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Methods exploring the role of viscoelastic material characterization in vibroacoustic

simulations of marine mammal structural responses are presented. This work is guided by a

sensitivity analysis performed using the Vibroacoustic Toolkit VATK. In this sensitivity study,

computational results are compared with published experimental results arising from the 1974

efforts of Kenneth S. Norris and George W. Harvey.

Experimental efforts include the development, calibration, and testing of a portable

dynamical mechanical rheometer. For each sample tested theYoung’s modulus, shear modulus,

and viscosity are sought. Mechanical forces, less than a pound, are applied to the tissue through

an adhesive interfacial layer. A post-processing routine is developed and results are evaluated.
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Certain anisotropic elastic materials, such as the homogenized model of a fiber-

reinforced matrix, are nearly rigid under stresses appliedin a direction of material rigidity–the

resulting strains are comparatively small when viewed against the strains that would occur in

response to otherwise directed stresses. Isotropic materials may have dilational rigidity, which

we show to be a special case of this generalized treatment.

Some common finite element techniques are effective in dealing with volumetric lock-

ing, but are not suited to handle anisotropic materials thatlock under non-hydrostatic stress

states. The failure of the traditional B-bar method is attributable to the fundamental assumption

that the mode of deformation to be relieved is one of near incompressibility. The proposed rem-

edy exploits the spectral decomposition of the compliance matrix of the anisotropic material.

The spectrum separates nearly-rigid and flexible modes of stress and strain leading naturally

to a generalized selective reduced integration. What’s more, this decomposition also enables a

three-field formulation, of elastic strain energy conservation, which results in a B-bar method

applicable to general anisotropic materials with nearly-rigid fibers.

When materials with multiple rigid fiber directions are treated with more than one spec-

trally defined deformation mode, element stabilization maybe necessary. A working stabiliza-

tion method is provided. This stabilization leads to a variable treatment model that also offers

improved performance for isotropic materials that do not have rigid strain modes.
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Chapter 1

Introduction and Background

Proceeded by a review of pertinent background fundamentals, this work is comprised of

three distinct but related efforts to better understand anddevelop methods for the vibroacous-

tic analysis of aural structures in marine mammals: Part I, asensitivity analysis comparing

vibroacoustic simulations to published experimental results; Part II, the design, fabrication,

and testing of an experimental rheometer; and Part III, improved methods to treat anisotropic

materials simulated using the finite element method. Although the thrusts are in their essence

analytical, a good portion of this dissertation is devoted to the development of a portable exper-

imental device used to determine the viscoelastic properties of biological tissues.

1.1 Marine Mammals

The study of marine mammal acoustic pathways and is a rich andadvancing science.

While a great interest in the topic has been seen in recent years, the study of whale acoustics

has a long history. There are several important topics within the study of underwater acoustics

including the means of communication and the methods of ecolocation employed by marine

mammals.

Whales (cetaceans) have advanced ears, which are considered to be the most derived of

all the mammals. Toothed whales in particular are known to hear extraordinarily high frequen-

1
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cies, up to 180 kHz in some species [2]. Baleen whales on the other hand are thought to have

the ability to hear frequencies lower than any other animal [3].

In 1787, John Hunter observed that whale ears have the same structures as quadruped

ears; they have an external opening, a tympanic membrane, the eustachian tube, ossicles,

cochlea, and semicircular canals [4]. By the 1920s other scientists were comparing the skulls

of current species to fossil cetaceans in search of an improved understanding of different evo-

lutionary modifications that accompanied the move to an aquatic environment [5]. A hearty

debate with numerous competing theories of the auditory mechanism of cetaceans ensued.

In 1962 Dudok Van Heel concluded that the ear canal is vestigal [6]. In 1984 Norris

suggested that odontocetes receive sound by way “acoustic fats” surrounding their lower jaws

[7]. In 1966 Purves insisted that the ear canal is indeed not vestigal [2]. In 1968 auditory

evoked potentials were used to support Norris’ conclusion [8]. In 1970 McCormick and his

colleagues stipulated that the ear canal is not functional after all and supported the bone con-

duction theory [9]. In 1974 Norris and Harvey used hydrophones implanted in dead porpoise

heads to strengthen the lower jaw acoustic fat pathway; in 1988 Brill used a hood on the lower

jaws of live odontocetes to perform tests that mark wideningacceptance of Norris’ theory [10].

In 2001 Navy sonar is linked the beaching of whales in the Bahamas [2], and in 2009 it was

determined that hearing loss can be attributed to intense and prolonged exposure to sonar [11].

In this dissertation, some attention will be given to the 1974 publication of Norris and Harvey.

Emerging computational techniques are used to generate simulations which will be compared

to the experimental results of their seminal work.

The continued study of marine mammal underwater acoustics is driven in part by con-

cerns about how modern shipping and the use of sonar adversely affects the well being of ma-

rine mammals. Background noise may be making it difficult forwhales to communicate over

long distances and hindering the effectiveness of their echolocation. Furthermore, an essential

step is understanding how residual aquatic noise affects which frequencies they can hear. It is

hoped that these and similar efforts could lead to improved conservation measures [12]. The

present work is concerned with engineering methods that will assist marine mammologists in
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understanding the structural response of cetaceans to underwater acoustic signals such as sonar

and shipping noise.

1.2 Auditory Systems

Marine mammal auditory systems are complex. Understandingacoustic pathways re-

quires more than inspecting the details of the biological systems themselves. It also requires

exploring structural dynamics, material science, and acoustic wave propagation. There are

several important components that make up the aural and echolocation structures of marine

mammals, and a brief review of the relevant biological terminology is warranted.

There are two suborders of Cetacians (whales): Odontoceti (toothed whales) and Mys-

ticeti (baleen whales). Cetacians are descendants of land dwelling mammals. Odontecetes

include the dolphins, porpoises, and orcas; they possess sharp teeth suited to hunting. The

mystecetes, sometimes called the “great whales,” include some often endangered large species

such as the blue whale, and humpback whale. Although sperm whales are indeed large, they are

in fact toothed whales. Unlike odontocetes, mysticetes have sieve-like structures in the upper

jaw that are adapted to filter nutrient rich plankton from thewater. It is believed that Baleen

whales are likely to be sensitive to lower acoustic frequencies than any other mammal alive

today [3].

The auditory anatomy of cetaceans is highly adapted for underwater hearing. They

don’t have outer ears, external pinnae, as do most terrestrial mammals. Their ear canals are no

more than a very narrow channels, considered to be vestigialin odontocetes [13, 6, 9, 14]. As

the animals evolved, the middle and inner ears found locations laterally outward from the skull

and became encapsulated in the protective structure of the typanoperiotic complex [4, 15, 16].

Beyond these general anatomical structures the anatomies of auditory systems are suborder

specific.

In 1964 scientist Ken Norris offered an important breakthrough suggesting that spe-

cialized fat bodies surrounding the lower jaws of dolphins provide a potential low impedance
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pathway for sound to get to the ears. Eventually, after a series of validation studies, this hypoth-

esis became widely accepted and is now the prevailing model of how sound enters the inner

ears of odontocetes [12, 2].

Terrestrial mammals receive sound by way of an air filled outer ear and an impedance

matching liquid filled middle ear. Odontocete aural structures have foregone the outer ear in

lieu of multiple lobes of fatty tissue leading to the tympanoperiotic complex (TPC) [14]. The

lobes of acoustic fats are separated by a very thin portion ofthe jaw bone called the “pan bone”

whose precise role remains an issue of continued research [14, 17, 3].

Sound conduction through bone is not considered to be a significant acoustic pathway

since there is, in most odontocetes, no connective tissue adherent among the skull and tym-

panoperiotic complex [18, 19, 20, 21]. When sound waves arrive at the inner ear of whales,

a fluid filled spiral shaped channel (cochlea) sends the signals to the basilar membrane which

stimulates hair cells. These in turn transmit electrical pulses to the brain to be perceived as

distinctive sounds.

Odontoceti rely on acoustic fats to transmit sound from the surrounding water to the

middle and inner ears. The most likely pathway for sound reception in odontocetes is through

acoustic fats in the lower jaw, which connect the tympanic and periotic bones that make up the

tympanoperiotic complex of the ears [14, 17, 22, 23].

These acoustic fats are comprised of inner and outer lobes covering different portions

of the lower jaw (Norris 1968, Ketten 1994, 1997, Ridgway 1999). Some research suggests

the existence of a third fat channel lateral to the TPC and near the external auditory meatus

opening, which is sensitive to sonic excitation below 3 kHz (Bullock et al. 1968). Later research

suggests that this opening is more sensitive to sound below 20 kHz [24]. The existence of this

third acoustic fat channel was eventually verified using magnetic resonance imaging [17].

Two acoustic windows in the bottlenose dolphin were confirmed and characterized us-

ing auditory brainstem response latencies. The acoustic window was estimated to be near the

meatus opening and to be sensitive to frequencies below 22 kHz. Sounds above 32 kHz were

determined to be transmitted by the lower jaw [25].
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The auditory pathways of Odontoceti have been well described, but are less known

in Mysticeti whose tempanomandibular anatomies are known to be quite different. However,

recent research suggests the existence of a fat body which ishypothesized to act as an important

sound reception pathway. It lies lateral to the typanoperiotic complex of the minke whale

(Yamato et al. 2012). In a noteworthy experiment, an area of the minke whale tympanic bone

was stimulated with a 20 nm amplitude at frequencies rangingfrom 20 Hz to 50 kHz using a

piezoelectric stack. This resulted in movement of the stapes bone, which provides an acoustic

input to the cochlea [26, 3].

The mysticete ear fats and odontocete acoustic fats are likely homologous anatomical

structures which underwent continued adaptation for high-frequency hearing and echolocation

in the odontocetes. It is thought that exploration of both bone and soft-tissue anatomy around

ear is instrumental in advancing our understanding of soundreception mechanisms in mys-

ticetes [3].

There exists a significant and growing body of experimental work that focuses on the

use of audiograms, or frequency threshold graphs measured by an audiometer, to identify the

audible frequency ranges as well as frequencies of greatestauditory sensitivity in odontocetes.

These results vary widely, and suggest a broad range of hearing from 0.25 to 200 kHz. The

estimated frequencies of greatest sensitivity range anywhere from 1.6 to 160 kHz across many

species [2]. The meaning of these results is complicated by many factors including: limited

sample sizes within a species; age related hearing loss; andpoorly understood background

noise effects.

Since the passing of the Marine Mammal Protection act of 1972, invasive electrophys-

iological studies of whales in the United States has slowed markedly. In all, the search for

understanding of hearing in cetaceans is well served by structural analysis efforts.

When a rare, possibly endangered, whale is beached teams of marine mammologists

flood the scene. Whales are usually large and unwieldy and dissection must be done quickly,

before tissue decay renders the efforts futile. If it is possible an entire head is removed, frozen,

and transported to a special laboratory to be scanned in industrial sized Computed Tomog-
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raphy (CT) scanners. These scans allow a three-dimensionalvisualization of the anatomical

structures before the cutting begins. Because soft tissue loses its native shapes when cut, the

scanned models are an essential tool in understanding the original shapes and orientations of

key anatomical features.

Marine mammologists dissect beached whales in hopes of finding out how sound is

transmitted from the ocean to the animal’s inner ears and howthe ears themselves function.

Ascertaining which frequencies they can hear and whether active sonar is likely to damage

whale hearing is of primary concern.

While much can be learned from traditional methods of dissection in exploring the

functional morphololgy of whale aural systems, there are many gaps in this approach which

lead to much speculation and debate. Computational modeling of marine mammal bioacoustics

provides a means to begin to fill these gaps.

1.3 Computational Modeling of Bioacoustics

In collaborative efforts, marine mammologists and engineers have developed computa-

tional models of the anatomical structures involved in whale bioacoustictics. These are used

to intelligently guide investigations of functionality inmandibular strucrues, manibular fats,

cranial air sacs,and typmanic structures [27, 28].

Aroyan et al. [27] developed two dimensional finite difference techniques to investigate

the roles that skull shape and tissue-air boundary interfaces play in providing an acoustic mirror

for the propagation of generated echolocation pulses. Thisstudy also supported the notion that

melon fats provide a means to narrowly focus these beams.

Vibro-acoustic simulation is a valuable tool used to gain insight into the multifaceted

phenomena at play in marine mammal acoustic responses. Key to these simulation, as well as

to any structural simulation, is a well defined set of material property inputs. For our biological

structures of interest a viscoelastic model is usually the best choice. However, this can be prob-

lematic. There is no easy way to quantify the viscoelastic properties of tissues. An important
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task of the present work explores ways to bridge this gap.

Studying cetacean soft-tissues is not easy. Adequate specimens are rare and dissections

are difficult, often being performed on a beach. The size of the animals alone makes the task

of whale anatomy exploration a logistical challenge. Many researchers are combining methods

of dissection with noninvasive imaging techniques the likes of computerized tomography and

magnetic resonance imaging to map complex anatomical structures [23, 3].

Whale heads are placed in industrial CT scanners and images are taken in planar slices

of 0.1to 3 mm thicknesses. These scans provide information rich three dimensional images that

can be used to construct finite element meshes used in vibroacoustic simulations [28].

Vibroacoustic finite element simulations of scanned whale heads provide a practical

means of assembling a unified theory of underwater sound reception. Since a good portion of

this dissertation is dedicated to the experimental determination of viscoelastic material proper-

ties, a review of fundamental concepts is warranted.

1.4 Viscoelasticity

Viscoelasticity is the property of matter that describes how it resists and recovers from

applied loads. Even for small strains, such as those undergone under acoustic excitation, prior

research has found that viscoelastic properties must be acounted for when modeling tissue

behavior [29]. The elastic contribution involves the reversible effects–its ability to recover to its

unloaded state. The viscous part describes the energy loss and how the response depends on the

time-rate of loading. A special class of viscoelastic materials, called anelastic materials, recover

fully to their unloaded kinematic state, provided enough time is allowed for this recovery.

Anelastic solids recover fully from viscoelastic creep, and are a focus of this work. Here the

time-dependent response is recoverable, unlike familiar visco-plastic flow. The remainder of

this section is dedicated to a review of some notions key to the study of viscoelasticity.

Rheology is concerned with the study of viscous flow, elasticity, and any combination

of the two. A material is said to be viscoelastic if its deformation response produces stresses
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that depend on both strain and strain rate. Some examples of viscoelastic materials include:

rubbers, polymers, glasses, and tissues. Viscoelastic materials behave in a way that is in some

ways like a viscous fluid and in some ways like an elastic solid.

These materials exhibit creep, which is an increasing deformation response to a sus-

tained load or state of stress in the way that very old glass flows downward under its own

weight. Viscoelastic materials also exhibit relaxation, which is a decreasing stress response to

a sustained state of deformation or strain in the way that rubber band loses its pull over time.

The hysteresis response is elliptical and the area circumscribed is directly related to the heat

energy lost in the cycle.

Viscoelastic materials dissipate energy and the viscosityis often described in terms of a

loss modulus. In this sense, a solid with high viscosity is sometimes said to be a lossy material.

When deformed adequately, polymers undergo a molecular rearrangement. In particular, long

polymer chains are disturbed and reconfigured. In so-called“linear viscoelasticity” the stress

and strain responses are separable.

Some phenomena that are observed in viscoelastic materialsinclude [30]: (1) “creep”

which occurs if the stress is held constant, and the strain increases with time; (2) “relaxation”

which occurs if the strain is held constant, and the stress decreases with time; (3) the effective

stiffness depends on the rate of application of the load; (4)if cyclic loading is applied, a phase

lag occurs, leading to a dissipation of mechanical energy; (5) acoustic waves experience atten-

uation; (6) rebound of an object following an impact is less than 100 percent; and (7) during

rolling, frictional resistance occurs.

Viscoelastic parameters are often represented as a complexmodulus such as: the com-

plex Young’s modulusE∗ = E ′+ iE ′′; or the complex shear modulusG∗ = G′+ iG′′. The real

component of a complex modulus (E ′ or G′) is referred to as the storage modulus, and the

imaginary component (E ′′ or G′′) is the loss modulus. Complex elastic moduli are extensions

of their real counterparts, where the imaginary componentsaccount for phase shift effects.

In his bookTheory of viscoelasticity (p.71) R.M. Christensen describes the utility of

this complex expression of moduli:
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Steady state harmonic problems, either with or without inertia terms in the equa-
tions of motion, can be solved in a manner formally the same asthat for compara-
ble elasticity type problems. In fact, steady state harmonic elastic solutions can be
converted to corresponding viscoelastic solutions through the replacement of the
elastic moduli by the corresponding complex viscoelastic moduli. The actual com-
putation of solution variables involves complex number arithmetic which accounts
for phase angle shift effects [31].

The steady-state harmonic response provides the followinguseful relations:

σ(t) = σ0sin(2πωt) , (1.1)

and

ε(t) = ε0sin(2πωt−δ ) . (1.2)

The areas circumscribed by the stress-strain hysteresis ellipse is indicative of energy dissi-

pated per cycle. The viscosity is neatly related to the phaseshift angleδ which is suitably

quantified by its tangent having

tanδ =
G′′

G′
, (1.3)

and

δ = tan−1G′′

G′
. (1.4)

The magnitudes of the complex viscoelastic moduli are

|G∗|= 2
√

G′2+G′′2 , (1.5)

and

|E∗|= 2
√

E ′2+E ′′2 . (1.6)

The dynamic viscosity can be expressed as

η ′ =
G′′

ω
, (1.7)

where highly dissipative materials exhibit greater dynamic viscosities. The damping ratioζ is

a measure of damping, or energy dissipation qualities, with

ζ =
G′′

G′
(1.8)
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(ζ < 1 is under-damped,ζ = 1 is critically damped, andζ > 1 is overdamped [30]).

The isotropic, elastic constitutive relation reads

σi j = 2µεi j +λεkkδi j , (1.9)

and the viscolastic version reads

σi j =

∫ t

0
2µ(t− τ)

dεi j

dτ
dτ +

∫ t

0
λ (t− τ)δi j

dεkk

dτ
dτ . (1.10)

The complex viscoelastic constitutive relation reads

τshear(t) = (G′+ iG′′)γ0eiωt = |G∗|eiωt−δ ; (1.11)

in one dimension we haveσε0
= E ′+ iE ′′, and τshear

γ0
= G′+ iG′′.

Creep and relaxation are key notions of viscoelasticity. Creep is the progressive defor-

mation of a material under constant stressσ(t) = σ0H(t). Whereas relaxation is the gradual

decrease of stress at constant strainε(t) = ε0H(t). The material response is most affected by

its recent history, a notion referred to as "fading memory [31]."

The phase shift or “phase lag"δ , that temporally separates the stress and strain steady

state responses under controlled harmonic excitation, is ameasure of viscous damping or dis-

sipated energy. The loss tangent is a measure of viscosity inviscoelastic material. Sometimes

calledtanδ , pronounced “tan-delta," it relates the phase shiftδ to the storage and loss moduli

by: tanδ = G′′
G′ = ζ . The dynamic viscosityη ′ = G′′

ω , whereω is the excitation frequency in

radians per second, is a strain-rate dependent expression of a material’s dissipative qualities.

Tissues are viscoelastic materials; they behave like elastic solids and like viscous fluids.

The speed of acoustic waves traveling through a tissue depends on the tissue’s elastic proper-

ties, and the severity of signal attenuation depends on viscosity. Viscoelastic properties, such

as elastic moduli and loss tangent, are important inputs to our vibroacoustic computational

simulations.

Numerical modeling often assumes a Maxwell or Kelvin-Voigtelement. A Maxwell

element consists of spring and a dashpot in series. The Kelvin-Voigt model provides a similar



11

element wherein the spring and dashpot are parallel to one another. The Maxwellian model

reads

1
E

dσ(t)
dt

+
σ(t)

η
=

dε(t)
dt

= ε̇(t) , (1.12)

while the Kelvin-Voigt model reads

σ(t) = Eε(t)+η
dε(t)

dt
= Eε(t)+ηε̇(t) . (1.13)

Tissues are rarely homogeneous or isotropic, and they also change appreciably when

removed from their biological environments. To further complicate endeavors, biological pro-

cesses often directly effect key properties such as: elastic stiffness; viscosity; history of patho-

logical processes; and chemical reactivity to name a few [32]. Experimental data on tissue

elasticity is not only scarce, it is a primary limiting factor in using elasticity imagining as a

way to distinguish diseased from normal tissues [33]. Palpation is a time-honored method

of qualitatively determining the elastic response of tissues for disease diagnosis [34]. In the

present work, equipment and devices used to quantify tissueproperties by way of automated

“palpation,” or Dynamic Mechanical Analysis (DMA) are presented.

1.5 Tissue Characterization Methods

Dynamic Mechanical Analysis involves applying harmonic mechanical excitation and

measuring the material response. In a purely elastic material, the stress and strain responses

are in phase with one another. If the material is viscous, thestrain will lag behind the stress.

In principle, a sample is excited with the application of a well controlled boundary force as

instrumentation records the material response.

Commercially available material testing devices are not specifically intended for the

range of elastic moduli seen in soft biological tissues. Some researchers have adapted available

instruments towards this end. Others develop their own mechanical devices to perform such
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tests. The majority of these methods use compressive methods that are highly dependent on

both the size and shape of the indenter tip and the geometry ofthe sample[34].

A scientist named Eric Goodyer introduced a Linear Skin Rheometer (LSR) for use in

viscoelastic characterization of human vocal fold in-situ[35]. The device is, at heart, a dy-

namic mechanical analyzer operating in a displacement-control configuration. Some important

limitations of the LSR involve the significant, and difficultto account for, inertial effects of

its moving axis as well as the poor boundary contact that develops as a shearing contact-pin

deforms the sample during excitation.

Magnetic resonance elastography (MRE) is a promising technology that uses medical

imagining techniques on a tissue body as is subjected to varying states of mechanical stress.

The image provides a view of the kinematic state which, when considered in combination with

the known stress state, provides a rheological–typically elastic–characterization of that body.

Unfortunately, MRE requires very expensive equipment thatis not portable.

There is a significant body of research dedicated to the use ofultrasonic time-of-flight

methods in characterizing the properties of soft solids. Measuring the bulk modulus with ultra-

sonic methods involves sending a pulse through a sample and measuring the time is takes the

traverse the distance. The speed of transit is simply related to the bulk modulus of the mate-

rial. This relation depends on the density of the material and is given bycmat =
√

κ
ρ . Some

success has been realized, but ultrasonic methods are generally better suited for materials that

are much stiffer than typical tissues. Nonetheless, this isa promising direction worthy further

consideration.

While many of these methods are well suited to a controlled laboratory testing environ-

ment, few are readily adaptable for field work. There is a pressing need for viscoelastic material

estimation that is conducive to in situ dissection where sample preparation is minimal and time

is of the essence. In hopes of fulfilling this need a new devicehas been fabricated and tested.
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1.6 Experimental Rheometer

This work presents a prototype linear shear rheometer that takes advantage of a unique

boundary configuration and novel instrumentation for dynamical mechanical analysis. The de-

vice is not far removed from the linear skin rheometer [35]. The design is, however, notably

different and improvements include the use of a voice coil for force generation, automated

sample positioning control capability, improved instrumentation, a controlled boundary config-

uration, and the use of an advanced data acquisition board capable of megahertz sampling. The

design accommodates several testing modes in either force or displacement control, and the ad-

vanced instrumentation allows point-of-contact analysisthat gives results that are independent

of the moving mass of the control axis.

The thick sample assumption in the fixture design allows for material characterization

assertions that are not bound to discrete descriptions. Continuum properties are estimated for

both semi-infinite and cylindrical sample geometries. Furthermore, these estimations are not

highly sensitive to input estimation such as sample thickness, centering of the loaded boundary,

and the assumed value of Poisson’s ratio. The development ofthis experimental device has

been undertaken with particular goals in sight. It must be portable, robust, and relatively easy

to use.

1.7 Dissertation Outline

Part I is a sensitivity analysis comparing vibroacoustic simulations to published exper-

imental results. This work is entirely contained within Chapter 2.

Part II chronicles the design, fabrication, and testing of an experimental rheometer.

Chapter 3provides an overview of the mission objective, design considerations, prototyping,

and fabrication of the experimental device. Chapter 4provides the theoretical and computa-

tional framework key to interpreting the experimental results and converting instrumentation

signals to viscoelastic properties such the shear storage and loss modulus. To conclude Part II,
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Chapter 5details instrument calibration, provides results that arecompared to independently

obtained data, and puts the device to the test with real biological tissues.

Part III presents improved methods to treat anisotropic materials simulated using the

finite element methods that are not prone to rigid locking andunderestimated deformation

states. Chapter 6introduces the Generalized Selective Reduced Integrationand modified B-bar

methods with the treatment of the most rigid mode of the compliance matrix, and Chapter 7

extends the methods to treat multiples modes. Chapter 8introduces stabilization methods and

part III concludes with Chapter 9which offers some naturally arising variable treatments with

surprising performance characteristics.

Finally, Chapter 10discusses the findings and suggests future research directions related

to the work presented here.



Part I

Vibroacoustic Analysis

15



Chapter 2

Sensitivity Analysis and Another Look at

the Norris and Harvey Study of 1974

In 1974, Norris and Harvey performed an experiment involving sound transmission

into the head of the bottlenose dolphin. They measured generated broadband acoustic pressure

signals at various receiver locations in the dolphin’s head. The sources were positioned at

different locations in the surrounding water [1], as shown in figure 2.1.

