
[Hauagge and Snavely, 2012]: for a set of feature points (e.g., every 25 pixels in x and y with
angle 0◦ and scale 6.25) in I1, we remap the features onto I2 with the actual known trans-
formation. Therefore, GRID can be regarded as a perfect feature detector of repeatability
1, allowing evaluation of descriptor performance when detection is perfect.

In Figure 4.13, we illustrate precision-recall curves for a few image pairs. The choice of
example image pairs is the same as in Bansal and Daniilidis [2013]. Each row represents a
feature detection type. DUDE (black) and DUDE-F (green) show good performance overall
except for the last image pair, where most of algorithms do not work well. However, when
detection is perfect (GRID), DUDE and DUDE-F outperform their competitors. Because
DUDE-F has one more step than DUDE, it is natural for DUDE-F to be better than DUDE.

Table 4.2 shows the summarized results by calculated mean average precision (mAP)
over the entire set of 46 image pairs. Regardless of detection type, DUDE and DUDE-
F outperform other descriptors. The combination of MMID×DUDE-F show overall good
performance, close to the state-of-the-art result of JSPEC. Because the source code of JSPEC
is not publicly available, we could not test JSPEC×{DUDE, DUDE-F}. We found SYM-
I×DUDE-F showed the best result, slightly better than JSPEC.

Note that we achieved comparable performance to JSPEC, only with much lower compu-
tation cost. DUDE processed these image pairs in minutes, and DUDE-F in tens of minutes
using Matlab. To achieve its high performance, JSPEC requires eigen-value decomposition
of a huge affinity matrix. For example, one needs to sample every 5 pixels and assign a 256D
descriptor to each pixel. A 1K×1K image will generate 40,000 descriptors each of dimension
256. Then one needs to solve an eigen-value decomposition of an 80, 000 × 80, 000 matrix.
Most of our calculations are simple matrix multiplications and/or simple iterations.

4.3.3 Shape matching using DUDE

In this section, we investigate DUDE for shape matching as an additional experiment. An
example pair of input sets of line segments to be matched, SP and SQ, are illustrated in
Figure 4.14. Note that the endpoints and angles of corresponding lines are intentionally
not preserved and multiple additional line segments (noise) are added to SQ. For each
line segment sPi ∈ SP and sQj ∈ SQ, we formulate its DUDE descriptor (dPi and dQj) with
respect to its midpoint (reference location) and tangential angle (reference angle). In this
subsection, we use nθ = 12 and nr = 5 for the number of the DUDE histogram bins. We
assign a matching cost (similarity distance) Cij for a pair of descriptors, dPi and dPj , using
chi-squared (χ2) histogram difference:

Cij = χ2(dPi ,d
Q
j) (4.4)

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 47

where

χ2(s, t) =
1

2

∑
k

(sk − tk)2

(sk + tk)
(4.5)

for two given histograms, each with k bins, s = {sk} and t = {tk}. Note that one can
represent the matching costs with a matrix C = {Cij}, which in general will not be square.
In order to find the best match, one can solve the linear assignment problem using the
Hungarian method [Kuhn, 1955; Munkres, 1957]1, similar to [Belongie et al., 2002]. The
algorithm solves for the one-to-one matching permutation π that minimizes the total cost

H(π) =
∑
i

Ci,π(i). (4.6)

We use an efficient open-source Munkres method implementation [Cao, 2015], which takes
a cost matrix C as input. As in [Belongie et al., 2002], to deal with outlier line segments
effectively, we add dummy nodes to each of the line segment sets SP and SQ respectively
with a dummy cost ε. A line segment will be matched to a dummy node if all (available)
matches with real nodes are more expensive than ε. The segments paired to these dummies
are regarded as outliers. In our implementation, we set the number of dummy nodes as
25% of the number of actual nodes in each set, and use dummy cost ε = 0.25. Unlike the
algorithm used in [Belongie et al., 2002], the implementation of [Cao, 2015] does not require
a square cost matrix.

The matching result is shown in Figure 4.14c. We visualize matching pairs using the
same color and same number. The outliers are shown as gray lines with no number.

Next, to show rotation and scale invariance, we conduct a similar experiment on line
segments detected from shape silhouettes, using an example with curved boundaries, that
would not initially appear to be promising for a line-based approach. We illustrate with
two silhouette pairs chosen from the Kimia99 dataset [Sharvit et al., 1998] that include
slight appearance changes, as well as rotation (Figure 4.15a and Figure 4.15b), and scaling
(Figure 4.15c and Figure 4.15d), respectively. To achieve rotation invariance, we set the
frame angles of features (midpoints in these cases) as the orientation of the line segments.
To achieve scale invariance, we set the histogram (outer) radius as a multiple (k) of the mean
distance between all pairs of feature points, following [Belongie et al., 2002]. In the figure,
we show the k = 2 radius circles we used for the given inputs.

In both cases, despite their differing endpoints, the DUDE descriptor can be used to find
appropriate matches. The DUDE descriptor is robust against the existence of multiple short
extraneous line segments such as arise due to noise, because extraneous line segments that
are short will be culled.

1Harold Kuhn named it the “Hungarian method” (1955) and James Munkres further developed the
algorithm (1957). The algorithm is variously known as the Kuhn–Munkres algorithm, the Hungarian method,
and the Munkres (assignment) algorithm.

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 48

(a)

(b)

1

2

3

4

5

6 7

1

2

3

4

5

6 7

(c)

Figure 4.14. Matching of lines in the presence of unstable endpoint locations and noise: two
sets of lines (a and b), and the matching result (c). Correspondences are shown both as the
same number and color. Unmatched lines are shown in gray with no number.

4.3.4 Geometric characteristics of DUDE

We have not discussed a few geometric characteristics of DUDE, which might be possible
for future research. Since DUDE is based on the r − θ dual space, DUDE description itself
does incorporate rotational and translational information. Recall that usually rotational and
translational invariance are acquired not from feature descriptors but from feature detections:
once feature detectors examine feature points (as well as their scales and orientations) and
hand over them to feature descriptors, feature detectors encode such given regions in an
abstract manner.

Figure 4.16 visualizes the geometric patterns of DUDE representations of the input par-
allel and orthogonal line segments shown in red. In Figure 4.16a, parallel lines share the
same θ values and different r values. Orthogonal lines have orthogonal θ values. Figure 4.16b
shows how these patterns are preserved when feature orientations change. (The input line
segments are the same as in Figure 4.16a.) When a feature orientation changes, it affects
only θs and preserves their relative angles to each other. Figure 4.16c shows patterns when
feature positions change only via translation. When a feature translates, it affects only the
r and f values. When determining matching descriptors, beyond just calculating descriptor

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 49

(a)

1

23

4

5

6

7

8

9
10

11

12

13

14
15

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

(b)

(c) (d)

Figure 4.15. Rotation (b) and scale (d) invariance: [b] Colors and numbers mark matching
pairs; line segment 8 is the only one that is not matched correctly. [d] Both colors and thin
gray lines mark matching pairs. Circles show histogram radius. Note that there are different
numbers of line segments detected.

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 50

(a) DUDE descriptors for parallel (left) and orthogonal (right) line segments shown in red. Parallel lines
shares the same θ values and different r values. Orthogonal lines have orthogonal θs. See Figure 4.6 for the
details of this visualization scheme.

(b) DUDE descriptors for different feature orientation. Line segments are equivalent with (a). When a feature
orientation changes, it affects only θs while keeping relative angles to each other.

(c) DUDE descriptors for different feature location. Line segments are equivalent with (a). When a feature
position changes, it affects only r and f values.

Figure 4.16. DUDE interpretations of the parallel and orthogonal line segments.

similarity from L2 or other standard norms, one may be able to incorporate feature location
or angels as well, which would not be possible with other existing descriptors.

4.4 Conclusion
We present a novel feature detector (MMID) and descriptor (DUDE) for challenging image
pairs exhibiting dramatic appearance changes. In order not to be affected by such changes,

CHAPTER 4. LINEAR FEATURE MATCHING WITH DUDE DESCRIPTOR 51

we extract information from line segments in images using a dual space of line segments. To
acquire consistent line segments across disparate images, we conduct randomized hierarchical
segmentation during feature detection and randomized perturbation during feature descrip-
tion. The experimental results show that DUDE descriptors significantly outperform most
existing descriptors. In addition, DUDE shows equivalent performance to the state-of-the-art
with significantly less computation cost.

52

Chapter 5

Autograder for Multiview Drawing
Using DUDE

5.1 Introduction
In this chapter, we show an application of DUDE descriptors where shape comparison is
required. Multiview drawing is an international standard “graphical language” to represent
3D objects with 2D drawings. By following the rules of the graphical language, people
can communicate the shape of three-dimensional objects without ambiguity. A multiview
drawing consists of orthogonal projections to mutually perpendicular planes, typically the
front, top, and right views. In the U.S., these are arranged on the page using so-called
third angle projection, as if orthogonal projections onto the sides of a transparent glass
box containing the object had been unfolded onto the page [Bertoline et al., 2002]. The
three typical projections of a simple 3D object under third angle projection are shown in
Figure 5.2. Sometimes additional projections are drawn for interpretation convenience.

Due to the fundamental importance of engineering drawing for design and communica-
tion, engineering drawing is typically taught in a large class serving students majoring in

Figure 5.1. 3D geometry represented in multiview drawings in Figure 5.2

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 53

Figure 5.2. An example of a formal multiview drawing. Note that in multiview engineering
drawings the views are not labeled; the placement and alignment communicates the relative
viewpoints.

fields including mechanical engineering, electrical engineering, computer science, industrial
engineering, civil engineering, nuclear engineering, and architecture in various universities.
Some Massive Open Online Courses (MOOCs) that cover multiview drawing can be found
in MIT Open Courseware [MIT Open Courseware, 2017] and Technical University of Madrid
[Miríana, 2017].

Manually grading students’ multiview drawing submissions and manually giving feedback
to them is very time consuming, and the feedback is not always precise or timely. In the
era of MOOCs, we expect high future demands for this type of engineering drawing course
on an even larger scale, for which an automated grading/feedback tool would be critical.
Particularly in a MOOC, but also with the large variety of backgrounds of students taking
our on-campus course, different levels of students are engaged in the same curriculum. For
effective education, we envision a system that should be able to distinguish them and pro-
vide specialized additional focused instruction and practice problems for different groups of
students. To understand where students make mistakes frequently, an automated grading
tool is essential not only for grading but also for analyzing “big data.”

Our autograder addresses several frequent error types that inexperienced engineers and
designers make [Lieu and Sorby, 2009] (Chapter 10), summarized below.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 54

Top

Front Right

(a) missing line (top view)

Top

Front Right

(b) different scale (right view)

Figure 5.3. Two classes of mistakes. Note that the labels on the views are not present in the
actual multiview drawing.

