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ABSTRACT OF THE THESIS 

 

 

Wildland fire smoke and respiratory health outcomes 

among elderly populations in California: comparison of 

exposure and health impact estimates 

 

by 

 

Jenny Trinh Nguyen 

 

Master of Science in Environmental Health Sciences 

University of California, Los Angeles, 2024 

Professor Miriam Elizabeth Marlier, Chair 

 

The advancement of new exposure assessment techniques has facilitated the development of 

several wildland fire smoke datasets employing varied smoke estimation methods. Exposure to 

wildland fire smoke can increase respiratory health risks, particularly among vulnerable groups 

such as the elderly. This study compares estimates of wildland fire smoke fine particulate matter 

(“smoke PM2.5”) in California from 2008 to 2018 across three datasets and quantifies differences 

in the attributable respiratory health burden among elderly populations from utilizing smoke 

estimates from different datasets. Smoke PM2.5 estimates were obtained from a chemical 

transport model dataset, the Community Multiscale Air Quality (CMAQ) dataset, and two 
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machine learning datasets, the Childs and Casey datasets. Respiratory health burdens attributable 

to smoke PM2.5 were quantified using smoke estimates from the three datasets through health 

impact assessments conducted in the US Environmental Protection Agency’s (EPA) 

Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) 

program. Smoke estimates from Childs and Casey, which rely on similar input datasets, were 

more similar than those from CMAQ in terms of correlation, spatial distributions, and temporal 

trends. Approximately 1,300-5,400 respiratory hospitalizations and emergency department 

(ED)/emergency room (ER) visits among the elderly are attributable to smoke PM2.5 exposure in 

California during the study period. Using smoke estimates from different datasets and different 

dose-response values from the literature yielded discrepancies in health impact estimates, with 

discrepancies of approximately 3,500-4,000 respiratory hospitalizations and ED/ER visits 

between CMAQ with Childs and Casey in the main analysis and discrepancies of approximately 

1,000-4,000 respiratory hospitalizations and ED/ER visits between dose-response values from 

the main and sensitivity analyses. Differences in smoke PM2.5 and health impact estimates can 

affect future wildland fire policies and strategies that rely on these estimates to address health 

burdens, especially among vulnerable populations such as the elderly.   



 iv 

The thesis of Jenny Trinh Nguyen is approved.  

Lara J. Cushing 

Michael Leo B. Jerrett 

Miriam Elizabeth Marlier, Committee Chair 

 

 

 

 

University of California, Los Angeles 

2024 

  



 v 

DEDICATION 

 

To my family and friends, for always  

encouraging and supporting me throughout this journey. 

  



 vi 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... VII 
LIST OF TABLES ..................................................................................................................... VIII 

LIST OF ACRONYMS ................................................................................................................. IX 

LIST OF SYMBOLS ................................................................................................................... XII 

ACKNOWLEDGEMENTS ....................................................................................................... XIII 
INTRODUCTION .......................................................................................................................... 1 

METHODS ..................................................................................................................................... 3 

DATA SOURCES ............................................................................................................................. 3 
SMOKE EXPOSURE COMPARISONS ................................................................................................. 6 

Statistical analysis ................................................................................................................... 6 
Spatial analysis ........................................................................................................................ 7 
Temporal analysis ................................................................................................................... 8 

HEALTH IMPACT ASSESSMENT ...................................................................................................... 8 
Literature review ..................................................................................................................... 9 
Selection of elderly-specific dose-response value ................................................................ 12 
Estimation of health impacts ................................................................................................. 13 

RESULTS ...................................................................................................................................... 16 

SMOKE EXPOSURE COMPARISONS ............................................................................................... 16 
Statistical analysis ................................................................................................................. 16 
Spatial analysis ...................................................................................................................... 19 
Temporal analysis ................................................................................................................. 22 

HEALTH IMPACT ASSESSMENT .................................................................................................... 27 
Literature review ................................................................................................................... 27 
Selection of elderly-specific dose-response value ................................................................ 29 
Estimation of health impacts ................................................................................................. 35 

DISCUSSION ............................................................................................................................... 40 

CONCLUSION ............................................................................................................................. 47 

APPENDIX ................................................................................................................................... 48 

REFERENCES ............................................................................................................................. 61 

  



 vii 

LIST OF FIGURES 

Figure 1. Sample demonstration of the health impact assessment in BenMAP-CE, using smoke 
estimates from the CMAQ dataset for 2008. ................................................................................ 16 
Figure 2. Spatial distribution of the 2008-2018 annual average smoke PM2.5 (µg/m3) at the 
census tract-level in California for each dataset. .......................................................................... 20 
Figure 3. Spatial distribution of the differences in 2008-2018 annual average smoke PM2.5 
(µg/m3) at the census tract-level in California for each dataset. ................................................... 22 
Figure 4. Temporal distribution of the 2008-2018 monthly average smoke PM2.5 (µg/m3) across 
California census tracts for each dataset. ...................................................................................... 23 
Figure 5. Temporal distribution of daily smoke PM2.5 (µg/m3) for all California census tracts and 
the daily statewide average smoke PM2.5 (µg/m3) for each dataset, during the fire season (June to 
October) of 2008. Note change in scale on y-axis. ....................................................................... 25 
Figure 6. Temporal distribution of daily smoke PM2.5 (µg/m3) for all California census tracts and 
the daily statewide average smoke PM2.5 (µg/m3) for each dataset, during the fire season (June to 
October) of 2018. Note change in scale on y-axis. ....................................................................... 27 
Figure 7. Distribution of elderly-specific dose-response values for respiratory and asthma 
outcomes from selected articles, presented as a percentage change in risk and 95% CI per 10 
µg/m3 change of smoke PM2.5 exposure. ...................................................................................... 32 
Figure 8. Spatial distribution of respiratory ED/ER health impacts among elderly populations 
attributable to smoke PM2.5 (µg/m3) at the census tract-level in California for each dataset for the 
overall study period (2008-2018), using dose-response values from Thilakaratne et al. ............. 38 
Figure 9. Respiratory health impact estimates and 95% CI among elderly populations 
attributable to smoke PM2.5 (µg/m3) across all California census tracts, stratified by year. ......... 39 
Figure S1. Spatial distribution of annual average smoke PM2.5 (µg/m3) at the census tract-level 
in California for each dataset, stratified by year. .......................................................................... 51 
Figure S2. Spatial distribution of the differences in annual average smoke PM2.5 (µg/m3) at the 
census tract-level in California for each dataset, stratified by year. ............................................. 52 
Figure S3. Temporal distribution of the differences in daily smoke PM2.5 (µg/m3) for all 
California census tracts and the daily statewide average smoke PM2.5 (µg/m3) for each dataset, 
during the fire season (June to October) of 2008. Note change in scale on y-axis. ...................... 54 
Figure S4. Temporal distribution of the differences in daily smoke PM2.5 (µg/m3) for all 
California census tracts and the daily statewide average smoke PM2.5 (µg/m3) for each dataset, 
during the fire season (June to October) of 2018. Note change in scale on y-axis. ...................... 56 
 

  



 viii 

LIST OF TABLES 

Table 1. List of search terms used for the updated search (July 2023 to January 2024) for articles 
focused on respiratory health effects from smoke PM exposure. ................................................. 10 
Table 2. Descriptive statistics of daily smoke PM2.5 (µg/m3) across all California census tracts 
for the overall study period (2008-2018) and stratified by year. .................................................. 17 
Table 3. Spearman correlation coefficients (ρ) of daily smoke PM2.5 (µg/m3) across all California 
census tracts, stratified by year. .................................................................................................... 18 
Table 4. Selected articles from the updated literature review to potentially extract elderly-
specific dose-response values from. ............................................................................................. 30 
Table 5. Extracted elderly-specific dose-response values for selected respiratory outcomes from 
smoke PM2.5 exposure from Thilakaratne et al. and Reid et al. .................................................... 34 
Table 6. Respiratory health impact estimates and 95% CI among elderly populations attributable 
to smoke PM2.5 (µg/m3) across all California census tracts for the overall study period (2008-
2018). ............................................................................................................................................ 37 
Table S1. P-values from the Kruskal-Wallis and Dunn tests of differences in annual smoke PM2.5 
(µg/m3) between datasets across all California census tracts for the overall study period (2008-
2018) and stratified by year. .......................................................................................................... 48 
Table S2. P-values from the Dunn test of differences in annual smoke PM2.5 (µg/m3) between 
datasets across all California census tracts grouped by climate regions for the overall study 
period (2008-2018) and stratified by year. .................................................................................... 49 
Table S3. Selected articles from the updated literature review on the respiratory health effects of 
wildland fire smoke exposure among elderly populations. .......................................................... 57 
 

  



 ix 

LIST OF ACRONYMS 

AQS Air Quality System 
A repository, maintained by the Environmental Protection Agency, of ambient 
air pollution monitoring data collected by several air quality control agencies 
in the United States 

BenMAP-CE Environmental Benefits Mapping and Analysis Program – Community 
Edition 
An open-source software program used to estimate health and economic 
impacts attributed to changes in air pollution 

CARB California Air Resources Board 
An agency of the California government responsible for implementing and 
overseeing air pollution control measures in the state  

CI Confidence interval 
An interval that an estimated parameter is expected to fall within, based on a 
given confidence level 

CMAQ Community Multiscale Air Quality Modeling System 
An open-source system of programs, developed by the Environmental 
Protection Agency, used to run air quality modeling simulations 

COPD Chronic obstructive pulmonary disease 
Lung diseases that restrict airflow and cause difficulties in breathing 

CSV Comma-separated values 
A plain text file that stores data in a tabular format, with values separated by 
commas 

ED Emergency department 
A hospital facility that provides emergency medical care to patients who arrive 
without prior appointments and present with serious health conditions 

EPA Environmental Protection Agency 
An agency of the US government responsible for handling environmental 
protection issues in the nation 

ER Emergency room 
Similar to emergency department 

FEM Federal Equivalent Method 
A method for sampling and analyzing ambient air pollution concentrations that 
is consistent and equivalent with the Federal Reference Method, designated by 
the Environmental Protection Agency 

FRM Federal Reference Method 
The main method for sampling and analyzing ambient air pollution 
concentrations, designated by the Environmental Protection Agency 

GEOS-Chem Goddard Earth Observing System chemical transport model 



 x 

A three-dimensional chemical transport model that simulates atmospheric 
composition using meteorological inputs from the Goddard Earth Observing 
System  

HA Hospitalization 
Admission of a patient to a hospital for medical care 

HCUP Healthcare Cost and Utilization Project 
A suite of healthcare databases that includes data on inpatient stays, 
ambulatory care, and emergency department visits in the United States 

HMS Hazard Mapping System 
A tool, developed by the National Oceanic and Atmospheric Administration, 
for identifying and mapping wildfires and smoke emissions in the United 
States 

ICD International Classification of Disease 
A medical classification system, developed by the World Health Organization, 
used to classify and code diagnoses and procedures 

MAIAC Multi-Angle Implementation of Atmospheric Correction 
An algorithm, developed to be used with the Moderate Resolution Imaging 
Spectroradiometer, that employs time series analysis and image-based 
processing for atmospheric correction  

MODIS Moderate Resolution Imaging Spectroradiometer  
A satellite sensor, aboard the National Aeronautics and Space Administration’s 
Terra and Aqua satellites, that captures remote sensing data of Earth’s surfaces, 
such as the atmosphere, oceans, and land 

