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Methods exploring the role of viscoelastic material chegrazation in vibroacoustic
simulations of marine mammal structural responses areepted. This work is guided by a
sensitivity analysis performed using the Vibroacoustiolki VATK. In this sensitivity study,
computational results are compared with published expariai results arising from the 1974
efforts of Kenneth S. Norris and George W. Harvey.

Experimental efforts include the development, calibmatiand testing of a portable
dynamical mechanical rheometer. For each sample testé@thmg’s modulus, shear modulus,
and viscosity are sought. Mechanical forces, less than adh@ue applied to the tissue through

an adhesive interfacial layer. A post-processing rousiraeveloped and results are evaluated.
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Certain anisotropic elastic materials, such as the hompgeénmodel of a fiber-
reinforced matrix, are nearly rigid under stresses apptieddirection of material rigidity—the
resulting strains are comparatively small when viewedragiahe strains that would occur in
response to otherwise directed stresses. Isotropic ralstenay have dilational rigidity, which
we show to be a special case of this generalized treatment.

Some common finite element techniques are effective inmgatith volumetric lock-
ing, but are not suited to handle anisotropic materials libek under non-hydrostatic stress
states. The failure of the traditional B-bar method is lttiable to the fundamental assumption
that the mode of deformation to be relieved is one of neammmessibility. The proposed rem-
edy exploits the spectral decomposition of the compliana&imof the anisotropic material.
The spectrum separates nearly-rigid and flexible modese$stind strain leading naturally
to a generalized selective reduced integration. What'sptbis decomposition also enables a
three-field formulation, of elastic strain energy consgorg which results in a B-bar method
applicable to general anisotropic materials with neaidydrfibers.

When materials with multiple rigid fiber directions are tezhwith more than one spec-
trally defined deformation mode, element stabilization thayecessary. A working stabiliza-
tion method is provided. This stabilization leads to a Jagareatment model that also offers

improved performance for isotropic materials that do neehagid strain modes.
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Chapter 1

Introduction and Background

Proceeded by a review of pertinent background fundameitgdsvork is comprised of
three distinct but related efforts to better understanddewlop methods for the vibroacous-
tic analysis of aural structures in marine mammals: Part demsitivity analysis comparing
vibroacoustic simulations to published experimental ltestPart 1l, the design, fabrication,
and testing of an experimental rheometer; and Part I, awpd methods to treat anisotropic
materials simulated using the finite element method. Algothe thrusts are in their essence
analytical, a good portion of this dissertation is devotethe development of a portable exper-

imental device used to determine the viscoelastic pragsedi biological tissues.

1.1 Marine Mammals

The study of marine mammal acoustic pathways and is a richadadncing science.
While a great interest in the topic has been seen in recems yiéee study of whale acoustics
has a long history. There are several important topics withe study of underwater acoustics
including the means of communication and the methods ofoeatibn employed by marine
mammals.

Whales (cetaceans) have advanced ears, which are comsiddre the most derived of

all the mammals. Toothed whales in particular are known & bgtraordinarily high frequen-



cies, up to 180 kHz in some species [2]. Baleen whales on tier btand are thought to have
the ability to hear frequencies lower than any other anirdjl [

In 1787, John Hunter observed that whale ears have the samctusés as quadruped
ears; they have an external opening, a tympanic membrasegubtachian tube, ossicles,
cochlea, and semicircular canals [4]. By the 1920s othensists were comparing the skulls
of current species to fossil cetaceans in search of an inegramderstanding of different evo-
lutionary modifications that accompanied the move to an @geavironment [5]. A hearty
debate with numerous competing theories of the auditoryhan@sm of cetaceans ensued.

In 1962 Dudok Van Heel concluded that the ear canal is vddtijaln 1984 Norris
suggested that odontocetes receive sound by way “acoatticsurrounding their lower jaws
[7]. In 1966 Purves insisted that the ear canal is indeed astigal [2]. In 1968 auditory
evoked potentials were used to support Norris’ conclus&n [n 1970 McCormick and his
colleagues stipulated that the ear canal is not functioftat all and supported the bone con-
duction theory [9]. In 1974 Norris and Harvey used hydroggsoimplanted in dead porpoise
heads to strengthen the lower jaw acoustic fat pathway; &8 Baill used a hood on the lower
jaws of live odontocetes to perform tests that mark widemicgeptance of Norris’ theory [10].
In 2001 Navy sonar is linked the beaching of whales in the Bad®a[2], and in 2009 it was
determined that hearing loss can be attributed to inteng@eionged exposure to sonar [11].
In this dissertation, some attention will be given to the4 @ublication of Norris and Harvey.
Emerging computational techniques are used to generatdations which will be compared
to the experimental results of their seminal work.

The continued study of marine mammal underwater acoustideven in part by con-
cerns about how modern shipping and the use of sonar adyeiféetts the well being of ma-
rine mammals. Background noise may be making it difficultvitwales to communicate over
long distances and hindering the effectiveness of theiolechation. Furthermore, an essential
step is understanding how residual aquatic noise affecishwiequencies they can hear. It is
hoped that these and similar efforts could lead to improvetervation measures [12]. The

present work is concerned with engineering methods thawdist marine mammologists in



understanding the structural response of cetaceans towalge acoustic signals such as sonar

and shipping noise.

1.2 Auditory Systems

Marine mammal auditory systems are complex. Understaraiogstic pathways re-
guires more than inspecting the details of the biologicateys themselves. It also requires
exploring structural dynamics, material science, and sttowave propagation. There are
several important components that make up the aural andoeettion structures of marine
mammals, and a brief review of the relevant biological tewwfogy is warranted.

There are two suborders of Cetacians (whales): Odontdoethied whales) and Mys-
ticeti (baleen whales). Cetacians are descendants of laedlisg mammals. Odontecetes
include the dolphins, porpoises, and orcas; they possesp $feth suited to hunting. The
mystecetes, sometimes called the “great whales,” inclodeesoften endangered large species
such as the blue whale, and humpback whale. Although speatewhre indeed large, they are
in fact toothed whales. Unlike odontocetes, mysticete® Is@@ve-like structures in the upper
jaw that are adapted to filter nutrient rich plankton from weger. It is believed that Baleen
whales are likely to be sensitive to lower acoustic freqiesthan any other mammal alive
today [3].

The auditory anatomy of cetaceans is highly adapted for mvater hearing. They
don’t have outer ears, external pinnae, as do most teakstammals. Their ear canals are no
more than a very narrow channels, considered to be vesitigilontocetes [13, 6, 9, 14]. As
the animals evolved, the middle and inner ears found logat@terally outward from the skull
and became encapsulated in the protective structure oypla@operiotic complex [4, 15, 16].
Beyond these general anatomical structures the anatorhesddory systems are suborder
specific.

In 1964 scientist Ken Norris offered an important breaktigto suggesting that spe-

cialized fat bodies surrounding the lower jaws of dolphinevmle a potential low impedance



pathway for sound to get to the ears. Eventually, after @s@efivalidation studies, this hypoth-
esis became widely accepted and is now the prevailing mddebw sound enters the inner
ears of odontocetes [12, 2].

Terrestrial mammals receive sound by way of an air filled oe&é& and an impedance
matching liquid filled middle ear. Odontocete aural stroesuhave foregone the outer ear in
lieu of multiple lobes of fatty tissue leading to the tymppaadotic complex (TPC) [14]. The
lobes of acoustic fats are separated by a very thin portidinegfaw bone called the “pan bone”
whose precise role remains an issue of continued reseadch 71 3].

Sound conduction through bone is not considered to be afisigmi acoustic pathway
since there is, in most odontocetes, no connective tissbheradt among the skull and tym-
panoperiotic complex [18, 19, 20, 21]. When sound waveseaat the inner ear of whales,
a fluid filled spiral shaped channel (cochlea) sends the sigodhe basilar membrane which
stimulates hair cells. These in turn transmit electricdbgsi to the brain to be perceived as
distinctive sounds.

Odontoceti rely on acoustic fats to transmit sound from tmecginding water to the
middle and inner ears. The most likely pathway for soundptge in odontocetes is through
acoustic fats in the lower jaw, which connect the tympanit jp@riotic bones that make up the
tympanoperiotic complex of the ears [14, 17, 22, 23].

These acoustic fats are comprised of inner and outer lobesiog different portions
of the lower jaw (Norris 1968, Ketten 1994, 1997, Ridgway 999Some research suggests
the existence of a third fat channel lateral to the TPC and timaexternal auditory meatus
opening, which is sensitive to sonic excitation below 3 kBal{ock et al. 1968). Later research
suggests that this opening is more sensitive to sound beddaH2 [24]. The existence of this
third acoustic fat channel was eventually verified using megig resonance imaging [17].

Two acoustic windows in the bottlenose dolphin were confitraed characterized us-
ing auditory brainstem response latencies. The acoustidaw was estimated to be near the
meatus opening and to be sensitive to frequencies below 22 8Bunds above 32 kHz were

determined to be transmitted by the lower jaw [25].



The auditory pathways of Odontoceti have been well desdyibat are less known
in Mysticeti whose tempanomandibular anatomies are knaaretquite different. However,
recent research suggests the existence of a fat body whigphathesized to act as an important
sound reception pathway. It lies lateral to the typanopeericomplex of the minke whale
(Yamato et al. 2012). In a noteworthy experiment, an area®htinke whale tympanic bone
was stimulated with a 20 nm amplitude at frequencies ranfyorg 20 Hz to 50 kHz using a
piezoelectric stack. This resulted in movement of the stdqmme, which provides an acoustic
input to the cochlea [26, 3].

The mysticete ear fats and odontocete acoustic fats allg hikenologous anatomical
structures which underwent continued adaptation for fiighuency hearing and echolocation
in the odontocetes. It is thought that exploration of bothdand soft-tissue anatomy around
ear is instrumental in advancing our understanding of saendption mechanisms in mys-
ticetes [3].

There exists a significant and growing body of experimentakwhat focuses on the
use of audiograms, or frequency threshold graphs measyrad budiometer, to identify the
audible frequency ranges as well as frequencies of greaidgbry sensitivity in odontocetes.
These results vary widely, and suggest a broad range ofrigefrdm 0.25 to 200 kHz. The
estimated frequencies of greatest sensitivity range aaggvtiom 1.6 to 160 kHz across many
species [2]. The meaning of these results is complicated &yynfactors including: limited
sample sizes within a species; age related hearing losspamdy understood background
noise effects.

Since the passing of the Marine Mammal Protection act of 1BW2sive electrophys-
iological studies of whales in the United States has slowadkedly. In all, the search for
understanding of hearing in cetaceans is well served bygtstiai analysis efforts.

When a rare, possibly endangered, whale is beached teamarwfermammologists
flood the scene. Whales are usually large and unwieldy arsgéction must be done quickly,
before tissue decay renders the efforts futile. If it is flesan entire head is removed, frozen,

and transported to a special laboratory to be scanned irstndusized Computed Tomog-



raphy (CT) scanners. These scans allow a three-dimensianallization of the anatomical
structures before the cutting begins. Because soft tismeslits native shapes when cut, the
scanned models are an essential tool in understanding iieadrshapes and orientations of
key anatomical features.

Marine mammologists dissect beached whales in hopes ohfjnolit how sound is
transmitted from the ocean to the animal’s inner ears andthevears themselves function.
Ascertaining which frequencies they can hear and whethreasonar is likely to damage
whale hearing is of primary concern.

While much can be learned from traditional methods of digsedn exploring the
functional morphololgy of whale aural systems, there ar@yrgaps in this approach which
lead to much speculation and debate. Computational magefimarine mammal bioacoustics

provides a means to begin to fill these gaps.

1.3 Computational Modeling of Bioacoustics

In collaborative efforts, marine mammologists and engiméave developed computa-
tional models of the anatomical structures involved in whaibacoustictics. These are used
to intelligently guide investigations of functionality mandibular strucrues, manibular fats,
cranial air sacs,and typmanic structures [27, 28].

Aroyan et al. [27] developed two dimensional finite diffetenechniques to investigate
the roles that skull shape and tissue-air boundary intesfatay in providing an acoustic mirror
for the propagation of generated echolocation pulses. Sthdy also supported the notion that
melon fats provide a means to narrowly focus these beams.

Vibro-acoustic simulation is a valuable tool used to gasight into the multifaceted
phenomena at play in marine mammal acoustic responses.okbgge simulation, as well as
to any structural simulation, is a well defined set of matgniaperty inputs. For our biological
structures of interest a viscoelastic model is usually tet bhoice. However, this can be prob-

lematic. There is no easy way to quantify the viscoelastperties of tissues. An important



task of the present work explores ways to bridge this gap.

Studying cetacean soft-tissues is not easy. Adequatenspesiare rare and dissections
are difficult, often being performed on a beach. The size efahimals alone makes the task
of whale anatomy exploration a logistical challenge. Masearchers are combining methods
of dissection with noninvasive imaging techniques thedi&é computerized tomography and
magnetic resonance imaging to map complex anatomicaltstasc[23, 3].

Whale heads are placed in industrial CT scanners and imagéakan in planar slices
of 0.1to 3 mm thicknesses. These scans provide informatbrhree dimensional images that
can be used to construct finite element meshes used in vidusac simulations [28].

Vibroacoustic finite element simulations of scanned whaads provide a practical
means of assembling a unified theory of underwater soungtieoce Since a good portion of
this dissertation is dedicated to the experimental detetiun of viscoelastic material proper-

ties, a review of fundamental concepts is warranted.

1.4 Viscoelasticity

Viscoelasticity is the property of matter that describew litaesists and recovers from
applied loads. Even for small strains, such as those undergoder acoustic excitation, prior
research has found that viscoelastic properties must bengex for when modeling tissue
behavior [29]. The elastic contribution involves the resilele effects—its ability to recover to its
unloaded state. The viscous part describes the energyriddsoav the response depends on the
time-rate of loading. A special class of viscoelastic mateycalled anelastic materials, recover
fully to their unloaded kinematic state, provided enoughetiis allowed for this recovery.
Anelastic solids recover fully from viscoelastic creepdame a focus of this work. Here the
time-dependent response is recoverable, unlike familsrovplastic flow. The remainder of
this section is dedicated to a review of some notions keydasthdy of viscoelasticity.

Rheology is concerned with the study of viscous flow, elé@gtiand any combination

of the two. A material is said to be viscoelastic if its defation response produces stresses



that depend on both strain and strain rate. Some exampldsarfelastic materials include:
rubbers, polymers, glasses, and tissues. Viscoelasterialatbehave in a way that is in some
ways like a viscous fluid and in some ways like an elastic solid

These materials exhibit creep, which is an increasing dedtion response to a sus-
tained load or state of stress in the way that very old glasgsfldownward under its own
weight. Viscoelastic materials also exhibit relaxatiomjet is a decreasing stress response to
a sustained state of deformation or strain in the way thateuband loses its pull over time.
The hysteresis response is elliptical and the area circuipestis directly related to the heat
energy lost in the cycle.

Viscoelastic materials dissipate energy and the viscasiften described in terms of a
loss modulus. In this sense, a solid with high viscosity ilmetimes said to be a lossy material.
When deformed adequately, polymers undergo a moleculearegement. In particular, long
polymer chains are disturbed and reconfigured. In so-cdilegiar viscoelasticity” the stress
and strain responses are separable.

Some phenomena that are observed in viscoelastic matercdlsie [30]: (1) “creep”
which occurs if the stress is held constant, and the strameases with time; (2) “relaxation”
which occurs if the strain is held constant, and the stresgedses with time; (3) the effective
stiffness depends on the rate of application of the loadif @)clic loading is applied, a phase
lag occurs, leading to a dissipation of mechanical enefjya¢oustic waves experience atten-
uation; (6) rebound of an object following an impact is ldsst 100 percent; and (7) during
rolling, frictional resistance occurs.

Viscoelastic parameters are often represented as a compléulus such as: the com-
plex Young's modulu€* = E' +iE”; or the complex shear modul® = G’ +iG". The real
component of a complex modulug’(or G') is referred to as the storage modulus, and the
imaginary component” or G”) is the loss modulus. Complex elastic moduli are extensions
of their real counterparts, where the imaginary componaetsunt for phase shift effects.

In his bookTheory of viscoelagticity (p.71) R.M. Christensen describes the utility of

this complex expression of moduli:



Steady state harmonic problems, either with or withouttiagerms in the equa-
tions of motion, can be solved in a manner formally the santbatsor compara-
ble elasticity type problems. In fact, steady state harmelastic solutions can be
converted to corresponding viscoelastic solutions thinaihg replacement of the
elastic moduli by the corresponding complex viscoelastiduii. The actual com-
putation of solution variables involves complex numbethamietic which accounts
for phase angle shift effects [31].

The steady-state harmonic response provides the follouseéul relations:
o(t) = gpsin(2mwt) , (1.1)
and
£(t) = gsin(2mwt — 9J) . (1.2)

The areas circumscribed by the stress-strain hysterdiseels indicative of energy dissi-
pated per cycle. The viscosity is neatly related to the plsage angled which is suitably

guantified by its tangent having
//

tand = o (1.3)
and
G//
5= tan*la . (1.4)

The magnitudes of the complex viscoelastic moduli are
IG*| = VG2+G"2, (1.5)

and
|E*| = VER+E". (1.6)
The dynamic viscosity can be expressed as

"
G

n'=—. L.7)

where highly dissipative materials exhibit greater dyrawmscosities. The damping ratis

a measure of damping, or energy dissipation qualities, with

G//

(=a (1.8)
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(¢ < 1isunder-damped, = 1 is critically damped, and > 1 is overdamped [30]).

The isotropic, elastic constitutive relation reads
Oij = 2U&j+ A&, (1.9)

and the viscolastic version reads

ot dejj t dée
a.,_/o 2;1(t—r)Wdr—i—/o)\(t—r)c‘iiJF T. (1.10)
The complex viscoelastic constitutive relation reads
Tohear (1) = (G’ +1G") " = |G*|€“*?; (1.12)

in one dimension we havg =E’ +iE”, andrs'%ar =G +iG".

Creep and relaxation are key notions of viscoelasticitge@ris the progressive defor-
mation of a material under constant streg$) = ogH(t). Whereas relaxation is the gradual
decrease of stress at constant stegir) = ggH (t). The material response is most affected by
its recent history, a notion referred to as "fading memofy.[3

The phase shift or “phase lad, that temporally separates the stress and strain steady
state responses under controlled harmonic excitationrisasure of viscous damping or dis-
sipated energy. The loss tangent is a measure of viscosiganelastic material. Sometimes
calledtand, pronounced “tan-delta," it relates the phase shifd the storage and loss moduli
by: tand = %—’,’ = (. The dynamic viscosity)’ = % , Wherew is the excitation frequency in
radians per second, is a strain-rate dependent expredsaanaterial’s dissipative qualities.

Tissues are viscoelastic materials; they behave likeielsslids and like viscous fluids.
The speed of acoustic waves traveling through a tissue depmmthe tissue’s elastic proper-
ties, and the severity of signal attenuation depends omsitsc Viscoelastic properties, such
as elastic moduli and loss tangent, are important inputsutovilbroacoustic computational
simulations.

Numerical modeling often assumes a Maxwell or Kelvin-Vatgment. A Maxwell

element consists of spring and a dashpot in series. Therk®bigt model provides a similar
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element wherein the spring and dashpot are parallel to ootha@n The Maxwellian model

reads

1ldo(t) n o(t) _ de(t)

E dt 0 i g(t), (1.12)
while the Kelvin-Voigt model reads
de(t :
o(t)=Ee(t)+ n% =Ee(t) +ne(t). (1.13)

Tissues are rarely homogeneous or isotropic, and they abBage appreciably when
removed from their biological environments. To further gicate endeavors, biological pro-
cesses often directly effect key properties such as: elstitiness; viscosity; history of patho-
logical processes; and chemical reactivity to name a fey. [EXperimental data on tissue
elasticity is not only scarce, it is a primary limiting facto using elasticity imagining as a
way to distinguish diseased from normal tissues [33]. Ralpds a time-honored method
of qualitatively determining the elastic response of tesstor disease diagnosis [34]. In the
present work, equipment and devices used to quantify tisenygerties by way of automated

“palpation,” or Dynamic Mechanical Analysis (DMA) are pezged.

1.5 Tissue Characterization Methods

Dynamic Mechanical Analysis involves applying harmoniccimenical excitation and
measuring the material response. In a purely elastic nagténie stress and strain responses
are in phase with one another. If the material is viscousstran will lag behind the stress.
In principle, a sample is excited with the application of dlwentrolled boundary force as
instrumentation records the material response.

Commercially available material testing devices are necsjgally intended for the
range of elastic moduli seen in soft biological tissues. Soesearchers have adapted available

instruments towards this end. Others develop their own ar@chl devices to perform such
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tests. The majority of these methods use compressive nethatlare highly dependent on

both the size and shape of the indenter tip and the geomethe slample[34].

A scientist named Eric Goodyer introduced a Linear Skin Rirter (LSR) for use in
viscoelastic characterization of human vocal fold in-$86]. The device is, at heart, a dy-
namic mechanical analyzer operating in a displacemertraaonfiguration. Some important
limitations of the LSR involve the significant, and difficaitt account for, inertial effects of
its moving axis as well as the poor boundary contact thatldpseas a shearing contact-pin

deforms the sample during excitation.

Magnetic resonance elastography (MRE) is a promising w@olgy that uses medical
imagining techniques on a tissue body as is subjected tongastates of mechanical stress.
The image provides a view of the kinematic state which, whmersitlered in combination with
the known stress state, provides a rheological-typicddlgte—characterization of that body.

Unfortunately, MRE requires very expensive equipmentithabt portable.

There is a significant body of research dedicated to the usrasonic time-of-flight
methods in characterizing the properties of soft solidsasdeing the bulk modulus with ultra-
sonic methods involves sending a pulse through a sample aaduring the time is takes the
traverse the distance. The speed of transit is simply kklateéhe bulk modulus of the mate-
rial. This relation depends on the density of the materidl iargiven bycpy = \/%. Some
success has been realized, but ultrasonic methods areafgmetter suited for materials that
are much stiffer than typical tissues. Nonetheless, théspsomising direction worthy further

consideration.

While many of these methods are well suited to a controllbdratory testing environ-
ment, few are readily adaptable for field work. There is agingsneed for viscoelastic material
estimation that is conducive to in situ dissection wheregdarpreparation is minimal and time

is of the essence. In hopes of fulfilling this need a new delvaebeen fabricated and tested.



13

1.6 Experimental Rheometer

This work presents a prototype linear shear rhreometerakattadvantage of a unique
boundary configuration and novel instrumentation for dyicalrmechanical analysis. The de-
vice is not far removed from the linear skin rheometer [35he™esign is, however, notably
different and improvements include the use of a voice cailféoce generation, automated
sample positioning control capability, improved instrurtagion, a controlled boundary config-
uration, and the use of an advanced data acquisition bopebtaof megahertz sampling. The
design accommodates several testing modes in either fodismacement control, and the ad-
vanced instrumentation allows point-of-contact analitsid gives results that are independent
of the moving mass of the control axis.

The thick sample assumption in the fixture design allows fatemal characterization
assertions that are not bound to discrete descriptionstifmm properties are estimated for
both semi-infinite and cylindrical sample geometries. Remnore, these estimations are not
highly sensitive to input estimation such as sample thiskneentering of the loaded boundary,
and the assumed value of Poisson’s ratio. The developmeahisoéxperimental device has
been undertaken with particular goals in sight. It must begibe, robust, and relatively easy

to use.

1.7 Dissertation Outline

Part | is a sensitivity analysis comparing vibroacoustisidations to published exper-
imental results. This work is entirely contained within @tex 2

Part 1l chronicles the design, fabrication, and testing mfeaperimental rheometer.
Chapter 3provides an overview of the mission objective, design atersitions, prototyping,
and fabrication of the experimental device. Chapterdvides the theoretical and computa-
tional framework key to interpreting the experimental fessand converting instrumentation

signals to viscoelastic properties such the shear storajpas modulus. To conclude Part I,
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Chapter 5details instrument calibration, provides results that@mpared to independently
obtained data, and puts the device to the test with real diicdbtissues.

Part 1l presents improved methods to treat anisotropicenas simulated using the
finite element methods that are not prone to rigid locking anderestimated deformation
states. Chapteriétroduces the Generalized Selective Reduced Integratidrmodified B-bar
methods with the treatment of the most rigid mode of the caanpk matrix, and Chapter 7
extends the methods to treat multiples modes. Chapgtar@luces stabilization methods and
part 11l concludes with Chapter@hich offers some naturally arising variable treatmentfhiwi
surprising performance characteristics.

Finally, Chapter 1l@iscusses the findings and suggests future research directilated

to the work presented here.
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Vibroacoustic Analysis

15



Chapter 2

Sensitivity Analysis and Another Look at

the Norris and Harvey Study of 1974

In 1974, Norris and Harvey performed an experiment invgveound transmission
into the head of the bottlenose dolphin. They measured ggtebroadband acoustic pressure
signals at various receiver locations in the dolphin’s heatte sources were positioned at
different locations in the surrounding water [1], as showfigure 2.1.

We qualitatively compare the experimental data from theiptes study to the results
of simulations made using the vibro-acoustic toolkit VAT8]. The computational model is
used to predict the pressure profiles using input data suctatesial properties, transducer and
hydrophone locations, and the geometry of the animal’s h&he material input parameters
are estimated using values that have been published folasitisisues. No reliable material
properties are available for the actual specimen used tiectbe 3-D geometry used in the
simulations. Furthermore, the simulations use the gegnuédta different specimen than did
the experimental efforts. As such, significant modelingers expected to be propagated
throughout the simulations. Nonetheless, comparing timellgsitions to the rare experimental
data provides valuable insight. It should be clearly emizieaishere, that no quantitative asser-
tions are made in this study. Only the quality, or shaped)y@&kperimental and simulated data

are compared.

16
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Ensonification
Plane 23 cm
below top of
blowhole

-70° goe

Figure 2.1 Norris and Harvey experimental setup.
2.1 A Second Look at the Original Study

In their 1974 study, Norris and Harvey suspended the headexdfently deceased ma-
ture Tursiops truncatus in saltwater. They installed anfBzom that was rotated horizontally
around the head. At the end of the arm, transducers werdl@tsta generate sounds which
would be received by implanted hydrophones. These hydroghwere placed in various key
locations of the carcass. The sound pressure curves welishmin Figure 1 of Reference
[1]. These values represent the sensor voltages which veses nonverted to pressures. Even
uncalibrated, these data offer a rare source for use inat&id of our vibroacoustic model,
which is described in detail in Reference [28]. This rarercewf data is used to validate the

Vibroacoustic Toolkit VATK.
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Extracted Data, Norris and Harvey 1973
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Figure 2.2 Norris and Harvey [1] curves (Reproduced).

