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On-Chip High Speed Localized Cooling
Using Superlattice Microrefrigerators

Yan Zhang, James Christofferson, Ali Shakouri, Gehong Zeng, John E. Bowers, Fellow, IEEE, and Edward T. Croke

Abstract—In this paper, we addressed heating problems in
integrated circuits (ICs) and proposed a thin-film thermionic
cooling solution using Si/SiGe superlattice microrefrigerators.
We compared our technology with the current most common
solution, thermoelectric coolers, by strengthening the advantages
of its compatible fabrication process as ICs for easy integration,
small footprint in the order of ~ 100 x 100 pm?, high cooling
power density, 600 W/cm? and fast transient response less than
40 ps. The thermoreflectance imaging also demonstrated its
localized cooling. All these features combined together to make
these microrefrigerators a very promising application for on-chip
temperature control, removing hot spots inside IC.

Index Terms—Hot spots, localized cooling, microrefrigerators,
optoelectronics, superlattice, thermionic, thermoelectric, thin-film
refrigerator.

NOMENCLATURE
MTF Mean time to failure, hour.
J Current density, A/cm?.
Ea Activation energy, eV.
K Boltzmann Constant, 8.616 X 107% eV/K.
7T Figure of merit.
S Seebeck coefficient, ;1 V/K.
o Electrical conductivity, (Q2*cm)~!.
0 : Thermal conductivity, W/mK.
T Temperature, K or °C.
COP Coefficient of performance.
Q Heat load, W.
R Electrical resistance of the microrefrigerator/TEC,
Q.
I Current sent to power the TEC/microrefrigerator, A.
A Device area, ym?2.
P Maximum cooling power density, W/cm?.

1. INTRODUCTION

HE current trend in microelectronic devices is to increase
the level of integration, minimize the die size, and at the
same time increase clock speed (higher frequency). This will re-
sult in higher power dissipation thus an increase in the die tem-
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Fig. 1. Illustration of exponential relation of meantime to failure
(MTF) with increased temperature. (Color version available online at
http://ieeexplore.ieee.org.)

perature. The increasing die temperature will directly affect the
quality and reliability issue of integrated circuits (ICs) due to
electromigration and oxide breakdown [1]-[3]. The lifetime of
IC device exponentially decreases with the increasing die tem-
perature, which could be described by Black’s equation [4] as
illustrated in Fig. 1. According to Intel’s predictions, within the
next five to ten years, the increasing power requirements of the
IC chip is going to exceed the cooling capability of current tech-
niques. To satisfy this demand, we need make the case temper-
ature ~20 °C lower than its current value [5].

One distinguished characteristic of ICs’ temperature profile
is uneven temperature distribution, which leads to “hot spots.”
The temperature inside the chip could vary 5 °C ~30 °C from
one location to another in microprocessor. Current micropro-
cessors have an average heat flux of 10-50 W/cm?. However, a
peak flux can reach six times this average value [5]. Thus, re-
ducing or eliminating hot spots could lower the thermal design
requirements for the whole package.

Current available cooling technologies mainly consist of
three categories with their own advantages and disadvantages
[S].

First, is circulated liquid cooling, which moves heat sink
away from the processors by increasing the surface area.
However, this technology is not active cooling technology thus
it will not help to lower the thermal resistance of the whole
package. Most of all, reliability is a big concern if the liquid
hose is leaking.

The second technology is refrigeration. Active cooling can
provide an effective thermal resistance (R (effective)=(1.-T,

1521-3331/$20.00 © 2006 IEEE
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)/ P, T, package top surface temperature, T;,, ambient tempera-
ture, the active cooling normally creates a cooling surface lower
than the ambient, which (7,.-T;,)<0, which was defined as the
negative effective thermal resistance.) less than 0.0 C/W. The ef-
fective thermal resistance refers to the total thermal pass above
the package, which includes interface material, heat spreader,
cooling components and heat sink etc. However, as the same
problem as the first method, the limited space, noise and relia-
bility are the main concerns.

The third technology is the most widely used cooling solu-
tion for semiconductor industries, thermoelectric (TE) devices.
Thermoelectric cooling is silent and environmental green solu-
tion. It is active cooling with no moving parts, which could pro-
vide an effective heat sink resistance less than 0.0 C/W as well.
Usually, we use figure of merit (ZT) as a measure of maximum
cooling capability and the coefficient of performance (COP)
to measure the cooling efficiency. The ZT has the expression
7T =8 2oT/ (3, where S is the Seebeck coefficient, o, electrical
conductivity, (3, thermal conductivity, and 7", absolute temper-
ature. The ZT value is directly related to the COP of thermo-
electric modules. Typical commercial modules have a ZT ~ 1,
which corresponds to COP ~ 0.6 for 30 °C temperature differ-
ence. In addition, BiTe/SbTe and PbTe, the common TE mate-
rials are all bulk material, which make them incompatible with
standard microprocessor chips. Currently, the smallest thermo-
electric micromodule has a short leg length on the order of
0.2-0.3 mm, but with ceramic caps and thermal paste etc, the
whole module is nearly to 1-mm-thick and 3-10 mm in diam-
eter [6].

