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Abstract

While current deep learning systems excel at tasks such as
object classification, language processing, and gameplay, few
can construct or modify a complex system such as a tower of
blocks. We hypothesize that what these systems lack is a “re-
lational inductive bias”: a capacity for reasoning about inter-
object relations and making choices over a structured descrip-
tion of a scene. To test this hypothesis, we focus on a task that
involves gluing pairs of blocks together to stabilize a tower,
and quantify how well humans perform. We then introduce
a deep reinforcement learning agent which uses object- and
relation-centric scene and policy representations and apply it
to the task. Our results show that these structured represen-
tations allow the agent to outperform both humans and more
naı̈ve approaches, suggesting that relational inductive bias is
an important component in solving structured reasoning prob-
lems and for building more intelligent, flexible machines.

Keywords: physical construction; reinforcement learning;
deep learning; relational reasoning; object-based reasoning

Introduction
Human physical reasoning—and cognition more broadly—
is rooted in a rich system of knowledge about objects and
relations (Spelke & Kinzler, 2007) which can be composed
to support powerful forms of combinatorial generalization.
Analogous to von Humboldt’s characterization of the produc-
tivity of language as making “infinite use of finite means”,
objects and relations are the building blocks which help ex-
plain how our everyday scene understanding can operate over
infinite scenarios. Similarly, people interact with everyday
scenes by leveraging these same representations. Some of the
most striking human behavior is our ubiquitous drive to build
things, a capacity for composing objects and parts under re-
lational constraints, which gives rise to our most remarkable
achievements, from the pyramids to space stations.

One of the fundamental aims of artificial intelligence (AI)
is to be able to interact with the world as robustly and flex-
ibly as people do. We hypothesize that this flexibility is, in
part, afforded by what we call relational inductive bias. An
inductive bias more generally is the set of assumptions of a
learning algorithm that leads it to choose one hypothesis over
another independent of the observed data. Such assumptions
may be encoded in the prior of a Bayesian model (Griffiths
et al., 2010), or instantiated via architectural assumptions in a
neural network. For example, the weight-sharing architecture
of a convolutional neural network induces an inductive bias of

∗Denotes equal contribution.

translational invariance—one we might call a “spatial induc-
tive bias” because it builds in specific assumptions about the
spatial structure of the world. Similarly, a relational induc-
tive bias builds in specific assumptions about the relational
structure of the world.

While logical and probabilistic models naturally contain
strong relational inductive biases as a result of propositional
and/or causal representations, current state-of-the-art deep re-
inforcement learning (deep RL) systems rarely use such ex-
plicit notions and, as a result, often struggle when faced with
structured, combinatorial problems. Consider the “gluing
task” in Figure 1, which requires gluing pairs of blocks to-
gether to cause an otherwise unstable tower to be stable un-
der gravity. Though seemingly simple, this task is not trivial.
It requires (1) reasoning about variable numbers and config-
urations of objects; (2) choosing from variably sized action
spaces (depending on which blocks are in contact); and (3)
selecting where to apply glue, from a combinatorial number
of possibilities. Although this task is fundamentally about
physical reasoning, we will show that the most important type
of inductive bias for solving it is relational, not physical: the
physical knowledge can be learned, but relational knowledge
is much more difficult to come by.

We instantiate a relational inductive bias in a deep RL agent
via a “graph network”, a neural network for relational reason-
ing whose relatives (Scarselli et al., 2009) have proven effec-
tive in theoretical computer science (Dai et al., 2017), quan-
tum chemistry (Gilmer et al., 2017), robotic control (Wang et
al., 2018), and learning physical simulation (Battaglia et al.,
2016; Chang et al., 2017). Our approach contrasts with stan-
dard deep learning approaches to physical reasoning, which
are often computed holistically over a fixed representation
and do not explicitly have a notion of objects or relations
(e.g. Lerer et al., 2016; Li et al., 2016). Further, our work
focuses on interaction, while much of the work on physical
reasoning has focused on the task of prediction (e.g. Fragki-
adaki et al., 2016; Mottaghi, Bagherinezhad, et al., 2016;
Mottaghi, Rastegari, et al., 2016; Stewart & Ermon, 2017;
Bhattacharyya et al., 2018) or inference (e.g. Wu et al., 2016;
Denil et al., 2017). Perhaps the most related works to ours are
Li et al. (2017) and Yildirim et al. (2017), which both focus on
building towers of blocks. However, while Li et al. (2017)’s
approach is learning-based, it does not include a relational in-
ductive bias; similarly, Yildirim et al. (2017)’s approach has
a relational inductive bias, but no learning.
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This goal of this paper is not to present a precise computa-
tional model of how humans solve the gluing task, nor is it to
claim state-of-the-art performance on the gluing task. Rather,
the goal is to characterize the type of inductive bias that is
necessary in general for solving such physical construction
tasks. Our work builds on both the broader cognitive liter-
ature on relational reasoning using graphs (e.g. Collins &
Loftus, 1975; Shepard, 1980; Griffiths et al., 2007; Kemp
& Tenenbaum, 2008) as well as classic approaches like re-
lational reinforcement learning (Džeroski et al., 2001), and
represents a step forward by showing how relational knowl-
edge can be disentangled from physical knowledge through
relational policies approximated by deep neural networks.