1 External auditory meatus (1.8 cm deep)
2 Mandibular fat anterior to bulla (6.8 cm deep)
3S Blubber over pan bone (1.8 cm deep)
3D Mandibular fat body (6.8 cm deep)
= 4  Anterior mandibular canal (4.1 cm deep)
< 5 Antorbital notch (4.2 cm deep)
\8 6 Melon, midlateral (5.3 cm deep)
7 Upper rostrum (3 cm deep)
8 Peribullary sinus and inside bulla

Figure 2.3 Norris and Harvey [1] hydrophone locations (Reproduced).
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2.2 Vibroacoutic Model

The effectiveness of the VATk model rests on the supermosif the known incident
pressure field and the unknown perturbation field. This saritvis used to predict the pressure
curves using input data that is based on informed guessdedjbly published properties of
similar tissues. The estimated inputs include viscoalastterial properties, hydrophone and

transducer locations, and the geometry of the animal’s.head

Since an acceptable computed tomography (CT ) scan of aopgrdruncatus is
not available, our computational predictions were madegishe CT scan of a similar
species, Delphinus delphis (specimen KDX198). The 3-D inagxel dimensions were
0.625x0.625x0.625mm. The input volume was made up of 84861x524 voxels.

The voxel block is divided into elements of identical sizel amape. The finite ele-
ment method discretizes the domain into elements that ic@mveith these voxels. The central
difference method is used to integrate the dynamic respohtige scattered wave. Forcing
is provided by the incident wave. The scattered pressure wawvever, is subject to absorb-
ing boundary conditions at the computational boundarys Doundary treatment only allows
waves to leave, and not to enter, the volume of the compu@tidomain. The plane-wave

approximation is used for the absorbing boundary condition

In order to limit computational costs, resampling of thegoral CT scan is required.
This works to reduce the total number of voxels. The voxelatisions of the model were 2.5
x 2.5 x 2.48 mm. Empty space in the resampled mesh is filled watels having an intensity
that corresponds to that of seawater. This is done to fill plaes between the hydrophones and
the transponder locations at the end of the 82 cm long arm.c®h®utational domain ends
up being a 3-D image of 485 x 266 x 731 voxels. These voxelsatn converted to, nearly
cubical, finite elements.

Norris and Harvey [1] reported good data for the hydrophpeesof which were lo-
cated in the following locations: (1) external auditory mes (2) mandibular fat body anterior

to bulla, (3S) blubber over pan bone, (3D) mandibular fayt@d8 cm deep), (6) Mellon, made
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lateral (5.3 cm deep). The focus of the present study isdinio these five locations. The re-
maining locations were excluded because they gave zetagesignals throughout testing. In
the original experimental setup the authors do provide vafue indication of the locations of
the specific data points used.

In the simulations, the receiver and transducer locatiomseversed, as justified by the
principle of acoustic reciprocity. The sound “sources” la@ated in one of the five “receiver”
locations (1), (2), (3S), (3D), (6), and the receiver stadiare located at the end of the “arm”
at 10 increments between -8@nd +80 . Throughout, 0 represents the location directly in
front of the animal. A pure tone over a single cycle at 20 kHased as the source of acoustic
excitation. The propagated wave is tracked for enough tionénat the signal burst traverses
beyond all of the receiver stations.

The material properties used in the simulations are notidered to be function of

exctitation frequency. The excitation frequencies aresak be 2000Q Hzthroughout.

2.3 Published Material Properties

Published literature provides the estimated mechaniagbepties for the tissues in-
volved. The assumed mechanical properties of bone are: giommodulus E=20000 MPa,
Poisson ratiov = 0.2 and densityp = 2600kg- m~3 [36]. The estimated material proper-
ties of the soft tissues, as published in [37] except for tbeuatic fats for which Norris
and Harvey provide values [1], are as follows: (1) connectigsue having a sound speed
of c=1620m-s1, a density ofp = 1087kg- m~3, and a Young’s modulus & = 0.124MPa;

(2) muscle tissue having a sound speed €f1520m-s ™1, a density ofp = 993kg-m~2, and a
Young’s modulus of = 0.1MPz; (3) blubber having a sound speedoef 1465m-s~1, a den-
sity of p = 935kg- m3, and a Young’s modulus & = 0.065MPa; and (4) four categories of
acoustic fats having graduated sound speeds-01450, 1430, 1370, and 1340 s~ 1, a mass
densityp = 937kg-m~3, and a Young’s modulus & = 0.065MPa. The seawater is assumed

to have a density and sound speeggf= 1000kg- m—2 andc, = 1500m- s~ 1 respectively.
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Estimations of material properties are fundamentally irntgott to most any structural
simulation, and it has been established that mechanicpépties of materials undergoing large
shear deformations at high frequencies are of vital impagdao numerical simulations of soft
tissues [38]. The tissues of interest here have widely mgrynaterial properties. Bone is
typically several orders of magnitude stiffer than its eunrding tissue and characterizing the
properties of muscle tissue introduces a number of chadendlost obviously, muscles be-
come more stiff when they are contracted making estimatfan wivo properties difficult at
best. The connective tissue that holds bones in positidndes a few types which should be
modeled. While much more elastically compliant than boaé,d nonetheless very impor-
tant to the vibroacoustic response. All of these propenpuis are important to accuracy of
the computational predictions. Unfortunately, accuratén@tions of these properties are not

usually available.

2.4 Sensitivity Analysis

A series of sensitivity analyses were performed to help temeining which of these
estimated parameters have the greatest influence on thedinélon, and to get a better idea
about whether the model is more dependent on estimates efialgiroperties or geometry.
Small changes in material properties lead to apprecialdaegds in the overall structural re-
sponses, which are often very difficult to intuitively pretdi Sensitivity analysis helps with
this.

Sensitivity analysis (SA) reveals the manner in which clesnigp the model’s inputs
influence the model’s outputs. This can help to build un@ading of a complicated model by
revealing and helping to interpret unexpected model benagtetermining which inputs have
the greatest effect on certain outputs, investigating netive inputs combine to affect outputs,
and providing insight into which additional information ghit improve the model’s ability to
predict experimentally verifiable physical responses.

Although a computational model may not reproduce the exatabor the physical sys-
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tem, its sensitivities are often useful in providing inf@tion about key features. The results of
this study supply a valuable source of information for siatinlg the interactions among sound
and anatomy. One of the conclusions drawn from this seitgiawnalysis is that estimates of

material properties need not be highly accurate to help derstanding these complex struc-

tural responses. Even crude estimations are often valuable

2.5 Comparisons in the Sensitivity Analysis

Comparisons are based on the correlation of the simulategswith the normalized
published experimental data of the Norris and Harvey stlitlg. pressure amplitudes are com-
pared across the given ranges of the incident ensonifiniatgle. Because the information
provided in the aforementioned study is based on instruatient voltage values, with un-
determined pressure field calibrations, the curves are alared, with respect the Euclidean
norms of the data vectors for the experimental and simulateges individually. Qualitative
comparisons are drawn by considering the standard cameledefficients and coefficients of
determination. In some cases, mere visual observationegpltitted curves provides the best
understanding of input variation. It should be emphasibhatianly qualitative comparisons are

made.

2.6 Results

In general, the simulations faithfully reproduce the giadéilve behavior of the experi-
mental data presented in the Norris and Harvey study. Tkeparticularly close agreement in
the “Anterior bulla Left” region, where the predicted angfemaximum acoustic response is a
very close match. In certain data sets both the fit and gesleagles of the curves are improved
if the Young’s modulus of the bone is reduced to 50% of its mseiivalue from the literature.
It is plausible that the porosity of the bone causes its nsapic structural behavior to appear

less rigid than material properties that were charactérate local scale would suggest. This
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would account for the improved fit with the reduced value ofityg's modulus.

While changes in the Young’s modulus of the bone outweigngba in the elastic
properties of the soft tissues, altering the bulk modulubefsoft tissues still has an appreciable
effect. Among the soft tissues considered, estimationsebtilk modulus of the acoustic fats
have the most influence on the simulated pressure fieldsidimg the additional consideration
of viscosity in the soft tissues, however, does not affeetgblutions to the extent that the
viscosity of the bone does.

Changing the bulk modulus of the fats fosters a significaahge in the resulting pres-
sure magnitudes for 8 of 10 configurations, and shows thaeagesensitivity for 4 out 5 data
sets tested. Including viscosity gives appreciable chairgthe outputs only when the viscosity
is applied to the bone. Inclusion of bone viscosity produdemnges in the resulting pressure
fields for 5 out 5 data sets. Of the hydrophone configuratiestet, simulations of data set 2
(Anterior Bulla Left) provided the best fit when using theareince material properties.

The qualitative match among the simulation and experimhe@ptults are improved
slightly by increasing the viscosity of bone and by incregghe bulk modulus of the acoustic
fats. Agreement of the shapes of the curves, taken by congp#re locations of local max-
ima and minima, is substantially improved when reducingYbeng’'s modulus of the bone
by 50% for data sets: 1, 3S, 3D and 6. The angle of maximum presdetermined from the
simulations, fit the experimental data with a rather largegmaof plus or minus 30 The
predicted angle of maximum signal matches the experimeesailts in the second data set
(Anterior Bulla Left). The overall shapes of all the curves a reasonable match to those of

the experimental results.

2.6.1 Errors at the External Auditory Meatus Hydrophone Location

We first consider the difference of the simulated and expamiiad curves for qualitative
comparison. Again, no quantitative assertions are made.efilors are defined as the simple

difference of the simulated and experimental pressureorespvectors, each divided by it’s
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respective Euclidean norm.

Take the errors to be defined as
Error = ||simulated data|| — ||experimental data||, (2.1)

where||simul ated datay| is the vector of simulated pressure responses divideddbitclidean
norm, and|experimental data)| is the vector of experimental pressure responses dividétsby
Euclidean norm.

Figure 2.4 shows the error surfaces of the response amgditsehsed at the “Data 1”
position (external auditory meatus,see 2.3) as the bulkuligdhe acoustic fats was varied
from a minimum of 20% below to a maximum of 20% above the refeeevalue. The results
show that the error does not exceed 30% when the normaliradatied curves are compared
to the normalized experimental curves all for the ensornitioaangles of the original Norris
and Harvey study. At this hydrophone location, the maximuroreoccurs with the lowest
estimation of the bulk modulus at an ensonification angle55f which is on the right-hand

side of the animal.

Data 1

Error

Figure 2.4 Fats error surface for varying, data set 1, vary of fats.

Figure 2.5 shows the error surfaces of the response amgditsehsed at the “Data 1”
as the bulk modulus the connective tissue was varied frormamim of 20% below to a max-
imum of 20% above the reference value. The results showhkatrior does not exceed 20%

when the normalized simulated curves are compared to theal@ed experimental curves all
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Data 1
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Figure 2.5 Error surface for varying, data set 1, varx of connective tissue.

for the ensonification angles of the original Norris and Hgrstudy. At this hydrophone loca-
tion, the maximum error occurs with all estimations of thédkbunodulus at an ensonification

angle of—50°, which is on the left-hand side of the animal.

Data 1
0.2 = 0.5
£ 0
m
0 -0.5
30 //
-0.2 o 50 0.8 K/K

Figure 2.6. Muscle error surface for varying, data set 1, varyx of muscle.

Figure 2.6 shows the error surfaces of the response amgiditsehsed at the “Data 1”
as the bulk modulus the muscle was varied from a minimum of B@¢éw to a maximum of
20% above the reference value. The results show that thedwes not exceed 20%. At this
hydrophone location, the maximum error occurs with allreations of the bulk modulus at an
ensonification angle o£50°, which is on the far left-hand side of the animal.

Figure 2.7 shows the error surfaces of the response amgiditsehsed at the “Data 1”

as the Young’s modulus the muscle was varied from a minimui@bét below to a maximum
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Error

Figure 2.7. Bone Error surface for varying, data set 1, vary Young’s modulus, of bone.

of 75% above the reference value. The results show that tbedwes not exceed 10%. At this
hydrophone location, the maximum error occurs with allreations of the Young’s modulus

at an ensonification angle ef50°, which is on the far left-hand side of the animal.

2.6.2 Errors at the Mandibular Fat Anterior to Bulla Hydroph one Loca-

tion

Error

Figure 2.8 Fats error surface for varying, data set 2, vary of fats.

Figure 2.8 shows the error surfaces of the response amgditaensed at the “Data
2" position (mandibular fat anterior to the bulla, see 2.3} this hydrophone location, the
maximum error occurs with the lowest estimation of the buldodus at an ensonification

angle of 50.
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Data 2

0.2

Error

-0.2

Figure 2.9 Error surface for varying, data set 2, varx of connective tissue.

Figure 2.9 shows the error surfaces of the response amgiditsehsed at the “Data 2”
as the bulk modulus the connective tissue was varied frommamim of 20% below to a max-
imum of 20% above the reference value. The results showltleatrror does not exceed 20%
when the normalized simulated curves are compared to thealized experimental curves
all for the ensonification angles of the original Norris andr#y study. At this hydrophone
location, the maximum error occurs with the lowest estiorabf the bulk modulus at an en-

sonification angle of-50°, which is on the left-hand side of the animal.

Data 2

Error

Figure 2.10 Muscle error surface for varying, data set 2, varx of muscle.

Figure 2.10 shows the error surfaces of the response amgditsensed at the “Data
2" as the bulk modulus the muscle was varied from a minimum08b below to a maximum

of 20% above the reference value. The results show that the @ves not exceed 15%. At
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Data 2

Error

Figure 2.11 Bone Error surface for varying, data set 2, vary Young’s modul&sof bone.

this hydrophone location, the maximum error occurs withltdveest estimations of the bulk
modulus at an ensonification angle-e50°.

Figure 2.11 shows the error surfaces of the response amgdittensed at the “Data 2”
as the Young’s modulus the muscle was varied from a minimui@bét below to a maximum
of 75% above the reference value. The results show that the @oes not exceed 30%. At
this hydrophone location, the maximum error magnitudesiiooger a wide range of Young’s

modulus estimation and ensonification angles.

2.6.3 Errors at the Blubber of Pan Bone Hydrophone Location

Data 3S
0.2 — 0.5
£ 0
[aa)
0 -0.5 .
-50 0 1 ’
-0.2 s 50 0.8 /i
(1) ref

Figure 2.12 Fats error surface for varying, data set 3S, vary of fats.

Figure 2.12 shows the error surfaces of the response amgditsensed at the “Data
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Figure 2.13 Error surface for varying, data set 3S, varg of connective tissue.

3S” position (blubber over pan bone,see 2.3). At this hydome location, the maximum error
occurs with the lowest estimation of the bulk modulus at asoaification angle of 45

Figure 2.13 shows the error surfaces of the response amgditsensed at the “Data
3S” as the bulk modulus the connective tissue was varied &amnimum of 20% below to
a maximum of 20% above the reference value. The results shatthe error does not ex-
ceed 20% when the normalized simulated curves are compatkd hormalized experimental
curves all for the ensonification angles of the original Moand Harvey study. At this hy-
drophone location, the maximum error occurs near the neéerealue of the bulk modulus at

an ensonification angle of 45which is on the right-hand side of the animal.

Data 3S
0.5
0.2 =
= 0
e
0 -0.5 .
-0.2 0 0.8
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Figure 2.14 Muscle error surface for varying), data set 3S, vary of muscle.

Figure 2.14 shows the error surfaces of the response amgditensed at the “Data 3S”
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Figure 2.15 Bone Error surface for varying, data set 3S, vary Young’s modulEsof bone.

as the bulk modulus the muscle was varied from a minimum of B@¢éw to a maximum of
20% above the reference value. The results show that thedwes not exceed 15%. At this
hydrophone location, the maximum error occurs with the heidol highest estimations of the
bulk modulus at an ensonification angle of 40

Figure 2.15 shows the error surfaces of the response amgditensed at the “Data 3S”
as the Young's modulus the muscle was varied from a minimui#bé below to a maximum
of 75% above the reference value. The results show that the @oes not exceed 30%. At
this hydrophone location, the maximum error magnitudesiiooger a wide range of Young’s

modulus estimation at ensonification angles neér 40

2.6.4 Errors at the Mandibular Fat Body Hydrophone Location

Figure 2.16 shows the error surfaces of the response amgditesensed at the “Data
3D” position (mandibular fat body,see 2.3). At this hydropk location, the maximum error
occurs near the reference value the bulk modulus at an ditsioin angle of 0. Although the
reference values give larger errors there is no clear itidicghat lower or higher estimations
of the bulk modulus offer an improvement as changes in batction offer quantitatively
similar improvements.

Figure 2.17 shows the error surfaces of the response amgditeensed at the “Data

3D” as the bulk modulus the connective tissue was varied fmamnimum of 20% below to
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Figure 2.16 Fats error surface for varying, data set 3D, vary of fats.
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Figure 2.17. Error surface for varying, data set 3D, varx of connective tissue.

a maximum of 20% above the reference value. The results shaithe error does not ex-
ceed 30% when the normalized simulated curves are compatkd hormalized experimental
curves all for the ensonification angles of the original Moand Harvey study. At this hy-
drophone location, the maximum error occurs near the netergalue of the bulk modulus at

an ensonification angle ofOwhich is in front of the animal.

Figure 2.18 shows the error surfaces of the response amgditensed at the “Data 3D”
as the bulk modulus the muscle was varied from a minimum of B@¢éw to a maximum of
20% above the reference value. The results show that thedwes not exceed 30%. At this
hydrophone location, the maximum error occurs with the heidd highest estimations of the

bulk modulus at an ensonification angle 6f 0

Figure 2.19 shows the error surfaces of the response amgditensed at the “Data 3D”
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Figure 2.19 Bone Error surface for varying, data set 3D, vary Young’s modul&sof bone.

as the Young’s modulus the muscle was varied from a minimui#bé below to a maximum
of 75% above the reference value. The results show that the @oes not exceed 30%. At
this hydrophone location, the maximum error magnitudesiooger a wide range of Young'’s
modulus estimation at ensonification angles néarHere the low errors can be clearly seen
at a 50% reduced Young’s modulus. A closer look 2.27 will sliloat this reduced estimation

makes for overall better fit.

2.6.5 Errors at the Melon Hydrophone Location

Figure 2.20 shows the error surfaces of the response amgdittensed at the “Data 6”
position (melon,see 2.3). At this hydrophone location rttaximum error is less than 10% and

occurs along all values of the bulk modulus at an ensoni@inaingle of 0. Here again, there
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Figure 2.20 Fats error surface for varying, data set 6, varx of fats.
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Figure 2.21 Error surface for varying, data set 6, varg of connective tissue.

is no clear indication that increasing or decreasing theneséd bulk modulus is in order since

changes in both direction offer no decisive improvement.

Figure 2.21 shows the error surfaces of the response amgditsensed at the “Data 6”
as the bulk modulus the connective tissue was varied frommamim of 20% below to a max-
imum of 20% above the reference value. The results showlileatrror does not exceed 30%
when the normalized simulated curves are compared to thealzed experimental curves
all for the ensonification angles of the original Norris andr#ey study. At this hydrophone
location, the maximum error occurs at the lower end of thé bubdulus estimations at an

ensonification angle of*Qwhich is in front of the animal.

Figure 2.22 shows the error surfaces of the response amgditsensed at the “Data

6" as the bulk modulus the muscle was varied from a minimum086Delow to a maximum
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Figure 2.22 Muscle error surface for varying), data set 6, varyk of muscle.
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Figure 2.23 Bone Error surface for varying, data set 6, vary Young’s modul&sof bone.

of 20% above the reference value. The results show that the d@ves not exceed 20%. At
this hydrophone location, the maximum error occurs withltveer estimations of the bulk

modulus at an ensonification angle 6t 0

Figure 2.23 shows the error surfaces of the response amgdittensed at the “Data 6”
as the Young's modulus the muscle was varied from a minimui#bé below to a maximum
of 75% above the reference value. The results show that the @oes not exceed 30%. At
this hydrophone location, the maximum error magnitudesiiooger a wide range of Young’s
modulus estimation and ensonification. Although no cleandris apparent, the low errors at a

50% Young’s modulus are observable.
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2.7 Overall Trends

Varying the bulk modulus of the acoustic fats has a strongcafbn the outcome of
the model. The range of resulting pressure amplitudes seéigure 2.24 suggests that by
carefully choosing local properties, the behavior of thpezinent could be reproduced. This
does not mean that material property estimation are mongeintilal than structural geometry,
but it does suggest that the two animals were close enougtruatsral geometry to grant
informative comparisons. These curves often best undststath some though of the pulse
location in relation to the hydrophone location. If the muis generated at a location in the
water that is on the opposite side of the animal from the gdosation, very low amplitudes
may be explained by the intervening structures of bone asdéei. This is well observed in the

shape of the “Data 2” curves throughout.

Data Set 1, dk Data Set 2, 5k Data Set 38, 3x
0.4 0.4 0.
= = oy
=0.2 —o. —02
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Figure 2.24 Varying k of acoustic fats up/down 20%: (a) Data set 1 (b) Data set 2 §tx Bet
3S (d) Data set 3D (e) Data set 6.

Varying the Young’s modulus of the bone from half to twice tieéerence value in

simulations gives results that comfortably enclose theegrgental results as can be seen in
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Figure 2.25 Varying E of bone 50-200%: (a) Data set 1 (b) Data set 2 (c) Data set 334({@)
set 3D (e) Data set 6.

figure 2.25.
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Figure 2.26 Increasing tad to a maximum of 1: (a) Data set 1 (b) Data set 2 (c) Data set 3S
(d) Data set 3D (e) Data set 6.
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Figure 2.27. Decreasing Young’s Modulus of bone to 50% of the refereratee: (a) Data set
1 (b) Data set 2 (c) Data set 3S (d) Data set 3D (e) Data set 6.

Varying the viscosity of the acoustic fats has little affentthe outcome of the model.
This can be seen in figure 2.26, where even very high valuesdfangender only very small
changes in the resulting curves. Again, this conclusiontrbadreated with care as only the
shapes (not the amplitudes) of the curves are compared.e IExperimental data had been
calibrated to give pressure units, a quantitative analysiee results would be possible. Ab-
sent this calibration, the curves must be normalized forpmamsons to be made and overall
amplitudes are lost. Increased viscosity would be readpmeabpected to significantly decrease
the resulting pressure amplitudes by way of acoustic sigttahuation. Unfortunately, these

comparisons cannot verify this effect.

Lowering the estimated Young’s modulus to 50% of the refeeevalue for all of the
curves improves the match among the shapes of the expeahsrd simulated curves for
many of the hydrophone locations (figure 2.27). This suggbsit the estimated bone stiffness
from the literature may have been adopted with haste. Thikldwe accounted for by consid-

ering the bone’s porosity. The estimated Young's modulubiefone from the literature was
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likely measured over sample regions that were local enomgbttinclude large voids. Assum-
ing that the bones are a continuous solid for the purposesmfigtion requires lowering the
estimated modulus to account for porous void space, or nmagdtie individual voids. This

was not done in the current simulations.

While varying the bulk modulus of the fats did invoke a disgkle variation in the
resulting pressure fields, there is no clear indication¢hanging the estimations, high or low,
would improve things. These conclusions would be bettesrmed by experimental results
with calibrated instruments that would allow non-normatiamplitude comparisons. The low
errors suggest that the model provides a reasonable divaisamulation of the experiment,
despite the fact that the modeled animal was not the sameneoleed in the experiments.

While the simulations show a high sensitivity to estimasionthe bulk modulus of the
acoustic fats, the models were much less sensitive to ceangiee estimated bulk modulus of
the connective tissue.

In general, the model was not highly sensitive to estimadiaihe bulk modulus of the
muscle tissue. However, in the mandibular fat body (datal¥S3$ensitivity was greater than at
the other locations. This may suggest that the propertieaustles have a significant influence
on received pressures along the proposed acoustic pathway.

Estimates of the Young’s modulus of the bone have a less prasal general affect
on the pressure amplitudes than seen in the study of the botlulms of the acoustic fats.

However, especially in the mandibular region, the sensitis appreciable.
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Chapter 3

Prototype Rheometer Design and

Fabrication

A working experimental rheometer for use in soft tissue abtarization has been de-
signed, built, calibrated, and tested. The device is usetidoacterize the viscoelastic proper-
ties of tissue. With it, one can estimate the complex Youagt shear moduli of a soft sample.
It is portable and DC powered, which makes it well suited tlmfieork. The first intended use
is to characterize acoustic fats in whales.

This is an improvement over existing bench-top rheometassecially for use on soft
solids. It facilitates any combination of normal and sheatihg modes in either displacement
or force control. A novel instrumentation configuration sisevery light-weight, cantilevered,
load cell as well as a fiber optic displacement sensor iestat a location near the sample
interface. In being so located, they circumvent the effetfsiction and the moving mass of
the instrument. Both force and displacement instrumentatata are collected in a way that
does not adversely affect the signal’s ability to faithfukpresent the physical response of the
sample.

The current prototype has been modified to include improuedinsgauge force sens-
ing and fiber optic displacement sensing at the sample ateyfas diagrammed in Figure

3.1. Most rheometers available today require significantections for inertial and frictional

40
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Figure 3.2 Third Prototype, voice coil driven.

effects, which reduces accuracy and complicates anallsis.design addition, however, side-
steps these effects with unique fixturing geometry and cliesrumentation which makes use

of new advances in strain gauge as well as fiber optic displanesensor technologies.

3.1 Development Platform Scope

This project was approached with a broad range of reseatk@relopment capabil-
ities in mind. The device was conceived as platform upon wigievice designs as well as

samples themselves could be tested. Several consideyateye carefully weighted at the out-
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set to ensure that initial designs would allow for the changecessary for ultimate success.
The electro-mechanical device was designed and conddrapexifically to be used in marine
mammal tissue characterization. Portability and ease ®frusan outdoor environment were
primary concerns. A wide range of sample shapes and congusiteeded to be accomodated.

The design was split in three prototyping stages followeddia processing and assessment.