We qualitatively compare the experimental data from the previous study to the results

of simulations made using the vibro-acoustic toolkit VATk [28]. The computational model is

used to predict the pressure profiles using input data such asmaterial properties, transducer and

hydrophone locations, and the geometry of the animal’s head. The material input parameters

are estimated using values that have been published for similar tissues. No reliable material

properties are available for the actual specimen used to create the 3-D geometry used in the

simulations. Furthermore, the simulations use the geometry of a different specimen than did

the experimental efforts. As such, significant modeling error is expected to be propagated

throughout the simulations. Nonetheless, comparing the simulations to the rare experimental

data provides valuable insight. It should be clearly emphasized here, that no quantitative asser-

tions are made in this study. Only the quality, or shapes, of the experimental and simulated data

are compared.

16
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Figure 2.1: Norris and Harvey experimental setup.

2.1 A Second Look at the Original Study

In their 1974 study, Norris and Harvey suspended the head of arecently deceased ma-

ture Tursiops truncatus in saltwater. They installed an 82 cm arm that was rotated horizontally

around the head. At the end of the arm, transducers were installed to generate sounds which

would be received by implanted hydrophones. These hydrophones were placed in various key

locations of the carcass. The sound pressure curves were published in Figure 1 of Reference

[1]. These values represent the sensor voltages which were never converted to pressures. Even

uncalibrated, these data offer a rare source for use in validation of our vibroacoustic model,

which is described in detail in Reference [28]. This rare source of data is used to validate the

Vibroacoustic Toolkit VATK.
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Figure 2.2: Norris and Harvey [1] curves (Reproduced).

Figure 2.3: Norris and Harvey [1] hydrophone locations (Reproduced).
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2.2 Vibroacoutic Model

The effectiveness of the VATk model rests on the superposition of the known incident

pressure field and the unknown perturbation field. This software is used to predict the pressure

curves using input data that is based on informed guesses guided by published properties of

similar tissues. The estimated inputs include viscoelastic material properties, hydrophone and

transducer locations, and the geometry of the animal’s head.

Since an acceptable computed tomography (CT ) scan of a Tursiops truncatus is

not available, our computational predictions were made using the CT scan of a similar

species, Delphinus delphis (specimen KDX198). The 3-D image voxel dimensions were

0.625x 0.625x 0.625mm. The input volume was made up of 840x 461x 524 voxels.

The voxel block is divided into elements of identical size and shape. The finite ele-

ment method discretizes the domain into elements that coincide with these voxels. The central

difference method is used to integrate the dynamic responseof the scattered wave. Forcing

is provided by the incident wave. The scattered pressure wave, however, is subject to absorb-

ing boundary conditions at the computational boundary. This boundary treatment only allows

waves to leave, and not to enter, the volume of the computational domain. The plane-wave

approximation is used for the absorbing boundary conditions.

In order to limit computational costs, resampling of the original CT scan is required.

This works to reduce the total number of voxels. The voxel dimensions of the model were 2.5

x 2.5 x 2.48 mm. Empty space in the resampled mesh is filled withvoxels having an intensity

that corresponds to that of seawater. This is done to fill the space between the hydrophones and

the transponder locations at the end of the 82 cm long arm. Thecomputational domain ends

up being a 3-D image of 485 x 266 x 731 voxels. These voxels are in turn converted to, nearly

cubical, finite elements.

Norris and Harvey [1] reported good data for the hydrophones, six of which were lo-

cated in the following locations: (1) external auditory meatus, (2) mandibular fat body anterior

to bulla, (3S) blubber over pan bone, (3D) mandibular fat body (6.8 cm deep), (6) Mellon, made
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lateral (5.3 cm deep). The focus of the present study is limited to these five locations. The re-

maining locations were excluded because they gave zero-voltage signals throughout testing. In

the original experimental setup the authors do provide onlyvague indication of the locations of

the specific data points used.

In the simulations, the receiver and transducer locations are reversed, as justified by the

principle of acoustic reciprocity. The sound “sources” arelocated in one of the five “receiver”

locations (1), (2), (3S), (3D), (6), and the receiver stations are located at the end of the “arm”

at 10◦ increments between -80◦ and +80◦ . Throughout, 0◦ represents the location directly in

front of the animal. A pure tone over a single cycle at 20 kHz isused as the source of acoustic

excitation. The propagated wave is tracked for enough time so that the signal burst traverses

beyond all of the receiver stations.

The material properties used in the simulations are not considered to be function of

exctitation frequency. The excitation frequencies are takes to be 20000| : Hz throughout.

2.3 Published Material Properties

Published literature provides the estimated mechanical properties for the tissues in-

volved. The assumed mechanical properties of bone are: Young’s modulus E=20000 MPa,

Poisson ratioν = 0.2 and densityρ = 2600kg ·m−3 [36]. The estimated material proper-

ties of the soft tissues, as published in [37] except for the acoustic fats for which Norris

and Harvey provide values [1], are as follows: (1) connective tissue having a sound speed

of c = 1620m · s−1, a density ofρ = 1087kg ·m−3, and a Young’s modulus ofE = 0.124MPa;

(2) muscle tissue having a sound speed ofc = 1520m · s−1, a density ofρ = 993kg ·m−3, and a

Young’s modulus ofE = 0.1MPa; (3) blubber having a sound speed ofc = 1465m · s−1, a den-

sity of ρ = 935kg ·m−3, and a Young’s modulus ofE = 0.065MPa; and (4) four categories of

acoustic fats having graduated sound speeds ofc = 1450, 1430, 1370, and 1340m · s−1, a mass

densityρ = 937kg ·m−3, and a Young’s modulus ofE = 0.065MPa. The seawater is assumed

to have a density and sound speed ofρw = 1000kg ·m−3 andcw = 1500m · s−1 respectively.
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Estimations of material properties are fundamentally important to most any structural

simulation, and it has been established that mechanical properties of materials undergoing large

shear deformations at high frequencies are of vital importance to numerical simulations of soft

tissues [38]. The tissues of interest here have widely varying material properties. Bone is

typically several orders of magnitude stiffer than its surrounding tissue and characterizing the

properties of muscle tissue introduces a number of challenges. Most obviously, muscles be-

come more stiff when they are contracted making estimation of in vivo properties difficult at

best. The connective tissue that holds bones in position includes a few types which should be

modeled. While much more elastically compliant than bone, fat is nonetheless very impor-

tant to the vibroacoustic response. All of these property inputs are important to accuracy of

the computational predictions. Unfortunately, accurate estimations of these properties are not

usually available.

2.4 Sensitivity Analysis

A series of sensitivity analyses were performed to help in determining which of these

estimated parameters have the greatest influence on the finalsolution, and to get a better idea

about whether the model is more dependent on estimates of material properties or geometry.

Small changes in material properties lead to appreciable changes in the overall structural re-

sponses, which are often very difficult to intuitively predict. Sensitivity analysis helps with

this.

Sensitivity analysis (SA) reveals the manner in which changes to the model’s inputs

influence the model’s outputs. This can help to build understanding of a complicated model by

revealing and helping to interpret unexpected model behavior, determining which inputs have

the greatest effect on certain outputs, investigating the way the inputs combine to affect outputs,

and providing insight into which additional information might improve the model’s ability to

predict experimentally verifiable physical responses.

Although a computational model may not reproduce the exact behavior the physical sys-
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tem, its sensitivities are often useful in providing information about key features. The results of

this study supply a valuable source of information for simulating the interactions among sound

and anatomy. One of the conclusions drawn from this sensitivity analysis is that estimates of

material properties need not be highly accurate to help in understanding these complex struc-

tural responses. Even crude estimations are often valuable.

2.5 Comparisons in the Sensitivity Analysis

Comparisons are based on the correlation of the simulated curves with the normalized

published experimental data of the Norris and Harvey study.The pressure amplitudes are com-

pared across the given ranges of the incident ensonificiation angle. Because the information

provided in the aforementioned study is based on instrumentation voltage values, with un-

determined pressure field calibrations, the curves are normalized, with respect the Euclidean

norms of the data vectors for the experimental and simulatedcurves individually. Qualitative

comparisons are drawn by considering the standard correlation coefficients and coefficients of

determination. In some cases, mere visual observation of the plotted curves provides the best

understanding of input variation. It should be emphasized that only qualitative comparisons are

made.

2.6 Results

In general, the simulations faithfully reproduce the qualitative behavior of the experi-

mental data presented in the Norris and Harvey study. There is particularly close agreement in

the “Anterior bulla Left” region, where the predicted angleof maximum acoustic response is a

very close match. In certain data sets both the fit and generalshapes of the curves are improved

if the Young’s modulus of the bone is reduced to 50% of its assumed value from the literature.

It is plausible that the porosity of the bone causes its macroscopic structural behavior to appear

less rigid than material properties that were characterized at a local scale would suggest. This
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would account for the improved fit with the reduced value of Young’s modulus.

While changes in the Young’s modulus of the bone outweigh changes in the elastic

properties of the soft tissues, altering the bulk modulus ofthe soft tissues still has an appreciable

effect. Among the soft tissues considered, estimations of the bulk modulus of the acoustic fats

have the most influence on the simulated pressure fields. Including the additional consideration

of viscosity in the soft tissues, however, does not affect the solutions to the extent that the

viscosity of the bone does.

Changing the bulk modulus of the fats fosters a significant change in the resulting pres-

sure magnitudes for 8 of 10 configurations, and shows the greatest sensitivity for 4 out 5 data

sets tested. Including viscosity gives appreciable changes in the outputs only when the viscosity

is applied to the bone. Inclusion of bone viscosity produceschanges in the resulting pressure

fields for 5 out 5 data sets. Of the hydrophone configurations tested, simulations of data set 2

(Anterior Bulla Left) provided the best fit when using the reference material properties.

The qualitative match among the simulation and experimental results are improved

slightly by increasing the viscosity of bone and by increasing the bulk modulus of the acoustic

fats. Agreement of the shapes of the curves, taken by comparing the locations of local max-

ima and minima, is substantially improved when reducing theYoung’s modulus of the bone

by 50% for data sets: 1, 3S, 3D and 6. The angle of maximum pressure, determined from the

simulations, fit the experimental data with a rather large margin of plus or minus 30◦. The

predicted angle of maximum signal matches the experimentalresults in the second data set

(Anterior Bulla Left). The overall shapes of all the curves are a reasonable match to those of

the experimental results.

2.6.1 Errors at the External Auditory Meatus Hydrophone Location

We first consider the difference of the simulated and experimental curves for qualitative

comparison. Again, no quantitative assertions are made. The errors are defined as the simple

difference of the simulated and experimental pressure response vectors, each divided by it’s
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respective Euclidean norm.

Take the errors to be defined as

Error = ‖simulated data‖−‖experimental data‖, (2.1)

where‖simulated data‖ is the vector of simulated pressure responses divided by it’s Euclidean

norm, and‖experimental data‖ is the vector of experimental pressure responses divided byit’s

Euclidean norm.

Figure 2.4 shows the error surfaces of the response amplitudes sensed at the “Data 1”

position (external auditory meatus,see 2.3) as the bulk modulus the acoustic fats was varied

from a minimum of 20% below to a maximum of 20% above the reference value. The results

show that the error does not exceed 30% when the normalized simulated curves are compared

to the normalized experimental curves all for the ensonification angles of the original Norris

and Harvey study. At this hydrophone location, the maximum error occurs with the lowest

estimation of the bulk modulus at an ensonification angle of 45◦, which is on the right-hand

side of the animal.

Figure 2.4: Fats error surface for varyingκ , data set 1, varyκ of fats.

Figure 2.5 shows the error surfaces of the response amplitudes sensed at the “Data 1”

as the bulk modulus the connective tissue was varied from a minimum of 20% below to a max-

imum of 20% above the reference value. The results show that the error does not exceed 20%

when the normalized simulated curves are compared to the normalized experimental curves all
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Figure 2.5: Error surface for varyingκ , data set 1, varyκ of connective tissue.

for the ensonification angles of the original Norris and Harvey study. At this hydrophone loca-

tion, the maximum error occurs with all estimations of the bulk modulus at an ensonification

angle of−50◦, which is on the left-hand side of the animal.

Figure 2.6: Muscle error surface for varyingκ , data set 1, varyκ of muscle.

Figure 2.6 shows the error surfaces of the response amplitudes sensed at the “Data 1”

as the bulk modulus the muscle was varied from a minimum of 20%below to a maximum of

20% above the reference value. The results show that the error does not exceed 20%. At this

hydrophone location, the maximum error occurs with all estimations of the bulk modulus at an

ensonification angle of−50◦, which is on the far left-hand side of the animal.

Figure 2.7 shows the error surfaces of the response amplitudes sensed at the “Data 1”

as the Young’s modulus the muscle was varied from a minimum of75% below to a maximum
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Figure 2.7: Bone Error surface for varyingκ , data set 1, vary Young’s modulus,E, of bone.

of 75% above the reference value. The results show that the error does not exceed 10%. At this

hydrophone location, the maximum error occurs with all estimations of the Young’s modulus

at an ensonification angle of−50◦, which is on the far left-hand side of the animal.

2.6.2 Errors at the Mandibular Fat Anterior to Bulla Hydroph one Loca-

tion

Figure 2.8: Fats error surface for varyingκ , data set 2, varyκ of fats.

Figure 2.8 shows the error surfaces of the response amplitudes sensed at the “Data

2” position (mandibular fat anterior to the bulla, see 2.3).At this hydrophone location, the

maximum error occurs with the lowest estimation of the bulk modulus at an ensonification

angle of 50◦.
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Figure 2.9: Error surface for varyingκ , data set 2, varyκ of connective tissue.

Figure 2.9 shows the error surfaces of the response amplitudes sensed at the “Data 2”

as the bulk modulus the connective tissue was varied from a minimum of 20% below to a max-

imum of 20% above the reference value. The results show that the error does not exceed 20%

when the normalized simulated curves are compared to the normalized experimental curves

all for the ensonification angles of the original Norris and Harvey study. At this hydrophone

location, the maximum error occurs with the lowest estimation of the bulk modulus at an en-

sonification angle of−50◦, which is on the left-hand side of the animal.

Figure 2.10: Muscle error surface for varyingκ , data set 2, varyκ of muscle.

Figure 2.10 shows the error surfaces of the response amplitudes sensed at the “Data

2” as the bulk modulus the muscle was varied from a minimum of 20% below to a maximum

of 20% above the reference value. The results show that the error does not exceed 15%. At
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Figure 2.11: Bone Error surface for varyingκ , data set 2, vary Young’s modulusE of bone.

this hydrophone location, the maximum error occurs with thelowest estimations of the bulk

modulus at an ensonification angle of−50◦.

Figure 2.11 shows the error surfaces of the response amplitudes sensed at the “Data 2”

as the Young’s modulus the muscle was varied from a minimum of75% below to a maximum

of 75% above the reference value. The results show that the error does not exceed 30%. At

this hydrophone location, the maximum error magnitudes occur over a wide range of Young’s

modulus estimation and ensonification angles.

2.6.3 Errors at the Blubber of Pan Bone Hydrophone Location

Figure 2.12: Fats error surface for varyingκ , data set 3S, varyκ of fats.

Figure 2.12 shows the error surfaces of the response amplitudes sensed at the “Data
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Figure 2.13: Error surface for varyingκ , data set 3S, varyκ of connective tissue.

3S” position (blubber over pan bone,see 2.3). At this hydrophone location, the maximum error

occurs with the lowest estimation of the bulk modulus at an ensonification angle of 45◦.

Figure 2.13 shows the error surfaces of the response amplitudes sensed at the “Data

3S” as the bulk modulus the connective tissue was varied froma minimum of 20% below to

a maximum of 20% above the reference value. The results show that the error does not ex-

ceed 20% when the normalized simulated curves are compared to the normalized experimental

curves all for the ensonification angles of the original Norris and Harvey study. At this hy-

drophone location, the maximum error occurs near the reference value of the bulk modulus at

an ensonification angle of 45◦, which is on the right-hand side of the animal.

Figure 2.14: Muscle error surface for varyingκ , data set 3S, varyκ of muscle.

Figure 2.14 shows the error surfaces of the response amplitudes sensed at the “Data 3S”
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Figure 2.15: Bone Error surface for varyingκ , data set 3S, vary Young’s modulusE of bone.

as the bulk modulus the muscle was varied from a minimum of 20%below to a maximum of

20% above the reference value. The results show that the error does not exceed 15%. At this

hydrophone location, the maximum error occurs with the middle to highest estimations of the

bulk modulus at an ensonification angle of 40◦.

Figure 2.15 shows the error surfaces of the response amplitudes sensed at the “Data 3S”

as the Young’s modulus the muscle was varied from a minimum of75% below to a maximum

of 75% above the reference value. The results show that the error does not exceed 30%. At

this hydrophone location, the maximum error magnitudes occur over a wide range of Young’s

modulus estimation at ensonification angles near 40◦.

2.6.4 Errors at the Mandibular Fat Body Hydrophone Location

Figure 2.16 shows the error surfaces of the response amplitudes sensed at the “Data

3D” position (mandibular fat body,see 2.3). At this hydrophone location, the maximum error

occurs near the reference value the bulk modulus at an ensonification angle of 0◦. Although the

reference values give larger errors there is no clear indication that lower or higher estimations

of the bulk modulus offer an improvement as changes in both direction offer quantitatively

similar improvements.

Figure 2.17 shows the error surfaces of the response amplitudes sensed at the “Data

3D” as the bulk modulus the connective tissue was varied froma minimum of 20% below to
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Figure 2.16: Fats error surface for varyingκ , data set 3D, varyκ of fats.

Figure 2.17: Error surface for varyingκ , data set 3D, varyκ of connective tissue.

a maximum of 20% above the reference value. The results show that the error does not ex-

ceed 30% when the normalized simulated curves are compared to the normalized experimental

curves all for the ensonification angles of the original Norris and Harvey study. At this hy-

drophone location, the maximum error occurs near the reference value of the bulk modulus at

an ensonification angle of 0◦, which is in front of the animal.

Figure 2.18 shows the error surfaces of the response amplitudes sensed at the “Data 3D”

as the bulk modulus the muscle was varied from a minimum of 20%below to a maximum of

20% above the reference value. The results show that the error does not exceed 30%. At this

hydrophone location, the maximum error occurs with the middle to highest estimations of the

bulk modulus at an ensonification angle of 0◦.

Figure 2.19 shows the error surfaces of the response amplitudes sensed at the “Data 3D”
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Figure 2.18: Muscle error surface for varyingκ , data set 3D, varyκ of muscle.

Figure 2.19: Bone Error surface for varyingκ , data set 3D, vary Young’s modulusE of bone.

as the Young’s modulus the muscle was varied from a minimum of75% below to a maximum

of 75% above the reference value. The results show that the error does not exceed 30%. At

this hydrophone location, the maximum error magnitudes occur over a wide range of Young’s

modulus estimation at ensonification angles near 0◦. Here the low errors can be clearly seen

at a 50% reduced Young’s modulus. A closer look 2.27 will showthat this reduced estimation

makes for overall better fit.

2.6.5 Errors at the Melon Hydrophone Location

Figure 2.20 shows the error surfaces of the response amplitudes sensed at the “Data 6”

position (melon,see 2.3). At this hydrophone location, themaximum error is less than 10% and

occurs along all values of the bulk modulus at an ensonification angle of 0◦. Here again, there
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Figure 2.20: Fats error surface for varyingκ , data set 6, varyκ of fats.

Figure 2.21: Error surface for varyingκ , data set 6, varyκ of connective tissue.

is no clear indication that increasing or decreasing the estimated bulk modulus is in order since

changes in both direction offer no decisive improvement.

Figure 2.21 shows the error surfaces of the response amplitudes sensed at the “Data 6”

as the bulk modulus the connective tissue was varied from a minimum of 20% below to a max-

imum of 20% above the reference value. The results show that the error does not exceed 30%

when the normalized simulated curves are compared to the normalized experimental curves

all for the ensonification angles of the original Norris and Harvey study. At this hydrophone

location, the maximum error occurs at the lower end of the bulk modulus estimations at an

ensonification angle of 0◦, which is in front of the animal.

Figure 2.22 shows the error surfaces of the response amplitudes sensed at the “Data

6” as the bulk modulus the muscle was varied from a minimum of 20% below to a maximum
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Figure 2.22: Muscle error surface for varyingκ , data set 6, varyκ of muscle.

Figure 2.23: Bone Error surface for varyingκ , data set 6, vary Young’s modulusE of bone.

of 20% above the reference value. The results show that the error does not exceed 20%. At

this hydrophone location, the maximum error occurs with thelower estimations of the bulk

modulus at an ensonification angle of 0◦.

Figure 2.23 shows the error surfaces of the response amplitudes sensed at the “Data 6”

as the Young’s modulus the muscle was varied from a minimum of75% below to a maximum

of 75% above the reference value. The results show that the error does not exceed 30%. At

this hydrophone location, the maximum error magnitudes occur over a wide range of Young’s

modulus estimation and ensonification. Although no clear trend is apparent, the low errors at a

50% Young’s modulus are observable.
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2.7 Overall Trends

Varying the bulk modulus of the acoustic fats has a strong affect on the outcome of

the model. The range of resulting pressure amplitudes seen in figure 2.24 suggests that by

carefully choosing local properties, the behavior of the experiment could be reproduced. This

does not mean that material property estimation are more influential than structural geometry,

but it does suggest that the two animals were close enough in structural geometry to grant

informative comparisons. These curves often best understood with some though of the pulse

location in relation to the hydrophone location. If the pulse is generated at a location in the

water that is on the opposite side of the animal from the sensor location, very low amplitudes

may be explained by the intervening structures of bone and tissue. This is well observed in the

shape of the “Data 2” curves throughout.

(a) (b) (c)
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κ 20%

(d) (e)

Figure 2.24: Varyingκ of acoustic fats up/down 20%: (a) Data set 1 (b) Data set 2 (c) Data set
3S (d) Data set 3D (e) Data set 6.

Varying the Young’s modulus of the bone from half to twice thereference value in

simulations gives results that comfortably enclose the experimental results as can be seen in
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Figure 2.25: VaryingE of bone 50-200%: (a) Data set 1 (b) Data set 2 (c) Data set 3S (d)Data
set 3D (e) Data set 6.

figure 2.25.
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Figure 2.26: Increasing tanδ to a maximum of 1: (a) Data set 1 (b) Data set 2 (c) Data set 3S
(d) Data set 3D (e) Data set 6.
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Figure 2.27: Decreasing Young’s Modulus of bone to 50% of the reference value: (a) Data set
1 (b) Data set 2 (c) Data set 3S (d) Data set 3D (e) Data set 6.

Varying the viscosity of the acoustic fats has little affecton the outcome of the model.

This can be seen in figure 2.26, where even very high values of tanδ engender only very small

changes in the resulting curves. Again, this conclusion must be treated with care as only the

shapes (not the amplitudes) of the curves are compared. If the experimental data had been

calibrated to give pressure units, a quantitative analysisof the results would be possible. Ab-

sent this calibration, the curves must be normalized for comparisons to be made and overall

amplitudes are lost. Increased viscosity would be reasonably expected to significantly decrease

the resulting pressure amplitudes by way of acoustic signalattenuation. Unfortunately, these

comparisons cannot verify this effect.

Lowering the estimated Young’s modulus to 50% of the reference value for all of the

curves improves the match among the shapes of the experimental and simulated curves for

many of the hydrophone locations (figure 2.27). This suggests that the estimated bone stiffness

from the literature may have been adopted with haste. This could be accounted for by consid-

ering the bone’s porosity. The estimated Young’s modulus ofthe bone from the literature was
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likely measured over sample regions that were local enough to not include large voids. Assum-

ing that the bones are a continuous solid for the purposes of simulation requires lowering the

estimated modulus to account for porous void space, or modeling the individual voids. This

was not done in the current simulations.

While varying the bulk modulus of the fats did invoke a discernible variation in the

resulting pressure fields, there is no clear indication thatchanging the estimations, high or low,

would improve things. These conclusions would be better informed by experimental results

with calibrated instruments that would allow non-normalized amplitude comparisons. The low

errors suggest that the model provides a reasonable qualitative simulation of the experiment,

despite the fact that the modeled animal was not the same one involved in the experiments.

While the simulations show a high sensitivity to estimations of the bulk modulus of the

acoustic fats, the models were much less sensitive to changes in the estimated bulk modulus of

the connective tissue.

In general, the model was not highly sensitive to estimationof the bulk modulus of the

muscle tissue. However, in the mandibular fat body (data 3S)the sensitivity was greater than at

the other locations. This may suggest that the properties ofmuscles have a significant influence

on received pressures along the proposed acoustic pathway.

Estimates of the Young’s modulus of the bone have a less pronounced general affect

on the pressure amplitudes than seen in the study of the bulk modulus of the acoustic fats.

However, especially in the mandibular region, the sensitivity is appreciable.
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Chapter 3

Prototype Rheometer Design and

Fabrication

A working experimental rheometer for use in soft tissue characterization has been de-

signed, built, calibrated, and tested. The device is used tocharacterize the viscoelastic proper-

ties of tissue. With it, one can estimate the complex Young’sand shear moduli of a soft sample.

It is portable and DC powered, which makes it well suited to field work. The first intended use

is to characterize acoustic fats in whales.

This is an improvement over existing bench-top rheometers,especially for use on soft

solids. It facilitates any combination of normal and shear testing modes in either displacement

or force control. A novel instrumentation configuration uses a very light-weight, cantilevered,

load cell as well as a fiber optic displacement sensor installed at a location near the sample

interface. In being so located, they circumvent the effectsof friction and the moving mass of

the instrument. Both force and displacement instrumentation data are collected in a way that

does not adversely affect the signal’s ability to faithfully represent the physical response of the

sample.

The current prototype has been modified to include improved strain gauge force sens-

ing and fiber optic displacement sensing at the sample interface, as diagrammed in Figure

3.1. Most rheometers available today require significant corrections for inertial and frictional

40
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Figure 3.1: Rheometer instrumentation block diagram.