The contributions of this work are to: (1) introduce the glu-
ing task, an interactive physical construction problem that re-
quires making decisions about relations among objects; (2)
measure human performance in the gluing task; (3) develop
a deep RL agent with an object- and relation-centric scene
representation and action policy; and (4) demonstrate the im-
portance of relational inductive bias by comparing the per-
formance of our agent with several alternatives, as well as
humans, on both the gluing task and several control tasks that
isolate different aspects of the full problem.

The Gluing Task

Participants We recruited 27 volunteers from within Deep-
Mind. Each participant was treated in accordance with proto-
cols of the UCL Research Ethics Committee, and completed
144 trials over a one-hour session. Two participants did not
complete the task within the allotted time and were excluded
from analysis, leaving 25 participants total.

Stimuli and Design The stimuli were towers of blocks sim-
ilar to those used by Battaglia et al. (2013) and Hamrick et al.
(2016). Towers were created by randomly placing blocks on
top of each other, with the following constraints: the tower
was constructed in a 2D plane, and each block except the first
was stacked on another block. The set of towers was filtered
to include only those in which at least one block moved when
gravity was applied. In an initial practice session, nine unique
towers (1 each of 2-10 blocks) were presented in increasing
order of size. In the experimental session, 135 unique tow-
ers (15 each of 2-10 blocks), which were disjoint from the
practice set, were presented in a random order in 5 sets of 27.
Participants earned points depending on how well they per-
formed the gluing task. They lost one point for each pair of
objects they tried to glue, and earned one point for each block
that remained unmoved after gravity was applied. As a bonus,
if participants used the minimum amount of glue necessary to
keep the tower stable, they received 10 additional points. The
maximum possible scores in the practice and experimental
sessions were 131 points and 1977 points, respectively.

Procedure Each trial consisted of two phases: the gluing
phase, and the gravity phase. The trial began in the glu-
ing phase, during which a static tower was displayed on the
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Figure 1: The gluing task. Given an unstable tower of
blocks, the task is to glue pairs of blocks together to keep
the tower stable. Three examples of performing the task are
shown here. Green blocks in the gravity phase indicate sta-
ble blocks. Top: no glue is used, and only one block re-
mains standing (+1 points). Middle row: one glue is used (-1
points), resulting in three blocks standing (+3 points). Bot-
tom row: two glues are used (-2 points), resulting in a stable
tower (+6 points); this is the minimal amount of glue to keep
the tower stable (+10 points). See https://goo.gl/f7Ecw8
for a video demonstrating the task.

screen for an indefinite amount of time. Participants could
click on one object (either a block or the floor) to select it,
and then another object to “glue” the two together. Glue was
only applied if the two objects were in contact. If glue had al-
ready been applied between the two objects, then the glue was
removed. Both these actions—applying glue to non-adjacent
objects and ungluing an already-glued connection—still cost
one point.1 To finish the gluing phase, participants pressed
the “enter” key which triggered the gravity phase, during
which gravity was applied for 2s so participants could see
which blocks moved from their starting positions. Finally,
participants were told how many points they earned and could
then press “space” to begin the next trial. Physics was simu-
lated using the Mujoco physics engine (Todorov et al., 2012)
with a timestep of 0.01. After the experiment was completed,
participants completed a short survey.

