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Perception is shaped not only by current sensory inputs
but also by expectations generated from past sensory
experience. Humans viewing ambiguous stimuli in a
stable visual environment are generally more likely to
see the perceptual interpretation that matches their
expectations, but it is less clear how expectations affect
perception when the environment is changing
predictably. We used statistical learning to teach
observers arbitrary sequences of natural images and
employed binocular rivalry to measure perceptual
selection as a function of predictive context. In contrast
to previous demonstrations of preferential selection of
predicted images for conscious awareness, we found
that recently acquired sequence predictions biased
perceptual selection toward unexpected natural images
and image categories. These perceptual biases were not
associated with explicit recall of the learned image
sequences. Our results show that exposure to arbitrary
sequential structure in the environment impacts
subsequent visual perceptual selection and awareness.
Specifically, for natural image sequences, the visual
system prioritizes what is surprising, or statistically
informative, over what is expected, or statistically likely.

Introduction

How do our previous experiences influence what we
see? Many studies have demonstrated that predictions
based on past experience can affect sensory processing
and perception (reviewed in Panichello, Cheung, & Bar,
2013). Visual history can influence not only the speed
and efficiency of processing, it can also change what we
see. Prior experience can bias our perception of visual

features and objects (Chalk, Seitz, & Seriès, 2010;
Fischer & Whitney, 2014; Gibson & Radner, 1937;
Liberman, Fischer, & Whitney, 2014). Moreover, when
visual input is ambiguous, prior experience can
influence perceptual selection: that is, which perceptual
interpretation is represented in conscious awareness
and which interpretation is suppressed and remains
unseen (Brascamp, Knapen, Kanai, van Ee, & van den
Berg, 2007; Chopin & Mamassian, 2012; Denison,
Piazza, & Silver, 2011; Haijiang, Saunders, Stone, &
Backus, 2006; Long, Toppino, & Mondin, 1992;
Maloney, Dal Martello, Sahm, & Spillmann, 2005;
Pearson & Brascamp, 2008; Sterzer, Frith, & Petrovic,
2008; Wolfe, 1984). Here, to better understand the
dynamic processes that determine the contents of
consciousness, we investigated the effects of prediction
on visual perceptual selection.

According to Bayesian theories, perception reflects a
combination of current perceptual input and prior
expectations (Kersten, Mamassian, & Yuille, 2004;
Snyder, Schwiedrzik, Vitela, & Melloni, 2015), such
that perceptual selection should favor predicted inter-
pretations (Hohwy, Roepstorff, & Friston, 2008; Seriés
& Seitz, 2013). For example, one general prediction is
that the future visual environment will be similar or
identical to the current one (Weiss, Simoncelli, &
Adelson, 2002; Wiskott & Sejnowski, 2002). Consistent
with the Bayesian framework in this case, many studies
have found that perceptual selection favors both
repeated percepts (Leopold, Wilke, Maier, & Logo-
thetis, 2002; Pearson & Brascamp, 2008; Pearson,
Clifford, & Tong, 2008) and percepts associated with
repeated context (Di Luca, Ernst, & Backus, 2010;
Haijiang et al., 2006; Schmack et al., 2013; Sterzer et
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al., 2008). Perceptual selection also favors perceptual
interpretations predicted by preceding stimulus motion
(Attarha &Moore, 2015; Denison et al., 2011; Maloney
et al., 2005).

An important exception to the prediction hypothesis
is adaptation, which reduces the likelihood of main-
taining one’s current percept (Alais, Cass, O’Shea, &
Blake, 2010; Blake & Overton, 1979; Chopin &
Mamassian, 2012). Indeed, repeated percepts are
especially favored when adaptation is not a major
factor. This occurs, for example, when the preceding
stimulus is brief or weak, such that adaptation is
minimal (Brascamp et al., 2007; Pearson et al., 2008).

To date, all of the studies that reported prediction
effects on perceptual selection have used relatively
simple stimuli that were made of dots or gratings.
However, much of the predictability in our visual input
in natural environments is based on complex visual
sequences, such as a planned sequence of saccades,
walking along a familiar route, or watching someone
perform a series of actions. Such complex sequences
may recruit different predictive mechanisms than the
simpler sequences and stimuli that have been previously
studied. To investigate the effects of a broader range of
dynamic predictions on perceptual selection, we em-
ployed visual statistical learning of natural images and
binocular rivalry. This method does not require a
limited stimulus set and is not restricted to predictions
based on repetition or motion.

Statistical learning is the rapid acquisition of
knowledge about patterns in the sensory environment
(Fiser & Aslin, 2001). It has been demonstrated for
arbitrary image sequences, even when observers are not
aware of any patterns (Brady & Oliva, 2008; Fiser &
Aslin, 2002; Turk-Browne, Jungé, & Scholl, 2005;
Turk-Browne & Scholl, 2009). Through statistical
learning, observers in our study acquired novel
predictive sequences of natural images. We then asked
how the predictions generated by these sequences
influenced subsequent perceptual selection during
binocular rivalry. Binocular rivalry (Wheatstone, 1838)
is a sensitive probe of perceptual decision processes and
a powerful tool for studying perceptual selection (Alais
& Blake, 2005; Blake & Logothetis, 2002). During
rivalry, different images are presented to the two eyes,
and perception alternates between the two images in a
way that is largely outside of the observer’s control
(Meng & Tong, 2004).