Figure 3.2: Third Prototype, voice coil driven.

effects, which reduces accuracy and complicates analysis.This design addition, however, side-

steps these effects with unique fixturing geometry and clever instrumentation which makes use

of new advances in strain gauge as well as fiber optic displacement sensor technologies.

3.1 Development Platform Scope

This project was approached with a broad range of research and development capabil-

ities in mind. The device was conceived as platform upon which device designs as well as

samples themselves could be tested. Several considerations were carefully weighted at the out-



42

set to ensure that initial designs would allow for the changes necessary for ultimate success.

The electro-mechanical device was designed and constructed specifically to be used in marine

mammal tissue characterization. Portability and ease of use in an outdoor environment were

primary concerns. A wide range of sample shapes and compositions needed to be accomodated.

The design was split in three prototyping stages followed bydata processing and assessment.

3.1.1 Multiple Instrumentation

The instrumentation was chosen to give both force and displacement information at the

sample interface as well as along the control axis. The instrumentation at the sample interface

includes a high sensitivity load cell and a fiber-optic displacement probe. The load cell is very

fragile and should not be used if the sample is thought to havea shear modulus above 100

kPa. If the sample is “squishy” and easily squeezed with the fingers it should not damage the

load cell. If the sample is harder than rubber, the tip load cell should be replaced with a rigid

extension and force readings of the coil current are sufficient. The load cell configuration is

preferred because it gives reliable force indication in a way that separates the response from the

moving mass of the control axis.

The fiber-optic probe has great value for its ability to take local displacement readings

at the sample interface without adding moving mass or friction to the system. Unfortunately,

the probe has a very small linear range and non-linear calibration compensation is required.

The force and displacement data are also gathered on the moving control axis. The

drive coil force, with includes forces needed to overcome system friction and the substantial

moving mass of the drive axis, is taken to be proportional to the current in the coil itself. The

moving mass introduced by the device resides in the moving axis seen in figure 3.8 and is

estimated to be 46.5±5.0g. The servo amplifier provides a current-proportional readout that is

sent directly the DAQ. Instrument calibration with static weights verifies that the coil current

(voltage readout) is indeed linear in the entire useful range of the device.

The displacement of the moving axis is recorded using a very sensitive LVDT with local
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Figure 3.3: Strain gauge and fiber-optic sensor at sample interface.

signal modulation. This instrument also gives a very strong, clean, and linear signal.

Along the moving axis the instrumentation is very good, but the effects observed are

fraught with inertial and frictional effects. At the sampleinterface, the frictional and inertial

effects are negligible, but the instrumentation is fragilewith limited linearity. Careful analysis

of all of the data allows useful conclusions to be drawn aboutboth the sample and the apparatus

itself. In this way, the dynamic characteristic of the apparatus are revealed as well as the

viscoelastic characteristic of the sample. While characterizing the sample has obvious value,

characterizing the apparatus provides the more subtle service. It allows monitoring of real-time

performance attributes such as the total inertia of the system, the elastic restoration of the voice

coil’s centering springs, and–most importantly–variablefrictional effects from the instruments

and slide rail.

3.1.2 Both Normal and Shear Testing Modes Accommodated

To date only shear modes have been estimated with the device,but instrumentation is in

place which will allow simple estimations of Young’s modulus. This will be done by moving

the sample stage vertically using the stepper motors while afixed spherical tip mounted above

indents the sample. The resulting the force will be measuredby a calibrated precision scale-

type load cell that was installed beneath the articulating sample stage.

The use of an electronic balance with a linearly actuated indenter has been found ef-
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fective in measuring the Young’s modulus of soft tissues [34]. The device used by Egorov et

al. also used a half-space geometry to frame the mechanics ofthe problem, and was found to

be effective in both laboratory and clinical environments.The experimental design presented

our device uses similar methods to estimate Young’s modulus. Moreover, the presented device

will also be capable of indentation tests used to approximated Young’s modulus. This has not

yet been implemented in the current stage of development, and to date values of Poisson’s ratio

must be estimated for use in processing the complex shear modulus of the sample. For most

polymers, rubbers, and tissues tested the assumption of near incompressibility is a reasonable

one.

3.1.3 Precise, Automated, Positioning Capabilities

From the outset of the design, precise knowledge of the thickness (compression state)

of the sample, the angle of the sample stage with respect to the coil axis, and the exact location

of the sample adhesion boundary have been important considerations. The goal has been to

make knowledge of these qualities inherent to the setup in hopes of foregoing the tedium of

intensive caliper and micrometer measurements during time-sensitive field use. Toward this

goal, stepper motors with a fixed resolution of 0.01 mm per step of translation were installed

for all positioning requirements. These stepper motors caneither be controlled manually or

by the digital output channels of the same MCC-USB 2537 DAQ used for data acquisition.

Efforts were made to enable controlling and processing datafor the entire device within a

single programming environment.

The sample stage positioning system can be seen as it was being constructed in figure

3.6. Because part of structural purpose of the sample stage includes providing a rigid constraint

against shear forces generated within the sample, care was taken to design the stage in a way

that allows vertical articulation without compromising its ability to remain laterally rigid under

operational loading conditions. Toward this end, a vertically aligned slide rail bearing was

installed in the center.
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Figure 3.4: Close up of sample interface and instrumentation.

For additional support, and to ensure proper stepper axis alignment, turnbuckle-

tensioned threaded rods are installed between any two adjacent stepper motor axes. Ball joints

attach the stepper axes to the sample stage, allowing for independent positioning of the three

axes. This was intended to allow accounting for angled sample geometries. Some thought

was given to testing for coupled responses as the sample stage angle was changed maintaining

horizontal shear loading. To date this has not been tested, as a clear advantage of the method

has yet to be analytically identified. Even so, the stage is well-equipped to perform such an

operation up to 20◦ of stage incline.

3.1.4 Ability to Quickly Change Samples

Time sensitive field work makes it essential to have the ability to quickly change sam-

ples without having the dissemble key components of the device. This required designing a coil

axis that can be tilted up while samples are loaded and easilylocked back in place for testing.

This locking mechanism should be secure enough to support the assumption that the fixturing

around the sample is effectively rigid relative to the sample itself. The rigidity requirement

of the axis locking was achieved by using a single vertical latch on each side of the articulat-

ing coil-instrument axis as seen in figure 3.5. Once the driveaxis is tilted up and out of the

way, the top-boundary plate can be easily cleared by removing four threaded knurled knobs.

At this point a new sample and boundary plate can be set back inplace. The sample stage is
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positioned using the stepper-motor control system which gives the precise thickness of the new

sample without the necessity of manual measurement. The drive axis is latched back into the

run position and testing may resume.

Figure 3.5: Running and loading positions.

3.1.5 Wide Range of Sample Geometries Accommodated

This method of sample fixturing, justified by the “thick sample assumption” makes ac-

curate characterization possible without precisely controlled sample shape and thickness. This

is an important improvement over existing designs which require often painstaking sample

preparation before each test. With the high frequency sheardevice of Arbogast et al. a mi-

crometer is used to determine the sample gap [38]. The complex modulus apparatus of Adkins

et al. not only requires careful measurement of sample geometry, but the samples themselves

were made using a specially designed mold [39]–a procedure not available to for naturally

occurring tissue samples. The device of Madsen and Frank limits its scope to “tissue-like” ma-

terials which are specially modeled [40]. Once molded, their sample geometries are carefully
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Figure 3.6: Third Prototype, sample stage positioning system.

recorded using a microscope equipped with a manual translator and vernier scale. In order to

test muscles in compression, Van Loocke et al. fabricated a special cutting bench with a rotary

table was designed to ensure a uniform sample geometry. Although labor intensive, the tissue

cutting method seems attractive unless the tissues are softenough to immediately lose their

shape once cut. This kind of sample preparation is not practical during the in situ dissection of

a marine mammal.

All of the these consideration were at play during the initial design of the experimental

device; our sample geometry is made precise by the fixturing boundary not the sample. Further-

more, stepper motors position and automatically record allnecessary dimensions. The small

forces the arise from kinematically containing the sample were deemed negligible through the

analysis detailed in the chapter 4. Here again, robust instrumentation is used to experimentally

verify these analytical conclusions. Because a load cell was installed in the sample stage to

detect normal forces in the sample, the compressive state was slightly varied and the material

response results were confirmed to remain consistent.

3.1.6 Instrumentation Details

Displacements are measures using two independent instruments: (1) a precision Linear

Variable Differential Transformer (LVDT), and (2) a fiber optic displacement sensor. Forces are
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measured using a high precision low force cantilever load cell. Data acquisition uses a MCC

USB-2537 multipurpose DAQ.

Figure 3.7: Third prototype instrumentation.

The device is made up of three primary components: the battery power supply; the

control box; and the mechanical assembly.

3.1.7 Assumptions

It is assumed that all fixturing components, including sample plates and bearing mounts,

are rigid relative to the sample being tested. Some materials lend themselves to the assump-

tions of incompressibility which leads to the a loss tangentin shear that equals that of tension-

compression [39]. In this case, the magnitude of the complexshear modulus should also be

one third of the magnitude of the complex Young’s modulus. Here,it is not assumed that all

materials are incompressible.

As the sample thickness increases without bound the relationships among the applied

force, the resulting displacement at the location of force application, and the elastic moduli of
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Figure 3.8: The parts that comprise the moving axis, etimated 46.5±5.0g.

the sample approach the half-space solution. Furthermore,finite element analysis reveals that

when the radius of the boundary opening of the top plate and the thickness of the sample exceed

15 mm the results are comparatively insensitive to small errors in the estimated geometry. More

details of this analysis are provided in 4. This study was also used verify that the results are

not sensitive to slight sample compression at the adhesion boundary.

3.2 Prototype Evolution

The first prototype was used to test basic operation principles and verify the practicality

of the setup with a sample interface and Linear Variable Differential Transformer (LVDT) to

record time dependent displacement data. This also provided a test-bed for Data Acquisition

(DAQ) functionality. It was obvious from initial testing the force producing properties of the

solenoid were poorly suited to well controlled sinusoidal excitation. A better choice would be

a voice coil, which provides a force that is linear in currentover a wide range of excitation pa-

rameters. The use of a voice coil as an excitation source for DMA is nothing new. A shear plate

DMA device using voice coil excitation was found to be effective in testing soft tissues [38].

The device described by Arbogast et al. used a vertical double shear sandwich configuration

and required ignoring the boundary effect at the open ends.

The second prototype implemented a voice coil–servo motor and a simple acrylic base.
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This design allowed useful experiments but no way to controlboundary force application or

sample fixturing. The sample was essentially stuck to the table and the application plate was

stuck to the sample, relying on the negative pressure produced while compressing the sample.

A more controllable method of sample fixturing would be needed. This led to the third, and

final prototype (figure 3.2).

The experimental rheometer described here uses a new boundary fixture methodology

that exploits the aforementioned benefits of an effective half-space sample geometry. Other key

improvements include the use of a highly accurate LVDT as well an innovative tip design that

gives point-of-contact force and displacement data with the use of a fiber optic displacement

sensor and a highly sensitive strain gauge.

The use of inertial corrections factors in commercial rheometers has been widespread

[38]. It has been found that as sample density and excitationfrequency are increased, the

relative effect of inertia becomes more significant [41]. Incases where intertial effects are

significant analytical corrections must be made [42]. Because the current design uses local

instrumentation to determine the stress and strain relations at the sample interface, only the

very small contribution of the moving volume of the sample isconsidered. Because this mass

is very small, it can be neglected an no intertial corrections are necessary.

This design features precise stepper motor control to hold the samples between a mov-

able stage and a top boundary plate. The movable stage can tilted and raised or lowered to

provide a desired state of material compression, and the boundary plate provides a lateral re-

straints in a manner that lends itself to analysis.

Experiments require a carefully controlled environment. Of particular importance is the

establishment of well defined boundary conditions. For the current work, this requires careful

examination of sample fixtures and force application methods. The latter requires consideration

of boundary adhesion at the dynamic loading surface. The viscoelastic properties of polymers,

including many tissues, have been found to be temperature dependent. While it is important to

maintain temperature control within 5◦ C, prior research demonstrates that silicone rubbers are

relatively insensitive to changes in temperature in the vacinity of room temperature [39]. The
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elastic properties of many polymers are also comparativelyinsensitive to temperature changes

at room temperatures which we have verified for the plastisolcalibration samples. There was

no observable difference in estimated viscoelastic properties tested from 18 C◦ to 24 C◦. At a

very minimum, the temperature at the time of testing should be recorded.

3.2.1 Frequency Sweeps

Prior research reveals that complex viscoelastic materialcharacterization over a wide

range of excitation frequencies and strain levels can be determined from simple measurements

of amplitude ratio and phase angle. However, this theory is best applied to cases of infinitesimal

strains [39]. For this reason, methods presented here are directed toward small deformation

processes. A feasible experimental setup is constrained bythe bounds of practical specimen

geomtery, realizable boundary conditions, and the framework of linear viscoelastic theory.

Frequency sweeps are the main data collection method used inobtaining dynamic me-

chanical properties. Frequency sweeps are typically conducted starting at a low frequency

between one and ten Hertz. The excitatation is held until transient responses have subsided

and all important instrument data are collected. The frequency is then increased sequentially

and the excitation cycles are repeated. The frequency sweeps give a valuable indication of the

dynamic properties by indicating time-scale dependent effects, such as phase-lag proportional

loss moduli.

3.3 Comparison of Force Configurations

A limited number of force instrumentation configurations were tested. Redundant in-

strumentation by way of an in-line compressive load cell wasinstalled along the excitation

axis between the voice coil and strain gauge carriage. This is considered a redundant force

measurement because it gives indication of the force applied by the strain gauge which is quite

accurately determined by monitoring the current of the voice coil itself. As the in-line force
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instrument did not prove to be as accurate as the voice coil current signal, from the servo am-

plifier, the redundant instrumentation was removed. This has the additional benefit of reducing

the mass of the moving axis which reduces resonant effects ofthe device which do not reflect

the physical response of the sample being tested.

3.4 Prototype Linear Rheometer, Raw Results

Some real-time results are indicated prior to post-processing. These are typical in the

form of time-domain signal curves or hysteresis ellipses whose areas represent the loss energy

density. A few kinds of data filtering are used during real-time signal processing. At the end of

each excitation run, consisting of 20 to 200 complete oscillatory cycles, data is filtered by both

running averages and band-pass methods.

3.5 Characterizing Elasticity and Viscosity

Elasticity and viscosity are characterized by first lookingat the amplitudes and phases

of the force and displacement signals. Then, these data mustbe considered along with geo-

metric configurations to extract the continuum stress and strain information. The later is then

used to derive the complex moduli of interest, typically thecomplex shear modulus. The real

component of the complex modulus gives indication of material elasticity while the imaginary

component indicates the material viscosity.

3.5.1 Two Independent Elastic Parameters

Because the isotropic material response is coupled, and thesample is not loaded in pure

shear, other moduli such as the Young’s modulus must be estimated. Since many tissues are

nearly incompressible, assuming that Poisson’s ratio is nearly one half is a good starting point.

More accurate estimation requires determining coupled moduli either by use of the sample
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stage stage and stepper motors–in normal mode–or alternatemethods such as ultrasonic time-

of-flight.



Chapter 4

Rheometer Analysis

The sample geometry for analysis is based on a radially cut cylinder symmetric about

the vertical mid-plane. It is loaded in shear on a circular patch in a direction parallel to the

cut plane; more details are provided in sub-section 4.0.3. The relationship among the discrete

stiffness magnitude and continuous elastic modulus of concern is determined in the form a

linear conversion factor that is based on static analysis. Closed-form half-space solutions as

well as finite element solutions are investigated. It is determined that for a reasonable range of

sample thicknesses, 10mm to 20mm, the half-space solution provides a good approximation

of the stiffness-to-modulus relation. The simulations provide improvements in the manner of

conversion factors accounting for the finite sample geometries of the samples. These conversion

factors are found to be insensitive to small errors in samplethickness and boundary radius

inputs.

4.0.2 Half-Space Solutions and Semi-Infinite Sample Geometry

Closed form solutions are consulted as bounds for the analysis of results. The half-

space solutions of Dydo and Busby [43] provide an important upper bound to any quasi-static

deformation responses seen in finite geomtries. Half space solutions of the Boussinesq type

have been applied to both normal and tangential loading of a semi-infinite half-space [44].

Conditions not far removed from a semi-infinite half-space are chosen both to facilitate

54
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analysis and to render the results less sensitive to small changes in geometry at all boundaries

except the one defining the excitation contact. This configuration has been used in compressive

devices [34], and for similar reasons, we apply the same principle here.

When the sample geometry is chosen with a sufficiently large tickness and boundary

radius along with a sufficiently small loaded patch radius, the solution is not sensitive to small

errors in the boundary plate radius, slighlty non-centeredforce application, and small changes

in boundary plate normal forces.

4.0.3 Bounded Finite Element Solutions and Stiffness to Modulus Rela-

tions

The relationships relating the discrete stiffness obtained from experimental data and the

continuous material properties sought are estimated usingstatic finite element models. Prior

research support our finding that stiffness corrections canbe expressed as a function Poisson’s

ratio and sample thickness [45].

The simulations of the statically loaded experimental sample conditions are described.

The sample is cylindrical having a radius of 16mm and a thickness that is varied from 10mm

to 20mm.

The sample is loaded in shear with a force of 0.05N directed along positivex-axis (see

Figure 4.1). The shear traction is applied uniformly over the circular patch on the top of the

sample atz = th and the thicknessth is varied as needed. The loaded patch has a radius of 4mm

and Dirichlet boundary conditions depress it into the sample by 0.5mm to produce the effects

of tip indentation. The amount was varied the solutions werefound to be insensitive to changes

in tip indentation when the amount was less than about a tenthof the thickness of the sample.

The essential boundary conditions on the bottom of the sample, atz = 0, are

ux = uy = uz = 0 . (4.1)
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The essential boundary conditions at the circumference of the sample, atr = 16mm, are

ux = uy = uz = 0 . (4.2)

The natural boundary conditions on the circular patch are

τzx = 0.05N , (4.3)

on r ≤ 4mm, z = th. On the remaining boundaries zero tractions are applied.

As seen in Figure 4.2 a symmetry boundary condition is applied to reduce the number

of equations. Alongy = 0 the out of plane deformation is precluded by enforcinguy = 0.

Figure 4.1: Typical disc analysis Cartesian axes.

Figure 4.2: Typical disc analysis, shear load of 0.05N with ux = 1.2mm.

Figures 4.3 and 4.4 show how the conversion factorΦ varies with estimations of Pois-

son’s ratio or Young’s modulus respectively for sample thicknesses in the range of interest. The
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half-space solution provides an upper bound for the computed displacements. As expected, the

sample solutions approach the half-space solutions as the sample thickness is increased. A sam-

ple with fixed boundaries is more constrained than semi-infinite solution suggests. Otherwise

put, the finite sample behaves as would a semi-infinite samplewith rigid material properties

applied anywhere outside of the Dirichlet boundary surfaces. This increased rigidity of the

structure renders the solutions less compliant than the semi-infinite idealization. The results

shown are based on the experimental configuration that uses aboundary radius of 16mm but

analysis was also done to verify that the solutions very quickly approach the half-space solution

if both thickness and radius are increased.

The curves shown in Figures 4.3 and 4.4 reveal that the stiffness-to-modulus relation

depends on estimations of the remaining elastic parameterν or E, but the low slopes of the

curves suggest that the conversions are not highly sensitive to these estimations. In fact if the

estimated Poisson’s ratio was taken to be zero for an incompressible material–a very wrong

assumption–the accuracy of the shear modulus estimation would only suffer by about 12%.

Since most tissues can be reasonably assumed to be nearly incompressible the likely errors

introduced would be much smaller with an estimated Poisson’s ratio of 0.49. This shows that

the experimental setup is dominated by the shear response with minimal, but not negligible,

coupling to the other elastic moduli.

These results also show that as the sample thickness is increased the conversion curves

get closer and closer together. This means that when thickersamples are tested, the input

thickness need not be of high accuracy to yield useful results. This is another advantage for

an in situ testing environment. The curves of the finite samples are well approximated by

cubic functions ofν or E, a fact that will be exploited in obtaining the stiffness-to-modulus

conversion factors.
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Figure 4.3: ComparingΦ(th,ν) to the half-space solution.

Figure 4.4: ComparingΦ(th,E) to the half-space solution.

4.1 Φ cubic function in ν and th.

The conversion functionΦ(th,nu) provides a practical means of translation the the mag-

nitude of the sample stiffnessK to the magnitude of the complex shear modulus|G∗|. The

conversion function is well approximated by a cubic function of ν, whose coefficients are well

approximated by a cubic function of the sample thicknessth.
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(a) (b)

(c) (d)

Figure 4.5: Computationally resolved relationsG = Φ(th,ν)K for th= 10mm, 13mm, 17mm,
and 20mm.

The linear relationship among stiffness and shear modulus can be seen in figures 4.5

(a) -(d) as the sample thickness is varied from 10mm in Figure 4.8 (a) to 20mm in Figure 4.8

(d). The conversion factor, or slope, decreases with an increasing estimation of Poisson’s ratio.

The coefficients for the conversion factorΦ are determined using finite element solu-

tions and a cubic fit. For the range of thickness values appropriate for testing (10mm−20mm).

The boundary radius was taken to match the hole in the boundary plate which has a radius of

16mm. The loaded region was applied over a central region with a 4mm radius, to match the

adhesion disc at the tip of the load cell. This is detailed in Figure 4.6.
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Figure 4.6: The top boundary plate with the fixed radius and loaded region shown.

Figure 4.7: Cubic fit of cubic coefficientsPi(th) = f (th3) for Φ(th,ν) = P1ν3+P2ν2+P3ν +
P4.

Taking thicknessth in mm the fucntion is

P1(th) = 0.020305th3 −0.990230th2 +17.384655th −177.387718,

P2(th) = −0.012153th3 +0.615038th2 −10.795137th +77.767416,

P3(th) = −0.000438th3 +0.050747th2 −1.481435th −6.327286,

P4(th) = 0.011650th3 −0.628897th2 +11.454462th −7.708364, and

Φ= P1ν3+P2ν2+P3ν+P4 such thatG=ΦK provides a way to convert the discrete structural

response of the sample to a continuous material properties.Here, the polynomial coefficients

Pi are obtained by computing a cubic fit to the data represented in Figure 4.7.
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4.2 Φ function in E and th.

The linear relationship among stiffness and shear modulus can be seen in figures 4.8

(a) -(d) as the sample thickness is varied from 10mm in Figure 4.8 (a) to 20mm in Figure

4.8 (d). The conversion factor, or slope, increases as the estimated value of Young’s modulus

is increased. Clearly, as the estimated value of Young’s modulus decreases the curves get

closer and closer. This increasing estimation of Young’s modulus, with the shear modulus held

constant, corresponds to a decreasing estimation Poisson’s ratio.

(a) (b)

(c) (d)

Figure 4.8: Computationally resolved relationsG =Φ(th,E)K for th = 10mm, 13mm, 17mm,
and 20mm.
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The conversionΦ(th,E) is well approximated by a cubic function of Young’s modulus

(E), whose coefficients are well approximated by linear functions of the sample thicknessth.

Taking thicknessth in mm the fucntion is

P1(th) = 2.76127e−11th −1.53463e−09,

P2(th) = −3.79902e−07th +2.00149e−05,

P3(th) = 1.64808e−03th −9.00401e−02,

P4(th) = −1.60954e+00th +1.88871e+02, and

Φ = P1 E3+P2 E2+P3 E +P4.

This time, polynomial coefficientsPi are obtained by computing a linear fit to the data

represented in Figure 4.9.

Figure 4.9: Linear fit of cubic coefficientsPi(th)= f (th3) for Φ(th,E)= P1E3+P2E2+P3E +
P4.

4.2.1 Insensitivity to Estimations of Thickness and Boundary Radius

As the boundary radius of the plate opening and the sample thickness are increased the

solutions show greater agreement with the half-space solutions. This can be seen in Figure 4.10

where the error surface flattens out as the radius and thickness both approach 20mm. This is per-
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haps better understood looking at the contour plots of Figure 4.11 were the error fall below 20%

for all radii greater than 14mm. For a 16mm boundary (as in the experimental setup)sample

thicknesses exceeding 12mm give solutions that are within 16% of the half-space solution.

This confirms that thicker samples are less susceptible to errors introduced with estimations

of sample geometries, but also suggests that, even without the conversion factor introduced in

this section the experimental, results can be converted to continuous material properties using

the half-space approximation. The quality of such an approximation would, admittedly, suffer

increasingly for samples with a thickness less than 10mm and a boundary plate radius less than

15mm. Similarly, these approximation rely on a comparatively small loaded patch, 4mm radius

for our experimental setup.
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Figure 4.10: FEM vs half-space solution errors.

Figure 4.12 shows the sensitivity of the results as the sample radius and thickness are

varied by looking at the total derivative with respect to thetwo extensional quantities. The

derivatives are very small and the surface is nearly flat above 15mm on both axes. In the

practical regime of the experimental device, the total derivatives are 10−5.
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4.3 Newmark-Beta Numerical Integration Algorithm

Much about the ideal frequency response behavior can be observed in discrete solutions

to the linear dynamic equilibrium equations. The last several decades have marked a dedicated



65

effort to improve methods of numerical integration techniques applied to the basic equation of

motion of structural dynamics [46]. The discrete equationsof motion for structural dynamics

read:

[M ]ü(t)+ [C]u̇(t)+ [K ]u(t) = f(t) (4.4)

Where [M ], [C], and [K ] are the mass, damping, and stiffness matrices respectively. And,

ü(t), u̇(t), andu(t) are the acceleration, velocity, and displacement vectors respectively.

