
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Weakly-Supervised Semantic Segmentation via Self-Regularization

Permalink
https://escholarship.org/uc/item/0p3987nf

Author
Chang, Yu-Ting

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p3987nf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

Weakly-Supervised Semantic Segmentation via Self-Regularization

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Electrical Engineering and Computer Science

by

Yu-Ting Chang

Committee in charge:

Professor Ming-Hsuan Yang, Chair
Professor Shawn Newsam
Professor Sungjin Im

2020



Copyright

Yu-Ting Chang, 2020

All rights reserved.



The thesis of Yu-Ting Chang is approved, and it is

acceptable in quality and form for publication on mi-

crofilm and electronically:

Professor Shawn Newsam

Professor Sungjin Im

Professor Ming-Hsuan Yang Chair

University of California, Merced

2020

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Mixup-CAM: Weakly-supervised Semantic Segmentation via Un-
certainty Regularization . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Algorithm Overview . . . . . . . . . . . . . . . . . 7
2.3.2 Mixup-CAM . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Implementation Details . . . . . . . . . . . . . . . . 10

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Evaluated Dataset and Metric . . . . . . . . . . . . 12
2.4.2 Ablation Study and Analysis . . . . . . . . . . . . . 12
2.4.3 Semantic Segmentation Performance . . . . . . . . 14
2.4.4 Qualitative Comparisons . . . . . . . . . . . . . . . 15

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Weakly-Supervised Semantic Segmentation via Sub-category Ex-
ploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Algorithm Overview . . . . . . . . . . . . . . . . . 25
3.3.2 Sub-category Exploration . . . . . . . . . . . . . . 27
3.3.3 Implementation Details . . . . . . . . . . . . . . . . 28

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Evaluated Dataset and Metric . . . . . . . . . . . . 30
3.4.2 Improvement on Initial Response . . . . . . . . . . 30
3.4.3 Ablation Study and Analysis . . . . . . . . . . . . . 32
3.4.4 Semantic Segmentation Performance . . . . . . . . 35

iv



3.4.5 Quality of Clustering . . . . . . . . . . . . . . . . . 37
3.4.6 Qualitative Comparisons . . . . . . . . . . . . . . . 37

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



LIST OF FIGURES

Figure 2.1: Comparisons of (a) the original CAM method; (b) CAM + the
mixup data augmentation; and (c) the proposed Mixup-CAM frame-
work that integrates the mixup scheme and the uncertainty regular-
ization. Compared to (a) and (b), our final response map (c) attends
to other object parts with more uniformly distributed response. . . 4

Figure 2.2: Overview of Mixup-CAM. We perform mixup data augmentation
on input images with their corresponding labels via (2.2) and pass
the mixed image through the feature extractor E and the classifier
G to obtain the probability score P c for each category c. For loss
functions, in addition to the classification loss Lcls on mixup sam-
ples, we design two terms to regularize class-wise entropy (Lent via
(2.3)) and spatial distribution on CAM (Lcon via (2.4)). . . . . . . 8

Figure 2.3: Sample results of initial responses. Our approach often produces
the response map that covers more complete region of the object
(i.e., attention on the body of the animal), while the initial cue ob-
tained by CAM [65] is prone to focus on small discriminative parts. 13

Figure 2.4: Enhancement on refinement. Our regularization enforces a more
uniform response on objects, which can facilitate the refinement
step. The examples illustrate that the IoU difference of the resul-
tant refined map is significantly larger than the one of initial response. 14

Figure 2.5: Sensitivity analysis for parameters. (a) α for mixup augmentation;
(b) λent and (c) λcon for uncertainty regularization. . . . . . . . . . 14

Figure 2.6: Qualitative comparison of the initial response map with [65] on the
PASCAL VOC 2012 val images. . . . . . . . . . . . . . . . . . . . 17

Figure 2.7: Semantic segmentation results on the PASCAL VOC 2012 val images. 18
Figure 2.8: Failure semantic segmentation examples. (a) Missing detailed parts.

Details of the bicycle are missing in the segment. (b) The ambigu-
ity on object boundary. There are errors on the boundary region
between two objects. (c) The background noise. . . . . . . . . . . . 19

Figure 3.1: Existing weakly-supervised semantic segmentation methods based
on image-level supervisions usually apply the class activation map
(CAM) to obtain the response map as the initial prediction. How-
ever, this response map can only highlight the discriminative parts
of the object (top). We propose a self-supervised task via sub-
category exploration to enforce the classification network learn bet-
ter response maps (bottom). . . . . . . . . . . . . . . . . . . . . . 21

vi



Figure 3.2: Proposed framework for generating the class activation map. Given
input images I , we first feed them into a feature extractor E to ob-
tain their features f . Then, we adopt unsupervised clustering on f
and obtain sub-category pseudo labels Ys for each image. Next, we
train the classification network to jointly optimize the parent classi-
fier Hp with ground truth labels Yp for parent classes and the sub-
category classifierHs using the sub-category pseudo labels obtained
in the clustering stage. By iteratively performing unsupervised clus-
tering on image features and pseudo training the classification mod-
ule, we use the jointly optimized classification network to produce
the final activation map M . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.3: Sample results of initial responses. Our method often generates the
response map that covers larger region of the object (i.e., attention
on the body of the animal), while the response map produced by
CAM [65] tends to highlight small discriminative parts. . . . . . . . 31