We further examined whether any effects of statistical
learning on perception would be tied to a specific level of
visual processing (Brady & Oliva, 2008) (individual
images vs. image categories) and whether the level
involved would depend on which types of image
features were attended (Turk-Browne et al., 2005). To
investigate these questions, we tested perceptual selec-
tion for both image and category sequences and directed

participants’ attention towards either images or cate-
gories during their initial exposure to the sequences.

We found that perception was indeed influenced by
the predictions associated with the learned sequences.
However, in contrast to the Bayesian framework,
observers were more likely to perceive the unexpected
image and category. That is, predicted images/catego-
ries were perceptually suppressed by unexpected
images/categories. These findings indicate that the
visual system can prioritize unexpected items in
complex visual sequences. Our sequence prediction
protocol provides a way to determine how the visual
system balances two competing strategies: incorporat-
ing prior information (favoring predicted percepts)
versus selecting the most statistically surprising visual
information (favoring nonpredicted percepts).

Methods

Observers

Sixty-one naı̈ve observers participated in the exper-
iments. There were 18 observers in each of three
experimental groups (E1, image exposure task: 18–25
years; four male,14 female; E2, category exposure task:
18–31 years; five male,13 female; E3, category exposure
task with short exposure phase: 18–33 years; five
male,13 female). These sample sizes are comparable to
those of previous studies on statistical learning (Fiser &
Aslin, 2001) and on the influence of predictive
information on binocular rivalry (Denison et al., 2011).
Two additional observers were tested in E2, but their
data could not be used due to a technical error that
prevented responses from being recorded. Five addi-
tional observers participated in the equivalent contrast
experiment (19–31 years, one male, four female). All
observers provided informed consent, and all experi-
mental protocols were approved by the Committee for
the Protection of Human Subjects at the University of
California, Berkeley, and were conducted in accord
with the Declaration of Helsinki.

Visual stimuli

Stimuli were generated on a Macintosh PowerPC
using Matlab and Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) and were displayed on two halves of a
gamma-corrected NEC MultiSync FE992 CRT moni-
tor with a refresh rate of 60 Hz at a viewing distance of
100 cm. Observers viewed all stimuli through a mirror
stereoscope with their heads stabilized by a chin rest.
Visual stimuli were natural images presented within
circular patches 1.88 in diameter and were surrounded

Journal of Vision (2016) 16(13):6, 1–15 Denison, Sheynin, & Silver 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935767/ on 11/01/2016



by a black annulus with a diameter of 2.68 and a
thickness of 0.28. Binocular presentation of this annulus
allowed it to serve as a vergence cue to stabilize eye
position and to ensure that the rivaling stimuli were
presented to corresponding retinal locations in the two
eyes. All stimuli were presented on a neutral gray
background (luminance of 59 cd/m2). Images were
grayscale photographs that were histogram equalized
so that all images had an identical distribution of pixel
luminances and the same mean luminance as the
background. During rivalry presentations, the image
presented to one eye was tinted red and the image
presented to the other eye was tinted blue by increasing
the values in either the red or the blue channel by 50%.

Twelve natural images were selected to form four
three-image sequences (triplets), with two images
coming from each of six categories (male, female,
animate, inanimate, indoor scene, outdoor scene). The
entire image set is shown in Figure 1. The third images
from sequences 1 and 2 and the third images from
sequences 3 and 4 were paired during the rivalry test
phase. Since not all images rival equally with one
another, the paired images were chosen by screening a
large set of images to find two animate/indoor scene
pairs in which the rivaling images had approximately
equal levels of initial dominance in binocular rivalry.
The images in the first and second positions of each
triplet, which were never used as rivalry stimuli, were
selected more arbitrarily.

Photographs were obtained from a commercial
digital library (Corel Stock Photo Libraries from Corel
Corporation), the Berkeley Segmentation Dataset
(http://www.eecs.berkeley.edu/Research/Projects/CS/
vision/grouping/segbench/) and, with permission, from
the personal collection of Kendrick Kay.

Overview of procedure

Each experimental session had four parts: (a) an
exposure phase, to induce statistical learning of triplet
image sequences; (b) a rivalry test, to determine the

impact of sequence learning on perceptual selection in
binocular rivalry; (c) a recall test, to determine to what
extent observers noticed and could explicitly recall the
triplets shown during the exposure phase; and (d) a
familiarity test, to determine to what extent observers
could recognize the triplets in a forced-choice setting.

Exposure phase

Stimuli

A stream of grayscale natural images was presented
identically to the two eyes through a mirror stereoscope.
Images were presented one at a time, in sequence, and
were organized into triplets that had both image- and
category-level structure (Figure 1). The presentation
order of the triplets was pseudorandomized, with the
constraint that no triplet could be presented twice in a
row within the sequence. This constraint reduced the
likelihood that observers would notice the triplet
structure within the image stream. There were no cues to
indicate the stream’s triplet structure.

Task

Observers performed either an image identification
task (E1) or a category identification task (E2/E3),
directing their attention during the exposure phase to
either lower-level image or higher-level category
information, respectively. They were instructed to press
a key corresponding to the image identity (E1) or
category identity (E2/E3) of each presented image as
quickly and accurately as possible.