NASA National Aeronautics and Space Administration 
An agency of the US government responsible for aeronautic research and 
space exploration 

NEDS National Emergency Department Sample 
An emergency department database in the United States that provides national 
data on emergency department visits, as part of the suite of databases from the 
Healthcare Cost and Utilization Project 

NIS National Inpatient Sample 
An inpatient healthcare database in the United States that provides regional 
and national data on inpatient hospitalizations, as part of the suite of databases 
from the Healthcare Cost and Utilization Project 

NOAA National Oceanic and Atmospheric Administration 
A scientific agency of the US government responsible for weather forecasting, 
climate monitoring, and oceanic and coastal management 

OR Odds ratio 



 xi 

A measure of association between two events, typically the exposure and 
outcome, that compares the odds of the outcome given exposure to the odds of 
the outcome given no exposure 

PM2.5 Fine particulate matter 
Small, inhalable particles with a diameter equal to or less than 2.5 µm 

RMSE Root mean square error 
A measurement of the average differences between observed values and 
predicted values from a model 

RR Relative risk 
A measure of risk that compares the risk of the outcome in the exposed group 
to the risk of the outcome in the unexposed group 

SEDD State Emergency Department Databases 
An emergency department database in the United States that provides state-
level data on emergency department visits, as part of the suite of databases 
from the Healthcare Cost and Utilization Project 

SES Socioeconomic status 
A measure of a person’s economic and sociological standing, usually a 
combination of indicators including income, education, housing status and 
more  

SID State Inpatient Databases 
An inpatient healthcare database in the United States that provides state-level 
data on inpatient hospitalizations, as part of the suite of databases from the 
Healthcare Cost and Utilization Project 

US/USA United States of America 
Country in North America 

WRF-Chem Weather Research and Forecasting with Chemistry model 
A chemical transport model that integrates atmospheric chemistry and 
meteorology to simulate atmospheric processes and chemical reactions of 
aerosols and trace gases   

WUI Wildland-urban interface 
An area between human development and undeveloped vegetation 

 

  



 xii 

LIST OF SYMBOLS 

β Beta coefficient 
β2.5 percentile Beta coefficient associated with the lower confidence interval 
β97.5 percentile Beta coefficient associated with the upper confidence interval 
∆PM Increment change in wildland fire smoke PM2.5 concentration response 

function as estimated by the literature  
∆Q Change in air pollution from wildland fire smoke PM2.5 concentrations 
H Estimated health impact  
R2 Coefficient of determination  
ρ Spearman correlation coefficient 
σβ Standard error for the Beta coefficient 
σβ, 2.5 percentile Standard error for the Beta coefficient associated with the lower confidence 

interval 
σβ, 97.5 percentile Standard error for the Beta coefficient associated with the upper confidence 

interval 
 

  



 xiii 

ACKNOWLEDGEMENTS 

 I would like to thank my advisor Miriam Marlier, who has unconditionally guided and 

supported me, in both my academic and professional career, throughout my time at UCLA. 

Thank you to my thesis committee members, Lara Cushing and Michael Jerrett, for offering 

constructive feedback on the written manuscript and for helping me develop my analytical 

skillset. Thank you to Rachel Connolly, who has provided immense support on the scoping, 

formal analysis, and troubleshooting of the thesis and for writing the baseline code used to 

prepare the daily smoke estimates. Thank you to Diane Garcia-Gonzales, for sharing her 

expertise and extending technical assistance in conducting the health impact assessment using 

BenMAP-CE. Thank you to Aron Walker, for imparting valuable counsel on working with the 

wildland fire smoke datasets. Thank you to Chen Chen, for assisting with programming advice 

and continuing to provide me mentorship even after my time as an undergraduate.   

 I would like to acknowledge and thank the following authors for making their data 

publicly available to use: Joseph Wilkins, George Pouliot, Kristen Foley, Wyat Appel, Thomas 

Pierce, Marissa Childs, Jessica Li, Jeffrey Wen, Sam Heft-Neal, Anne Driscoll, Sherrie Wang, 

Carlos Gould, Minghao Qiu, Jennifer Burney, Marshall Burke, Joan Casey, Tarik Benmarhnia, 

and Rosana Aguilera. Thank you to the donors who financially supported me through the Eugene 

and Sallyann Fama Fellowship during my graduate career.  

 The smoke comparisons portion of this thesis was conducted to supplement a study led 

by Rachel Connolly and colleagues, currently in preparation for publication. The literature 

review in this thesis was adapted from a previous literature review conducted by Diane Garcia-

Gonzales and colleagues. Both projects were financially supported by the National Aeronautics 

and Space Administration (NASA) and the California Air Resources Board (CARB).   



 1 

INTRODUCTION 

 Wildland fires are increasing in frequency, intensity, and duration, as a result of changes 

in temperature and aridity influenced by human-caused climate change (Abatzoglou & Williams, 

2016; Westerling et al., 2006), changes in land management (Calkin et al., 2015; Keane et al., 

2002), and development in the wildland-urban interface (WUI) (Radeloff et al., 2018). Increases 

in wildland fire activity pose threats to human health, through exposure to the direct fire as well 

as associated smoke pollution, with smoke transport in the atmosphere contributing to regional 

exposures in addition to local exposures (Heilman et al., 2014). Fine particulate matter (PM2.5), 

an inhalable mixture of small particles with a diameter of 2.5 µm or less, from wildland fire 

smoke (hereafter referred to as smoke PM2.5) can penetrate deep into the lungs and enter the 

bloodstream due to its small size, contributing to wide-ranging adverse health effects (Feng et al., 

2016; Pope & Dockery, 2006; US EPA, 2019). Epidemiological studies have linked smoke PM2.5 

exposure to increased risk of mortality and respiratory morbidity, with mixed but suggestive 

evidence for cardiovascular morbidity (Cascio, 2018; Reid, Brauer, et al., 2016). Specifically, in 

California, approximately 52,000-56,000 premature deaths are attributable to smoke PM2.5 

between 2008 to 2018, which highlights the large mortality burdens associated with wildland 

fires (Connolly et al., 2024). Emerging evidence suggests higher toxicity from smoke PM2.5 

compared to PM2.5 from other sources (Aguilera et al., 2021), further emphasizing wildland fire 

smoke as a pertinent public health issue.  

 Health impacts from smoke PM2.5 exposure are often not distributed evenly. Highly 

susceptible populations include children, the elderly, pregnant people, people with pre-existing 

health conditions, people with lower socioeconomic status (SES), and people of color (Cascio, 

2018). In particular, elderly populations are more susceptible to wildland fires due to declining 
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health with increasing age (Liu, Wilson, Mickley, Ebisu, et al., 2017). Exposure to smoke PM2.5 

is likely to exacerbate health risks among elderly populations who may already suffer from 

health complications. Wildland fires also often occur in rural areas where large proportions of the 

elderly reside (Masri et al., 2021), which can increase this population’s exposure to smoke PM2.5. 

As such, assessing health impacts attributable to smoke PM2.5 among the elderly will support the 

characterization of this population’s vulnerability to wildland fires.  

 Existing studies have used different methods to characterize smoke PM2.5 exposure, 

which include the use of surface air pollutant monitors, satellite-based observations, and various 

atmospheric models, as well as a mixture of different approaches (Cascio, 2018; Liu et al., 2015; 

Youssouf et al., 2014). Historically, studies have often utilized air pollutant monitoring data from 

stationary Federal Reference Method (FRM)/Federal Equivalent Method (FEM) monitors when 

assessing exposure (Liu et al., 2015), though recent studies have shifted towards using satellite-

based observations and models instead as these methods yielded more comprehensive exposure 

assessments (Gan et al., 2017; Liu et al., 2015). The availability of diverse methods to develop 

pollution exposure surfaces naturally raises questions of how smoke PM2.5 estimates from 

different methods compare to one another. Notably, estimates of health risks in epidemiological 

studies can be influenced by the exposure estimation method used (Gan et al., 2017). Gan et al. 

found differing results of health risks for chronic obstructive pulmonary disease (COPD) from 

smoke PM2.5 exposure across various smoke exposure models, with increased risk observed 

using kriging of in situ surface monitors and geographically weighted regression, which 

combines surface monitor and satellite data and simulated estimations from chemical transport 

models, and no associated risk observed using the chemical transport model alone (Gan et al., 

2017). Consequently, understanding how exposure assessments of smoke PM2.5 through different 
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methods compare and affect health estimates is crucial, especially with the continuous 

development of new smoke PM2.5 datasets.   

Several studies have characterized and examined the exposure distribution of smoke 

PM2.5 (Aguilera et al., 2023; Childs et al., 2022; Koman et al., 2019; Wilkins et al., 2018; Yao et 

al., 2018), but few studies have compared differences in smoke PM2.5 across datasets that have 

used different exposure estimation methods. Moreover, the current literature on potential 

differences in smoke PM2.5 estimates affecting health impact or risk estimates is limited, and no 

studies have analyzed this issue in elderly populations, specifically. California constitutes an 

ideal area to investigate such issues as the state has historically and frequently continues to 

experience wildland fires (Dennison et al., 2014; Li & Banerjee, 2021; Palinkas, 2020).  

To address these knowledge gaps, this study assesses smoke PM2.5 exposure estimates 

from three modeled datasets in California from 2008 to 2018 at the census tract-level and 

compares whether smoke PM2.5 estimates vary in space, time, and magnitude. Then, I conducted 

a health impact assessment to investigate how smoke PM2.5 estimates from different datasets 

impact the attributable respiratory health burden among elderly populations in California. 

Understanding how health impact estimates vary based on the dataset used is critical for 

determining the health burden of wildland fires and appropriately allocating resources, especially 

when considering susceptible populations such as the elderly. 

 

METHODS 

Data sources  

Modeled smoke PM2.5 estimates in California from 2008 to 2018 were obtained from 

three publicly available datasets (Casey et al., 2024; Childs et al., 2022; Wilkins et al., 2018). 
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The first dataset was developed from a chemical transport model, specifically the Community 

Multiscale Air Quality (CMAQ) modeling system, using SMARTFIRE emissions (Sullivan et al., 

2008) that produced air pollution estimates with and without the wildland fire contribution, with 

the difference between the two corresponding to pollution attributable to wildland fire smoke 

(Wilkins et al., 2018). This dataset provides daily gridded smoke PM2.5 estimates across the US 

from 2008 to 2018 at a 12-km spatial resolution (Wilkins et al., 2018); however, only estimates 

for California were used for this study. 

The second dataset, developed by Childs et al., provides daily smoke PM2.5 

concentrations across the US from 2006 to 2020 at both the census tract-level and at a 10-km 

grid (Childs et al., 2022). This dataset utilized machine learning methods, specifically gradient 

boosting, and multiple inputs, including monitor data from the US Environmental Protection 

Agency (EPA) and several covariates, to predict smoke PM2.5 concentrations (Childs et al., 

2022). Only census-tract level estimates for California from 2008 to 2018 were used in this study 

to align with the study area of interest and the years available in the CMAQ dataset.  

