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Abstract—With increasing use of renewable energy and the 
advancements in smart grids, demand side management has 
been a keen topic of interest. Buildings, both commercial and 
residential, have great potential in implementing load-side 
demand management in renewable energy source powered 
microgrids. Electric Spring, a smart grid technology, is able to 
provide instantaneous voltage support and load power 
shedding. Thus, providing an astute solution to the voltage 
instability problem associated with such microgrids. In this 
paper, an implementation of electric spring is presented, in 
conjunction with building loads like central air conditioning 
system, to demonstrate its properties of voltage support, load 
power shedding, and reactive power compensation. 

Keywords—electric springs; demand management; building 
energy efficiency; renewable energy sources; smart grids; 
microgrids; inverters. 

I.  INTRODUCTION  
Many countries including Singapore are vigorously 

moving towards creating a sustainable environment, by 
increasing the reliance for power on Renewable Energy 
Sources (RES) such as solar, wind etc. [1]. With abundance 
of high rise buildings, Singapore plans to implement large 
scale solar test beds in 30 precincts, and reduce its energy 
intensity (per dollar GDP) by 35% from 2005 levels by 2030 
[2, 3]. USA also plans to increase share of renewable energy 
to 20% by 2020 [4]. Unpredictable and intermittent nature of 
RES along with their expected high penetration in grids and 
microgrids may pose problems of voltage instability. 

A new concept of Electric Spring (ES) was introduced in 
[5, 6] to provide dynamic voltage regulation. A paradigm 
shift in reactive power compensation was implemented with 
“input-feedback and input voltage control” compared to the 
traditional aspect of “output-feedback and output voltage 
control”. It was demonstrated in [7] that the energy storage 
requirements were reduced in former scheme in comparison 
to the latter. The authors also proposed embedding of ES in 
existing non-critical loads, such as electric heaters, so as to 
develop smart loads to dynamically regulate power to critical 
loads.  

With buildings using around 40% of total electricity in 
many countries and to reduce their energy footprint, they 
seem a logical focus point to incorporate electric springs [8, 
9]. Energy usage of buildings in Singapore is illustrated in 

Fig. 1 [10]. As air conditioning accounts for 50% of energy 
usage in a building, the central air conditioning system can 
be used as a non-critical load for a whole commercial 
building. 

 
Fig. 1. Breakdown of energy consumption within a building (Singapore) 

In this paper, the basic principles of operation of an ES 
are explained in Section II. To augment the existing research, 
an Electric Spring implemented through a full bridge pulse 
width modulation (PWM) based inverter is proposed and 
explained in Section III. Further, it is tested on MATLAB® 
Simulink platform and demonstrated how an ES can help in 
shaping reactive and active power and provide instantaneous 
voltage support in Section IV. The ES is attached to a 
substantial single non-critical load, like central air-
conditioning system, so to create smart load which follow 
renewable power generation. Such a system can be attached 
directly to existing facilities without encroaching on 
costumer comfort. A full bridge PWM inverter can deliver 
twice the power of a half bridge inverter topology employed 
in [11] and also the number of capacitors used is reduced to 
one. Another advantage with this scheme is elimination of 
even order harmonics, thus improving power quality and 
reducing harmonic losses.   

II. BASIC PRINCIPLES OF ELECTRIC SPRING OPERATION 

A. Analogy of Mechanical Spring with the Electric Spring 
A mechanical spring can generate force, governed by 

Hooke’s Law [12], given by (1) and stores potential energy 
equal to (2). 
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Fig. 2. Overview of ES in series with a non-critical 

F = -kx   PE ൌ  ଵଶ ݇xଶ   

where F is the force vector, k is the spring
is the displacement vector. An analogy 
introduce the concept of electric spring, whic
to: 1) provide voltage support; 2) store energ
electric oscillations [13]. Thus, the equation
(1) and (2) become as follows: ݍ ൌ  ቄ PE  ݒܥെݒܥ ൌ  ଵଶ   ଶݒܥ

Voltage ݒ of capacitor can be controlled
charge q through it, which in turn can b
current ݅௖ through it, as shown by (5). Th
Spring can be realized in a circuit with cu
voltage source [5]. ݍ ൌ ׬ ݅௖݀ݐ  

B. Operating principles of an Electric Sprin
An electric spring is an ingenious devic

installed in series with non-critical load(s), li
conditioning system, which can bear voltage
renewable energy based microgrid, as illust
This series connection is utilized to main
device installation ܛ܄ to the reference value ܄
in Fig. 2 the critical load is attached in para
load comprising of ES and non-critical load,
across it is ܛ܄. Also, ES can be utilized for 
reactive power compensation [14].  