3.1.1 Multiple Instrumentation

The instrumentation was chosen to give both force and disptent information at the
sample interface as well as along the control axis. Theunsntation at the sample interface
includes a high sensitivity load cell and a fiber-optic dis@iment probe. The load cell is very
fragile and should not be used if the sample is thought to lmaskear modulus above 100
kPa. If the sample is “squishy” and easily squeezed with tigefis it should not damage the
load cell. If the sample is harder than rubber, the tip loddst®uld be replaced with a rigid
extension and force readings of the coil current are suffficidhe load cell configuration is
preferred because it gives reliable force indication in @ that separates the response from the
moving mass of the control axis.

The fiber-optic probe has great value for its ability to takeal displacement readings
at the sample interface without adding moving mass or @ncto the system. Unfortunately,
the probe has a very small linear range and non-linear editor compensation is required.

The force and displacement data are also gathered on thenghoontrol axis. The
drive coil force, with includes forces needed to overcom&eay friction and the substantial
moving mass of the drive axis, is taken to be proportionah&odurrent in the coil itself. The
moving mass introduced by the device resides in the movirg seen in figure 3.8 and is
estimated to be 46+ 5.0g. The servo amplifier provides a current-proportional resdaoat is
sent directly the DAQ. Instrument calibration with statieights verifies that the coil current

(voltage readout) is indeed linear in the entire useful eamighe device.

The displacement of the moving axis is recorded using a \ergisve LVDT with local
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Figure 3.3 Strain gauge and fiber-optic sensor at sample interface.

signal modulation. This instrument also gives a very strafean, and linear signal.

Along the moving axis the instrumentation is very good, Int ¢ffects observed are
fraught with inertial and frictional effects. At the sampigerface, the frictional and inertial
effects are negligible, but the instrumentation is fragileh limited linearity. Careful analysis
of all of the data allows useful conclusions to be drawn aboth the sample and the apparatus
itself. In this way, the dynamic characteristic of the appas are revealed as well as the
viscoelastic characteristic of the sample. While charaitg the sample has obvious value,
characterizing the apparatus provides the more subtleseivallows monitoring of real-time
performance attributes such as the total inertia of theegysthe elastic restoration of the voice
coil’'s centering springs, and—most importantly—varidhigional effects from the instruments

and slide rail.

3.1.2 Both Normal and Shear Testing Modes Accommodated

To date only shear modes have been estimated with the dbuic@strumentation is in
place which will allow simple estimations of Young’s modsiurhis will be done by moving
the sample stage vertically using the stepper motors wHibeed spherical tip mounted above
indents the sample. The resulting the force will be meashyed calibrated precision scale-
type load cell that was installed beneath the articulatangge stage.

The use of an electronic balance with a linearly actuatedntet has been found ef-
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fective in measuring the Young’s modulus of soft tissueg.[3he device used by Egorov et
al. also used a half-space geometry to frame the mechantbge giroblem, and was found to
be effective in both laboratory and clinical environmenife experimental design presented
our device uses similar methods to estimate Young’s modiiaseover, the presented device
will also be capable of indentation tests used to approx@chabung’s modulus. This has not
yet been implemented in the current stage of developmedtgoatiate values of Poisson’s ratio
must be estimated for use in processing the complex sheanlosodf the sample. For most
polymers, rubbers, and tissues tested the assumption ofnoeenpressibility is a reasonable

one.

3.1.3 Precise, Automated, Positioning Capabilities

From the outset of the design, precise knowledge of the tieis& (compression state)
of the sample, the angle of the sample stage with respecetoaihaxis, and the exact location
of the sample adhesion boundary have been important coasates. The goal has been to
make knowledge of these qualities inherent to the setup pesof foregoing the tedium of
intensive caliper and micrometer measurements during-semsitive field use. Toward this
goal, stepper motors with a fixed resolution of 0.01 mm pgy sferanslation were installed
for all positioning requirements. These stepper motorsestirer be controlled manually or
by the digital output channels of the same MCC-USB 2537 DA@dusr data acquisition.
Efforts were made to enable controlling and processing ftatéhe entire device within a

single programming environment.

The sample stage positioning system can be seen as it wag dmistructed in figure
3.6. Because part of structural purpose of the sample stagjeles providing a rigid constraint
against shear forces generated within the sample, careak@s to design the stage in a way
that allows vertical articulation without compromising &bility to remain laterally rigid under
operational loading conditions. Toward this end, a velliicaligned slide rail bearing was

installed in the center.



45

] X STRAIN GAUGE
e \ FIBER OPTIC SENSOR
( / BOUNDARY PLATE

\ / SAMPLE

— =/ BASELOADCELL

Figure 3.4 Close up of sample interface and instrumentation.

For additional support, and to ensure proper stepper axigmméent, turnbuckle-
tensioned threaded rods are installed between any twoeadjatepper motor axes. Ball joints
attach the stepper axes to the sample stage, allowing fepartient positioning of the three
axes. This was intended to allow accounting for angled samgpbmetries. Some thought
was given to testing for coupled responses as the sample atagde was changed maintaining
horizontal shear loading. To date this has not been tesseal ckear advantage of the method
has yet to be analytically identified. Even so, the stage it-e@gipped to perform such an

operation up to 20of stage incline.

3.1.4 Ability to Quickly Change Samples

Time sensitive field work makes it essential to have the gt quickly change sam-
ples without having the dissemble key components of thecéevihis required designing a coil
axis that can be tilted up while samples are loaded and dasitgd back in place for testing.
This locking mechanism should be secure enough to supp@egbumption that the fixturing
around the sample is effectively rigid relative to the samdelf. The rigidity requirement
of the axis locking was achieved by using a single vertidahan each side of the articulat-
ing coil-instrument axis as seen in figure 3.5. Once the dakis is tilted up and out of the
way, the top-boundary plate can be easily cleared by remgdaiar threaded knurled knobs.

At this point a new sample and boundary plate can be set baglage. The sample stage is
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positioned using the stepper-motor control system whighagjihe precise thickness of the new
sample without the necessity of manual measurement. Tiie dxis is latched back into the

run position and testing may resume.

LOAD POSITION

Figure 3.5 Running and loading positions.

3.1.5 Wide Range of Sample Geometries Accommodated

This method of sample fixturing, justified by the “thick sampksumption” makes ac-
curate characterization possible without precisely i@ sample shape and thickness. This
is an important improvement over existing designs whichumegoften painstaking sample
preparation before each test. With the high frequency stie@ce of Arbogast et al. a mi-
crometer is used to determine the sample gap [38]. The commbelulus apparatus of Adkins
et al. not only requires careful measurement of sample gegnieit the samples themselves
were made using a specially designed mold [39]-a procedotr@vailable to for naturally
occurring tissue samples. The device of Madsen and Frauits lite scope to “tissue-like” ma-

terials which are specially modeled [40]. Once molded,rthaimple geometries are carefully
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Figure 3.6 Third Prototype, sample stage positioning system.

recorded using a microscope equipped with a manual transat vernier scale. In order to
test muscles in compression, Van Loocke et al. fabricatgubeial cutting bench with a rotary
table was designed to ensure a uniform sample geometryoddtinlabor intensive, the tissue
cutting method seems attractive unless the tissues aremsofigh to immediately lose their
shape once cut. This kind of sample preparation is not maaluring the in situ dissection of
a marine mammal.

All of the these consideration were at play during the ihdiesign of the experimental
device; our sample geometry is made precise by the fixtudogbary not the sample. Further-
more, stepper motors position and automatically recortdetessary dimensions. The small
forces the arise from kinematically containing the sampéeendeemed negligible through the
analysis detailed in the chapter 4. Here again, robusumsntation is used to experimentally
verify these analytical conclusions. Because a load cedl wstalled in the sample stage to
detect normal forces in the sample, the compressive stateshgdntly varied and the material

response results were confirmed to remain consistent.

3.1.6 Instrumentation Detalls

Displacements are measures using two independent ingitan{é) a precision Linear

Variable Differential Transformer (LVDT), and (2) a fibertapdisplacement sensor. Forces are
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measured using a high precision low force cantilever lodld Bata acquisition uses a MCC

USB-2537 multipurpose DAQ.

SLIDE RAIL
STRAIN GAUGE
VOICE COIL SERVO MOTOR
STEPPER MOTOR
LVDT
. i
SLIDE RAIL
FIBER OPTIC SENSOR

SAMPLE
BASE LOAD CELL

Figure 3.7: Third prototype instrumentation.

The device is made up of three primary components: the lap@wver supply; the

control box; and the mechanical assembly.

3.1.7 Assumptions

Itis assumed that all fixturing components, including sanpbhtes and bearing mounts,
are rigid relative to the sample being tested. Some magdeald themselves to the assump-
tions of incompressibility which leads to the a loss tangeshear that equals that of tension-
compression [39]. In this case, the magnitude of the comgitear modulus should also be
one third of the magnitude of the complex Young’s modulusrekieis not assumed that all
materials are incompressible.

As the sample thickness increases without bound the rakdtips among the applied

force, the resulting displacement at the location of fonggliaation, and the elastic moduli of
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Figure 3.8 The parts that comprise the moving axis, etimated 465.0g.

the sample approach the half-space solution. Furtherrfiore element analysis reveals that
when the radius of the boundary opening of the top plate amthibkness of the sample exceed
15 mm the results are comparatively insensitive to smadksiin the estimated geometry. More
details of this analysis are provided in 4. This study wae aksed verify that the results are

not sensitive to slight sample compression at the adhesiondary.

3.2 Prototype Evolution

The first prototype was used to test basic operation priesighd verify the practicality
of the setup with a sample interface and Linear Variableddéhtial Transformer (LVDT) to
record time dependent displacement data. This also prdadest-bed for Data Acquisition
(DAQ) functionality. It was obvious from initial testing ¢hforce producing properties of the
solenoid were poorly suited to well controlled sinusoidatitation. A better choice would be
a voice coil, which provides a force that is linear in curremér a wide range of excitation pa-
rameters. The use of a voice coil as an excitation sourcelfbA B nothing new. A shear plate
DMA device using voice coil excitation was found to be effeetin testing soft tissues [38].
The device described by Arbogast et al. used a vertical @osibar sandwich configuration
and required ignoring the boundary effect at the open ends.

The second prototype implemented a voice coil-servo matdreasimple acrylic base.
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This design allowed useful experiments but no way to coriioalndary force application or
sample fixturing. The sample was essentially stuck to thie tabd the application plate was
stuck to the sample, relying on the negative pressure pesbwhile compressing the sample.
A more controllable method of sample fixturing would be nekde€his led to the third, and
final prototype (figure 3.2).

The experimental rheometer described here uses a new hgundare methodology
that exploits the aforementioned benefits of an effectivedmace sample geometry. Other key
improvements include the use of a highly accurate LVDT ag arelnnovative tip design that
gives point-of-contact force and displacement data withube of a fiber optic displacement
sensor and a highly sensitive strain gauge.

The use of inertial corrections factors in commercial rhetars has been widespread
[38]. It has been found that as sample density and excitdtexquency are increased, the
relative effect of inertia becomes more significant [41]. chses where intertial effects are
significant analytical corrections must be made [42]. Beeathe current design uses local
instrumentation to determine the stress and strain relatat the sample interface, only the
very small contribution of the moving volume of the sampleasisidered. Because this mass
is very small, it can be neglected an no intertial correiare necessary.

This design features precise stepper motor control to t@damples between a mov-
able stage and a top boundary plate. The movable stage texhaitd raised or lowered to
provide a desired state of material compression, and thadaoy plate provides a lateral re-
straints in a manner that lends itself to analysis.

Experiments require a carefully controlled environmerftp&rticular importance is the
establishment of well defined boundary conditions. For tiveemt work, this requires careful
examination of sample fixtures and force application meshdthe latter requires consideration
of boundary adhesion at the dynamic loading surface. Theeglastic properties of polymers,
including many tissues, have been found to be temperatpendent. While it is important to
maintain temperature control withindSC, prior research demonstrates that silicone rubbers are

relatively insensitive to changes in temperature in theniycof room temperature [39]. The
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elastic properties of many polymers are also comparatinsignsitive to temperature changes
at room temperatures which we have verified for the plastialbration samples. There was
no observable difference in estimated viscoelastic ptagsetested from 18 Cto 24 C. At a

very minimum, the temperature at the time of testing shoelddzorded.

3.2.1 Frequency Sweeps

Prior research reveals that complex viscoelastic matehatacterization over a wide
range of excitation frequencies and strain levels can berkted from simple measurements
of amplitude ratio and phase angle. However, this theorgss &pplied to cases of infinitesimal
strains [39]. For this reason, methods presented here exeteti toward small deformation
processes. A feasible experimental setup is constraingdebipounds of practical specimen
geomtery, realizable boundary conditions, and the framlewblinear viscoelastic theory.

Frequency sweeps are the main data collection method usddaming dynamic me-
chanical properties. Frequency sweeps are typically occedustarting at a low frequency
between one and ten Hertz. The excitatation is held untilsiemt responses have subsided
and all important instrument data are collected. The fraqueés then increased sequentially
and the excitation cycles are repeated. The frequency sxgep a valuable indication of the
dynamic properties by indicating time-scale dependesicesf such as phase-lag proportional

loss moduli.

3.3 Comparison of Force Configurations

A limited number of force instrumentation configurationsrevéested. Redundant in-
strumentation by way of an in-line compressive load cell westalled along the excitation
axis between the voice coil and strain gauge carriage. Bhi®msidered a redundant force
measurement because it gives indication of the force appifghe strain gauge which is quite

accurately determined by monitoring the current of the @aoil itself. As the in-line force



52

instrument did not prove to be as accurate as the voice cogcusignal, from the servo am-
plifier, the redundant instrumentation was removed. Thsstha additional benefit of reducing
the mass of the moving axis which reduces resonant effedtealevice which do not reflect

the physical response of the sample being tested.

3.4 Prototype Linear Rheometer, Raw Results

Some real-time results are indicated prior to post-praogssrhese are typical in the
form of time-domain signal curves or hysteresis ellipsessehareas represent the loss energy
density. A few kinds of data filtering are used during reaidisignal processing. At the end of
each excitation run, consisting of 20 to 200 complete aoilly cycles, data is filtered by both

running averages and band-pass methods.

3.5 Characterizing Elasticity and Viscosity

Elasticity and viscosity are characterized by first lookattighe amplitudes and phases
of the force and displacement signals. Then, these data lmeusbnsidered along with geo-
metric configurations to extract the continuum stress araiinsinformation. The later is then
used to derive the complex moduli of interest, typically doenplex shear modulus. The real
component of the complex modulus gives indication of matefiasticity while the imaginary

component indicates the material viscosity.

3.5.1 Two Independent Elastic Parameters

Because the isotropic material response is coupled, arghthple is not loaded in pure
shear, other moduli such as the Young’s modulus must be &&thh Since many tissues are
nearly incompressible, assuming that Poisson’s ratioaslyene half is a good starting point.

More accurate estimation requires determining coupleduln@ither by use of the sample
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stage stage and stepper motors—in normal mode—or altensb®ds such as ultrasonic time-

of-flight.



Chapter 4

Rheometer Analysis

The sample geometry for analysis is based on a radially dirtdsr symmetric about
the vertical mid-plane. It is loaded in shear on a circulacipan a direction parallel to the
cut plane; more details are provided in sub-section 4.0l r€lationship among the discrete
stiffness magnitude and continuous elastic modulus of @onis determined in the form a
linear conversion factor that is based on static analyslese&d-form half-space solutions as
well as finite element solutions are investigated. It is aeieed that for a reasonable range of
sample thicknesses, thin to 20mm, the half-space solution provides a good approximation
of the stiffness-to-modulus relation. The simulationsvite improvements in the manner of
conversion factors accounting for the finite sample geassetif the samples. These conversion
factors are found to be insensitive to small errors in sarntilkkness and boundary radius

inputs.

4.0.2 Half-Space Solutions and Semi-Infinite Sample Geonrgt

Closed form solutions are consulted as bounds for the asatysesults. The half-
space solutions of Dydo and Busby [43] provide an import@men bound to any quasi-static
deformation responses seen in finite geomtries. Half spalcéians of the Boussinesq type
have been applied to both normal and tangential loading efra-gfinite half-space [44].

Conditions not far removed from a semi-infinite half-spa@eahosen both to facilitate

54
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analysis and to render the results less sensitive to smatiges in geometry at all boundaries
except the one defining the excitation contact. This conditiom has been used in compressive

devices [34], and for similar reasons, we apply the sameijplimhere.

When the sample geometry is chosen with a sufficiently ladeéss and boundary
radius along with a sufficiently small loaded patch radibs,golution is not sensitive to small
errors in the boundary plate radius, slighlty non-centéoeck application, and small changes

in boundary plate normal forces.

4.0.3 Bounded Finite Element Solutions and Stiffness to Madus Rela-

tions

The relationships relating the discrete stiffness obthfrem experimental data and the
continuous material properties sought are estimated satg finite element models. Prior
research support our finding that stiffness correctionsbeaexpressed as a function Poisson’s

ratio and sample thickness [45].

The simulations of the statically loaded experimental daropnditions are described.
The sample is cylindrical having a radius ofrhé and a thickness that is varied from bt

to 20mm.

The sample is loaded in shear with a force @f3N directed along positive-axis (see
Figure 4.1). The shear traction is applied uniformly over tiircular patch on the top of the
sample az =th and the thicknesh is varied as needed. The loaded patch has a radiuswrf 4
and Dirichlet boundary conditions depress it into the saniygyi 05 mm to produce the effects
of tip indentation. The amount was varied the solutions ieued to be insensitive to changes

in tip indentation when the amount was less than about a tdritie thickness of the sample.

The essential boundary conditions on the bottom of the samapt = 0, are
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The essential boundary conditions at the circumferendesodample, at=16mm, are
Ux = Uy = U, = 0. (4.2)

The natural boundary conditions on the circular patch are
Tx = 0.05N, (4.3)

onr <4mm, z=th. On the remaining boundaries zero tractions are applied.
As seen in Figure 4.2 a symmetry boundary condition is agpgbeeduce the number

of equations. Alony = 0 the out of plane deformation is precluded by enforaipg- 0.

Figure 4.2 Typical disc analysis, shear load aD8N with uy = 1.2mm.

Figures 4.3 and 4.4 show how the conversion fadiasaries with estimations of Pois-

son’s ratio or Young's modulus respectively for samplekh&sses in the range of interest. The
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half-space solution provides an upper bound for the congpdisplacements. As expected, the
sample solutions approach the half-space solutions asthgls thickness is increased. A sam-
ple with fixed boundaries is more constrained than semiitefgolution suggests. Otherwise
put, the finite sample behaves as would a semi-infinite samipkerigid material properties
applied anywhere outside of the Dirichlet boundary sudgacehis increased rigidity of the
structure renders the solutions less compliant than the-isdimite idealization. The results
shown are based on the experimental configuration that usearadary radius of 16m but
analysis was also done to verify that the solutions veryldyi@pproach the half-space solution
if both thickness and radius are increased.

The curves shown in Figures 4.3 and 4.4 reveal that the esiftto-modulus relation
depends on estimations of the remaining elastic paranvetgrE, but the low slopes of the
curves suggest that the conversions are not highly seasttithese estimations. In fact if the
estimated Poisson’s ratio was taken to be zero for an incessfsle material-a very wrong
assumption—the accuracy of the shear modulus estimatiotdvamly suffer by about 12%.
Since most tissues can be reasonably assumed to be nearypressible the likely errors
introduced would be much smaller with an estimated Poiss@tio of 049. This shows that
the experimental setup is dominated by the shear resportseninimal, but not negligible,
coupling to the other elastic moduli.

These results also show that as the sample thickness isgstt¢he conversion curves
get closer and closer together. This means that when thgmples are tested, the input
thickness need not be of high accuracy to yield useful resdlhis is another advantage for
an in situ testing environment. The curves of the finite sas@lire well approximated by
cubic functions ofv or E, a fact that will be exploited in obtaining the stiffnessamdulus

conversion factors.
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Figure 4.3 Comparing®(th,v) to the half-space solution.

K-G Conversion Factor @ vs E
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Figure 4.4: Comparing®(th, E) to the half-space solution.
4.1 & cubic functionin v andth.

The conversion functio®(th, nu) provides a practical means of translation the the mag-
nitude of the sample stiffneds to the magnitude of the complex shear modul@g|. The
conversion function is well approximated by a cubic funetad v, whose coefficients are well

approximated by a cubic function of the sample thickriass
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Figure 4.5 Computationally resolved relatio®= ®(th, v)K for th=10mm, 13mm, 17mm,
and 20mm.

The linear relationship among stiffness and shear modw@nse seen in figures 4.5
(a) -(d) as the sample thickness is varied frommi@in Figure 4.8 (a) to 2éhmin Figure 4.8

(d). The conversion factor, or slope, decreases with arasing estimation of Poisson’s ratio.

The coefficients for the conversion factdrare determined using finite element solu-
tions and a cubic fit. For the range of thickness values apjatefor testing (16m— 20mm).
The boundary radius was taken to match the hole in the boynpdiate which has a radius of
16mm. The loaded region was applied over a central region witina 4adius, to match the

adhesion disc at the tip of the load cell. This is detailediguFe 4.6.
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Figure 4.6. The top boundary plate with the fixed radius and loaded regimwn.
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Figure 4.7: Cubic fit of cubic coefficient® (th) = f(th®) for ®(th,v) = PLv3 +P,v2 + Pav +
Py.

Taking thicknessh in mmthe fucntion is
Py(th) = 0.020308h3 —0.99023¢h? +17.38465%h — 177.387718,

(th)
(th) = —0.012153h +0.61503&h? — 10.79513%th + 77.7674186,
(th)

(

Y

Ps(th —0.000438h3 4-0.050747th? — 1.48143%h — 6.327286,

P4(th) = 0.01165Gh3 —0.628897%h? + 11.454462h — 7.708364, and

® =P, v3+P,v24+P3v+ Py such thats = ®K provides a way to convert the discrete structural
response of the sample to a continuous material propekiere, the polynomial coefficients

P are obtained by computing a cubic fit to the data representEdjure 4.7.
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The linear relationship among stiffness and shear modw@nse seen in figures 4.8
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(a) -(d) as the sample thickness is varied fromni@in Figure 4.8 (a) to 2éhm in Figure

4.8 (d). The conversion factor, or slope, increases as timteaed value of Young’s modulus
is increased. Clearly, as the estimated value of Young’'sulusddecreases the curves get

closer and closer. This increasing estimation of Young'sluhas, with the shear modulus held

constant, corresponds to a decreasing estimation PosSsdis.
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Figure 4.8 Computationally resolved relatio@= ®(th, E)K for th=10mm, 13mm, 17mm,
and 20mm.
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The conversiond(th, E) is well approximated by a cubic function of Young’s modulus
(E), whose coefficients are well approximated by linear fuoretiof the sample thickness.
Taking thicknessh in mmthe fucntion is
Pi(th) = 2.7612%— 11th — 1.53463 — 09,
Po(th)
)

(

( —3.79902— 07th +2.0014% - 05,
Ps(th) = 1.6480& — 03th — 9.0040%k— 02,

(

Ps(th) = —1.60954+ 00th +1.8887%+ 02, and

® =P E}+PE*+P3E+Py.

This time, polynomial coefficient§ are obtained by computing a linear fit to the data

represented in Figure 4.9.

10 15 20 10 15 20

Figure 4.9 Linear fit of cubic coefficient® (th) = f(th3) for ®(th,E) = PLE3 + P,E2 4 PsE +
Ps.

4.2.1 Insensitivity to Estimations of Thickness and Boundg Radius

As the boundary radius of the plate opening and the sampilkrtbss are increased the
solutions show greater agreement with the half-spaceisokitThis can be seen in Figure 4.10

where the error surface flattens out as the radius and theslowth approach 26m. This is per-
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haps better understood looking at the contour plots of leigut1 were the error fall below 20%
for all radii greater than 1dm. For a 16nm boundary (as in the experimental setup)sample
thicknesses exceeding fr#n give solutions that are within 16% of the half-space sohutio
This confirms that thicker samples are less susceptiblerewsemtroduced with estimations
of sample geometries, but also suggests that, even witheuwtdnversion factor introduced in
this section the experimental, results can be convertedritrtious material properties using
the half-space approximation. The quality of such an agpration would, admittedly, suffer
increasingly for samples with a thickness less thamiitand a boundary plate radius less than
15mm. Similarly, these approximation rely on a comparativelyafitoaded patch, dimradius

for our experimental setup.

% Error vs. R and thy=0.49

S
<
e e

15

Figure 4.10 FEM vs half-space solution errors.

Figure 4.12 shows the sensitivity of the results as the samgalius and thickness are
varied by looking at the total derivative with respect to th® extensional quantities. The
derivatives are very small and the surface is nearly flat @addmm on both axes. In the

practical regime of the experimental device, the totaldgiies are 10°.
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Figure 4.11 FEM vs half-space solution error contours.
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Figure 4.12 Geometric sensitivity for typical geometries with= 0.49.
4.3 Newmark-Beta Numerical Integration Algorithm

Much about the ideal frequency response behavior can bevaosia discrete solutions

to the linear dynamic equilibrium equations. The last seM@ecades have marked a dedicated
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effort to improve methods of numerical integration teclusis applied to the basic equation of
motion of structural dynamics [46]. The discrete equatiohshotion for structural dynamics

read:

[MJa(t) +[Cla(t) + [K]u(t) = f(t) (4.4)

Where [M], [C], and [K] are the mass, damping, and stiffness matrices respectiviig,
u(t), u(t), andu(t) are the acceleration, velocity, and displacement vectspactively.
Typical methods use discrete time-stepping schemes tlaat@phe vectord, U, andi at the
current timet,, to the time at the next stép, 1 =ty + h, whereh is the interval of the time step.
Where at least second order accuracy and unconditiondlistaive sought, the Newmark-
Beta method is a good choice. The Newmark-Beta method’aphrinvolves considering an
integrated form of the equation of motion wherein velocity alisplacement appear as state
variables with acceleration algebraically isolated [4¥]imitation of this method occurs when
high frequency components of the solutions are mere atdifaicthe spatial discetization, and
are related to the Nyquist frequency [46]. This can be cdiettausing numerical damping
but such approaches reduce the accuracy of the integratieme to first order. However, in
systems where some physical damping is present, theseialtifiodes can be controlled. For
this reason, these analyses are best suited to materitilsae viscosity. They will be used
here only for analysis where physical viscous damping isge Furthermore, the need for
accurate extraction of higher modes in absent from simpbetsfto extract frequency response

functions aimed at the resolution of a single steady-statgenunder forced excitation.