Procedure

Observers first completed short practice blocks to
learn the response key mappings until they either
achieved 85% identification accuracy or completed five
blocks. Each practice block consisted of six presenta-
tions of each triplet with a slow image presentation rate

Figure 1. Image sequence exposure to induce statistical learning. Observers viewed an image stream composed of 12 unique images

grouped into four triplet sequences (triplet numbers shown in circles), presented in pseudorandom order. Each triplet sequence was

one of two types of category sequence (A or B). Observers received no cues to indicate the triplet structure of the streams. Part of an

example stream including all four triplets is shown.
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(2000 ms/image in E1 and 1250 ms/image in E2/E3, 0
ms interstimulus interval [ISI]).

Next, observers completed exposure blocks that
contained 18 presentations of each triplet (E1 and E2:
five exposure blocks, or 90 presentations of each triplet;
E3: two exposure blocks, or 36 presentations of each
triplet). Each image was presented for 1250 ms (E1) or
850 ms (E2/E3) with 0 ms ISI. The rate of image
presentation was slower in E1 than in E2 and E3
because the image identification task (12 possible
responses) was more difficult than the category
identification task (six possible responses).

Rivalry test

Design

On each trial of the rivalry test (Figure 2), two
images from one of the four triplets (the ‘‘sequence
context’’) were followed by a rivalry display in which
the image in one eye was predicted by the first two
images, whereas the image in the other eye was not. To
maintain experimental control over stimulus factors
that can influence binocular rivalry, we manipulated
sequence context while keeping the rivalry displays
consistent across trials. The rivalry display was always
one of two rivalrous pairs: the third images from

triplets 1 and 2, or the third images from triplets 3 and
4 (see Figure 1 for triplet sequences).

We label experimental conditions according to the
relationship between the sequence context and a given
rivalrous image, or ‘‘probe,’’ with condition names
indicating what was predicted by the sequence context.
Thus, in the ‘‘probe image’’ condition, the sequence
context predicted the appearance of the probe image
(i.e., the probe came from the same triplet as the
context). In the ‘‘rival image’’ condition, the sequence
context predicted the appearance of the image rivaling
with the probe (the ‘‘rival’’). In the ‘‘probe category’’
condition, the sequence context predicted neither the
probe nor the rival image, but rather a third image
(from the other rivalrous pair) that shared the same
category as the probe. In the ‘‘rival category’’
condition, the sequence context predicted a different
image that shared the same category as the rival.

If statistical learning promoted perception of pre-
dicted images and/or categories, there would be greater
rivalry dominance of probes during the ‘‘probe image’’
and/or ‘‘probe category’’ conditions. Conversely, if
statistical learning promoted perception of unexpected
images and/or categories, there would be greater
dominance of probes during the ‘‘rival image’’ and/or
‘‘rival category’’ conditions, in which rivals were
predicted by the sequence context, and probes were
unexpected.

Figure 2. Binocular rivalry test. The third image from each triplet was used as a probe during the binocular rivalry test. Each rivalry

display was preceded by the first two images from one of the triplets, creating four types of sequence context. In probe image and

probe category trials, the first two images in the sequence predicted either the same image or the same category as the probe,

respectively. In rival image and rival category trials, the first two images in the sequence predicted either the same image or category

as the probe’s rival, respectively. This design enabled perceptual selection of a given image in a given rivalrous pair to be measured as

a function of predictive sequence context. Circled numbers show the triplet containing each image or sequence (c.f. Figure 1).
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Stimuli

On each trial, the two sequence context images were
presented binocularly in grayscale, followed by a
rivalry display (Figure 2). The rivalry images were
tinted red and blue (one color in each eye), which
reduced piecemeal rivalry percepts and allowed ob-
servers to report the perceptually dominant image
based on its color. Tint colors and left and right eye
presentations for the images in each of the two rivalry
pairs were counterbalanced across trials.

Task

Observers passively viewed the grayscale images and
then reported the dominant percept during rivalry by
holding down one of two keys, corresponding to the
red and blue tints, for as long as the corresponding
percept persisted. They were instructed not to press any
key for ambiguous percepts.

Procedure

On each trial, the two sequence context images were
presented binocularly with the same timing as in the
exposure phase (1250 ms in E1 or 850 ms in E2/E3, 0 ms
ISI). The rivalry display was then presented for 5 s. This
duration was sufficient for the initiation of unambiguous
rivalry and typically at least one perceptual alternation,
enabling measurement of first response duration.

Observers completed two runs of the rivalry task.
Each run consisted of 96 trials presented in blocks of 32
trials. Each of the four rivalrous images appeared in 48
trials during the run, 12 times in each sequence context
condition. Thus, there were 48 data points per
condition per run, with all trials randomly intermixed.

Analysis

We expected that predictive sequence context effects
would be strongest at the beginning of the rivalry
period of each trial, so our primary analysis was of the
initial response to the rivalry stimuli—the proportion
of trials in which the initial percept was the probe
versus the rival. We also measured the latency and
duration of the initial response for both probe and rival
percepts. The relatively short rivalry presentation
durations we employed did not allow analysis of
responses following the initial percept (see Denison et
al., 2011 for a similar approach).

Recall test

Procedure

Observers were interviewed to assess their recall of
image and category sequence regularities during the

exposure phase. They were first asked to describe any
patterns they had noticed in the image streams during
the exposure phase. Following this open-ended ques-
tioning, they were specifically prompted to report any
repeated temporal sequences they might have noticed,
both for specific images and for categories. The
following specific prompts were given: ‘‘For example,
what image generally followed the man with the
sunglasses?’’ (image sequence prompt) and ‘‘For
example, what kind of image generally followed a
man?’’ (category sequence prompt). Observers were
encouraged to report as many sequences as they could
remember.