The third dataset, developed by Casey et al., provides both daily all-source PM2.5 

concentrations and smoke PM2.5 concentrations in California from 2006 to 2020 at the census 

tract-level (Casey et al., 2024). This dataset, previously developed by Aguilera et al. at the zip 

code-level using the same methodology (Aguilera et al., 2023), also used machine learning 

methods, specifically an ensemble model of deep learning, random forests, and gradient 

boosting, to estimate smoke PM2.5 concentrations, incorporating monitor data from the US EPA’s 

Air Quality System (AQS) and several predictor variables (Casey et al., 2024). Only estimates 

from 2008 to 2018 were used for consistency with the CMAQ dataset. 
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Model performance for all the datasets were evaluated in the respective studies. The 

model for the CMAQ dataset was compared to observations from AQS. During months where 

model differences were largest, the model estimated higher monthly mean PM2.5 than observed 

mean PM2.5 (Wilkins et al., 2018). Simulations with the fire contribution yielded a root mean 

square error (RMSE) of 5.22. The model performed well when fires have been identified and 

recorded in emissions inventories but overpredicted PM2.5 for atypical fire events, such as fire 

activity during winter months or megafires (Wilkins et al., 2018). The model for the Childs 

dataset was validated on daily time series data from both private and held-out EPA monitors not 

used for model training or development, with an R2 value of 0.67 and a RMSE of 9.57 for smoke 

days for the “out-of-sample” test (Childs et al., 2022). The authors emphasized the model’s high 

performance through its accurate predictions of observed PM2.5, even at high concentrations. The 

ensemble model for the Casey dataset was validated on monitoring data from five held-out 

monitoring sites not used for model training, with an R2 value of 0.78 and a RMSE of 3.51 for 

the hold-out test (Aguilera et al., 2023). The ensemble model underpredicted high observed 

PM2.5 concentrations, though the authors discussed that these underpredictions were common for 

exposure estimation through statistical methods (Aguilera et al., 2023). Given that the datasets 

have been validated against observed PM2.5, the subsequent step is to conduct a comparative 

analysis between the datasets. 

To align spatial resolutions across all datasets, the gridded estimates from CMAQ were 

transformed into census tract-level estimates in R using the “exactextractr” package, which 

averages the gridded estimates over census tract areas.  
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Smoke exposure comparisons 

Statistical analysis 

 A range of statistical approaches, including correlations, the Kruskal-Wallis test, and the 

Dunn test, were applied to evaluate the extent that smoke PM2.5 concentrations from the datasets 

correlated with one another and to assess statistical variation in the estimates across datasets. I 

calculated descriptive statistics, specifically the mean and standard deviation, of statewide smoke 

PM2.5 concentrations for the overall study period and each year within by averaging the daily 

estimates across all California census tracts for each dataset. Using daily census tract-level 

smoke PM2.5 concentrations, I computed Spearman correlation coefficients between pairs of 

datasets (CMAQ and Childs, CMAQ and Casey, Childs and Casey) for each year within the 

study period to examine the magnitude and direction of correlation between smoke estimates 

from different datasets.  

To determine whether smoke PM2.5 concentrations from the datasets statistically differed, 

I applied the Kruskal-Wallis test, a non-parametric method that tests for differences in the mean 

rank across certain groups (McKight & Najab, 2010). Census tract-level annual average smoke 

PM2.5 concentrations, which I calculated by averaging daily estimates across the overall study 

period and for each year within, were used for this test. For each year and across the overall 

study period, I performed the Kruskal-Wallis test to assess for differences in the mean ranks of 

smoke PM2.5 concentrations for all census tracts between the datasets, with a null hypothesis of 

no differences in the mean ranks between the datasets and an alternative hypothesis of at least 

one dataset has a different mean rank.  

Differences across the California Fourth Climate Change Assessment Regions (hereafter 

referred to as climate regions) were tested as well, with shapefiles obtained from the California 
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Natural Resources Agency (California Natural Resources Agency, n.d.). The climate regions 

were developed as part of the Fourth Assessment’s goal to report climate impacts and solutions 

in specific regions across California (State of California, n.d.), which include the North Coast, 

Sacramento Valley, Sierra Nevada, San Francisco Bay Area, San Joaquin Valley, Central Coast, 

Los Angeles, Inland Deserts, and San Diego regions. I intersected climate region boundaries with 

census tract boundaries using the “sf” package in R to assign each census tract to a climate 

region. If a census tract was located within two climate regions, it was assigned the climate 

region in which a larger area of the census tract fell in. Similarly, for each year and across the 

overall study period, I performed the Kruskal-Wallis test to test for differences in the mean ranks 

of smoke PM2.5 concentrations by climate regions between the datasets, with similar null and 

alternative hypotheses described earlier.  

Following the Kruskal-Wallis test, I applied the Dunn test, a non-parametric pairwise 

multiple comparisons procedure (Dinno, 2015), to determine which of the three datasets differed 

from each other. For each year and across the overall study period, I performed the Dunn test to 

test for multiple pairwise differences in the mean ranks by state and climate region between each 

pair of the datasets, with a null hypothesis of no differences in the mean ranks between the pairs 

and an alternative hypothesis of differences in the mean ranks between the pairs. For both the 

Kruskal-Wallis and Dunn tests, the null hypothesis was rejected if the p-value was less than 0.05. 

 

Spatial analysis 

 Spatial distributions of smoke PM2.5 concentrations for the overall study period and each 

year within were visualized by mapping annual and overall smoke estimates at the census tract-

level for each dataset using the “ggplot2” package in R. I also examined disparities in spatial 
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distributions by calculating absolute differences in annual and overall smoke estimates for each 

pair of the datasets (i.e., CMAQ minus Childs, CMAQ minus Casey, Childs minus Casey) at the 

census tract-level and mapping the differences. Positive values were depicted in blue and 

indicated that the former dataset in the difference calculation had higher estimates, while 

negative values were depicted in red and indicated that the latter dataset had higher estimates.  

 

Temporal analysis 

 Monthly time-series trends of statewide average smoke PM2.5 concentrations were plotted 

to compare potential temporal differences between the datasets across the study period. To 

analyze trends at finer temporal and spatial resolutions, I assessed daily temporal trends of 

smoke PM2.5 concentrations for all California census tracts, which were plotted alongside the 

statewide average concentration, during fire season months (June to October) of high fire years 

(2008 and 2018) for all three datasets. I also evaluated daily temporal trends of the differences in 

smoke estimates by calculating the absolute differences in the daily concentrations for each pair 

of the datasets for all census tracts. I plotted these differences alongside the statewide average 

difference during fire season months of high fire years. Differences were calculated as CMAQ 

minus Childs, CMAQ minus Casey, and Childs minus Casey, to retain consistency. Positive 

values indicated the former dataset in the calculation had higher estimates, while negative values 

indicated the latter dataset had higher estimates.  

 

Health impact assessment 

The US EPA’s Environmental Benefits Mapping and Analysis Program – Community 

Edition (BenMAP-CE) v1.5.8 was used to estimate the attributable respiratory health burden 
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from smoke PM2.5 exposure among elderly populations (65 years or older) using three different 

smoke datasets and to compare how health impact estimates vary across datasets. BenMAP-CE 

is an open-source software program used to estimate health and economic impacts attributable to 

changes in air pollution (US EPA, 2021). The software integrates data across several sources, 

including air quality, population, health, and economic data and dose-response effect estimates, 

to quantify impacts. Users can choose to upload their own data or use preloaded datasets 

provided in the software. To estimate health impacts, BenMAP-CE calculates changes in air 

pollution concentrations, links those changes to specific health outcomes through a health impact 

function, and applies the function to a population of interest (US EPA, 2023).  

 

Literature review 

 To gather and synthesize knowledge from the current literature on wildland fire smoke 

impacts on respiratory morbidity among elderly populations, I conducted a targeted literature 

review to identify relevant peer-reviewed journal articles and select a wildland fire- and elderly-

specific dose response value that would be used to assess the attributable health burden from 

smoke exposure. This literature review is an extension of a previous literature review completed 

by other researchers but has been adapted and updated to fit the needs of this study. Specifically, 

the focus of the previous literature review was on identifying articles that explored the impact of 

smoke PM exposure on morbidity for several health endpoints (e.g., respiratory, cardiovascular, 

and birth outcomes) among the general population, while this literature review is centered on 

smoke PM exposure effects on only respiratory morbidity among elderly populations.  

 The timeframe of the first iteration of the previous literature review spanned from 2015 to 

2021, with searches conducted on PubMed, Web of Science, Embase, and PsycInfo. Updates to 
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the previous literature review were made in July 2023, with searches conducted on PubMed and 

Web of Science for articles published between 2021 and July 2023. I obtained a list of all articles 

that passed the screening process for the previous literature review and further screened these 

articles based on an inclusion criterion described below. To include the most recent literature, I 

completed a second update to the literature review, with searches conducted on PubMed and Web 

of Science for articles published between July 2023 and January 2024. Table 1 details the search 

terms used for the second update.  

 

Table 1. List of search terms used for the updated search (July 2023 to January 2024) for articles 
focused on respiratory health effects from smoke PM exposure. 

Database Search 
Date 

Search Terms 

PubMed 1/10/2024 (“wildfire*”[Title/Abstract] OR “wild fire*”[Title/Abstract] OR 
“wildland fire*”[Title/Abstract] OR “peat fire*”[Title/Abstract] OR 
“bush fire*”[Title/Abstract] OR “bushfire*”[Title/Abstract] OR 
“brush fire*”[Title/Abstract] OR “brushfire*”[Title/Abstract] OR 
“landscape fire*”[Title/Abstract] OR “forest fire*”[Title/Abstract] 
OR “wildfires”[MeSH Terms]) AND (“respiratory”[Title/Abstract] 
OR “respiratory infection*”[Title/Abstract] OR “respiratory 
illness*”[Title/Abstract] OR “lung*”[Title/Abstract] OR “lung 
disease*”[Title/Abstract] OR “chronic lung 
disease*”[Title/Abstract] OR “asthma”[Title/Abstract] OR 
“pneumonia”[Title/Abstract] OR “respiratory tract diseases”[MeSH 
Terms]) AND ("journal article"[Publication Type] AND 
("english"[Language] OR "french"[Language] OR 
"spanish"[Language])) 

Web of 
Science 

1/10/2024 (TI=(“wildfire*”) OR TI=(“wild fire*”) OR TI=(“wildland fire*”) 
OR TI=(“peat fire*”) OR TI=(“bush fire*”) OR TI=(“bushfire*”) 
OR TI=(“brush fire*”) OR TI=(“brushfire*”) OR TI=(“landscape 
fire*”) OR TI=(“forest fire*”)) AND (TI=(“respiratory”) OR 
TI=(“respiratory infection*”) OR TI=(“respiratory illness*”) OR 
TI=(“lung*”) OR TI=(“lung disease*”) OR TI=(“chronic lung 
disease*”) OR TI=(“asthma”) OR TI=(“pneumonia”) OR 
TI=(“respiratory tract disease*”)) 
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(AB=(“wildfire*”) OR AB=(“wild fire*”) OR AB=(“wildland 
fire*”) OR AB=(“peat fire*”) OR AB=(“bush fire*”) OR 
AB=(“bushfire*”) OR AB=(“brush fire*”) OR AB=(“brushfire*”) 
OR AB=(“landscape fire*”) OR AB=(“forest fire*”)) AND 
(AB=(“respiratory”) OR AB=(“respiratory infection*”) OR 
AB=(“respiratory illness*”) OR AB=(“lung*”) OR AB=(“lung 
disease*”) OR AB=(“chronic lung disease*”) OR AB=(“asthma”) 
OR AB=(“pneumonia”) OR AB=(“respiratory tract disease*”)) 
 
Notes: Options for English, Spanish, and French articles were 
manually selected.  