Figure 3.4: Ablation study forK. We show that the proposed method performs
robustly with respect toK and is consistently better than the original
CAM that did not apply clustering to discover sub-categories. We
mark the value of mIoU of the original CAM at K = 1 and the
improved mIoUs are presented. . . . . . . . . . . . . . . . . . . . 32

Figure 3.5: Clustering results of the last round model (#3). We show 3 clusters
for each parent class and demonstrate that our learned features are
able to cluster objects based on their size (Aeroplane, Bird, Cow),
context (Aeroplane, Bird, Person), type (Boat, Bird), pose (Cow),
and interaction with other categories (Person). . . . . . . . . . . . 34

Figure 3.6: Visualizations of weights based on the t-SNE method that illus-
trates the relationships on semantic-level between parent classifier
and the person sub-category classifier. We show that one person
sub-category is usually close to one parent class, as they often co-
appear in the same image, as shown in example images on two sides. 34

Figure 3.7: Qualitative results on the PASCAL VOC 2012 validation set. (a)
Input images. (b) Ground truth. (c) Our results. . . . . . . . . . . 35

Figure 3.8: Failure semantic segmentation results. (a) Failure cases of the in-
completeness on detailed parts. Legs of the animal are missing in
the segment. (b) Failure case of the ambiguity on object boundary.
There are errors on the boundary region between two objects. . . . 38

Figure 3.9: Visual comparison of the different rounds of clustering of bird
class. Red boxes at later round demonstrate sets of image with vi-
sual consistency compared to images marked by yellow boxes at the
beginning round. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Figure 3.10: Visual comparison of the different rounds of clustering of boat
class. Images of sailboat are in different clusters at Round-1 while
such image can be clustered to one cluster (i.e., Cluster-10) at Round-
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.11: Visual comparison of the different rounds of clustering of sheep
class. Images of sheep in the meadow in distant view are in differ-
ent clusters at Round-1 while such images can be clustered to one
cluster (i.e., Cluster-5) at Round-3. . . . . . . . . . . . . . . . . . . 41

Figure 3.12: Qualitative comparison of the initial response map and semantic
segmentation map. We compare our intermediate and final results
with the AffinityNet [1] approach. . . . . . . . . . . . . . . . . . . 42

Figure 3.13: Semantic segmentation results on the PASCAL VOC 2012 val images. 43

viii



LIST OF TABLES

Table 2.1: IoU results of CAM and its refinement on the PASCAL VOC training
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2.2: Comparison of WSSS methods using image-level labels on the PAS-
CAL VOC 2012 validation set. X indicates the methods that focus
on improving the initial response. The result of † on AffinityNet is
re-produced by training the same ResNet-101 as our pipeline. . . . . 15

Table 2.3: Semantic segmentation performance on the PASCAL VOC 2012 val-
idation set. The bottom group contains results with CRF refinement,
while the top group is without CRF. The best three results are in red,
green and blue, respectively. . . . . . . . . . . . . . . . . . . . . . . 16

Table 3.1: Performance comparison in mIoU (%) for evaluating activation maps
on the PASCAL VOC training and validation sets. . . . . . . . . . . 31

Table 3.2: Segmentation quality of the initial response at different rounds of
training on the PASCAL VOC 2012 validation set. We show there is
a gradual improvement on both mIoU and F-Score metrics. . . . . . 33

Table 3.3: Semantic segmentation performance on the PASCAL VOC 2012 val-
idation set. Bottom group contains results with CRF refinement,
while the top group is without CRF. Note that 11/20 classes obtain
improvements using our approach w/ CRF. The best three results are
in red, green and blue, respectively. . . . . . . . . . . . . . . . . . . 35

Table 3.4: Comparison of weakly-supervised semantic segmentation methods
on the PASCAL VOC 2012 val and test sets. In addition, we present
methods that aim to improve the initial response with X in the “Init.
Res.” column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



VITA

2014 B. E. in Electrical and Computer Engineering, National
Chaio Tung University, Hsinchu, Taiwan

2020 M. S. in Electrical Engineering and Computer Science,
University of California, Merced

PUBLICATIONS

Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai,
Ming-Hsuan Yang, Weakly-Supervised Semantic Segmentation via Sub-category Explo-
ration, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai,
Ming-Hsuan Yang, Mixup-CAM: Weakly-supervised SemanticSegmentation via Uncer-
tainty Regularization, In British Machine Vision Conference (BMVC), 2020.