Analysis

We calculated the recall rate for each observer
(number of sequences recalled divided by total number
of sequences presented during the exposure phase),
separately for image and category sequences. Very few
complete triplet sequences were recalled by observers
(see Results), so to increase sensitivity for detecting a
correlation between recall and the effects of statistical
learning on rivalry responses, we included both triplets
and sequential pairs of images and categories from the
exposure stream in the recall measure.

For each observer, the recall rates for triplets (out of
4) and pairs (out of 8) were calculated separately and
then added together to give the total recall rates for
image and category sequences. Triplet and pair counts
were mutually exclusive in order to avoid double-
counting (i.e., recall of a triplet was not also counted as
recall of two pairs). So, for example, if an observer
identified 4/4 triplets (and thus 0/8 pairs), the score
would be 1. If an observer identified 3/4 triplets and 1/8
pairs (the maximum number of pairs that could be
recalled, since the final triplet was not correctly
identified), the score would be 0.875. If an observer
identified 0/4 triplets, the maximum possible score
would be 4/8 pairs, or 0.5. Thus, the recall rate could
range from 0 (no recall) to 1 (perfect recall of all four
triplets). The overall recall rate for each observer was
defined as the average of the image and category recall
rates.

Familiarity test

Design

Following the interview, observers were informed
that, indeed, some sequences of images had appeared
more often than others during the exposure phase.
Observers then performed a familiarity task (Figure 4a,
b) that tested their ability to discriminate three types of
sequences: triplets from the exposure phase, category-
match foils, and category-different foils.
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There were four category-match and four category-
different foil sequences, none of which had been seen by
the observers during either the exposure or rivalry test
phases. Foil sequences were identical to the triplets that
were presented during the exposure phase, except that
the second image of each foil was replaced by an image
from a different triplet. For category-match foils, the
replacement image came from the same category as the
original image. For category-different foils, the re-
placement image came from a different category than
the original image.

Employing these two types of foils allowed us to
assess three kinds of learning, as measured by
recognition performance. Image learning was measured
when one sequence was from the exposure phase and
the other was a category-match foil. If observers had
only learned category information and not specific
image information, they should have performed poorly
in discriminating these two sequences. Category learn-
ing was measured when one sequence was a category-
match foil and the other was a category-different foil. If
observers had learned category information, they
should have been able to discriminate these foils, but if
they had only learned image information, they would
have been unable to do so, since neither of the foil
sequences had been shown during the exposure phase.
Finally, in any learning trials, one sequence was an
original triplet from the exposure phase, and the other
was a category-different foil. Either image or category
learning would have enabled observers to discriminate
these two sequences.

Stimuli

Stimuli were grayscale image sequences, identical to
those used in the exposure phase.

Task

Two triplets were presented sequentially on each
trial, and observers reported whether the first or the
second sequence was more familiar (2AFC).

Procedure

The timing of each sequence presentation was the
same as in the exposure phase. The two sequences were
separated by a 1-s blank period. A 3-s response window
followed the second sequence presentation. For each of
the three conditions (image learning, category learning,
and any learning), each of the four triplets of one
sequence type was paired with each triplet of the other
sequence type two times (counterbalanced order of
triplet presentation), resulting in a block of 96
randomly intermixed trials (32 trials for each condi-
tion).

Analysis

We measured the proportion of correct 2AFC
responses in each condition, where the correct response
was defined as the option that had previously appeared
as an image sequence, a category sequence, or both
(i.e., the original triplet in the any learning and image
learning conditions and the category-match foil in the
category learning condition).

Estimation of equivalent contrast

In a separate experiment, we estimated the size of the
predictive rivalry effect in units of image contrast. The
goal was to determine how much the contrast of a
rivaling image would have to be reduced to have the
same proportion of initial perceptual selection as when
it was predicted by one of the learned sequences.

Stimuli and task

We varied the Michelson contrast of one eye’s image
(variable contrast image; contrasts¼ 0.2, 0.5, 0.7, 0.8,
0.85, 0.9, 0.95, 1) while keeping the contrast of the
other eye’s image fixed at 1 (standard image). The
contrast response function was densely sampled at high
contrasts because contrasts generating proportions of
initial responses that were equivalent to the magnitude
of the predictive rivalry effect were expected to be in
that range. The rivalrous image pairs were the same as
those used in the rivalry test.

Procedure

All aspects of the equivalent contrast procedure were
the same as in the rivalry test, except only the rivalry
display was presented (i.e., it was not preceded by
sequence context). The standard and variable contrast
image assignments were counterbalanced across imag-
es, red/blue tints, and eyes. Each observer completed
1024 trials (128 per contrast), with all trial types
randomly intermixed, in two, one-hour sessions.

Analysis

For each observer, the proportion of trials for which
the variable contrast image was selected as the initial
percept in rivalry was plotted as a function of contrast
on a logarithmic scale, and a cumulative normal
function was then fit to this contrast response function.
The mean of the function was fixed to be zero—
log(1)—and the value of the psychometric function at
that contrast was fixed to be 0.5, because there should
be no overall preference for the variable versus the
standard contrast images when both have a contrast of
1. The standard deviation (width) and the amplitude of
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the function were free parameters. This function fit the
data well: R2 for individual observers ranged from
0.90–0.98 (mean ¼ 0.96). For each observer, the fitted
function was used to estimate the image contrast
corresponding to the size of the prediction effect
measured in the rivalry test. This was the contrast at
which the value of the fitted function equaled the mean
proportion of trials in which predicted images were
initially selected. The mean and standard error of this
equivalent contrast were then calculated across the five
observers.