Typical methods use discrete time-stepping schemes that update the vectors̈u, ü, andü at the

current timetn to the time at the next steptn+1 = tn+h, whereh is the interval of the time step.

Where at least second order accuracy and unconditional stability are sought, the Newmark-

Beta method is a good choice. The Newmark-Beta method’s approach involves considering an

integrated form of the equation of motion wherein velocity and displacement appear as state

variables with acceleration algebraically isolated [47].A limitation of this method occurs when

high frequency components of the solutions are mere artifacts of the spatial discetization, and

are related to the Nyquist frequency [46]. This can be controlled using numerical damping

but such approaches reduce the accuracy of the integration scheme to first order. However, in

systems where some physical damping is present, these artificial modes can be controlled. For

this reason, these analyses are best suited to materials that have viscosity. They will be used

here only for analysis where physical viscous damping is present. Furthermore, the need for

accurate extraction of higher modes in absent from simple efforts to extract frequency response

functions aimed at the resolution of a single steady-state mode under forced excitation.

4.3.1 Newmark-Beta Integration Scheme

First the displacement and velocity are expressed in terms of their values at timetn and

the acceleration at timetn+1:

u̇n+1 = u̇n+(1− γ)hün + γhün+1 (4.5)
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un+1 = un +(
1
2
−β )h2ün +βh2ün+1 (4.6)

Whereγ is a parameter that is varied from zero to one to control how implicit or explicit

the velocity predictor behaves. Whenγ = 1 the velocity predictor is fully explicit and asγ is

decresed to zero, the velocity predictor becomes increasingly implicit.

The above expressions are substituted into the equation of motion to provide the fol-

lowing update equation in terms ofu̇n andun:

([M ]+ γh[C]+βh2[K ])ün+1 = fn+1− [C](u̇n+h(1− γ)ün)− [K ](un +hu̇n +h2(
1
2
−β )ün)

(4.7)

Letting:

[S] = [M ]+ γh[C]+βh2[K ] (4.8)

Gives a solution for subsequent acceleration in the form:

ün+1 = [S]−1(fn+1− [C](u̇n+h(1− γ)ün)− [K ](un +hu̇n +h2(
1
2
−β )ün)) (4.9)

Now, the velocity and displacement solution fortn+1 can be updated according the rules defined

in the previous two equations.

The ideal solutions can be easily modified to include the effects of apparatus friction

though the use of numerical models with as few as one or two degrees-of-freedom (DOF).

4.3.2 Newmark-Beta Time-stepping Algorithm with Implemented Nodal

Friction

Classic one degree of freedom vibrations solutions are important in characterizing fre-

quency response trends. The one DOF model with included frictional effects is key in defining

the effects associated with device friction. Kinetic and static friction are implemented in a

way that modifies the forcing function by criteria defined by the velocity predictor. When the
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predicted velocity is below a predefined limit, the frictional force added to the excitation force

is adjusted by an certain amount. This is the prescibed static friction, known as the Coulomb

condition.

When the predicted velocity surpasses the "sticking" velocity, the appended frictional

force assumes a different, typically lower, value. This is the prescribed kinetic friction. Since

the force is still continuous in the open interval of the time-step the Newmark-Beta methods

is perfectly suited to these discontinuous forcing functions. Similar uses of the Newmark-

Beta method in modeling stick-slip instabilities have beensuccessfully implemented [48]. The

instabilities predicted by the numerical solutions that account for Coulomb friction are also

seen in our experimental results. Furthermore, the numerical results successfully reproduce the

time-domain displacement response typically realized as adeviation from a smooth sine wave

toward a step wave.

Static and kinetic friction is implemented in the integration scheme with a simple con-

ditional choice of offsetting force terms. Let

fsin(t) = F0sin(ωt) (4.10)

be the excitation control force exerted by the voice coil, and let fk andfs be the kinetic and static

friction respectively. And,vstick be the sticking velocity defined for each DOF independently.

Now we can define conditional update rules for the Coulomb friction implementation

for ith degree-of-freedom at thenth time-step:

i f |u̇i
n|> vi

stick

f i
n+1 = f i

sin(tn+1)+ f i
k (4.11)

else

f i
n+1 = f i

sin(tn+1)+ f i
s (4.12)

end



68

Thesign( f i
k) is opposite of the predicted velocity, and thesign( f i

s) opposite of( f i
n+1−

[M ]üi
n− [C]u̇i

n− [K ]ui
n).

The magnitudes are limited so that friction does not create motion bymin(| f i
k|, | f i

n+1− [M ]üi
n−

[K ]ui
n|), andmin(| f i

s|, | f i
n+1− [M ]üi

n− [K ]ui
n|).

Where ˙ui
n is the velocity ofith DOF at thenth times-step,f i

sin(tn) is the excitation force

of the ith DOF at thenth times-step,f i
k is the kinetic frictional force ofith DOF, f i

s is the static

frictional force ofith DOF, andf i
n+1 is the total force of theith DOF at then+1st times-step.

This loop will be used to assemble thefn+1 forcing vector in the Newmark-Beta time-

stepping scheme. Since the condition that chooses whether kinetic or static frictional forces will

be used depends explicitly on the current velocityu̇n, the scheme can be repeated iteratively

using the updated velocity to provide an improved value offn+1 that is based on the predicted

velocity in the updating condition. Simulations show that the use of more than one iteration

has virtually no effect on the behavior of concern. Therefore, to save computational cost, only

one update iteration is typically used.

4.4 Frequency Response Functions

The frequency response functions generated by the time-stepping algorithm show reso-

nant system behavior, phase shift asymptotes, and jumps in the response curve resulting from

system friction. This goes far to explain some of the effectsseen in the system response of the

experimental rheometer. Although friction has little effect on the data gathered by instruments

at the sample adhesion boundary, the LVDT and coil-current signals are very dependent on

system friction as well inertial and resonant effects.

4.4.1 Zero Friction Case (C=1)

When system friction is neglected, the response is smooth with a clear phase transition

having a value ofπ2 at the resonant frequency seen as a peak in the transfer function (Figure
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Figure 4.13: Zero friction case, C=1.

4.13). The analytical solution to the zero-friction case, for a single degree of freedom, is readily

available and was verified to agree with these solutions. As will be shown, the greatest use of

this model is in analyzing a two DOF system where friction inclusive analytical solutions are

not at hand.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 1,

ωn = 3.1623,ωd = 3.1225,ζ = 0.15811, fk = 0, fs = 0. The Newmark coefficients as set as

β = 1/4 andγ = 1/2, which is typical throughout this work.

4.4.2 Kinetic Friction Only (C=1)

When sliding friction is introduced, but not stick-slip friction, as seen in Figure 4.14

jumps can be seen in the system response curves, especially at low frequencies. This is problem

that plagues the experimental results, reveling itself as divergence of the displacement control

algorithms due to low frequency sticking.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 1,

ωn = 3.1623,ωd = 3.1225,ζ = 0.15811, fk = 0.3F0, fs = 0.5F0, vstick = 0.
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Figure 4.14: Zero sticking friction case, C=1.

4.4.3 Static and Kinetic Friction with High Sticking Velocity (C=1)

When stick-slip friction is included in the analysis , as seen in Figure 4.15 increas-

ingly troublesome jumps can be seen in the system response curves, especially at sub-resonant

frequencies. This is also a problem that plagues the experimental results, reveling itself as

divergence of the displacement control algorithms due to low frequency sticking.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 1,

ωn = 3.1623,ωd = 3.0, ζ = 0.15811,fk = 0.3F0, fs = 0.5F0, vstick = 0.2.

4.4.4 Zero Friction with Increased Viscous Damping (C=2)

When friction is neglected, increasing damping has the expected effect of smoothing

the resonant peak and blurring the phase shift transition. Again, these results were verified to

match the analytical solution. This is demonstrated in Figure 4.16.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 2,

ωn = 3.1623,ωd = 3.0, ζ = 0.15811,fk = 0, fs = 0.
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Figure 4.15: High sticking velocity case, C=1.

Figure 4.16: Zero friction case, C=2.
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Figure 4.17: Zero sticking velocity case, C=2.

4.4.5 Kinetic Friction Only with Increased Viscous Damping(C=2)

If damping is increased in the model that considers only sliding-friction, the resonant

response is mitigated and the low frequency jumps are still observed. This is demonstrated in

Figure 4.17.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 2,

ωn = 3.1623,ωd = 3.0, ζ = 0.31623,fk = 0.3F0, fs = 0.5F0, vstick = 0.

4.4.6 Static and Kinetic Friction with High Sticking Velocity and In-

creased Damping (C=2)

Considering increased system damping results in more response jumps in the stick-

slip system of Figure 4.18. In this case, the frequency jumpsalso occur at super-resonant

frequencies.

The model input parameters are:n timesteps per period= 100,M = 1, K = 10,C = 2,

ωn = 3.1623,ωd = 3.0, ζ = 0.31623,fk = 0.3F0, fs = 0.5F0, vstick = 0.2.
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Figure 4.18: High sticking velocity case, C=2.

These single DOF models verify the working of the algorithm and give insight to some

frequency response behavior that would be otherwise difficult to interpret from the experimental

responses alone. This is invaluable to device development where anamolous results may be

attributable to anything from non-linear material responses to poorly callibrated instruments or

channel cross-talk. Knowing that jumps in amplitude can be readily explained by considering

the effects of stick-slip friction dramatically simplifiestroubleshooting.

While the single DOF response is quite informative, the experimental setup is not quite

so simple. While the moving axis of the voice-coil represents one degree-of-freedom, the

independent data collected at the sample interface represents another. To better characterize the

physical system, a two DOF model is called for. This is easilyaccomplished with the existing

Newmark time-stepping algorithm as it was modified to include frictional effects.
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4.5 Multiple Degree-of-freedom Newmark Time-stepping

Algorithm with Implemented Nodal Friction

The multiple-degree-of-freedom (MDOF) model is used to analyze the strain gauge tip

style setup. In this experimental setup, the forces and displacements are observed at two distinct

DOF locations: the moving linear axis; and the tip itself.

Stick-slip friction can explain some experimental anomalies. Although much more

computationally expensive to run, finite element models of the dynamic response lead to sim-

ilar observed behavior. The experimental system is well represented by a simple two degree-

of-freedom system, and finite element analysis is unnecessary to characterize the basic system

response.

Figure 4.19: The experimental setup is well modeled by a simple two-degree-of-freedom sys-
tem of masses, springs and dashpots. The friction-inclusive Newmark time-stepping solution
can explain much of the experimental response.

Figure 4.19 shows how the experimental setup is effectivelymodeled using a simple
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two-degree-of-freedom system. The DOF atm1 represents the the excitation axis, while the

DOF atm2 represents the sample at the loaded boundary.

The moving mass of the excitation axis is taken as 46.5g and the stiffness of the voice-

coil centering spring is taken ask0 = 766N ·m−1. The strain gauge stiffness is estimated to be

aboutk1 = 50000N ·m−1.

In the physical system,f 1(t) is the force provided by the voice-coil motor as measured

in the current proportional coil voltage signal. The axis displacement of the physical system is

measured by the LVDT and is modeled asx1(t). The sample response in the physical system

is measured at the dynamically loaded boundary by the straingauge and fiber optic probe. The

strain gauge measures the force, which is modeled byf 2(t) = (k1)(x1(t)− x2(t). The fiber

optic probe measures the sample displacementx2(t).

For use in the MDOF, friction inclusive, Newmark model the mass matrix is

[M ] =





m1 0

0 m2



 , (4.13)

the stiffness matrix is

[K ] =





k0+ k1 −k1

−k1 k1+ k2



 , (4.14)

and the viscosity matrix is

[C] =





c0+ c1 −c1

−c1 c1+ c2



 . (4.15)

This gives the system
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
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




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


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
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





,

(4.16)

which is sent to the Newmark solver.



76

The Newmark-Beta method with the described algorithm for modeling friction is used

to verify the experimentally observed response. The systemvariables can be modelled across

a frequency spectrum, but the current application highlights how the system parameters of the

numerical (two DOF) solution can be tailored to explain the behavior at a given frequency. The

moving axis of the voice-coil and LVDT are represented here as DOF1 and the local response

at the sample interface is represented as DOF2.

Figure 4.20: Porcine tissue response at 4.3Hz.

As a particular example, to show the models ability to capture phenomena seen in the

physical system, the response of the porcine tissue detailed in the results chapter is analyzed

here at the relatively low frequency of 4.3Hz. This response is complex in it’s subtleties and

is indicative of the loop readouts seen throughout a frequency sweep. The hysteresis ellipse of

the device response has vertical jumps at the extremes of thedisplacement response, as seen in

Figure 4.20. This is caused by stick-slip friction, and it iswell modeled by the algorithm (Figure

4.21). Stick-slip (static) friction is also responsible for the squared wave patterns observed at
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low frequencies. The stick slip friction is applied to DOF1 to model the sicking of the control

axis. This sticking is caused by slight misalignment of the LVDT and coil axes as well as

simple contact friction in the instruments and the linear slide rail.

Kinetic friction is also applied to DOF1. The considerationof kinetic friction causes a

widening of the hysteresis ellipse at DOF1 which can also be seen as a corresponding increase

in the phases-lag. This has a subsequent effect on the force curve of DOF2 which arises as a

local force contribution at the sample interface.

The input parameters used in the soutions of Figure 4.21 are as follows:

the coil return spring stiffness isk0 = 76N ·m−1; the cantilever load cell stiffness is

k1 = 50000N ·m−1; the sample stiffness isk2 = 300N ·m−1; the coil axis viscosity isc0 =

10kg · s−1; the load viscosity isc1 = 0kg · s−1; and the sample viscosity isc2 = 3kg · s−1; the

moving axis mass ism1 = 46.5g; and the moving mass of the sample ism2 = 1g.

Figure 4.21: Friction-inclusive Newmark-Beta solution at 4.3Hz.

The kinetic friction at the first DOF is taken to befk = 0.2N and the static friction at
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the first DOF is taken to befs = 1.5 · fk = 0.3N. No friction is applied to the second DOF

where losses are assumed to be entirely viscous. The excitation frequency is 4.3Hz and thirty

time steps are taken per cycle for a time-step of 0.0077s. The algorithm is run to an assumed

steady-state after 600 cycles have completed and any remaining transients are shifted out with

a moving average offset. The phase shifts are determined using a root finding procedure based

bisection with a bracket that is informed by the know excitation period ofτ = 0.2308s. The

Newmark coefficients remain set atβ = 1/4 andγ = 1/2, which is typical throughout this

work.

Key features such as the force to displacement phase-lag andthe respective amplitudes

at the two locations instrumented on the device are captured. In figures 4.20 and 4.21 the results

are shown normalized to make a phase comparison between the force and displacement signals

convenient.



Chapter 5

Calibration and Performance Assessment

The ability of the experimentally device described in this work (the Elviscolator), to

accurately and consistently produce useful estimations ofthe viscoelastic shear properties of

an arbitrary soft solid is tested on both synthetic tissue phantoms and real tissues. A two tiered

approach to calibration was adopted: first, the instrumentsthemselves were independently cali-

brated; then the final results were calibrated with the use characterized tissue samples. Initially

each instrument is calibrated in turn, and finally the whole device is linearly calibrated against

independently obtained trusted results for a stable synthetic polymer sample.

5.1 Instrument Calibration, and Resolution

The resolutiona of the four primary instruments are conservatively calculated by scaling

the maximum signal noises by the individual calibration factors to give physical units. Table 5.1

lists the resolutions of the force and displacement instruments for the moving axis and sample

interface. The resolution achieved during testing is much better due the use of moving averages

and very high sampling rates. Using these conservative estimates, the resolution of the stiffness

calculations are calculated with

Kres = 1− 1−SGres
1+FOres

= 0.2086. When multiplied the upper limit of the conversion factor

Φ, which occurs with infinite thickness andν = 0, the calculated resolution of the computed

79
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shear modulus magnitude is|G∗|res = 17Pa. Here,Kres is the resolution of the discrete stiffness

of the sample interface,SGres is the resolution of the strain gauge,FOres is the resolution of

the fiber-optic sensor, and|G ∗ |res is the maximum resolution of the calculated shear modulus

magnitude.

Table 5.1: The resolution of the coil current, LVDT, strain gauge, andfiber optic sensor signals.

Signal Resolution
Coil Current 83.1 (N)
LVDT 0.0524 (mm)
Strain Gauge 0.0821 (N)
F.O Sensor 0.1598 (mm)

The linear range of each instrument is independently determined by calibration test-

ing and linear curve fitting. The following instruments wereindependently calibrated: (1)

the LVDT; (2) the stepper motors for real-time sample adjustment; (3) the current signal—

proportional to applied force; (4) the fiber-optic displacement sensor; and (5) the cantilever tip

strain gauge.

Figure 5.1 (a) shows the stepper motor calibration with a result of 100steps ·mm−1, and

the LVDT 5.1 (b) weighs in at 0.86mm ·V−1. The fiber optic displacement sensor has limited

linear range that begins at 0.2mm and extends out to 1.7mm, as can be seen in figures 5.1 (a)

and (b). The calibration factor of the fiber optic displacement sensor is 2.0mm ·V−1.

Figure 5.2 (a) shows the linear calibration of the voice coilgiving a calibration factor

of 639N ·V−1. In 5.2 (b) the strain gauge factor is 442N ·V−1, and in 5.2 (c) the base scale

signal calibration is 3501N ·V−1. Figure 5.2 (d) shows the spring constant calibration for the

two centering springs of the voice coil–giving a spring constant of 766N ·m−1.

Once rheological data are collected efforts to understand them may begin. This in-

volves a host of post-processing techniques and associatedmethods. Each of these is usually

implemented through a collection of algorithms.

Processing the signal outputs of the fiber optic probe requires special consideration.
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Figure 5.1: Displacement Instrument Calibration: (a) Stepper motors, (b) LVDT, (c) Fiber
optic sensor cubic fit, and (c) Fiber optic sensor slope.

Because the desired displacement range is greater than the (rather small) linear range of the

instrument, non-linear conversions are required. Fortunately, the sensor has a very repeatable

non-linear output that is well approximated by a cubic fit. The fit shown in figure 5.2 (c) is

used to get the quadratic conversion factors shows in 5.2 (d). The cubic coefficient can be

easily adjusted during setup calibration by ensuring that the void-sample signal agrees with

the, very linear response, of the LVDT. The probe should alsobe centered in its voltage range,

somewhere near 2.5 volts. If the differential amplitude of the signal exceeds 0.75 volts, an

slight increase in the calibration factor is applied–such that the secant of the calibration profile

is used instead of the tangent–to a maximum of 0.133 when the differential amplitude reaches

2.5 volts (the entire range of the instrument).

The calibration factor of the fiber optic probe is taken as

FO f actor = 0.0555(V −6.5)2 . (5.1)
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Figure 5.2: Force Instrument Calibration: (a) coil current, (b) strain gauge tip, (c) base scale,
and (d) spring constant.

whereV is volts and the coefficient 0.0555 can be adjusted during setup calibration.

5.1.1 Cantilever Strain Gauge Bending Compensation

Euler-Bernoulli beam theory is adequate for calculating the estimated sample interface

displacement using to instrumentation at two points along the length of the cantilevered, strain

gauge based, load cell.

The deflection of a cantilevered beam can be determined by

δx =
Fx2

6EI
(3L− x) (5.2)

whereδx is the transverse deflection of the beam at thew direction at extensional locationx.

The LVDT deflection is measured asw = d1 at x = 0, the fiber optic sensor (F.O.) deflection

is measured asw = d2 at x = L2 and the desired interface displacement is calculated from the

previous two asw = d3 at x = L.
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(a) (b)

Figure 5.3: Bending of the strain gauge between the fiber optic displacement sensor and sample
interface is compensated for analytically using Euler-Bernoulli beam theory: (a) x locations are
x = 0 andx = L2, and (b) the deflections are considered atw = d1 at x = 0, w = d2 at x = L2
andw = d3 at x = L.

Staring with the cantilever deflection formula, let

δ2 = (d1−d2) =
FL2

2

6EI
(3L−L2) , (5.3)

and let

δ3 = (d1−d3) =
FL3

3EI
. (5.4)

Applying equation 5.3 to equation 5.4 gives the compensatedsample displacement

d3 = d1−
2(d1−d2)L3

L2
2(3L−L2)

. (5.5)

A major challenge has been that of obtaining appropriate standards for comparison of

results. While tissues are in reality neither homogeneous nor isotropic tracking of sample orien-

tation and exact location renders such considerations a matter of future work. For our purposes,

thermoplastics have proven to be practical for this purpose. Thermoplastics are elastomers that

are catylized at high temperatures (around 300F◦). The research of Egorov et al. used the

"Tissue Elastometer," a compressive device of similar methodology, to test fresh store bought

poultry breast, bovine liver, kidneys, hind shank, and porcine samples [34]. We will do similar

tests in a subsequent section, but we begin here by taking a look at the device’s ability to con-
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sistently predict the viscoelastic characteristics of plastisol tissue phantoms that were produced

in a well controlled laboratory environment.

The plastisol samples were sent to two independent labs withwidely varying results.

The characterization of the elastomer tissue phantoms was performed by two independent lab-

oratories and the results vary significantly. Unfortunately, one set of results was clearly off by

several orders of magnitude due to their use of a nano-indentation laboratory designed for much

stiffer materials. Those results were discarded. This performance assessment is an ongoing pro-

cess which will become more conclusive as independently characterized tissue phantoms are

more readily available.

Viscoelastic calibration standards are not readily available, and the most commonly

used calibration material (PDMS) is not well suited to this device due to its propensity to flow.

5.2 Performance Assessment

Due to the expense of independent sample characterization,performance assessments

are limited to the evaluation of a few plastisol samples. Three samples were sent to an in-

dependent lab (Polymer Diagnostics in Avon Lake, Ohio) where they were tested using a TA

Instruments ARES G2 commercial rheometer. The scientist incharge of the testing reported

some difficulty with the softest of the three samples sent. Hecould not achieve adequate ad-

hesion and used super glue to improve the adhesion. In doing so, the sample was made much

stiffer and the results reveal this. As the soft plastisol sample was obviously softer than the

medium plastisol sample, the results for the soft sample arenot used for performance assess-

ment and comparison. The results of the experimental rheometer, called “Elviscolator” in the

included plots, are about 15% more elastically stiff than the ARES G2 results when no calibrat-

ing adjustments are made.

If the ARES G2 results for the hardest sample are assumed to becorrect, and linear

calibrations to the Elviscolator are made accordingly, theresults for the medium sample are in

very close agreement with the ARES G2 results. Furthermore,the results for the soft plastisol
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sample are about 75% of the stiffness of the medium sample. This is a very reasonable value,

and is more reliable than the ARES G2 data.

The results are given in the remainder of this section. The black sample is the hardest

one, the red sample is the medium one, and the white sample is the softest one. Elviscolator

results that have not been calibrated with the hard-sample results of the ARES G2 are denoted

“Blind” in the figures. Results that include the one-time calibration are denoted “Cal.”

5.2.1 Black Samples, Hard Plastisol

As can be seen in Figure 5.4 The blind results for the low frequency tests are quite good.

Even so, it is valuable to calibrate with respect to the independent results to ensure that changes

track well with the softer red sample. In Figure 5.4 (a) the system stiffnesses are compared.

The error bars denote the standard deviations over 10 independent frequency sweeps.

Figure 5.4 (b) shows typical phase shift results. The high values reported for the Elvis-

colator at low frequencies (below 10 Hz) are attributable tosample slipping and adverse effects

of stick-slip friction on the excitation axis. The sample slipping can be prevented by the use

of super-glue which will not have the adverse stiffening effect that plagues the ARES G2 soft

sample results. This is because of the much greater thickness of our samples; the local effects

are ameliorated by bulk effects. However, using super-glueis avoided in hopes of allowing

future re-testing of the samples.

Figure 5.4 (c) shows typical shear storage and loss modulus results.

Figure 5.5 shows the high frequency performance. Although comparison data is only

available up to 16Hz the trends up to about 60Hz are commensurate with theoretical transfer

function and trace a reasonable extrapolation of the ARES G2curves.

Above 60Hz, the Elviscolator results show some anomolous behavior. Asseen in Figure

5.5(c), there are jumps in the system response that cannot beeasily explained. Although strain

gauge resonances seem to be a possible explanation, these results could not be reproduced

analytically using the two-degree-of-freedom model.
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(a) (b)

(c) (d)

Figure 5.4: Hard plastisol low frequency sweep, comparison of resultswith standard deviations
represented by error bars: (a) Legend; (b) Amplification; (c) tanδ , and (d) Storage and Loss
Moduli (shear).

It is considered likely that as the excitation frequency is increased beyond 60Hz, the

substantial increase in voice-coil current draw exacerbates capacitive cross-talk over channels

in both the instrument wiring and in the internal switching of the mega-Hertz capable DAQ.

This is suspected to cause signal degradation that is not indicative of the actual material or

system response. This issue requires further investigation and, at this point, results obtained

above 60Hz should be verified or discarded.

The standard deviations increase dramatically at the highest frequencies. This is caused

by divergence of the displacement control algorithm which cannot achieve the minimum dis-
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placements prescribed without exceeding the user-defined coil current limit.

(a) (b)

(c) (d)

Figure 5.5: Hard plastisol high frequency sweep, comparison of results with standard devia-
tions represented by error bars: (a) Legend; (b) Stiffness;(c) tanδ , and (d) Storage and Loss
Moduli (shear).

5.2.2 Red Samples, Medium Plastisol

Figure 5.7 shows the high frequency performance of the red (medium stiffness) sample.