5.1.1 Missing and Incorrect Lines

A common problem with hand-created or 2D Computer-Aided Design (CAD) software-
created drawings is that one or more lines may be missing. Figure 5.3(a) shows this error
type. This error is especially difficult to recognize when someone else made the drawing; even
when a grader has a solution to compare with, the grader may miss such a subtle mistake.

5.1.2 Mismatched View Scales

Each view of a drawing must have the same scale. Figure 5.3(b) shows an example when the
scale of the right view is different, which makes for misaligned features between views. This
is not permitted in multiview drawings. Note that as long as a drawing has the same scale
throughout the views, the scale itself can be arbitrary for undimensioned drawings. So an
automated grading tool should be scale-invariant, yet recognize mismatched scales between
views in the same drawing.

5.1.3 Misaligned Views

Misaligned views, as shown in Figure 5.4(a), also make it difficult for a human to match
up features between adjacent views; they are not permitted in multiview drawings. The
orthogonal views must be aligned both horizontally and vertically. Note that once the views
are aligned appropriately, the offset distances between pairs of adjacent views do not need
to match. So an automated grading tool should be offset-invariant. Moreover, because the

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 55

entire drawing can be translated anywhere relative to the origin, the grading tool should be
translation-invariant, up to alignment and relative location of views.

5.1.4 Views in Incorrect Relative Locations

Each view in a drawing must be located appropriately with respect to each other view. One
possible mistake is caused by confusion of views (e.g., mistakenly placing a left view in the
right view location). Sometimes students mistakenly rotate an entire view, typically by 90◦.
Another mistake is mirroring a view, as shown in Figure 5.4(b).

Top

Front Right

(a) misaligned right view

Top

Front Right

(b) mirrored right view

Figure 5.4. Two more classes of mistakes. Note that the labels on the views are not present
in the actual multiview drawing.

These subtle mistakes are very easy for students to make, and are also easy for graders to
miss. Especially with the traditional grading method where each student’s printed drawing
is graded by comparing it with a printed solution, a human grader can not guarantee a
perfect comparison.

We show an example of a solution drawing and a student’s drawing in Figure 5.5. Since
they have different scale, translation, and offsets, the naïve comparison shown in Figure 5.5(c)
does not work. Therefore we propose that an automated grading tool should be translation,
scale, and offset-invariant when grading individual views, yet take these factors into account
between views.

In this chapter, we propose a simple and flexible automated grading/feedback system,
which is translation, scale, and offset-invariant in the sense described above. The proposed
algorithm determines the transformation information for each view (top, front, and right)

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 56

0 5 10 15

0

2

4

6

8

10

(a) a solution drawing Ds

−5 0 5 10 15

0

5

10

15

(b) a student’s drawing Dt

−10 −5 0 5 10 15 20 25
0

5

10

15

Ds(solution)

Dt(student)

(c) naïve comparison between Ds and Dt

Figure 5.5. An example of (a) a solution drawing and (b) a student’s drawings and (c)
their naïve comparison. Because they have different scales, translations, and offsets, a naïve
comparison does not work.

in a drawing (Section 5.3). We implement the automated grading/feedback system using
MATLAB and address how the student errors detailed above can be graded using the trans-
formation information (Section 5.4).

5.2 Related work
To our knowledge, our was the first work to address machine grading of multiview engineering
drawings [Kwon and McMains, 2015]. AutoCAD provides a plug-in called Drawing Compare
[AUTODESK, 2000], but it just visualizes the temporal changes of edits to a single drawing,
and therefore it is not suitable to compare two drawings that include scale, translation, and
offset differences.

There has been a fair amount of research on multiview engineering drawing interpretation
in the context of using the drawings as input to reconstruct 3D models [Shin and Shin, 1998;
Wang and Grinstein, 1993; Geng et al., 2002; Wang and Latif, 2003; Lee and Han, 2005].

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 57

However, none of these are useful to compare and grade multiview drawings, given that the
reconstruction algorithms may fail when they face the incompleteness of students’ drawings.
Moreover the computation would be very intensive (as it would involve both reconstruction
and 3D object comparison).

On the educational side, Suh and McCasland developed education software to help train
students in the interpretation of multiview drawings [2009]. In their software, complete
multiview drawings are given as input, and students are asked to draw the corresponding
3D models. This is very useful to enhance and evaluate students’ multiview-drawings inter-
pretation skills, the inverse of our purpose of evaluating students’ multiview creation skills
when 3D models are given as input. Since it is important for our students to be familiar
with popular CAD software such as AutoCAD, for this work we chose to compare and grade
native format AutoCAD files, which is easily extended to batch processing.

We use the random sample consensus (RANSAC) method [Fischler and Bolles, 1981] to
estimate an affine transformation between the individual views of the two given drawings.
RANSAC is an iterative method used to estimate parameters of a mathematical model
from a set of data. RANSAC is very popular due to its effectiveness when the data has a
high percentage of noise. The fact that much research in the computer vision field relies
on RANSAC, for example, estimating the fundamental matrix [Brown and Lowe, 2005],
recognizing primitive shapes from point-clouds [Schnabel et al., 2007], or estimating an affine
transformation between two line sets [Coiras et al., 2000; Kwon, 2014], shows RANSAC’s
efficacy. There have also been many variations introduced such as MLESACK [Torr and
Zisserman, 2000] and Preemptive RANSAC [Nistér, 2005], as well as research comparing
the performance of the variations [Choi et al., 1997; Raguram et al., 2008]. In our current
application, we have found that the original RANSAC concept is efficacious enough. We
next discuss the basic RANSAC algorithm and how we apply it to estimate parameters of
the transformation between single view drawings.

5.3 Algorithm

5.3.1 Single View Transformation Estimation

Initially we ignore the offset-invariant problem by assuming a drawing consists of only one
view. Let Vs be a single view from the source drawing (solution), and Vt be a single view from
the target drawing (student’s). Then the task here is to estimate the optimal transformation
T ∗ between Vs and Vt in order to address the translation and scale-invariant problems. Once
we know this transformation, we can transform Vs into the coordinate system of Vt. Let V ′s
be the transformed version of Vs. We denote this as

T ∗ : Vs → V ′s
or equivalently,
V ′s = T ∗(Vs).

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 58

15 20 25 30

10

15

20

25

(a) a solution view Vs

10 15 20 25 30

0

5

10

15

(b) a student view Vt

5 10 15 20 25 30 35 40 45 50

5

10

15

20

Vs(solution)

Vt(student)

(c) naïve comparison

Figure 5.6. An example pair of views for transformation estimation.

We can then compare V ′s and Vt fairly. (In the next section, we will discuss how to apply this
single view transformation in the context of full multiview drawings to address the flexible
offsets permitted between views.)

As a transformation model between the two views, we assume an affine transformation.
Its parameters are translation in x and y (tx, ty), scale in x and y (sx, sy), rotation θ, and
skew k.

We take the pair of drawings in Figure 5.6 as an illustrative example for this section. Vt
(Figure 5.6(b)) was obtained from Vs (Figure 5.6(a)) by applying a uniform scale, mirroring,
and translation to Vs, and then editing two lines. It is not easy for a human to recognize
what changes are there. The naïve comparison (Figure 5.6(c)) does not work at all. Even if
scale and translation is properly considered, a grader may simply think most lines are slightly
wrong as shown in Figure 5.7(a). However, better feedback can be provided by recognizing
that the overall representation is in fact correct, except for mirroring and partially differing
lines, as shown in Figure 5.7(b). Therefore, for a fair comparison that correctly identifies what

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 59

5 10 15 20 25 30 35

5

10

15

20

25

V

′

s
∩ Vt(correct)

Vt − V
′

s
(incorrect)

V
′

s
− Vt(missing)

(a) no consideration about mirroring

5 10 15 20 25 30 35

5

10

15

(b) appropriate consideration about mirroring

Figure 5.7. (a) Even if we align the two views in terms of scale and translation, it is not
easy to compare them at a glance; here half the elements still appear to be slightly off. (b)
In fact, most elements match perfectly if the correct affine transformation is applied. The
real problem is mirroring and two lines that only partially differ.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 60

conceptual errors led to the student’s mistake, we need to estimate the affine transformation
and use it to align the two drawings first, before comparing individual line elements.

The affine transformation estimation procedure is based on RANSAC, which consists of
the following generically described four steps:

1. At each iteration, randomly select a subset S of the data set D. Hypothesize that this
subset (called hypothetical inliers) satisfies the ground truth model we seek.

2. Solve (or fit) the hypothetical model parameters Θ based on the hypothetical inliers
S. Note that S is the only input for choosing Θ, so if S includes incorrect “noisy”
elements, naturally the estimated model parameters Θ will not be high quality.

3. Evaluate the estimated model parameters Θ using all data D. The subset C ⊆ D whose
members are consistent with the estimated model parameters Θ is called a consensus
set.

4. Iterate steps 1-3. The optimal choice of model parameters Θ∗ is that with the largest
consensus set. Terminate when the probability of finding a better consensus set is
lower than a certain threshold.

Our data set D is obtained by extracting certain points related to the elements in the
drawings. The element types that we currently consider are line, circle, and arc. The point
set consists of the two endpoints of line elements and the center points of circle and arc
elements. Let Ps and Pt be the point sets extracted from all elements (lines, circles and arcs)
from Vs and Vt, respectively. Ps and Pt together comprise the data set D.

Since 2D affine transformations have six degrees of freedom (two each for translation and
scale, and one each for rotation and skew), any three noncolinear point pairs (correspondences
between the two views) will give a unique transformation. Therefore the hypothesis step of
our RANSAC implementation is to choose three point pairs; our complete algorithm is
summarized in Algorithm 1. The performance of the algorithm is highly dependent on the
getThreePairs function, i.e., the three point pair choices. One could just pick three
random points from each of Ps and Pt, and pair them at every iteration, but that may
require a huge number of iterations to come across a good choice. Alternatively, one can
first conduct a priori point pairing between Ps and Pt based on their local appearance. In this
case, whereas an advantage is that one only needs to choose three candidate pairs instead of
6 unpaired points to randomly pair at every trial, a risk is that there is a case that candidate
pairs may not include three correct pairs of noncolinear points. We use DUDE for a priori
pairing, and we show how much it can reduce computation time in Section 5.5.

In either case, the three randomly selected point pairs are the hypothetical inliers S,
and we solve for the (hypothetical) affine transformation matrix T based on the three pairs
of points. The full 3 × 3 affine transformation matrix can be solved for using the homoge-
neous coordinate representation of the three pairs of points. (See for example Hartley and
Zisserman [2003] for more details.)