Results

Exposure phase

Experimental groups E1 and E2 completed the same
experiment under different task conditions during the
exposure phase. In E1, observers identified specific
images, and in E2, they identified categories. Exposure
consisted of 90 repetitions of each triplet.

Image and category identification accuracy during the
exposure phase was well above chance but not at ceiling,
indicating that the tasks were sufficiently difficult to
engage attention. Accuracy was similar for the two
experiments [mean percent correct across observers, E1:
77% (SD¼ 14%; chance performance¼ 8%); and E2:
77% (SD¼ 12%; chance performance¼ 17%)].

Binocular rivalry

Given the possibility that perceptual biases due to
statistical learning would change over the course of the

rivalry test, we included experimental run as a factor in
ANOVAs for each experiment. The effect of statistical
learning on initial perceptual dominance during bin-
ocular rivalry was different for the first and second run
for E1 [repeated-measures, three-way ANOVA with
factors of run, probe/rival context, and image/category
context; interaction between run and probe/rival
context: F(1, 17) ¼ 7.71, p ¼ 0.013, g2

G ¼ 0.094] and
marginally so for E2, [F(1, 17)¼ 3.03, p¼ 0.100, g2

G ¼
0.049]. We therefore analyzed the two runs separately.
There were no other significant effects in the full
experiment ANOVAs (all F , 2.5, p . 0.13).

In the first run of the rivalry test (Figure 2),
perceptual selection during binocular rivalry was
influenced by prior statistical learning of the image and
category sequences. Regardless of whether observers
performed the image or category identification task
during exposure, we observed a main effect of probe
versus rival context, such that observers were more
likely to perceive a given probe when its rival image or
category was predicted by the first two images shown in
the trial [Figure 3; repeated-measures, two-way AN-
OVA with factors of probe/rival context and image/
category context, E1: F(1, 17) ¼ 7.20, p ¼ 0.016, g2

G ¼
0.18; E2: F(1, 17)¼ 4.55, p¼ 0.048, g2

G¼ 0.15]. In other
words, the predicted item was more likely to be initially
suppressed during rivalry, while the unexpected item
was more likely to be perceptually dominant.

The average difference in proportion initial domi-
nance for predicted and nonpredicted images and
categories across the two experiments was 0.051. That
is, the predicted image was selected 47.4% of the time.
We performed an additional experiment in which we
determined the reduction in image contrast that would
decrease the proportion of initial rivalry responses to
that level (lowering contrast decreases dominance in
binocular rivalry [Levelt, 1965]). We found that the

Figure 3. Previously established sequence context enhances perceptual selection of unexpected compared to predicted images and

categories. Dark bars represent trials in which sequence context predicted the probe image or category, and light bars represent trials

in which context predicted the rival image or category. (A) Rivalry responses when an image identification task was performed during

exposure. (B) Rivalry responses when a category identification task was performed during exposure. Error bars are SEM across

observers; n ¼ 18 observers in each experiment. *, p , 0.05.
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average predictive rivalry effect shown in Figure 3 is
equivalent to a 5.5% reduction in image contrast (SEM
¼ 0.78%; see Methods, Estimation of equivalent
contrast).

We did not find significant probe versus rival context
effects in the second run of the rivalry task [repeated-
measures, two-way ANOVA with factors of probe/rival
context and image/category context, E1: F(1, 17) ¼
0.83, p¼ 0.37, g2

G ¼ 0.027; and E2: F(1, 17)¼ 0.21, p¼
0.66, g2

G ¼ 0.006]. It is possible that the effects of
statistical learning from the exposure phase degraded
due to the lack of consistent triplet presentation over
the two rivalry test runs. All subsequent analyses of
rivalry data report results from the first run.

We next directly compared probe image versus rival
image and probe category versus rival category condi-
tions in the two experiments. In E1 we found a
significant effect of statistical learning on perceptual
selection at the image level, with greater initial
dominance of the unexpected image [paired t test,
probe versus rival image, t(17) ¼ 2.17, p¼ 0.045, d ¼
0.51], but no reliable difference between probe and rival
category conditions [t(17) ¼ 1.67, p ¼ 0.11, d ¼ 0.28]
(Figure 3). Conversely, in E2 we found a significant
rivalry effect at the category level, with more initial
dominance of the unexpected category [paired t test,
probe versus rival category, t(17)¼ 2.33, p¼ 0.033, d¼
0.55] and no reliable effect at the image level [t(17) ¼
1.06, p¼ 0.30, d¼ 0.25] (Figure 3). However, there were
no significant interactions between probe/rival and
image/category factors in either experiment [repeated-
measures, two-way ANOVA, E1: F(1, 17)¼ 0.051, p¼
0.82, g2

G¼0.0015; and E2: F(1, 17)¼1.88, p¼0.19, g2
G¼

0.035].
Combining the two experiments (mixed three-way

ANOVA with experiment as a between-subjects factor)
again showed more initial dominance for unexpected
images and categories [main effect of probe/rival, F(1,
34)¼ 11.64, p ¼ 0.0017, g2

G ¼ 0.16] but no differential
rivalry effect for images and categories in the two
experiments [no three-way interaction between probe/
rival, image/category, and experiment, F(1, 34) ¼ 0.92,
p¼ 0.34, g2