Results The gluing task was challenging for the human par-
ticipants, but they still performed far above chance. We dis-
covered several trends in people’s behavior, such as working
from top-to-bottom and spending more time before applying
the first glue than before subsequent glue. The results here
represent a preliminary exploration of people’s behavior in
construction tasks, opening the door for future research and
providing a baseline comparison for artificial agents.

1While this choice of reward structure is perhaps unfair to hu-
mans, it provided a fairer comparison to our agents who would oth-
erwise not be incentivized to complete the task quickly.
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Participants achieved an average score of 900 points, with
the lowest score being 468 points and the highest score be-
ing 1154 points (out of 1977). There was a small (though not
quite significant) effect of learning, with a Pearson correlation
of r = 0.15, 95% CI [−0.01,0.30] between trial number and
average scaled reward (confidence intervals were computed
around the median using 10,000 bootstrap samples with re-
placement; “scaled rewards” were computed by normalizing
rewards such that 0 corresponded to the reward obtained if
no actions were taken, and 1 corresponded to the maximum
achievable reward).

Participants’ response times revealed they were sig-
nificantly slower to click on the first block in a
pair than the second block, with a difference of t =
4.48s, 95% CI [4.34s,4.62s]. This suggests they had decided
on which pair to glue before clicking the first block. We found
that people were significantly slower to choose the first gluing
action (t = 4.43s, 95% CI [4.30s,4.56s]; averages computed
using the mean of log RTs) than any subsequent gluing action
(t = 2.07s, 95% CI [2.00s,2.15s]; F(1,12878)= 149.14, p<
0.001). Also, we found an effect of the number of blocks
on response time (F(1,12878) = 429.68, p < 0.001) as well
as an interaction between the number of blocks and whether
the action was the first glue or not (F(1,12878) = 14.57,
p< 0.001), with the first action requiring more time per block
than subsequent actions. These results suggest that people
may either decide where to place glue before acting, or at
least engage in an expensive encoding operation of a useful
representation of the stimulus.

On an open-ended strategy question in the post-experiment
survey, 10 of 25 participants reported making glue selec-
tions top-to-bottom, and another 3 reported sometimes work-
ing top-to-bottom and sometimes bottom-to-top. We cor-
roborated this quantitatively by, for each trial, fitting a line
between the action number and the height of the glue lo-
cation, and find their slopes were generally negative (β =
−0.07, 95% CI [−0.08,−0.06]).

We compared people’s choice of glue configuration to op-
timal glue configurations, and found that people were signif-
icantly more likely to apply glue when it was not necessary
(73% of errors) than to fail to apply glue when it was neces-
sary (N = 3901, p < 0.001). Additionally, participants were
very good at avoiding invalid actions: although they had the
option for gluing together pairs of blocks that were not in
contact, they only did so 1.3% (out of N = 6454) of the time.
Similarly, participants did not frequently utilize the option to
un-glue blocks (0.29% out of N = 6454), likely because it
incurred a penalty. It is possible that performance would in-
crease if participants were allowed to un-glue blocks without
a penalty, enabling them to temporarily use glue as a working
memory aid; we leave this as a question for future research.

Leveraging Relational Representations
What type of knowledge is necessary for solving the gluing
task? Physical knowledge is clearly important, but even that

= dece(fe(     ,      ,         )) 
= dece(fe(     ,      ,         )) 
= dece(fe(     ,      ,         )) 
= dece(fe(     ,      ,         )) 
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πσ = decg(fσ( ∑     , ∑         )) 

Figure 2: Graph network agent. First, the positions and ori-
entations of the blocks are encoded as nodes, and the presence
of glue is encoded as edges. These representations are then
used to compute a Q-value for each edge, as well as a Q-value
for taking the “stop” action. See text for details.

implicitly includes a more foundational type of knowledge:
that of objects and relations. Inspired by evidence that ob-
jects and relations are a core part of human cognition (e.g.
Spelke & Kinzler, 2007), we focus on decomposing the task
into a relational reasoning problem which involves computa-
tions over pairs of elements and their relations.

Graph Networks

A key feature of our deep RL agent is that it expresses its
decision-making policy as a function over an object- and
relation-centric state representation, which reflects a strong
relational inductive bias. Specifically, inside the agent is a
graph network (GN), a neural network model which can be
trained to approximate functions on graphs. A GN is a gen-
eralization of recent neural network approaches for learning
physics engines (Battaglia et al., 2016; Chang et al., 2017), as
well as message-passing neural networks (Gilmer et al., 2017;
Scarselli et al., 2009). GNs have been shown to be effective
at solving classic combinatorial optimization problems (Dai
et al., 2017), inspiring our agent architecture for performing
physical construction tasks.