Since we used the ARES G2 data of the hard sample for calibration purposes, comparison to

the medium sample results show promise for the predictive capabilities. This is well observed

in the low frequency data depicted in Figure 5.6. Please note, that the calibrations done with
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the ARES G2 data resulted in comparatively small changes in the predicted material properties,

fostering changes that don’t exceed 20%. As before, above 60Hz the Elviscolator results show

some anomolous behavior. Overestimated tanδ at low frequency can be attributed, at least in

part, to sample interface slipping. This could be easily remedied with the use of superglue,

which was avoided in hopes of preserving the samples for future reuse.

It should be noted that resonances of the cantilevered load cell, which typically occur

above 60Hz should be considered. Although these resonance don’t explain all of the com-

plex high frequency behavior seen, they bolster the justification for discarding high frequency

results.

5.2.3 White Samples, Soft Plastisol

Figure 5.9 shows the high frequency performance of the white(lowest stiffness) sample.

As can be seen in the low frequency results of Figure 5.8 the ARES G2 data are of suspect reli-

ability due to some difficulties reported by laboratory technicians. Significant sample slipping

evidently required their use of super-glue which had the likely effect of rendering the thin sam-

ples stiffer than normal. The experimental device, however, did not have this problem and the

results are correctly softer than those of the medium sample. It is not the case that the soft sam-

ple is in actuality stiffer than the medium sample, which canbe verified by tactile examination

of the samples.
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(a) (b)

(c) (d)

Figure 5.6: Medium plastisol low frequency sweep, comparison of results with standard devi-
ations represented by error bars: (a) Legend; (b) Stiffness; (c) tanδ , and (d) Storage and Loss
Moduli (shear).
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(a) (b)

(c) (d)

Figure 5.7: Medium plastisol high frequency sweep, comparison of results with standard devi-
ations represented by error bars: (a) Legend; (b) Stiffness; (c) tanδ , and (d) Storage and Loss
Moduli (shear).
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(a) (b)

(c) (d)

Figure 5.8: Soft plastisol low frequency sweep, comparison of resultswith standard deviations
represented by error bars: (a) Legend; (b) Stiffness; (c) tanδ , and (d) Storage and Loss Moduli
(shear).
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(a) (b)

(c) (d)

Figure 5.9: Soft plastisol high frequency sweep, comparison of results with standard deviations
represented by error bars: (a) Legend; (b) Stiffness; (c) tanδ , and (d) Storage and Loss Moduli
(shear).
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5.3 Tissue Characterization

Having shown that the Elviscolator performs well when compared against the ARES

G2 using laboratory produced plastisol samples, actual tissue testing was undertaken. As the

plastisol samples were anelastic in their response, much more viscous flow was found using

real tissues. Unfortunately, there is no “gold standard” method for quantitatively determining

the elastic properties of tissues [49]. However, some comparisons to published results for a

number of experimental setups is instructive. In their workwith the soft tissue elastometer,

Egorov et. al suggest that “most normal soft tissues have a Young’s modulus on the order of

10kPa” [34]. As the samples tested here have been obtained from a butcher, they have been

bled and aged. This can be expected to have stiffen the tissues to some degree.

In the year 2000, Kruse et. al used techniques of Magnetic Resonance Elastography

(MRE) to estimate the shear modulus porcine semitendinosusskeletal muscle which was esti-

mated be in the range of 12−32kPa at 300Hz, and porcine liver which was estimated to be

about 3kPa at 100Hz and 5kPa at 300Hz [49]. In 2007, also using MRE, Klatt et. al estimated

the shear modulus of human liver to be in the range of 1−3kPa [50].

Pneumatic indentation methods were used by Palevski et. al in 2006 to estimate the

short term shear modulus of porcine gluteus muscle to be about 8.5kPa [51]. Van Loocke,

Lyons, and Simms used quasi-static compression tests to estimate the shear modulus of porcine

gluteus muscle to be 523Pa [29].

In 2008, Egorov et. al used indentation methods to estimate the Young’s modulus of

pork loin samples to be in the range of 11−16kPa and the Young’s modulus of bovine liver

to be in range of 6−11kPa [34]. If these tissue are assumed to be incompressible, the corre-

sponding shear moduli would be in the ranges of 3−6kPa for the pork loin and 2−4kPa for

the bovine liver.

We tested porcine hind quarter muscle and bovine liver tissue for these purposes. The

porcine tissue was of medium stiffness, comparable to the medium plastisol sample tested in

the previous section. The bovine liver tissue was, however,not only much softer than anything
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previously tested but was also very liquid having a “soupy” consistency. While the exact tissue

samples tested were not tested by an independent method or laboratory, we can determine much

from these tests.

5.3.1 Porcine Muscle Tissue Thin Sample

The thin sample results for the porcine loin tissue show a much more viscous response

than was observed for the elastomer phantoms used for calibration and performance evaluation.

The thin sample were cut be about 11mm in thickness and 10 frequecy sweeps were averaged

(typical for all of the reported prototype results in this section).

Figures 5.10 and 5.11 show the discrete stiffness results in(a), the viscosity or tanδ

results in (b), and the shear storage and loss modulus results in (c). The estimated elastic shear

modulus for the pork loin tissue is to the order of 20kPa, which is a bit stiffer than some

of the published results (3−10| : kPa) but is still well within the range of what is physically

reasonable. The increased stiffness can be explained by thedraining and aging of the tissue

prior to testing.

(a) (b) (c)

Figure 5.10: Porcine muscle tissue low frequency sweep, thin sampleth = 11.5mm: (a) Am-
plification; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the standard
deviations over 10 sweeps.
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(a) (b) (c)

Figure 5.11: Porcine muscle tissue high frequency sweep, thin sampleth = 11.5mm: (a)
Amplification; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the
standard deviations over 10 sweeps.

5.3.2 Porcine Muscle Tissue Thick Sample

The thick sample results are in good agreement with those of the thin sample. This

demonstrates that the device and methods presented here arerobust for field work where pre-

cise, uniform sample preparation is not practical.

(a) (b) (c)

Figure 5.12: Porcine muscle tissue low frequency sweep, thick sampleth = 16.5mm: (a)
Amplification; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the
standard deviations over 10 sweeps.

5.3.3 Bovine Liver Tissue Thin Sample

The bovine liver tissue was found to be very soft and lossy. Infact, the tissue was about

as soft as can be reliably tested without having to resort to large deformations to overcome axis

friction. Above 40Hz the phase shift skyrockets as seen in Figure 5.15 (b). This means that the
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(a) (b) (c)

Figure 5.13: Porcine muscle tissue high frequency sweep, thick sampleth = 16.5mm: (a)
Amplification; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the
standard deviations over 10 sweeps.

liver tissue shear response is highly loss dominated at highfrequencies which is evident in the

high values ofG′′ above 20Hz in Figure 5.15 (c).

(a) (b) (c)

Figure 5.14: Bovine liver tissue low frequency sweep, thin sampleth = 9mm: (a) Amplifi-
cation; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the standard
deviations over 10 sweeps.

5.3.4 Bovine Liver Tissue Thick Sample

As was seen with the porcine loin tissue results, the thick sample numbers for the bovine

liver tissue are in good agreement with the thin sample data.This shows that the device can

give consistent results with very little sample preparation.

The published tissue properties span a wide range of values obtained with very diverse

methodologies and samples, but although they are an imprecise comparison standard they do
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(a) (b) (c)

Figure 5.15: Bovine liver tissue high frequency sweep, thin sampleth = 9mm: (a) Amplifi-
cation; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the standard
deviations over 10 sweeps.

(a) (b) (c)

Figure 5.16: Bovine liver tissue low frequency sweep, thick sampleth = 14mm: (a) Amplifi-
cation; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the standard
deviations over 10 sweeps.

(a) (b) (c)

Figure 5.17: Bovine liver tissue high frequency sweep, thick sampleth = 14mm: (a) Ampli-
fication; (b) tanδ , and (c) Storage and Loss Moduli (shear). Error bars represent the standard
deviations over 10 sweeps.

give some indication of the kind of shear modulus magnitudesto expect. Our experimental

results are found to be quantitatively reasonable in this context.
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Most importantly, we were able to test how satisfactorily the excitation boundary would

adhere to the wet tissue sample surfaces where biological enzymes threaten to present some

difficulty. No such difficulties arose. Also, published datafor the elastic properties of similar

tissues tell us that our results are within the realm of what is physically feasible.

Because the tissues were cut imprecisely, these experiments also put the practicality of

the device for field use, where samples must be cut with some haste, to the test. The samples

were cut at various thickness and no great efforts were made to ensure that the top and bottom

surfaces would be parallel. In this way, the thick sample implications determined analytically

were verified experimentally. The thick sample assumptionsled to some convenient geometric

features such as insensitivity to small errors in the thickness estimation. The same reasoning

suggests that the sample geometries need not be prepared with precise cut-planes to allow for

useful results. These conclusions were verified experimentally by comparing the results of

different tissue samples cut to different thicknesses withlittle attention paid to cut precision.

Tissue testing also reveals the importance of using an adherent agent, such as superglue, at the

loaded boundary; which was not as crucial to the plastisol tests.



Part III

Finite Element Methods for Rigidtropic

Anisotropy
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Chapter 6

Spectral Treatments for Rigidtropic

Locking

The finite element method is well suited to exploring the effects of anisotropy of the kind

associated with tissues having directionally aligned stiff fibers. In particular, skeletal muscle in

known to have a complex fibrous structure [29]. A notable shortcoming in the use of existing

finite element methods involves the propensity for solutionlocking in the direction of stiff

fibers. This locking reveals itself in solutions that underestimate deformation and converge

very slowly. Here, a few remedies that exploit the spectral decomposition of the elasticity

matrix, as commonly written in Voigt-Mandel notation, are explored. One proposed remedy is

a generalization of selective reduced integration, another is a special B-bar method arising from

the 3-field variational formulation, and some stabilized methods are introduced. The stabilized

methods deserve special attention due their potential for improved convergence, even when

applied to general problems such as simple isotropic elasticity.

6.1 The Spectral Decomposition of the Compliance Matrix

Certain anisotropic elastic materials, such as the homogenized model of a fiber-

reinforced matrix, are nearly rigid under stresses appliedin a direction of material rigidity—the
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resulting strains are comparatively small when viewed against the strains that would occur in

response to otherwise directed stresses. Isotropic materials may have dilational rigidity, which

we show to be a special case of this generalized treatment.

Some common finite element techniques are effective in dealing with volumetric lock-

ing, but are not well suited to handle anisotropic materialsthat lock under stress states other

than those that are described as mostly hydrostatic. The failure of the traditional B-bar method

is attributable to the fundamental assumption that the modeof deformation to be relieved is one

of near incompressibility.

The proposed remedy exploits the spectral decomposition ofthe compliance matrix

of the anisotropic material. The spectrum separates nearly-rigid and flexible modes of stress

and strain; this leads naturally to a generalized selectivereduced integration. What’s more,

this decomposition also enables a three-field formulation,of elastic strain energy conservation,

which results in a B-bar method applicable to general anisotropic materials with nearly-rigid

fibers.

When materials with multiple stiff fiber directions are treated with more than one spec-

trally defined deformation mode, element stabilization maybe necessary. A working stabiliza-

tion method is presented.

Traditional Selective Reduced Integration (SRI), is a method usually attributed to the

efforts of Doherty et al. [52]. It is considered an effectiverepair of finite elements that lock

when subjected to certain modes of deformation. The technique is able to handle isotropic

nearly incompressible elastic solids, where volumetric locking cuases problems. Hughes [52]

offers a derivation based on Lamé parameters, but an analogous approach based on the split of

the deformation energy into bulk and shear terms gives an alternative [53].

One key to the successful use of the SRI technique is the separation of volumetric and

deviatoric energy. Because this split is not clean for solids with anisotropic material responses,

traditional SRI is awkward and inapplicable for materials such as fiber-reinforced composites.

This shortcoming motivated the development of the now widespread B-bar method. In

[54], the B-bar method was presented as a treatment for anisotropic materials, but the volumet-
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ric and deviatoric energy split originally intended for isotropic materials, remained fundamental

to this formulation. It stands to reason that the locking deformation modes could go well be-

yond the case of waning compressibility. Claims that B-bar methods are an effective treatment

for anisotropic materials have to our knowledge never been tested.

In the presented method, we separate the mechanical material responses into con-

strained and unconstrained deformations which are redrawnin terms of strain, stress, and

energy. The proposals rely on the spectral decompositions of the compliance matrices. We

appeal to the formulations offered by Felippa and Oñate [55], and proceed to apply them as

improvements on existing finite element techniques.

6.2 Motivation for Spectral Treatments GSRI and B-bar

Variant

Consider materials that consist of a soft matrix reinforcedwith aligned stiff fibers. The

system of locally parallel fibers is typically represented macroscopically using material models

that have transversely isotropic homogenized properties.We can deduce that for very stiff

fibers the material is effectively rigid when loaded in the direction of the fibers. This causes

underestimated deformations in locking finite element formulations.

Take a fiber-reinforced cantilevered beam as an example. Thebeam is clamped at the

fixed end and loaded by a transverse shear force at the free endas shown in Figure 9.8 (a). The

x-axis is parallel to the beam’s axis, thez−axis is vertically transverse. The dimensions are:

width W = 1 cm, lengthL = 9 cm, and thicknesst = 2 cm. The boundary conditions atx = 0,

Fig. (9.8)(a), are

ux = uy = uz = 0 , (6.1)

and the Neumann boundary conditions are prescribed on atx = L as

τxz =−10 kPa. (6.2)
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We consider both an isotropic material, and an anisotropic material with one of two

different orientations of the local coordinate system. Theanisotropic material is assumed to

be a model suitable for a soft matrix reinforced with stiff uni-directional fibers. The elastic

modulus along the stiff fiber is 100000 times higher than in the transverse directions, and the

shear terms comparatively very small in magnitude. The anisotropic elastic properties areE1 =

100000 GPa,E2 = E3 = 1 GPa,G12 = G13 = G23 = 0.2 GPa, andν12 = ν13 = ν23 = 0.25. The

fibers are oriented at an angle with respect to the beam’s longitudinal axis as described by an

orientation vector with components in the Cartesian coordinate system.

Throughout, strain energy error is defined as

ΨSE =

∣

∣

∣

∣

U

Uξ
−1

∣

∣

∣

∣

, (6.3)

whereU is the computed strain energy, andUξ is the limit value arising from Richardson’s

extrapolation. Similarly, maximum displacement error is defined as

Ψδ =

∣

∣

∣

∣

δ
δξ
−1

∣

∣

∣

∣

, (6.4)

whereδ is the computed maximum displacement andδξ is the limit value arising from Richard-

son’s extrapolation. The data for the extrapolation are taken from results for progressive refine-

ments obtained with a well-behaved finite element (except where indicated otherwise).

The mechanical response of the beam in terms of the normalized true error of the max-

imum deflection is shown in Fig. (9.8)(b,c,d). It bears emphasis that the elements used to

discretize the beam are elongated (aspect ratio of 4.5), which has significant implications for

the accuracy of linear elements without any enhancement of the bending stiffness. The behav-

ior for isotropic compressible material is shown in Fig. (9.8)(b). As expected the quadratic

20-node serendipity hexahedron C3D20R is very accurate. The ABAQUS incompatible-mode

C3D8I and one-point reduced integration hybrid elements C3D8RH also perform rather well.

The elements whose bending stiffness is not improved in any way (the ABAQUS linear hybrid

C3D8H, the linear isoparametric element C3D8, and the original B-bar Q1/Q0 hexahedron [52]

H8-Bbar-ISO) perform identically.
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Now we look at the case of the anisotropic material with the fiber orientation

[
√

2/2,−
√

2/2,0] in Fig. (9.8)(c). All input data remained unchanged, especially the

mesh, and therefore we conclude that the relative performance hit of an order of magnitude

greater error taken by the quadratic 20-node serendipity hexahedron C3D20R is clearly due to

the introduction of material anisotropy. The performance of the linear isoparametric element

C3D8, the original B-bar Q1/Q0 hexahedron, and the H8-Bbar-ISO has also deteriorated by an

order of magnitude. On the other hand, the ABAQUS linear hybrid C3D8H, the incompatible-

mode (C3D8I) and one-point reduced integration hybrid C3D8RH elements are essentially

as accurate as for the isotropic material. Moreover note that there is a new element in the

graph Fig. (9.8)(c): hexahedron H8-Bbar based on a modification of the B-bar method for

anisotropic materials as introduced in the present paper. The relative performance of this

element compared to the C3D8I and the C3D8RH is essentially the same as that of the original

technique to these elements for the isotropic material. Clearly, if this holds for any orientation

of the stiff fibers we have made the B-bar formulation robust for anisotropic materials.

This is indeed supported by the findings in Fig. (9.8)(d) where we look at the case of

the anisotropic material with the fiber orientation[
√

2/2,0,−
√

2/2]. The quadratic 20-node

serendipity hexahedron C3D20R takes another performance hit, having an order of magnitude

greater error. The performance of the linear isoparametricelement C3D8, and the original B-

bar Q1/Q0 hexahedron H8-Bbar-ISO has also deteriorated by an additional order of magnitude.

As before, the incompatible-mode C3D8I and one-point reduced integration hybrid C3D8RH

elements maintain their reasonable performance. The accuracy of the ABAQUS linear hybrid

C3D8H has also significantly deteriorated. In contrast, thenew hexahedron H8-Bbar element

in the graph Fig. (9.8)(d) compares better with the incompatible-mode C3D8I and one-point

reduced integration hybrid C3D8RH elements.

In summary, the incompatible-mode C3D8I, one-point reduced integration hybrid

C3D8RH elements, and the new hexahedron H8-Bbar element arethe only finite elements

insensitive to the character of the elastic material; whether isotropic or anisotropic with an

arbitrary orientation, the finite elements deliver essentially the same accuracy with the same
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mesh. The main contribution of the present paper is the generalization of the B-bar technique

to furnish existing hexahedral elements, both linear and quadratic, with insensitivity to the

anisotropy of the material stiffness matrix.
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Figure 6.1: Displacement errorΨδ of cantilever beam subject to shear load at the free end. (a)
Uniform mesh with 125 nodes; element aspect ratio of 1 : 4.5. In (b), (c), and (d) we show the
estimated true error of the maximum deflection. (b) Isotropic material. (c) Anisotropic mate-
rial, stiff fiber aligned with[

√
2/2,−

√
2/2,0]. (d) Anisotropic material, stiff fiber aligned with

[
√

2/2,0,−
√

2/2]. Key: C3D8 – linear hexahedron, C3D8H – linear hybrid hexahedron with
uniform pressure, C3D8I – hexahedron with incompatible modes, C3D20R – the uniformly re-
duced integration quadratic serendipity hexahedron, H8-Bbar-ISO – B-bar Q1/Q0 hexahedron
as in Hughes [52], H8-Bbar – linear hexahedron with present B-bar formulation.
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6.3 Split the Constitutive Relation

The use of the spectral decomposition to represent the strain, stress, and the constitu-

tive relations in linear elasticity goes way back. As carefully reviewed by Helbig [56], these

ideas likely originated with a 1856 publication by Lord Kelvin. Another take on this work

reappeared in 1878, however not a single citation of this original work can be found until much

later. In 1984 Rychlewski [57] formulated an extensive theory of constitutive relations based

on the spectral decomposition. Not long thereafter, theoretical publications by Mehrabadi and

Cowin [58] and Theocaris [59] appeared. These powerful ideas were, to the best of our knowl-

edge, never used in modern computations.

In the recent paper of Felippa and Oñate [55], who don’t mention the prior publica-

tions described above, discussions are given of stress and strain decomposition appropriate to

linearly elastic anisotropic materials with volumetric locking using the spectral decomposition

of the compliance matrix. In so doing, they introduce the so called “rigidtropic” materials,

which develop little to no strains under a stress pattern that follows a nearly zero eigenvector.

These material models include, as a special case, isotropicincompressible materials, whose

null eigenvector corresponds to the hydrostatic stress. The main conclusion contended in [55]

is that with anisotropic material models the quantities that correspond to hydrostatic pressure

and volumetric strain in incompressible isotropic materials need to be redefined in terms of

effective quantities. A material is taken as effectively rigid when itundergoes numerically zero

strains under a stress pattern proportional to the eigenvector associated with a vanishing prin-

cipal compliance. In this sense, the term “effective” has norelation to its usual meaning in

homogenization theory.

The compliance matrix expressed in terms of the spectral decomposition reads

D−1 =
1
3

6

∑
i=1

γiviv
T
i , (6.5)

whereγi andvi are the principal value and principal direction of the compliance matrix

(eigenvalue and eigenvector), which are assumed to be givenin the orderγ1 ≤ . . . ≤ γ6, and
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normalized with respect to length
√

3 through the definition

vT
j vi = 3δ ji , (6.6)

to simplify linkages to isotropic incompressible elasticity. In the decomposition

in Eq. (6.5), a material is coined “nearly rigidtropic” whenγ1→ 0 [55]. This is a way of

saying that the strain vanishes in the direction ofv1.

Using this decomposition, the compliance matrix is split into the stiff and the flexible)

parts, respectively, as

D−1 =
1
3

γ1v1vT
1 +

1
3

6

∑
i=2

γiviv
T
i . (6.7)

It can be shown, as is done in Reference [55], that for isotropic incompressible materials

v1 = m = [1,1,1,0,0,0]T ,

and we obtain as the constrained/unconstrained split the volumetric/deviatoric partitioning of

the constitutive equation.

6.4 Generalized Selective Reduced Integration

The SRI method is a well established technique for the treatment of isotropic incom-

pressible materials with conventional finite elements (see[54, 52] for background). Here we

introduce a generalization that facilitates the handling of constrained anisotropic materials.

Starting with the total potential energy of an infinitesimaldeformable elastic body in

the form

U =
1
2

∫

Ω
εT DεdΩ , (6.8)

emerges, whereε = [ε11,ε22,ε33,2ε32,2ε31,2ε12]
T is the Voigt-Mandel version of the second

order strain tensor and the material stiffness matrixD follows from Eq. (6.5) as

D =
6

∑
i=1

1
3γi

viv
T
i . (6.9)
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The quantity

Ki =
1

3γi
, (6.10)

is called the effective stiffness (called the “effective bulk modulus” in Reference [55]).

In drawing an analogy to Eq. (6.5), the material stiffness can be recast as

D = Dr +D f , (6.11)

where for the stiff and flexible parts we have

Dr = K1v1vT
1 , D f =

6

∑
i=2

Kiviv
T
i . (6.12)

Substituting Eq. (6.11) into Eq. (6.8) results in an additive split of the constrained and

unconstrained energy contributions. Carefully choosing integration rules for each of these en-

ergy contributions–full integration to the flexible part and reduced integration for its nearly

rigid counter part–leads to the GSRI technique. A modified version of the B-bar formulation is

presented as an alternative to the GSRI method.

6.5 Three-field formulation of anisotropic elasticity

Introducing two basic relations, to be used in a mixed approximation, leads to a novel

treatment for nearly rigidtropic materials. Initially define the effective constrained stress as

p =
1
3

mT σ , (6.13)

and the effective constrained strain as

εv = mT ε . (6.14)

Now, the strain field is derived from the displacement vectorasε = Bu. For a clear compatibil-

ity with the vernacular of isotropic nearly incompressibleelasticity we keep the notationp (i.e.

pressure) andεv (i.e. volumetric strain). For simple isotropic materials the vectorm is given as

m = [1,1,1,0,0,0]T . (6.15)
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Here, we take

m = v1 , (6.16)

which allows writing the constitutive relation between theeffective pressure and the volumetric

strain as

p = K1εv . (6.17)

Moving forward, the unconstrained stress is linked to the unconstrained strain as

σd = Ddε , (6.18)

where we now useDd = D f . In the name of backward compatibility we employ the notation

Dd, which for isotropic materials is the deviatoric part of thematerial stiffness matrix. The total

stress reads

σ = σ d + pm .

Therefore, the principle of virtual work is rendered as

∫

Ω
δεT (σ d + pm) dΩ−

∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 , (6.19)

or, introducing Eq. (6.18),

∫

Ω
δεT DdBudΩ+

∫

Ω
δεT pmdΩ−

∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 . (6.20)

Note, that in these equilibrium relations the vectorb represents the generalized forces in a

bodyΩ, andt represents the Neumann boundary conditions on the tractionboundaryΓt . Now,

Eq. (6.20) is expressed with the weakly enforced kinematicsin Eq. (6.14)

∫

Ω
δ p

(

mT Bu− εv
)

dΩ = 0 , (6.21)

whereB is the standard symmetric gradient operator [53] and with the weak form of the con-

stitutive equation (6.17)
∫

Ω
δεv (K1εv− p) dΩ = 0 . (6.22)
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Equations (6.20), (6.21) and (6.22) constitute together with Eq. (6.16), the three-fieldu− p−εv

formulation ofanisotropic elasticity. For isotropic elastic materials the above formulation is

identical to that described in the literature, see e.g. [53].

A similar variational framework was developed by Key [60]. The author considered

incompressible materials and developed a variant of the Reissner-Hellinger principle which

accounts for pressure as an independent variable. Replacing pressure with “extensional stress

variable” was mentioned in passing.

Taylor et al. [61] have also developed a formulation based onadditional pressure and

dilatation variables. The projection vector in equation (11) of [61] denotes the direction of

hydrostatic stress, which the authors take to be appropriate for both isotropic and anisotropic

elastic materials with (nearly) zero dilatation.

Since this choice is the same one made in the original formulation of the B-bar tech-

nique [54], it is ineffective in handling fiber-reinforced materials where the rigidity constraints

are not volumetric. It is, therefore, not suited to deal withspecific anisotropic materials whose

rigidity is not volumetric.