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 61

Algorithm 1 Affine translation estimation for given two set of points using RANSAC
1: procedure getAffine(Ps, Pt, threshold)
2: s∗ ← −∞
3: T ∗ ← null
4: while True do
5: ps, pt ← getThreePairs(Ps, Pt)
6: if ps is null or pt is null then . e.g., all three pairs are consumed
7: break
8: end if
9: T ← solveAffine(ps, pt) . solve with three chosen pairs
10: s← evaluateAffine(T, Ps, Pt) . evaluate with all points
11: if s > s∗ then
12: s∗ ← s, T ∗ ← T
13: end if
14: if s∗ > threshold then
15: break
16: end if
17: end while
18: return T ∗

19: end procedure

To evaluate T , we now transform the entire point set Ps by T . Let P ′s be the transformed
version of Ps. If T is the optimal transformation, then most or even all points in P ′s will be
coincident with those in Pt. We define the consensus set C as C = P ′s ∩ Pt. Our evaluation
metric is the cardinality of the consensus set (that is, the number of coincident points). We
iterate this process; the optimal affine transformation T ∗ is the T with the largest |C|. We
can denote this as

P ′s = T (Ps)

T ∗ = arg max
T
|C|

= arg max
T
|P ′s ∩ Pt)|

= arg max
T
|T (Ps) ∩ Pt)|

where arg max stands for the argument of the maximum, the argument element(s) of the
given argument space for which the given function attains its maximum value.

We terminate the iteration when |C| > R∗min(|Ps|, |Pt|), where R is the minimum match
rate, or all the cases are checked. We have found R = 80% to work well in practice. Once
we have found a transformation that matches more than 80% of the points in the solution
subview with points in the target drawing, we have found the region of interest that we are
searching for, and there is no need to search further.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 62

Consider the example of Figure 5.6; the optimal affine transformation is

T ∗ =

1.2494 0 −8.5118
0 −1.2494 30.7256
0 0 1

 ,
or equivalently, tx = −8.5118, ty = 30.7256, sx = 1.2494, sy = −1.2494, θ = 0, and k = 0.
Figure 5.7(b) shows the comparison between the transformed version of Vs, V ′s = T ∗(Vs),
and Vt. In other words, we know that Vs should be scaled by 1.2494 and -1.2494 along the x
and y axes respectively, and translated by (-8.5118, +30.7256) in order to compare it to Vt.
The opposite signs for the sx and sy scales indicates mirroring. There is no skew or rotation.

5.3.2 Application to Multiview Drawings

In this section, we discuss how to apply the transformation estimation process to multiview
drawing grading. Again, let the source drawing Ds be the solution drawing and the target
drawing Dt be a student’s drawing.

First a grader must manually subdivide the solution drawing (but not the student’s
drawing) into the front, right, and top views. Call them Vfront, Vright, and Vtop, respectively:

Ds = Vfront ∪ Vright ∪ Vtop.

In the general case, a view can be any subset of the solution drawing. One can specify
arbitrary views Vi depending on the complexity of the solution drawing:

Ds ⊇
⋃
i

Vi.

We individually estimate optimal transformations T ∗Vi between each view Vi (⊆ Ds) and
the entire student drawing Dt. By calculating separate transformations for each view, we
can address the offset flexibility.

Consider the example input shown in Figure 5.5. For the front view, we have tx =
−5.4785, ty = 1.4114, sx = 1.5, sy = 1.5, θ = 0, k = 0. For the top view, we have tx =
−5.4785, ty = 8.0145, sx = 1.5, sy = 1.5, θ = 0, k = 0. For the right view, we have tx =
11.1657, ty = 1.4114, sx = 1.5, sy = 1.5, θ = 0, k = 0.

We next discuss how these components, and their relationships, can be used to grade the
student drawing.

5.4 Grading Checks
Once the optimal transformations T ∗Vi (and their components) are calculated, one can set up
a flexible set of rubrics. The checks described here correspond to the common student errors
presented in the introduction.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 63

5.4.1 Element Comparison

By applying each transformation T ∗Vi to the corresponding view Vi from the solution Ds,
we can compare individual elements of the two full multiview drawings. Suppose we have
T ∗Vfront

, T ∗Vtop and T ∗Vright from Ds. The transformed version D′s is:

D′s =
⋃
Vi

T ∗Vi(Vi)

= T ∗Vfront
(Vfront) ∪ T ∗Vtop(Vtop) ∪ T ∗Vright(Vright).

Figure 5.8 shows the transformed version of the solution, D′s, super imposed on the
student’s drawing Dt. The transformed version has the same location, offset and scales as
the student’s. In Figure 5.8(c), red highlights the missed elements (elements that exist in
the solution, but not in the student’s drawing: D′s −Dt), and blue highlights the incorrect
elements (elements that exist in the student’s drawing, but not in the solution, Dt−D′s). If
both set differences are the empty set, the two drawings are the same up to scale, translation,
rotation, and skew.

5.4.2 Front-Right View Alignment

The front view and right view should be aligned horizontally. This can be checked by
confirming that the ty components of T ∗Vfront

and T ∗Vright are the same. We also need to check
if the right view is still on the right side of the front view in the student’s drawing. In other
words, tx of T ∗Vright should be greater than tx of T ∗Vfront

.

5.4.3 Front-Top View Alignment

The front view and top view should be aligned vertically. This can be checked by confirming
that the tx components of T ∗Vfront

and T ∗Vtop are the same. We also need to check if the top
view is still above the front view in the student’s drawing. In other words, ty of T ∗Vtop should
be greater than ty of T ∗Vfront

.

5.4.4 Uniform Scale

In multiview drawings, the aspect ratio must be preserved, and all views must have the same
scale, even though the scale factor itself can be arbitrary. This can be checked by confirming
that all six scale components (sx and sy of T ∗Vfront

, T ∗Vtop , and T
∗
Vright

) are the same.

5.4.5 Mirroring

By confirming that the signs of all six scale components are positive, we can recognize
mirroring, which should not be present.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 64

−5 0 5 10 15

0

5

10

15

(a) D′
s (transformed Ds)

−5 0 5 10 15

0

5

10

15

(b) Dt

−5 0 5 10 15 20

2

4

6

8

10

12

14

16

D
′

s
∩ Dt(correct)

Dt − D
′

s
(incorrect)

D
′

s
− Dt(missing)

(c) fair comparison

Figure 5.8. We estimate the transformation for each view individually using RANSAC. By
applying the transformations to the views in Ds, we get the transformed version D′s. Then
the elements of D′s and Dt can be compared one by one.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 65

5.4.6 Rotation / Skew

The rotation and skew components of the transformations of all views should be zero, as
long as the homework assignment is to reproduce the typical front, top, and right views.

5.5 Computational Improvement
Randomly finding three optimal point pairs may require a huge number of iterations. Let ns
and nt be the cardinality of point sets Ps and Pt, respectively. In the hypothesis generation
step in RANSAC, there are 6

(
ns

3

)(
nt

3

)
possible cases, and for each case we need nsnt compar-

isons to calculate the consensus set. First, we show how we can filter out some hypotheses
to reduce computation in Section 5.5.1. Second, we conduct DUDE matching, and acquire
candidate pairs, from which sets of three pairs are chosen. We introduce this approach in
Section 5.5.2.

5.5.1 Filtering

5.5.1.1 Attribute and Vertex Degree Filtering

We store two simple attributes with each point: the element type (∈ {line, circle, arc}) that
gave rise to the point, and the number of intersecting elements at the point (in the case of
the center points of circle and arcs, the number is zero). In the hypothesis generation step,
we discard a hypothesis if these attributes are inconsistent for any of the pairs.

5.5.1.2 Transformation Filtering

Because the hypothesis transformations are acquired from the randomly chosen set of three
pairs of points, most of them imply severe distortions, which are not typical of student
errors. We can skip the evaluation step for this kind of unrealistic transformation. To filter
out these cases, when we solve for T , we decompose T into the six components (DOFs). The
unrealistic cases include when the absolute value of translations are too big, scales are too
big, too small, or too imbalanced, etc. We skip those where:

• translation: |tx|, |ty| > 300 (The parameter 300 relates to the default canvas size of
AUTOCAD software. Students may start their drawing from an arbitrary location.
The parameter should be large enough to address these arbitrary translations. For our
situation, students’ arbitrary translations were not greater than 300.);

• scale: |sx|, |sy| < 1/3 or |sx|, |sy| > 3;

• skew: |k| > 0.1; and

• rotation: no constraint.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 66

Here the thresholds for tx, ty, sx and sy can be determined based on the entire bounding
box comparison (i.e., considering difference between solution drawing and student drawing).
Students’ mistakes do not tend to affect the skew, so theoretically k should be always zero,
but due to numerical errors, the k value may be a very small number, e.g. 10−8. Note that
these thresholds are used solely to reduce the search space, and one can shrink/expand the
permissible ranges if analysis of a larger dataset indicates smaller/larger variations to be
present in other students’ drawings.

5.5.1.3 Connectivity Filtering

To reduce the search space, we first analyze connectivity and divide an entire drawing into
several candidate views by grouping connected elements, since these are almost always part of
the same view. For explanation simplicity, assuming the elements of a drawing (of n points)
are equally divided between the three views (each of n/3 points), then the computation
efficiency improvement can be easily seen since

(
n
3

)
= n!

(n−3)!3! is much larger than 3
(
n/3
3

)
=

3 (n/3)!
(n/3−3)!3! (e.g., when n = 60, the difference is 34,220 versus 3,420). For a given source

view (in the solution drawing), we randomly choose a connected view and choose three
candidate corresponding points only within the connected view (in the student drawing) in
the RANSAC algorithm.

However, we can do even better. It’s a waste of effort to try to find corresponding points in
a view that is not actually corresponding (and therefore no meaningful transformation exists).
So knowing view-to-view relationships beforehand would further improve computation time.
We show this can be done using DUDE descriptors in the following section.

5.5.2 DUDE-based choice

Since multiview drawings generally include many lines, DUDE is a good choice as a descrip-
tor. Recall that a DUDE descriptor is defined at a location (x, y) with an orientation θ and
a scale s. The numbers of histogram bins, nr, nθ, nf , determine the dimension of descriptors.
For each endpoint p = (x, y) of each line l in a multiview drawing, we create a descriptor
at the endpoint location (x, y) with a scale as the length of l. We always set descriptor
orientation to be 0 since in multiview drawing, we assume rotation rarely happens. (If ro-
tation is expected, one could take the orientation of l.) We visualize an example descriptor
frame in Figure 5.9, where it is generated for the upper endpoint of a vertical line. Then,
we match endpoints based on descriptors. The example matching result is shown in Fig-
ure 5.10. Note that in this example, we spatially spread out views in the target drawing
(in blue) to show matching results. Once we conduct matching, we need to conclude which
view in the solution corresponds to which view in the student drawing (even though the
example in Figure 5.10 seems obvious, matching can be noisy for complex drawings.) We
count the number of matches n(i,j) that correspond between view vsi view vtj and use the
Munkres assignment algorithm [Munkres, 1957] (also known as the Hungarian algorithm) to
choose the best match.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 67

0 50 100

240

260

280

300

320

340

360

Figure 5.9. DUDE descriptor frame for a given point.