x



ABSTRACT OF THE THESIS

Weakly-Supervised Semantic Segmentation via Self-Regularization

by

Yu-Ting Chang

Master of Science in Electrical Engineering and Computer Science

University of California Merced, 2020

Professor Ming-Hsuan Yang, Chair

The goal of semantic segmentation is to assign a semantic category to each pixel in the

image. It has been one of the most important tasks in computer vision that enjoys a

wide range of applications such as image editing and scene understanding. Recently,

deep convolutional neural network (CNN) based methods have been developed for se-

mantic segmentation and achieved significant progress. However, such approaches rely

on learning supervised models that require pixel-wise annotations, which take exten-

sive effort and time. To reduce the effort in annotating pixel-wise ground truth labels,

numerous weakly-supervised methods are proposed using various types of labels such

as image-level, bounding box, point-level, and scribble-based labels. In this thesis, we

focus on using image-level labels which can be obtained effortlessly, yet a more chal-

lenging case under the weakly-supervised setting.

Existing weakly-supervised semantic segmentation methods using image-level an-

notations typically rely on initial responses to locate object regions. However, such

response maps generated by the classification network usually focus on discriminative

object parts, due to the fact that the network does not need the entire object for op-

timizing the objective function. To address this issue, we improve the generated re-

sponse map by enforcing the network to pay attention to other parts of an object via

self-regularization techniques. First, we apply the mixup data augmentation to effec-

tively calibrate the model uncertainty on overconfident predictions, which enables the

model to attend to more object regions. Second, we introduce a self-supervised task

xi



that discovers sub-categories in an unsupervised manner. By imposing a more challeng-

ing task, the model learns better representations, thereby improving the response map.

Based on the proposed two self-regularization methods, the produced initial responses

are more complete and balanced across object regions, which facilitates the latter steps

for weakly-supervised semantic segmentation, i.e., response refinement and segmenta-

tion model training.

xii



Chapter 1

Introduction

Semantic segmentation is one of the fundamental tasks in computer vision, with

a wide range of applications such as image editing and scene understanding. In or-

der to obtain reliable models and achieve promising performance, recently deep neural

network (DNN) based methods [24, 6, 59] are learned from fully-supervised data that

requires pixel-wise semantic annotations. However, acquiring such pixel-wise annota-

tions is usually time-consuming and labor-intensive, which limits the application poten-

tials in the real world. As a result, numerous approaches tackle this issue via training

models only on weakly-annotated data, e.g., image-level [1, 31, 41, 45], bounding box

[40, 12, 29], point-level [2], scribble-based [36, 54], or video-level [8, 64, 51] labels.

In this thesis, we focus on utilizing the image-level label, which is the most efficient

scheme for weak annotations but also a challenging scenario.

Existing weakly-supervised semantic segmentation (WSSS) algorithms using image-

level labels mainly consist of three steps: 1) localizing objects via a categorical re-

sponse map, 2) refining the response map to generate pseudo annotations, and 3) train-

ing the semantic segmentation network using pseudo ground truths. Recent methods

[1, 26, 55, 57] have achieved significant progress for WSSS, but most of them focus on

improving the latter two steps. Since the success of these sequential steps hinges on the

quality of the initial response map generated in the first step, in this thesis we present two

effective self-regularization solutions that can generate better response maps to localize

objects.

One common practice to generate the initial response map is using class activation

1
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map (CAM) [65]. However, since CAM is typically supervised by a classification loss

that could be sufficiently optimized through seeing only a small portion of objects, the

generated response map usually only attends to partial regions. In this thesis, we aim

to improve the class activation maps by enhancing feature representations in the clas-

sification network. We first propose the Mixup-CAM framework that calibrates the

uncertainty in network prediction. Next, we introduce a self-supervised task to discover

sub-categories in an unsupervised manner.

In Chapter 2, we present a principled and end-to-end trainable framework to al-

low the network to pay attention to other parts of the object, while producing a more

complete and uniform response map. In particular, we introduce the mixup data aug-

mentation scheme and integrate it into the classification network. Then we design two

uncertainty regularization terms to better interact with the mixup strategy. In experi-

mental results, we provide comprehensive analysis of each component in the proposed

method and show that our approach achieves state-of-the-art performance against exist-

ing algorithms.

In Chapter 3, we propose a simple yet effective approach that introduces a self-

supervised task by exploiting the sub-category information, which forces the network to

pay attention to other parts of an object. Specifically, we perform clustering on image

features to generate pseudo sub-categories labels within each annotated parent class, and

construct a sub-category objective to assign the network a more challenging task. By it-

eratively clustering image features and learning the sub-category objective, the training

process does not limit itself to the most discriminative object parts, hence improving the

quality of the response maps. We conduct extensive analysis to validate the proposed

method and show that our approach performs favorably against the state-of-the-art ap-

proaches. We conclude the thesis in Chapter 4 and discuss potential future directions.