6.6 B-bar variant formulation

In treatment of Eqs. (6.20, 6.21) and (6.22) with the finite element method the following

approximations are adopted (we use the notation of [53])

u≈ Nuũ, p≈ Np p̃, εv ≈ Nvε̃v . (6.23)

It is also assumed thatNv equalsNp, as discussed in [53]. This appeals to the “discontinu-

ous pressure/condensation” formulation so that thep andεv can be locally eliminated on an

element-by-element basis.
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The mixed approximation is thus obtained in the form













A C 0

CT 0 −E

0 −ET H
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






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




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







=










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








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










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







. (6.24)

The matrices above are defined as [53]

I d = I − 1
3

mmT , A =
∫

Ω
BT DdBdΩ, E =

∫

Ω
NT

v Np dΩ,

H =
∫

Ω
NT

v K1Nv dΩ, C =
∫

Ω
BT mNp dΩ . (6.25)

Eliminating the effective strain from the second equation yields

ε̃v = E−1CT ũ = Wũ , (6.26)

where we introduceW = E−1CT , so that subsequent substitution into the third term in

Eq. (6.24) yields

p̃ = E−T Hε̃v = E−T HW ũ . (6.27)

Now we obtain a linear system in terms of the displacements alone

Āũ = f 1 , (6.28)

where

Ā = A +WT HW , (6.29)

by using the first row in Eq. (6.24). It follows from Eq. (6.20), Eq. (6.22) and the given approx-

imations in Eq. (6.23), that we can now write Eq. (6.30) as

Ā =

∫

Ω
BT DdBdΩ+

∫

Ω
WT NT

v K1NvW dΩ . (6.30)

Noting the aforementioned relations for effective stiffness

Dd = I dDI d , K1 =
1
3

mT D
1
3

m , (6.31)
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allows reformulating Eq. (6.30) as

Ā =

∫

Ω
BT I dDI dBdΩ+

∫

Ω
WT 1

3
NT

v mT D
1
3

mNvW dΩ . (6.32)

Finally, Eq. (6.32) combines in forming

∫

Ω

[

(

I dB+
1
3

mNvW
)T

D
(

I dB+
1
3

mNvW
)

]

dΩ =

∫

Ω
B̄T DB̄dΩ , (6.33)

where the assumed-strain B-bar matrix is taken as

B̄ = I dB+
1
3

mNvW . (6.34)

Note that theW matrix is expressed from the three-field coupling termsE andC, which

can be integrated with a lower quadrature rule than that usedfor the remaining part of the

element stiffness matrix (6.33).

For certain distinctly inhomogeneous models, this leads toimproved monotonic con-

vergence. For more on this see appendix B. The resolved maximum displacements and strain

energies for solutions with the fully integrated and reduced-order integratedW matrix agree

with one another to several decimal places for the examples investigated.

The GSRI and the B-bar methods use a variety of Gauss quadrature rules each: the

selective integration rules are denoted (1,2) for the linear elements and (2,3) for the quadratic

elements; and the full integration rules are denoted (2,2) and (3,3). The first number of the

rule indicates the number of Gauss points per dimension for the stiffness matrix corresponding

to the nearly-rigid modes of deformation (GSRI) or theW matrix (B-bar), and the second

number indicates the number of Gauss points per dimension stiffness matrix corresponding to

the flexible modes of deformation (GSRI) or the stiffness matrix (B-bar).

Note that the discrete formulation in this section exactly matches that of Reference [53].

The only difference is the use ofeffective strain, stress, and moduli arising from the spectral

decomposition of the compliance matrix of the material. Forisotropic materials the present

formulation is identical to that based on the classic volumetric/deviatoric split.
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Chapter 7

Treating Multiple Modes

If more than two eigenvalues of the compliance matrix approach zero, such as for in-

stance for a fiber-reinforced material with two parallel system of stiff fibers in soft matrix, the

continuous formulation needs to be modified, but in relatively minor ways. The projection

matrixm is predictably taken as

m = [v1,v2] (7.1)

for a single locking stress direction. Correspondingly we have to adopt a vector of constrained

effective stresses and a corresponding vector of the effective constrained strains as

p =
1
3

mT σ , εv = mT ε , (7.2)

to replace the scalar quantities used for single mode treatment.

The variational equations are consequently rewritten as

∫

Ω
δεT DdBu+

∫

Ω
δεT mp−

∫

Ω
δuT b−

∫

Γt

δuT t = 0 (7.3)

with
∫

Ω
δ pT (mT Bu− εv

)

= 0 (7.4)

and (with a diagonal matrix of effective moduliK)

∫

Ω
δεT

v (Kεv− p) = 0 . (7.5)

114
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The finite element approximation is also suitably modified toinclude more than one effective

stress and strain, but the matrix expressions do not change in appearance (the matrices just

change size).

7.1 Examples

Four examples based on simple cantilevered structures are investigated and the pro-

posed treatments are evaluated. In these examples, nearly rigidtropic materials have up to two

dominant fiber directions that can be applied at any angle determined by local coordinate rota-

tions. The cantilevers are loaded such that significant locking behavior ensues for all elements

that are not treated by use of the spectral decomposition of the anisotropic elastic constitutive

relation. Although this behavior can be verified for other elements, such as tetrahedra, we focus

our attention on linear and quadratic hexahedral “brick” elements. GRSI and generalized B-bar

elements will be referred to as “treated” throughout the text. They are compared against tradi-

tional SRI and B-bar methods that are based on the volumetric-deviatoric split appropriate for

incompressible istotropic solids. The later will be referred to as “false-isotropic” throughout.

Each example is one of two geometric configurations with similar boundary conditions:

a slender cantilevered beam or a thick cantilevered plate. The beam’s dimensions are:W =

1.0 cm,L = 9.0 cm, andt = 2.0 cm. HereL is the length,W is the width, andt is the thickness.

The plate’s dimensions are the same exceptW = 10.0 cm.

Four cantilevered example models with varying fiber orientations, as seen in figure 7.1,

are tested. The solutions for both fully and selectively integrated B-bar treatments are generally

indistinguishable from the GSRI solutions. With this in mind and brevity’s sake, only the B-bar

solutions are shown in the deformed mesh views of figure 7.2.

It should be noted that using reduced integration on the B-bar treatments improves the

behavior only for the inhomogeneous cases, where fully integrated solutions show an alter-

nating (refinement dependent) convergence. For inhomogeneous materials, the B-bar solutions

show somewhat improved convergence when reduced integration is applied to the locking com-
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(a) (b)

(c) (d)

Figure 7.1: Fiber orientations for stability examples: (a) Example 1,Homogeneous beam;
(b) Example 2, homogeneous plate; (c) Example 3, smoothly inhomogeneous plate; and (d)
Example 4, discretely inhomogeneous plate one.
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(a) (b)

(c) (d)

Figure 7.2: Rigidtropic B-bar examples each shown with 11340 DOF: (a) Example 1, Homo-
geneous beam; (b) Example 2, homogeneous plate; (c) Example3, smoothly inhomogeneous
plate; and (d) Example 4, discretely inhomogeneous plate one.
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ponent.

The domainΩ of sought finite element solutions are given byx ∈ [0,L], y ∈ [0,W ], and

z ∈ [0, t]. The Dirichlet boundary conditions onΓu at x = 0 are

ux = uy = uz = 0 . (7.6)

For the beam model (example 1), the Neumann boundary conditions are prescribed on

Γt at x = L as

σ · n̂ = τxz =−10 kPa. (7.7)

For the plate model (examples 2-4), the Neumann boundary conditions are prescribed

on Γt atx = L as

σ · n̂ = τxz =−100 kPa. (7.8)

Note thatΓ = Γt ∪ Γu and Γt ∩ Γu = ∅. The boundary conditions remain the same

throughout the examples.

The convergence of the treated elements is demonstrated foreach example and calcu-

lated errors are referenced with respect to the limit of the quadratic refinement for the respec-

tive models, as determined by Richardson’s extrapolation [62]. Selected convergence results

are provided in the current section.

The refinement was carried out with a progressively increasing Number of Degrees-

Of-Freedom (NDOF). For the linear, eight node, hexahedral elements H8 elements NDOF =

[324, 1650, 5376, 11340, 22308, 36270, 58320, 83640], and for quadratic, 27 node, hexahedral

elements H27NDOF = [1650, 11340, 36270, 83640].

The strain energy errors are reported graphically and are defined by the error expres-

sion:

Ψ =
U

Uξ
−1 . (7.9)
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whereΨ is the error,U is the computed strain energy, andUξ is the limit value arising

from Richardson’s extrapolation.

In subsequent convergence studies, maximum displacement and the limit value of the

maximum displacement shall taken respectively asumax anduΞ.

In these examples, the maximum deflection at the free ends of the beam and plate, as

well as the strain energy error, are plotted with four different element treatments. The first two

treatements, referred to throughout as “false isotropic,”ignore the principal compliance and

take the rigid component to be constructed by means ofm = [1,1,1,0,0,0]T . This inadvertently

treats the anisotropic material as one would in using conventional selective reduced integration,

which is intrinsically tailored for volumetric locking in nearly incompressible isotropic mate-

rials. In contrast, this demonstrates the effectiveness of“unlocking” the rigid modes with the

proposed spectral-decomposition-based element locking treatments.

The subsequent (suggested) treatments are denoted “GSRI” and “B-bar”, and they use

the principal compliance modesm = v1 for single fiber materials orm = [v1v2] for dual fiber

materials to identify the nearly rigid components. Up to three modesm = [v1v2v3] are treated

in stability analyses presented later in this chapter.

7.1.1 Example: Homogeneous Single Fiber Beam

In Figs. (7.8–7.4) we demonstrate the results for a simple beam model with a stiff fiber

reinforcement along the vector[
√

2/2,0,−
√

2/2] .

The elastic modulus along the stiff fiber is 100,000 times higher than in the transverse

directions, and the shear terms comparatively very small inmagnitude.

The anisotropic elastic properties for this example are

E1(Pa) = 1.000e+14,E2(Pa) = 1.000e+09,E3(Pa) = 1.000e+09,G12(Pa) = 2.000e+08,

G13(Pa) = 2.000e+08,G23(Pa) = 2.000e+08,nu12= 0.25,nu12= 0.25, andnu12= 0.25.
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Which gives the material elasticity matrix (with the engineering shear strain conven-

tion):

D =

































106700 0.3333 0.3333 0 0 0

0.3333 1.067 0.2667 0 0 0

0.3333 0.2667 1.067 0 0 0

0 0 0 0.2 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.2

































(7.10)

in GPa. The large first row–first column entry of this matrix indicates the increased fiber stiff-

ness and corresponds to a small compliance term inD−1.

The spectral decomposition reveals that as the rigidity of the fibers increase without

bound, the nearly-zero strains are directed along

v1 =
√

3[1,0,0,0,0,0]T (7.11)

in the local (fiber-aligned) coordinates.

The stiff fibers of this example resist diagonal transverse deformation. This affect both

shearing and bending of the beam. Locking elements result inan underestimation of the dis-

placements and strain energy. The treated elements outperform traditional SRI with improved

accuracy in faster convergence.

Figure 7.2 (a) shows the deformed shape color-coded with vonMises stress for the

corrected B-bar formulation with linear hexahedra. The effect of the reinforcing fibers that

leads to a strong variation of the stress along the fibers anchored in the clamped face is clearly

visible. Figure 7.8 illustrates the conclusion that satisfactory convergence in energy can not

be expected from finite elements that use the ineffective formulation for the isotropic nearly-

incompressible materials (i.e. the standard B-bar technique); the corrected GSRI and B-bar

formulations deliver identical solutions that converge well. Figure 7.4 shows the convergence

in energy for the quadratic hexahedra. While the quadratic elements converge at higher rates
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than the linear ones when using the false isotropic formulation, the corrected techniques are

superior.
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Figure 7.3: For the fiber-reinforced cantilevered beam, untreated H8 elements fail to converge
satisfactorily. (a) The maximum displacement at free end versus discretization density; (b) The
strain energy versus discretization density.
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Figure 7.4: For the single-fiber cantilevered beam with H27 elements, the treated elements
show improved convergence. (a) The maximum displacement atfree end versus discretization
density; (b) The strain energy versus discretization density.
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Comparisons to High Performance Elements in ABAQUS

High performance elements available to the ABAQUS commercial finite element anlal-

ysis package are adapt at handling materials with a single rigid fiber direction. The presently

proposed treatments, however, are still top performers andhave been shown (in the previous

chapter) to perform well independently of material fiber orientations. This particular beam ex-

ample has fibers that are oriented at a 45◦ angle about they-axis, which gives the material fibers

a greater influence on the ultimate deformation results. Thelinear hexahedral B-bar H8-Bbar

elements outperform the stardard hexahedral C3D8 and the hybrid hexahedral C3D8H, and

keep up with the reduced integration hexahedral hybrid C3D8RH, and the incopatible modes

hexahdral hybrid C3D8IH.

(a) (b)

Figure 7.5: Homogeneous Single-fiber cantilever beam, compare to ABAQUS high perfor-
mance elements. (a) The maximum displacement at free end versus NDOF; (b) The strain
energy versus NDOF.

The refinement behavior of the displacement solutions of theelements being compared

is presented in Figure 7.5 (a), and the strain energy refinement in Figure 7.5 (b). Figures

7.6(a) and (b) show that the only element that shows better convergence behavior than the H8-

Bbar is the incompatible modes hybrid C3D8IH. The high performance elements available in

ABAQUS (especially the C3D8IH) perform well on bending dominated problems such as this

cantilevered beam with shear preventing rigid fiber.
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(a) (b)

Figure 7.6: Homogeneous single-fiber cantileve beam log-log of error,compare to ABAQUS
high performance elements. (a) The maximum displacement error at free end versus element
size (h); (b) The strain energy error versus element size (h).

7.1.2 Example: Homogeneous Dual Fiber Plate

In figures 7.2(b), 7.7 (a), 7.8 (b) a cantilevered plate reinforced with two orthogo-

nal systems of stiff fibers oriented at 45o with respect to the clamped face in the planex,y

is considered. The orthotropic material properties are taken on the local material axes as

E1(Pa) = 1.000e+14,E2(Pa) = 1.000e+14,E3(Pa) = 1.000e+09,G12(Pa) = 2.000e+08,

G13(Pa) = 2.000e+08,G23(Pa) = 2.000e+08,nu12= 0.25,nu12= 0.25, andnu12= 0.25.

Which gives:

D =

































106700 26670 0.3333 0 0 0

26670 106700 0.3333 0 0 0

0.3333 0.3333 1 0 0 0

0 0 0 0.2 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.2

































(7.12)

in GPa. This material model, which will be applied to the remainingplate examples, has two

locking stress directions.

v1 =

√

3
2
[1,1,0,0,0,0]T , v2 =

√

3
2
[1,−1,0,0,0,0]T . (7.13)
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Figure 7.7: Untreated eight node hexahedral elements fail to convergesatisfactorily. (a) The
maximum displacement at free end versus discretization density; (b) The strain energy versus
discretization density.

The two smallest principal compliances are comparable in magnitude and about 100,000 times

smaller than the next closest compliance.

The fiber orientations shown graphically in figure 7.1 (b) aredefined by the rotation

matrix:

Rz(θ) =













cosθ −sinθ 0

sinθ cosθ 0

0 0 1













(7.14)

whereθ = 45◦.

Figure 7.9 shows deflection of the free edge of the plate for selected finite elements.

The deflection computed with the GSRI linear (H8) and quadratic hexahedra (H27) agrees very

well with the results computed with the B-bar linear hexahedra. All of these results are within

This example illustrates the ability to treat multiple fiberdirections using GSRI and the

generalized B-bar methods. Here the fibers act in the plane ofthe plate at an angle of 45◦ to the

cantilever axis. The increased stiffness in the fiber directions limits that displacements at the

corners of the free ends which account for the curved deformations seen along the free edge in

figure 7.2(b). The “X” shape seen in the stress field color mapping of the top surface provides

a valuable visual representation of the rigid fiber’s resistance to loading.
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Figure 7.8: Dual-fiber cantilever plate with quadratic hexahedral elements; treated elements
show improved convergence. (a) The maximum displacement atfree end versus discretization
density; (b) The strain energy versus discretization density.
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Figure 7.9: Cantilevered plate reinforced with two orthogonal systems of stiff fibers. Deflection
of the free edge of the plate.

Figure 7.10 illustrates the convergence of the maximum deflection along the free edge

of the plate. A graph of the estimated true normalized error is shown for selected finite ele-

ment types in figure 7.10. The linear, quadratic, and cubic Lagrange hexahedron are all fully

integrated, as appropriate for their degree. So is the quadratic tetrahedron. Also included is the

serendipity 20-node hexahedron with uniform reduced integration.

It is noteworthy that both the serendipity 20-node hexahedron with uniform reduced in-
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Figure 7.10: Cantilevered plate reinforced with two orthogonal systems of stiff fibers. Conver-
gence of the maximum deflection along the free edge of the plate. Graph of the estimated true
normalized error.

tegration and the cubic Lagrange hexahedron match the GSRI linear and quadratic hexahedra in

convergence rate, but are much less accurate in absolute terms. The quadratic hexahedron and

the quadratic tetrahedron also appear to approach the same convergence rates, but are more than

order of magnitude less accurate. The data for the linear hexahedron do not extend sufficiently

far into the asymptotic range for this element, but its performance is clearly inadequate.

In previous (single fiber beam)example, the treated elementperformed well when com-

pared to the elements available in ABAQUS, but were still slightly outperformed by the hybrid

linear hexahedral elements with incompatible modes. In this example, however, the treated

elements are the top performers.

Comparisons to High Performance Elements in ABAQUS

A far greater performance advantage for the proposed treatment is realized when more

than one rigid mode is treated. While B-bar was outperformed, slightly, by the hybrid incom-

patible modes elements in the single-fiber beam example, B-bar is the clear winner when the

material has two rigid fibers and two eigenmodes of the compliance are treated.
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(a) (b)

Figure 7.11: Dual-fiber homogeneous cantilever plate, compare to ABAQUS high performance
elements. (a) The maximum displacement at free end versus NDOF; (b) The strain energy
versus NDOF.

(a) (b)

Figure 7.12: Dual-fiber cantilever plate with abrupt inhomogeneities log-log of error, compare
to ABAQUS high performance elements. (a) The maximum displacement error at free end
versus element size (h) density; (b) The strain energy errorversus element size (h).

Figures 7.12 (a) and (b) show superior convergence behaviorfor the new B-bar elements.

7.1.3 Example: Dual Fiber Plate with Smooth Inhomogeneity

Figures 7.2(c), 7.13, and 7.14 of the next example highlightthe introduction of a

continuously varying inhomogeneity. The physical dimensions as well as the basic orthotropic

material properties are taken to be the same as for the previous example. This time, however,

the rigid fiber orientations are not constant throughout andare defined by a rotation matrix that
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Figure 7.13: Dual-fiber cantilever plate with a smooth inhomogeneity and linear hexahedral
elements; treated elements show improved convergence. (a)The maximum displacement at
free end versus discretization density; (b) The strain energy versus discretization density.

varies linear from 45◦ at the clamped end to 90◦ at the loaded end by:

Rz(θ ,x,L) =













cosθ −sinθ 0

sinθ cosθ 0

0 0 1













+













cos(θx
L ) −sin(θx

L ) 0

sin(θx
L ) cos(θx

L ) 0

0 0 1













(7.15)

whereθ = 45◦ andL = Length. This changing material orientation introduces a smooth-field

inhomogeneity illustrated graphically in 7.1 (c).

The treated elements handle the introduction of a smooth inhomogeneity well. The H8

elements converge quickly and the H27 elements follow suit.Figures 7.13 and ‘7.14 show

convergence that significantly outperforms the untreated elements. Particular cases detailed

in appendix B show improved behavoir of the B-bar method whenreduced integration is a

applied to the terms resulting from the rigid component of the elasticity. Fully integrating

the generalized B-bar method prevents alternating, or “sawtooth,” solutions as the meshes are

refined. This is something that crops up when using B-bar withselective reduced integration

on inhomogeneous material models such as this one. This observation is supported by the final

inhomogeneous example.
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Figure 7.14: Dual-fiber cantilever plate with a smooth inhomogeneity and quadratic hexahedral
elements; treated elements show improved convergence. (a)The maximum displacement at free
end versus discretization density; (b) The strain energy versus discretization density.

7.1.4 Example: Dual Fiber Plate with Abrupt Inhomogeneous Regions

In figures 7.2(d), 7.15, and 7.16 of the final example; regionsof distinct fiber orien-

tations within the x-y plane are introduced. Here again, thephysical dimensions as well as the

orthotropic material properties are taken to be the same as for the second example—with the

exception of the fiber orientations.

The domain of example 4 is split in 4 distinct geometric regions, each applying the

orientation matrixRz of equation 7.14 at eitherθ = 0◦ or θ = 45◦ as follows:

On x ∈ [0, L
2 ], y ∈ [0,W

2 ), ∀z θ = 0◦

On x ∈ [0, L
2 ], y ∈ [W2 ,W ], ∀z θ = 45◦

On x ∈ (L
2,L], y ∈ [0,W

2 ), ∀z θ = 45◦

On x ∈ (L
2,L], y ∈ [W2 ,W ], ∀z θ = 0◦

A graphical representation of these distinct regions of inhomogeneity is provided in

figure 7.1 (d).

Figures 7.15 and 7.16 demonstrate, once again, that the treated elements do not exhibit

the locking behavior that plagues the untreated solutions.
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Figure 7.15: Dual-fiber cantilever plate with abrupt inhomogeneities and linear hexahedral
elements; treated elements show improved convergence. (a)The maximum displacement at
free end versus discretization density; (b) The strain energy versus discretization density.
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Figure 7.16: Dual-fiber cantilever plate with abrupt inhomogeneities and quadratic hexahedral
elements; treated elements show improved convergence. (a)The maximum displacement at
free end versus discretization density; (b) The strain energy versus discretization density.

Comparisons to High Performance Elements in ABAQUS

When an abruptly discrete inhomogeneity is introduced the proposed elements still con-

verge very well. The reduced integration hybrid C3D8RH elements show an impressive con-

vergence rate but still cannot match the accuracy of the h8-Bbar elements. In this example,

element distortions plague the top performing elements. A closer look at element stability will

follow in the next chapter.

Figures 7.18 (a) and (b) once again show superior convergence behavior for the new
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(a) (b)

Figure 7.17: Dual-fiber cantilever plate with abrupt inhomogeneities,compare to ABAQUS
high performance elements. (a) The maximum displacement atfree end versus NDOF; (b) The
strain energy versus NDOF.

(a) (b)

Figure 7.18: Dual-fiber cantilever plate with abrupt inhomogeneities log-log of error, compare
to ABAQUS high performance elements. (a) The maximum displacement error at free end
versus element size (h); (b) The strain energy error versus element size (h).

B-bar elements. Although the reduce integration quadratichexahedral H20R elements, the

linear reduced integration hybrid hexahedral C3D8RH elements, and the linear hybrid incom-

patible modes hexahedral C3D8IH elements are slightly moreaccurate with coarsest meshes,

the treated H8-Bbar elements soon surpass them all in accuracy.



132

7.1.5 Conclusions Drawn From Examples

In all four of the example problems investigated, as well as for many other examples

omitted for brevity’s sake, the treatments cure the rigid locking that ails all other elements

tested. Throughout these examples, for which no stabilization is incorporated and initial meshes

are uniform and well proportioned, the treated solutions converge from the flexible side and the

untreated solutions converge from the stiff side. Is shouldbe noted that the coarsest, pre-

asymptotic, meshes of the second example show non-monotonic behavior as the meshes are

refine. This is something we will see more of when the stabilization methods of the following

sections are applied.

Although the treatments show no locking and are convergent,some results indicate that

distorted meshes may lead to solutions that are non-monotonic under refinement. Severe mesh

distortion can lead to inaccuracies, especially in computed stresses. In most cases, distorted or

not, the treated elements perform better than the untreatedones.
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Chapter 8

Stabilized GSRI and B-bar

One might suspect that the mesh dependent deformation aberrations seen in figure 8.1

are due to a rank deficiency in the assembled stiffness matrix, but the explanation is not so

simple. As will be demonstrated, meshes with multiple elements in each direction have no

clear deficiency.

In assessing stability we first review the spectral analysisof the stiffness matrices, where

the eigenvalues of the 7th mode are several orders of magnitude greater than the first six–which

are numerically equivalent to zero for their respective source matrices. In doing so we discover

that when multiple modes are treated stability is not guaranteed and is, at times, dependent on

the fiber angles with respect to element orientations. Following this assessment, a stabilization

method is proposed and is shown to be effective with certain performance concessions in special

cases.

The spectral analyses of single element stiffness matricesfor three different elements

treatments are compared. Using both linear and quadratic hexahedra GSRI, selectively inte-

grated B-bar, and fully integrated B-bar are investigated for stability. It should be no surprise

that under-integrating a standard element reduces the rankof the element stiffness matrix. For

H8 elements, after accounting for the six rigid body modes, the expected rank of a well be-

haved element to be 18. For H27 elements, the expected rank ofa well behaved element is 75.

The rank of a standard under-integrated H8 element is six andthe rank of a standard under-

133
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Figure 8.1: An abruptly inhomogeneous example highlighting non-physical element distor-
tions or “hourglassing” is shown (GSRI with H8 elements and 1650DOF; deformations scaled
by 494).

integrated H27 element is 48.

Looking at a single element, the ranks of the treated H8 elements and H27 elements

are 18 and 75 respectively for all treated single fiber elements (GSRI and B-bar). However,

when more than one stiff fiber is treated the question of stability requires a more thorough

investigation. Table 8.2 provides a quick view of when the two-fiber treatments are stable

without the necessity of special methods. Selected convergence plots are provided in the current

section. For exhaustive results refer to Appendix B.