4.3.1 Newmark-Beta Integration Scheme

First the displacement and velocity are expressed in tefrieo values at timé, and

the acceleration at timg. 1:

Un+1 = Un+ (1—y)hin + yhln 1 (4.5)
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1 . .
Uny1=Un+ (é - .B)hzun + BhZUnJrl (4.6)

Wherey is a parameter that is varied from zero to one to control hoplitit or explicit
the velocity predictor behaves. Whegn= 1 the velocity predictor is fully explicit and gsis
decresed to zero, the velocity predictor becomes incrglsimplicit.

The above expressions are substituted into the equatiorotdbmto provide the fol-

lowing update equation in terms of andup:

(IM]+ Yh[C] + Bh?[K])tin+1 = frp1 — [C](Un +h(1— )tin) — [K](Un +hil + hz(% —B)Un)

4.7)
Letting:
[S] = [M] + yh[C] + B [K] (4.8)
Gives a solution for subsequent acceleration in the form:
Uns1 =[S (fapa — [C](Un +h(1— y)iin) — [K](un + hin + h2<:_2L —B)un)) (4.9)

Now, the velocity and displacement solution f@r; can be updated according the rules defined
in the previous two equations.
The ideal solutions can be easily modified to include thecesfef apparatus friction

though the use of numerical models with as few as one or tweedsgpf-freedom (DOF).

4.3.2 Newmark-Beta Time-stepping Algorithm with Implemerted Nodal

Friction

Classic one degree of freedom vibrations solutions are itapbin characterizing fre-
guency response trends. The one DOF model with includetibinial effects is key in defining
the effects associated with device friction. Kinetic anatistfriction are implemented in a

way that modifies the forcing function by criteria defined hg velocity predictor. When the
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predicted velocity is below a predefined limit, the frictedhorce added to the excitation force
is adjusted by an certain amount. This is the prescibeddtattion, known as the Coulomb
condition.

When the predicted velocity surpasses the "sticking" \lpthe appended frictional
force assumes a different, typically lower, value. Thishis prescribed kinetic friction. Since
the force is still continuous in the open interval of the tistep the Newmark-Beta methods
is perfectly suited to these discontinuous forcing funtdio Similar uses of the Newmark-
Beta method in modeling stick-slip instabilities have beeocessfully implemented [48]. The
instabilities predicted by the numerical solutions thatcamt for Coulomb friction are also
seen in our experimental results. Furthermore, the nuadeBsults successfully reproduce the
time-domain displacement response typically realized @evation from a smooth sine wave
toward a step wave.

Static and kinetic friction is implemented in the integoatscheme with a simple con-

ditional choice of offsetting force terms. Let

be the excitation control force exerted by the voice coid] lf, andfs be the kinetic and static
friction respectively. Andygick be the sticking velocity defined for each DOF independently.

Now we can define conditional update rules for the Coulomtiém implementation
for it" degree-of-freedom at thé" time-step:

if 0| > Vi

fli1= fin(tare) + T (4.11)

ese

g = fin(tng) + F (4.12)

end
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Thesign(f})) is opposite of the predicted velocity, and sign( f) opposite of(f} ; —
M]dh — [C]af, — [K]uh).
The magnitudes are limited so that friction does not creatgan bymin(| fi|, | f\, ; — [M]u, —

[K]up]), andmin(|fg], | fh, 1 — M)t — [K]up)).

Wheredul, is the velocity ofit" DOF at then'" times-stepfL (t,) is the excitation force
of theit" DOF at then'" times-step | is the kinetic frictional force oft" DOF, f! is the static
frictional force ofi'" DOF, andf/ , is the total force of thé" DOF at then+ 1% times-step.
This loop will be used to assemble thg 1 forcing vector in the Newmark-Beta time-
stepping scheme. Since the condition that chooses whattedid<or static frictional forces will
be used depends explicitly on the current velocity the scheme can be repeated iteratively
using the updated velocity to provide an improved valu§,ef that is based on the predicted
velocity in the updating condition. Simulations show thHa tise of more than one iteration

has virtually no effect on the behavior of concern. Therfto save computational cost, only

one update iteration is typically used.

4.4 Frequency Response Functions

The frequency response functions generated by the tinppisigalgorithm show reso-
nant system behavior, phase shift asymptotes, and jumpe iresponse curve resulting from
system friction. This goes far to explain some of the effgeisn in the system response of the
experimental rheometer. Although friction has little effen the data gathered by instruments
at the sample adhesion boundary, the LVDT and coil-currigmtads are very dependent on

system friction as well inertial and resonant effects.

4.4.1 Zero Friction Case (C=1)

When system friction is neglected, the response is smodthantlear phase transition

having a value of] at the resonant frequency seen as a peak in the transferdiurfEigure
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Figure 4.13 Zero friction case, C=1.

4.13). The analytical solution to the zero-friction case & single degree of freedom, is readily
available and was verified to agree with these solutions. llde shown, the greatest use of
this model is in analyzing a two DOF system where frictionluso/e analytical solutions are
not at hand.

The model input parameters aretimesteps per periog 100,M =1,K =10,C =1,
wh = 3.1623,wy = 3.1225, = 0.15811,f =0, fs= 0. The Newmark coefficients as set as

B =1/4 andy = 1/2, which is typical throughout this work.

4.4.2 Kinetic Friction Only (C=1)

When sliding friction is introduced, but not stick-slipdtion, as seen in Figure 4.14
jumps can be seen in the system response curves, espetiallyfeequencies. This is problem
that plagues the experimental results, reveling itselfieargence of the displacement control
algorithms due to low frequency sticking.

The model input parameters aretimesteps per periog 100,M =1,K =10,C =1,

h = 3.1623,y = 3.1225,{ = 0.15811,fy = 0.3Fy, fs= 0.5F, Vgjk = 0.
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Phase vs. Frequency
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Figure 4.14 Zero sticking friction case, C=1.

4.4.3 Static and Kinetic Friction with High Sticking Velocity (C=1)

When stick-slip friction is included in the analysis , asrsée Figure 4.15 increas-
ingly troublesome jumps can be seen in the system respongescespecially at sub-resonant
frequencies. This is also a problem that plagues the expetahresults, reveling itself as
divergence of the displacement control algorithms dueuoftequency sticking.

The model input parameters aretimesteps per periog 100,M =1,K =10,C =1,
wh = 3.1623,wy = 3.0, { = 0.15811,f, = 0.3F, fs = 0.5F, Vg = 0.2.

4.4.4 Zero Friction with Increased Viscous Damping (C=2)

When friction is neglected, increasing damping has the eepeeffect of smoothing
the resonant peak and blurring the phase shift transitiggai these results were verified to
match the analytical solution. This is demonstrated in Fegul6.

The model input parameters aretimesteps per periog 100,M = 1,K =10,C =2,
wnh = 3.1623,y = 3.0, =0.15811,f =0, fs=0.
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Figure 4.15 High sticking velocity case, C=1.
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Figure 4.16 Zero friction case, C=2.
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Phase vs. Frequency
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Figure 4.17. Zero sticking velocity case, C=2.

4.4.5 Kinetic Friction Only with Increased Viscous Damping(C=2)

If damping is increased in the model that considers onlyirgidriction, the resonant
response is mitigated and the low frequency jumps are $&éosed. This is demonstrated in
Figure 4.17.

The model input parameters aretimesteps per periog 1000M =1,K =10,C =2,
h = 3.1623,ay4 = 3.0, = 0.31623,f, = 0.3F, fs= 0.5F, Vgjk = 0.

4.4.6 Static and Kinetic Friction with High Sticking Velocity and In-

creased Damping (C=2)

Considering increased system damping results in more megppimps in the stick-
slip system of Figure 4.18. In this case, the frequency jualps occur at super-resonant
frequencies.

The model input parameters aretimesteps per periog 100,M = 1,K =10,C =2,

h = 3.1623,a4 = 3.0, { = 0.31623,f = 0.3Fy, fs = 0.5F, Vg = 0.2.
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Figure 4.18 High sticking velocity case, C=2.

These single DOF models verify the working of the algorithm give insight to some
frequency response behavior that would be otherwise difficinterpret from the experimental
responses alone. This is invaluable to device developmbatevanamolous results may be
attributable to anything from non-linear material respes® poorly callibrated instruments or
channel cross-talk. Knowing that jumps in amplitude candaglily explained by considering

the effects of stick-slip friction dramatically simplifit®ubleshooting.

While the single DOF response is quite informative, the expental setup is not quite
so simple. While the moving axis of the voice-coil represeme degree-of-freedom, the
independent data collected at the sample interface ragigearother. To better characterize the
physical system, a two DOF model is called for. This is eastigomplished with the existing

Newmark time-stepping algorithm as it was modified to inel@idctional effects.
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4.5 Multiple Degree-of-freedom Newmark Time-stepping
Algorithm with Implemented Nodal Friction

The multiple-degree-of-freedom (MDOF) model is used tdymethe strain gauge tip
style setup. In this experimental setup, the forces andatisments are observed at two distinct
DOF locations: the moving linear axis; and the tip itself.

Stick-slip friction can explain some experimental anoesli Although much more
computationally expensive to run, finite element modelsefdynamic response lead to sim-
ilar observed behavior. The experimental system is wellesgnted by a simple two degree-
of-freedom system, and finite element analysis is unnepessaharacterize the basic system

response.

f1(t), x1(t) £2(1), x2(1)

kO kl k2

c0 cl c2

m1- Mass of the moving axis
m2- Moving mass of the sample

kO- Voice-coil return spring stiffness
k1- Cantilever load cell stiffness
k2- Sample stiffness

c0- Viscous damping of coil and slide
cl- Viscous damping of load cell
c2- Sample viscosity

Figure 4.19 The experimental setup is well modeled by a simple two-eegf-freedom sys-
tem of masses, springs and dashpots. The friction-inadudewmark time-stepping solution
can explain much of the experimental response.

Figure 4.19 shows how the experimental setup is effectivgbgeled using a simple
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two-degree-of-freedom system. The DOFmatrepresents the the excitation axis, while the
DOF atm, represents the sample at the loaded boundary.

The moving mass of the excitation axis is taken a®4@&nd the stiffness of the voice-
coil centering spring is taken & = 766N - m™. The strain gauge stiffness is estimated to be
aboutk; = 50000N - m1.

In the physical systent,1(t) is the force provided by the voice-coil motor as measured
in the current proportional coil voltage signal. The axispiicement of the physical system is
measured by the LVDT and is modeledxdst). The sample response in the physical system
is measured at the dynamically loaded boundary by the sgeaige and fiber optic probe. The
strain gauge measures the force, which is modeledajy) = (k1)(x1(t) — x2(t). The fiber
optic probe measures the sample displacem(tj.

For use in the MDOF, friction inclusive, Newmark model thesmanatrix is

m O
M] = , (4.13)
0 m
the stiffness matrix is
+ki —k
K] = ol k) (4.14)
—kq ki +ko
and the viscosity matrix is
Co+C —cC
C] = SR (4.15)
—CL C+C
This gives the system
m O X1 N Co+Ci —C X1 N ko+ki —kg X1 B fl(t)
0 mp Xo —C1 C1+0C Xo —ki ki +k Xo fa(t)

(4.16)

which is sent to the Newmark solver.
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The Newmark-Beta method with the described algorithm fodeting friction is used
to verify the experimentally observed response. The systmbles can be modelled across
a frequency spectrum, but the current application highdidgiow the system parameters of the
numerical (two DOF) solution can be tailored to explain tebdwvior at a given frequency. The
moving axis of the voice-coil and LVDT are represented her®@F1 and the local response

at the sample interface is represented as DOF2.

Exp. (DOF1) Freq.=4.3 Exp. (DOF1) Freq.=4.3

-i -0.5 0 0.5 1 0 0.2 0.4 0.6

) t(s)
Exp. (DOF2) Freq.=4.3 Exp. (DOF2) Freq.=4.3

1 05 0 05 1 0 02 04 06

) t(s)
Data —F
Fit — 3

Figure 4.2Q Porcine tissue response aB# z

As a particular example, to show the models ability to cappltfenomena seen in the
physical system, the response of the porcine tissue detailthe results chapter is analyzed
here at the relatively low frequency of3Hz. This response is complex in it's subtleties and
is indicative of the loop readouts seen throughout a frequeweep. The hysteresis ellipse of
the device response has vertical jumps at the extremes dfghkcement response, as seen in
Figure 4.20. This is caused by stick-slip friction, and ivisll modeled by the algorithm (Figure

4.21). Stick-slip (static) friction is also responsible the squared wave patterns observed at
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low frequencies. The stick slip friction is applied to DORlmodel the sicking of the control
axis. This sticking is caused by slight misalignment of thDI and coil axes as well as
simple contact friction in the instruments and the lineatestail.

Kinetic friction is also applied to DOF1. The consideratmfrkinetic friction causes a
widening of the hysteresis ellipse at DOF1 which can alscele® s a corresponding increase
in the phases-lag. This has a subsequent effect on the foree of DOF2 which arises as a
local force contribution at the sample interface.

The input parameters used in the soutions of Figure 4.2 1sd@laws:

the coil return spring stiffness i = 76N - m™L; the cantilever load cell stiffness is
ki = 50000N - m1; the sample stiffness i& = 300N - m~; the coil axis viscosity i$y =
10kg-s~1; the load viscosity i€; = 0kg-s~1; and the sample viscosity & = 3kg-s1; the

moving axis mass iey = 46.5g; and the moving mass of the sampleris= 1g.

Newmark (DOF1) Freq.=4.3 Newmark (DOF1) Freq.=4.3
w 1
0
. . L | . . .
-1 -0.5 0 0.5 1 0 0.2 0.4 0.6
) t(s)
Newmark (DOF2) Freq.=4.3 Newmark (DOF2) Freq.=4.3
|
R
SE . , ,
0 0.2 0.4 0.6
t(s)
Data —F
Fit —3

Figure 4.21 Friction-inclusive Newmark-Beta solution at¥Hz.

The kinetic friction at the first DOF is taken to bg= 0.2N and the static friction at
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the first DOF is taken to bé; = 1.5- fy = 0.3N. No friction is applied to the second DOF
where losses are assumed to be entirely viscous. The eswifetquency is 8Hz and thirty
time steps are taken per cycle for a time-step.60@7s. The algorithm is run to an assumed
steady-state after 600 cycles have completed and any remgaransients are shifted out with
a moving average offset. The phase shifts are determined agioot finding procedure based
bisection with a bracket that is informed by the know ex@iaiperiod oft = 0.2308s. The
Newmark coefficients remain set gt=1/4 andy = 1/2, which is typical throughout this
work.

Key features such as the force to displacement phase-lathamdspective amplitudes
at the two locations instrumented on the device are captimdajures 4.20 and 4.21 the results
are shown normalized to make a phase comparison betweenrtieeaind displacement signals

convenient.



Chapter 5

Calibration and Performance Assessment

The ability of the experimentally device described in thisrkv(the Elviscolator), to
accurately and consistently produce useful estimationtbefiscoelastic shear properties of
an arbitrary soft solid is tested on both synthetic tissusnpbms and real tissues. A two tiered
approach to calibration was adopted: first, the instrunibimselves were independently cali-
brated; then the final results were calibrated with the useadterized tissue samples. Initially
each instrument is calibrated in turn, and finally the whaeick is linearly calibrated against

independently obtained trusted results for a stable syiothelymer sample.

5.1 Instrument Calibration, and Resolution

The resolutiona of the four primary instruments are coreger®ly calculated by scaling
the maximum signal noises by the individual calibrationdas to give physical units. Table 5.1
lists the resolutions of the force and displacement insémishfor the moving axis and sample
interface. The resolution achieved during testing is muatkelo due the use of moving averages
and very high sampling rates. Using these conservativeatds, the resolution of the stiffness
calculations are calculated with

Kies=1— %;,:S%fz = 0.2086. When multiplied the upper limit of the conversion act
@, which occurs with infinite thickness and= 0, the calculated resolution of the computed

79



80

shear modulus magnitude|{Sx*|res = 17Pa. Here K(es is the resolution of the discrete stiffness
of the sample interface&sG,¢s is the resolution of the strain gaugeQ,es is the resolution of
the fiber-optic sensor, arj * |res is the maximum resolution of the calculated shear modulus

magnitude.

Table 5.1 The resolution of the coil current, LVDT, strain gauge, éibdr optic sensor signals.

Signal Resolution
Coil Current | 83.1 (N)
LVDT 0.0524 (mm)

Strain Gauge 0.0821 (N)
F.O Sensor | 0.1598 (mm)

The linear range of each instrument is independently deteanby calibration test-
ing and linear curve fitting. The following instruments wenelependently calibrated: (1)
the LVDT; (2) the stepper motors for real-time sample adajgsit; (3) the current signal—
proportional to applied force; (4) the fiber-optic displax@nt sensor; and (5) the cantilever tip
strain gauge.

Figure 5.1 (a) shows the stepper motor calibration with alte§ 100steps- mm~1, and
the LVDT 5.1 (b) weighs in at 86mm-V . The fiber optic displacement sensor has limited
linear range that begins atZimm and extends out to.Zmm, as can be seen in figures 5.1 (a)
and (b). The calibration factor of the fiber optic displacetse=nsor is Dmm-V 1.

Figure 5.2 (a) shows the linear calibration of the voice goilng a calibration factor
of 639N -V~1. In 5.2 (b) the strain gauge factor is 442V—1, and in 5.2 (c) the base scale
signal calibration is 3508 - V1. Figure 5.2 (d) shows the spring constant calibration fer th
two centering springs of the voice coil-giving a spring dansof 766N - m™.

Once rheological data are collected efforts to understaethtmay begin. This in-
volves a host of post-processing techniques and associattbds. Each of these is usually
implemented through a collection of algorithms.

Processing the signal outputs of the fiber optic probe requspecial consideration.
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Gap in mm vs. Stepper Steps Displacment in mm vs. LVDT Voltage
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Figure 5.1 Displacement Instrument Calibration: (a) Stepper mot¢$ LVDT, (c) Fiber
optic sensor cubic fit, and (c) Fiber optic sensor slope.

Because the desired displacement range is greater thamather(small) linear range of the
instrument, non-linear conversions are required. Foteipahe sensor has a very repeatable
non-linear output that is well approximated by a cubic fit.eTh shown in figure 5.2 (c) is
used to get the quadratic conversion factors shows in 5.2 Hg cubic coefficient can be
easily adjusted during setup calibration by ensuring thatvoid-sample signal agrees with
the, very linear response, of the LVDT. The probe should bésoentered in its voltage range,
somewhere near 2.5 volts. If the differential amplitude e signal exceeds 0.75 volts, an
slight increase in the calibration factor is applied—surt the secant of the calibration profile
is used instead of the tangent—to a maximum of 0.133 whenitfeeahtial amplitude reaches

2.5 volts (the entire range of the instrument).

The calibration factor of the fiber optic probe is taken as

FOtactor = 0.0555V — 6.5)2. (5.1)
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Calibration of Strain Gauge

Calibration of Coil Current 0.8
30
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. 200 Yy=639*x —2.22 W
Z 2 0.4t
Py e g
g 10 g g + datal %’ 0.2t
L _ee® - — linear + Data
' 08 datal
— linea
-1 ‘ . w ; _ ‘ ‘ } ‘
0 01 02 03 04 % 01 0.2 03 04
Current Proportional Voltage Volts
() (b)
Calibration of Base Scale Force vs. Displacement
3 1.5 ‘ ‘
) 9\|/, Exc. y = 766*x + 0.00592
@, | linear - Z 1
8 + 15V Exc. 5 -
= & o )
D L 5
Z1 L 0.5 — - data
o y = 3324* + 0.1285 ' —linear
0 2 s 6 0 05 1 15
olts % 1074 Displacement (m) x 107
() (d)

Figure 5.2 Force Instrument Calibration: (a) coil current, (b) strgauge tip, (c) base scale,
and (d) spring constant.

whereV is volts and the coefficient 0555 can be adjusted during setup calibration.

5.1.1 Cantilever Strain Gauge Bending Compensation

Euler-Bernoulli beam theory is adequate for calculatiregebtimated sample interface
displacement using to instrumentation at two points altvegeéngth of the cantilevered, strain

gauge based, load cell.

The deflection of a cantilevered beam can be determined by

Fx2
&= g2 (3L =) (5.2)

wheredy is the transverse deflection of the beam atwhdirection at extensional location
The LVDT deflection is measured as= d; atx = 0, the fiber optic sensor (F.O.) deflection

is measured a& = d, atx = L, and the desired interface displacement is calculated flam t

previous two asv=dz atx = L.
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LVDT (di)

F.O. (d2)
DESIRED (ds)

() (b)

Figure 5.3 Bending of the strain gauge between the fiber optic dispi&ce sensor and sample
interface is compensated for analytically using Eulerrdeili beam theory: (a) x locations are
x =0 andx = Ly, and (b) the deflections are considereavat d; atx=0,w=d, atx=L»
andw=dz atx=L.

Staring with the cantilever deflection formula, let

52:(d1—d2):F—L%(3L—L) (5.3)
6E| 20 '
and let

FL®

Applying equation 5.3 to equation 5.4 gives the compenssdatple displacement

(5.5)

A major challenge has been that of obtaining appropriatedstals for comparison of
results. While tissues are in reality neither homogeneoussotropic tracking of sample orien-
tation and exact location renders such considerationstenadtfuture work. For our purposes,
thermoplastics have proven to be practical for this purpdeermoplastics are elastomers that
are catylized at high temperatures (around BOD The research of Egorov et al. used the
"Tissue Elastometer,” a compressive device of similar oeklfogy, to test fresh store bought
poultry breast, bovine liver, kidneys, hind shank, and peasamples [34]. We will do similar

tests in a subsequent section, but we begin here by takingkealathe device’s ability to con-
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sistently predict the viscoelastic characteristics o$fdal tissue phantoms that were produced
in a well controlled laboratory environment.

The plastisol samples were sent to two independent labswidly varying results.
The characterization of the elastomer tissue phantoms erésrmed by two independent lab-
oratories and the results vary significantly. Unfortunatehe set of results was clearly off by
several orders of magnitude due to their use of a nano-iatlentiaboratory designed for much
stiffer materials. Those results were discarded. Thisogperdnce assessment is an ongoing pro-
cess which will become more conclusive as independentlyackerized tissue phantoms are
more readily available.

Viscoelastic calibration standards are not readily abéglaand the most commonly

used calibration material (PDMS) is not well suited to theside due to its propensity to flow.

5.2 Performance Assessment

Due to the expense of independent sample characterizgigofgrmance assessments
are limited to the evaluation of a few plastisol samples. eEhsamples were sent to an in-
dependent lab (Polymer Diagnostics in Avon Lake, Ohio) whbey were tested using a TA
Instruments ARES G2 commercial rheometer. The scientisharge of the testing reported
some difficulty with the softest of the three samples sent.céldd not achieve adequate ad-
hesion and used super glue to improve the adhesion. In doirtge sample was made much
stiffer and the results reveal this. As the soft plastisohgie was obviously softer than the
medium plastisol sample, the results for the soft samplear@ised for performance assess-
ment and comparison. The results of the experimental rhesnealled “Elviscolator” in the
included plots, are about 15% more elastically stiff thanARES G2 results when no calibrat-
ing adjustments are made.

If the ARES G2 results for the hardest sample are assumed torbect, and linear
calibrations to the Elviscolator are made accordingly,résilts for the medium sample are in

very close agreement with the ARES G2 results. Furtherntibeeresults for the soft plastisol
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sample are about 75% of the stiffness of the medium sampls.igh very reasonable value,
and is more reliable than the ARES G2 data.

The results are given in the remainder of this section. Thekample is the hardest
one, the red sample is the medium one, and the white samgie softest one. Elviscolator
results that have not been calibrated with the hard-sanepldts of the ARES G2 are denoted

“Blind” in the figures. Results that include the one-timeiloadtion are denoted “Cal.”

5.2.1 Black Samples, Hard Plastisol

As can be seen in Figure 5.4 The blind results for the low feegy tests are quite good.
Even so, itis valuable to calibrate with respect to the imthelent results to ensure that changes
track well with the softer red sample. In Figure 5.4 (a) thetem stiffnesses are compared.
The error bars denote the standard deviations over 10 indepéfrequency sweeps.

Figure 5.4 (b) shows typical phase shift results. The highesreported for the Elvis-
colator at low frequencies (below 10 Hz) are attributablsample slipping and adverse effects
of stick-slip friction on the excitation axis. The samplgping can be prevented by the use
of super-glue which will not have the adverse stiffeningeffthat plagues the ARES G2 soft
sample results. This is because of the much greater thislafemir samples; the local effects
are ameliorated by bulk effects. However, using super-gduevoided in hopes of allowing
future re-testing of the samples.

Figure 5.4 (c) shows typical shear storage and loss modesusts.

Figure 5.5 shows the high frequency performance. Althouwgghparison data is only
available up to 161z the trends up to about 60z are commensurate with theoretical transfer
function and trace a reasonable extrapolation of the ARESUBZs.

Above 6(Hz, the Elviscolator results show some anomolous behaviose@s in Figure
5.5(c), there are jumps in the system response that canrezdilg explained. Although strain
gauge resonances seem to be a possible explanation, tise#ts mould not be reproduced

analytically using the two-degree-of-freedom model.
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Figure 5.4: Hard plastisol low frequency sweep, comparison of results standard deviations
represented by error bars: (a) Legend; (b) Amplificatiohtdod , and (d) Storage and Loss
Moduli (shear).

It is considered likely that as the excitation frequencynisréased beyond 64z, the
substantial increase in voice-coil current draw exacesaapacitive cross-talk over channels
in both the instrument wiring and in the internal switchinfgttoe mega-Hertz capable DAQ.
This is suspected to cause signal degradation that is naaitieke of the actual material or
system response. This issue requires further investigatial, at this point, results obtained

above 6(Hz should be verified or discarded.

The standard deviations increase dramatically at the btgrequencies. This is caused

by divergence of the displacement control algorithm whighrot achieve the minimum dis-
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placements prescribed without exceeding the user-defmiedwrent limit.
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Figure 5.5. Hard plastisol high frequency sweep, comparison of reswith standard devia-
tions represented by error bars: (a) Legend; (b) Stiffn@gand , and (d) Storage and Loss
Moduli (shear).