Figure 5.10. DUDE matching

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 68

Input Random-
Filtered DUDE

10 11 12 13 14 15

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-5 0 5 10 15

0

5

10

15

20

0.051 s 0.250 s

0 2 4 6 8

4

5

6

7

8

9

10

11

-5 0 5 10 15

0

5

10

15

20

0.592 s 0.286 s

-40 -20 0 20 40

240

250

260

270

280

290

300

310

320

330

0 50 100 150

0

50

100

150

hours 0.448 s

Table 5.1. Computation time comparison.

With the view-to-view relationship, we re-conduct DUDE matching within corresponding
views, and then run our RANSAC algorithm from Algorithm 1. The difference is that the
earlier pair of random three-point choices in the hypothesis step is now random three-match
choices. We show computation time comparison for three example views in Table 5.1. Since
RANSAC is a randomized method, we ran it five times and averaged computation time.
One can see that the computation time of the RANSAC algorithm without DUDE diverges
quickly as the number of points increases (even with the filtering schemes) whereas the
computation time of the DUDE-based method stays relatively stable. Note that since a
pure MATLAB implementation of the the RANSAC portion was too much slow, we convert
the portion into a MEX (C/C++ code subroutine call) implementation, whereas we kept
the MATLAB implementation of the portion for the DUDE-based method. Therefore, the
actual time difference is even greater than shown in Table 5.1.

5.6 Implementation Issues
In practice, there are additional steps that needed to be implemented to fully automate the
grading/feedback system. We briefly mention some of them below.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 69

5.6.1 Converting from dwg to dxf

Students in the class draw using AutoCAD, which by default saves files in dwg format.
Because AutoCAD is commercial software and dwg is its binary file format, to our knowl-
edge, there is no open source code for accessing dwg files directly. So we need to convert
dwg files to dxf file format, which is a file format developed by AutoDesk for enabling data
interoperability between AutoCAD and other programs. For an automated batch process of
this conversion on all students’ submission, we also implemented an autolisp script, which
runs in AutoCAD.

5.6.2 Loading dxf in MATLAB

We extract drawing elements from each dxf file using MATLAB. Currently the loading
operation is based on the open source code [Mathworks, 2000b] in the MATLAB CENTRAL
File Exchange website [Mathworks, 2000a].

5.6.3 Merging Elements

Some elements may be drawn (partially) duplicated, overlapping, or decomposed into sub-
segments. Especially in the case of lines/arcs, they may consist of several connected or
overlapping partial lines/arcs instead of one long line/arc. For this reason, we merge objects
into one if they can be represented as a simpler one. This also makes the point set smaller,
which reduces computation time.

5.6.4 Pre-defining Layer Names

Currently we do not autograde dimensioning and header parts of multiview drawings, only
visible and hidden lines. Since visible and hidden lines should be drawn with different line
styles and thickness, we teach students to put them in separate layers and define these
properties to apply to the entire layer. For autograding, we provide a template with the
layer names, and only load elements drawn on the “visible” and “hidden” layers. Even though
giving predetermined layer names is a constraint for the autograding system, declaring layers
and grouping objects of the same type into a single layer is an important skill for student to
learn regardless.

5.7 Results
We show another grading example in Figure 5.11. The solution drawing Ds (Figure 5.11a)
and the student drawing Dt (Figure 5.11b) can not be compared using a naïve algorithm
due to translation, scale, and offsets (Figure 5.11c). Using the estimated transformation for
each view, we take our transformed version of the solution, D′s, and compare Ds and Dt

(Figure 5.11d).

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 70

0 50 100 150 200
0

50

100

150

(a) solution Ds

0 50 100 150 200 250

50

100

150

200

250

(b) student Dt

0 100 200 300
0

50

100

150

200

250

Ds(solution)

Dt(student)

(c) naïve comparison

0 50 100 150 200 250 300 350

50

100

150

200

250

D
′

s
∩ Dt(correct)

Dt − D
′

s
(incorrect)

D
′

s
− Dt(missing)

(d) fair comparison

Figure 5.11. Comparing the solution to a student’s drawing. To be compared to Dt, all
views in Ds are scaled 1.7 times larger. The top, front, and right views are translated (-
33.8, +186.2), (-33.8, +39), and (+187.7, +39), respectively. All views have zero rotation
and skew. By aligning them, the algorithm finds incorrect and missing lines, which are
represented in blue and dark red.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 71

5.7.1 Grading result visualization

Beyond the advantages of more accurate, timely feedback to students, another advantage of
an autograding tool will be its ability to analyze and summarize the grading results. As an
example, we can visualize which elements of a drawing were most frequently drawn incorrectly
by students, which can be useful information for instructors. We ran our algorithm in batch
mode on the submissions in Fall 2013 for two problems assigned in homeworks #2 and #3 in
E28. These assignment batches consisted of 115 and 113 students’ submissions respectively.
For each element in the solution drawing, we count in how many student submissions it
is “missing.” Similarly, for each “incorrect” element in the student drawing, we count how
many student submissions have it. Figure 5.12 shows the solution with the elements color
coded: the most difficult elements — that are most frequently missing/incorrect — are
represented in dark red/blue, and those less frequently missing/incorrect are represented in
light red/blue. In the problem from assignment #2, we can see that the top view causes
more mistakes than the other views, and that students miss the diagonal and hidden lines
in the front and right view most frequently (Figure 5.12a). Figure 5.12b shows that the
diagonal features are frequently misdrawn. In the problem from assignment #3, many times
students get confused in the upper part of the front view, and hidden lines are frequently
missed.

5.7.2 Comparison with human grading

To verify the efficacy of the proposed algorithm, we compare the autograding results with
human grading. A human grader with a full semester of experience grading for the course
graded the 115 submissions of the homework #2 problem introduced above, using grade-
scope [Gradescope, 2017] with pdf files of the submission.

We divide the comparison results into four categories (Figure 5.13). In the case of category
A and B, autograding and human grading find the same errors, which account for 74.8% of
the total 115 submissions. In the case of category B, although the same drawing elements
are identified as errors, the human grader described them differently in her grading feedback
to the student. Figure 5.14 shows two examples of category B. While the human grader
interprets the mistake as “lines not aligned,” the autograder reports it as the number of
missing lines and incorrect lines. The human’s interpretation can be more flexible, nuanced,
and higher level. We leave more advanced emulation of such human grading rubrics as future
work.

The most dramatic result is category C. For 21.7% of the submissions, the new autograd-
ing system catches students’ mistakes that the human grader misses. We show two examples
in Figure 5.15. This happens especially when a drawing includes subtle mistakes such as
a slightly incorrect location, and/or when a drawing includes incorrect locations that are
nonetheless consistent in neighboring views. In these cases, human graders may not notice
them on the printed drawing.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 72

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) visualization of missing errors on a
problem from assignment #2

0

0.005

0.01

0.015

0.02

0.025

0.03

(b) visualization of incorrect errors on a
problem from assignment #2. Correct
lines (solution) are shown in green.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) visualization of missing errors on a
problem from assignment #3

Figure 5.12. Color coded difficulty. The elements that are most frequently “missing” are
shown in dark red, and those less frequently missing are shown in light red (a and c).
The elements that are most frequently “incorrect” are shown in dark blue, and those less
frequently incorrect shown in light blue (b). The numbers in the color bar indicate the
fraction of student submissions that made the mistake for each element.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 73

Manual vs. autograding

Category A: Same feedback.
Both give the same feedback.

Category B: Similar feedback.
The same errors are identified, but described differently.

Category C: Better autograding feedback.
Manual grading fails to catch some mistakes.

Category D: Incorrect autograding feedback.
Autograding fails to estimate proper transformation.

65.2% 9.6%

21.7%

3.5%

Figure 5.13. Comparison with human grading results.

For 3.5% of the submissions, the autograding system failed to estimate the appropriate
transformation, and gave incorrect feedback. We show an example in Figure 5.16. The
student drawing (Figure 5.16b) has an incorrect front view. Note that our RANSAC evalu-
ation metric is the number of coincident points. When a student drawing has several wrong
elements, the RANSAC algorithm may regard a strange transformation as the best transfor-
mation for the reason that it yields the maximum number of coincident points. We expect
that this problem can be solved by extending the RANSAC evaluation metric to consider
lines as well as points in future work. Note that even though the proposed algorithm fails
to give correct feedback for 3.5% of the submissions, this happens only when the student
drawing has multiple errors. In these cases, a whole view was reported as incorrect by the au-
tograder, where in fact some partial credit should have been given. The proposed algorithm
never failed to recognize perfect drawings as such.

5.8 Conclusion
Motivated by the importance of an automated grading system for multiview drawings, we
propose a novel system that can compare two multiview drawings, a reference solution and a
student’s submission, that may have inconsistent translations, scales, mirroring, skew, and/or

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 74

(a) While autograding (left) reports “1 missing line, 2 incorrect lines”, a human grader (right) reports “1
incorrect position.”

(b) While autograding (left) reports “3 missing line, 3 incorrect lines”, a human grader (right) reports “1 line
not aligned.”

Figure 5.14. Two examples of category B. Even though different rubrics are applied, errors
are identified.

rotation; all of which must be distinguished from allowable differences in scale, offset, and
translation to reliably identify and classify errors in the students’ drawings.

Our system provides fair comparison and grading checks for students’ drawings, which
can be used as input for a flexible scoring system. For example, in many cases, a grader
may not want to reduce scores for duplicate errors of the same type. A grader may want to
place different scores (emphasis) on different elements. One possibility would be to use our
element-wise difficulty analysis to assign an appropriate score to each element.

The proposed system can be useful for large classes, eliminating time consuming manual
grading and incomplete feedback, and for MOOCs on engineering drawing, which currently
do not exist.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 75

(a) A human grader (right) succeeded in recognizing the incorrect elements in the top view, but failed to
catch the element in a slightly incorrect position in the right view.

(b) A human grader (right) failed to notice elements in incorrect positions and gave a perfect score. Such
errors are difficult for humans to catch because the positions are consistent with the neighboring view.

Figure 5.15. Two examples of category C. While a human grader failed to notice these
mistakes, our autograding system found them.

CHAPTER 5. AUTOGRADER FOR MULTIVIEW DRAWING USING DUDE 76

(a) solution drawing (b) student drawing

(c) transformed solution. The transformation
estimate for the front view is wrong.

transformed front view

student drawing

coincident points

(d) The wrong transformation is chosen because
it matches six points among the total eight
points of the front view.

Figure 5.16. An example of category D. Our algorithm failed to estimate an appropriate
transformation for the front view of the solution drawing. Note that the student drawing
(b) has multiple mistakes in the front view.

77

Chapter 6

Deep Learning Based Image Matching

6.1 Introduction
In previous chapters we discussed the DUDE descriptor, designed to capture the distribu-
tion of line segments, and its use for image registration. Alternate approaches to descriptor
design that have recently become popular are based on deep learning (data-driven) method-
ologies [Simo-Serra et al., 2015; Zagoruyko and Komodakis, 2015; Kumar et al., 2016; Lin
et al., 2016; Balntas et al., 2016; Yi et al., 2016]. However, an obstacle to applying such
methodologies to “learn” descriptors that will be effective for registering pairs of disparate
images is the lack of sufficiently large disparate image datasets providing the amount of
labeled data that deep learning approaches require. We here discuss a new approach to
exploiting deep learning to develop descriptors that will be effective on disparate imagery,
even in the absence of training data that exhibit the dramatically different appearance of
the disparate imagery we ultimately hope to register.