G ¼ 0.011].
Because we expected predictive effects to be stron-

gest at the beginning of each presentation of rivaling
stimuli, our primary measure of interest was the initial
percept, which reflects the outcome of the first
perceptual selection between the competing alterna-
tives. We also measured the mean duration and latency
of the initial response, which index rivalry processes
that are distinct from those that determine the identity
of the initial percept, and found that these were not
influenced by statistical learning. In particular, there
were no significant effects of image sequence context on
initial response duration [repeated-measures, two-way
ANOVA, E1: main effects and interaction F(1, 17) ,

1.50, all p . 0.2; and E2: main effects and interaction
F(1, 17) , 1.67, all p . 0.2] or latency [repeated-
measures, two-way ANOVA, E1: main effects and
interaction F(1, 17) , 1.70, all p . 0.4; and E2: main
effects and interaction F(1, 17) , 2.66, all p . 0.1]. We
obtained the same results for initial response duration
when we excluded from the analysis those initial key
presses that continued until the end of the 5-s rivalry
duration. This dissociation between predictive context
effects on the identity and the duration of the initial
percept in binocular rivalry is consistent with previous
work indicating different processes underlying percep-
tual selection and maintenance in rivalry (Bressler,
Denison, & Silver, 2013; de Jong, Knapen, & van Ee,
2012; Levelt, 1965; Sobel & Blake, 2002; Stanley, Forte,
Cavanagh, & Carter, 2011).

Familiarity and recall

In addition to determining the effects of statistical
learning on perceptual selection in rivalry, we sepa-
rately assessed statistical learning using familiarity and
recall tasks that measured both image and category
learning (see Methods). In the familiarity task (Figure
4), we found evidence for strong category learning but
little image learning. The any learning measure,
reflecting a combination of image and category
learning, was well above chance (50%) performance in
both experiments [one-sample t test, E1: t(17)¼ 4.78, p
, 0.001, d¼ 1.13; and E2: t(17)¼ 3.27, p¼ 0.0045, d¼
0.77]. The same was true for category learning in both
experiments [E1: t(17)¼ 4.33, p , 0.001, d¼ 1.02; and
E2: t(17)¼4.23, p , 0.001, d¼1.00], even though in E1,
observers were never provided with category labels and
never performed category judgments during the expo-
sure phase.

Mean accuracy in the category learning condition
was similar to mean accuracy in the any learning
condition, suggesting that most of the learning
measured by the familiarity task was at the category
level in both experiments. Indeed, we did not find
reliable evidence for image learning in either experi-
ment [E1: t(17) ¼ 1.55, p ¼ 0.14, d¼ 0.37; E2: t(17) ¼
1.34, p ¼ 0.20, d ¼ 0.32]. Moreover, familiarity
judgments for image sequences were less accurate than
those for category sequences in both experiments
[paired t test, E1: t(17)¼ 2.65, p¼ 0.017, d¼ 0.62; E2:
t(17)¼5.19, p , 0.001, d¼1.22]. Greater familiarity for
category compared to image sequences may have been
at least partially due to the hierarchical relationship
between images and categories, as each category
contained two distinct images, resulting in twice as
many presentations of each category sequence as of
each image sequence.
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Despite clear evidence of statistical learning as
assessed with the familiarity task, there were low rates
of triplet recall. Even with prompting (see Methods),
no observer correctly recalled a complete image triplet
sequence in either experiment. On average, recollec-
tion of complete category triplets was 3% in E1 and
28% in E2. There was some additional recall of partial
image and category sequences (i.e., sequential image
pairs representing part of a triplet), and we quantified
this by computing a recall rate for each observer in
which a value of 0 indicates that no sequence
information was recalled, and a value of 1 represents
complete recall (Methods and Figure 5). Mean recall
rates were 0.13 (SD¼0.21) for E1 and 0.27 (SD¼0.18)
for E2.

We found no positive correlation between recall rate
and the main effect of sequence context on perceptual
selection in binocular rivalry (Figure 5) [E1: r(16) ¼
�0.32, p¼ 0.20, CI¼ [-0.68 0.17]; E2: r(16)¼ 0.04, p¼
0.88, CI ¼ [-0.44 0.50]]. Given that strong eye
dominance can reduce the effects of experimental
manipulations on the outcome of rivalry we recom-
puted these correlations while controlling for a measure

of eye dominance in each observer (defined as the
proportion of trials that the initial percept was the
image in the dominant eye). Again, there was no
significant correlation between recall rate and the
magnitude of the rivalry effect [E1: r(16) ¼�0.26, p ¼
0.31; E2: r(16) ¼�0.0003, p¼ 0.99].

Indeed, we found no correlations for any pairwise
combination of our three measures of statistical
learning effects: rivalry, familiarity, and recall. Corre-
lations between measures across individuals were not
significant for the rivalry main effect of probe/rival
context versus the any learning familiarity measure [E1:
r(16) ¼ 0.11, p¼ 0.66, CI ¼ [-0.37 0.55]; E2: r(16) ¼
0.067, p ¼ 0.79, CI ¼ [-0.41 0.52]] or for any learning
versus recall rate [E1: r(16)¼ 0.42, p ¼ 0.080, CI ¼ [-
0.054 0.74]; E2: r(16)¼ 0.19, p¼ 0.44, CI¼ [-0.30 0.61]].
These results are generally consistent with previous
work that also found no correlation of different
learning measures across observers following visual
statistical learning (Kim, Seitz, Feenstra, & Shams,
2009).