For an ES to be lossless, the compensatio܉܄ has to be perpendicular to the noncritical
(Fig. 2). This means for a resistive-inductive
be leading ۷ܗ by 90° and gives capacitive co
vice-versa for an inductive compensation. 
through vector diagrams in Fig. 3. The pha
noncritical load voltage ܗ܄ and the compens
is equal to the voltage at device installation
state condition, vector equation for voltage ca܉܄ + ܗ܄ = ܛ܄   

When the rms voltage across the critical
than the reference rms voltage Vୱ_୰ୣ୤ (230 
boosts it up instantaneously to the refer
adjusting the voltage across the non-critical lo
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Fig. 4. Realization of Electric Spring in a Circuit with 

value of critical load voltage ܛ܄ with the
voltage value of 230 Volts, i.e. Vୱ_୰ୣ୤. For
phase θ of the reference sine wave, firstl
current through the non-critical load is detec
on the non-critical load characteristic, i.e. res
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angle is shifted by 90 degrees leading or lag
reference signal ܎܍ܚ_ܕܟܘܞ is as given by (8). ܎܍ܚ_ܕܟܘܞ ൌ sin ሺωt ܕ ൅  ીሻ

where θ is either 90˚ leading or 90˚ laggin

It is noteworthy that that the modula
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the reactive power compensation and θ th
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Fig. 6. RMS Voltages across critical load, non-critical load, electric spring 
and input voltage source in under-voltage condition. [Inset: RMS voltages 

from t = 0.95 to 1.15 seconds] 

 
Fig. 7. Reactive Power consumption in the non-critical load in under-

voltage conditions.  

to the reference value of 230 Volt rms (Vୱ_୰ୣ୤). It is to be 
noted that the non-critical load voltage (V୭) falls when the 
device ES turns on at t = 1 seconds, so as to maintain the 
critical load voltage at the reference value. The ES operates 
in capacitive mode and injects negative reactive power into 
the system to boost the system voltage. Inset of Fig. 6 shows 
the rms voltages from t = 0.95 to 1.15 seconds, the critical 
load voltage stabilizes in two cycles, while response of 
electric spring settles in less than five cycles. The reactive 
power of the non-critical load is reduced when ES is 
employed as illustrated in Fig. 7. This highlights the reactive 
power compensation feature of ES. Ample penetration of ES 
with other non-critical loads in the microgrid can help reach 
the desired level of reactive power compensation. An 
interesting aspect of ES is load power shedding, shown in 
Fig. 8. When the ES is switched on, the non-critical load 
power is reduced so as to support the critical load power and 
maintain it at 4.4 kW. 

 

Fig. 8. Active Power consumption in critical and non-critical load in under-
voltage condition

 

Fig. 9. RMS Voltages across critical load, non-critical load, electric spring 
and input voltage source in over-voltage conditions. [Inset: RMS voltages 

from t = 0.95 to 1.15 seconds] 

TABLE I.  SYSTEM SPECIFICATIONS 

System voltage and Line impedance 

System Voltage, Vin (rms): Under-voltage: 225 Volt (rms) 
Over voltage: 250 Volt (rms) 

Line impedance: 0.1 Ohms, 1.22 mH 
Load specifications 

Non-Critical Load: 7.0 Ohms, 1.398 mH 
Critical Load: 11 Ohms, 3.930 mH 

Electric Spring Power Circuit 

Inverter Topology: Single Phase Full H Bridge 
Inverter 

Switching Frequency: 20 kHz 
Regulated DC bus voltage: 450 Volts 

Output Low Pass filter 
Inductance: 1.92 mH 
Capacitance: 13.2 μF 

 