For better generalization, we introduce a new data augmentation strategy, Artificial
Intensity Remapping (AIR). We aggressively generate additional challenging but realistic
input for training as illustrated in Figure 6.1. To demonstrate the efficacy of AIR, we train a
model in a manner similar to Simo-Serra et al. [2015] with AIR, and evaluate it with disparate
test sets, which would normally be considered to be adversarial input. For this purpose, we
collect and build disparate test sets from various sources [Kelman et al., 2007; Hauagge
and Snavely, 2012; Razakarivony and Jurie, 2015; Rochester Institute of Technology, 2016;
Visual Geometry Group, University of Oxford, 2016; Sandia National Laboratories, 2016].
Our experiments show that AIR is effective not only for standard test cases set but also for
disparate test cases.

We also compare (hand-engineered) DUDE and (data-driven) AIR experimentally. Our
findings are in line with that of a recent comprehensive evaluation done by Schönberger
et al. [2017] in that advanced hand-engineered feature descriptors are similar or better than
data-driven feature descriptors.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 78

Figure 6.1. Examples of AIR: one original patch (leftmost) and its seven derived patches

6.2 Datasets
For our non-disparate input, we use the Multi-view Stereo Correspondence dataset (MVS) [Brown
et al., 2011], which consists of 64×64 gray-scale image patches sampled from 3D reconstruc-
tions of the Statue of Liberty (LY), Notre Dame (ND) and Yosemite (YO), with a list of
correspondences. Some corresponding patches are shown in Figure 6.2a–Figure 6.2c. For
training, we select 300,000 positive samples (corresponding patch pairs with label 1) and
negative samples (non-corresponding random patch pairs with label 0) for each subset of the
MVS dataset (LY, ND, YO), following Simo-Serra et al. [2015]. We train a model with the
sampled patches of two subsets (e.g., ND and YO), and test using the other subset (e.g.,
LY). The testing process is discussed in Section 6.4.

Despite training and test set separation, the three subsets may share a certain style of
appearance. Overfitting to this style may occur during learning, and if so, the resulting
descriptors may not work as well for input from different datasets.

We create two adversarial test sets (see Figure 6.2d–Figure 6.2e) by extracting patches
from disparate image pairs. For the first set (MU1), we gathered 100 image pairs from
various sources:

• 46 image pairs of various modalities, the complete set from Hauagge and Snavely [2012];

• 5 image pairs of various modalities randomly selected from Kelman et al. [2007];

• 5 image pairs of years-apart aerial images, and SAR (synthetic aperture radar) aerial
images randomly selected from Sandia National Laboratory [Sandia National Labora-
tories, 2016] vs. their correspondences obtained from Google Earth;

• 19 image pairs of temporally different aerial images randomly selected from the Rochester
dataset [Rochester Institute of Technology, 2016];

• 25 image pairs, that although uni-modal have significant view point / illumination /
etc. changes, selected from the Oxford dataset [Visual Geometry Group, University of
Oxford, 2016].

For the second set (MU2), we use all 980 image pairs from EO (electro-optic) vs. IR (infra-
red) sensors from Razakarivony and Jurie [2015].

In contrast to the image patches of the MVS dataset, these disparate datasets consist of
corresponding full image pairs with known ground truth transformations between pairs. For
a given image pair, we registered the images using this transformation, and cropped 64× 64
image patches located at every stride of 32 pixels. From the first image pair set (100 image

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 79

(a) Statue of Liberty (LY) from Brown et al. [2011]

(b) Notre dame (ND) from Brown et al. [2011]

(c) Yosemite (YO) from Brown et al. [2011]

(d) Disparateness 1 (MU1) from various
sources [Hauagge and Snavely, 2012; Kelman
et al., 2007; Sandia National Laboratories, 2016;
Rochester Institute of Technology, 2016; Visual
Geometry Group, University of Oxford, 2016]

(e) Disparateness 2 (MU2) from Razakarivony and Ju-
rie [2015]

Figure 6.2. Examples of different datasets: Statue of Liberty (LY), Notre Dame (ND), Half
Dome in Yosemite (YO) are from Brown et al. [2011]. Our disparate sets, MU1 and MU2,
include images cropped from Hauagge and Snavely [2012] and others, and Razakarivony and
Jurie [2015], respectively.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 80

I1

I2

(a) LY
I1

I2

(b) ND
I1

I2

(c) YO
I1

I2

(d) MU1
I1

I2

(e) MU2

I1

I2

(f) LY
I1

I2

(g) ND
I1

I2

(h) YO
I1

I2

(i) MU1
I1

I2

(j) MU2

Figure 6.3. Joint distribution of corresponding pixel intensities. Hotter colors reflect more
frequent occurrence. (a-e): Original patches (intensities ∈ [0, 255]). (f-j): Preprocessed
patches (intensities ∈ [-.3, .3]).

pairs) and the second image pair set (980 image pairs), this resulted in around 15,000 (MU1)
and 100,000 (MU2) corresponding patch pairs, respectively. Since most image descriptors
consider gray-scale input, all color images are converted to gray-scale.

Note that we do not train any models from these disparate datasets (MU1 and MU2).
Our goal is to learn a descriptor embedding model from the given training data (LY, ND, YO)
that is effective for data of different characteristics (MU1 and MU2) as well. For disparate
testing, we train a model with all three MVS subsets (LY, ND, YO).

How challenging is disparate input, and what makes it difficult? To visualize the different
nature of disparate images, we conduct a simple analysis. For 10,000 random corresponding
patch pairs (positive samples) in a dataset {LY, ND, YO, MU1, MU2}, we compare corre-
sponding pixel intensities I1 and I2 ∈ [0, 255] and visualize the joint distribution (I1, I2) in
Figure 6.3 (a–e). Hotter color reflects higher occurrence. A set of pairs of identical patches
will generate a distribution only on the diagonal. Compared to the standard MVS dataset
(a–c), our disparate datasets (d–e) show more diluted distribution off the diagonal, meaning
more challenging inputs.

Intensity mean and standard deviation normalization is a popular preprocessing approach
to standardize images so that they are invariant to overall illumination and contrast changes.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 81

We also visualize the same analysis after such preprocessing (f–j). Although input pairs
correlate more strongly, the disparate inputs still show more variability in the values of
corresponding pixels.

6.3 Artificial Intensity Remapping
A more robust system should work on input beyond the style(s) available in the training set.
What if during learning we expose a learning process to various versions of corresponding
patches? Under this reasoning, we generate randomized artificial intensity remappings. One
can think of a mapping function F : x → y (0 ≤ x, y ≤ 255) that changes the look of a
patch, i.e., changes intensity from x to y.

We first define k control points, (xi, zi) for i = 1, 2, . . . , k:

a← B(0, 1) (binary random sample) (6.1)
xi ← 255(i− 1)/(k − 1) (uniform subdivision) (6.2)
ri ← U(0, 1) (uniform random sample) (6.3)

si ← (−1)a
i∑

j=1

rj (accumulated sum) (6.4)

zi ← 255/(max
i

(si)−min
i

(si))(si −min
i

(si)) (6.5)

where B(α, β) denotes a uniform binary sample, either α or β, and U(α, β) denotes a uniform
random sample in [α, β). The sis are the accumulated sum of random samples (ris), and a
determines whether the sis are increasing positive values or decreasing negative values. The
zis are the normalization of the sis such that the minimum and maximum values are 0 and
255.

Taking (xi, zi) as k control points, equally spaced on the x axis, we interpolate them with
a second order interpolating spline (i.e., going through each control point with continuous
first derivatives). This spline defines a mapping function Z that maps a pixel intensity
x to Z(x). Figure 6.4a illustrates an example of randomly generated sis (a = 1, before
normalization) and the spline interpolation.

To introduce noise, we also perturb the function Z at every possible integer point xj by
a random amount less than a constant perturbation parameter, p.

xj ← j for j = 0, 1, . . . , 255 (6.6)
bj ← U(−1, 1) (6.7)
yj ← Z(xj) + bj · p (perturbation) (6.8)

Then we re-interpolate these new (xi, yi) points using linear interpolation to obtain our final
function F that maps a pixel intensity x to F (x).

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 82

(

Interpolating spline

(a) Generation (b) Application

Figure 6.4. Examples of AIR generation and application.

architecture dimension / connectivity
pooling / activation

Simo-Serra et al. [2015] C(7,2,32)-P(2)-C(6,3,64)-
P(3)-C(5,4,128)

128 / sparse
L2 / tanh

Kumar et al. [2016] B(7,3,96)-P(2)-B(5,1,192)-P(2)-
B(3,1,256)-B(1,1,256)-C(1,1,1)

256 / regular
max / ReLU

AIR C(7,2,32)-P(2)-C(6,3,64)-
P(3)-C(5,4,128)

128 / regular
L2 / tanh

Table 6.1. Architectural comparison with the most closely related work: C(w, s, n) denotes
a convolution layer with n filters of size w × w and stride s; B(w, s, n) denotes C(w, s, n)
with batch normalization; P(w) denotes a pooling layer of size w × w with stride w.

We show two examples of these AIR random mapping functions, together with patches
before and after applying the functions in Figure 6.4b; seven variations of resulting patches
were shown in Figure 6.1 (k = 7, p = 10). When training, we generate a different such AIR
mapping function for every patch and apply it to the patch, followed by random horizontal
and/or vertical flipping, and mean and standard deviation normalization.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 83

6.4 Experiments

6.4.1 Setup

To show the efficacy of AIR, we compare our performance to Simo-Serra et al. [2015] and
Kumar et al. [2016]. The architectural differences of the underlying CNNs to which they are
applied are summarized in Table 6.1. As key strategies, Simo-Serra et al. [2015] introduces
a scheme of mining hard samples with sparse connectivity between layers, whereas Kumar
et al. [2016] introduces an extra global term in their objective function.

We basically follow the architecture of Simo-Serra et al. [2015]. Since we found that
sparse connectivity is not easy to implement for some libraries (e.g. Tensorflow, which we
use), we used regular connectivity despite possible disadvantages in performance. Note also
that the dimensions of resulting descriptors are 128 for us and [Simo-Serra et al., 2015],
but 256 for [Kumar et al., 2016]. Descriptors of higher dimension may have an intrinsic
advantage in description ability at the cost of higher computation.