Figure 4. Familiarity task results. (A) On each trial, observers reported which of two three-image sequences was more familiar (2AFC)

based on presentations during the exposure phase. (B) Learning of image sequence, category sequence, and any type of sequence

(image or category) was assessed by employing category-match foils and category-different foils that had not previously been shown

to observers. (C) 2AFC accuracy for the three types of learning in E1. Chance performance was 50%. (D) 2AFC accuracy in E2. Error

bars are SEM across observers; n ¼ 18 observers in each experiment. *, p , 0.005.
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Short exposure

One factor that may influence whether selection
favors the predicted versus unexpected image or
category is the amount of previous exposure to the
sequences. For example, infants look longer at more
familiar stimuli early in an exposure period but longer
at novel stimuli after more prolonged exposure (Rose,
Gottfried, Melloy-Carminar, & Bridger, 1982). There-
fore, we tested whether a shorter exposure phase (36
repeats per triplet) would reverse the direction of the
rivalry effect, resulting in increased perceptual selection
of predicted images and/or categories (E3; categoriza-
tion task during exposure).

Mean accuracy on the exposure task was 69% (SD¼
19%, chance ¼ 17%). In the rivalry test, the difference
between probe and rival context was in the same
direction as in E1 and E2, but it had a lower magnitude
and did not reach significance: Figure 6A; repeated-
measures, two-way ANOVA with factors of probe/rival
context and image/category context, F(1, 17)¼2.08, p¼
0.17, g2

G ¼ 0.067. These results are not consistent with
shorter exposures leading to perceptual selection of

predicted images or categories. The reduced effect size
in E3 compared to E1 and E2 is expected if the effects
of statistical learning on subsequent rivalry accrue over
the exposure period. The familiarity test confirmed that
the shorter exposure duration in E3 was sufficient for
statistical learning as it is typically measured in a 2AFC
recognition task [Figure 6B; any learning: t(17)¼ 6.93,
p , 0.001, d ¼ 1.63.] As in E1 and E2, we found
category learning, t(17)¼ 4.63, p , 0.001, d¼ 1.09, but
no image learning, t(17) ¼�0.069, p¼ 0.95, d¼ 0.016.
Mean recall rate was 0.20 (SD¼ 0.18).

Discussion

We found enhanced perceptual selection of images
that violated the predictable sequential structure
contained in previously exposed image streams. This is
contrary to the notion that ‘‘we see what we expect to
see,’’ an idea that has received experimental support
from several previous studies of perception of ambig-
uous visual displays. Rivalry repetition (Leopold et al.,

Figure 5. Recall results and correlation with statistical learning effects on rivalry. Relationship between the magnitude of the rivalry

main effect (the difference between probe and rival context, averaged across image/category) and sequence recall (obtained from

interviews) across observers in E1 (left) and E2 (right). Data points represent individual observers. Recall rate would be 1 for perfect

recall and 0 for no recall of any image and/or category sequences (see Methods).

Figure 6. Short exposure experiment (E3). (A) Initial probe dominance as a function of sequence context (conventions as in Figure 3).

(B) Familiarity test performance (conventions as in Figure 4). Error bars are SEM across observers; n¼ 18 observers. *, p , 0.001.
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2002; Pearson & Brascamp, 2008), visual imagery
(Pearson et al., 2008), learned cue associations (Hai-
jiang et al., 2006; Sterzer et al., 2008), predictable
sequences of dot motion (Maloney et al., 2005), and
predictive rotational motion (Attarha & Moore, 2015;
Denison et al., 2011) have all been shown to bias
perception of ambiguous displays in a direction
consistent with expectations derived from the accom-
panying context. These findings support the view that
recent visual history can serve as a prior that combines
with incoming sensory information to determine the
contents of perception (Bressler et al., 2013; Denison et
al., 2011; Kersten et al., 2004).

However, only seeing what we expect to see neglects
events that prompt us to update our knowledge of the
visual world. From a statistical perspective, surprising
events contain more information about the environ-
ment than predicted ones. Therefore, the brain may
balance Bayesian inference with prioritization of new
information. Enhancing processing of new information
in the environment is often offered as a functional
explanation for adaptation and its perceptual conse-
quences (McDermott, Malkoc, Mulligan, & Webster,
2010; Ranganath & Rainer, 2003). Our results show
that the visual system can also exhibit biases that
enhance perception of violations of sequences.

The bias toward unexpected stimuli in perceptual
selection and conscious awareness that we report is
conceptually related to studies of statistical learning
and attentional capture that show enhanced processing
of surprising stimuli. In statistical learning, cortical
responses to image sequences are enhanced for
surprising compared to predicted images. Physiological
studies of macaque inferotemporal cortex found that
exposure to image sequences resulted in reduced
neuronal responses to images in the later part of the
sequence, compared to unexpected images (Meyer &
Olson, 2011; Meyer, Ramachandran, & Olson, 2014).
Cortical responses in inferotemporal cortex, a high-
level, object-selective region, also correlate strongly
with perception during binocular rivalry in the ma-
caque (Sheinberg & Logothetis, 1997). Therefore,
reduced responses to predicted images in higher order
visual cortex may be tied to perceptual suppression of
those images during rivalry. The involvement of higher-
level visual areas would be consistent with our finding
of effects of statistical learning on rivalry at the
category level.