However, all these techniques only target on lowering the
whole package temperature and none of them addresses the hot
spots cooling. The hot spots in microprocessors are normally
in the order of 300—400 pm in diameter, thus even the smallest
thermoelectric module is still too large for spot cooling. There is
an approach called optimized cell placement [7], which theoret-
ically addresses the issue of reducing/eliminating hot spots by
rearranging cell positions. It optimizes the device power map
and reduces peak temperature. By implementing this method,
the temperature gradient inside the chip could be improved by a
factor of two though at the cost of increasing wire length and cell
area, which limits minimization package and may bring more
Joule heating inside the chip. Through statistical methods of
power and timing analysis, like McPower [8] and Mean Esti-
mator of Density (MED) [9] etc., it is possible to find the nom-
inal on-chip temperature profile. However, this method will re-
quire the change of cell position thus it will require the IC design
engineers involve in the thermal design process at the very be-
ginning of the die design stage. Furthermore, the most concern
is about the die size because of the cost of the die exponentially
increasing with die area. Thus, developing a high cooling power
density and easy integration thin film refrigerator could have a
strong impact in IC optimization [10].

There are some recently exciting developments in thin film re-
frigerators using superlattice and quantum dot structure, which
shows promising ZTs. For example, Venkatasubramanian et al.
[11] demonstrated that the BiTe/SbTe superlattice could reach
a ZT of 2.4 at 300 K. Harman er al. [12] at MIT Lincoln lab
demonstrated PbTe quantum dots with ZT of 1.6-2.0 at 300 K.

Cap layer
Cooler top metal
Ground metal contact contact layer Au~1.5pm
Au~1.5um '\ﬁ
s
r'd

1pum Buffer layer

3um Si/Siy ,5Gey o5 superlattice layer g Substrate

Fig. 2. Schematic cross-view of Si/SiGe microrefrigerator structure. (Color
version available online at http://ieeexplore.ieee.org.)

The small footprint of these superlattice devices and the en-
hanced ZT propose a promising alternative solution for micro-
processor hot spots cooling.

In our studies, we mainly focused on Si and InP-based mate-
rials for the convenience of monolithic integration with chips.
In previous studies, thin film refrigerators based on InP [13]
and SiGe/Si [14] were demonstrated with devices fabricated
on a conventional silicon substrate and diameter ranging from
150 pm down to 20 pm. It could achieve 7-8 °C cooling at
100 °C ambient temperature [15]. In this paper, we mainly
present the results of cooling power density and transient
response measurements for these microrefrigerators.

II. EXPERIMENTS
A. Device Fabrication

The microrefrigerator sample under test consisted of a 3-u
m-thick superlattice layer with the structure of 200 x (3-nm
Si/12-nm Sip.75Geg.25) doped to 5e19 cm~3,a1-um Sig s Geg o
buffer layer with the same doping concentration as the superlat-
tice; and a 0.3-um Sig g Geg 2 cap layer doped to 1.9e20 cm™3.
The most important part of the device is the superlattice layer.
It acts as a barrier layer in the thermionic emission process, and
it can also reduce the thermal conductivity to prevent the back-
flow of heat from substrate to cold junction. The buffer layer on
top of the Si substrate was included in order to reduce strain due
to lattice mismatch between the substrate and the superlattice.
The cap layer with higher doping concentration was included
in order to improve the ohmic contact between the metal and
semiconductor. The samples were grown with a molecular beam
epitaxy (MBE) machine on five inch diameter (001)-oriented Si
substrates, p-type doped to 0.003 ~ 0.007 2-cm with boron. A
Ti/Al/Ti/Au layer was evaporated on top of the samples for elec-
trical contact. Fig. 2 illustrates a cross section view of the device
structure.

B. Cooling Measurements

The cooling of the device was measured using Omega Type
E thermocouple with a tip size of 50 pym. The schematic of the
thermocouple measurements was illustrated in Fig. 3. We used
differential temperature measurements by two thermocouples:
one thermocouple on top the device and the other one on sub-
strate. The sample was placed on a temperature control stage to
keep the substrate temperature constant. An automatic Labview
program was used to control measurement process. A constant
current was supplied to the refrigerator stepping from 0 mA to
500 mA with the step size of 25 mA; the temperature difference
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Fig. 4. Microrefrigerator cooling versus supplied current for various device
sizes. (Color version available online at http://ieeexplore.ieee.org.)

was recorded at every step. Thus, a plot of the microrefrigerator
cooling versus supplied current could be obtained. Fig. 4 illus-
trates cooling performance for various device sizes for a typical
microrefrigerator with 3-um Si/Sig.s Geg 2. Because of non-
ideal parasitic Joule heating from substrate, contact probe, and
metal-semiconductor contact resistance, there is an optimized
size to achieve the best cooling performance.