5.2.2 Red Samples, Medium Plastisol

Figure 5.7 shows the high frequency performance of the redlm stiffness) sample.
Since we used the ARES G2 data of the hard sample for cabiratirposes, comparison to
the medium sample results show promise for the predictipalmitities. This is well observed

in the low frequency data depicted in Figure 5.6. Please, nioé the calibrations done with
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the ARES G2 data resulted in comparatively small changdeeiptedicted material properties,
fostering changes that don’'t exceed 20%. As before, abotAz®@e Elviscolator results show
some anomolous behavior. Overestimatedtahlow frequency can be attributed, at least in
part, to sample interface slipping. This could be easilygdi®ed with the use of superglue,
which was avoided in hopes of preserving the samples forduruse.

It should be noted that resonances of the cantilevered lethdwhich typically occur
above 60Hz should be considered. Although these resonance don'tiexgllaof the com-
plex high frequency behavior seen, they bolster the juatiba for discarding high frequency

results.

5.2.3 White Samples, Soft Plastisol

Figure 5.9 shows the high frequency performance of the wlateest stiffness) sample.
As can be seen in the low frequency results of Figure 5.8 thE&R?2 data are of suspect reli-
ability due to some difficulties reported by laboratory teickans. Significant sample slipping
evidently required their use of super-glue which had theljileffect of rendering the thin sam-
ples stiffer than normal. The experimental device, howediernot have this problem and the
results are correctly softer than those of the medium santpsenot the case that the soft sam-
ple is in actuality stiffer than the medium sample, which barverified by tactile examination

of the samples.
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Figure 5.6. Medium plastisol low frequency sweep, comparison of risswith standard devi-
ations represented by error bars: (a) Legend; (b) Stiffne¥sand , and (d) Storage and Loss
Moduli (shear).
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Figure 5.8 Soft plastisol low frequency sweep, comparison of reswitls standard deviations
represented by error bars: (a) Legend; (b) Stiffness; (@) tand (d) Storage and Loss Moduli
(shear).



92

White-High, Average K

1500
——(G'TA ARES-G2
——G" TA ARES G2 1000+
tand TA ARES G2
 G'Blind Elvis. £
v G" Blind Elvis. Z 500f
—=—tand Blind Elvis. %
——K! Blind Elvis. ol
> (' Cal. Elvis.
G" Cal. Elvis.
—=—tang Cal. Elvis. -500 ‘ ‘ . . ‘ ‘
-1 . 0 20 40 60 80 100 120
—© K" Cal. Elvis. Frequency (Hz)
) (b)
White-High, Average Tand White-High, Average G'and G"
f::0]
1.2} .
@
1t @ e %
@
- %
L @ @
0.8 ° . 8 A
2=} @ o,
§ 0.6/ -
lD@ ®
(-
0.4/ s
0.2r
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Frequency (Hz) Frequency (Hz)
() (d)
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5.3 Tissue Characterization

Having shown that the Elviscolator performs well when coregdaagainst the ARES
G2 using laboratory produced plastisol samples, actusli¢isesting was undertaken. As the
plastisol samples were anelastic in their response, mualke mscous flow was found using
real tissues. Unfortunately, there is no “gold standardthoé for quantitatively determining
the elastic properties of tissues [49]. However, some coisqas to published results for a
number of experimental setups is instructive. In their warth the soft tissue elastometer,
Egorov et. al suggest that “most normal soft tissues haveumy’e modulus on the order of
10kPa” [34]. As the samples tested here have been obtained frontchdn) they have been

bled and aged. This can be expected to have stiffen the siss®me degree.

In the year 2000, Kruse et. al used techniques of Magnetiorfere Elastography
(MRE) to estimate the shear modulus porcine semitendinglselstal muscle which was esti-
mated be in the range of 1232kPa at 300Hz, and porcine liver which was estimated to be
about XPa at 100Hz and %Pa at 300Hz[49]. In 2007, also using MRE, Klatt et. al estimated

the shear modulus of human liver to be in the range-ef3kPa [50].

Pneumatic indentation methods were used by Palevski enh 2006 to estimate the
short term shear modulus of porcine gluteus muscle to betahbiPa [51]. Van Loocke,
Lyons, and Simms used quasi-static compression testsmoagstthe shear modulus of porcine

gluteus muscle to be 5F& [29].

In 2008, Egorov et. al used indentation methods to estineterdoung’s modulus of
pork loin samples to be in the range of 2116kPa and the Young’s modulus of bovine liver
to be in range of 6- 11kPa [34]. If these tissue are assumed to be incompressible aifte-c
sponding shear moduli would be in the ranges ef&kPa for the pork loin and 2- 4kPa for
the bovine liver.

We tested porcine hind quarter muscle and bovine liverg¢issuthese purposes. The
porcine tissue was of medium stiffness, comparable to thdiumeplastisol sample tested in

the previous section. The bovine liver tissue was, howexarpnly much softer than anything
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previously tested but was also very liquid having a “soupyfigistency. While the exact tissue
samples tested were not tested by an independent methdzboatary, we can determine much

from these tests.

5.3.1 Porcine Muscle Tissue Thin Sample

The thin sample results for the porcine loin tissue show almmeore viscous response
than was observed for the elastomer phantoms used foratibiand performance evaluation.
The thin sample were cut be aboutriih in thickness and 10 frequecy sweeps were averaged

(typical for all of the reported prototype results in thistsen).

Figures 5.10 and 5.11 show the discrete stiffness resulg)jrthe viscosity or tah
results in (b), and the shear storage and loss modulussesitt). The estimated elastic shear
modulus for the pork loin tissue is to the order of KB, which is a bit stiffer than some
of the published results (310| : kPa) but is still well within the range of what is physically
reasonable. The increased stiffness can be explained yraimeng and aging of the tissue

prior to testing.
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Figure 5.1Q Porcine muscle tissue low frequency sweep, thin sattple 11.5mm: (a) Am-

plification; (b) tard , and (c) Storage and Loss Moduli (shear). Error bars reptéise standard
deviations over 10 sweeps.
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Figure 5.11 Porcine muscle tissue high frequency sweep, thin samipie 11.5mm: (a)
Amplification; (b) ta® , and (c) Storage and Loss Moduli (shear). Error bars reptdke
standard deviations over 10 sweeps.

5.3.2 Porcine Muscle Tissue Thick Sample

The thick sample results are in good agreement with thosheothin sample. This
demonstrates that the device and methods presented hewbase for field work where pre-

cise, uniform sample preparation is not practical.

Porcine-L A K ;
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Figure 5.12 Porcine muscle tissue low frequency sweep, thick sartiple 16.5mm: (a)
Amplification; (b) ta® , and (c) Storage and Loss Moduli (shear). Error bars reptdke
standard deviations over 10 sweeps.

5.3.3 Bovine Liver Tissue Thin Sample

The bovine liver tissue was found to be very soft and lossjadh the tissue was about
as soft as can be reliably tested without having to resodrtgel deformations to overcome axis

friction. Above 40Hzthe phase shift skyrockets as seen in Figure 5.15 (b). Thema#hat the
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Figure 5.13 Porcine muscle tissue high frequency sweep, thick saripte 16.5mm: (a)
Amplification; (b) ta® , and (c) Storage and Loss Moduli (shear). Error bars reptdake

standard deviations over 10 sweeps.
liver tissue shear response is highly loss dominated atfrégjuencies which is evident in the

high values ofG” above 2MHzin Figure 5.15 (c).
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Figure 5.14 Bovine liver tissue low frequency sweep, thin samigle= 9mm: (a) Amplifi-
cation; (b) tad , and (c) Storage and Loss Moduli (shear). Error bars reptébe standard

deviations over 10 sweeps.

5.3.4 Bovine Liver Tissue Thick Sample

As was seen with the porcine loin tissue results, the thioigga numbers for the bovine
liver tissue are in good agreement with the thin sample d&kés shows that the device can
give consistent results with very little sample preparatio

The published tissue properties span a wide range of vahteged with very diverse

methodologies and samples, but although they are an inggreomparison standard they do
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Figure 5.15 Bovine liver tissue high frequency sweep, thin santple- 9mm: (a) Amplifi-
cation; (b) tad , and (c) Storage and Loss Moduli (shear). Error bars reptdbe standard

deviations over 10 sweeps.
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Figure 5.16 Bovine liver tissue low frequency sweep, thick sanble- 14mm: (a) Amplifi-
cation; (b) tad , and (c) Storage and Loss Moduli (shear). Error bars reptébe standard

deviations over 10 sweeps.
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Figure 5.17 Bovine liver tissue high frequency sweep, thick santple- 14mm: (a) Ampli-
fication; (b) tad , and (c) Storage and Loss Moduli (shear). Error bars repteéke standard

deviations over 10 sweeps.

give some indication of the kind of shear modulus magnitudesxpect. Our experimental

results are found to be quantitatively reasonable in thigeod.
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Most importantly, we were able to test how satisfactorily éxcitation boundary would
adhere to the wet tissue sample surfaces where biologieghees threaten to present some
difficulty. No such difficulties arose. Also, published dé&bathe elastic properties of similar
tissues tell us that our results are within the realm of whahiysically feasible.

Because the tissues were cut imprecisely, these expesraksat put the practicality of
the device for field use, where samples must be cut with sorste hi@ the test. The samples
were cut at various thickness and no great efforts were nadedure that the top and bottom
surfaces would be parallel. In this way, the thick samplelicafions determined analytically
were verified experimentally. The thick sample assumptied$o some convenient geometric
features such as insensitivity to small errors in the thédsnestimation. The same reasoning
suggests that the sample geometries need not be prepatepragise cut-planes to allow for
useful results. These conclusions were verified experiatignby comparing the results of
different tissue samples cut to different thicknesses Vitile attention paid to cut precision.
Tissue testing also reveals the importance of using an adhagent, such as superglue, at the

loaded boundary; which was not as crucial to the plastistéte
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Chapter 6

Spectral Treatments for Rigidtropic

Locking

The finite element method is well suited to exploring theafef anisotropy of the kind
associated with tissues having directionally aligned §kiérs. In particular, skeletal muscle in
known to have a complex fibrous structure [29]. A notable &ooning in the use of existing
finite element methods involves the propensity for solutmeking in the direction of stiff
fibers. This locking reveals itself in solutions that undéireate deformation and converge
very slowly. Here, a few remedies that exploit the spectedamnposition of the elasticity
matrix, as commonly written in Voigt-Mandel notation, arg@kbred. One proposed remedy is
a generalization of selective reduced integration, amasheespecial B-bar method arising from
the 3-field variational formulation, and some stabilizedmels are introduced. The stabilized
methods deserve special attention due their potentialnigroved convergence, even when

applied to general problems such as simple isotropic elgsti

6.1 The Spectral Decomposition of the Compliance Matrix

Certain anisotropic elastic materials, such as the hompgeénmodel of a fiber-

reinforced matrix, are nearly rigid under stresses apptieddirection of material rigidity—the

100
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resulting strains are comparatively small when viewedrajdhe strains that would occur in
response to otherwise directed stresses. Isotropic ralstenay have dilational rigidity, which
we show to be a special case of this generalized treatment.

Some common finite element techniques are effective inmigatith volumetric lock-
ing, but are not well suited to handle anisotropic matetia¢ég lock under stress states other
than those that are described as mostly hydrostatic. Thedaif the traditional B-bar method
is attributable to the fundamental assumption that the neddeformation to be relieved is one
of near incompressibility.

The proposed remedy exploits the spectral decompositidcheotompliance matrix
of the anisotropic material. The spectrum separates negity and flexible modes of stress
and strain; this leads naturally to a generalized selectdeiced integration. What's more,
this decomposition also enables a three-field formulatbelastic strain energy conservation,
which results in a B-bar method applicable to general aropat materials with nearly-rigid
fibers.

When materials with multiple stiff fiber directions are tedwith more than one spec-
trally defined deformation mode, element stabilization thayecessary. A working stabiliza-
tion method is presented.

Traditional Selective Reduced Integration (SRI), is a mdthsually attributed to the
efforts of Doherty et al. [52]. It is considered an effectrepair of finite elements that lock
when subjected to certain modes of deformation. The tednis| able to handle isotropic
nearly incompressible elastic solids, where volumetrakiong cuases problems. Hughes [52]
offers a derivation based on Lamé parameters, but an ansapproach based on the split of
the deformation energy into bulk and shear terms gives amaltive [53].

One key to the successful use of the SRI technique is theatépaof volumetric and
deviatoric energy. Because this split is not clean for solth anisotropic material responses,
traditional SRI is awkward and inapplicable for materialstsas fiber-reinforced composites.

This shortcoming motivated the development of the now widesd B-bar method. In

[54], the B-bar method was presented as a treatment fortamso materials, but the volumet-
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ric and deviatoric energy split originally intended fortisipic materials, remained fundamental
to this formulation. It stands to reason that the lockingodefation modes could go well be-
yond the case of waning compressibility. Claims that B-bathuds are an effective treatment
for anisotropic materials have to our knowledge never bested.

In the presented method, we separate the mechanical nhatesgonses into con-
strained and unconstrained deformations which are rediawarms of strain, stress, and
energy. The proposals rely on the spectral decompositibtizeocompliance matrices. We
appeal to the formulations offered by Felippa and Ofiate, [&B§l proceed to apply them as

improvements on existing finite element techniques.

6.2 Motivation for Spectral Treatments GSRI and B-bar

Variant

Consider materials that consist of a soft matrix reinforaétth aligned stiff fibers. The
system of locally parallel fibers is typically representesicnoscopically using material models
that have transversely isotropic homogenized propertiés. can deduce that for very stiff
fibers the material is effectively rigid when loaded in theedtion of the fibers. This causes
underestimated deformations in locking finite element fdations.

Take a fiber-reinforced cantilevered beam as an example b&amn is clamped at the
fixed end and loaded by a transverse shear force at the fressestebwn in Figure 9.8 (a). The
x-axis is parallel to the beam’s axis, tkeaxis is vertically transverse. The dimensions are:
widthW =1 cm, lengthL = 9 cm, and thicknests= 2 cm. The boundary conditionsat= 0,

Fig. (9.8)(a), are

UXZUy:uZ:O, (61)

and the Neumann boundary conditions are prescribed we-dt as

Ty, = —10 kPa (6.2)
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We consider both an isotropic material, and an anisotro@tenal with one of two
different orientations of the local coordinate system. &hesotropic material is assumed to
be a model suitable for a soft matrix reinforced with stiffi-directional fibers. The elastic
modulus along the stiff fiber is 100000 times higher than mttlansverse directions, and the
shear terms comparatively very small in magnitude. Theotiapic elastic properties akg =
100000 GPaE, = E3 = 1 GPa,G12 = G13 = Gp3 = 0.2GPa, and/i2 = vi3 = Vo3 =0.25. The
fibers are oriented at an angle with respect to the beam’stiatigal axis as described by an
orientation vector with components in the Cartesian coai#i system.

Throughout, strain energy error is defined as
W = |— — 1' , (6.3)

where7 is the computed strain energy, at¢ is the limit value arising from Richardson’s

extrapolation. Similarly, maximum displacement errorésiged as
o
WYe=—|— -1 6.4
5 ' 5 ' ; (6.4)

whered is the computed maximum displacement @ads the limit value arising from Richard-
son’s extrapolation. The data for the extrapolation arendkom results for progressive refine-
ments obtained with a well-behaved finite element (excegresindicated otherwise).

The mechanical response of the beam in terms of the norrdalize error of the max-
imum deflection is shown in Fig. (9.8)(b,c,d). It bears engihahat the elements used to
discretize the beam are elongated (aspect ratio of 4.5halas significant implications for
the accuracy of linear elements without any enhancemetiedbénding stiffness. The behav-
ior for isotropic compressible material is shown in Fig.8)%). As expected the quadratic
20-node serendipity hexahedron C3D20R is very accurate ABAQUS incompatible-mode
C3D8I and one-point reduced integration hybrid element®&3H also perform rather well.
The elements whose bending stiffness is not improved in ay(the ABAQUS linear hybrid
C3D8H, the linear isoparametric element C3D8, and themeaids-bar Q1/Q0 hexahedron [52]
H8-Bbar-1SO) perform identically.
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Now we look at the case of the anisotropic material with theerfibrientation
[v2/2,—+/2/2,0] in Fig. (9.8)(c). All input data remained unchanged, esgBcithe
mesh, and therefore we conclude that the relative perfoceéit of an order of magnitude
greater error taken by the quadratic 20-node serendipkgitteiron C3D20R is clearly due to
the introduction of material anisotropy. The performantéhe linear isoparametric element
C3D8, the original B-bar Q1/Q0 hexahedron, and the H8-BS&rhas also deteriorated by an
order of magnitude. On the other hand, the ABAQUS linear idy6BBD8H, the incompatible-
mode (C3D8I) and one-point reduced integration hybrid GBB8lements are essentially
as accurate as for the isotropic material. Moreover notettieae is a new element in the
graph Fig. (9.8)(c): hexahedron H8-Bbar based on a moddicaif the B-bar method for
anisotropic materials as introduced in the present papére rélative performance of this
element compared to the C3D8I and the C3D8RH is essentialgame as that of the original
technique to these elements for the isotropic materialaiGigif this holds for any orientation
of the stiff fibers we have made the B-bar formulation robasthisotropic materials.

This is indeed supported by the findings in Fig. (9.8)(d) whee look at the case of
the anisotropic material with the fiber orientatipyi2/2,0,—/2/2]. The quadratic 20-node
serendipity hexahedron C3D20R takes another performatideaking an order of magnitude
greater error. The performance of the linear isoparameleiment C3D8, and the original B-
bar Q1/Q0 hexahedron H8-Bbar-ISO has also deteriorated bgditional order of magnitude.
As before, the incompatible-mode C3D8I and one-point reduntegration hybrid C3D8RH
elements maintain their reasonable performance. The aocof the ABAQUS linear hybrid
C3D8H has also significantly deteriorated. In contrastnie hexahedron H8-Bbar element
in the graph Fig. (9.8)(d) compares better with the incompaimode C3D8I and one-point
reduced integration hybrid C3D8RH elements.

In summary, the incompatible-mode C3D8I, one-point redugegegration hybrid
C3D8RH elements, and the new hexahedron H8-Bbar elemenharenly finite elements
insensitive to the character of the elastic material, wietbotropic or anisotropic with an

arbitrary orientation, the finite elements deliver essdiytithe same accuracy with the same
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mesh. The main contribution of the present paper is the génation of the B-bar technique
to furnish existing hexahedral elements, both linear anadecptic, with insensitivity to the

anisotropy of the material stiffness matrix.
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Figure 6.1 Displacement errd# s of cantilever beam subject to shear load at the free end. (a)
Uniform mesh with 125 nodes; element aspect ratio of 5. th (b), (c), and (d) we show the
estimated true error of the maximum deflection. (b) Isotapaterial. (c) Anisotropic mate-
rial, stiff fiber aligned with[/2/2, —v/2/2,0]. (d) Anisotropic material, stiff fiber aligned with
[v2/2,0,—+/2/2]. Key: C3D8 — linear hexahedron, C3D8H — linear hybrid hextabe with
uniform pressure, C3D8I — hexahedron with incompatible @p@€3D20R — the uniformly re-
duced integration quadratic serendipity hexahedron, H&BSO — B-bar Q1/Q0 hexahedron
as in Hughes [52], H8-Bbar — linear hexahedron with presebaBformulation.
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6.3 Split the Constitutive Relation

The use of the spectral decomposition to represent thensstiess, and the constitu-
tive relations in linear elasticity goes way back. As caltgfteviewed by Helbig [56], these
ideas likely originated with a 1856 publication by Lord Kelv Another take on this work
reappeared in 1878, however not a single citation of thigiai work can be found until much
later. In 1984 Rychlewski [57] formulated an extensive tlyenf constitutive relations based
on the spectral decomposition. Not long thereafter, thamieoublications by Mehrabadi and
Cowin [58] and Theocaris [59] appeared. These powerfulddesre, to the best of our knowl-
edge, never used in modern computations.

In the recent paper of Felippa and Ofate [55], who don’t noenthe prior publica-
tions described above, discussions are given of stresstiid decomposition appropriate to
linearly elastic anisotropic materials with volumetricking using the spectral decomposition
of the compliance matrix. In so doing, they introduce the albed “rigidtropic” materials,
which develop little to no strains under a stress patterhftilmws a nearly zero eigenvector.
These material models include, as a special case, isotogaenpressible materials, whose
null eigenvector corresponds to the hydrostatic strese.riain conclusion contended in [55]
is that with anisotropic material models the quantitieg tmarespond to hydrostatic pressure
and volumetric strain in incompressible isotropic matsrizeed to be redefined in terms of
effective quantities. A material is taken as effectively rigid wheantergoes numerically zero
strains under a stress pattern proportional to the eigémvassociated with a vanishing prin-
cipal compliance. In this sense, the term “effective” hagelation to its usual meaning in
homogenization theory.

The compliance matrix expressed in terms of the spectralrdposition reads
1 6
D™t=3 Zwvivﬁ : (6.5)
i=

wherey, andy; are the principal value and principal direction of the coisnpte matrix

(eigenvalue and eigenvector), which are assumed to be gividre ordery; < ... < y, and
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normalized with respect to lengti3 through the definition
vivi = 35;; (6.6)
i ] .

to simplify linkages to isotropic incompressible eladtici In the decomposition
in Eq. (6.5), a material is coined “nearly rigidtropic” when— 0 [55]. This is a way of
saying that the strain vanishes in the directionof

Using this decomposition, the compliance matrix is splibitie stiff and the flexible)

parts, respectively, as
1

D t=
3

1 6
yivivi + 3 ; yvivil (6.7)
i=

It can be shown, as is done in Reference [55], that for isatropgompressible materials
vi=m=[1,1,1,0,0,0],

and we obtain as the constrained/unconstrained split thenedric/deviatoric partitioning of

the constitutive equation.

6.4 Generalized Selective Reduced Integration

The SRI method is a well established technique for the treatrof isotropic incom-
pressible materials with conventional finite elements (5de 52] for background). Here we
introduce a generalization that facilitates the handlihgomstrained anisotropic materials.

Starting with the total potential energy of an infinitesindaformable elastic body in
the form

w1 / £TDedQ 6.8)
2Ja

emerges, where = [€11, £22, €33, 2632, 2€31, 2512]T is the Voigt-Mandel version of the second

order strain tensor and the material stiffness maddriollows from Eq. (6.5) as

D= i; B_.V‘ViT . (6.9)
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The quantity
1
K =_—
| 3y| )

is called the effective stiffness (called the “effectivékomodulus” in Reference [55]).

(6.10)

In drawing an analogy to Eq. (6.5), the material stiffnessloarecast as
D =Dy + Ds, (6.11)
where for the stiff and flexible parts we have
6
Dy =Kyvivi, Df= gKiviviT. (6.12)
i=

Substituting Eq. (6.11) into Eq. (6.8) results in an adeitplit of the constrained and
unconstrained energy contributions. Carefully choosintggration rules for each of these en-
ergy contributions—full integration to the flexible partdareduced integration for its nearly
rigid counter part—leads to the GSRI technique. A modifiedioa of the B-bar formulation is

presented as an alternative to the GSRI method.

6.5 Three-field formulation of anisotropic elasticity

Introducing two basic relations, to be used in a mixed apipnakon, leads to a novel

treatment for nearly rigidtropic materials. Initially dedi the effective constrained stress as

1
p= :—)’mTU, (6.13)
and the effective constrained strain as
T
&=me. (6.14)

Now, the strain field is derived from the displacement veata = Bu. For a clear compatibil-
ity with the vernacular of isotropic nearly incompressiélasticity we keep the notatign(i.e.

pressure) and, (i.e. volumetric strain). For simple isotropic materidie tvectomis given as

m=[1,1,1,0,0,0]". (6.15)
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Here, we take

m=vs, (6.16)

which allows writing the constitutive relation between #ftective pressure and the volumetric
strain as

p=Kisy. (6.17)

Moving forward, the unconstrained stress is linked to theomstrained strain as
04 = Dgye, (6.18)

where we now us®y = Ds. In the name of backward compatibility we employ the notatio
Dy, which for isotropic materials is the deviatoric part of thaterial stiffness matrix. The total
stress reads

0 =0¢+pm.

Therefore, the principle of virtual work is rendered as

/5£T(Ud+pm) dQ—/ suTbdQ — [ suTtdr —o, (6.19)
Q Q It

or, introducing Eg. (6.18),

/ 5T DyBUdQ + / €T pmdQ — / suTbdQ — [ suTtdr =o. (6.20)
Q Q Q It

Note, that in these equilibrium relations the vedtorepresents the generalized forces in a
bodyQ, andt represents the Neumann boundary conditions on the traaetiondaryl';. Now,

Eqg. (6.20) is expressed with the weakly enforced kinemati€sy. (6.14)
/5p(mTBu—eV) dQ =0, (6.21)
Q

whereB is the standard symmetric gradient operator [53] and wighwibak form of the con-

stitutive equation (6.17)

/ Sy (Kagy—p) dQ = 0. (6.22)
Q
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Equations (6.20), (6.21) and (6.22) constitute togethdr iaq. (6.16), the three-field— p— &,
formulation ofanisotropic elasticity. For isotropic elastic materials the above folation is

identical to that described in the literature, see e.g..[53]

A similar variational framework was developed by Key [60]heTauthor considered
incompressible materials and developed a variant of thesdRer-Hellinger principle which
accounts for pressure as an independent variable. Reglpmssure with “extensional stress

variable” was mentioned in passing.

Taylor et al. [61] have also developed a formulation basedduitional pressure and
dilatation variables. The projection vector in equatiof)(tf [61] denotes the direction of
hydrostatic stress, which the authors take to be apprepigatboth isotropic and anisotropic

elastic materials with (nearly) zero dilatation.

Since this choice is the same one made in the original fortionlaf the B-bar tech-
nique [54], it is ineffective in handling fiber-reinforcedaterials where the rigidity constraints
are not volumetric. It is, therefore, not suited to deal vgiplecific anisotropic materials whose

rigidity is not volumetric.