8.0.1 Stability of a Single Element

A square element block stiffness matrix is examined for stability wherein linear

(H8),and quadratic (H27) hexahedral elements are examined. The first 6 eigenvalues represent

rigid body motion and are expected to approach numerical zero; this means that they should be

several orders of magnitude lower than the seventh eigenvalue. The ratioλ7
λ6

is introduces as a

reasonable measure of element stability. The elements are considered “stable” whenλ7
λ6

>> 1;

λ7
λ6

close to 1 indicates instability.
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Table 8.1: Stability results for various treatments of single fiber single element blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Unstable 45◦,135◦

H27 Stable∀θ Stable∀θ Unstable∀θ Unstable∀θ

Material Dual Fiber: E1 = 200000× 106, E2 = 200000× 106, E3 = 2× 106,

G12 = 0.5×106, G23 = 0.2×106, G13 = G23, andν12 = ν13 = ν23 = 0.25.

8.0.2 Instabilities Revealed in the 7th Mode

Tracking the stability of dual-fiber two-mode treatment, while varying the fiber angle

with respect to the local element orientations, proves to bea valuable exercise. Figure 8.2

shows that the quadratic elements are stable except at a few select angles, namely: 0◦ and 90◦.

Figure 8.3 shows something similar when the same material has three modes treated and H8

elements are used. In this case instabilities appear at 45◦ and 135◦. Please note that the curves

of the GSRI, B-bar, and selectively integrated B-bar treatments all follow the same trends.

As tabulated in 8.2: H8 and H27 elements with fewer than two treated modes are
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Figure 8.3: H8, 3 modes, 2 fibers (Here B-bar1 means fully integrated).

Table 8.2: Stability results for various treatments of dual fiber single element blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Unstable 45◦,135◦

H27 Stable∀θ Stable∀θ Unstable 0◦,90◦ Unstable∀θ
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Table 8.3: Stability results for various treatments of single fiber 2-x-2-x-2 element blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Stable∀θ
H27 Stable∀θ Stable∀θ Stable∀θ Stable∀θ

Table 8.4: Stability results for various treatments of dual fiber 2-x-2-x-2 element blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Stable∀θ
H27 Stable∀θ Stable∀θ Stable∀θ Stable∀θ

consistently stable; H8 elements with two treated modes arestable; single fiber H27 elements

with two or three treated modes are unstable at all angles; H8elements with two or more treated

modes are unstable at 45◦ and 135◦; dual Fiber H27 elements with two treated modes are at 0◦

and 90◦; and meshes with multiple elements in each coordinate direction are stable (see table

8.3).

8.0.3 Stabilization by a Modified Constitutive Split

A stabilization method can be constructed by observing thatthe rank of the element

stiffness matrix is limited by the rank of the flexible component of the compliance or elasticity

matrix. Efforts to construct a stable element stiffness matrix start with a full rankD f . Some

clues are provided in the constitutive splits available in the nearly incompressible isotropic case.

Recall the basic constitutive relations
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Here, we see the Bulk–Shear version of the constitutive split: ε = 1
κ term +

mixed term = diag+ f ull. The diagonal term has full rank and is well conditioned. In

εi j =
1

9κ
δi jσkk +

1
2µ

(σi j−
1
3

δi jσkk) (8.3)

the hydrostatic pressure affects shear term. The Lame’–Shear split reads: ε = 1
λ term +

1
shear term = diag+ f ull, and we have

εi j =
−ν2

λ (1+ν)(1−2ν)
δi jσkk +

1
2µ

σi j . (8.4)

Notice that hydrostatic pressure doesn’t affect the shear term with this version of the split.

The Bulk–Shear split reads:σ = κ term+mixed term = diag+ f ull, or

σi j = κδi jεkk +2µ(εi j−
1
3

δi jεkk) . (8.5)

Notice that dilation affects shear term here. However, dilation doesn’t affect shear term in the

Lame’–Shear split:σ = λ term+ shear term = diag+ f ull, or

σi j = λδi jεkk +2µεi j . (8.6)

Theκ µ split is now expressed in Voigt-Mandel notation withD = Dv+Dd =
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where therank(Dv) = 1 and therank(Dd) = 5.

And, theλ µ split: D = Dv+Dd =
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whererank(Dv) = 1 andrank(Dd) = 6.

To apply this to our spectral treatments, let the complianceeigenvaluesλi provideκ =

λmax/3, andµ = λmin asν→ 1
2. Keep in mind that theseλi are now eigenvalues, not the Lame’

parametersλ expressed in the isotropic splits.

Now, we have a way of guaranteeing full rank in the flexible term of the elasticity

matrix. We do so by defining the split using

α = 2λmin/λmax =
2
3

µ
κ

(8.9)

which gives:
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This clever manipulation expresses the constitutive splitin terms of the Lame’–shear

split instead of the bulk–shear split provides a path to stabilization for our generalized treatment.

It turns out that even a very small split-shift provides element stability.

8.0.4 Stabilization, the Split-shift

The GSRI treatment is stabilized by increasing the rank of the fully integrated flexible

componentD f . This is done by shifting a small portion ofDr to D f .

First introduceα = 2λmin
λmax

whereλmin andλmax are the lowest and highest respective eigenvalues of the compliance matrix.

Now shifting is done byD f ← D f +αDr. andDr ← Dr−αDr. This results in aD f

with full rank.

The B-bar treatment is made stable by changing the deviatoric projector to have a

slightly smaller contribution from the rigid modes. This isaccomplished by removing a small

portion of the rigid modes and giving it to the “deviatoric” projectorI d .

Table 8.5: Stability results for various treatments of stabilized single fiber single element

blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Stable∀θ
H27 Stable∀θ Stable∀θ Stable∀θ Stable∀θ
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Figure 8.4: Stabilized H27, 2 modes, 2 fibers.
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Figure 8.5: Stabilized H8, 2 modes, 3 fibers.

Table 8.6: Stability results for various treatments of stabilized dual fiber single element blocks.

nm = 0 nm = 1 nm = 2 nm = 3
H8 Stable∀θ Stable∀θ Stable∀θ Stable∀θ
H27 Stable∀θ Stable∀θ Stable∀θ Stable∀θ

This level of stabilization does not provide a general remedy to the element distortion

problem, but we will see that increasing the proportions of the split can ameliorate the effects
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while still providing adequate convergence. Varying degrees of stabilization are tested in terms

of displacement convergence, strain energy convergence, and alleviation of element distortions

in the example models. Six different levels of stabilization are compared.

Stabilization is considered by varying degrees of split shifting:

1) No stabilization:α0 = 0;

2) Minimal stabilization:α1 = 2λmin
λmax

;

3) Increased by factor of 50:α50 = 50(2λmin
λmax

);

4)Increased by factor of 100:α100= 100(2λmin
λmax

);

5) Increased by factor of 200:α200= 200(2λmin
λmax

);

and 6) Increased by a scaling function ofλ : α f = f (λ ) =
√

∑6
i=6−nm+1λi

∑6−nm
i=1 λi

λmin
λmax

.

8.0.5 Stabilized Homogeneous Bi-Rigid Plate

In Figure 8.6 we see that increasing the amount of stabilization that is applied in the

split-shift effectively eliminates inter-element distortions. However, there is a cost. The con-

vergence observed in Figures 8.7 shows that with minimal stabilization the solutions are at their

most accurate, but once enough stabilization is applied to eliminate the inter-element distortions

the accuracy suffers.

As seen in figure 8.7, the GSRI convergence results suggest that increased stablilization

affects, and can even improve solution accuracy.

8.0.6 Stabilized Discretely Inhomogeneous Plate

For the case of abruptly discrete inhomogeneities, more stabilization is needed to con-

trol the inter-element distortions. In Figure 8.9 we see that increasing the amount of stabiliza-

tion that is applied in the split-shift does control inter-element distortions. In this case, however,

they aren’t completely eliminated. The refinement behaviorseen in Figure 8.10 again suggests

that with minimal stabilization the solution is at its most accurate, and that once enough stabi-
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(d) (e) (f)

Figure 8.6: Homogeneous bi-rigid plate model with GSRI treated mesheshaving varying de-
grees of stabilization: (a)α0; (b) α1; (c) α50; (d) α100; (e) α200; and (f)α f = f (λ ).
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Figure 8.7: Varied stabilization for the homogeneous bi-rigid plate:(a) H27 Displacement
refinement; and (b) H27 Strain energy error (log-log).

lization is applied to eliminate the inter-element distortions, the accuracy has suffered consid-

erably and as before the solutions are starting to lock.

Observing that shifting part of a treated mode to be handled along with the untreated

(flexible) component is tantamount to choosing the degree towhich each mode is treated leads

to novel use of this method. It is clear in figures 8.7 and 8.10 that stabilization by shifting the

rigid component can affect the convergence in a very controlled manner. In those examples,
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Figure 8.8: Varied stabilization for the homogeneous bi-rigid plate:(a) H8 Displacement re-
finement; and (b) H8 Strain energy error (log-log).
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Figure 8.9: Discretely inhomogeneous bi-rigid plate model with GSRI treated meshes having
varying degrees of stabilization: (a)α0; (b) α1; (c) α50; (d) α100; (e) α200; and (f)α f = f (λ ).

zero shifting led to displacement solutions that converge from above and as the shifted com-

ponent is increased the convergence happens from below. Theobvious question is whether at

some level of stabilization does convergence happen from neither below nor above? In other

words, is there a “sweet-spot” in the split-shift where evenvery coarse meshes have high accu-

racy?
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Figure 8.10: Varied stabilization for the discretely inhomogeneous bi-rigid plate: (a) H27
Displacement refinement; and (b) H27 Strain energy error (log-log).
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Figure 8.11: Varied stabilization for the discretely inhomogeneous bi-rigid plate: (a) H8 Dis-
placement refinement; and (b) H8 Strain energy error (log-log).



Chapter 9

Variable 3-Field Treatment

9.1 Variable 3-Field Treatment ("B-bar" without the B-bar)

In attempting to find the “sweet-spot” in the split-shift where even very coarse meshes

have high accuracy, a few different methods of variable treatment were explored. In each case

all the compliance modes are treated in the 3-field formulation but some small part is shifted

back to the flexible terms for stabilization. Choosing to treat all the modes in a controlled,

variable, manner can lead to surprising performance advantages even for materials that do not

have locking modes.

First, a method of uniformly variable treatment is introduced. The amount of all the

modes passed in the split-shift is the same. Then, a method allowing the magnitudes of the

normalized eigenvalues to determine how much of each respective mode is passed in the split-

shift follows.

The shift can be scaled in the eigenvalues of the compliance or in the eigenvectors.

While the latter may have some slight performance advantages for certain examples tested, the

former is preferred because the process is more comprehensible when the eigenvectors are used

as mere modes or directions with consistently normalized magnitudes. The eigenvector scaling

is only introduced as an interesting alternative that may have implications further along.

The presented methods attain some very accurate results fora minimal computational
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expenditure. Unfortunately a clean expression of the combined strain displacement operator

B-bar is lost in the process. This makes the stress calculation slightly more complicated.

9.1.1 Uniform variable treatment, Eigenvalue Scaling

Decompose the compliance such that

D−1 =
1
3

6

∑
i=1

γiviv
T
i , (9.1)

andγ1 < γ2 < ... < γ6.

Take M = [v1, v2, ... , v6] to be the six-by-six matrix whose columns are the scaled

eigenvectors ofD−1, (scaled for backward compatibility with referenced literature).

Introduce the uniform scaling matrix

S= αI (9.2)

whereα = aγ1/γ6 is a stabilization coefficient, and 0≤ a < 1.

Now, let

Γ = (I −S) = (1−α)I , (9.3)

such thata→ 0 for no treatment,a→ γ6/γ1 for full–yet unstable–treatment, and values ofa

between 0 and→ γ6/γ1 indicates the amount of uniform treatment for all modes.

First, introduce the adjusted stiff effective moduli (eigenvalue scaling):

K r =
1
9

MT DM . (9.4)

Now apply the scaling:

K̃ r =
1
9

ΓK rΓ =
1
9

ΓMT DMΓ. (9.5)

DefineDr = MK̃ rMT , noting that the definition of̃K r gives

Dr =
1
9

MΓMT DMΓMT = (1−α)2D. (9.6)
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Now define the flexible component of the elasticity matrix

D f = D−Dr = (2α−α2)D, (9.7)

whereD f → D asΓ→ 0, andD f → 0 asΓ→ I . Otherwise stated,D f → D asα → 1, and

D f → 0 asα → 0.

Introduce the effective constrained strain variable:

εr = MT ε , (9.8)

and the effective constrained stress variable:

p = K̃ rεr. (9.9)

Split stress contributions according to

σ f = D f ε , (9.10)

and

σ = σ f +M p . (9.11)

∫

Ω
δεT (σ f +M p

)

dΩ−
∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 , (9.12)

∫

Ω
δuT D f BudΩ+

∫

Ω
δ pT M pdΩ−

∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 . (9.13)

∫

Ω
δ p

(

MT Bu− εr
)

dΩ = 0 , (9.14)

∫

Ω
δε r

(

K̃ rεr− p
)

dΩ = 0 . (9.15)

u≈ Nuũ, p≈ Np p̃, εr ≈ Nrε̃r . (9.16)



149













A C 0

CT 0 −E

0 −ET H



































ũ
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
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. (9.17)

A =
∫

Ω
BT D f BdΩ, E =

∫

Ω
NT

r Np dΩ,

H =
∫

Ω
NT

r K̃ rNr dΩ, C =
∫

Ω
BT MN p dΩ . (9.18)

ε̃r = E−1CT ũ = Wũ , (9.19)

p̃ = E−T Hε̃r = E−T HW ũ . (9.20)

Āũ = f 1 , (9.21)

, where

Ā = A +WT HW , (9.22)

Ā =

∫

Ω
BT D f BdΩ+

∫

Ω
WT NT

r K̃ rNrW dΩ , (9.23)

or

Ā =
∫

Ω
BT D f BdΩ+

∫

Ω
WT NT

r
1
3

ΓMT DMΓ
1
3

NrW dΩ . (9.24)

Defining

Br = MΓ
1
3

NrW, (9.25)

leads to the stiffness expression

Ā =

∫

Ω
BT D f BdΩ+

∫

Ω
BT

r DBr dΩ . (9.26)



150

The stress and strain calculations require computation of the flexible component pro-

jector I f , such thatD f = I f DI f and the strains can be decomposedε = εr + ε f = Brũ+B f ũ

where

The projectorI f can, for uniform scaling, be defined

I f =
√

I −Γ2, (9.27)

which can be substituted with the scalar expression

I f =
√

2α−α2. (9.28)

The flexible component of the strain displacement relation can be expressed

B f = I f B = I f B . (9.29)

Now, with B f = I f B, element strains can be computed according to

ε = Brũ+B f ũ, (9.30)

and element stresses can be computed according to

σ = Dε. (9.31)

Uniform treatment results–motivation beam example

This problem was introduced as a motivation example for the single mode GSRI and B-

bar methods presented in Chapter 6. The H8-Bbar element wereoutperformed by the C3D8IH

elements in ABAQUS for the isotropic material of Figure 9.1(b). Now, with uniform variable

treatment of all six modes with the scaledλ split, the presented H8-3F6MU element edges

out the C3D8IH for the aforementioned isotropic material and it is the most accurate of all

the elements tested for the anisotropic fiber orientations of Figures 9.1(c) and (d). The notion

that this element could perform so well even for an isotropicmaterial is a somewhat surprising

and fortuitous result. These solutions were obtained usingand evenhanded treatment for all

materials witha = 1 and the inverse condition number basedα = aγ1/γ6. The reference , or

limit, values are taken from the Richardson’s extrapolation of the H8-Bbar solutions.
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Z

X

Y

(a) (b)

(c) (d)

Figure 9.1: Uniform λ scaling, displacement errorΨδ of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; element aspect ratio of 1 : 4.5. In (b), (c),
and (d) we show the estimated true error of the maximum deflection. (b) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with[

√
2/2,−

√
2/2,0]. (d) Anisotropic material, stiff

fiber aligned with[
√

2/2,0,−
√

2/2]. Key: C3D8 – linear hexahedron, C3D8H – linear hybrid
hexahedron with uniform pressure, C3D8I – hexahedron with incompatible modes, C3D20R
– the uniformly reduced integration quadratic serendipityhexahedron, H8-Bbar-ISO – B-bar
Q1/Q0 hexahedron, H8-Bbar – linear hexahedron with presentB-bar formulation, and H8-
3F6MU – linear hexahedron with uniformly scaled presented 3-field.

Homogeneous Angle 45-z plate

Here, the uniformλ scaled H8-3F6MU is performing very nicely. The H8-Bbar has

better accuracy with the coarsest meshes but the H8-3F6MU quickly catches up as refinement

advances.
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(a) (b)

(c) (d)

Figure 9.2: Uniform λ scaling, results for hom45z plate: (a) Displacement, (b) Displacement
error, (c) Strain Energy, and (d) Strain energy error.

Inhomogeneous 4-region Plate

This example was previously introduced to showcase the performance of the two-mode

GSRI and B-bar treatments. Here again, the performance is noteworthy only slightly out-

matched by the H8-Bbar elements. These results are obtainedwithout any “tweaking” of the

stabilization factor and without any a priori knowledge of the number of stiff modes exhibited

by the material, making this an good candidate for a stable default treatment.
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(a) (b)

(c) (d)

Figure 9.3: Uniform λ scaling, results for 4-region plate: (a) Displacement, (b)Displacement
error, (c) Strain Energy, and (d) Strain energy error.

9.1.2 Variable Spectral Eigenvalue Scaling

As with uniform scaling, start by decomposing the compliance matrix decomposition

and takeM = [v1, v2, ... , v6] to be the six-by-six matrix whose columns are the scaled eigen-

vectors ofD−1.

This time, define the stabilization matrixSsuch that
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S= α
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(9.32)

whereα is a stabilization coefficient, with 0≤α <1. This choice of stabilization matrix

S naturally separates the correct portion of the respective modes applying greater treatment to

the most stiff components.

Now, proceed as with the previous, uniform scaling, formulation with Γ = (I −S),

Introduce the adjusted stiff effective moduli apply the scaling. DefineDr = MK̃ rMT , noting

that the definition ofK̃ r givesDr =
1
9MΓMT DMΓMT .

Now define the flexible component of the elasticity matrixD f = D−Dr, whereD f → 0

asα → 0.

Introduce the effective constrained strain variableεr = MT ε , and the effective con-

strained stress variable:p = K̃ rεr.

Split stress contributions accordingly:σ f = D f ε , andσ = σ f +M p .

The solution proceeds as with uniform scaling eventually defining Br = MΓ1
3NrW,

which leads to the stiffness expression

Ā =
∫

Ω
BT D f BdΩ+

∫

Ω
BT

r DBr dΩ . (9.33)

As before, the stress and strain calculations require computation of the flexible com-

ponent projectorI f , such thatD f = I f DI f and the strains can be decomposedε = εr + ε f =

Brũ+B f ũ whereB f = I f B .

Although the expression of the uniform scaling procedure isa good first approximation,

the projectorI f may need to be solved by iteration. First define

I0
f =

√

I −Γ2, (9.34)
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which provides a symmetric initial estimation.

Now define an errorerr, tolerancetol, and an iteration limitilim and continuously

update

I i+1
f =

1
4

[

(I f D)−1D f
]

+
1
4

[

(I f D)−1D f
]T

+
1
2

I i
f (9.35)

until convergence is achieved according to

err = ||D f − I i+1
f DI i+1

f ||< tol . (9.36)

Here the matrix norm||X|| is the largest singular value ofX.

Convergence is fast due to the small system size, and this only needs to be done once

for each material.

Now, with B f = I f B, element strains can be computed according to

ε = Brũ+B f ũ, (9.37)

and element stresses can be computed according to

σ = Dε. (9.38)

Spectrally Scaled Beam Example

This time, the proposed treatment clearly outperforms the incompatible modes C3D8IH

even for the isotropic material of Figure 9.4(a). The performance of the H8-F6MS is particu-

larly good for the fiber orientation of Figure 9.4(d) exhibiting the highest accuracy and match-

ing the convergence rates of the other top performers. Theseresults were obtained using and

evenhanded treatment for all materials withα = 0.23. The reference , or limit, values are taken

from the Richardson’s extrapolation of the H8-Bbar solutions.
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(a) (b)

(c) (d)

Figure 9.4: Spectralλ scaling, displacement errorΨδ of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; element aspect ratio of 1 : 4.5. In (b), (c),
and (d) we show the estimated true error of the maximum deflection. (b) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with[

√
2/2,−

√
2/2,0]. (d) Anisotropic material, stiff

fiber aligned with[
√

2/2,0,−
√

2/2]. Key: C3D8 – linear hexahedron, C3D8H – linear hybrid
hexahedron with uniform pressure, C3D8I – hexahedron with incompatible modes, C3D20R
– the uniformly reduced integration quadratic serendipityhexahedron, H8-Bbar-ISO – B-bar
Q1/Q0 hexahedron, H8-Bbar – linear hexahedron with presentB-bar formulation, and H8-
3F6MS – linear hexahedron with spectrally scaled presented3-field.

Homogeneous Angle 45-z Plate

The spectralλ scaling of the H8-3FMS produces very nice results on this homogeneous

plate example with dual stiff fibers. None of the other elements match it in accuracy. Here

again, the H27-3FMS quadratic version is also performing very well.



157

(a) (b)

(c) (d)

Figure 9.5: Spectralλ scaling, results for hom45z plate: (a) Displacement, (b) Displacement
error, (c) Strain Energy, and (d) Strain energy error.

Inhomogeneous 4-Region Plate

For this abruptly inhomogeneous dual fiber example, the proposed elements appear to

be performing about the same and show much better accuracy than the other elements tested.

The convergence rates are also very high as seen in the slopesof Figures 9.6(b) and (d).
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(a) (b)

(c) (d)

Figure 9.6: Spectralλ scaling, results for 4-region plate: (a) Displacement, (b)Displacement
error, (c) Strain Energy, and (d) Strain energy error.

9.1.3 Uniform variable treatment, Eigenvector Scaling

D−1 =
1
3

6

∑
i=1

γiviv
T
i , (9.39)

Take M = [v1, v2, ... , v6] to be the six-by-six matrix whose columns are the scaled

eigenvectors ofD−1, (scaled for backward compatibility with referenced literature).

Introduce the stabilization matrix

S= αI (9.40)

whereα is a stabilization coefficient, 0≤ α < 1.
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Now, let

Ψ =
1
3

MT (I −S)M =
(1−α)

3
MT M , (9.41)

and introduce the variable uniform scaling

M̃ = MΨ = (1−α)M , (9.42)

such thatα = 0 for no treatment,α = 1 for full treatment, and values ofα between zero and

one indicates the amount of uniform treatment for all modes.A useful choice ofα uses the

inverse condition number ofD to automatically adjust the amount of treatment to the degree of

directional stiffness inherent to the material. DiagonalizeD such thatD = VΛVT , where the

eigenvaluesλi of D lie on the main diagonal ofΛ havingλi < λi+1.

Now choosingα = aλ1/λ6 wherea|0≤ a ≤ 1 will lead to a solution that naturally

applies the greatest treatment to materials that require it.

Now apply the scaling, and introduce the adjusted stiff effective moduli (eigenvector

scaling):

K r =
1
9

M̃T DM̃ . (9.43)

DefineDr = M̃K̃ rM̃T , noting that the definition of̃K r gives

Dr =
1
9

M̃M̃T DM̃M̃T = (I −S)2D(I −S)2 = (1−α)4D. (9.44)

Now define the flexible component of the elasticity matrix

D f = D−Dr, (9.45)

whereD f → D asΨ→ 0, andD f → 0 asΨ→ I . Otherwise stated,D f → D asα → 1, and

D f → 0 asα → 0 (α scalesD f ).

Introduce the effective constrained strain variable

εr = M̃T ε , (9.46)

and the effective constrained stress variable

p = K̃ rεr. (9.47)
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Split stress contributions accordingly:

σ f = D f ε , (9.48)

and

σ = σ f + M̃ p . (9.49)

∫

Ω
δεT (σ f + M̃ p

)

dΩ−
∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 , (9.50)

∫

Ω
δuT D f BudΩ+

∫

Ω
δ pT M̃ pdΩ−

∫

Ω
δuT bdΩ−

∫

Γt

δuT t dΓ = 0 . (9.51)

∫

Ω
δ p

(

M̃T Bu− εr
)

dΩ = 0 , (9.52)

∫

Ω
δε r (K rεr− p) dΩ = 0 . (9.53)

u≈ Nuũ, p≈ Np p̃, εr ≈ Nrε̃r . (9.54)
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. (9.55)

A =

∫

Ω
BT D f BdΩ, E =

∫

Ω
NT

r Np dΩ,

H =

∫

Ω
NT

r K rNr dΩ, C =

∫

Ω
BT M̃N p dΩ . (9.56)

ε̃r = E−1CT ũ = Wũ , (9.57)

p̃ = E−T Hε̃r = E−T HW ũ . (9.58)
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Āũ = f 1 , (9.59)

, where

Ā = A +WT HW , (9.60)

Ā =
∫

Ω
BT D f BdΩ+

∫

Ω
WT NT

r K rNrW dΩ , (9.61)

or

Ā =
∫

Ω
BT D f BdΩ+

∫

Ω
WT NT

r
1
3

M̃T DM̃
1
3

NrW dΩ . (9.62)

Defining

Br = M̃
1
3

NrW, (9.63)

leads to the stiffness expression

Ā =

∫

Ω
BT D f BdΩ+

∫

Ω
BT

r DBr dΩ . (9.64)

The stress and strain calculations require computation of the flexible component pro-

jector I f , such thatD f = I f DI f and the strains can be decomposedε = εr + ε f = Brũ+B f ũ

where

B f = I f B . (9.65)

The projectorI f can, for uniform scaling, be defined

I f =
1
2

(

√

I − (I −S)4

)

+
1
2

(

√

I − (I −S)4

)T

=

(

√

1− (1−α)4

)

I , (9.66)

Now, with B f = I f B, element strains can be computed according to

ε = Brũ+B f ũ, (9.67)
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and element stresses can be computed according to

σ = Dε. (9.68)

Uniform treatment Beam example

Although it is a somewhat clumsy formulation, scaling of theeigenvectors produces

some highly accurate solutions as demonstrated in Figure 9.7. There may be an advantage

to implementing the split-shift in the eigenvectors. Theseresults were obtained using and

evenhanded treatment for all materials witha = 0.4 and the inverse condition number based

α = aλ1/λ6.