Here, we define a graph as a set of N nodes, E edges, and
a global feature G. In the gluing task’s “tower graph”, nodes
correspond to blocks; edges correspond to pairs of blocks;
and global properties could correspond to any global piece
of information, such as the overall stability of the tower. A
GN takes as input a tower graph, and returns a graph with the
same size and shape. The representation of the nodes, edges,
and globals encode semantic information: the node represen-
tation corresponds to position (x) and orientation (q), and the
edges to the presence of glue (u). The global features corre-
spond to (or are a function of) the whole graph; for example,
this could be the stability of the tower.

Our model architectures first encode the block properties
into a distributed node representation ni using an encoder,
i.e. ni = encn(xi,qi;θencn). For an edge ei j, we similarly
encode the edge properties into a distributed representation
using a different encoder, i.e. ei j = ence(ui j;θence). Ini-
tially, the global properties are empty and set to zero, i.e.
g = 0. With these node, edge, and global representations, the
standard GN computes functions over pairs of nodes (e.g.,
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Figure 3: Supervised results for scenes with five blocks.
(a) Stability prediction for input graphs with contact informa-
tion (sparse) or without (full). (b) Optimal glue prediction for
models with different numbers of recurrent steps.

to determine whether those nodes are in contact)2, edges
(e.g. to determine the force acting on a block), and glob-
als (e.g. to compute overall stability). Specifically, the edge
model is computed as: e′i j = fe(ni,n j,ei j,g;θ fe); the node
model as n′i = fn(ni,∑ j e′i j,g;θ fn); and the globals model as
g′ = fg(g,∑i n′i,∑i, j e′i j;θ fg). The GN can be applied multiple
times, recurrently, where e′i j, n′i, and g′ are fed in as the new
ei j, ni, and g on the next step.

Applying the GN to compute interaction terms and update
the nodes recurrently can be described as message passing
(Gilmer et al., 2017), which propagates information across
the graph. In the gluing task, such learned information prop-
agation may parallel the propagation of forces and other con-
straints over the structure. For intuition, consider the tower
in Figure 1. After one application of the edge model, the
GN should be able to determine which block pairs are locally
unstable, such as the top-most block in the figure, and thus
require glue. However, it does not have enough information
to be able to determine that the bottom-most block in Fig-
ure 1 also needs to be glued, because it is fully supporting the
block above it. Recurrent message-passing allows informa-
tion about other blocks to be propagated to the bottom-most
one, allowing for non-local relations to be reasoned about.

Given the updated edge, node, and global representations,
we can decode them into edge-specific predictions, such
as Q-values or unnormalized log probabilities (Figure 2).
For the supervised setting, edges are glued with probabil-
ity pi j ∝ dece(e′i j;θdece). For the sequential decision mak-
ing setting, we decode one action for each edge in the graph
(πi j = dece(e′i j;θdece)) plus a “stop” action to end the gluing
phase (πσ = decg(g′;θdecg)).

Supervised Learning Experiments
Before investigating the full gluing task, we first explored
how components of the graph network agent could perform
key sub-tasks in a supervised setting, such as predicting sta-
bility or inferring which edges should be glued.

To test the GN’s stability predictions, we used towers with

2These functions are learned and thus these examples are not
literally what the agent is computing, but we provide them here to
give an intuition for how GNs behave.

variable number of blocks, where the input edges were la-
beled to indicate whether or not glue was present (1 for glue,
0 for no glue). Glue was sampled randomly for each scene,
and stability was defined as no blocks falling. We tested two
settings: fully connected graphs (where the graph included all
block-to-block edges), and sparse graphs (where edges were
only present between blocks that were in contact). In both
cases, GNs learned to accurately predict the stability of par-
tially glued towers, but the sparse graph inputs yielded more
efficient learning (Figure 3a). Results are shown for the case
of 5 blocks, but these results are also consistent across tow-
ers with 6-9 blocks. We also tested whether GNs can learn
whether a contact between two blocks should be glued. As
discussed previously, some glue locations require reasoning
about how forces propagate throughout the structure. We
therefore hypothesized that multiple message passing steps
would be necessary to propagate this information, and indeed,
we found that one recurrence was enough to dramatically im-
prove glue prediction accuracy (Figure 3b).