6.6 B-bar variant formulation

In treatment of Egs. (6.20, 6.21) and (6.22) with the finism@nt method the following

approximations are adopted (we use the notation of [53])

u~ Ny, p~Npp, & ~NJéy. (6.23)

It is also assumed thad, equalsN,, as discussed in [53]. This appeals to the “discontinu-
ous pressure/condensation” formulation so thatpted g, can be locally eliminated on an

element-by-element basis.
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The mixed approximation is thus obtained in the form

A C 0 U fi
ct 0 -E p =9 0 /- (6.24)
0 —ET H gy 0

The matrices above are defined as [53]

1
lg=1—=mm" A:/BTDdBdQ, E:/NJdiQ,
3 Q Q

H = / NTK:NydQ, C :/ BTMN,dQ. (6.25)
Q Q
Eliminating the effective strain from the second equatimids
g, =E-cTu=wau, (6.26)

where we introduceV = E~ICT, so that subsequent substitution into the third term in

Eq. (6.24) yields
p=E TH& =E THWAQ. (6.27)

Now we obtain a linear system in terms of the displacementsal

All=fq, (6.28)

where

A=A+WTHW, (6.29)

by using the first row in Eq. (6.24). It follows from Eq. (6.2&q. (6.22) and the given approx-

imations in Eq. (6.23), that we can now write Eq. (6.30) as
A= / BTDdBdQ-l—/ WTN]KiINyW dQ . (6.30)
Q Q

Noting the aforementioned relations for effective stifae

1 1.1
Dg=I4Dlg, Ki= émTD:—%m, (6.31)
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allows reformulating Eg. (6.30) as
N T LI O
A:/ B IdDIdBdQ+/W :—)’Nvm D:—)’mNVWdQ. (6.32)
Q Q

Finally, Eq. (6.32) combines in forming

1 T 1 _
/ [(IdB-i——mNVW) D<IdB+—mNVW) dQ:/ B'DBdQ, (6.33)
Q 3 3 Q
where the assumed-strain B-bar matrix is taken as
— 1
B:IdB+§mNVW. (6.34)

Note that thaV matrix is expressed from the three-field coupling teEvendC, which
can be integrated with a lower quadrature rule than that éethe remaining part of the
element stiffness matrix (6.33).

For certain distinctly inhomogeneous models, this leadsnfiroved monotonic con-
vergence. For more on this see appendix B. The resolved niaxidisplacements and strain
energies for solutions with the fully integrated and redlioeder integrateV matrix agree
with one another to several decimal places for the examplestigated.

The GSRI and the B-bar methods use a variety of Gauss queslnaties each: the
selective integration rules are denoted (1,2) for the limdaments and (2,3) for the quadratic
elements; and the full integration rules are denoted (2d)(&,3). The first number of the
rule indicates the number of Gauss points per dimensiornéostiffness matrix corresponding
to the nearly-rigid modes of deformation (GSRI) or e matrix (B-bar), and the second
number indicates the number of Gauss points per dimensiftmests matrix corresponding to
the flexible modes of deformation (GSRI) or the stiffnessrméB-bar).

Note that the discrete formulation in this section exactiteches that of Reference [53].
The only difference is the use effective strain, stress, and moduli arising from the spectral
decomposition of the compliance matrix of the material. Botropic materials the present

formulation is identical to that based on the classic voluitleviatoric split.
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Chapter 7

Treating Multiple Modes

If more than two eigenvalues of the compliance matrix apgnagero, such as for in-
stance for a fiber-reinforced material with two paralleltsys of stiff fibers in soft matrix, the
continuous formulation needs to be modified, but in rel&ivainor ways. The projection
matrixmis predictably taken as

m= [vi, V] (7.1)

for a single locking stress direction. Correspondingly \aeehto adopt a vector of constrained

effective stresses and a corresponding vector of the eféecbnstrained strains as

1
pzémTa, ey=me, (7.2)

to replace the scalar quantities used for single mode tegatm

The variational equations are consequently rewritten as

/65TDdBu+/ 5£Tmp—/ suTb— [ suTt=0 (7.3)
Q Q Q It

with
/ op" (m'Bu—g,) =0 (7.4)
Q

and (with a diagonal matrix of effective modii

/9553 (Key—p)=0. (7.5)

114



115

The finite element approximation is also suitably modifiethtdude more than one effective
stress and strain, but the matrix expressions do not changppearance (the matrices just

change size).

7.1 Examples

Four examples based on simple cantilevered structureneestigated and the pro-
posed treatments are evaluated. In these examples, niggalyapic materials have up to two
dominant fiber directions that can be applied at any angleroiéhed by local coordinate rota-
tions. The cantilevers are loaded such that significantihgckehavior ensues for all elements
that are not treated by use of the spectral decompositiomeo&nisotropic elastic constitutive
relation. Although this behavior can be verified for oth@meénts, such as tetrahedra, we focus
our attention on linear and quadratic hexahedral “brickhetnts. GRSI and generalized B-bar
elements will be referred to as “treated” throughout the.t€key are compared against tradi-
tional SRI and B-bar methods that are based on the voluraki@atoric split appropriate for
incompressible istotropic solids. The later will be re¢erto as “false-isotropic” throughout.

Each example is one of two geometric configurations withlsinioundary conditions:

a slender cantilevered beam or a thick cantilevered plate Beam’s dimensions argV =
1.0cm,L=9.0 cm, and = 2.0 cm. HerelL is the lengthWV is the width, and is the thickness.
The plate’s dimensions are the same ex®&pt 10.0 cm.

Four cantilevered example models with varying fiber origates, as seen in figure 7.1,
are tested. The solutions for both fully and selectivelggnated B-bar treatments are generally
indistinguishable from the GSRI solutions. With this in chiznd brevity’s sake, only the B-bar
solutions are shown in the deformed mesh views of figure 7.2.

It should be noted that using reduced integration on the Brlbatments improves the
behavior only for the inhomogeneous cases, where fullygnated solutions show an alter-
nating (refinement dependent) convergence. For inhomogemaaterials, the B-bar solutions

show somewhat improved convergence when reduced integiatapplied to the locking com-
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(©) (d)

Figure 7.1 Fiber orientations for stability examples: (a) ExampleHbmogeneous beam;
(b) Example 2, homogeneous plate; (c) Example 3, smootlhgrnmgeneous plate; and (d)
Example 4, discretely inhomogeneous plate one.
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ponent.
The domaim of sought finite element solutions are givemby [0,L], y € [0,W], and

z < [0,t]. The Dirichlet boundary conditions dn, atx = 0 are

For the beam model (example 1), the Neumann boundary conditire prescribed on
tatx=Las

0-A=Tx=—10 kPa (7.7)

For the plate model (examples 2-4), the Neumann boundanitiamms are prescribed

onl{atx=L as

0-A= T, = —100 kPa (7.8)

Note thatl =T{uUly andlNNlry, = @. The boundary conditions remain the same
throughout the examples.

The convergence of the treated elements is demonstratedébrexample and calcu-
lated errors are referenced with respect to the limit of thedyatic refinement for the respec-
tive models, as determined by Richardson’s extrapola®@j. [ Selected convergence results
are provided in the current section.

The refinement was carried out with a progressively increadlumber of Degrees-
Of-Freedom NDOF). For the linear, eight node, hexahedral elements H8 elessNDOF =
[324, 1650 5376 1134Q 22308 36270 58320 83640, and for quadratic, 27 node, hexahedral
elements H2ZNDOF = [165Q 1134Q 3627Q 8364Q.

The strain energy errors are reported graphically and dieedeby the error expres-
sion:

wU

W:%—l. (7.9)
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whereW is the error// is the computed strain energy, a# is the limit value arising
from Richardson’s extrapolation.

In subsequent convergence studies, maximum displacemdrtha limit value of the
maximum displacement shall taken respectivelyas andus=.

In these examples, the maximum deflection at the free endsedieéam and plate, as
well as the strain energy error, are plotted with four défgrelement treatments. The first two
treatements, referred to throughout as “false isotropgrybre the principal compliance and
take the rigid component to be constructed by meams-ef1,1,1,0,0,0]". This inadvertently
treats the anisotropic material as one would in using caimweal selective reduced integration,
which is intrinsically tailored for volumetric locking inearly incompressible isotropic mate-
rials. In contrast, this demonstrates the effectivenesardbcking” the rigid modes with the
proposed spectral-decomposition-based element lock@éagnents.

The subsequent (suggested) treatments are denoted “G&RBabar”, and they use
the principal compliance modes = v; for single fiber materials om = [v;v;| for dual fiber
materials to identify the nearly rigid components. Up tethmodesn = [v1V,v3] are treated

in stability analyses presented later in this chapter.

7.1.1 Example: Homogeneous Single Fiber Beam

In Figs. (7.8—7.4) we demonstrate the results for a simpderbeodel with a stiff fiber
reinforcement along the vectpy'2/2,0, —/2/2] .

The elastic modulus along the stiff fiber is 100,000 times&rghan in the transverse
directions, and the shear terms comparatively very smafiagnitude.

The anisotropic elastic properties for this example are

E1(Pa) = 1.000e+ 14, E2(Pa) = 1.000e-+ 09, E3(Pa) = 1.0002+ 09, G12(Pa) = 2.0002+ 08,
G13(Pa) = 2.000e-+ 08, G23(Pa) = 2.000e-+ 08, nu12=0.25, nul2=0.25, anchul2=0.25,
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Which gives the material elasticity matrix (with the enginag shear strain conven-

tion):

106700 03333 03333 O

0O O
0.3333 1067 Q2667 O O O
0.3333 02667 1067 O O O

0

D= (7.10)
0 0 0 Q2 0
0 0 0 0O 02 O

0 0 0 0O 0 02
in GPa. The large first row—first column entry of this matrix indieatthe increased fiber stiff-
ness and corresponds to a small compliance terrih

The spectral decomposition reveals that as the rigidityhefftbers increase without

bound, the nearly-zero strains are directed along
vi = V/3[1,0,0,0,0,0]" (7.11)

in the local (fiber-aligned) coordinates.

The stiff fibers of this example resist diagonal transverfemination. This affect both
shearing and bending of the beam. Locking elements resalt innderestimation of the dis-
placements and strain energy. The treated elements cotypeirfaditional SRI with improved
accuracy in faster convergence.

Figure 7.2 (a) shows the deformed shape color-coded withMises stress for the
corrected B-bar formulation with linear hexahedra. Thedfiof the reinforcing fibers that
leads to a strong variation of the stress along the fibersaradhn the clamped face is clearly
visible. Figure 7.8 illustrates the conclusion that satithry convergence in energy can not
be expected from finite elements that use the ineffectivedtation for the isotropic nearly-
incompressible materials (i.e. the standard B-bar tech®)igthe corrected GSRI and B-bar
formulations deliver identical solutions that convergdiwiigure 7.4 shows the convergence

in energy for the quadratic hexahedra. While the quadréiments converge at higher rates
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than the linear ones when using the false isotropic formanathe corrected techniques are

superior.
1.5 1.5
4 4 _ ‘Ar *_ * AVA-:« A A »‘
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Figure 7.3 For the fiber-reinforced cantilevered beam, untreated|ei®ents fail to converge
satisfactorily. (a) The maximum displacement at free endugediscretization density; (b) The

strain energy versus discretization density.
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Figure 7.4 For the single-fiber cantilevered beam with H27 elemerhs,tteated elements
show improved convergence. (a) The maximum displacemdrgeend versus discretization

density; (b) The strain energy versus discretization dgnsi
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Comparisons to High Performance Elements in ABAQUS

High performance elements available to the ABAQUS comnagéfitiite element anlal-
ysis package are adapt at handling materials with a singilé fiber direction. The presently
proposed treatments, however, are still top performershanweé been shown (in the previous
chapter) to perform well independently of material fibeeatations. This particular beam ex-
ample has fibers that are oriented at a d8gle about thg-axis, which gives the material fibers
a greater influence on the ultimate deformation results. lifear hexahedral B-bar H8-Bbar
elements outperform the stardard hexahedral C3D8 and thedhlgexahedral C3D8H, and
keep up with the reduced integration hexahedral hybrid G&®D8and the incopatible modes

hexahdral hybrid C3D8IH.

Anisotopic (45Y) Beam Anisotopic (45Y) Beam
win C3D8 e C3D8
e C3D8H 4 C3D8H
. g C3D8RH =& C3D8RH
2, ¢ C3D8IH =Y 9 C3DSIH
g o H20R 3 w@= H20R
—e—H38-Bbar 2 —e—H8-Bbar
— Limit 5 —Limit
43
g
3

Displacement u

Figure 7.5 Homogeneous Single-fiber cantilever beam, compare to AB3®igh perfor-
mance elements. (a) The maximum displacement at free esdsy&DOF; (b) The strain
energy versus NDOF.

The refinement behavior of the displacement solutions oéléents being compared
is presented in Figure 7.5 (a), and the strain energy refineimeFigure 7.5 (b). Figures
7.6(a) and (b) show that the only element that shows betterergence behavior than the H8-
Bbar is the incompatible modes hybrid C3D8IH. The high paniance elements available in
ABAQUS (especially the C3D8IH) perform well on bending domtied problems such as this

cantilevered beam with shear preventing rigid fiber.
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Anistoropic (45Y) Beam Anisotopic (45Y) Beam
[ 3 «‘?:":8 | e C3D8 e C3D8
& 4= C3D8H 4 C3D8H
. . ‘8‘\" :’: we C3DSRH o =@ C3DSRH
> i s C3DSTH = @ C3DSTH
g | &£ o 3 we H20R g 0 w@ H20R
=10 s ——Hg-Bbar | 2 10 —— H8-Bbar
5 &
& P 2
g o =
=B [ B
@) 3 g
1071 § 2 107}
10° 10° 10" 10
h
(a) (b)

Figure 7.6. Homogeneous single-fiber cantileve beam log-log of ecompare to ABAQUS
high performance elements. (a) The maximum displacemeont at free end versus element

size (h); (b) The strain energy error versus element size (h)
7.1.2 Example: Homogeneous Dual Fiber Plate

In figures 7.2(b), 7.7 (a), 7.8 (b) a cantilevered plate mrgd with two orthogo-
nal systems of stiff fibers oriented at%4®ith respect to the clamped face in the plagg
is considered. The orthotropic material properties arenan the local material axes as
E1(Pa) =1.000e+ 14,E2(Pa) = 1.000e+ 14,E3(Pa) = 1.000e+ 09, G12(Pa) = 2.000e+ 08,
G13(Pa) = 2.000e+ 08,G23(Pa) = 2.000e+ 08,nul2 = 0.25,nul2= 0.25, andnul2 = 0.25.

Which gives:
106700 26670 3333 0 O O
26670 106700 3333 0 O O
0.3333 03333 1 0O 0 O
D= (7.12)
0 0 0 02 0 O
0 0 0 0 02 O
0 0 0 0O 0 02

in GPa. This material model, which will be applied to the remainpigte examples, has two

locking stress directions.

vy = \E[l, 1,0,0,0,0", vy= \E[l, ~1,0,0,0,0]" . (7.13)
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Figure 7.7: Untreated eight node hexahedral elements fail to conveajefactorily. (a) The
maximum displacement at free end versus discretizatiosityerib) The strain energy versus
discretization density.

The two smallest principal compliances are comparable igmtade and about 100,000 times

smaller than the next closest compliance.

The fiber orientations shown graphically in figure 7.1 (b) deéined by the rotation

matrix:
cos@ —snB O
R:(0)=| sin@ cos® O (7.14)
0 0 1
wheref = 45°.

Figure 7.9 shows deflection of the free edge of the plate flecssd finite elements.
The deflection computed with the GSRI linear (H8) and quadretxahedra (H27) agrees very
well with the results computed with the B-bar linear hexahedll of these results are within

This example illustrates the ability to treat multiple filolrections using GSRI and the
generalized B-bar methods. Here the fibers act in the platiegflate at an angle of 450 the
cantilever axis. The increased stiffness in the fiber dimastlimits that displacements at the
corners of the free ends which account for the curved defiiomaseen along the free edge in
figure 7.2(b). The “X” shape seen in the stress field color nmappf the top surface provides

a valuable visual representation of the rigid fiber’s resise to loading.
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Figure 7.8 Dual-fiber cantilever plate with quadratic hexahedrahedats; treated elements
show improved convergence. (a) The maximum displacemdrgeaend versus discretization
density; (b) The strain energy versus discretization dgnsi
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Figure 7.9 Cantilevered plate reinforced with two orthogonal syseristiff fibers. Deflection

of the free edge of the plate.

Figure 7.10 illustrates the convergence of the maximum ci&die along the free edge

of the plate. A graph of the estimated true normalized esa@hiown for selected finite ele-

ment types in figure 7.10. The linear, quadratic, and cubgréyage hexahedron are all fully

integrated, as appropriate for their degree. So is the qtiadetrahedron. Also included is the

serendipity 20-node hexahedron with uniform reduced naitsgn.

It is noteworthy that both the serendipity 20-node hexatedvith uniform reduced in-
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Fiber at +/-45 degrees
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Figure 7.10 Cantilevered plate reinforced with two orthogonal systerbstiff fibers. Conver-
gence of the maximum deflection along the free edge of the pataph of the estimated true
normalized error.

tegration and the cubic Lagrange hexahedron match the G&frland quadratic hexahedrain
convergence rate, but are much less accurate in absolats.t&he quadratic hexahedron and
the quadratic tetrahedron also appear to approach the sawergence rates, but are more than
order of magnitude less accurate. The data for the lineatteslkon do not extend sufficiently

far into the asymptotic range for this element, but its peni@ance is clearly inadequate.

In previous (single fiber beam)example, the treated elepembrmed well when com-
pared to the elements available in ABAQUS, but were stidjiglly outperformed by the hybrid
linear hexahedral elements with incompatible modes. s ¢hiample, however, the treated

elements are the top performers.

Comparisons to High Performance Elements in ABAQUS

A far greater performance advantage for the proposed tezdtis realized when more
than one rigid mode is treated. While B-bar was outperforrsightly, by the hybrid incom-
patible modes elements in the single-fiber beam examplarBskthe clear winner when the

material has two rigid fibers and two eigenmodes of the caanpk are treated.
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Figure 7.11 Dual-fiber homogeneous cantilever plate, compare to ABAQigh performance
elements. (a) The maximum displacement at free end versu@R\b) The strain energy
versus NDOF.
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Figure 7.12 Dual-fiber cantilever plate with abrupt inhomogeneitiag-log of error, compare
to ABAQUS high performance elements. (a) The maximum dagteent error at free end
versus element size (h) density; (b) The strain energy gexaus element size (h).

Figures 7.12 (a) and (b) show superior convergence behfaritte new B-bar elements.
7.1.3 Example: Dual Fiber Plate with Smooth Inhomogeneity

Figures 7.2(c), 7.13, and 7.14 of the next example highligatintroduction of a
continuously varying inhomogeneity. The physical dimensias well as the basic orthotropic
material properties are taken to be the same as for the pieeixample. This time, however,

the rigid fiber orientations are not constant throughoutareddefined by a rotation matrix that
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Figure 7.13 Dual-fiber cantilever plate with a smooth inhomogeneity énear hexahedral
elements; treated elements show improved convergencelh@jnaximum displacement at
free end versus discretization density; (b) The strainggneersus discretization density.

varies linear from 45%5at the clamped end to 9@t the loaded end by:

cos® —sind 0 cos(%) —sin(®) 0
R(0,xL)=| sin@ cos® O |+ | sin(®) cos(¥) 0 (7.15)
0 0 1 0 0 1

wheref = 45° andL = Length. This changing material orientation introduces a smoaluHi

inhomogeneity illustrated graphically in 7.1 (c).

The treated elements handle the introduction of a smootimiageneity well. The H8
elements converge quickly and the H27 elements follow deigures 7.13 and ‘7.14 show
convergence that significantly outperforms the untreatethents. Particular cases detailed
in appendix B show improved behavoir of the B-bar method wiegluced integration is a
applied to the terms resulting from the rigid component @& éhasticity. Fully integrating
the generalized B-bar method prevents alternating, orttsatl,” solutions as the meshes are
refined. This is something that crops up when using B-bar sgtbctive reduced integration
on inhomogeneous material models such as this one. Thisvaltie® is supported by the final

inhomogeneous example.
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Figure 7.14 Dual-fiber cantilever plate with a smooth inhomogeneity gunadratic hexahedral
elements; treated elements show improved convergencBhganpaximum displacement at free
end versus discretization density; (b) The strain energyugediscretization density.

7.1.4 Example: Dual Fiber Plate with Abrupt Inhomogeneous Rgions

In figures 7.2(d), 7.15, and 7.16 of the final example; regmfrdistinct fiber orien-
tations within the x-y plane are introduced. Here againpiimgsical dimensions as well as the
orthotropic material properties are taken to be the samerafié second example—with the

exception of the fiber orientations.

The domain of example 4 is split in 4 distinct geometric regioeach applying the

orientation matrix®; of equation 7.14 at eithét = 0° or 6 = 45° as follows:
Onxe[0,5],ye[0,%), V20 =0°
Onxe [0,5],ye [%.W],Vz6 = 45°
Onxe (5,L],y€[0,%),vz0 = 45°
Oonxe (5,L],ye[%,W],vz0 =0°

A graphical representation of these distinct regions obmbgeneity is provided in

figure 7.1 (d).

Figures 7.15 and 7.16 demonstrate, once again, that thedrelements do not exhibit

the locking behavior that plagues the untreated solutions.
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Figure 7.15 Dual-fiber cantilever plate with abrupt inhomogeneities! dinear hexahedral
elements; treated elements show improved convergencelh@jnaximum displacement at
free end versus discretization density; (b) The strainggneersus discretization density.
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Figure 7.16 Dual-fiber cantilever plate with abrupt inhomogeneitied guadratic hexahedral
elements; treated elements show improved convergencelhéamaximum displacement at
free end versus discretization density; (b) The strainggneersus discretization density.

Comparisons to High Performance Elements in ABAQUS

When an abruptly discrete inhomogeneity is introduced tbp@sed elements still con-
verge very well. The reduced integration hybrid C3D8RH edata show an impressive con-
vergence rate but still cannot match the accuracy of the lb@-Blements. In this example,
element distortions plague the top performing elementdofer look at element stability will

follow in the next chapter.

Figures 7.18 (a) and (b) once again show superior conveegleelcavior for the new
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Figure 7.17 Dual-fiber cantilever plate with abrupt inhomogeneitiesmpare to ABAQUS
high performance elements. (a) The maximum displacemérgeaend versus NDOF; (b) The
strain energy versus NDOF.
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Figure 7.18 Dual-fiber cantilever plate with abrupt inhomogeneitiag-log of error, compare
to ABAQUS high performance elements. (a) The maximum dagteent error at free end
versus element size (h); (b) The strain energy error velsuasant size (h).

B-bar elements. Although the reduce integration quadtagiahedral H20R elements, the
linear reduced integration hybrid hexahedral C3D8RH el@sjeand the linear hybrid incom-
patible modes hexahedral C3D8IH elements are slightly raoceirate with coarsest meshes,

the treated H8-Bbar elements soon surpass them all in agcura
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7.1.5 Conclusions Drawn From Examples

In all four of the example problems investigated, as well@asniany other examples
omitted for brevity’s sake, the treatments cure the rigickiog that ails all other elements
tested. Throughout these examples, for which no stakidiz& incorporated and initial meshes
are uniform and well proportioned, the treated solutions/eege from the flexible side and the
untreated solutions converge from the stiff side. Is shdaddnhoted that the coarsest, pre-
asymptotic, meshes of the second example show non-mogdiehavior as the meshes are
refine. This is something we will see more of when the stadtilin methods of the following
sections are applied.

Although the treatments show no locking and are convergentg results indicate that
distorted meshes may lead to solutions that are non-moicatader refinement. Severe mesh
distortion can lead to inaccuracies, especially in congbateesses. In most cases, distorted or

not, the treated elements perform better than the untreaies!
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Chapter 8

Stabilized GSRI and B-bar

One might suspect that the mesh dependent deformatioratibes seen in figure 8.1
are due to a rank deficiency in the assembled stiffness maixthe explanation is not so
simple. As will be demonstrated, meshes with multiple eletsién each direction have no
clear deficiency.

In assessing stability we first review the spectral anabyise stiffness matrices, where
the eigenvalues of theéfifmode are several orders of magnitude greater than the krst/kich
are numerically equivalent to zero for their respectiverseunatrices. In doing so we discover
that when multiple modes are treated stability is not guaesthand is, at times, dependent on
the fiber angles with respect to element orientations. watig this assessment, a stabilization
method is proposed and is shown to be effective with cerifopmance concessions in special
cases.

The spectral analyses of single element stiffness matfarethree different elements
treatments are compared. Using both linear and quadratehleera GSRI, selectively inte-
grated B-bar, and fully integrated B-bar are investigatedstability. It should be no surprise
that under-integrating a standard element reduces theofahlke element stiffness matrix. For
H8 elements, after accounting for the six rigid body modbks, éxpected rank of a well be-
haved element to be 18. For H27 elements, the expected ranwell behaved element is 75.

The rank of a standard under-integrated H8 element is sixtadank of a standard under-
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Figure 8.1 An abruptly inhomogeneous example highlighting non-pdaiselement distor-
tions or “hourglassing” is shown (GSRI with H8 elements aBBADOF; deformations scaled
by 494).

integrated H27 element is 48.

Looking at a single element, the ranks of the treated H8 eisrend H27 elements
are 18 and 75 respectively for all treated single fiber eléem@ASRI and B-bar). However,
when more than one stiff fiber is treated the question of ktylbequires a more thorough
investigation. Table 8.2 provides a quick view of when the-fiber treatments are stable
without the necessity of special methods. Selected coamergplots are provided in the current

section. For exhaustive results refer to Appendix B.

8.0.1 Stability of a Single Element

A square element block stiffness matrix is examined for iBtabwvherein linear
(H8),and quadratic (H27) hexahedral elements are examirtealfirst 6 eigenvalues represent
rigid body motion and are expected to approach numerical zieis means that they should be
several orders of magnitude lower than the seventh eigeavadlhe ratioj\\—; Is introduces as a
reasonable measure of element stability. The elementoasdered “stable” Wheé‘% >>1;

ﬁ—; close to 1 indicates instability.
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Figure 8.2 H27, 2 modes, 2 fibers (Here B-Baneans fully integrated).

Table 8.1 Stability results for various treatments of single fibergte element blocks.

H8 | Stablev6 | Stablev6 | Stablevf < | Unstable 45,135 [ >
H27 | Stablev6 | Stablev8 | Unstablev8_[WUnstablevf >

Material Dual Fiber: E; = 200000x 10°, E, = 200000x 1(f, E3 = 2 x 1(°,
G12=0.5x 106, Go3=0.2 x 106, G13= Gyg3, andvlz = vi3 = V3= 0.25.

8.0.2 Instabilities Revealed in the 7th Mode

Tracking the stability of dual-fiber two-mode treatment,ilelvarying the fiber angle
with respect to the local element orientations, proves ta baluable exercise. Figure 8.2
shows that the quadratic elements are stable except at &fewt angles, namely:°@nd 90.
Figure 8.3 shows something similar when the same matergathrae modes treated and H8
elements are used. In this case instabilities appear’aa@b 135. Please note that the curves

of the GSRI, B-bar, and selectively integrated B-bar treatis all follow the same trends.