9.1.4 Variable Spectral Eigenvector Scaling

As with uniform eigenvector scaling, begin with the diagonalization of the compliance

matrix takingM = [v1, v2, ... , v6] to be the six-by-six matrix whose columns are the scaled

eigenvectors ofD−1. This time introduce the diagonal matrix of stabilization coefficientsS

based on the principle elastic moduli. DiagonalizeD such thatD = VΛVT , where the eigen-

valuesλi of D lie on the main diagonal ofΛ havingλi < λi+1.

Now define the stabilization matrixSsuch that.

S= α
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(9.69)

whereα is a stabilization coefficient, 0≤ α < 1. Since this choice of stabilization

matrix S has the same eigenbasis asD, and will allow the scaling to naturally affect the most

stiff modes for greater treatment.
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Figure 9.7: Uniform M scaling, displacement errorΨδ of cantilever beam subject to shear
load at the free end. (a) Uniform mesh with 125 nodes; elementaspect ratio of 1 : 4.5. In
(b), (c), and (d) we show the estimated true error of the maximum deflection. (b) Isotropic
material. (c) Anisotropic material, stiff fiber aligned with [

√
2/2,−

√
2/2,0]. (d) Anisotropic

material, stiff fiber aligned with[
√

2/2,0,−
√

2/2]. Key: C3D8–linear hexahedron, C3D8H–
linear hybrid hexahedron with uniform pressure, C3D8I–hexahedron with incompatible modes,
C3D20R–the uniformly reduced integration quadratic serendipity hexahedron, H8-Bbar-ISO–
B-bar Q1/Q0 hexahedron, H8-Bbar–linear hexahedron with present B-bar formulation, and
H8-3F6MU–linear hexahedron with uniformly scaled presented 3-field.

Now, let Ψ = 1
3MT (I −S)M , such thatα = 0 for no treatment (since, as with uniform

scaling,α scalesD f ).

To introduce the variable spectral scaling, letM̃ = MΨ, which will scale each mode by

the respective diagonals ofΨ.

Now apply the scaling, and introduce the adjusted stiff effective moduli (eigenvector

scaling):K r =
1
9M̃T DM̃ , and defineDr = M̃K rM̃T , noting that the definition of̃K r. This gives
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Dr =
1
9M̃M̃T DM̃M̃T = (I −S)2D(I −S)2.

Now define the flexible component of the elasticity matrixD f = D−Dr, whereD f → 0

asα → 0.

Introduce the effective constrained strain variableεr = M̃T ε , and the effective con-

strained stress variablep = K rεr. Split stress contributions accordingly:σ f = D f ε , andσ =

σ f + M̃ p . Proceeding as with uniform scaling leads to definingBr = M̃ 1
3NrW, and to the

stiffness expression

Ā =
∫

Ω
BT D f BdΩ+

∫

Ω
BT

r DBr dΩ . (9.70)

The stress and strain calculations again require computation of the flexible component

projectorI f , such thatD f = I f DI f and the strains can be decomposedε = εr+ε f = Brũ+B f ũ

whereB f = I f B .

As with variable spectral eigenvalue scaling, the projector I f may need to be solved

iteratively.

Now, withB f = I f B, element strains can be computed according toε = Brũ+B f ũ, and

element stresses can be computed according toσ = Dε.

Spectrally Scaled Beam example

Once again, scaling the eigenvectors in this manner producesome highly accurate re-

sults. These solutions were obtained using and evenhanded treatment for all materials with

α = 0.3.
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Figure 9.8: SpectralM scaling, displacement errorΨδ of cantilever beam subject to shear load
at the free end. (a) Uniform mesh with 125 nodes; element aspect ratio of 1 : 4.5. In (b), (c),
and (d) we show the estimated true error of the maximum deflection. (b) Isotropic material. (c)
Anisotropic material, stiff fiber aligned with[

√
2/2,−

√
2/2,0]. (d) Anisotropic material, stiff

fiber aligned with[
√

2/2,0,−
√

2/2]. Key: C3D8 – linear hexahedron, C3D8H – linear hybrid
hexahedron with uniform pressure, C3D8I – hexahedron with incompatible modes, C3D20R
– the uniformly reduced integration quadratic serendipityhexahedron, H8-Bbar-ISO – B-bar
Q1/Q0 hexahedron, H8-Bbar – linear hexahedron with presentB-bar formulation, and H8-
3F6MS – linear hexahedron with spectrally scaled presented3-field.

9.1.5 Variable Stabilization Conclusions

Minimum stabilization may not remedy mesh distortions, andincreased stabilizations

can, when carefully chosen, improve solution accuracy. Increasing stabilization beyond some

model-specific limit results in a decreased convergence rate. In this vein, increasing stabiliza-
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tion can be viewed as reducing the degree to which stiff locking is treated. It should be noted

that discrete inhomogeneities can lead to complicated refinement behavior, sometimes man-

ifesting as non-monotonic convergence and persistent local element distortions. In extreme

cases a compromise must be brokered, sacrificing convergence rates to quell non-physical ele-

ment distortions.

9.2 GSRI and B-bar Treatment Conclusions

The treatments of anisotropic elasticity with nearly-rigid locking through a partitioning

of the strain, stress, and the constitutive equation by bothgeneralized selective reduced inte-

gration (GSRI) and the corrected B-bar formulations are found to be robust and effective. The

performance of the two proposed methods are nearly identical. The corrected B-bar method is

moreover attractive due to its generality for potential application to nonlinear materials. The

correction is inexpensive: the treated methods do not require any special computations except

for the spectral decomposition of the compliance matrix. Assuch, a computation is only re-

quired once for each material (in the material-aligned coordinate system); such a cost is likely

to be negligible.



Chapter 10

Conclusions and Future Work

The fundamental question this research attempts to answer is: how can our understand-

ing of how marine mammals send and receive underwater acoustic signals be improved with

a better understanding of the role viscoelastic property inputs play in vibroacoustic simulation

results? Three primary efforts were made in hopes of answering this question.

Through the sensitivity study comparing simulation to the experimental results for a

submerged porpoise head subjected to acoustic pulses, it was discovered that the results are

most sensitive to estimation of the Young’s modulus of bone and to the estimation of the bulk

modulus of acoustic fats.

There is a great need for improved estimations of the viscoelastic properties of animal

tissues at the time of dissection, before the tissue decomposes or is frozen. The developed

mechanical rheometer will help biologist do just this.

Anisotropic finite element models of fibrous tissues are prone to element locking and

subsequently underestimated deformation solutions. These shortcomings to computational sim-

ulations are well remedied by the generalized selective reduced integration and B-bar variant

methods presented here.

Taking another look at the Norris and Harvey study of 1974 [1]both validated the vi-

broacoustic toolkit VATk [28] and showed which material property inputs fostered the greatest

changes in the observed pressure amplitudes at key locations in the sound reception physiol-
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ogy. The study also revealed a great need for improved experimental data. Another, duplicate,

experiment using well-calibrated modern instruments would provide very valuable data for use

in testing and calibrating computational simulations. This would allow informed conclusions

to be drawn about the importance of the dispersive qualitiesof acoustic fats and other tissues

in the primary acoustic pathway.

The experimental efforts focused on the design, development, fabrication, and testing

of a prototype rheometer producing a functional portable rheology laboratory suited for field

work. The device makes good use of recent developments in both instrumentation and data

acquisition. The fundamental design takes advantage of some analytical features inherent to

thick sample geometries such as insensitivity to small error in estimated sample geometery and

insensitivity to small normal forces at the point of excitation. The next steps in the devices

develpment include fully incorporating quasi-static indentation estimations of Young’s modu-

lus, incorporation of ultrasonic testing using transducerplates designed to fit above the existing

sample stage, and (perhaps most importantly) the itroduction of a hand-held probe for tissue

characterization. Because the results are largely independent of sample thicknesses beyond a

depth of about 15mm, surface testing methods should be thoroughly investigated. Another im-

portant improvement to the prototype rheometer lies in the need for a temperature controlled

environment. A controlled environment could be achieved byway of a well insulated cham-

ber with convection temperature control. The device also warrants several modifications to

make the sensitive electronics and instrumentation more physically robust for field work in

a salt-water environment. Finally, the testing methodologies and control software should be

simplified for use by a non-engineer.

The next steps in the presented methods exploiting the spectral decomposition of the

compliance matrix to treat finite element locking of fiber-dominated anisotropic materials in-

clude an in-depth study of variable treatment methods, improved stress calculations for sta-

bilized methods, and a thorough investigation of persistent inter-element distortions observed

even in stabilized treatments. The variable 3-field treatments methods offer some enticing per-

formance advantages that warrant further investigation. It would be worthwhile to thoroughly
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explore the performance advantages and continue an investigation of stress calculations without

a single term strain-displacement relation. This notion ofvariable treatments may be extensible

to improved accuracy in other finite elements yet to be investigated.



Appendix A

Device Views and Component

Specifications

A.1 Chassis

Figure A.2: Experimental rheometer component plan.
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Figure A.3: Experimental rheometer elevations.
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Figure A.1: Experimental rheometer chassis plan.
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A.2 Control Box

Figure A.4: Block diagram of the device control box.
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Figure A.5: Device control box.
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A.3 Control

The main control box houses the Data Acquistion Board (DAQ),the stepper motor

controller, the voice coil servo motor amplifier, mutliple DC-DC converters, fans, switches,

cable interfaces, and limited digital readouts. The stepper Motor Controller is a 5-axis CNC

TB6560. The servo Amplifier is a Glentek SMA5005 (sold as H2W LCAM 5-15) H Bridge

Linear Servo Amplifier.

A.4 Data Acquisition (DAQ)

Data acquistions and analog output signals are provided by aUSB-2537 manufactured

by Measurement Computing Co. The DAQ is a USB-2537 with 64 Single/32 Differential

analog inputs, 4 analog outputs, 24 digital IO, four 32-bit counter inputs, and with a SCSI

pinout.

A.5 Primary Instrumentation

Displacements are measures using two independent instruments: (1) a precision Linear

Variable Differential Transformer (LVDT), and (2) a fiber optic displacement sensor. Forces

are measured using a high precision low force cantilever load cell. The LVDT is a Solartron,

type DF2.5, and the fiber optic displacement sensor is a Philtec D-63 with analog outputs.

The cantilever load cell is a Strain Measurement Devices SMD2207 0.5 N, with a Swann and

Associates, Inc. Mantracourt SGA/D signal conditioner.

A.6 Motors

The excitation force is provided by a voice coil servo motor.Voice coil used was manu-

factured by H2W Technologies, and is designated NCM02-10-012-2JB 5.3 N Moving Magnet
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Non-Comm DC Voice Coil Linear Actuator. Sample stage and excitation positioning is pro-

vided by Nema 17 model 39BYGL215A (0.01 mm/step) stepper motors.

A.7 DC Power

Electric power is supplied by a Tenergy (LiFePO4) 32VDC nominal 20 Ah Lithium

high capacity polymer/prismatic battery.



Appendix B

Stabilized GSRI Convergence Results

B.1 Convergence of Stabilized GSRI and B-bar

Tables and plots are provided to chronicle the convergence of the stabilized GSRI and

B-bar methods for the four examples presented in chapter 6. The errors are calculated using the

best extrapolated solutions as reference values. Here, as in previous convergence studies of this

work, the best extrapolated values are attained using techniques of Richardson’s extrapolation

[62] applied to the quadratic hexahedral (H27) elements.

B.2 Tables of Refinement Values, Stabilized Treatments

As in the previous section of tables, these tabulated valuesrepresent the respective

converged values obtained by Richardson’s extrapolation.

As in previous tables of this appendix, negative values occur when Richardson’s ex-

trapolations fails as a result of non-monotonic convergence. This happens when the refinement

study has not yet reached the asymptotic region and is usually seen with linear hexahedral

elements where significant stabilization is being applied.

The maximum displacement values for the distorted mesh solutions of the abruptly

inohomogeneous plate example, seen in table B.1, deviate from the converged values. These
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“loose” or “over-flexible” solutions are mitigated as stabilization levels are increased.

Again, the negative values for the linear elements of the Beam model in table B.5 are

attributable to refinement that has not yet reached the asymptotic region, which leads to the

failure of Richardson’s extrapolation. The curves shown infigures B.2 and B.10, however,

show a smooth trend toward the limit value.

B.2.1 Stabilizedumax Tables

Table B.1: Converged maximum displacement table, GSRI,α = 0.

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.016e-04 1.694e-04 1.769e-04 5.992e-05
H8-Distorted 1.022e-04 1.661e-04 1.742e-04 7.897e-05
H27 1.011e-04 1.626e-04 1.743e-04 5.848e-05
H27-Distorted 1.013e-04 1.622e-04 1.696e-04 8.227e-05

Table B.2: Converged maximum displacement table, GSRI,α = 1.

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.014e-04 1.641e-04 1.756e-04 5.939e-05
H8-Distorted 1.024e-04 1.637e-04 1.727e-04 7.896e-05
H27 1.013e-04 1.628e-04 1.747e-04 5.922e-05
H27-Distorted 1.011e-04 1.624e-04 1.698e-04 8.210e-05

Table B.3: Converged maximum displacement table, GSRI,α = 50.

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 5.924e-04 1.684e-04 1.810e-04 5.515e-05
H8-Distorted 3.980e-04 1.677e-04 1.723e-04 6.479e-05
H27 1.004e-04 1.669e-04 1.775e-04 5.282e-05
H27-Distorted 1.000e-04 1.699e-04 1.716e-04 6.721e-05
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Table B.4: Converged maximum displacement table, GSRI,α = 100.

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -4.391e-05 1.806e-04 1.870e-04 5.558e-05
H8-Distorted -6.018e-05 1.813e-04 1.767e-04 5.950e-05
H27 1.003e-04 1.674e-04 1.794e-04 5.461e-05
H27-Distorted 1.001e-04 1.702e-04 1.729e-04 6.212e-05

Table B.5: Converged maximum displacement table, GSRI,α = 200.

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -7.303e-06 2.277e-04 2.024e-04 5.065e-05
H8-Distorted -9.809e-06 2.311e-04 1.883e-04 5.504e-05
H27 1.009e-04 1.681e-04 1.827e-04 5.652e-05
H27-Distorted 1.009e-04 1.710e-04 1.757e-04 5.785e-05

Table B.6: Converged maximum displacement table, GSRI,α = f (λ ).

umax (mm) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -5.014e-05 2.170e-04 1.993e-04 5.136e-05
H8-Distorted -6.924e-05 2.199e-04 1.860e-04 5.557e-05
H27 1.003e-04 1.679e-04 1.821e-04 5.682e-05
H27-Distorted 1.000e-04 1.708e-04 1.751e-04 5.829e-05

B.2.2 StabilizedU Tables

Table B.7: Converged strain energy table, GSRI,α = 0.

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.014e-04 1.458e-02 1.042e-02 5.442e-03
H8-Distorted 1.021e-04 1.433e-02 1.027e-02 7.023e-03
H27 1.011e-04 1.403e-02 1.023e-02 5.427e-03
H27-Distorted 1.011e-04 1.398e-02 9.981e-03 7.110e-03
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Table B.8: Converged strain energy table, GSRI,α = 1.

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.012e-04 1.415e-02 1.033e-02 5.437e-03
H8-Distorted 1.023e-04 1.411e-02 1.017e-02 6.970e-03
H27 1.011e-04 1.404e-02 1.026e-02 5.473e-03
H27-Distorted 1.010e-04 1.400e-02 9.961e-03 7.086e-03

Table B.9: Converged strain energy table, GSRI,α = 50.

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 5.677e-04 1.482e-02 1.075e-02 4.012e-03
H8-Distorted 3.859e-04 1.466e-02 1.019e-02 5.940e-03
H27 1.002e-04 1.449e-02 1.043e-02 5.036e-03
H27-Distorted 9.983e-05 1.485e-02 1.007e-02 6.207e-03

Table B.10: Converged strain energy table, GSRI,α = 100.

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -4.482e-05 1.610e-02 1.137e-02 5.369e-03
H8-Distorted -6.061e-05 1.593e-02 1.056e-02 5.594e-03
H27 1.001e-04 1.475e-02 1.055e-02 2.664e-03
H27-Distorted 9.986e-05 1.522e-02 1.014e-02 5.903e-03

Table B.11: Converged strain energy table, GSRI,α = 200.

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -7.465e-06 2.011e-02 1.324e-02 5.327e-03
H8-Distorted -1.014e-05 1.975e-02 1.161e-02 5.268e-03
H27 1.006e-04 1.518e-02 1.081e-02 5.478e-03
H27-Distorted 1.008e-04 1.573e-02 1.033e-02 5.597e-03
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Table B.12: Converged strain energy table, GSRI,α = f (λ ).

U (J/m3) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 -5.123e-05 1.927e-02 1.284e-02 5.315e-03
H8-Distorted -6.978e-05 1.896e-02 1.140e-02 5.308e-03
H27 1.001e-04 1.510e-02 1.076e-02 5.535e-03
H27-Distorted 9.984e-05 1.565e-02 1.029e-02 5.637e-03

B.2.3 StabilizedσV M Tables

Table B.13: Converged von-Mises stress table, GSRI,α = 0.

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.040e+00 3.821e+01 3.940e+01 7.498e+01
H8-Distorted 1.766e+00 4.951e+01 1.600e+02 1.010e+02
H27 8.512e-01 2.617e+01 2.669e+01 4.646e+01
H27-Distorted 1.252e+00 2.976e+01 9.881e+01 7.496e+01

Table B.14: Converged von-Mises stress table, GSRI,α = 1.

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.371e+00 4.230e+01 4.241e+01 7.634e+01
H8-Distorted 2.059e+00 5.230e+01 1.569e+02 1.019e+02
H27 1.001e+00 2.590e+01 2.646e+01 4.739e+01
H27-Distorted 1.397e+00 2.939e+01 9.795e+01 7.485e+01

Table B.15: Converged von-Mises stress table, GSRI,α = 50.

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 4.812e+00 8.794e+01 7.439e+01 8.399e+01
H8-Distorted 5.437e+00 9.572e+01 1.322e+02 9.469e+01
H27 3.302e+00 3.879e+01 3.326e+01 5.279e+01
H27-Distorted 3.780e+00 4.273e+01 8.810e+01 7.281e+01



182

Table B.16: Converged von-Mises stress table, GSRI,α = 100.

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 6.063e+00 1.063e+02 8.761e+01 8.479e+01
H8-Distorted 7.164e+00 1.155e+02 1.228e+02 9.948e+01
H27 4.492e+00 4.717e+01 3.837e+01 5.422e+01
H27-Distorted 5.025e+00 5.272e+01 8.429e+01 7.146e+01

Table B.17: Converged von-Mises stress table, GSRI,α = 200.

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 7.246e+00 1.280e+02 1.038e+02 8.517e+01
H8-Distorted 9.189e+00 1.391e+02 1.127e+02 1.048e+02
H27 6.097e+00 5.842e+01 4.644e+01 5.577e+01
H27-Distorted 6.675e+00 6.526e+01 7.917e+01 6.974e+01

Table B.18: Converged von-Mises stress table, GSRI,α = f (λ ).

σV M (MPa) Beam hom45y Plate hom45z Plate smooth2 Plate disc1
H8 1.041e+00 3.821e+01 3.940e+01 7.498e+01
H8-Distorted 1.765e+00 4.951e+01 1.600e+02 1.010e+02
H27 8.507e-01 2.617e+01 2.669e+01 4.646e+01
H27-Distorted 1.252e+00 2.976e+01 9.881e+01 7.496e+01
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B.3 Convergence Plots, Stabilized Treatments

Figure B.1: Legend for the curves of stabilized GSRI.

B.4 Linear Hexahedra

B.4.1 Example, 1-Fiber, Homogeneous Beam

(a) (b)

Figure B.2: Maximum displacement study for varying stabilizationαi for H8, hom45y: a)umax

and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.3: Strain Energy study for varying stabilizationαi for H8, hom45y: a)U and b)U
Error (see legend in figure B.1).

B.4.2 Example, 2-Fiber, Homogeneous Plate

(a) (b)

Figure B.4: Maximum displacement study for varying stabilizationαi for H8, hom45z: a)umax

and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.5: Strain Energy study for varying stabilizationαi for H8, hom45z: a)U and b)U
Error (see legend in figure B.1).

B.4.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate

(a) (b)

Figure B.6: Maximum displacement study for varying stabilizationαi for H8, smooth2: a)
umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.7: Strain Energy study for varying stabilizationαi for H8, smooth2: a)U and b)U
Error (see legend in figure B.1).

B.4.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate

(a) (b)

Figure B.8: Maximum displacement study for varying stabilizationαi for H8, disc1: a)umax

and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.9: Strain Energy study for varying stabilizationαi for H8, disc1: a)U and b)U
Error (see legend in figure B.1).

B.5 Distorted Linear Hexahedra

B.5.1 Example, 1-Fiber, Homogeneous Beam

(a) (b)

Figure B.10: Maximum displacement study for varying stabilizationαi for H8-Distorted,
hom45y: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.11: Strain Energy study for varying stabilizationαi for H8-Distorted, hom45y: a)U
and b)U Error (see legend in figure B.1).

B.5.2 Example, 2-Fiber, Homogeneous Plate

(a) (b)

Figure B.12: Maximum displacement study for varying stabilizationαi for H8-Distorted,
hom45z: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.13: Strain Energy study for varying stabilizationαi for H8-Distorted, hom45z: a)U
and b)U Error (see legend in figure B.1).

B.5.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate

(a) (b)

Figure B.14: Maximum displacement study for varying stabilizationαi for H8-Distorted,
smooth2: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.15: Strain Energy study for varying stabilizationαi for H8-Distorted, smooth2: a)U
and b)U Error (see legend in figure B.1).

B.5.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate

(a) (b)

Figure B.16: Maximum displacement study for varying stabilizationαi for H8-Distorted,
disc1: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.17: Strain Energy study for varying stabilizationαi for H8-Distorted, disc1: a)U
and b)U Error (see legend in figure B.1).

B.6 Quadratic Hexahedra

B.6.1 Example, 1-Fiber, Homogeneous Beam

(a) (b)

Figure B.18: Maximum displacement study for varying stabilizationαi for H27, hom45y: a)
umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.19: Strain Energy study for varying stabilizationαi for H27, hom45y: a)U and b)
U Error (see legend in figure B.1).

B.6.2 Example, 2-Fiber, Homogeneous Plate

(a) (b)

Figure B.20: Maximum displacement study for varying stabilizationαi for H27, hom45z: a)
umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.21: Strain Energy study for varying stabilizationαi for H27, hom45z: a)U and b)
U Error (see legend in figure B.1).

B.6.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate

(a) (b)

Figure B.22: Maximum displacement study for varying stabilizationαi for H27, smooth2: a)
umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.23: Strain Energy study for varying stabilizationαi for H27, smooth2: a)U and b)
U Error (see legend in figure B.1).

B.6.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate

(a) (b)

Figure B.24: Maximum displacement study for varying stabilizationαi for H27, disc1: a)umax

and b)umax Error (see legend in figure B.1).



195

(a) (b)

Figure B.25: Strain Energy study for varying stabilizationαi for H27, disc1: a)U and b)U
Error (see legend in figure B.1).

B.7 Distorted Quadratic Hexahedra

B.7.1 Example, 1-Fiber, Homogeneous Beam

(a) (b)

Figure B.26: Maximum displacement study for varying stabilizationαi for H27-Distorted,
hom45y: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.27: Strain Energy study for varying stabilizationαi for H27-Distorted, hom45y: a)
U and b)U Error (see legend in figure B.1).

B.7.2 Example, 2-Fiber, Homogeneous Plate

(a) (b)

Figure B.28: Maximum displacement study for varying stabilizationαi for H27-Distorted,
hom45z: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.29: Strain Energy study for varying stabilizationαi for H27-Distorted, hom45z: a)
U and b)U Error (see legend in figure B.1).

B.7.3 Example, 2-Fiber, Smoothly Inhomogeneous Plate

(a) (b)

Figure B.30: Maximum displacement study for varying stabilizationαi for H27-Distorted,
smooth2: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.31: Strain Energy study for varying stabilizationαi for H27-Distorted, smooth2: a)
U and b)U Error (see legend in figure B.1).

B.7.4 Example, 2-Fiber, Abruptly Inhomogeneous Plate

(a) (b)

Figure B.32: Maximum displacement study for varying stabilizationαi for H27-Distorted,
disc1: a)umax and b)umax Error (see legend in figure B.1).
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(a) (b)

Figure B.33: Strain Energy study for varying stabilizationαi for H27-Distorted, disc1: a)U
and b)U Error (see legend in figure B.1).
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