For the objective loss function, instead of the hinge embedding loss [Mobahi et al., 2009]
using the L2 norm that Simo-Serra et al. [2015] uses:

l1(x1,x2, y) ={
||D(x1)−D(x2)||2 y = 1

max(0, C − ||D(x1)−D(x2)||2) y = 0
(6.9)

we use the form with squared terms as in Hadsell et al. [2006]:

l2(x1,x2, y) ={
1
2
(||D(x1)−D(x2)||2)2 y = 1

1
2

max(0, C − ||D(x1)−D(x2)||2)2 y = 0
(6.10)

where x1 and x2 are the patch pair input and y is a binary label denoting a positive or
negative sample, i.e, true or false match (Figure 2.1). In both cases, the objectives are to
reduce the L2 norm for positive samples (y = 1), and to increase the norm up to a margin
parameter C for negative samples (y = 0). Note that negative samples whose norms are
larger than C do not increase the objective loss.

In terms of impact on learning, note that for these two functions the gradient of objective
l2 is proportional to that of l1 (see Appendix B). Since gradient descent updates are weighted
by learning rates with a decay as well, it is not clear that these proportional changes in the
gradient will impact the overall learning performance.

6.4.2 Network training

Following Simo-Serra et al. [2015], we use Mini-batch Gradient Descent with a batch size
of 128, a starting learning rate of 0.01 with a decay of 0.9 every 10,000 iterations, and a

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 84

0 5000 10000 15000 20000 25000 30000 35000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

AUC
loss

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Lo
ss

Figure 6.5. Training process of an example model training using LY and ND with a validation
set from YO. The real curves are shown in light colors (light red for AUC and light blue
for loss). To visualize their trends, we smooth them using exponential smoothing, and mark
them in darker red and darker blue colors.

momentum of 0.9. We use a randomly selected small subset1 of the data for validation
and stop training when the evaluation metric converges. Figure 6.5 shows typical behavior
during the training processes. As iterations increase, the objective losses decrease, and the
evaluation metric (Area Under Curve, i.e., AUC) increases until they eventually stabilize.
We terminate training when we saw no more progress, which occurred at an iteration between
28,000 and 35,000 on the input tested.

We also adopt the mining scheme of Simo-Serra et al. [2015] to choose “hard” samples.
Specifically, at every training iteration, a set of training samples m times larger than the
actual batch size b are fetched, and their descriptors calculated (requiring forward propaga-
tion). These are then pruned down to the batch size by choosing the positive samples with
the b/2 largest descriptor distances and the negative samples with the b/2 smallest descriptor
distances.

We found this mining scheme to be very effective. Although Simo-Serra et al. [2015]
used a mining factor m = 8, we use m = 4 for computational speed and memory efficiency,
since we did not measure much difference in terms of performance. From the view point of

1See Section 6.4.3 for the detailed number of training and test sets.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 85

mining, since AIR can be regarded as intentionally generating artificial “hard” samples even
from “easy” samples, less mining (m = 4) with AIR may be as effective as mining (m = 8)
without AIR.

In terms of computation speed, as mentioned by Krizhevsky et al. [2012], data augmen-
tation processes can be implemented so as to exploit computation parallelism with learning
(e.g., data augmentation can be processed on the CPU while the GPU is training with the
previous batch). This means that we can obtain the benefits of AIR at almost no trade-off
cost in wall-clock training time.

Since each of our training sets consists of 300,000 samples (see Section 6.2), training an
example model using LY and ND (i.e., 600,000 samples) for 30,000 iterations, a batch size
of 128, and a mining factor of 4 will run for (30, 000× 128× 4)/600, 000 = 25.6 epochs. In
other words, we end up training with around 26 AIR-generated versions per original patch
input.

6.4.3 Evaluation

Non-disparate-imagery tests We follow the evaluation method of Simo-Serra et al.
[2015]. The testing process is as follows. We randomly pick 5,000 patches. For each of
the selected patches, we select one corresponding patch and 1,000 other random patches,
and calculate the descriptor distances of 1 true pair and 1,000 false pairs. PR (precision-
recall) curves and corresponding AUC are calculated from the 5000× (1000 + 1) descriptor
distances. For validation sets, we use a small subset (100 sets of 1 true vs. 1000 false samples)
chosen separately.

The PR curves of the cross-subset MVS tests (LY, ND, YO) are shown in Figure 6.6,
and AUCs are shown in Table 6.2. Numbers and letters in parentheses represent descriptor
dimension and type (f:floating point, b:binary), respectively. In the LY and ND tests, our
model trained with AIR had the best performance. In YO test, our model shows almost the
same performance as the best performance among state-of-the-art algorithms. On average,
our model shows the best performance.

In regards to performance reporting, there are three things to note: (1) we reconstructed
the MVS training and test sets following the randomized procedure of Simo-Serra et al.
[2015], therefore our test sets are not exactly the same as theirs. In Table 6.2, Global [Kumar
et al., 2016] and AIR are tested on our reconstructed MVS sets; we quote the other results
from Simo-Serra et al. [2015] since we found that CNN [Simo-Serra et al., 2015] performed
almost identically when run on our reconstruced test sets. (2) Because Global [Kumar et al.,
2016] provides only LY-trained, ND-trained, and YO-trained models, we report whichever
gives the best performance in Tables 6.2 and 6.3. (3) Because SIFT is a hand-crafted
descriptor, the “train” columns in Table 6.2 and 6.3 are not applicable.

Disparate-imagery tests For the disparate tests (MU1, MU2), we compare our model
trained with AIR to state-of-art descriptors [Simo-Serra et al., 2015; Kumar et al., 2016] as
well as SIFT. We also measured the performance of our model without AIR to isolate the

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 86

train test
SIFT BGM L-BGM BinBoost VGG CNN Global AIR
[44] [78] [78] [78] [69] [68] [36]

(128f) (256b) (64f) (256b) (80f) (128f) (256f) (128f)
ND,YO LY 0.226 0.268 0.355 0.410 0.558 0.608 0.572 0.646
LY,YO ND 0.349 0.487 0.495 0.549 0.663 0.667 0.633 0.712
LY,ND YO 0.425 0.495 0.517 0.533 0.709 0.545 0.590 0.705

average 0.333 0.417 0.456 0.497 0.643 0.607 0.598 0.688

Table 6.2. AUC of precision-recall curves for cross-subset MVS test (bold denotes top per-
formance).

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

SIFT
BINBOOST
VGG
CNN
GLOBAL
AIR

(a) LY

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

SIFT
BINBOOST
VGG
CNN
GLOBAL
AIR

(b) ND

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

SIFT
BINBOOST
VGG
CNN
GLOBAL
AIR

(c) YO

Figure 6.6. Precision-recall curves for each non-disparate test set.

train test SIFT [44] CNN [68] Global [36] w/o AIR w/ AIR
(128f) (128f) (256f) (128f) (128f)

LY,ND,YO MU1 0.216 0.217 0.211 0.301 0.316
LY,ND,YO MU2 0.437 0.633 0.681 0.660 0.735

Table 6.3. AUC of precision-recall curves for disparate test (bold denotes top performance).

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 87

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

SIFT
CNN
GLOBAL
W/O AIR
W/ AIR

(a) MU1

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

SIFT
CNN
GLOBAL
W/O AIR
W/ AIR

(b) MU2

Figure 6.7. Precision-recall curves for each disparate test set.

effect of AIR. Performance is measured with PR curves in Figure 6.7 and AUCs in Table 6.3.
As seen in Figure 1.2 and Figure 6.3, MU1 contains pairs with more severe appearance
changes than other test sets, which explains why overall performance is lower on MU1, no
matter the descriptor. Deep-learning-based descriptors trained on the MVS dataset will have
not seen such input during training. In this case, a hand-crafted descriptor, SIFT, engineered
by human reasoning, works similarly to or even better than Simo-Serra et al. [2015] and
Kumar et al. [2016]. Despite the fact that we set up most of our network architecture and
hyper parameters similarly to those of Simo-Serra et al. [2015], even our model without AIR
outperforms it. Note again that the choice of the hyper parameter C (we set our own value
C = 0.9 since it was not specified for theirs) and the square terms differ from Simo-Serra
et al. [2015]. The mining factor (m = 4) and the regular connectivity that we used are the
ones they reported as suboptimal. In regards to disparate performance reporting, note that
all algorithms are tested using identical test sets, and we use Vedaldi and Fulkerson [2010]
for SIFT implementation.

Although our base model (w/o AIR) brought a surprising jump in performance, one
can still see the additional benefit of AIR. The performance of the other algorithms are
all similar to each other (AUC differing by 0.001–0.006) for the most challenging input of
MU1. The performance gain of 0.015 using AIR is a 5% gain in AUC compared to our
same implementation without AIR. In the case of the MU2 test, the performance of our base
model is similar to that of CNN, and inferior to that of Global. However, AIR delivers an
11% boost in performance, and attains the best results.

6.5 Comparison with DUDE
So far we have evaluated the performance of AIR based on “patch” tests, where we collected
numerous examples of true and false matches between small sub-patches within dataset.

CHAPTER 6. DEEP LEARNING BASED IMAGE MATCHING 88

detectors

GRID SIFT

descriptors DUDE 0.63 0.35
AIR 0.52 0.34

Table 6.4. Mean average precision (mAP) evaluation and comparison between AIR-
augmented deep-learning descriptor and DUDE. DUDE is comparable to AIR-augmented
deep-learning descriptor when using SIFT as the detector, and a bit better in the case of a
hypothetical perfect detector as represented by GRID.

In addition, as in Chapter 4, we conducted “practical” tests where features (keypoints) are
extracted using two detector systems, GRID and SIFT (see Chapter 4), and descriptors
are computed for the extracted features. For image pairs, we used the 46 images of the
disparate architecture dataset [Hauagge and Snavely, 2012] (a few images are illustrated in
Figure 1.2d). Table 6.4 summarizes the results. Although our deep-learning-based descrip-
tor with AIR showed overall better performance than the other comparable deep-learning
descriptors, it showed similar or a bit lower performance than DUDE’s. Very recently,
Schönberger et al. [2017] compared hand-engineered features versus data-driven features,
and also reported that advanced hand-engineered features still perform on par or better
than data-driven features. It is interesting that, unlike higher-level tasks such as object
classification/recognition and image segmentation, data-driven approaches do not obviously
outperform sophisticated engineered approaches in image feature research.

We hypothesize that data-driven image descriptors could be much more powerful if
trained directly on disparate imagery datasets. Since (1) data-driven approaches may have
weaknesses due to limited training data and over-fitting and (2) our “disparate” cases should
cover a large range of possible appearance changes, we expect that an effort to collect a much
larger dataset of disparate images would be very valuable to fill this gap.

6.6 Summary
We present a novel data augmentation scheme, Artificial Intensity Remapping (AIR). AIR
artificially generates adversarial but still realistic input to help learning for better gener-
alization. To show the efficacy of AIR, we build disparate test beds from various sources.
This testing on disparate appearance input demonstrates the benefits of AIR in addressing
the fact that successful performance in deep learning, with its huge number of parameters,
may result from overfitting to a given dataset. Various experiments show that our model
trained using only non-disparate data with AIR outperforms state-of-the-art algorithms not
only for non-disparate data (intra-dataset cross tests) but also for disparate data (adversarial
inter-dataset cross tests).