 

To select relevant articles for this study, I implemented an inclusion criterion to screen 

articles from the second search and from the list of previously screened articles. Criteria for 

inclusion included human health-focused peer-reviewed journal articles that assessed the effect 

of smoke PM exposure on health outcomes and were published in English, Spanish, or French. 

Specifically, articles that assessed respiratory morbidity as at least one of the health outcomes of 

interests and that investigated effects in elderly populations, either as the main population of 

interest or as part of a stratified by age group analysis, were included. Since BenMAP-CE 

defines their health endpoints using International Classification of Disease 9th edition (ICD-9) 

codes, only articles that specified ICD codes that could be matched to BenMAP-CE’s health 

endpoints were included. Lastly, the selection of articles was limited to those that reported a 

quantitative dose-response value.  

 In screening resultant articles from the second search, I removed duplicate articles first. 

Then, I screened articles by their titles and abstracts and removed those with irrelevant topics. 

Following the title and abstract screen, I screened the remaining articles through a review of the 

full text and implementation of the inclusion criterion to select relevant articles. In screening 
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articles from the list of previously screened articles, I applied the same procedure as detailed 

above.  

 

Selection of elderly-specific dose-response value 

 Following the selection of relevant articles, I extracted and recorded information about 

the study period, study area, pollutant of interest, exposure assessment, respiratory health 

outcomes, medical care type (e.g., hospitalization [HA], emergency department [ED]/emergency 

room [ER] visit), ICD codes, dose-response type (e.g., relative risk [RR] or odds ratio [OR]), 

elderly-specific dose-response values, and elderly age range in a spreadsheet. For articles that 

reported International Classification of Disease 10th edition (ICD-10) codes, I converted the 

codes to the ICD-9 equivalent. I obtained groupings of ICD-9 codes used to define respiratory 

hospitalization and ED/ER visit endpoints in BenMAP-CE from the software’s user manual and 

referenced these groupings in order to determine whether respiratory health outcomes from the 

articles could be closely matched to respiratory health endpoints from BenMAP-CE. If a close 

match could be identified, the match was recorded.  

The selection of an elderly-specific dose-response value required an additional screening 

procedure following selection and extraction of relevant articles. I developed an inclusion 

criterion to select an article with the most appropriate dose-response value. Criteria for inclusion 

included articles that were US-based and that estimated smoke PM2.5 exposure as a concentration 

response function, i.e. dose-response values were estimated per increment of smoke PM2.5. ICD 

codes from the articles must closely match ICD codes for the health endpoints from BenMAP-

CE. Lastly, at least one estimated dose-response value from each health outcome must be 
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statistically significant. If multiple articles satisfied the inclusion criteria, I gave more 

consideration to articles based in California. 

 

Estimation of health impacts 

Datasets required to estimate health impacts were imported into BenMAP-CE for 

analysis. I created a new grid definition for California census tracts, using boundaries obtained 

from the US Census Bureau (US Census Bureau, n.d.-b). I computed a grid crosswalk between 

the new grid definition with preloaded grid definitions to align their spatial scales. For air quality 

data, I used census tract-level annual smoke PM2.5 concentrations from 2008 to 2018 from the 

CMAQ, Childs, and Casey datasets to estimate changes in air quality attributable to wildland fire 

smoke in California.  

 For population data, BenMAP-CE provides preloaded block-level population data from 

the 2010 US Decennial Census. If the preferred grid definition’s spatial scale does not align with 

the block-level data, users can utilize PopGrid (US EPA, 2014), a software program that assigns 

the block-level population data to the preferred grid definition and generates data files that can 

be imported into BenMAP-CE. Using PopGrid, I generated data files with population counts for 

California census tracts and population weights to forecast changes in population with different 

years and imported these files into BenMAP-CE.  

For health data, BenMAP-CE provides several preloaded incidence and prevalence 

datasets for mortality and morbidity outcomes. This study focused on respiratory hospitalizations 

and ED/ER visits, which were calculated from the Healthcare Cost and Utilization Project 

(HCUP) databases and includes data from the State Inpatient Databases (SID), the State 

Emergency Department Databases (SEDD), the National Inpatient Sample (NIS), and the 
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Nationwide Emergency Department Sample (NEDS) (US EPA, 2023). I selected the preloaded 

county-level “Other Incidence (2014)” dataset, which includes daily incidence rates, for the 

health data.  

For the health impact functions, I used an elderly-specific dose-response value selected 

from the literature as the effect estimate. I converted selected dose-response values to Beta 

coefficients using Equation 1 (US EPA, 2023),  

𝛽 = 	 !"($$)
&'(

                                                                 (1) 

where β is the Beta coefficient, RR is the relative risk or the elderly-specific dose-response value 

selected from the literature, and ∆PM is the increment change in the smoke PM2.5 concentration 

response function as estimated by the literature. I converted selected dose-response values’ 

confidence intervals to standard errors using Equations 2-4 (US EPA, 2023),   

𝜎),+.-	/012034560 =	
)7	)!.#	%&'(&)*+,&

8.9:
                                                (2) 

𝜎),9;.-	/012034560 =	
)-..#	%&'&)*+,&	7	)

8.9:
                                               (3) 

𝜎) ≅	
</,!.#	%&'(&)*+,&=	</,-..#	%&'(&)*+,&

+
                                              (4) 

where σβ, 2.5 percentile is the standard error for the Beta coefficient associated with the lower 

confidence interval, σβ, 97.5 percentile is the standard error for the Beta coefficient associated with the 

upper confidence interval, β2.5 percentile is the Beta coefficient associated with the lower confidence 

interval, β97.5 percentile is the Beta coefficient associated with the upper confidence interval, β is the 

Beta coefficient, and σβ is standard error for the Beta coefficient. I performed calculations for 

each selected health endpoint with a dose-response value. I properly formatted the calculated 

coefficients in comma-separated values (CSV) files and, per consultation with BenMAP-CE 

staff, defined inputs for Metric, Seasonal Metric, and Metric Statistic as D24HourMean, 
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QuarterlyMean, and Mean, respectively, to account for an annual calculation. Equation 5 (US 

EPA, 2023) describes the function used to calculate health impacts,  

𝐻 =	'1 −	 8
0/	×	23

* × 	𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒	 × 	𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 × 	365                            (5) 

where H is the estimated health impact, β is the Beta coefficient, ∆Q is the change in air 

pollution from smoke PM2.5 concentrations, Incidence is the daily incidence rate, Population is 

the population count, and 365 is used to adjust for an annual calculation with daily incidence 

rates. I imported the CSV files with the coefficients and health impact functions into BenMAP-

CE. 

 Following successful importation of all required files into BenMAP-CE, I computed 

health impact assessments for each year within the study period for each dataset (11 years x 3 

datasets), for a total of 33 runs. Figure 1 depicts an example of the BenMAP-CE interface during 

a sample run. For each health endpoint evaluated, I exported the health impact estimates as CSV 

files to later import and summarize in R. In R, I aggregated the health impact estimates across 

the overall study period and by year as well as across all census tracts to obtain a statewide 

estimate for each health endpoint and dataset. I visualized spatial distributions of one health 

endpoint by mapping health impact estimates aggregated across the overall study period at the 

census tract-level for each dataset.  
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Figure 1. Sample demonstration of the health impact assessment in BenMAP-CE, using smoke 
estimates from the CMAQ dataset for 2008.   

 

RESULTS 

Smoke exposure comparisons 

Statistical analysis 

The mean value for the 2008-2018 average smoke PM2.5 concentrations across all 

California census tracts were 1.15 µg/m3, 0.40 µg/m3, and 0.27 µg/m3 for the CMAQ, Childs, 

and Casey datasets, respectively (Table 2). Mean values for the CMAQ dataset were greater than 

mean values for the Childs and Casey datasets for all years. Similarly, mean values for the Childs 

dataset were greater than mean values for the Casey dataset for all years; however, mean values 

between the Childs and Casey datasets were closer in magnitude, compared to mean values for 

the CMAQ dataset, which is likely due to the similar inputs used by these two datasets in their 
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estimation of smoke PM2.5. For all datasets, mean values were higher during high fire years (e.g., 

2008, 2017, and 2018) and generally lower during low fire years (e.g., 2010-2012).  

 

Table 2. Descriptive statistics of daily smoke PM2.5 (µg/m3) across all California census tracts 
for the overall study period (2008-2018) and stratified by year. 

  CMAQ Childs Casey 

  Mean SD Mean SD Mean SD 
Year       
 Overall 1.15 14.79 0.40 4.77 0.27 2.84 
 2008 2.43 9.39 0.88 1.37 0.70 4.43 
 2009 0.56 2.59 0.23 0.41 0.13 0.91 
 2010 0.31 1.77 0.04 0.47 0.03 0.35 
 2011 0.35 0.99 0.05 1.09 0.03 0.34 
 2012 0.39 1.20 0.11 1.49 0.06 0.79 
 2013 0.76 2.75 0.25 1.24 0.16 0.99 
 2014 0.47 4.23 0.15 1.58 0.08 0.84 
 2015 0.72 4.43 0.20 1.25 0.14 1.21 
 2016 1.06 24.91 0.29 4.10 0.21 0.96 
 2017 2.83 36.30 0.72 9.34 0.30 1.68 
 2018 2.75 17.66 1.51 3.57 1.14 7.69 

Notes: SD = standard deviation 

 

 The Childs and Casey datasets were highly correlated for all years within the study 

period, with the largest Spearman correlation coefficient of 0.97 observed in 2018 (Table 3). In 

contrast, correlations between the CMAQ dataset with both the Childs and Casey datasets ranged 

from poor to moderate, with the largest Spearman correlation coefficient of 0.44 between CMAQ 

and Childs and 0.43 between CMAQ and Casey, both observed in 2018 (Table 3). Correlations 

between CMAQ with Childs and Casey were close in magnitude. Across all pairs of datasets, 
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correlations were generally higher during high fire years (e.g., 2008 and 2018) and generally 

lower during low fire years (e.g., 2010-2012).  

 

Table 3. Spearman correlation coefficients (ρ) of daily smoke PM2.5 (µg/m3) across all California 
census tracts, stratified by year. 

  CMAQ, Childs CMAQ, Casey Childs, Casey 

Year    

 2008 0.38 0.39 0.89 
 2009 0.26 0.26 0.85 
 2010 0.13 0.12 0.86 
 2011 0.12 0.09 0.85 
 2012 0.17 0.15 0.87 
 2013 0.20 0.18 0.91 
 2014 0.19 0.17 0.89 
 2015 0.21 0.19 0.93 
 2016 0.37 0.36 0.96 
 2017 0.39 0.40 0.78 
 2018 0.44 0.43 0.97 

Notes: All values are statistically significant (p-value < 0.05).  

 

 Across all California census tracts, the Kruskal-Wallis test yielded p-values <0.05 for the 

overall study period and all years within when stratified by year (Table S1). I rejected the null 

hypothesis of no differences in the mean ranks between the CMAQ, Childs, and Casey datasets, 

which suggests that at least one dataset has a different mean rank. Across all California census 

tracts, the Dunn test yielded p-values <0.05 for each pairwise comparison for the overall study 

period and all years within when stratified by year (Table S1). I rejected the null hypothesis of no 

differences in the mean ranks between each pairwise comparison, which suggests that all three 

datasets were statistically different from each other.  
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 Across census tracts grouped by climate regions, the Kruskal-Wallis test yielded p-values 

<0.05 for the overall study period and all years within when stratified by year for all climate 

regions. This suggests that at least one dataset has a different mean rank for all climate regions. 