Unexpected images have also been found to capture
attention (Brockmole & Henderson, 2005; Foley,
Jangraw, Peck, & Gottlieb, 2014; Näätänen, 1990).
Statistical learning can influence the allocation of
attention (Cosman & Vecera, 2014; Zhao, Al-Aidroos,
& Turk-Browne, 2013), and exogenous feature-based
attention can impact binocular rivalry (Chong & Blake,
2006), especially at its onset (Mitchell, Stoner, &

Reynolds, 2004). Increased attention to a nonpredicted
stimulus may therefore increase perceptual selection of
that stimulus. In rivalry studies, natural scenes con-
taining atypical, as opposed to typical, objects are
selected more quickly (Mudrik, Breska, Lamy, &
Deouell, 2011) and have extended periods of perceptual
dominance (Mudrik, Deouell, & Lamy, 2011), findings
which the authors suggested were due to increased
attention to the unexpected images.

Combining statistical learning and attention, Zhao et
al. (2013) found faster reaction times for visual search
targets embedded in streams of triplet sequences that
had been statistically learned compared to targets
embedded in streams of random sequences at other
spatial locations. The authors concluded that attention
was drawn to the location with learned sequential
structure. An alternative interpretation of these results,
however, is that attention was drawn toward sequence
violations. That is, targets may have attracted attention
because they were not part of the original learned
sequences and therefore violated the sequential struc-
ture of the sequences during search. The two interpre-
tations of this study are not mutually exclusive, as
attention can be allocated in space, as Zhao et al.
suggest, as well as in time, triggered by a sequence
violation.

Taken together, these statistical learning and atten-
tion studies in which unexpected images were priori-
tized used natural images (or images of complex
objects), nonmotion sequences, or both, as in our
study. Therefore, one or both of these factors may be
key to our observation of surprise effects rather than
the prediction effects observed in most previous studies
of the influence of prediction on perceptual selection.
Note that motion may be a special case for the visual
system, which is highly specialized for motion pro-
cessing (Berry, Brivanlou, Jordan, & Meister, 1999),
and predictive extrapolations of motion have been
observed in a variety of perceptual and behavioral
phenomena (Freyd & Finke, 1984; Nijhawan, 1994;
Roach, McGraw, & Johnston, 2011).

Further studies will be required to test whether the
use of natural images and/or nonmotion sequences are
critical for the preferential selection of surprising
percepts and to examine the relationships among this
surprise effect, associated brain responses, and atten-
tion. Additional manipulation of experimental param-
eters such as image content, stimulus timing, and
exposure duration will help to determine the generality
of our findings. E3 provides some initial constraints on
the required exposure duration. In addition, E1 and E2
suggest that once established, the rivalry effects
dissipate over time, possibly due to exposure to new
sequences during the rivalry test that are inconsistent
with those presented during the exposure phase.
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Overwriting of statistical learning could reflect ongoing
tracking of stimulus statistics by the visual system.

Our study is also related to theoretical accounts of
the effects of prediction on perception. In predictive
coding models (Friston, 2005; Rao & Ballard, 1999),
higher order cortical areas generate predictions re-
garding the activity of lower order areas. Studies
motivated by predictive coding have often focused on
top-down predictions generated from spatial (or
otherwise concurrent) context (Alink, Schwiedrzik,
Kohler, Singer, & Muckli, 2010; Rao & Ballard, 1999;
Smith & Muckli, 2010) or from stable expectations
(Egner, Monti, & Summerfield, 2010; Summerfield et
al., 2006), but a dynamical implementation of predic-
tive coding has been used to explain surprise effects
such as the mismatch negativity (Wacongne, Changeux,
& Dehaene, 2012). For rivalrous perception following a
predictive sequence of the kind used here, the behavior
of dynamical predictive coding models would depend
both on the implementation of these longer timescales
and on the level(s) in the visual hierarchy that were
associated with perception during rivalry (Hohwy et al.,
2008).

Recently, the concept of a perceptual ‘‘continuity
field’’ has been proposed, based on findings of
perceptual biases toward previously presented stimuli
(Fischer & Whitney, 2014). These attractive biases last
for several seconds and are somewhat location-specific.
Such ‘‘serial dependence’’ has been observed for
orientation (Fischer & Whitney, 2014), numerosity
(Corbett, Fischer, & Whitney, 2011), and face (Liber-
man et al., 2014) perception, thus spanning multiple
levels of stimulus complexity. Continuity fields in
perception are reminiscent of rivalry memory (Leopold
et al., 2002), a stabilizing bias in perceptual selection, as
both are evident at delays at which adaptation has
largely dissipated (Chopin & Mamassian, 2012). The
surprise effects we have observed in rivalry are opposite
to those predicted by a continuity field, and resolution
of this discrepancy is an interesting direction for future
research.

Conclusions

We found that violations of predictable natural
image sequences were preferentially selected for con-
scious awareness. There are two main implications of
this finding. First, perceptual selection can be shaped
by arbitrary sequential patterns in the environment.
Our work extends the range of known predictive effects
on awareness to include patterns that are commonly
found in natural environments. Second, predictions can
facilitate perception of unexpected stimuli in the
absence of low-level adaptation. Thus, in determining

the contents of conscious experience, the human
perceptual system appears to use two complementary
strategies: a Bayesian integration of the past and
present and a surprise-based selection of unexpected
information. Our flexible sequence prediction protocol
establishes an experimental approach for investigating
how the visual system balances these two strategies to
optimize perception in dynamic environments.

Keywords: prediction, expectation, perceptual selec-
tion, binocular rivalry, visual statistical learning
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