As tabulated in 8.2: H8 and H27 elements with fewer than tweated modes are
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Figure 8.3 H8, 3 modes, 2 fibers (Here B-Baneans fully integrated).

Table 8.2 Stability results for various treatments of dual fiber $&nglement blocks.

H8 | StablevO | Stablevo | Stablev Unstable 45,135
H27 | Stablev6 | Stablev€ | Unstable 0,907 Unstablevg >
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Table 8.3 Stability results for various treatments of single fibext-2-x-2 element blocks.

H8 | Stablevf | Stablevd | Stablevd | Stablevo
H27 | Stablevf | Stablevd | Stablevd | Stablevo

Table 8.4 Stability results for various treatments of dual fiber 2-x-2 element blocks.

H8 | Stablevf | Stablevd | Stablevd | Stablevo
H27 | Stablevf | Stablevd | Stablevd | Stablevo

consistently stable; H8 elements with two treated modestatde; single fiber H27 elements
with two or three treated modes are unstable at all anglegjéfBents with two or more treated
modes are unstable at4and 135; dual Fiber H27 elements with two treated modes ar€ at 0
and 90; and meshes with multiple elements in each coordinatetibreare stable (see table

8.3).

8.0.3 Stabilization by a Modified Constitutive Split

A stabilization method can be constructed by observing tietrank of the element
stiffness matrix is limited by the rank of the flexible compaomof the compliance or elasticity
matrix. Efforts to construct a stable element stiffnessrixatart with a full rankDs. Some
clues are provided in the constitutive splits availabldmearly incompressible isotropic case.

Recall the basic constitutive relations

( 3 B 7 ( 3
Exx i 2 2 0 0 0| o«
Eyy =2 & 2 0 0 0| |oy
2z | _|¥ ¥ £ 00 0] oz 6.1
2¢y, 0 0 0 % 0 0|] oy
2ex 0 0 0 03 of]ox
26, | 0 0 0 0 0 ¢ |oy,
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and ) - 1
Ox ALV A A0 0 0] &
Gyy A AV A 0 0 0] | gy
& A A AV g 0 o] | s
z\_ v “\ (8.2)
0y 0 0 0 G 0 0f|2s,
O 0 0 0 0G 0f |2
gy | O 0 0 0 0G| |28

Here, we see the Bulk—Shear version of the constitutivet:spsi = %termqL

mixedterm= diag+ full. The diagonal term has full rank and is well conditioned. In

1 1 1
Eij ngjakwr@(dij—é&jdkk) (8.3)

the hydrostatic pressure affects shear term. The LamearS$@it reads: € = /\lterm-l—

o term=diag+ full, and we have

—v?2 1
AT Ev)A—av) %kt 5, (8.4)

Notice that hydrostatic pressure doesn't affect the shezar with this version of the split.

&j =

The Bulk—Shear split readsr = k term+ mixedterm = diag+ full, or
1
Gij = KOij e+ 2H(&j — 301 &) (8.5)

Notice that dilation affects shear term here. Howevertidiladoesn’t affect shear term in the

Lame’-Shear splito = A term+ shear term= diag+ full, or
Oij = Adij & + 2] - (8.6)

Thek u splitis now expressed in Voigt-Mandel notation with= Dy, + Dy =

K K K 0 00 3w —3u -%3u 000
K K K 000 —2u 4u —%u 0 0 O
KKKooo+—§u—§u 34 0 00 6.7
0O 00O0OO0O 0 0 O p 0O
0O 00OO0OO0O 0 0 O Opu O
0O 000O0OQ 0 0 O O Ou
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where theank(Dy) = 1 and therank(Dy) = 5.

And, theA u split: D =Dy +Dg =

AAxAro000 |20 0 0 o000
AAXxArxo0o00 |0 240 0 000
AAXxArxo0o00 |0 0 2u0 00

+ (8.8)
oo0o000d [0 0O O puoOoO
0o 0000d |0 0O 0 OpoO
0o 00000 [0 O O 0 0

whererank(Dy) = 1 andrank(Dq) = 6.

To apply this to our spectral treatments, let the compliaggenvalueg; providek =

Amax/3, andu = Apin asv — % Keep in mind that thes® are now eigenvalues, not the Lame’

parameterd expressed in the isotropic splits.

Now, we have a way of guaranteeing full rank in the flexiblentesf the elasticity

matrix. We do so by defining the split using

2
@ = 2vin A = 5 - (8.9)
which gives:
K K K 00O K K K 00O A A A 00O
K K K 00O K K K 00O A A A 00O
K K K 00O K K K 00O A A A 00O
—a = (8.10)
0O 0OOO0OO 0O 00O0OOO 0O 00OOOO
0O 0 O0OO0OO 0O 00OOODO 0O 00O0OOO
0O 00O0OO0O 0O 0OOODO 0O 0 OOOO
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and
_gu—gu—guooo_ _KKKOOO-_ZUOOOOO-
2y 44 —3u 000 K K K 0 00 0O 24 0 0 0O
—%u—%u%u000+aKKKOOOZO02;1000'
0 0 0 u 00 000000 0O 0 0 u 0O
0 0 0O OuoO 000000 0 0 0 OuoO
0 0 0O 0 0Ou 000000 0O 0 0 0 Ou
(8711)

This clever manipulation expresses the constitutive gplierms of the Lame’-shear
splitinstead of the bulk—shear split provides a path toiktation for our generalized treatment.

It turns out that even a very small split-shift provides edenstability.

8.0.4 Stabilization, the Split-shift

The GSRI treatment is stabilized by increasing the rank efftitly integrated flexible
componenDs. This is done by shifting a small portion B to Dy.

First introducex = 2/’\\%
whereAnin andAnax are the lowest and highest respective eigenvalues of thpl@me matrix.

Now shifting is done byD; «+— D +aD;. andD; < D; — aD;. This results in &y
with full rank.

The B-bar treatment is made stable by changing the dewafogjector to have a
slightly smaller contribution from the rigid modes. Thisascomplished by removing a small

portion of the rigid modes and giving it to the “deviatoriagpectorl 4.

Table 8.5 Stability results for various treatments of stabilizedgse fiber single element

blocks.

H8 | StablevO | Stablev6 | Stablev6( Stablevo
H27 | Stablev6 | Stablev6( Stablev6DStablevo
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Figure 8.4 Stabilized H27, 2 modes, 2 fibers.
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Figure 8.5 Stabilized H8, 2 modes, 3 fibers.

Table 8.6 Stability results for various treatments of stabilize@diiber single element blocks.

H8 | Stablev6 | Stablevd | Stablev6 Stablevo
H27 | Stablev6 | Stablev6] Stablev6>Stablevo

This level of stabilization does not provide a general reyniedthe element distortion

problem, but we will see that increasing the proportionshefsplit can ameliorate the effects
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while still providing adequate convergence. Varying degref stabilization are tested in terms
of displacement convergence, strain energy convergendeglbeviation of element distortions
in the example models. Six different levels of stabilizatéase compared.
Stabilization is considered by varying degrees of splittsty:
1) No stabilization:.ag = 0;
2) Minimal stabilization:a; = Z/QLWT;
3) Increased by factor of 5159 = 50(2;\\%);
4)Increased by factor of 10@t00 = 100(2%;);
5) Increased by factor of 20@,00 = 200(2%;);

and 6) Increased by a scaling functionkafas = f(A) =

8.0.5 Stabilized Homogeneous Bi-Rigid Plate

In Figure 8.6 we see that increasing the amount of stakitimahat is applied in the
split-shift effectively eliminates inter-element didions. However, there is a cost. The con-
vergence observed in Figures 8.7 shows that with minimbllgtation the solutions are at their
most accurate, but once enough stabilization is applielitorate the inter-element distortions
the accuracy suffers.

As seen in figure 8.7, the GSRI convergence results suggdshtineased stablilization

affects, and can even improve solution accuracy.

8.0.6 Stabilized Discretely Inhomogeneous Plate

For the case of abruptly discrete inhomogeneities, moteliation is needed to con-
trol the inter-element distortions. In Figure 8.9 we se¢ ihereasing the amount of stabiliza-
tion that is applied in the split-shift does control intéeraent distortions. In this case, however,
they aren’t completely eliminated. The refinement behas#@n in Figure 8.10 again suggests

that with minimal stabilization the solution is at its mostarate, and that once enough stabi-
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Figure 8.6 Homogeneous bi-rigid plate model with GSRI treated mes$la@ng varying de-
grees of stabilization: (aJo; (b) a1; (€) ase; (d) 0100; (€) 0200, @and (flas = f(A).

Plate, hom45z, H27, u /u Plate, hom45z, H2TJ/U
max & &

1.1 1.1 ‘
* 0=0 * a=0
N S < a=1 - < o=1
1 L St * % 0=50 1 L See * Y a=50
. k-t a=100 kKX a=100
> * T W * ’,,;r'.
00 ¥ Lo 8 a=2000 37 g oL AT B 0=200
_E ,F‘ > a=f(\) > Ir’ > a=f())
J — Limit / —Limit
0.8 0.8y
0.7 : 0.7 :
0 5 10 0 5 10
NDOF NDOF
(a) (b)

Figure 8.7: Varied stabilization for the homogeneous bi-rigid plafa) H27 Displacement
refinement; and (b) H27 Strain energy error (log-log).

lization is applied to eliminate the inter-element digtmms, the accuracy has suffered consid-
erably and as before the solutions are starting to lock.

Observing that shifting part of a treated mode to be handieagawith the untreated
(flexible) component is tantamount to choosing the degreehioh each mode is treated leads
to novel use of this method. It is clear in figures 8.7 and 8hHD stabilization by shifting the

rigid component can affect the convergence in a very cdettahanner. In those examples,
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Figure 8.8 Varied stabilization for the homogeneous bi-rigid plafg) H8 Displacement re-
finement; and (b) H8 Strain energy error (log-log).
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Figure 8.9 Discretely inhomogeneous bi-rigid plate model with GSiRated meshes having
varying degrees of stabilization: (a); (b) a1; () asg; (d) d100; (€) a200; and (Nas = f(A).

zero shifting led to displacement solutions that convergenfabove and as the shifted com-
ponent is increased the convergence happens from belowolheus question is whether at
some level of stabilization does convergence happen fratherébelow nor above? In other

words, is there a “sweet-spot” in the split-shift where every coarse meshes have high accu-

racy?
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Figure 8.1Q Varied stabilization for the discretely inhomogeneousifgid plate: (a) H27
Displacement refinement; and (b) H27 Strain energy errgrl@g).
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Figure 8.11 Varied stabilization for the discretely inhomogeneousidid plate: (a) H8 Dis-
placement refinement; and (b) H8 Strain energy error (lgg-lo



Chapter 9

Variable 3-Field Treatment

9.1 \Variable 3-Field Treatment ("B-bar" without the B-bar)

In attempting to find the “sweet-spot” in the split-shift waesven very coarse meshes
have high accuracy, a few different methods of variabletitneat were explored. In each case
all the compliance modes are treated in the 3-field formualiut some small part is shifted
back to the flexible terms for stabilization. Choosing taatrall the modes in a controlled,
variable, manner can lead to surprising performance adgasteven for materials that do not
have locking modes.

First, a method of uniformly variable treatment is introddc The amount of all the
modes passed in the split-shift is the same. Then, a methodiad the magnitudes of the
normalized eigenvalues to determine how much of each régpenode is passed in the split-
shift follows.

The shift can be scaled in the eigenvalues of the compliande the eigenvectors.
While the latter may have some slight performance advastigeertain examples tested, the
former is preferred because the process is more comprétendien the eigenvectors are used
as mere modes or directions with consistently normalizegmtades. The eigenvector scaling
is only introduced as an interesting alternative that mashaplications further along.

The presented methods attain some very accurate resulismiamimal computational
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expenditure. Unfortunately a clean expression of the cagtbstrain displacement operator

B-bar is lost in the process. This makes the stress calounlatightly more complicated.

9.1.1 Uniform variable treatment, Eigenvalue Scaling

Decompose the compliance such that

6
T (9.1)

andys < yp < ... < V5.
TakeM = |vi, Vo, ..., Vg| to be the six-by-six matrix whose columns are the scaled

eigenvectors ob~1, (scaled for backward compatibility with referenced kteerre).
Introduce the uniform scaling matrix

S=al (9.2)

wherea = ayy /s is a stabilization coefficient, and<Oa < 1.

Now, let

r=(1-9=(1-al, (9.3)

such thata — 0 for no treatmenta — /1 for full-yet unstable—treatment, and valuesaof
between 0 and- ys/y1 indicates the amount of uniform treatment for all modes.

First, introduce the adjusted stiff effective moduli (eigalue scaling):

1
K, = §MTDM. (9.4)
Now apply the scaling:
. 1 1
Kr:§rKrr:§rMTDMr. (9.5)
DefineD; = MK;MT, noting that the definition ok, gives
1
D = =MIMTDMIMT = (1—a)?D. (9.6)

9
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Now define the flexible component of the elasticity matrix
D¢ =D—D; = (2a —a?)D, (9.7)

whereD; — D asl' — 0, andDs — 0 asl" — |. Otherwise stated)+ — D asa — 1, and
Di - 0asa — 0.

Introduce the effective constrained strain variable:
e=MTg, (9.8)
and the effective constrained stress variable:
p=Kg. (9.9)

Split stress contributions according to

oi =Dsg, (9.10)
and
o=0¢+Mp. (9.11)
/5£T (gs+Mp) dQ—/ suTbdQ — [ suTtdr —o, 9.12)
Q Q [
/5UTDfBudQ+/ Sp™™ de—/ suTbdo — [ &uTtdr =o0. (9.13)
Q Q Q It
/5p(MTBu—£r) dQ =0, (9.14)
Q
/55, (R —p) dQ = 0. (9.15)
Q

u~ Nua, P~ pr)7 &~ NI’EI’ . (916)
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(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

(9.26)
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The stress and strain calculations require computatioheflexible component pro-
jectorl ¢, such thaD¢ = | {DI ; and the strains can be decomposed &, + £+ = B, + B+l
where

The projectol s can, for uniform scaling, be defined
It =v1-T2 (9.27)
which can be substituted with the scalar expression
It =v/2a — a2. (9.28)

The flexible component of the strain displacement relateomloe expressed

B =1¢B=1¢B. (9.29)
Now, with B¢ = | {B, element strains can be computed according to
£ =B+ B+, (9.30)
and element stresses can be computed according to

o = De. (9.31)

Uniform treatment results—motivation beam example

This problem was introduced as a motivation example for ithgdles mode GSRI and B-
bar methods presented in Chapter 6. The H8-Bbar elementougperformed by the C3D8IH
elements in ABAQUS for the isotropic material of Figure ®)L(Now, with uniform variable
treatment of all six modes with the scaladsplit, the presented H8-3F6MU element edges
out the C3D8IH for the aforementioned isotropic materiad @&nis the most accurate of all
the elements tested for the anisotropic fiber orientatidriSgures 9.1(c) and (d). The notion
that this element could perform so well even for an isotropaterial is a somewhat surprising
and fortuitous result. These solutions were obtained uaimjevenhanded treatment for all
materials witha = 1 and the inverse condition number baged- ay; /ys. The reference , or

limit, values are taken from the Richardson’s extrapotatbthe H8-Bbar solutions.
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Figure 9.1 Uniform A scaling, displacement err8ifs of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; elementcaspto of 1 : 45. In (b), (c),
and (d) we show the estimated true error of the maximum dedtectb) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with,/2/2, —v/2/2,0]. (d) Anisotropic material, stiff
fiber aligned with[v/2/2,0, —/2/2]. Key: C3D8 — linear hexahedron, C3D8H — linear hybrid
hexahedron with uniform pressure, C3D8I — hexahedron witloinpatible modes, C3D20R
— the uniformly reduced integration quadratic serendipgxahedron, H8-Bbar-ISO — B-bar
Q1/Q0 hexahedron, H8-Bbar — linear hexahedron with preBdmr formulation, and H8-
3F6MU - linear hexahedron with uniformly scaled presentdield.

Homogeneous Angle 45-z plate

Here, the uniformA scaled H8-3F6MU is performing very nicely. The H8-Bbar has

better accuracy with the coarsest meshes but the H8-3F6Ntillywwatches up as refinement

advances.
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Figure 9.2 Uniform A scaling, results for hom45z plate: (a) Displacement, (Ispl2icement
error, (c) Strain Energy, and (d) Strain energy error.

Inhomogeneous 4-region Plate

This example was previously introduced to showcase the@peence of the two-mode
GSRI and B-bar treatments. Here again, the performanceteswvoahy only slightly out-
matched by the H8-Bbar elements. These results are obtaiieout any “tweaking” of the
stabilization factor and without any a priori knowledge lo¢ tnumber of stiff modes exhibited

by the material, making this an good candidate for a staldluttdreatment.
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Figure 9.3 Uniform A scaling, results for 4-region plate: (a) DisplacementQisplacement
error, (c) Strain Energy, and (d) Strain energy error.

9.1.2 Variable Spectral Eigenvalue Scaling

As with uniform scaling, start by decomposing the complentatrix decomposition
and takeM = [vy, V2, ..., Vg] to be the six-by-six matrix whose columns are the scaledneige

vectors ofD 1.

This time, define the stabilization mati®$such that
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vi/v6 0O 0 0 0 0
0 ww O 0 0 0
0 0 w/vs O 0 0
0 0 0 w/ve O 0
0 0 0 0 w/vs O

0 0 0 0 0 ¥/¥
wherea is a stabilization coefficient, with€ a < 1. This choice of stabilization matrix

(9.32)

S naturally separates the correct portion of the respectiveas applying greater treatment to
the most stiff components.

Now, proceed as with the previous, uniform scaling, forialawith ' = (I — S),
Introduce the adjusted stiff effective moduli apply thelsza DefineD, = MK,;MT, noting
that the definition oK, givesD; = MTMTDMIMT.

Now define the flexible component of the elasticity maBix= D — D, whereD; — 0

asa — 0.

Introduce the effective constrained strain variable= M "¢, and the effective con-
strained stress variable:= K&

Split stress contributions accordingly; = Dse, ando = o + Mp.

The solution proceeds as with uniform scaling eventuallindeg B, = Mr%NrW,

which leads to the stiffness expression

A= /QBTDdeQ-l—/QBrTDBr dQ. (9.33)
As before, the stress and strain calculations require ctatipa of the flexible com-
ponent projectof s, such thaDs = | 1Dl ¢+ and the strains can be decomposed ¢, + €5 =
B;G0+ BslwhereBs =1¢B.
Although the expression of the uniform scaling procedusegsod first approximation,

the projectoll + may need to be solved by iteration. First define

19=vI1-r2 (9.34)
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which provides a symmetric initial estimation.

Now define an erroerr, tolerancetol, and an iteration limiilim and continuously

update
i 1 1 T 1,
It =2[(1¢D)'D¢] + > [(1tD) 'Ds] + I} (9.35)
4 4 2
until convergence is achieved according to
err = ||Df — I IDIVY| < tol . (9.36)

Here the matrix nornjX|| is the largest singular value .

Convergence is fast due to the small system size, and thysneelds to be done once

for each material.

Now, with B¢ = | {B, element strains can be computed according to

£ = B0+ B+0, (9.37)

and element stresses can be computed according to

o = De. (9.38)

Spectrally Scaled Beam Example

This time, the proposed treatment clearly outperformsritbempatible modes C3D8IH
even for the isotropic material of Figure 9.4(a). The parfance of the H8-FEMS is particu-
larly good for the fiber orientation of Figure 9.4(d) exhibg the highest accuracy and match-
ing the convergence rates of the other top performers. Tiessdts were obtained using and
evenhanded treatment for all materials with= 0.23. The reference , or limit, values are taken

from the Richardson’s extrapolation of the H8-Bbar solusio
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Figure 9.4 Spectrall scaling, displacement err8ifs of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; elementcaspto of 1 : 45. In (b), (c),
and (d) we show the estimated true error of the maximum dedtectb) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with,/2/2, —v/2/2,0]. (d) Anisotropic material, stiff
fiber aligned with[v/2/2,0, —/2/2]. Key: C3D8 — linear hexahedron, C3D8H — linear hybrid
hexahedron with uniform pressure, C3D8I — hexahedron witloinpatible modes, C3D20R
— the uniformly reduced integration quadratic serendipgxahedron, H8-Bbar-ISO — B-bar
Q1/Q0 hexahedron, H8-Bbar — linear hexahedron with preBdmr formulation, and H8-
3F6MS — linear hexahedron with spectrally scaled preseswiszld.

Homogeneous Angle 45-z Plate

The spectrah scaling of the H8-3FMS produces very nice results on thisdgeneous
plate example with dual stiff fibers. None of the other eletsenatch it in accuracy. Here

again, the H27-3FMS quadratic version is also performing wesll.
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Figure 9.5 Spectral) scaling, results for hom45z plate: (a) Displacement, (Ispl2icement
error, (c) Strain Energy, and (d) Strain energy error.

Inhomogeneous 4-Region Plate

For this abruptly inhomogeneous dual fiber example, thegseg elements appear to
be performing about the same and show much better accuranytiie other elements tested.

The convergence rates are also very high as seen in the sibbiggires 9.6(b) and (d).
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Figure 9.6 Spectrald scaling, results for 4-region plate: (a) DisplacementQisplacement
error, (c) Strain Energy, and (d) Strain energy error.

9.1.3 Uniform variable treatment, Eigenvector Scaling

1 6
D1=ZF pyvv, (9.39)

TakeM = |vi, Vo, ..., Vg| to be the six-by-six matrix whose columns are the scaled
eigenvectors oD%, (scaled for backward compatibility with referenced Gtierre).
Introduce the stabilization matrix

S=al (9.40)

whereaq is a stabilization coefficient, € a < 1.
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Now, let
\P:%MT(I—S)M:(l;a)MTM, (9.41)
and introduce the variable uniform scaling
M=MWY=(1—0a)M, (9.42)

such thator = 0 for no treatmentg = 1 for full treatment, and values @f between zero and
one indicates the amount of uniform treatment for all mod&siseful choice ofa uses the
inverse condition number & to automatically adjust the amount of treatment to the deegfe
directional stiffness inherent to the material. Diagaral such thatD = VAVT, where the
eigenvalueg; of D lie on the main diagonal ok havingA; < A 1.

Now choosinga = aA;1/Ag whereal0 < a < 1 will lead to a solution that naturally
applies the greatest treatment to materials that require it

Now apply the scaling, and introduce the adjusted stiffatife moduli (eigenvector
scaling):

1~ -
K, = §MTDM. (9.43)

DefineD; = MK;MT, noting that the definition ok, gives

L mr o~
Dy :§MMTDMMT =(1-9°2D(1-9)?=(1—a)*D. (9.44)

Now define the flexible component of the elasticity matrix
Dt =D-Dy, (9.45)

whereD¢ — D asW — 0, andD¢t — 0 asW — |. Otherwise stated)+ — D asa — 1, and
Dt —» 0asa — 0 (a scaledDys).

Introduce the effective constrained strain variable
e=MTg, (9.46)

and the effective constrained stress variable

p= Rrfr- (9.47)
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Split stress contributions accordingly:

oi =Dseg, (9.48)
and
o=0;+Mp. (9.49)
/ 8¢ (o +Np) dQ —/ suTbdQ — [ suTtdr —o, (9.50)
Q Q [
/ 5uTDfBudQ+/ SpTNi de—/ su™bdo — [ &uTtdr =o0. (9.51)
Q Q Q It
/5p(|\7ITBu—£r) dQ =0, (9.52)
Q
/5£r(Kr£r—p) dQ = 0. (9.53)
Q
u~ Nua, P~ pr), &~ NI’EI’ . (954)
A C o0 0 £,
ct' 0 -E p p=% O (9.55)
0 —ET H & 0

A:/BTDdeQ, E:/NIdiQ,
Q Q

H:/QN,TKrNrdQ, C:/QBTI\7IdiQ. (9.56)

& =ECTu=wu, (9.57)

p=E THE =E THWA®. (9.58)
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All=fq, (9.59)
, Wwhere
A=A+WTHW, (9.60)
K:/BHMMQf/WUﬂmNMMQ, (9.61)
Q Q
or
A T TnT LT &
A:/ B DdeQ+/W NT =K1 T DI ZN,W dQ . (9.62)
Q Q 3 3
Defining
-1
leads to the stiffness expression
/K:/ BTDdeQ-l—/ BT DB, dQ. (9.64)
Q Q

The stress and strain calculations require computatioheflexible component pro-
jectorlt, such thaD; = | ;DI ¢ and the strains can be decomposed &, + € = B;(+ Bl

where

Bf=1¢B. (9.65)

The projectol s can, for uniform scaling, be defined

n:%( I—(I—S)4)+%< |—(|—s>4)T:< 1—(1—a)4)l, (9.66)

Now, with B = | B, element strains can be computed according to

& = B {i+ B0, (9.67)
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and element stresses can be computed according to

o = De. (9.68)

Uniform treatment Beam example

Although it is a somewhat clumsy formulation, scaling of #igenvectors produces
some highly accurate solutions as demonstrated in Figure Bhere may be an advantage
to implementing the split-shift in the eigenvectors. Thessults were obtained using and

evenhanded treatment for all materials wath- 0.4 and the inverse condition number based

a= a/\]_/Ae.

9.1.4 Variable Spectral Eigenvector Scaling

As with uniform eigenvector scaling, begin with the diagiretion of the compliance
matrix takingM = [vq, Vo, ..., Vg] to be the six-by-six matrix whose columns are the scaled
eigenvectors oD~1. This time introduce the diagonal matrix of stabilizatiavefficientsS
based on the principle elastic moduli. Diagonalzeuch thatD = VAVT, where the eigen-
valuesA; of D lie on the main diagonal of havingA; < Aj.

Now define the stabilization matri& such that.