Chapter 2

Mixup-CAM: Weakly-supervised

Semantic Segmentation via

Uncertainty Regularization

2.1 Introduction

Semantic segmentation is one of the fundamental tasks in computer vision, with

a wide range of applications such as image editing and scene understanding. In or-

der to obtain reliable models and achieve promising performance, recently deep neural

network (DNN) based methods [24, 6, 59] are learned from fully-supervised data that

requires pixel-wise semantic annotations. However, acquiring such pixel-wise annota-

tions is usually time-consuming and labor-intensive, which limits the application poten-

tials in the real world. As a result, numerous approaches tackle this issue via training

models only on weakly-annotated data, e.g., image-level [1, 31, 41, 45], bounding box

[40, 12, 29], point-level [2], scribble-based [36, 54], or video-level [8, 64, 51] labels.

In this thesis, we focus on utilizing the image-level label, which is the most efficient

scheme for weak annotations but also a challenging scenario.

Existing weakly-supervised semantic segmentation (WSSS) algorithms mainly op-

erate with three steps: 1) localizing objects via a categorical response map, 2) refining

the response map to generate pseudo annotations, and 3) training the semantic segmenta-

3
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Figure 2.1: Comparisons of (a) the original CAM method; (b) CAM + the mixup data

augmentation; and (c) the proposed Mixup-CAM framework that integrates the mixup

scheme and the uncertainty regularization. Compared to (a) and (b), our final response

map (c) attends to other object parts with more uniformly distributed response.

tion network using pseudo ground truths. Recent methods [1, 26, 55, 57] have achieved

significant progress for WSSS, but most of them focus on improving the latter two steps.

Since the success of these sequential steps hinges on the quality of the initial response

map generated in the first step, in this chapter we present an effective solution to localize

objects.

One common practice to produce the initial response map is using class activation

map (CAM) [65]. However, since CAM is typically supervised by a classification loss

that could be sufficiently optimized through seeing only a small portion of objects, the

generated response map usually only attends on partial regions (see Figure 2.1(a)). To

tackle this issue, recent methods [33, 28] make efforts to improve the response map

via using the dropout strategy that increases the model uncertainty or aggregating maps

produced at different stages to see more object parts. However, there remains a challenge

whether there are better loss function designed to explicitly facilitate the model training

and produce better response maps, which are not addressed in prior works.

In this chapter, we propose a principled and end-to-end trainable network with loss

functions designed to systematically control the generation of the response map. First,

inspired by the mixup data augmentation in [62], we observe that including mixup could

effectively calibrate the model uncertainty on overconfident predictions [50] and in re-
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turn enables the model to attend to more object regions. However, it is challenging to

control the mixup augmentation process and the model uncertainty, due to non-uniform

response distributions (see Figure 2.1(b)), which may affect subsequent response refine-

ment steps. Therefore, we introduce another two loss terms to the mixup process by

regularizing the class-wise uncertainty and the spatial response distribution. We refer

to our model as Mixup-CAM and show that the produced response map is more com-

plete and balanced across object regions (see Figure 2.1(c)), which facilitates the latter

response refinement and segmentation model training steps.

We conduct quantitative and qualitative experiments to demonstrate the effective-

ness of the proposed Mixup-CAM method on the PASCAL VOC 2012 dataset [16].

To the best of our knowledge, our algorithm is the first to demonstrate that mixup

could improve the WSSS task on complicated multi-labeled images, along with other

designed loss functions to produce better response maps. In addition, we present the ab-

lation study and more analysis to validate the importance of each designed loss. Finally,

we show that our method achieves state-of-the-art semantic segmentation performance

against existing approaches.

2.2 Related Work

Initial Prediction for WSSS. Initial cues are essential for segmentation tasks since

they provide reliable priors to generate segmentation maps. The class activation map

(CAM) [65] is a common practice for localizing objects. It highlights class-specific

regions that serve as the initial cues. However, since the CAM model is trained by

a classification network, it tends to attend to small discriminative parts of the object,

leading to incomplete initial masks. Several methods have been developed to alleviate

this problem. Approaches like [48, 56, 63, 34] deliberately hide or erase the regions of

an object, forcing the model to look for more diverse parts. However, such strategies

require iterative model training and response aggregation steps. After gradual expansion

of the attention regions, non-object regions are prone to be activated, which leads to

inaccurate attention maps. Other algorithms [25, 61] use both object and background

cues to prevent the attention map from including more background regions, yet pixel-
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level saliency labels are used.

Instead of using the erasing scheme, recently the FickleNet approach [33] introduces

the stochastic feature selection to obtain a diverse combination of locations on feature

maps. Moreover, the OAA method [28] adopts an online attention accumulation strat-

egy to collect various object parts discovered at different training stages. By aggregating

the attention maps, it could obtain an initial cue that contains a larger region of the ob-

ject. Unlike methods that mitigate the problem by discovering complementary regions

via iterative erasing steps or consolidating attention maps, our proposed approach aims

at harnessing the uncertainty in end-to-end classification learning. In addition, by reg-

ularizing both class-wise uncertainties and spatial response distributions, our approach

averts the attention from focusing on small parts of the semantic objects, hence produc-

ing much improved response maps.