The Dunn test yielded p-values <0.05 for each pairwise comparison for the overall study period 

for all climate regions (Table S2). When stratified by year, p-values were <0.05 for a majority of 

the climate regions, years, and pairwise comparisons. This suggests that during most years and in 

most climate regions, all three datasets statistically differed from each other. Exceptions were 

observed between Childs and Casey, where p-values were >0.05 during 2008, 2010, 2011, and 

2016 in the North Coast, Sierra Nevada Mountains, and Inland regions (Table S2). Additionally, 

the p-value was >0.05 during 2018 in the San Francisco Bay Area region between CMAQ and 

Childs. For these cases, I failed to reject the null hypothesis, suggesting that these pairs of 

datasets did not statistically differ from each other.  

 

Spatial analysis 

 Spatial heterogeneity was observed in the 2008-2018 average smoke PM2.5 

concentrations across California census tracts within and between the datasets (Figure 2). Within 

each dataset, higher average smoke PM2.5 concentrations were concentrated in Northern 

California census tracts, while moderate concentrations were observed in Central California 

census tracts (Figure 2). Between the datasets, the spatial distribution for CMAQ differed largely 

from the spatial distributions for Childs and Casey, with higher average concentrations for 

CMAQ and lower average concentrations for Childs and Casey. When stratified by year, there 

was spatial heterogeneity across each year, both within and between datasets (Figure S1). 

Exposure was mostly concentrated in Northern and Central California census tracts during most 
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years. Generally, the variation was more easily observed for CMAQ, given the higher estimates 

from this dataset.  

 

A. B.

C.  

Figure 2. Spatial distribution of the 2008-2018 annual average smoke PM2.5 (µg/m3) at the 
census tract-level in California for each dataset. 
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 Spatial heterogeneity was observed in the differences in the 2008-2018 average smoke 

PM2.5 concentrations across California census tracts within and between the pairs of datasets 

(Figure 3). For each pair of datasets, differences were mainly observed in Northern and Central 

California census tracts, with larger differences in Northern California. Differences between 

Childs and Casey were small, with slightly higher estimates from Childs compared to Casey 

across several census tracts (Figure 3C). Differences between CMAQ with both Childs and 

Casey were larger (Figure 3A-B), with higher estimates from CMAQ across several census 

tracts, especially in Northern California. The spatial distribution of CMAQ and Childs and of 

CMAQ and Casey were relatively similar to each other but differed from the spatial distribution 

of Childs and Casey. When stratified by year, there was spatial heterogeneity in the differences 

across each year, both within and between datasets (Figure S2). Generally, CMAQ had higher 

estimates across several census tracts in all years except for in 2012, where both Childs and 

Casey had higher estimates in some Northern California census tracts (Figure S2).  

 

A.  B.  
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C.  

Figure 3. Spatial distribution of the differences in 2008-2018 annual average smoke PM2.5 
(µg/m3) at the census tract-level in California for each dataset.  

Notes: Blue refers to higher values for the former dataset, and red refers to higher values for the 
latter dataset. 
 

Temporal analysis 

 During the study period, average smoke PM2.5 concentrations across all California census 

tracts varied between datasets over time (Figure 4). There was more agreement in the temporal 

trends between Childs and Casey, with lower average concentrations consistently observed over 

time for these two datasets compared to CMAQ. Across all datasets, peaks in average 

concentrations were observed during summer months, which coincides with the typical fire 

season (Figure 4). The highest peaks in average concentrations were observed during high fire 

years in 2008, 2017, and 2018 (Figure 4) for all datasets, but with particularly high peaks for 

CMAQ during these years.  
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Figure 4. Temporal distribution of the 2008-2018 monthly average smoke PM2.5 (µg/m3) across 
California census tracts for each dataset. 

 

 The daily temporal analysis was focused on 2008 due to the large wildland fire activity, 

particularly in Northern California, during that year, with over 6,000 fires burning over 

1,500,000 acres across the state (CAL FIRE, 2020). During the fire season of 2008, daily smoke 

PM2.5 concentrations varied temporally within and between datasets (Figure 5). For all datasets, 

daily concentrations across census tracts were highest during July and August, compared to other 

fire season months, which coincides with the timing of several large wildland fires (Figure 5). 

Additionally, the statewide average smoke PM2.5 concentration for all datasets remained 

relatively low compared to daily concentrations from individual census tracts, suggesting that 

averaging estimates statewide can mask high concentrations observed in several census tracts. 

The magnitude and temporal distribution of concentrations from Childs and Casey were similar, 

with some higher concentrations observed for Casey in late June and mid-October compared to 
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Childs (Figure 5B-C). Though the temporal distribution of concentrations from CMAQ was 

relatively similar to the other two datasets, the magnitude largely differed, with high 

concentrations reaching over 400 µg/m3 in some census tracts (Figure 5A).  

 

A.  

B.  
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C.  

Figure 5. Temporal distribution of daily smoke PM2.5 (µg/m3) for all California census tracts and 
the daily statewide average smoke PM2.5 (µg/m3) for each dataset, during the fire season (June to 
October) of 2008. Note change in scale on y-axis. 

 

 Similarly, the daily temporal analysis was also focused on 2018 since California 

experienced large wildland fire activity during this year, with close to 8,000 fires burning nearly 

2,000,000 acres statewide (CAL FIRE, 2020). Daily smoke PM2.5 concentrations also varied 

temporally within and between datasets during the fire season of 2018 (Figure 6). Similar to 

2008, the statewide average smoke PM2.5 concentration for all datasets was low compared to 

daily concentrations from individual census tracts. For Childs and Casey, the magnitude and 

temporal distribution of concentrations were relatively similar, and concentrations were highest 

during August and September, when wildland fire activity was greatest. Minor differences 

between the two included higher concentrations reaching over 200 µg/m3 during late July and 

early August in some census tracts for Childs and higher concentrations during September and 

early October in some census tracts for Casey (Figure 6B-C). Both the magnitude and temporal 

distribution of concentrations for CMAQ largely differed from the other two. Extremely high 
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concentrations reaching over 4000 µg/m3 in some census tracts were observed in late June and 

late July, which is approximately 20 times larger than the highest concentrations from Childs and 

Casey (Figure 6A). These high concentrations masked the variation in the temporal distribution 

of the statewide average and other census tracts.  

 

A.  

B.  
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C.  

Figure 6. Temporal distribution of daily smoke PM2.5 (µg/m3) for all California census tracts and 
the daily statewide average smoke PM2.5 (µg/m3) for each dataset, during the fire season (June to 
October) of 2018. Note change in scale on y-axis. 

 

Health impact assessment 

Literature review 

 The updated literature review yielded 26 articles that passed the first inclusion criterion, 

with most articles based in the US and eight articles based in California, specifically (Table S3). 

The articles evaluated wildland fire smoke effects across a range of respiratory health outcomes 

among elderly populations, including asthma, COPD, bronchitis, pneumonia, respiratory tract 

infections, and more.  

 Most articles assessed wildland fire smoke exposure through PM2.5 as the primary 

pollutant, though some articles did examine PM10 or smoke plumes. PM2.5 concentrations were 

obtained from a range of approaches, including both monitoring data and various chemical 

transport models, such as CMAQ, the Weather Research and Forecasting with Chemistry model 

(WRF-Chem), and the Goddard Earth Observing System model (GEOS-Chem) (Gan et al., 2017; 
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Heaney et al., 2022; Stowell et al., 2019). Other approaches included kriging of monitoring data 

and geographically weighted regression that combines monitoring and satellite data and 

simulated estimations from chemical transport models (Gan et al., 2017; Le et al., 2014). The 

wide range of smoke exposure estimation methods across articles highlights the possibility of 

variation in health risk and impact estimates based on the method used. To evaluate associations 

between smoke exposure and health outcomes, the articles defined smoke PM2.5 in several ways. 

Many articles developed a binary indicator to compare outcomes on smoke days versus non-

smoke days, with smoke days defined by PM2.5 concentrations exceeding a certain threshold, 

which varied across articles. Some articles determined different exposure periods, such as pre-, 

post-, and during wildland fire periods, to compare risk of outcomes across periods. Several 

articles investigated the effects of smoke PM2.5 exposure on outcomes through concentration 

response functions, estimating risk per increment of exposure. Lag periods, of both single days 

and moving averages, were also considered across many articles. 

 Increased risk of all respiratory (or respiratory disease), asthma, bronchitis, and 

pneumonia outcomes with exposure to wildland fire smoke among elderly populations was 

consistent across most articles, with the largest effects observed for asthma. Some articles did 

find decreased risk at certain lags and within certain age groupings among the elderly population; 

however, at other lags and other age groupings, increased risk was observed (Doubleday et al., 

2023; Hahn et al., 2021; Kollanus et al., 2016; Le et al., 2014; Tinling et al., 2016). Despite a 

general consensus of increased risk for bronchitis and pneumonia effects, less than half of the 

total articles assessed these outcomes, which could be due to several reasons including 

incomplete or inadequate health data or low prevalence of these outcomes among the elderly in 

certain areas. Results for COPD among the elderly were more inconsistent, with some articles 
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observing increased risk and others finding decreased risk. Inconsistencies could be due to 

methodological differences, such as in the exposure assessment or statistical analysis, or due to 

regional differences in wildland fire activity or COPD prevalence. Future studies should consider 

focusing on COPD, bronchitis, pneumonia, and other less commonly studied respiratory 

outcomes, such as upper respiratory infections, to strengthen the evidence base for these 

outcomes. 

 Overall, evidence from the literature suggests an increased risk of respiratory morbidity 

among elderly populations from wildland fire smoke exposure, with stronger evidence for certain 

respiratory outcomes. However, the evidence could be further strengthened as some articles did 

not find a statistically significant positive association. The results of the literature review 

highlight the elderly as a highly susceptible group that shoulders increased respiratory health 

burdens from wildland fire smoke exposure. 

 

Selection of elderly-specific dose-response value 

 In selecting an elderly-specific dose-response value, 21 articles of the total 26 articles did 

not satisfy the second set of inclusion criteria and were subsequently excluded. This yielded five 

articles to potentially select dose-response values from. Table 4 provides a summary of the study 

information from the five articles.  
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Table 4. Selected articles from the updated literature review to potentially extract elderly-specific dose-response values from.  