-)\1/)\6 0 0 0 0 0
0 AyJAs O 0 0 0

0 Ag/Ag O 0 0 9.69)
0 0 MfAs O 0

0 0 0 As/Ag O

0

0
0
0
0 0 0 0 As/As

wherea is a stabilization coefficient, & a < 1. Since this choice of stabilization
matrix S has the same eigenbasisixsand will allow the scaling to naturally affect the most

stiff modes for greater treatment.
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Figure 9.7 Uniform M scaling, displacement erréPs of cantilever beam subject to shear
load at the free end. (a) Uniform mesh with 125 nodes; eleraspéct ratio of 1 : 4. In
(b), (c), and (d) we show the estimated true error of the marindeflection. (b) Isotropic
material. (c) Anisotropic material, stiff fiber aligned Wit/2/2, —/2/2,0]. (d) Anisotropic
material, stiff fiber aligned with\/2/2,0, —/2/2]. Key: C3D8-linear hexahedron, C3D8H-
linear hybrid hexahedron with uniform pressure, C3D8I-dedron with incompatible modes,
C3D20R-the uniformly reduced integration quadratic seifgty hexahedron, H8-Bbar-1ISO-
B-bar Q1/Q0 hexahedron, H8-Bbar—linear hexahedron widsgmt B-bar formulation, and
H8-3F6MU—linear hexahedron with uniformly scaled presdr-field.

Now, letW = %MT(I — S)M, such thato = 0 for no treatment (since, as with uniform

scaling,a scaledDys).

To introduce the variable spectral scaling,Net= MW, which will scale each mode by

the respective diagonals B

Now apply the scaling, and introduce the adjusted stiffaifle moduli (eigenvector

scaling):K, = tMTDM, and defineD, = MK ;M T, noting that the definition df,. This gives
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Dy = tMMTDMMT = (1 - 5)2D(I - S)2.
Now define the flexible component of the elasticity maDix= D — D,, whereD¢ — 0
asa — 0.

Introduce the effective constrained strain variable= I\7ITs, and the effective con-
strained stress variable= K &,. Split stress contributions accordingly:; = Dfe, ando =
ot +Mp. Proceeding as with uniform scaling leads to definBig= M %NrW, and to the

stiffness expression

A_:/ BTDdeQ+/ BY DB, dQ. (9.70)
Q Q

The stress and strain calculations again require computafithe flexible component
projectorl ¢, such thaD; =1 ¢{DI ; and the strains can be decomposede; +£; = B0+ B+l

whereBs = |B.

As with variable spectral eigenvalue scaling, the projettomay need to be solved

iteratively.

Now, withB; = 1B, element strains can be computed according+oB, i+ B;J, and

element stresses can be computed accordimgtaDe.

Spectrally Scaled Beam example

Once again, scaling the eigenvectors in this manner prosiice highly accurate re-
sults. These solutions were obtained using and evenhanelgthent for all materials with

a=0.3.
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Figure 9.8 SpectraM scaling, displacement erréts of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; elementcaspgo of 1 : 45. In (b), (¢),
and (d) we show the estimated true error of the maximum dedftecfb) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with,/2/2, —v/2/2,0]. (d) Anisotropic material, stiff
fiber aligned with[v/2/2,0,—+/2/2]. Key: C3D8 — linear hexahedron, C3D8H — linear hybrid
hexahedron with uniform pressure, C3D8I — hexahedron witlorinpatible modes, C3D20R
— the uniformly reduced integration quadratic serendipgyxahedron, H8-Bbar-ISO — B-bar
Q1/Q0 hexahedron, H8-Bbar — linear hexahedron with preBepar formulation, and H8-
3F6MS — linear hexahedron with spectrally scaled presedwiezld.

9.1.5 Variable Stabilization Conclusions

Minimum stabilization may not remedy mesh distortions, arateased stabilizations
can, when carefully chosen, improve solution accuracyreling stabilization beyond some

model-specific limit results in a decreased convergenee tatthis vein, increasing stabiliza-
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tion can be viewed as reducing the degree to which stiff logks treated. It should be noted
that discrete inhomogeneities can lead to complicatedaf@mt behavior, sometimes man-
ifesting as non-monotonic convergence and persistent &eeent distortions. In extreme
cases a compromise must be brokered, sacrificing convexgates to quell non-physical ele-

ment distortions.

9.2 GSRI and B-bar Treatment Conclusions

The treatments of anisotropic elasticity with nearly-gigpcking through a partitioning
of the strain, stress, and the constitutive equation by betieralized selective reduced inte-
gration (GSRI) and the corrected B-bar formulations aretbio be robust and effective. The
performance of the two proposed methods are nearly idénfiba corrected B-bar method is
moreover attractive due to its generality for potentialleggpion to nonlinear materials. The
correction is inexpensive: the treated methods do not re@uiy special computations except
for the spectral decomposition of the compliance matrix.sAsh, a computation is only re-
quired once for each material (in the material-aligned dote system); such a cost is likely

to be negligible.



Chapter 10

Conclusions and Future Work

The fundamental question this research attempts to answieow can our understand-
ing of how marine mammals send and receive underwater acaighals be improved with
a better understanding of the role viscoelastic propegpytsiplay in vibroacoustic simulation
results? Three primary efforts were made in hopes of aneghis question.

Through the sensitivity study comparing simulation to tlkpeximental results for a
submerged porpoise head subjected to acoustic pulsess itiseovered that the results are
most sensitive to estimation of the Young’s modulus of bame ta the estimation of the bulk
modulus of acoustic fats.

There is a great need for improved estimations of the visstiel properties of animal
tissues at the time of dissection, before the tissue decsespor is frozen. The developed
mechanical rheometer will help biologist do just this.

Anisotropic finite element models of fibrous tissues are prianelement locking and
subsequently underestimated deformation solutions.el$tesrtcomings to computational sim-
ulations are well remedied by the generalized selectivaaed integration and B-bar variant
methods presented here.

Taking another look at the Norris and Harvey study of 1974bjdth validated the vi-
broacoustic toolkit VATk [28] and showed which material pesty inputs fostered the greatest

changes in the observed pressure amplitudes at key losatidhe sound reception physiol-

167
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ogy. The study also revealed a great need for improved arpetal data. Another, duplicate,

experiment using well-calibrated modern instruments Waubvide very valuable data for use
in testing and calibrating computational simulations. sTiwould allow informed conclusions

to be drawn about the importance of the dispersive qualitiesoustic fats and other tissues
in the primary acoustic pathway.

The experimental efforts focused on the design, developnfedorication, and testing
of a prototype rheometer producing a functional portab&ohbgy laboratory suited for field
work. The device makes good use of recent developments mibstrumentation and data
acquisition. The fundamental design takes advantage oé soralytical features inherent to
thick sample geometries such as insensitivity to smalkenrestimated sample geometery and
insensitivity to small normal forces at the point of exdtat The next steps in the devices
develpment include fully incorporating quasi-static intiion estimations of Young’s modu-
lus, incorporation of ultrasonic testing using transdystates designed to fit above the existing
sample stage, and (perhaps most importantly) the itrooluctf a hand-held probe for tissue
characterization. Because the results are largely indbpgrof sample thicknesses beyond a
depth of about 15 m, surface testing methods should be thoroughly investigaaother im-
portant improvement to the prototype rheometer lies in #ednfor a temperature controlled
environment. A controlled environment could be achievedvay of a well insulated cham-
ber with convection temperature control. The device alsoams several modifications to
make the sensitive electronics and instrumentation moysigdlly robust for field work in
a salt-water environment. Finally, the testing method@e@nd control software should be
simplified for use by a non-engineer.

The next steps in the presented methods exploiting the rgpelgicomposition of the
compliance matrix to treat finite element locking of fibemtpated anisotropic materials in-
clude an in-depth study of variable treatment methods, awgt stress calculations for sta-
bilized methods, and a thorough investigation of persistéer-element distortions observed
even in stabilized treatments. The variable 3-field treatsxmethods offer some enticing per-

formance advantages that warrant further investigatiowould be worthwhile to thoroughly
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explore the performance advantages and continue an igaésti of stress calculations without
a single term strain-displacement relation. This notiovasfable treatments may be extensible

to improved accuracy in other finite elements yet to be ingattd.



Appendix A

Device Views and Component

Specifications

A.1 Chassis
SLIDE RAIL
STRAIN GAUGE
FIBER OPTIC SENSOR
BASE LOAD CELL
VOICE COIL SERVO
LVDT
STEPPER MOTOR
el s g
——a——— ILEEQQ e I!| PINOUT BOX
T =
A/ oo 3
COMPONENTS

Figure A.2: Experimental rheometer component plan.
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A.2 Control Box

LAPTOP COMPUTER 25.6V LiFePO4 BATTERY
(WINDOWS 7 32-BIT) (TENERGY)

|

STEEL CONTROL BOX

DAQ, STEPPER CONTROLLERS, SERVO AMP.,
DC-DC CONVERTERS (15V,12V, 9V, 5V), FSR
VOLTAGE DIVIDERS, FANS, FUSES, SWITCHES,
INDICATORS.

- +
| I]

MECHANICAL DEVICE (SHEAR RHEOMETER)
VOICE COIL, LVDT, LOAD CELL, STRAIN GAUGE,
FIBER-OPTIC SENSOR, STEPPER MOTORS,
FORCE SENSING RESISTORS (FSR), FSR ARRAY.

CONTROL BOX COMPONENTS LIST

(1) DAQ: MCC USB-2537 (2527)

(2) SERVO AMPLIFIER: LCAM 5/15, SMA 5005

(3) DC TO DC CONVERTER (24V-15V): V-INFINITY VYC30W-Q48-S15-T
(4) DC TO DC CONVERTER (24V-5V): V-INFINITY VFSD2-524-85-SIP
(5) DC TO DC CONVERTER (24V-12V): G1108 MEV 152412 SC

(6) STEPPER MOTOR CONTROLLER: 5-AXIS TB6560

DEVICE COMPONENT LIST

(1) VOICE COIL: H2W NCMO02-10-012-2JB

(2) LVDT: SOLARTRON DF g series (10mm)

(3) LOAD CELL: OMEGA LCMFE-10N

(4) STRAIN GAUGE: SMD S100-0.2N

(5) STEPPER MOTORS: NEMA 17, 0.4 A, 39BYGL215A

Figure A.4: Block diagram of the device control box.
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A.3 Control

The main control box houses the Data Acquistion Board (DAQ®, stepper motor
controller, the voice coil servo motor amplifier, mutlipleCEDC converters, fans, switches,
cable interfaces, and limited digital readouts. The steppator Controller is a 5-axis CNC
TB6560. The servo Amplifier is a Glentek SMA5005 (sold as H2@WAM 5-15) H Bridge

Linear Servo Amplifier.

A.4 Data Acquisition (DAQ)

Data acquistions and analog output signals are providedWyB+2537 manufactured
by Measurement Computing Co. The DAQ is a USB-2537 with 64I8i82 Differential
analog inputs, 4 analog outputs, 24 digital 10, four 32-litigter inputs, and with a SCSI

pinout.

A.5 Primary Instrumentation

Displacements are measures using two independent ingttang#&) a precision Linear
Variable Differential Transformer (LVDT), and (2) a fibertapdisplacement sensor. Forces
are measured using a high precision low force cantilevet tmdl. The LVDT is a Solartron,
type DF2.5, and the fiber optic displacement sensor is adehid+63 with analog outputs.
The cantilever load cell is a Strain Measurement Devices 38D 0.5 N, with a Swann and

Associates, Inc. Mantracourt SGA/D signal conditioner.

A.6  Motors

The excitation force is provided by a voice coil servo mottice coil used was manu-

factured by H2W Technologies, and is designated NCMO02118-8)B 5.3 N Moving Magnet
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Non-Comm DC Voice Coil Linear Actuator. Sample stage andtation positioning is pro-

vided by Nema 17 model 39BYGL215A (0.01 mm/step) steppeionsot

A.7 DC Power

Electric power is supplied by a TenerglifePO,) 32VDC nominal 20 Ah Lithium

high capacity polymer/prismatic battery.



Appendix B

Stabilized GSRI Convergence Results

B.1 Convergence of Stabilized GSRI and B-bar

Tables and plots are provided to chronicle the convergehtteesstabilized GSRI and
B-bar methods for the four examples presented in chapteh&eiflrors are calculated using the
best extrapolated solutions as reference values. Hene pasvious convergence studies of this
work, the best extrapolated values are attained using igads of Richardson’s extrapolation

[62] applied to the quadratic hexahedral (H27) elements.

B.2 Tables of Refinement Values, Stabilized Treatments

As in the previous section of tables, these tabulated valepsesent the respective
converged values obtained by Richardson’s extrapolation.

As in previous tables of this appendix, negative values oeten Richardson’s ex-
trapolations fails as a result of non-monotonic convergeitis happens when the refinement
study has not yet reached the asymptotic region and is yssedin with linear hexahedral
elements where significant stabilization is being applied.

The maximum displacement values for the distorted meshtisokiof the abruptly

inohomogeneous plate example, seen in table B.1, devatetiie converged values. These

177



178

“loose” or “over-flexible” solutions are mitigated as stigtation levels are increased.

Again, the negative values for the linear elements of thenBeedel in table B.5 are
attributable to refinement that has not yet reached the asyimpegion, which leads to the
failure of Richardson’s extrapolation. The curves showfigares B.2 and B.10, however,

show a smooth trend toward the limit value.

B.2.1 Stabilizedungx Tables

Table B.1: Converged maximum displacement table, GSR4: 0.

Umax (M) Beam hom45y Plate hom452z Plate smooth2 Plate disc
H8 1.016e-04 1.694e-04 1.769e-04 5.992e-05
H8-Distorted | 1.022e-04 1.661e-04 1.742e-04 7.897e-05
H27 1.011e-04 1.626e-04 1.743e-04 5.848e-05
H27-Distorted| 1.013e-04 1.622e-04 1.696e-04 8.227e-05
Table B.2 Converged maximum displacement table, GSR4: 1.
Umax (Mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 1.014e-04 1.641e-04 1.756e-04 5.939e-05
H8-Distorted | 1.024e-04 1.637e-04 1.727e-04 7.896e-05
H27 1.013e-04 1.628e-04 1.747e-04 5.922e-05
H27-Distorted| 1.011e-04 1.624e-04 1.698e-04 8.210e-05
Table B.3: Converged maximum displacement table, GSR#: 50.
Umax (Mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 5.924e-04 1.684e-04 1.810e-04 5.515e-05
H8-Distorted | 3.980e-04 1.677e-04 1.723e-04 6.479e-05
H27 1.004e-04 1.669e-04 1.775e-04 5.282e-05
H27-Distorted| 1.000e-04 1.699e-04 1.716e-04 6.721e-05




Table B.4: Converged maximum displacement table, GSR4: 100.

Umax (M) Beam hom45y Plate hom452z Plate smooth2 Plate disc]
H8 -4.391e-05 1.806e-04 1.870e-04 5.558e-05
H8-Distorted | -6.018e-05 1.813e-04 1.767e-04 5.950e-05
H27 1.003e-04 1.674e-04 1.794e-04 5.461e-05
H27-Distorted| 1.001e-04 1.702e-04 1.729e-04 6.212e-05
Table B.5: Converged maximum displacement table, GSR4: 200.
Umax (Mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 -7.303e-06 2.277e-04 2.024e-04 5.065e-05
H8-Distorted | -9.809e-06 2.311e-04 1.883e-04 5.504e-05
H27 1.009e-04 1.681e-04 1.827e-04 5.652e-05
H27-Distorted| 1.009e-04 1.710e-04 1.757e-04 5.785e-05
Table B.6: Converged maximum displacement table, GSR: f(A).
Umax (Mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc]
H8 -5.014e-05 2.170e-04 1.993e-04 5.136e-05
H8-Distorted | -6.924e-05 2.199e-04 1.860e-04 5.557e-05
H27 1.003e-04 1.679e-04 1.821e-04 5.682e-05
H27-Distorted| 1.000e-04 1.708e-04 1.751e-04 5.829e-05
B.2.2 Stabilized% Tables
Table B.7: Converged strain energy table, GSRI= 0.
% (3/m°) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 1.014e-04 1.458e-02 1.042e-02 5.442e-03
H8-Distorted | 1.021e-04 1.433e-02 1.027e-02 7.023e-03
H27 1.011e-04 1.403e-02 1.023e-02 5.427e-03
H27-Distorted| 1.011e-04 1.398e-02 9.981e-03 7.110e-03
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Table B.8 Converged strain energy table, GSRI= 1.

% (3/m3) Beam hom45y Plate hom452z Plate smooth2 Plate disc]
H8 1.012e-04 1.415e-02 1.033e-02 5.437e-03
H8-Distorted | 1.023e-04 1.411e-02 1.017e-02 6.970e-03
H27 1.011e-04 1.404e-02 1.026e-02 5.473e-03
H27-Distorted| 1.010e-04 1.400e-02 9.961e-03 7.086e-03
Table B.9: Converged strain energy table, GSRI= 50.
% (3/m3) Beam hom45y Plate hom452z Plate smooth2 Plate disc]
H8 5.677e-04 1.482e-02 1.075e-02 4.012e-03
H8-Distorted | 3.859e-04 1.466e-02 1.019e-02 5.940e-03
H27 1.002e-04 1.449e-02 1.043e-02 5.036e-03
H27-Distorted| 9.983e-05 1.485e-02 1.007e-02 6.207e-03
Table B.10 Converged strain energy table, GSRI= 100.
% (3/m) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 -4.482e-05 1.610e-02 1.137e-02 5.369e-03
H8-Distorted | -6.061e-05 1.593e-02 1.056e-02 5.594e-03
H27 1.001e-04 1.475e-02 1.055e-02 2.664e-03
H27-Distorted| 9.986e-05 1.522e-02 1.014e-02 5.903e-03
Table B.11: Converged strain energy table, GSRI= 200.
% (3/m°) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 -7.465e-06 2.011e-02 1.324e-02 5.327e-03
H8-Distorted | -1.014e-05 1.975e-02 1.161e-02 5.268e-03
H27 1.006e-04 1.518e-02 1.081e-02 5.478e-03
H27-Distorted| 1.008e-04 1.573e-02 1.033e-02 5.597e-03
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Table B.12 Converged strain energy table, GSRI= f(A).

% (3/m3) Beam hom45y Plate hom452z Plate smooth2 Plate disc]
H8 -5.123e-05 1.927e-02 1.284e-02 5.315e-03
H8-Distorted | -6.978e-05 1.896e-02 1.140e-02 5.308e-03
H27 1.001e-04 1.510e-02 1.076e-02 5.535e-03
H27-Distorted| 9.984e-05 1.565e-02 1.029e-02 5.637e-03

B.2.3 Stabilizedoy\ Tables

Table B.13 Converged von-Mises stress table, GSiRE- 0.

ovm (MPa) Beam hom45y Plate hom452z Plate smooth2 Plate discl

H8 1.040e+00 3.821e+01 | 3.940e+01 7.498e+01
H8-Distorted | 1.766e+00 4.951e+01 | 1.600e+02 1.010e+02
H27 8.512e-01 2.617e+01 | 2.669e+01 4.646e+01

H27-Distorted| 1.252e+00 2.976e+01 | 9.881e+01 7.496e+01

Table B.14 Converged von-Mises stress table, GSiRE- 1.

ovm (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]

H8 1.371e+00 4.230e+01 4.241e+01 7.634e+01
H8-Distorted | 2.059e+00 5.230e+01 1.569e+02 1.019e+02
H27 1.001e+00 2.590e+01 2.646e+01 4.739e+01

H27-Distorted| 1.397e+00 2.939%e+01 | 9.795e+01 7.485e+01

Table B.15 Converged von-Mises stress table, GSiRE- 50.

ovm (MPa) Beam hom45y Plate hom452z Plate smooth2 Plate discl

H8 4.812e+00 8.794e+01 7.439e+01 8.399e+01
H8-Distorted | 5.437e+00 9.572e+01 1.322e+02 9.469e+01
H27 3.302e+00 3.879e+01 3.326e+01 5.279e+01

H27-Distorted| 3.780e+00 4.273e+01 | 8.810e+01 7.281e+01




Table B.16 Converged von-Mises stress table, GSiRE- 100.

ovm (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 6.063e+00 1.063e+02 | 8.761e+01 8.479e+01
H8-Distorted | 7.164e+00 1.155e+02 1.228e+02 9.948e+01
H27 4.492e+00 4.717e+01 3.837e+01 5.422e+01
H27-Distorted| 5.025e+00 5.272e+01 8.429e+01 7.146e+01
Table B.17 Converged von-Mises stress table, GSiRE- 200.
ovm (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate discl
H8 7.246e+00 1.280e+02 1.038e+02 8.517e+01
H8-Distorted | 9.189e+00 1.391e+02 1.127e+02 1.048e+02
H27 6.097e+00 5.842e+01 | 4.644e+01 5.577e+01
H27-Distorted| 6.675e+00 6.526e+01 | 7.917e+01 6.974e+01
Table B.18 Converged von-Mises stress table, GSiRE- f(A).
ovm (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc]]
H8 1.041e+00 3.821e+01 3.940e+01 7.498e+01
H8-Distorted | 1.765e+00 4.951e+01 1.600e+02 1.010e+02
H27 8.507e-01 2.617e+01 | 2.669e+01 4.646e+01
H27-Distorted| 1.252e+00 2.976e+01 | 9.881e+01 7.496e+01
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B.3 Convergence Plots, Stabilized Treatments
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Figure B.1: Legend for the curves of stabilized GSRI.

B.4 Linear Hexahedra

B.4.1 Example, 1-Fiber, Homogeneous Beam
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(b)

Figure B.2: Maximum displacement study for varying stabilizatimrfor H8, hom45y: a)imax
and b)umax Error (see legend in figure B.1).
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Figure B.3: Strain Energy study for varying stabilizatien for H8, hom45y: ayZ and b)%
Error (see legend in figure B.1).

B.4.2 Example, 2-Fiber, Homogeneous Plate
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Figure B.4: Maximum displacement study for varying stabilizati@rfor H8, hom45z: aliyax
and b)umax Error (see legend in figure B.1).
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Figure B.5: Strain Energy study for varying stabilizatien for H8, hom45z: ayZ and b)%
Error (see legend in figure B.1).

B.4.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate
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Figure B.6: Maximum displacement study for varying stabilizatianfor H8, smooth2: a)
Umax and b)umax Error (see legend in figure B.1).
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Figure B.7: Strain Energy study for varying stabilization for H8, smooth2: ay/ and b)%
Error (see legend in figure B.1).

B.4.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate
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Figure B.8: Maximum displacement study for varying stabilizationfor H8, discl: a)umax
and b)umax Error (see legend in figure B.1).
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Figure B.9: Strain Energy study for varying stabilizatian for H8, discl: a)Z and b)%
Error (see legend in figure B.1).

B.5 Distorted Linear Hexahedra

B.5.1 Example, 1-Fiber, Homogeneous Beam
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Figure B.10. Maximum displacement study for varying stabilization for H8-Distorted,
hom45y: a)umex and b)umax Error (see legend in figure B.1).
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Figure B.11: Strain Energy study for varying stabilizatiof for H8-Distorted, hom45y: &)/
and b)% Error (see legend in figure B.1).

B.5.2 Example, 2-Fiber, Homogeneous Plate
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Figure B.12 Maximum displacement study for varying stabilization for H8-Distorted,
hom45z: aumax and b)unax Error (see legend in figure B.1).
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Figure B.13: Strain Energy study for varying stabilization for H8-Distorted, hom45z: &y
and b)% Error (see legend in figure B.1).

B.5.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate
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Figure B.14 Maximum displacement study for varying stabilization for H8-Distorted,
smooth2: a)lmax and b)umax Error (see legend in figure B.1).
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Figure B.15: Strain Energy study for varying stabilizatiof for H8-Distorted, smooth2: &y
and b)% Error (see legend in figure B.1).

B.5.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate
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Figure B.16. Maximum displacement study for varying stabilization for H8-Distorted,
discl: a)umax and b)unax Error (see legend in figure B.1).
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Figure B.17: Strain Energy study for varying stabilizati@n for H8-Distorted, discl: ay/
and b)% Error (see legend in figure B.1).

B.6 Quadratic Hexahedra

B.6.1 Example, 1-Fiber, Homogeneous Beam
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Figure B.18 Maximum displacement study for varying stabilizationfor H27, hom45y: a)
Umax and b)umax Error (see legend in figure B.1).
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Figure B.19: Strain Energy study for varying stabilizatien for H27, hom45y: ayZ and b)
% Error (see legend in figure B.1).

B.6.2 Example, 2-Fiber, Homogeneous Plate
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Figure B.20: Maximum displacement study for varying stabilizationfor H27, hom45z: a)
Umax and b)umax Error (see legend in figure B.1).
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Figure B.21 Strain Energy study for varying stabilizatien for H27, hom45z: ay/ and b)

% Error (see legend in figure B.1).

B.6.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate
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Figure B.22 Maximum displacement study for varying stabilizatignfor H27, smooth2: a)

Umax and b)umax Error (see legend in figure B.1).
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Figure B.23 Strain Energy study for varying stabilizatien for H27, smooth2: a¥/ and b)
% Error (see legend in figure B.1).

B.6.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate
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Figure B.24: Maximum displacement study for varying stabilizatimrfor H27, discl: aJmax
and b)umax Error (see legend in figure B.1).
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Figure B.25. Strain Energy study for varying stabilizatien for H27, discl: ayZ and b)%
Error (see legend in figure B.1).

B.7 Distorted Quadratic Hexahedra

B.7.1 Example, 1-Fiber, Homogeneous Beam
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Figure B.26. Maximum displacement study for varying stabilizatianfor H27-Distorted,
hom45y: a)umex and b)umax Error (see legend in figure B.1).
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Figure B.27: Strain Energy study for varying stabilizati@n for H27-Distorted, hom45y: a)
% and b)% Error (see legend in figure B.1).

B.7.2 Example, 2-Fiber, Homogeneous Plate
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Figure B.28 Maximum displacement study for varying stabilizatianfor H27-Distorted,
hom45z: alumax and b)umax Error (see legend in figure B.1).
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Figure B.29 Strain Energy study for varying stabilizatien for H27-Distorted, hom45z: a)
% and b)% Error (see legend in figure B.1).

B.7.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate
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Figure B.30: Maximum displacement study for varying stabilizatianfor H27-Distorted,
smooth2: a)lmax and b)umax Error (see legend in figure B.1).
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Figure B.31 Strain Energy study for varying stabilizatien for H27-Distorted, smooth2: a)
% and b)7 Error (see legend in figure B.1).

B.7.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate
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Figure B.32 Maximum displacement study for varying stabilizatianfor H27-Distorted,
discl: a)umax and b)unax Error (see legend in figure B.1).
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Figure B.33 Strain Energy study for varying stabilizatien for H27-Distorted, discl: ay/
and b)% Error (see legend in figure B.1).
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