C. Cooling Power Measurements

For convenient measurements of cooling power density, we
integrated a thin layer of metal heater/sensor on top of microre-
frigerators. Fig. 5 shows a scanning electron microscopic (SEM)
picture of the microrefrigerator integrated with a layer of thin
film metallic wires. The integrated heater wires could work both
as a sensor for temperature measurements and supplying heat on
top of the device. While measuring the cooling power density,

Thermocouple measurement setup schematic. (Color version available online at http://ieeexplore.ieee.org.)

x308 ©@73 25kV 100unm

Fig. 5. Scanning electron microscope picture of Si/SiGe microrefrigerators
integrated with thin film heaters/sensors.

a constant current was supplied to the heater, and the cooling of
microrefrigerators was measured by thermocouple at the same
time. By increasing the constant current to the heaters, more
heat load was added on top of the refrigerators. The maximum
cooling power is defined as the heat load power that makes
the device’s maximum cooling temperature equal to zero. As
a comparison, we also measured the cooling power density of
the commercial TE modules. We put the TEC one side on top
of the temperature controller and heat up the other side using
a 100-pm-thick silicon substrate with 330 x 330 um? heater
wires.

D. Transient Response Measurements

In measuring the transient response of our device, a pulsed
current with 1-kHz frequency was applied to the heater. The
resulting temperature difference across the superlattice creates a
thermoelectric voltage according to the Seebeck effect. With the
heater turning on and off, the resulting thermoelectric voltage
across the superlattice will response to the changes. Tektronics
oscilloscope TDS 3054 with 500-mHz bandwidth was used to
monitor the thermoelectric voltage response. The obvious rising
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Fig. 6. Schematic of transient response measurements. (Color version
available online at http://ieeexplore.ieee.org.)

and falling edge could be observed. We choose the falling edge
to study the time constant. Though this measurement is not a
direct measurement of cooling transient, but the cooling and
heating transport are through the same superlattice layers. In this
case, the heating transient is equivalent to the cooling transient.
A schematic setup of the measurements is shown in Fig. 6. The
collected data was an average of 512 measurements, and could
fit well with an exponential curve. The decay time constant of
the exponential function was defined as the transient response
of the thin film superlattice refrigerator.

E. Results and Discussions

Conventional thermoelectric refrigerators are based on the
Peltier effect at the junction between two dissimilar materials,
e.g., a metal and a semiconductor. Upon current flow, electrons
absorb thermal energy from lattice at one junction and transport
it to another junction further away. Using SiGe/Si superlattice
material and thermionic emission of electrons over heterostruc-
ture barriers, one can improve the cooling performance through
evaporative cooling of electron gas and by reducing the lattice
thermal conductivity between hot and cold junctions. Experi-
mental results showed the cooling efficiency could improve four
times with the superlattice-designed structure as compared with
bulk materials [16].

A useful microrefrigerator should be able to create a signifi-
cant temperature difference across the device. Fig. 4 illustrates
cooling performance of various device sizes for a typical mi-
crorefrigerator with 3-um Si/Sip g Geg 2. Because of nonideal
parasitic Joule heating from substrate, contact probe, and metal-
semiconductor contact resistance, there is an optimized size to
achieve the best cooling performance. Furthermore, the cooling
performance could be improved when the device is operating
at higher temperature [17]. At higher temperature, there will be
more electrons with higher energy involved in the thermionic
emission process, which could go over the barrier and contribute
to the cooling. If the stage temperature raised up to 100 °C, the
maximum cooling could be expected to increase up to four times
as it is cooling at 25 °C [18].

Fig. 7 shows the temperature distribution on top of three
devices fabricated with the shape of heterostructure integrated
thermionic (HIT) refrigerators by noncontact thermore-
flectance measurements [19]. One can see the localized heating

+2

+1

Relative
o Temperature
(C)

-2

Fig. 7. Thermoreflectance imaging shows the localized heating of the
integrated heater sensor on top of Si/SiGe superlattice microrefrigerator. (Color
version available online at http://ieeexplore.ieee.org.)
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Fig. 8. HIT refrigerator picture shows the localized cooling and heating of the
device. (Color version available online at http://ieeexplore.ieee.org.)

and cooling for devices separated less than 30 pm without
any crosstalk. The thermoreflectance imaging has a lateral
resolution of 500 pm and temperature resolution of 0.1 °C. It
clearly demonstrates temperature distribution on top of the mi-
crorefrigerator. When we measure the cooling power density of
the microrefrigerator, we also use the thermoreflecantce image
to examine the quality of the heater wires and check whether
the heating are localized on top of the microrefrigerator. Fig. 8
illustrates the localized heating by the heat wires on top of the
microrefrigerator.