Response Refinement for WSSS. Various approaches [1, 17, 18, 26, 31, 55, 57] are

proposed to refine the initial cue by expanding the region of attention maps. Other

methods [1, 17, 18] are developed using affinity learning. The recent SSDD scheme

[47] proposes a difference detection module to estimate and reduce the gap between the

initial mask and final segmentation results in a self-supervised manner. However, the

performance of these methods is limited as initial seeds are still obtained from CAM-

like methods. If these seeds only come from the discriminative parts of the object, it is

difficult to expand regions into non-discriminative parts. Moreover, the initial prediction

may produce wrong attention regions, which would lead to even more inaccurate regions

in subsequent refinement steps.

Label-preserving vs. Non-preserving Augmentations. Data augmentation is a com-

mon regularization technique in both supervised and unsupervised learning [11, 35, 22].

Conventional data augmentation techniques such as scaling, rotation, cropping, color

augmentation, and Gaussian noise can change the pixel values of an image without alter-

ing its labels. These label-preserving transformations are commonly applied in training

deep neural networks to improve the model generalization capabilities.

Recent work has demonstrated that even non-label-preserving data augmentation

can be surprisingly effective. Explicit label smoothing has been adopted successfully to

improve the performance of deep neural models. The Mixup method [62] is proposed
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to train a neural network on a convex combination space of image pairs and their cor-

responding labels. It has been proven effective for the classification task and increases

the robustness of neural networks. Numerous Mixup variants [3, 49, 60, 53, 50, 20]

have been proposed to extend mixup for better prediction of uncertainty and calibration

of the DNNs. These methods exhibit shared similarity of producing better-generalized

models.

Entropy Regularization. Aside from mixup schemes for predictive uncertainty, an-

other common uncertainty measure is entropy, which could act as a strong regularizer in

both supervised and semi-supervised learning [44, 19]. In particular, [44] discourages

the neural network from being over-confident by penalizing low-entropy distributions,

while [19] utilizes entropy minimization in a semi-supervised setting as a training signal

on unlabeled data. In this chapter, we also adopt the entropy-based loss to regularize the

uncertainty, coupled with the mixup data augmentation for producing better response

maps on objects.

2.3 Proposed Algorithm

We first describe the overall algorithm and introduce details of the proposed Mixup-

CAM framework with loss functions designed to improve the initial response map. We

then detail how to generate the final semantic segmentation results.

2.3.1 Algorithm Overview

One typical way to generate response maps for annotated object categories is to

use CAM [65]. However, these response maps tend to focus on discriminative object

parts, which are less effective for the WSSS task. One reason is that CAM relies on

the classification loss, which only requires partial object regions to be activated during

training. As a result, when the objective is already optimized with high confidence, the

model may not attempt to learn other object parts.

In this chapter, we propose to integrate the idea of mixup data augmentation [62],

thereby calibrating the uncertainty in prediction [50] as well as allowing the model to
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Figure 2.2: Overview of Mixup-CAM. We perform mixup data augmentation on in-

put images with their corresponding labels via (2.2) and pass the mixed image through

the feature extractor E and the classifier G to obtain the probability score P c for each

category c. For loss functions, in addition to the classification loss Lcls on mixup sam-

ples, we design two terms to regularize class-wise entropy (Lent via (2.3)) and spatial

distribution on CAM (Lcon via (2.4)).

attend to other regions of the image. Although we find that adding mixup could improve

the response map, sometimes the response could diverge too much, resulting in more

false-positive object regions. To further regularize this uncertainty, we introduce two

additional loss terms: the spatial loss and the class-wise loss. We illustrate the overall

model and loss designs in Figure 2.2 and provide more details in the next subsection.

After receiving the initial response map, we utilize the method in [1] to expand

and refine the response. Finally, we generate pseudo ground truths from the refined

response and train a semantic segmentation network to obtain the final segmentation

output. Note that while we focus on the first step of the initial response map in this

thesis, the succeeding two steps could be replaced with alternative modules or models.

2.3.2 Mixup-CAM

CAM Generation. We first describe the CAM method for producing the initial re-

sponse map as our baseline (see Figure 2.1(a)). The base network begins with a feature

extractor E, followed by a global average pooling (GAP) layer and a fully-connected

layer G as the output classifier. Next, given an input image I with its image-level labels

Y , the network is trained with a multi-label classification loss Lcls(Y,G(E(I))) fol-
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lowing [65]. After training this classification network, the activation map M c for each

category c is obtained by applying the c-channel classifier weight θcG on the feature map

f = E(I):

M c = θ
c>
G f. (2.1)

Finally, the response is normalized by the maximum value of M c.