Author Article Title Study 
Year 

Study 
Area 

Age 
Range 

Exposure Characterization Health Outcomes Medical 
Care Type 

(Delfino et al., 
2009) 

The relationship 
of respiratory and 
cardiovascular 
hospital 
admissions to the 
southern 
California 
wildfires of 2003 

2003 Southern 
California, 
USA 

65-99 2-day moving average PM2.5 
concentration for (1) a 
continuous concentration 
response function of 10 
µg/m3 change, and for (2) 
pre-, during, and post-
wildland fire periods 

All respiratory*; 
asthma*; COPD; 
acute bronchitis 
and 
bronchiolitis*; 
pneumonia* 

HA 

(Duncan et 
al., 2023) 

Acute Health 
Effects of 
Wildfire Smoke 
Exposure During 
a Compound 
Event: A Case-
Crossover Study 
of the 2016 Great 
Smoky Mountain 
Wildfires 

2016 North 
Carolina, 
USA 

55+ Daily 24-hour mean PM2.5 
concentration for a 
continuous concentration 
response function of 5 
µg/m3 change for wildland 
fire smoke days (defined as 
days with PM2.5 
concentrations >20.4 µg/m3) 

All respiratory*; 
asthma*; COPD*; 
bronchitis*; 
emphysema* 

ER/ER 

(Hahn et al., 
2021) 

Wildfire Smoke 
Is Associated 
With an Increased 
Risk of 
Cardiorespiratory 
Emergency 

2015-
2019 

Alaska, 
USA 

65+ Daily 24-hour average 
smoke PM2.5 concentration 
for a continuous 
concentration response 
function of 10 µg/m3 change 

All respiratory; 
asthma*; COPD; 
bronchitis; 
pneumonia 

ED/ER 
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Department Visits 
in Alaska 

(Reid, Jerrett, 
et al., 2016) 

Differential 
respiratory health 
effects from the 
2008 northern 
California 
wildfires; a 
spatiotemporal 
approach 

2008 Northern 
California, 
USA 

65+ 2-day moving average (prior 
to admissions and does not 
include admission date) 
from daily 24-hour average 
PM2.5 concentration for a 
continuous concentration 
response function of 5 
µg/m3 change 

All respiratory*; 
asthma*; COPD; 
pneumonia 

ED/ER; 
HA 

(Thilakaratne 
et al., 2023) 

Wildfires and the 
Changing 
Landscape of Air 
Pollution-related 
Health Burden in 
California 

2008-
2016 

California, 
USA 

65+ Daily 24-hour mean PM2.5 
concentration on all days 
and wildland fire smoke 
days for a continuous 
concentration response 
function of 10 µg/m3 change 

Respiratory*; 
asthma*; COPD 

ED/ER; 
HA 

Notes: * denotes at least one statistically significant dose-response values found for the specified health outcome. COPD = chronic 
obstructive pulmonary disease; ED = emergency department; ER = emergency room; HA = hospitalization 
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Figure 7. Distribution of elderly-specific dose-response values for respiratory and asthma 
outcomes from selected articles, presented as a percentage change in risk and 95% CI per 10 
µg/m3 change of smoke PM2.5 exposure. 

Notes: Dose-response values for lag 0 were selected if multiple lags were provided. Dose-
response values for ED/ER visits were selected for all articles, aside from Delfino et al., in which 
only dose-response values for hospitalizations were provided. Dose-response values from 
Duncan et al. only apply to smoke PM2.5 above 20.4 µg/m3.  
 

Of the five articles, I prioritized articles based in California, which included Delfino et 

al., Reid et al., and Thilakaratne et al. While Reid et al. and Thilakaratne et al. examined both 

respiratory hospitalizations and ED/ER visits (Reid, Jerrett, et al., 2016; Thilakaratne et al., 

2023), Delfino et al. only focused on respiratory hospitalizations (Delfino et al., 2009). ED/ER 

visits generally occur more often than hospitalizations (National Center for Health Statistics, 

n.d., 2021); consequently, omitting ED/ER visits could inadvertently underestimate the 

magnitude of health impacts. Additionally, Delfino et al. assessed smoke exposure in 2003 

(Delfino et al., 2009), which falls outside of the study period for this study. For these reasons, I 

removed Delfino et al. from consideration.  
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 Of the two remaining articles, Thilakaratne et al. assessed smoke exposure and health 

impacts across California between 2008 and 2016 (Thilakaratne et al., 2023). Reid et al. focused 

their analysis on only Northern California during 2008 (Reid, Jerrett, et al., 2016). Since the 

study by Thilakaratne et al. spanned a longer time frame across the entire state, and thus 

provided estimates that would better align with the study area and period of this study, I selected 

elderly-specific dose response values from Thilakaratne et al. for the main analysis. However, I 

considered elderly-specific dose-response values from Reid et al. in a sensitivity analysis.   

 Elderly-specific dose-response values for respiratory and asthma hospitalizations and 

ED/ER visits were extracted from Thilakaratne et al. and Reid et al. (Table 5). All elderly-

specific dose-response values were statistically significant, with the exception of the respiratory 

hospitalization estimate from Reid et al., which was near statistical significance.   
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Table 5. Extracted elderly-specific dose-response values for selected respiratory outcomes from smoke PM2.5 exposure from 
Thilakaratne et al. and Reid et al. 

BenMAP-CE 
Health Endpoint 

BenMAP-CE 
ICD-9 Codes 

Article 
Author  

Article ICD-9 
Codes 

Article Increment 
Change in PM2.5 

Article Dose-
Response Type 

Article Dose-
Response Values 

ER visits, 
Respiratory 

491-493, 460- 
466, 477.0-477.9, 
480-486, 496, 
786.07, 786.09 

Thilakaratne 
et al.  

493, 491-492, 
496, 480-486, 
786 

10 µg/m3 % change in 
risk 

2.12 (95% CI: 
1.82, 2.41) 

  Reid et al.  493, 496, 491–
492, 480–486 

5 µg/m3 RR 1.017 (95% CI: 
1.005, 1.030) 

ER visits, Asthma 493 Thilakaratne 
et al.  

493 10 µg/m3 % change in 
risk 

3.29 (95% CI: 
2.72, 3.86) 

  Reid et al.  493 5 µg/m3 RR 1.068 (95% CI: 
1.032, 1.106) 

HA, Respiratory 
illness-1 

466, 480-486, 
490-493 

Thilakaratne 
et al.  

493, 491-492, 
496, 480-486, 
786 

10 µg/m3 % change in 
risk 

1.27 (95% CI: 
1.06, 1.48) 

  Reid et al.  493, 496, 491–
492, 480–486 

5 µg/m3 RR 1.014 (95% CI: 
0.999, 1.030) 

HA, Asthma 493 Thilakaratne 
et al.  

493 10 µg/m3 % change in 
risk 

1.57 (95% CI: 
1.10, 2.05) 

  Reid et al.  493 5 µg/m3 RR 1.067 (95% CI: 
1.021, 1.116) 

Notes: ER = emergency room; HA = hospitalization; ICD = International Classification of Disease; PM2.5 = fine particulate matter; 
RR = relative risk; CI = confidence interval
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Estimation of health impacts 

 Using annual smoke estimates from the CMAQ, Childs, and Casey datasets, smoke PM2.5 

exposure contributed to 5,482, 1,965, and 1,337 respiratory hospitalizations and ED/ER visits 

among elderly populations between 2008 and 2018, respectively (Table 6). As for asthma, 867, 

310, and 210 asthma hospitalizations and ED/ER visits among the elderly are attributable to 

smoke PM2.5 exposure between 2008 and 2018 using smoke estimates from CMAQ, Childs, and 

Casey, respectively (Table 6). For both respiratory and asthma outcomes, health impacts 

estimated using smoke concentrations from Childs and Casey were closer in magnitude and 

smaller compared to health impacts estimated using smoke concentrations from CMAQ. These 

results align with my observations from the smoke exposure comparisons, in which smoke 

estimates from Childs and Casey were similar and smaller in magnitude than those from CMAQ.  

The sensitivity analysis using dose-response values from Reid et al. found larger health 

impact estimates but still retained similar patterns across the datasets as the main analysis. Health 

impact estimates for both respiratory and asthma outcomes were more similar when using Childs 

and Casey smoke estimates, and they were larger when using CMAQ smoke estimates (Table 6). 

The overall larger health impact estimates observed in the sensitivity analysis could likely be 

explained by the larger dose-response values from Reid et al. compared to those from 

Thilakaratne et al., who found more conservative effects. Notably, the lower CI of respiratory 

hospitalization estimates for Reid et al. were negative, likely because the lower CI of the RR 

values from Reid et al. were less than 1.  

Spatial heterogeneity was observed in the respiratory ED/ER health impacts among 

elderly populations attributable to smoke PM2.5 across California census tracts within and 

between datasets (Figure 8). Larger health impacts were concentrated in Northern California 
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census tracts, with moderate health impacts concentrated in some Central California census tracts 

(Figure 8). The distribution of health impacts was consistent with the spatial distribution of 

smoke exposures, implying that larger health impacts were observed in similar regions where 

smoke exposures were observed. Variations in health impacts were more easily observed for 

CMAQ, given the larger health impacts estimated from this dataset.  

As for trends in health impact estimates over time, larger respiratory and asthma health 

impacts were observed during high fire years (e.g., 2008, 2017, and 2018), regardless of the 

dataset (Figure 9). During high fire years, the differences in health impact estimates were larger 

between the datasets, particularly between CMAQ with Childs and Casey, compared to low fire 

years (e.g., 2010-2012) where the differences were smaller (Figure 9). The rank order of the top 

three years with the largest health impacts were identical between Childs and Casey, with 2018 

as the year with the most health impacts across all outcomes, followed by 2008 and 2017. The 

rank order for CMAQ differed slightly, with 2017 ranked as the highest for asthma ED/ER visits 

and hospitalizations, 2018 ranked as the highest for respiratory hospitalizations, and 2017 and 

2018 tied as the highest for respiratory ED/ER visits (Figure 9). Trends in the estimates over time 

for all health outcomes in the sensitivity analysis were similar to trends observed in the main 

analysis; however, the CI for the estimates were wider, notably for CMAQ, when using dose-

response values from Reid et al. compared to Thilakaratne et al.  
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Table 6. Respiratory health impact estimates and 95% CI among elderly populations attributable to smoke PM2.5 (µg/m3) across all 
California census tracts for the overall study period (2008-2018). 

  Respiratory Asthma 

  ED/ER HA Total ED/ER HA Total 
Thilakaratne et al.       
 CMAQ 4,102  

(3,526–4,657) 
1,380 

(1,148–1,604) 
5,482 

(4,674–6,261) 
707 

(584–825) 
160 

(111–207) 
867 

(695–1,032) 
 Childs 1,482 

(1,273–1,682) 
483 

(402–561) 
1,965 

(1,675–2,243) 
255 

(211–298) 
55 

(38–71) 
310 

(249–369) 
 Casey 1,009 

(867–1,146) 
328 

(273–382) 
1,337 

(1,140–1,528) 
173 

(143–202) 
37 

(26–48) 
210 

(169–250) 
Reid et al.       
 CMAQ 6,572 

(1,674–11,236) 
3,031 

(-386–6,278) 
9,603 

(1,288–17,514) 
2,814 

(1,316–4,221) 
1,305 

(394–2,158) 
4,119 

(1,710–6,379) 
 Childs 2,378 

(603–4,079) 
1,062 

(-135–2,208) 
3,440 

(468–6,287) 
1,027 

(476–1,551) 
453 

(136–755) 
1,480 

(612–2,306) 
 Casey 1,620 

(411–2,779) 
723 

(-91–1,503) 
2,343 

(320–4,282) 
698 

(323–1,055) 
305 

(91–509) 
1,003 

(414–1,564) 
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A.  B.

C.  