Fig. 9 shows the maximum cooling temperature relation with
applied heat load density for both commercial TE modules and
the Si/SiGe thin film microrefrigerator. The maximum cooling
power is defined as heat load per unit area when maximum
cooling temperature equals zero. The heat load of the heater
could be calculated by Q= I 2R (@, heat load; I, current sup-
plied to the thin film wire, R, its resistance). Maximum cooling
power density of the device is, P = Q/A, (Q heat load, A refrig-
erator area). We measured cooling power density of 10 W/cm?,
50 W/cm?2, and 600 W/cm? for 1-mm-leg TE module, ultrathin
(0.2-mm-leg) TE module and thin film microrefrigerators indi-
vidually.
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Fig. 9. Maximum cooling versus heat load comparison for a typical SiGe microrefrigerator with the commercial TE modules. (Color version available online at

http://ieeexplore.ieee.org.)

TABLE 1
COMPARISON OF THE POWER EFFICIENCY FOR COMMERCIAL TE MODULES WITH THIN FILM MICROREFRIGERATOR

Thin film micro-
Imm-leg TE module 0.2mm-leg TE module refrigerator
I max (A) 1.75 2.5 0.3
R (ohm) 20 17.71 0.3
Consumed Electrical Power
(W) 61.3 110.7 0.03
Cooling Power Density

(W/cm2) 10 50 600

Device Size (um2) 462400 168100 1600

COP 0.1% 0.1% 35.6%

The coefficient of performance (COP) was defined as the ac-
tual cooling power divided by the total power consumed. With
the available data that we obtained from the cooling power den-
sity measurements in Fig. 9, we could also deduce the COP and
make a comparison of the commercial TEC with the thin film
microrefrigerator. The commercial TE module with a 1-mm-
long leg could create a temperature difference of 68 °C with a
cooling power density of 10 W/cm?, COP of 0.1%. The ultrathin
TE module with a 0.2-mm-long leg could create a temperature
difference of 50 °C with cooling power density of 50 W/cm?,
COP of 0.1%. The thin-film microrefrigerator could only create
atemperature difference of 2.5 °C but with a high cooling power
density of 600 W/cm?, COP could achieve 35.6%. Table I lists
all the parameters used for COP calculation for all TE modules
and microrefrigerator.

Furthermore, the transient response of the current SiGe/Si su-
perlattice refrigerator is several orders of magnitude better than
the bulk TE refrigerators. The standard commercial TE refriger-
ator has a response time on the order of tens of seconds. Fig. 10
shows the fitted transient response of a typical SiGe/Si super-
lattice sample, the decay time constant is ~ 34 s, which is in
an order of 10° faster than the bulk TE refrigerators. In fact, the
actual transient response of the device is faster than the mea-
sured value. The thermoreflectance method shows a transient re-
sponse of ~20 s [20] directly on top of microrefrigerator. The
transient response measured by heater sensor is slower than the

Typical Transient Response of SiGe

sample with fitted curve
0.004

0.002 ]

Transient Response ]
~34ps
-0.002

-0.004 |-

-0.006

-0.008 |-

Normalized Voltage

L

-0.01

T (R ) ML VI VA MY YR Y PRI T RS FUT I
0 510° 0.0001 0.00015 0.0002 0.00025 0.0003

-0.012L

Time (s)

Fig. 10. Fitted transient response of SiGe/Si superlattice microrefrigerator.
(Color version available online at http://ieeexplore.ieee.org.)

thermal reflectance measurement because of the extra thermal
mass of thin film heater-metal-wires.
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III. CONCLUSION

In this paper, we demonstrated the localized cooling of
Si/SiGe superlattice thin film microrefrigerator. The cooling
power density of the microrefrigerator has been measured
and COP was calculated and compared with the commercial
TEC modules. The Si/SiGe superlattice microrefrigerator has
a cooling power density of 600 W/cm? and a fast transient
response less than 40 ps. As compared with conventional
bulk TE modules, thin film integrated SiGe/Si superlattice
microrefrigerators have potential applications in high power,
high-speed optoelectronics devices, and microprocessors for
on-chip localized temperature control.

According to our theoretical simulation, the current limita-
tion of the superlattice refrigerators still lies in the contact re-
sistance between the metal and cap/buffer layer, which is on the
order of 106 Qcm? for current devices. It predicts a 20-30 °C
of cooling with a cooling power density exceeding several thou-
sands of W/cm? is possible with the optimized SiGe superlattice
structure and non-ideal factors removed [21].

Future research interests will focus on improving cooling ef-
ficiency and integrating microrefrigerators with electronic and
optoelectronic devices.
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