Mixup Data Augmentation. Since the original classification network could easily ob-

tain high confidence, in which the generated CAM only attends to small discriminative

object parts, we utilize mixup data augmentation to calibrate the uncertainty in predic-

tion [50]. Given an image pair {I1, I2} and its label {Y1, Y2} randomly sampled from

the training set, we augment an image I ′ and its label Y ′ via:

I ′ = λmixI1 + (1− λmix)I2,

Y ′ = λmixY1 + (1− λmix)Y2, (2.2)

where λmix is sampled from the Beta(α, α) distribution following [62]. Using this aug-

mented data, we feed it into the classification network to minimize the lossLcls(Y ′, G(E(I ′)))

and follow the same procedure in (2.1) to produce the response map (see Figure 2.1(b)).

Compared to the original CAM generation, our network no longer receives a pure

image but a mixed image that could have multiple objects with their weights based on

λmix as in (2.2). Therefore, the predictive uncertainty could be enhanced, leading to

smoother output distributions and enforcing the model to pay attention to other regions

in the image in order to satisfy the classification loss Lcls(Y ′, G(E(I ′))).

Uncertainty Regularization. Although mixup could improve the response map by

looking at other parts in the image, sometimes the response could become too divergent

and thus attend to pixels non-uniformly, e.g., Figure 2.1(b). This is attributed to the

difficulty in controlling the quality of mixed images, especially when the model faces

more complicated images such as PASCAL VOC, e.g., an object could appear at various

locations of the image with noisy background clutters.

To further facilitate the mixup process, we propose to self-regularize the uncertainty

via class-wise loss and spatial loss terms. The first term is to directly minimize the
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entropy in output prediction from the classifier to reduce uncertainty:

Lent(G(E(I ′))) = − 1

HW

∑
h,w

∑
c∈C

P c(h,w) logP c(h,w), (2.3)

where C is the category number and P c ∈ RH×W is the output probability for category

c. Since our classifierG outputs multi-label probability, we concatenate the probabilities

and normalize them by the maximum value, then calculate the final P with softmax.

Although the first term has the ability to minimize the uncertainty, it does not explic-

itly operate on the response map. To better balance the distribution on the response, we

utilize a concentration loss similar to [27] and apply it directly on CAM for each cate-

gory (i.e., M c), which encourages activated pixels to be spatially close to the response

center:

Lcon(M) =
∑
c∈C̄

∑
h,w

||〈h,w〉 − 〈µch, µcw〉||2 · M̂ c(h,w), (2.4)

where µch =
∑

h,w h · M̂ c(h,w) is the center in height for category c (similarly for µcw),

M̂ c is the normalized response of M c to represent a spatially distributed probability

map. Note that, here we only calculate the concentration loss on presented categories C̄

as provided in the image-label Y to avoid confusing the model with invalid categories.

Overall Objective. We have described our proposed Mixup-CAM framework, includ-

ing mixup data augmentation in (2.2) and two regularization terms, i.e., (2.3) and (2.4).

To train the entire model in an end-to-end fashion, we perform the online mixup proce-

dure and jointly optimize the following loss functions:

Lall = Lcls(I ′, Y ′) + λentLent(I ′) + λconLcon(M). (2.5)

For simplicity, we omit the detailed notation inside each loss term. We also note that M

is produced online via computing (2.1) on valid categories in each forward iteration.

2.3.3 Implementation Details

Classification Network. Similar to [1], we use the ResNet-38 architecture [58] as

our classification network, which consists of 38 convolution layers with wide channels,

followed by a 3 × 3 convolution layer with 512 channels for better adaptation to the
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classification task, a global average pooling layer, and two fully-connected layers for

classification. In training, we adopt the pre-trained model on ImageNet [14] and finetune

it on the PASCAL VOC 2012 dataset. Typical label-preserving data augmentations, i.e.,

horizontal flip, random cropping, random scaling, and color jittering, are utilized on the

training set.

We implement the proposed Mixup-CAM framework using PyTorch with a single

Titan X GPU with 12 GB memory. For training the classification network, we use the

Adam optimizer [30] with initial learning rate of 1e-3 and the weight decay of 5e-4. For

mixup, we use α = 0.2 in the Beta(α, α) distribution. For uncertainty regularization, we

set λent as 0.02 and λcon as 2e-4. Unless specified otherwise, we use the same parameters

in all the experiments. In the experimental section, we show studies for the sensitivity

of different parameters.

Semantic Segmentation Generation. Based on the response map generated by our

Mixup-CAM, we adopt the random walk approach via affinity [1] to refine the response

and produce pixel-wise pseudo ground truths for semantic segmentation. In addition,

similar to existing methods, we adopt dense conditional random fields (CRF) [32] to

further refine the response and obtain better object boundaries. Finally, we utilize the

Deeplab-v2 framework [6] with the ResNet-101 architecture [23] and train the segmen-

tation network

2.4 Experimental Results

In this section, we present our main results of the proposed Mixup-CAM method

for the WSSS task. First, we show that our approach achieves better initial response

maps and further improves the subsequent refinement step. Second, we demonstrate

the importance of each designed component. Finally, we provide evaluations on final

semantic segmentation outputs in the PASCAL VOC dataset [16] against the state-of-

the-art approaches. More results can be found in the supplementary material. We will

make our code and models available to the public.
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Table 2.1: IoU results of CAM and its refinement on the PASCAL VOC training set.