89

Chapter 7

Conclusion and Future Work

In this dissertation, we hypothesized that, in order to find correspondences across image pairs
with dramatically inconsistent appearance, it is advantageous to make use of information
that captures aspects of shape that could be preserved despite significant appearance changes
(e.g., reversal of brightness and darkness, partial absence of edges, etc.). For this purpose,
we explored capturing the distributions of line segments. Even though, by relying on line
segments, our algorithm is free from the effects of color, intensity, and/or texture changes,
since dramatic appearance changes are highly likely to affect the detection of line segments
as well, we wanted our algorithm to be robust against such changes in detection. We also
aimed for a computationally efficient algorithm.

As a first step, we demonstrated the effectiveness of using (the distribution of) line
segments as cues in Chapter 3 for finding correspondences with the RANSAC algorithm .
The result shows one can utilize the distribution of line segments to register challenging
input for which existing methods fail. However, relying on the naïve RANSAC algorithm
without appropriate descriptors requires a huge number of trials to be eventually successful.
Therefore, in Chapter 4, we consider how can we capture the distributions of line segments
and introduce a descriptor system, called DUDE, which is designed for line segments, and
consistent even when the input distributions consist of disconnected line segments and/or
their unstable endpoints. The experimental results show that DUDE descriptors significantly
outperform most existing descriptors. In addition, DUDE shows equivalent performance to
the state-of-the-art with significantly less computational cost. In Chapter 5, beyond image
matching, we explored a new application of DUDE where we utilize the DUDE descriptor to
improve the performance of a new approach to autograding multiview engineering drawings
that we introduce. The system can compare two multiview drawings, a reference solution
and a student’s submission, that may have inconsistent translations, scales, mirroring, skew,
and/or rotation; all of which must be distinguished from allowable differences in scale, offset,
and translation to reliably identify and classify errors in the students’ drawings. By using
DUDE, we improve computational speed significantly.

Admittedly, DUDE has limitations. First, DUDE requires setting several parameters
(including parameters related to line segment detection). A possible avenue for future re-

CHAPTER 7. CONCLUSION AND FUTURE WORK 90

search is studying a systematic way of determining those parameter. Second, DUDE requires
somewhat larger feature (region) than most other descriptors, so that feature regions include
a number of line segments. However, this can also be an advantage in that DUDE can be
used in a complimentary manner, alongside existing descriptors. Third, DUDE may be more
effective with images including more linear features than curvy features, which are detected
as short line segments.

The recent focus of image feature extraction research (whether feature detection or de-
scription) research has turned towards deep-learning based features, inspiring our work in-
troducing AIR as an potential aggressive data augmentation in Chapter 6. However, the
deep-learning-based approaches have weakness in the need for extensive training data. We
show that deep-learning-based descriptors, even with the help of AIR, are not yet as effec-
tive as our handcrafted DUDE descriptor when applied to disparate images. A promising
direction for future work is exploring how one could combine the advantages of handcrafted
descriptors and deep-learning-based descriptors.

91

Appendix A

Histogram comparison

There are many possible measures to compare two histograms. Here we introduce a few of
popular measures. For given d-dimension histograms P and Q:

Euclidean L2

√√√√ d∑
i=1

(Pi −Qi)2 (A.1)

Minkowski Lp

√√√√ d∑
i=1

(Pi −Qi)p (A.2)

Intersection
d∑
i=1

min(Pi, Qi) (A.3)

Harmonic mean 2
d∑
i=1

PiQi

Pi +Qi

(A.4)

Bhattacharyya − ln
d∑
i=1

√
PiQi (A.5)

χ2

d∑
i=1

(Pi −Qi)
2

Pi +Qi

. (A.6)

See Cha [2007] for more metrics and detailed comparisons.

92

Appendix B

Objective loss functions

The gradients using the two variants of hinge embedding loss are proportional as follows.
One can show that when y = 1,

∂l1(x1,x2, y)

∂W
=
∂||D(x1)−D(x2)||2

∂W
(B.1)

∂l2(x1,x2, y)

∂W
= ||D(x1)−D(x2)||2

∂||D(x1)−D(x2)||2
∂W

= ||D(x1)−D(x2)||2
∂l1(x1,x2, y)

∂W
(B.2)

and when y = 0 and ||D(x1)−D(x2)||2 < C,

∂l1(x1,x2, y)

∂W
= −∂||D(x1)−D(x2)||2

∂W
(B.3)

∂l2(x1,x2, y)

∂W

= −(C − ||D(x1)−D(x2)||2)
∂||D(x1)−D(x2)||2

∂W

= (C − ||D(x1)−D(x2)||2)
∂l1(x1,x2, y)

∂W
. (B.4)

93

Bibliography

Achanta, R., Shaji, A., and Smith, K. (2012). SLIC Superpixels Compared to State-of-the-
Art Superpixel Methods. TPAMI, 34(11):2274–2282.

AUTODESK (2000). AutoCAD Drawing Compare Plug-in. https://apps.exchange.
autodesk.com/VLTC/en/Detail/Index?id=appstore.exchange.autodesk.com%
3Adrawizgcompare%3Aen. Last accessed on Oct 20, 2014.

Balntas, V., Riba, E., Ponsa, D., and Mikolajczyk, K. (2016). Learning local feature de-
scriptors with triplets and shallow convolutional neural networks. In BMVC, volume 33,
page 2011.

Bansal, M. and Daniilidis, K. (2013). Joint spectral correspondence for disparate image
matching. In Computer Vision and Pattern Recognition, pages 2802–2809.

Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(4):509–522.

Bertoline, G., Wiebe, E., Hartman, N., and Ross, W. (2002). Technical Graphics Commu-
nication. McGraw-Hill Science/Engineering/Math.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., Lecun, Y., Moore, C., Säckinger, E., and
Shah, R. (1993). Signature Verification Using a "Siamese" Time Delay Neural Network.
International Journal of Pattern Recognition and Artificial Intelligence, 07(04):669–688.

Brown, M., Hua, G., and Winder, S. (2011). Discriminative Learning of Local image De-
scriptors. Transactions on Pattern Analysis and Machine Intelligence, 33(1):43–57.

Brown, M. and Lowe, D. (2003). Recognising panoramas. International Conference on
Computer Vision.

Brown, M. and Lowe, D. G. (2005). Unsupervised 3D object recognition and reconstruction
in unordered datasets. In Fifth International Conference on 3-D Digital Imaging and
Modeling, pages 56–63.

https://apps.exchange.autodesk.com/VLTC/en/Detail/Index?id=appstore.exchange.autodesk.com%3Adrawizgcompare%3Aen
https://apps.exchange.autodesk.com/VLTC/en/Detail/Index?id=appstore.exchange.autodesk.com%3Adrawizgcompare%3Aen
https://apps.exchange.autodesk.com/VLTC/en/Detail/Index?id=appstore.exchange.autodesk.com%3Adrawizgcompare%3Aen

BIBLIOGRAPHY 94

Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, (6):679–698.

Cao, Y. (Last accessed on Apr 14, 2015). Hungarian algorithm for linear assignment problems
(v2.3). http://www.mathworks.com/matlabcentral/fileexchange/20652.

Cha, S.-h. (2007). Comprehensive Survey on Distance / Similarity Measures between Prob-
ability Density Functions. International Journal of Mathematical Models and Methods in
Applied Sciences, 1(4):300–307.

Choi, S., Kim, T., and Yu, W. (1997). Performance evaluation of RANSAC family. Journal
of Computer Vision.

Coiras, E., Santamarı, J., and Miravet, C. (2000). Segment-based registration technique for
visual-infrared images. Optical Engineering, 39(1):282–289.

Dubrofsky, E. and Woodham, R. J. (2008). Combining Line and Point Correspondences
for Homography Estimation. In Advances in Visual Computing, pages 202–213. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Fedorov, D. V., Fonseca, L. M., Kenney, C., and Manjunath, B. S. (2003a). Automatic
registration and mosaicking system for remotely sensed imagery. pages 444–451.

Fedorov, D. V., Kenney, C., Manjunath, B. S., and Fonseca, L. M. (2003b). Image Registra-
tion With Fit Assessment Demo. http://vision.ece.ucsb.edu/registration/imreg/.
Last accessed on May 14, 2014.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395.

Geng, W., Wang, J., and Zhang, Y. (2002). Embedding visual cognition in 3D reconstruction
from multi-view engineering drawings. Computer-Aided Design.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout
Networks. In International Conference on Machine Learning, volume 28, pages 1319–1327.

Gradescope (2017). gradescope.com. https://gradescope.com. Last accessed on Apr 4,
2017.

Graham, B. (2014). Fractional Max-Pooling. arXiv, pages 1–10.

Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., and Randall, G. (2012). Lsd: a line
segment detector. Image Processing On Line, 2:35–55.

http://www.mathworks.com/matlabcentral/fileexchange/20652
http://vision.ece.ucsb.edu/registration/imreg/
https://gradescope.com

BIBLIOGRAPHY 95

Habib, A. F. and Alruzouq, R. I. (2004). Line-based modified iterated Hough transform for
automatic registration of multi-source imagery. The Photogrammetric Record, 19(105):5–
21.

Hadsell, R., Chopra, S., and Lecun, Y. (2006). Dimensionality Reduction by Learning an
InvariantMapping. In Conference on Computer Vision and Pattern Recognition.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. Proceedings of
the Alvey Vision Conference, pages 147–151.

Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.

Hauagge, D. C. and Snavely, N. (2012). Image matching using local symmetry features. In
Computer Vision and Pattern Recognition, pages 206–213.

Irani, M. and Anandan, P. (1998). Robust multi-sensor image alignment. International
Conference on Computer Vision, pages 1–19.

Kelman, A., Sofka, M., and Stewart, C. V. (2007). Keypoint descriptors for matching
across multiple image modalities and non-linear intensity variations. Computer Vision
and Pattern Recognition, pages 1–7.

Kim, H., Correa, C., and Max, N. (2014a). Automatic Registration of LiDAR and Opti-
cal Imagery using Depth Map Stereo. Computational Photography, IEEE International
Conference on, pages 205–212.

Kim, H., Thiagarajan, J., and Bremer, P.-T. (2014b). Image segmentation using consensus
from hierarchical segmentation ensembles. In IEEE International Conference on Image
Processing, pages 3272–3276.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems, pages 1–9.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:87–97.

Kumar, B. G. V., Carneiro, G., and Reid, I. (2016). Learning Local Image Descriptors with
Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions.
In Conference on Computer Vision and Pattern Recognition, pages 5385–5394.

Kwon, Y. P. (2014). Line segment-based aerial image registration. Master’s thesis, EECS
Department, University of California, Berkeley.

Kwon, Y. P. and McMains, S. (2015). An Automated Grading / Feedback System for 3-View
Engineering Drawings using RANSAC. In ACM Conference on Learning at Scale, pages
157–166, Vancouver, BC, Canada. ACM.