Sequential Decision Making Experiments

From the supervised learning experiments, we concluded that
GNs can accurately predict stability and select individual glue
points. Next we integrated these components into a full RL
agent that performs the same gluing task that people faced,
involving multiple actions and delayed rewards.

Design We considered three agents: the multilayer percep-
tron (or MLP) agent, the fully-connected graph network (or
GN-FC) agent, the graph network (or GN) agent, and the sim-
ulation agent.3 As most deep RL agents are implemented ei-
ther as MLPs or CNNs with no relational structure, our first
agent chose actions according to a Q-function approximated
by a MLP; as MLPs have a fixed input and output size, we
trained a separate MLP for each tower size. The GN and
GN-FC agents (which had relational knowledge, but no ex-
plicit physical knowledge) also chose actions according to a
Q-function and used 3 recurrent steps. The GN agent used a
sparse graph structure with edges corresponding to the con-
tact points between the blocks, while the GN-FC used a fully
connected graph structure and thus had to learn which edges
corresponded to valid actions. Finally, the simulation agent
(which had both relational and physical knowledge) chose ac-
tions using simulation. Specifically, for each unglued contact
point, the agent ran a simulation to compute how many blocks
would fall if that point were glued, and then chose the point
which resulted in the fewest blocks falling. This procedure
was repeated until no blocks fell. Note that the simulation
agent is non-optimal as it chooses glue points greedily.

The effect of relational structure Both the MLP and the
GN-FC agents take actions on the fully-connected graph (i.e.,
they both can choose pairs of blocks which are not adjacent);
the main difference between them is that the GN-FC agent has

3Additional details about the agent architectures and training
regimes are available at: https://goo.gl/ecsDwT
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Figure 4: (a) Comparison of overall reward for humans and
agents. H: human; MLP: MLP agent; GN-FC: GN agent op-
erating over a fully-connected graph; GN: GN agent operat-
ing over a sparse graph; Sim: simulation agent. (b) Compar-
ison of scaled reward across towers of different sizes. Re-
wards are scaled such that 0 corresponds to the reward ob-
tained when no actions are taken, and 1 to the optimal reward.

a relational inductive bias while the MLP does not. This re-
lational inductive bias makes a large difference, with the GN-
FC agent earning M = 883.60, 95% CI [719.40,1041.00]
more points on average (Figure 4a) and also achieving more
points across different tower sizes (Figure 4b).

Giving the correct relational structure in the GN agent
further improves performance, with the GN agent achieving
M = 183.20, 95% CI [73.20,302.40] more points on average
than the GN-FC agent. Thus, although the GN-FC agent
does make use of relations, it does not always utilize the
correct structure which ends up hurting its performance. In-
deed, we can observe that the GN-FC agent attempts invalid
glue actions—for example, choosing edges between objects
that are not adjacent, or self-edges—a whopping 31% (out of
N = 1345) of the time. The MLP agent similarly picks “in-
valid” edges 46% (out of N = 417) of the time.

The GN agents also exhibit much stronger generalization
than the MLP agent. To test generalization, we trained a
second set of agents which did not observe towers of 7 or
10 blocks during training, and compared their test perfor-
mance to our original set of agents. The GN agent ex-
hibited no detectable degradation in performance for ei-
ther tower size, with a difference in scaled reward of
M = 0.01, 95% CI [−0.03,0.05] on 7-block towers and M =
0.05, 95% CI [−0.01,0.10] on 10-block towers. The GN-
FC agent interpolated successfully to 7-block towers (M =
−0.04, 95% CI [−0.08,0.00]), but struggled when extrapo-
lating to 10-block towers (M = 0.44, 95% CI [0.27,0.61]).
By definition, the MLP agent cannot generalize to new tower
sizes because it is trained on each size independently. We
attempted to test for generalization anyway by training a sin-
gle MLP on all towers and using zero-padding in the inputs
for smaller towers. However, this version of the MLP agent
was unable to solve the task at all, achieving an average of
M = 78.00, 95% CI [−140.00,296.00] points total.