Method CAM CAM + Refinement

AffinityNet [1] 48.0 58.1

Mixup Lcls 49.3 60.5

Mixup Lcls + Lent 49.5 61.6

Mixup Lcls + Lcon 49.9 61.7

Mixup Lcls + Lent + Lcon 50.1 61.9

2.4.1 Evaluated Dataset and Metric

We conduct experiments on the PASCAL VOC 2012 semantic segmentation bench-

mark [16] with 21 categories, including one background class. Following existing

WSSS methods, we use augmented 10,528 training images [21] to train our network.

For evaluation of response maps of the training set, we use the set without augmenta-

tion with 1,464 examples, following the setting in [1]. For final semantic segmentation

results, we use 1,449 images in the validation set to compare our results with other meth-

ods1. In all experiments, the mean Intersection-over-Union (mIoU) ratio is used as the

evaluation metric.

2.4.2 Ablation Study and Analysis

Improvement on Response Map. We first present results of the initial and refined

response maps. In Table 2.1, we show the performance for the original CAM used by

the baseline AffinityNet [1], our CAM using the mixup data augmentation (Mixup Lcls),
and our final Mixup-CAM with mixup and uncertainty regularization (MixupLcls +Lent
+Lcon). In both results of CAM and its refinement, our IoU improvements are consistent

after gradually adding the mixup augmentation and regularization. In addition, Figure

2.3 shows some example results of the initial response, which illustrates that our Mixup-

1Although there is a test set that can be evaluated on the official PASCAL VOC website, by the
submission deadline the website is still out of service for returning the evaluated performance.



13

Figure 2.3: Sample results of initial responses. Our approach often produces the re-

sponse map that covers more complete region of the object (i.e., attention on the body

of the animal), while the initial cue obtained by CAM [65] is prone to focus on small

discriminative parts.

CAM is able to make the network attend to more object parts and produce more uniform

response distributions on objects.

Effectiveness of Regularization. One interesting aspect we find is that adding regu-

larization could enhance the effectiveness of the refinement step. In Table 2.1, compared

to Mixup Lcls, adding either Lent (3rd row) or Lcon (4th row) improves the CAM IoU

by 0.2% and 0.6% respectively. Nevertheless, with the refinement, the corresponding

improvements in IoU is 1.1% and 1.2%, which are larger than the ones before refining

the response. This is because our regularization enforces a more uniform response on

objects, which greatly facilitates the refinement step (e.g., via region expanding). In

addition, we illustrate one example in Figure 2.4, where the IoU difference of initial

response is relatively small, but the resultant refined map could differ significantly.

Parameter Sensitivity. In this chapter, we mainly study three parameters in our Mixup-

CAM framework, i.e., α for mixup regularization and {λent, λcon} in uncertainty reg-

ularization. In Figure 2.5(a), when increasing the α value, the Beta distribution would

become more uniform, which encourages a more uniform λmix in (2.2) and results in

mixed images that are more challenging to optimize. Nevertheless, the IoUs of Mixup

Lcls under various α are consistently better than the CAM baseline. For regularization

terms, we fix λcon = 2e− 4 and adjust λent in Figure 2.5(b), while fixing λent = 0.2 and
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Figure 2.4: Enhancement on refinement. Our regularization enforces a more uniform

response on objects, which can facilitate the refinement step. The examples illustrate

that the IoU difference of the resultant refined map is significantly larger than the one of

initial response.

Figure 2.5: Sensitivity analysis for parameters. (a) α for mixup augmentation; (b) λent
and (c) λcon for uncertainty regularization.

change λcon in Figure 2.5(c). Both figures show that these two parameters are robust to

the performance over a wide range of values.

2.4.3 Semantic Segmentation Performance

After generating the pseudo ground truths using the refined response map, we use

them to train the semantic segmentation network. First, we compare our method with

state-of-the-art algorithms using the ResNet-101 architecture or other similarly powerful

ones in Table 2.2. Note that, while our method focuses on improving the initial responses

on the object, most methods aim to improve the refinement step or segmentation network
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Table 2.2: Comparison of WSSS methods using image-level labels on the PASCAL

VOC 2012 validation set. X indicates the methods that focus on improving the initial

response. The result of † on AffinityNet is re-produced by training the same ResNet-101

as our pipeline.