Figure 8. Spatial distribution of respiratory ED/ER health impacts among elderly populations 
attributable to smoke PM2.5 (µg/m3) at the census tract-level in California for each dataset for the 
overall study period (2008-2018), using dose-response values from Thilakaratne et al. 
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Figure 9. Respiratory health impact estimates and 95% CI among elderly populations 
attributable to smoke PM2.5 (µg/m3) across all California census tracts, stratified by year. 
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DISCUSSION 

 This study compared smoke PM2.5 estimates between three different smoke datasets using 

various statistical, spatial, and temporal analysis techniques to understand the variation in smoke 

estimates across datasets. Then, I quantified respiratory health burdens attributable to smoke 

PM2.5 exposure among elderly populations in California using smoke PM2.5 estimates from the 

three datasets and compared these burdens to assess the variation in health impact estimates 

across datasets. I observed three main findings. First, larger correlations, smaller differences in 

spatial distributions, and similar temporal trends were observed between the Childs and Casey 

datasets, suggesting greater agreement between the two compared to CMAQ, which is expected 

since these two rely on similar input datasets. Smoke estimates from CMAQ were much larger in 

magnitude compared to Childs and Casey, with daily concentrations in some census tracts 

surpassing 400 µg/m3 in 2008 and 4000 µg/m3 in 2018. These extremely large smoke estimates 

are likely unrealistic and overpredictions of the CMAQ model, which the authors discussed tends 

to occur with atypical fire events, e.g. with megafires that occurred during 2008 and 2018, in 

their model performance evaluation (Wilkins et al., 2018). Modest differences did exist between 

Childs and Casey, including statistically significance differences observed across most climate 

regions during most years and differences in spatial distributions during some years, but these 

differences were smaller compared to differences observed with CMAQ.  

 Second, across all smoke datasets, approximately 1,300 to 5,400 respiratory 

hospitalizations and ED/ER visits and approximately 200 to 860 asthma hospitalizations and 

ED/ER visits among the elderly are attributable to smoke PM2.5 in California from 2008 to 2018. 

The magnitude of health impacts was lower for asthma outcomes, which is expected since 

asthma represents only one of several respiratory outcomes. Fann et al. quantified respiratory 
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hospitalizations for all ages attributable to smoke PM2.5 in the US from 2008 to 2012 (Fann et al., 

2018). Though the authors did not estimate health impacts in California specifically, they did 

emphasize that California, along with other Western US states, was particularly affected by 

severe wildland fires during this period. Fann et al. estimated 32,600 respiratory hospitalizations 

attributable to smoke PM2.5 using dose-response values from Delfino et al. (Fann et al., 2018). 

Given that the elderly population represented around 13% of the total US population during this 

period (US Department of Health and Human Services, 2013), approximately 4,200 respiratory 

hospitalizations among the elderly would have been attributable across the nation between 2008 

to 2012, compared to this study’s estimate of approximately 300-1,400 respiratory 

hospitalizations in California between 2008 to 2018. These results underscore the elderly 

population as a highly susceptible group burdened by adverse respiratory health impacts as a 

result of wildland fire smoke exposure.  

Third, health impact estimates differed based on the specific smoke dataset used. 

Attributable respiratory hospitalizations and ED/ER visits using smoke estimates from Childs 

and Casey were both around a magnitude of 1,000, while attributable respiratory hospitalizations 

and ED/ER visits using smoke estimates from CMAQ were around a magnitude of 5,000. These 

results mirrored patterns observed from the smoke exposure comparisons, with more agreement 

in both smoke and health impact estimates from Childs and Casey compared to CMAQ, which 

yielded larger estimates. Additionally, the sensitivity analysis estimated larger respiratory health 

impacts, which ranged from approximately 2,300 to 9,600, highlighting the dependency of 

estimates on the dose-response value selected as well.   

 Similarities in both smoke and health impact estimates between Childs and Casey are 

likely due to both groups’ use of similar exposure estimation methods. Both groups employed 



 42 

machine learning techniques to predict smoke PM2.5 concentrations, basing their models on 

PM2.5 monitoring data from the US EPA and incorporating similar explanatory variables, such as 

smoke plume data from the National Oceanic and Atmospheric Administration (NOAA) Hazard 

Mapping System (HMS), aerosol optical depth measurements from Moderate Resolution 

Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) data, and land cover data from the National Land Cover Database (NLCD) (Aguilera 

et al., 2023; Childs et al., 2022). As such, the Childs and Casey datasets are not entirely 

independent, which explains the expected higher agreement observed between the two. 

Additionally, smoke estimates from Childs and Casey were provided at the census-tract level, 

while estimates from CMAQ were calculated at a 12-km grid, a much larger spatial resolution. 

Similarities in Childs and Casey’s native spatial resolutions, compared to CMAQ, could have 

also contributed to the observed patterns across smoke and health impact estimates.  

 The dependency of health impact estimates on the smoke dataset used has over-arching 

implications for epidemiological studies or health impact assessments that select one dataset over 

another. Health impact or risk estimates quantified using a certain smoke dataset may differ with 

estimates derived from analyses conducted with a different dataset. Though the magnitude of 

discrepancies in this study was on the order of a few thousand, the potential for larger 

discrepancies in estimates from other health outcomes and within other vulnerable groups should 

not be overlooked. Since estimates were also dependent on the dose-response value selected 

from the literature, differences observed from using different dose-response values also 

contribute to an additional uncertainty factor when assessing health impacts. Approaches to 

potentially address this uncertainty could include using dose-response values from meta-analyses 

that pull effect estimates from multiple studies into a single dose-response, or pooling the health 



 43 

impact estimates calculated using dose-response values from different studies within BenMAP-

CE. Additionally, the use of a near statistically significant dose-response for respiratory 

hospitalizations in the sensitivity analysis generated negative health impacts for the lower CI, 

which cannot feasibly occur in real-world situations and thus, undermines our confidence in 

these results.  

Despite the discrepancies in the magnitude of the estimates, the trends in health impacts 

over time remained consistent across datasets, with larger health impacts observed during high 

fire years. Of these high fire years, the largest health impacts were observed in 2018, followed by 

2008 and 2017, for smoke estimates from Childs and Casey, with slight differences in the rank 

order for CMAQ. These results suggest that though the magnitude of health impacts may be 

influenced by particular datasets, the trends in health impacts over time are robust regardless of 

the dataset. Moreover, years with increased fire activity clearly contribute to more respiratory 

health burdens.  

The implications of differences in health impact estimates can extend beyond the scope of 

empirical studies and influence policy as well. Government agencies, policymakers, community 

organizations, and various stakeholders may utilize findings from empirical studies to inform 

decision-making and policy development (D’Evelyn et al., 2022; Strydom et al., 2010). 

Additionally, researchers could motivate change in policy through their research (D’Evelyn et 

al., 2022). Different health impact and risk estimates can influence major public health policies 

and guidelines that use these estimates as a basis of evidence. However, confirming the accuracy 

of a health impact estimate or smoke dataset over another remains challenging. To minimize 

potential discrepancies in health impact estimates, researchers could explore exposure estimates 
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from multiple smoke datasets as sensitivity analyses. Beyond this, researchers may need to 

carefully consider the implications of selecting certain datasets over others.    

 The estimated respiratory health impacts attributable to smoke exposure among elderly 

populations in California highlight the health burdens that wildland fires can impose on highly 

susceptible populations. These estimates only consider elderly individuals admitted under a 

respiratory-related hospitalization or ED/ER visit, which likely underestimates the true health 

burden if more elderly individuals experienced respiratory symptoms but decided not to seek out 

healthcare. Healthcare avoidance among the elderly could be due to various underlying reasons, 

such as high health insurance costs, negative feelings about the healthcare system, distrust of 

doctors, or fear of having a serious illness (Leyva et al., 2020). Generally, the results of this study 

were consistent with other studies that estimated increased risk of respiratory health outcomes 

due to smoke exposure among the elderly (Barros et al., 2023; Chen et al., 2023; Delfino et al., 

2009). These health burdens could be further heightened as the elderly are often not prepared for 

disasters and may not be aware of or have access to resources when disasters appear (Carlson et 

al., 2024).  

Increasing knowledge of and access to necessary resources during wildland fire events is 

critical to reducing health burdens among the elderly. Since many elderly individuals tend to be 

socially isolated or live alone (Cudjoe et al., 2020) and may suffer from pre-existing health 

complications, governments and community organizations could implement programs to check 

up on the elderly during wildland fire events and assist them with evacuations as needed 

(Carlson et al., 2024). Additional strategies include supporting transportation needs among the 

elderly, who may have limited mobility or scarce access to reliable transportation, through ride-

sharing programs (Rhoades et al., 2021) and equipping the elderly with resources needed to call 
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for emergency assistance. Efforts to partner with senior centers and organizations that work 

closely with the elderly may be helpful to increase knowledge of resources among this 

population (Carlson et al., 2024). Many elderly individuals may be unfamiliar with or choose to 

not use the internet (van Deursen & Helsper, 2015), so ensuring that smoke notices and 

evacuation alerts are distributed through channels that would reach this population is also crucial.  

The novelty of this study lies in its comparison of smoke and health impact estimates 

across various datasets. Few studies have compared different smoke exposure estimation 

methods, particularly in California, and this is the first study to examine differences in the 

attributable respiratory health burden from smoke PM2.5 among elderly populations across 

different smoke datasets. By highlighting these differences, this study emphasized the influence 

that selecting one smoke dataset over another can have in health impact assessments or 

epidemiological studies, with overarching implications for policy development. Moreover, this 

study synthesized and summarized the current knowledge on respiratory health effects from 

smoke PM2.5 exposure among the elderly, underscoring this population as a vulnerable group. 

Actionable strategies are needed to reduce the risk of respiratory health issues attributable to 

wildland fire smoke among the elderly.  

This study has several limitations. First, transforming CMAQ smoke estimates from 12-

km grid cells to census tract-level boundaries could have potentially resulted in exposure 

misclassifications. Due to the coarse spatial resolution of a 12-km grid, smaller census tracts 

could have been assigned smoke estimates that did not accurately reflect their exposure. Second, 

the strength of exposure to smoke PM2.5 is stronger in areas where more people reside; however, 

this study did not take into account variations in population within census tracts in the smoke 

comparisons analysis, which could have contributed to underestimates in exposure for highly 
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populated regions. Third, access to spatially resolved health data across multiple years of the 

study period was limited, so I relied on 2014 county-level incidence data preloaded in BenMAP-

CE. Doing so does not consider changes in incidence rates over time, which could have resulted 

in overestimates or underestimates of the true health impacts. Additionally, applying county-level 

incidence rates to census tracts could have introduced misclassification errors. Fourth, the study 

did not consider disparities in health impacts across different vulnerable groups among the 

elderly, in which evidence suggests higher risk of respiratory morbidity from smoke PM2.5 for 

women, Black, and lower SES groups compared to men, white, and higher SES groups (Liu, 

Wilson, Mickley, Ebisu, et al., 2017).  