When a ES is implemented in an over voltage scenario, 
as depicted in Fig. 9, it reduces the voltage across the critical  

 Input Source Voltage ,࢔࢏܄Electric Spring Voltage ,܉܄

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

230

250

300

૙, Non-Critical load Voltage܄Critical Load Voltage ,࢙܄

V
ol

ta
ge

 (V
ol

ts
)

Time (seconds)

Vୱ

Vୱ

V୧୬V଴Vୟ
V୧୬V଴Vୟ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

R
ea

ct
iv

e 
Po

w
er

 (
V

A
R

)

Time (seconds)

Non-Critical load Reactive power ,࢕ࡽ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2,000

4,000
4,400

6,000

8,000

10,000

12,000

A
ct

iv
e 

Po
w

er
 (W

at
ts

)

Time (seconds)

Non-Critical load Active power ,࢕ࡼ Critical load Active Power ,࢙ࡼ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

230

250

300

 Input Source Voltage ,࢔࢏܄Electric Spring Voltage ,܉܄
Non-Critical load Voltage ,࢕܄Critical Load Voltage ,࢙܄

V
ol

ta
ge

 (V
ol

ts
)

Time (seconds)

V୧୬

Vୱ
VୱV଴

Vୟ

V୧୬V଴
Vୟ

5379



 

 

 
Fig. 10. Reactive power consumption in non-critical load in over voltage 

condition. 

load and maintains it at the reference value of 230 Volt rms, 
when the ES is turned on at t = 1 seconds. Like the under 
voltage scenario, the critical load voltage stabilizes in two 
cycles and the response of electric spring settles in less than 
five cycles, as illustrated in inset Fig. 9 for t = 0.95 to 1.15 
seconds. The ES operates in inductive mode and for a 
resistive-inductive load generates negative reactive power so 
as to provide voltage suppression. Similar to the under 
voltage scenario, the ES provides reactive power 
compensation to non-critical load as shown in Fig. 10. Also, 
the active power to the critical load is maintained at the 
constant value of 4.4 kW, after ES is switched on in Fig. 11. 

It is notable that in both cases, non-critical load voltage V୭ will be reduced due to increased value of the 
compensation voltage Vୟ. It can be inferred from the results 
that ES controls the reactive power so as to provide voltage 
support to the critical loads and automatic load power 
shedding. It is also observed that the problem of reactive 
power compensation can be solved using ES. 

V. CONCLUSION 
The concept of demand side management has been an 

age old [18], however with the evolution and growth of 
smart grid, it has become a necessity, to produce desired 
changes in utility’s load shape. For this purpose various 
methods of load control were introduced like load scheduling 
[19], smart metering for building applications [20, 21], and 
direct load control (DLC) integrated with real-time pricing 
[22]. However they have limited potential like load 
scheduling and smart metering may be utilized for day-ahead 
planning, but not for instantaneous voltage support. The third 
method of DLC though effective in real-time might prove 
intrusive to customers and if not properly secured, can pose a 
threat to user privacy.  

Electric Springs present themselves as an ingenious 
solution to the problem of instantaneous voltage instability in 
renewable energy powered microgrids. It is illustrated, in this 
paper through simulation study, that ES can be implemented 
using a full H bridge PWM inverter with building load such  

 
Fig. 11. Active power consumption in critical and non-critical loads in over 

voltage condition. 

as central air conditioning system. The proposed concept of 
smart load can provide a) voltage support to the critical 
loads of a building like security system, b) automatic load 
power shedding through non-critical loads, and c) reactive 
power compensation to the non-critical loads, with ample 
penetration in current renewable energy powered 
microgrids. These features along with the possibility of 
control of active and reactive power [14], corroborate the 
argument that electric springs are insightful devices for 
stability control in renewable energy powered microgrids 
without any reliance on information and communication 
technologies, smart metering or wide-area management and 
without much investment on security aspect of demand side 
management. 
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