BIBLIOGRAPHY 96

Lee, H. and Han, S. (2005). Reconstruction of 3D interacting solids of revolution from 2D
orthographic views. Computer-Aided Design, 37(13):1388–1398.

Lieu, D. and Sorby, S. (2009). Visualization, Modeling, and Graphics for Engineering Design.
Delmar Learning, 3rd edition.

Lin, K., Lu, J., Chen, C.-S., and Zhou, J. (2016). Learning Compact Binary Descriptors
with Unsupervised Deep Neural Networks. In Conference on Computer Vision and Pattern
Recognition.

Lin, M., Chen, Q., and Yan, S. (2013). Network In Network. arXiv, page 10.

Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal
of Computer Vision, 30(2):79–116.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision.

Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust wide baseline stereo from
maximally stable extremal regions. In British Machine Vision Conference, pages 384–393.

Mathworks (2000a). MATLAB CENTRAL, File Exchange. http://www.mathworks.com/
matlabcentral/fileexchange. Last accessed on Oct 20, 2014.

Mathworks (2000b). Read DXF File Data. http://www.mathworks.com/matlabcentral/
fileexchange/24572-read-dxf-file-data. Last accessed on Oct 20, 2014.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point detectors.
International Journal of Computer Vision, 60(1):63–86.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, a., Matas, J., Schaffalitzky, F.,
Kadir, T., and Van Gool, L. (2005). A comparison of affine region detectors. International
Journal of Computer Vision, 65(1-2):43–72.

Miríana (2017). Technical Drawing for Mechanical Engineering. https://miriadax.net/
web/technical-drawing-for-mechanical-engineering-dibujo-tecnico-para-ingenieria-mecanica-/.
Last accessed on Apr 4, 2017.

MIT Open Courseware (2017). Design Handbook: Engineering Drawing
and Sketching. https://ocw.mit.edu/courses/mechanical-engineering/
2-007-design-and-manufacturing-i-spring-2009/related-resources/drawing_
and_sketching/. Last accessed on Apr 4, 2017.

http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/fileexchange/24572-read-dxf-file-data
http://www.mathworks.com/matlabcentral/fileexchange/24572-read-dxf-file-data
https://miriadax.net/web/technical-drawing-for-mechanical-engineering-dibujo-tecnico-para-ingenieria-mecanica-/
https://miriadax.net/web/technical-drawing-for-mechanical-engineering-dibujo-tecnico-para-ingenieria-mecanica-/
https://ocw.mit.edu/courses/mechanical-engineering/2-007-design-and-manufacturing-i-spring-2009/related-resources/drawing_and_sketching/
https://ocw.mit.edu/courses/mechanical-engineering/2-007-design-and-manufacturing-i-spring-2009/related-resources/drawing_and_sketching/
https://ocw.mit.edu/courses/mechanical-engineering/2-007-design-and-manufacturing-i-spring-2009/related-resources/drawing_and_sketching/

BIBLIOGRAPHY 97

Mobahi, H., Collobert, R., and Weston, J. (2009). Deep Learning from Temporal Coherence
in Video. In International Conference on Machine Learning, pages 737–744.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of
the Society of Industrial and Applied Mathematics, 5(1):32–38.

Nistér, D. (2005). Preemptive RANSAC for live structure and motion estimation. Machine
Vision and Applications.

Qi, Y., Song, Y.-Z., Zhang, H., and Liu, J. (2016). Sketch-based Image Retrieval via Siamese
Convolutional Neural Network. In International Conference on Image Processing, number
iii, pages 2460–2464.

Raguram, R., Frahm, J.-M., and Pollefeys, M. (2008). A comparative analysis of RANSAC
techniques leading to adaptive real-time random sample consensus. In ECCV 2008, pages
500–513.

Razakarivony, S. and Jurie, F. (2015). Vehicle Detection in Aerial Imagery : A Small Tar-
get Detection Benchmark. Journal of Visual Communication and Image Representation,
34:187–203.

Rochester Institute of Technology (Last accessed on Nov 11, 2016). 3D-Rochester: Image
and LiDAR Dataset. http://dirsapps.cis.rit.edu/3d-rochester/data.html.

Sandia National Laboratories (Last accessed on Nov 11, 2016). SAR images from San-
dia National Laboratories. https://web.archive.org/web/*/http://www.sandia.gov/
radar/images/*.

Schmid, C. and Zisserman, A. (1997a). Automatic line matching across views. In Computer
Vision and Pattern Recognition, pages 666–671.

Schmid, C. and Zisserman, A. (1997b). Automatic line matching across views. In Com-
puter Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society
Conference on, pages 666–671.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for point-cloud shape
detection. Computer Graphics Forum.

Schönberger, J. L., Hardmeier, H., Sattler, T., and Pollefeys, M. (2017). Comparative
Evaluation of Hand-Crafted and Learned Local Features. CVPR, pages 1482–1491.

Sharvit, D., Chan, J., Tek, H., and Kimia, B. B. (1998). Symmetry-based indexing of image
databases. Journal of Visual Communication and Image Representation, 9(4):366–380.

Shechtman, E. and Irani, M. (2007). Matching local self-similarities across images and videos.
Computer Vision and Pattern Recognition.

http://dirsapps.cis.rit.edu/3d-rochester/data.html
https://web.archive.org/web/*/http://www.sandia.gov/radar/images/*
https://web.archive.org/web/*/http://www.sandia.gov/radar/images/*

BIBLIOGRAPHY 98

Shin, B. S. and Shin, Y. G. (1998). Fast 3d solid model reconstruction from orthographic
views. Computer-Aided Design, 30(1):63–76.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., and Moreno-Noguer, F. (2015).
Discriminative Learning of Deep Convolutional Feature Point Descriptors. In International
Conference on Computer Vision, pages 118–126. IEEE.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Learning Local Feature Descriptors
Using Convex Optimisation. Transactions on Pattern Analysis and Machine Intelligence,
pages 1–14.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striving for
Simplicity: The All Convolutional Net. In International Conference on Learning Repre-
sentations, pages 1–14.

Stewart, C. V., Tsai, C.-L., and Roysam, B. (2003). The dual-bootstrap iterative closest point
algorithm with application to retinal image registration. IEEE transactions on medical
imaging, 22(11):1379–1394.

Suh, Y. S. and McCasland, J. (2009). Interactive Construction of Solids from Orthographic
Multiviews for an Educational Software Tool. Computer-Aided Design and Applications,
6(2):219–229.

Taigman, Y., Yang, M., Ranzato, M. A., and Wolf, L. (2014). DeepFace: Closing the Gap to
Human-Level Performance in Face Verification. In Conference on Computer Vision and
Pattern Recognition.

Tensorflow TM (Last accessed on Nov 11, 2016). Tensorflow. https://www.tensorflow.org.

Tola, E., Lepetit, V., Fua, P., and Member, S. (2010). Daisy: an efficient dense descriptor
applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(5):815–830.

Tombari, F., Franchi, A., and Di, L. (2013). Bold features to detect texture-less objects.
International Conference on Computer Vision, pages 1265–1272.

Torr, P. H. S. and Zisserman, A. (2000). MLESAC: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding, 78(1):138–156.

Trzcinski, T., Christoudias, M., Fua, P., and Lepetit, V. (2013). Boosting Binary Image
Descriptors. In Conference on Computer Vision and Pattern Recognition, pages 2874–
2881.

Van De Sande, K., Gevers, T., and Snoek, C. (2010). Evaluating color descriptors for object
and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(9):1582–1596.

https://www.tensorflow.org

BIBLIOGRAPHY 99

Vedaldi, A. and Fulkerson, B. (2010). Vlfeat - an open and portable library of computer
vision algorithms. International Conference on Multimedia, 3(1):1–4.

Visual Geometry Group, University of Oxford (Last accessed on Nov 11, 2016). Affine Co-
variant Regions Datasets. http://www.robots.ox.ac.uk/~vgg/data/data-aff.html.

Wang, L., Neumann, U., and You, S. (2009a). Wide-baseline image matching using line
signatures. In International Conference on Computer Vision, pages 1311–1318. IEEE.

Wang, W. and Grinstein, G. G. (1993). A survey of 3d solid reconstruction from 2d projection
line drawings. Computer Graphics Forum, 12(2):137–158.

Wang, Z., Fan, B., and Wu, F. (2011). Local intensity order pattern for feature description.
International Conference on Computer Vision, pages 603–610.

Wang, Z. and Latif, M. (2003). Reconstruction of a 3D solid model from orthographic
projections. In 2003 International Conference on Geometric Modeling and Graphics, 2003.
Proceedings, pages 75–82.

Wang, Z., Liu, H., and Wu, F. (2009b). Msld: A robust descriptor for line match-
ing. IEEE International Conference on Computer-Aided Design and Computer Graphics,
CAD/Graphics, 42:128–133.

Yi, K. M., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned invariant feature
transform. ECCV, 9910 LNCS:467–483.

Zagoruyko, S. and Komodakis, N. (2015). Learning to compare image patches via convo-
lutional neural networks. In Conference on Computer Vision and Pattern Recognition,
pages 4353–4361.

Zitová, B. and Flusser, J. (2003). Image registration methods: a survey. Image and Vision
Computing, 21(11):977–1000.

http://www.robots.ox.ac.uk/~vgg/data/data-aff.html

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Previous Work
	Feature detection and matching
	Transformation model estimation

	Linear Feature Matching Without Descriptors
	Introduction
	Algorithm
	Line Segment Detection
	Line Segment Merging
	Transformation
	Matching Score
	Filtering

	Results
	Summary

	Linear Feature Matching With DUDE Descriptor
	Introduction
	Proposed Method
	Feature detection
	Feature description
	Feature Matching

	Experimental Results
	Evaluating detections
	Evaluating descriptors
	Shape matching using DUDE
	Geometric characteristics of DUDE

	Conclusion

	Autograder for Multiview Drawing Using DUDE
	Introduction
	Missing and Incorrect Lines
	Mismatched View Scales
	Misaligned Views
	Views in Incorrect Relative Locations

	Related work
	Algorithm
	Single View Transformation Estimation
	Application to Multiview Drawings

	Grading Checks
	Element Comparison
	Front-Right View Alignment
	Front-Top View Alignment
	Uniform Scale
	Mirroring
	Rotation / Skew

	Computational Improvement
	Filtering
	Attribute and Vertex Degree Filtering
	Transformation Filtering
	Connectivity Filtering

	DUDE-based choice

	Implementation Issues
	Converting from dwg to dxf
	Loading dxf in MATLAB
	Merging Elements
	Pre-defining Layer Names

	Results
	Grading result visualization
	Comparison with human grading

	Conclusion

	Deep Learning Based Image Matching
	Introduction
	Datasets
	Artificial Intensity Remapping
	Experiments
	Setup
	Network training
	Evaluation

	Comparison with DUDE
	Summary

	Conclusion and Future Work
	Histogram comparison
	Objective loss functions
	Bibliography