Future research could explore deeper analyses of the comparisons between smoke PM2.5 

datasets, such as focusing on case studies of specific fire events or comparing spatial and 

temporal differences in specific regions. The health impact assessment could be expanded by 

assessing other health outcomes, such as cardiovascular health outcomes, which has mixed but 

suggestive evidence of increased risk from smoke PM2.5 exposure (Cascio, 2018; Reid, Brauer, et 

al., 2016). Since cardiovascular health burdens remain high among elderly populations (Qu et al., 

2024), exploring cardiovascular health impacts attributable to smoke PM2.5 exposure among this 

population and potential differences in health impacts across different datasets may be of 

interest. Additionally, evaluating disparities in health impacts across various socio-demographic 

indicators among the elderly can highlight potential environmental justice concerns that should 

be addressed. Elderly populations are only one of several vulnerable groups that are impacted by 

smoke PM2.5 so future research could also look into health impacts among other highly 

susceptible groups, such as pediatric or unhoused populations. Lastly, completing an economic 

valuation of the health impacts is a crucial next step of this study.  
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CONCLUSION 

Differences in smoke estimates between the CMAQ, Childs, and Casey datasets 

contributed to differences in health impact estimates of respiratory hospitalizations and ED/ER 

visits among elderly populations in California, which were more apparent between CMAQ with 

both Childs and Casey. Discrepancies in health impact estimates have overarching implications 

for wildland fire policies that rely on these estimates. Discrepancies aside, regardless of the 

dataset used, thousands of respiratory hospitalizations and ED/ER visits among the elderly are 

attributable to smoke PM2.5 in California, highlighting the need to focus on vulnerable groups 

such as the elderly in an effort to reduce health risks from wildland fire smoke.  
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APPENDIX 

Supplemental Figures and Tables 

Table S1. P-values from the Kruskal-Wallis and Dunn tests of differences in annual smoke PM2.5 
(µg/m3) between datasets across all California census tracts for the overall study period (2008-
2018) and stratified by year.  

  Kruskal-Wallis Dunn 

   CMAQ, Childs CMAQ, Casey Childs, Casey 

Year     
 Overall <0.05 0 0 <0.05 
 2008 <0.05 0 0 <0.05 
 2009 <0.05 0 0 0 
 2010 <0.05 0 0 <0.05 
 2011 <0.05 0 0 <0.05 
 2012 <0.05 0 0 0 
 2013 <0.05 0 0 <0.05 
 2014 <0.05 0 0 <0.05 
 2015 <0.05 0 0 <0.05 
 2016 <0.05 0 0 <0.05 
 2017 <0.05 0 0 0 
 2018 <0.05 0 0 <0.05 
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Table S2. P-values from the Dunn test of differences in annual smoke PM2.5 (µg/m3) between datasets across all California census 
tracts grouped by climate regions for the overall study period (2008-2018) and stratified by year.  

   North 
Coast 

Sierra 
Nevada 

Mountains 

Sacramento 
Valley 

San 
Francisco 
Bay Area 

San 
Joaquin 
Valley 

Central 
Coast Los Angeles Inland 

Desert San Diego 

Year           
 Overall          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
 2008          
  CMAQ, Childs <0.05 <0.05 <0.05 0 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 <0.05 <0.05 0 <0.05 0 
  Childs, Casey 0.62 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 1 <0.05 
 2009          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
 2010          
  CMAQ, Childs <0.05 <0.05 <0.05 0 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 0 <0.05 0 <0.05 0 
  Childs, Casey 0.075 0.054 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
 2011          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 0 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 0.24 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2012          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
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 2013          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 0 0 0 <0.05 0 <0.05 <0.05 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2014          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2015          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 <0.05 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2016          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 0 <0.05 <0.05 0 <0.05 0 
  Childs, Casey 0.34 0.27 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2017          
  CMAQ, Childs <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 0 0 0 <0.05 0 <0.05 0 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 2018          
  CMAQ, Childs <0.05 <0.05 <0.05 1 <0.05 <0.05 0 <0.05 <0.05 
  CMAQ, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 
  Childs, Casey <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0 <0.05 <0.05 

Notes: Bold denotes p-values >0.05. 
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Figure S1. Spatial distribution of annual average smoke PM2.5 (µg/m3) at the census tract-level 
in California for each dataset, stratified by year. 
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Figure S2. Spatial distribution of the differences in annual average smoke PM2.5 (µg/m3) at the 
census tract-level in California for each dataset, stratified by year.  

Notes: Blue refers to higher values for the former dataset, and red refers to higher values for the 
latter dataset. 
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A.  

B.  
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C.  

Figure S3. Temporal distribution of the differences in daily smoke PM2.5 (µg/m3) for all 
California census tracts and the daily statewide average smoke PM2.5 (µg/m3) for each dataset, 
during the fire season (June to October) of 2008. Note change in scale on y-axis. 

Note: Positive values refer to higher values for the former dataset, and negative values refer to 
higher values for the latter dataset. 
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A.  

B.  
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C.  

Figure S4. Temporal distribution of the differences in daily smoke PM2.5 (µg/m3) for all 
California census tracts and the daily statewide average smoke PM2.5 (µg/m3) for each dataset, 
during the fire season (June to October) of 2018. Note change in scale on y-axis. 

Note: Positive values refer to higher values for the former dataset, and negative values refer to 
higher values for the latter dataset. 
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Table S3. Selected articles from the updated literature review on the respiratory health effects of 
wildland fire smoke exposure among elderly populations.  

Author Article Title Study Area Respiratory Health 
Outcomes among Elderly 

(Alman et al., 
2016) 

The association of wildfire 
smoke with respiratory and 
cardiovascular emergency 
department visits in 
Colorado in 2012: a case 
crossover study 

Colorado, USA Respiratory disease; asthma 
and wheeze 

(Barros et 
al., 2023) 

Continent-based systematic 
review of the short-term 
health impacts of wildfire 
emissions 

USA All respiratory 

(Borchers 
Arriagada et 

al., 2019) 

Association between fire 
smoke fine particulate matter 
and asthma-related 
outcomes: systematic review 
and meta-analysis 

USA/Australia Asthma 

(Chen et al., 
2023) 

Emergency department visits 
associated with wildfire 
smoke events in California, 
2016-2019 

California, 
USA 

All respiratory; asthma; 
pneumonia; acute upper 
respiratory infections; 
chronic lower respiratory 
disease 

(DeFlorio-
Barker et al., 

2019) 

Cardiopulmonary effects of 
fine particulate matter 
exposure among older adults, 
during wildfire and non-
wildfire periods, in the 
United States 2008–2010 

USA Respiratory; asthma, 
bronchitis, or wheezing 

(Delfino et 
al., 2009) 

The relationship of 
respiratory and 
cardiovascular hospital 
admissions to the southern 
California wildfires of 2003 

Southern 
California, 
USA 

All respiratory; asthma; 
COPD; acute bronchitis and 
bronchiolitis; pneumonia 

(Doubleday 
et al., 2023) 

Wildfire smoke exposure and 
emergency department visits 
in Washington State 

Washington, 
USA 

All respiratory; asthma 
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(Duncan et 
al., 2023) 

Acute Health Effects of 
Wildfire Smoke Exposure 
During a Compound Event: 
A Case-Crossover Study of 
the 2016 Great Smoky 
Mountain Wildfires 

North 
Carolina, USA 

All respiratory; asthma; 
COPD; bronchitis; 
emphysema 

(Gan et al., 
2017) 

Comparison of wildfire 
smoke estimation methods 
and associations with 
cardiopulmonary-related 
hospital admissions 

Washington, 
USA 

All respiratory; asthma; 
COPD; acute bronchitis; 
pneumonia 

(Gan et al., 
2020) 

The association between 
wildfire smoke exposure and 
asthma-specific medical care 
utilization in Oregon during 
the 2013 wildfire season 

Oregon, USA Asthma 

(Hahn et al., 
2021) 

Wildfire Smoke Is 
Associated With an 
Increased Risk of 
Cardiorespiratory Emergency 
Department Visits in Alaska 

Alaska, USA All respiratory; asthma; 
COPD; bronchitis; 
pneumonia 

(Heaney et 
al., 2022) 

Impacts of Fine Particulate 
Matter From Wildfire Smoke 
on Respiratory and 
Cardiovascular Health in 
California 

California, 
USA 

All respiratory; asthma; 
COPD; acute respiratory 
infections 

(Johnston et 
al., 2014) 

Air pollution events from 
forest fires and emergency 
department attendances in 
Sydney, Australia 1996-
2007: A case-crossover 
analysis 

Sydney, 
Australia 

All respiratory; asthma; 
COPD; pneumonia/acute 
bronchitis 

(Kollanus et 
al., 2016) 

Effects of long-range 
transported air pollution 
from vegetation fires on 
daily mortality and hospital 
admissions in the Helsinki 
metropolitan area, Finland 

Helsinki, 
Finland 

All respiratory 

(Kondo et 
al., 2019) 

Meta-Analysis of 
Heterogeneity in the Effects 

Multiple All respiratory 
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of Wildfire Smoke Exposure 
on Respiratory Health in 
North America 

(Le et al., 
2014) 

Canadian forest fires and 
effects of long-range 
transboundary air pollution 
on hospitalizations among 
the elderly 

Northeast and 
Mid-Atlantic 
USA 

Respiratory; asthma; 
COPD; respiratory tract 
infection 

(Liu, Wilson, 
Mickley, 

Dominici, et 
al., 2017) 

Wildfire-specific Fine 
Particulate Matter and Risk 
of Hospital Admissions in 
Urban and Rural Counties 

Western USA Respiratory 

(Liu, Wilson, 
Mickley, 

Ebisu, et al., 
2017) 

Who Among the Elderly Is 
Most Vulnerable to Exposure 
to and Health Risks of Fine 
Particulate Matter From 
Wildfire Smoke? 

Western USA Respiratory 

(Morgan et 
al., 2010) 

Effects of bushfire smoke on 
daily mortality and hospital 
admissions in Sydney, 
Australia 

Sydney, 
Australia 

Respiratory; COPD; 
pneumonia and acute 
bronchitis 

(Rappold et 
al., 2011) 

Peat Bog Wildfire Smoke 
Exposure in Rural North 
Carolina Is Associated with 
Cardiopulmonary Emergency 
Department Visits Assessed 
through Syndromic 
Surveillance 

North 
Carolina, USA 

All respiratory; asthma; 
COPD; pneumonia and 
acute bronchitis; upper 
respiratory infection; 
respiratory/other chest 
symptoms 

(Reid, 
Jerrett, et al., 

2016) 

Differential respiratory 
health effects from the 2008 
northern California wildfires; 
a spatiotemporal approach 

Northern 
California, 
USA 

All respiratory; asthma; 
COPD; pneumonia 

(Resnick et 
al., 2015) 

Health outcomes associated 
with smoke exposure in 
Albuquerque, New Mexico, 
during the 2011 Wallow fire 

New Mexico, 
USA 

All respiratory; asthma; 
other diseases of the 
respiratory system 

(Stowell et 
al., 2019) 

Associations of wildfire 
smoke PM2. 5 exposure with 
cardiorespiratory events in 
Colorado 2011–2014 

Colorado, USA Respiratory disease; asthma; 
COPD; bronchitis; upper 
respiratory infection 
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(Thilakaratn
e et al., 

2023) 

Wildfires and the Changing 
Landscape of Air Pollution-
related Health Burden in 
California 

California, 
USA 

Respiratory; asthma; 
COPD;  

(Tinling et 
al., 2016) 

Repeating cardiopulmonary 
health effects in rural North 
Carolina population during a 
second large peat wildfire 

North 
Carolina, USA 

All respiratory; chronic 
pulmonary conditions; 
upper respiratory infection; 
respiratory/other chest 
symptoms 

(Wettstein et 
al., 2018) 

Cardiovascular and 
cerebrovascular emergency 
department visits associated 
with wildfire smoke 
exposure in California in 
2015 

California, 
USA 

All respiratory 
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