The effect of physical knowledge The simulation agent
was the only agent which incorporated explicit physi-
cal knowledge through its simulations, and we found

that it also performed the best out of all the agents.
Specifically, the simulation agent earned on average M =
156.20, 95% CI [70.80,249.60] points more than the GN
agent, perhaps suggesting that there is a benefit to using a
model-based policy rather than a model-free policy (note,
however, that the simulation agent has access to a perfect
simulator; a more realistic implementation would likely fare
somewhat worse). However, we emphasize that the gain in
performance by between the GN agent and the simulation
agent was much less than that between the MLP and GN-FC
agents, suggesting that relational knowledge may be more im-
portant than explicit physical knowledge in solving complex
physical reasoning problems like the gluing task.

Comparison to humans Although our goal was not to
build a model of human cognition on the gluing task, we still
compared people’s behavior to that of the GN agent to elu-
cidate any obvious differences. Participants’ average reward
fell between the MLP and GN-FC agents’ (Figure 4a). As
in Figure 4b, both agents and humans had increasing diffi-
culty solving the task as a function of tower size, though this
was expected: as the number of blocks in the tower increases,
there is an exponential increase in the number of possible glue
combinations. Specifically, for a tower with k contact points,
there are 2k possible ways glue can be applied (around 1000
possibilities for a 10-block tower), and optimally solving the
task would require enumerating each of these possibilities.
Our agents do not do this, and it is unlikely that humans do
either; therefore, the drop in performance as a function of
tower size is not surprising.

Looking more closely, we found the GN agent made dif-
ferent patterns of errors than humans within scenes. For ex-
ample, while we found that people were more likely to make
false positives (applying glue when none was needed), we
did not find this to be true of the GN agent (41% of errors,
N = 155, p < 0.05). This difference might be a result of per-
ceptual uncertainty in humans, which leads to a tendency to
over-estimate the instability of towers (Battaglia et al., 2013).

Discussion
In this paper, we explored the importance of relational induc-
tive bias in performing interactive physical reasoning tasks.
We introduced a novel construction problem—the “gluing
task”—which involved gluing pairs of blocks together to sta-
bilize a tower of blocks. Our analysis showed that humans
could perform far above chance and discovered they used sys-
tematic strategies, such as working top-to-bottom and reason-
ing about the whole glue configuration, before taking their
first action. Drawing on the view from cognitive psychol-
ogy that humans understand the world in terms of objects and
relations (Shepard, 1980; Spelke & Kinzler, 2007; Kemp &
Tenenbaum, 2008), we developed a new deep RL agent that
uses a decision-making policy based on object- and relation-
centric representations, and measured its ability to learn to
perform the gluing task. These structured representations
were instantiated using graph networks (GNs), a family of
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neural network models that can be trained to approximate
functions on graphs. Our experiments showed that an agent
with an object- and relation-centric policy could solve the
task even better than humans, while an agent without such
a relational inductive bias performed far worse. This sug-
gests that a bias for acquiring relational knowledge is a key
component of physical interaction, and can be effective even
without an explicit model of physical dynamics.

Of course, model-based decision-making systems are pow-
erful tools (Silver et al., 2016), and cognitive psychology
work has found evidence that humans use internal physics
models for physical prediction (Battaglia et al., 2013), infer-
ence (Hamrick et al., 2016), causal perception (Gerstenberg
et al., 2012), and motor control (Kawato, 1999). Indeed,
we found that the best performing agent in our task was the
“simulation” agent, which used both relational and physical
knowledge. Provisioning deep RL agents with joint model-
free and model-based strategies inspired by cognitive psy-
chology has proven fruitful in imagination-based decision-
making (Hamrick et al., 2017), and implementing relational
inductive biases in similar systems should afford greater com-
binatorial generalization over state and action spaces.

More generally, the relational inductive bias possessed by
our GN agent is not specific to physical scenes. Indeed, cer-
tain aspects of human cognition have previously been studied
and modeled in ways that are explicitly relational, such as in
analogical reasoning (e.g. Gentner, 1983; Holyoak, 2012). In
other cognitive domains, GNs might help capture how people
build cognitive maps of their environments and use them to
navigate; how they schedule their day to avoid missing im-
portant meetings; or how they decide whom to interact with
at a cocktail party. Each of these examples involves a set of
entities, locations, or events which participate in interactive
relationships and require arbitrarily complex relational rea-
soning to perform successfully.

In sum, this work demonstrates how deep RL can be im-
proved by adopting relational inductive biases like those in
human cognition, and opens new doors for developing formal
cognitive models of more complex, interactive human behav-
iors like physical scene construction and interaction.
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