Method Backbone Init. Resp. IoU on Val

MCOF CVPR’18 [55] ResNet-101 60.3

DCSP BMVC’17 [5] ResNet-101 60.8

DSRG CVPR’18 [26] ResNet-101 61.4

AffinityNet CVPR’18 [1] Wide ResNet-38 61.7

AffinityNet† CVPR’18 [1] ResNet-101 61.9

SeeNet NIPS’18 [25] ResNet-101 X 63.1

Zeng et al ICCV’19 [61] DenseNet-169 63.3

BDSSW ECCV’18 [18] ResNet-101 63.6

OAA ICCV’19 [28] ResNet-101 X 63.9

CIAN CVPR’19 [17] ResNet-101 64.1

FickleNet CVPR’19 [33] ResNet-101 X 64.9

SSDD ICCV’19 [47] Wide ResNet-38 64.9

Ours ResNet101 X 65.6

training. In Table 2.3, we further present detailed performance for each category. We

show two groups of results without (top rows) or with (bottom rows) applying CRF [32]

to refine final segmentation outputs. Compared to the recent FickleNet [33] approach

that also tries to improve the initial response map, our proposed Mixup-CAM shows

favorable performance in final semantic segmentation results.

2.4.4 Qualitative Comparisons

Figure 2.6 presents more initial response maps generated by the CAM [65] method

and ours. A number of qualitative examples of our final semantic segmentation results

are presented in Figure 2.7. In addition, we show some failure segmentation cases in

Figure 2.8. There are three main issues that would affect the quality of segments: 1)

the incompleteness on detailed parts, 2) the ambiguity on object boundaries, and 3) the

noise on background. The first two issues are the common problem of the WSSS task.

The third issue could be raised by the increased uncertainty from mixup augmentations,
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Table 2.3: Semantic segmentation performance on the PASCAL VOC 2012 validation

set. The bottom group contains results with CRF refinement, while the top group is

without CRF. The best three results are in red, green and blue, respectively.

Method bk
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AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

Ours (w/o CRF) 87.6 54.5 30.7 73.0 46.5 72.0 86.5 74.8 87.6 31.3 80.8 50.3 82.6 74.5 67.2 68.7 39.6 79.2 44.8 64.9 51.1 64.2

MCOF [55] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

Zeng et al. [61] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3

FickleNet [33] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9

SSDD [47] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9

Ours (w/ CRF) 88.4 57.0 31.2 75.2 47.8 72.4 87.2 76.0 89.2 32.7 83.1 51.1 85.4 77.3 68.4 70.2 40.0 81.5 46.2 65.4 51.8 65.6

such that the expanded initial response could attend to the non-object region. Although

there are some failure examples, our approach generally produces high-quality semantic

segmentation results.

2.5 Summary

In this chapter, we propose the Mixup-CAM framework to improve the localization

of object response maps, as an initial step towards weakly-supervised semantic segmen-

tation task using image-level labels. To this end, we propose to integrate the mixup

data augmentation strategy for calibrating the uncertainty in network prediction. Fur-

thermore, we introduce another two regularization terms as the interplay with the mixup

scheme, thereby producing more complete and uniform response maps. In experimental

results, we provide comprehensive analysis of each component in the proposed method

and show that our approach achieves state-of-the-art performance against existing algo-

rithms.
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Figure 2.6: Qualitative comparison of the initial response map with [65] on the PASCAL

VOC 2012 val images.
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Figure 2.7: Semantic segmentation results on the PASCAL VOC 2012 val images.
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Figure 2.8: Failure semantic segmentation examples. (a) Missing detailed parts. Details

of the bicycle are missing in the segment. (b) The ambiguity on object boundary. There

are errors on the boundary region between two objects. (c) The background noise.



Chapter 3

Weakly-Supervised Semantic

Segmentation via Sub-category

Exploration

3.1 Introduction

The goal of semantic segmentation is to assign a semantic category to each pixel in

the image. It has been one of the most important tasks in computer vision that enjoys

a wide range of applications such as image editing and scene understanding. Recently,

deep convolutional neural network (CNN) based methods [24, 6, 59] have been devel-

oped for semantic segmentation and achieved significant progress. However, such ap-

proaches rely on learning supervised models that require pixel-wise annotations, which

take extensive effort and time. To reduce the effort in annotating pixel-wise ground truth

labels, numerous weakly-supervised methods are proposed using various types of labels

such as image-level [1, 31, 41, 45], video-level [8, 64, 51], bounding box [40, 12, 29],

point-level [2], and scribble-based [36, 54] labels. In this work, we focus on using

image-level labels which can be obtained effortlessly, yet are a more challenging case

under the weakly-supervised setting.

Existing algorithms mainly consist of three sequential steps to perform weakly-

supervised training on the image-level label: 1) predict an initial category-wise response

20
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Figure 3.1: Existing weakly-supervised semantic segmentation methods based on

image-level supervisions usually apply the class activation map (CAM) to obtain the

response map as the initial prediction. However, this response map can only highlight

the discriminative parts of the object (top). We propose a self-supervised task via sub-

category exploration to enforce the classification network learn better response maps

(bottom).

map to localize the object, 2) refine the initial response as the pseudo ground truth, and

3) train the segmentation network based on pseudo labels. Although promising results

have been achieved by recent methods [1, 26, 55, 57], most of them focus on improving

the second and the third steps. Therefore, these approaches may suffer from inaccurate

predictions generated in the first step, i.e., initial response. Here, we aim to improve the

performance of initial predictions which will benefit succeeding steps.

In order to predict the initial response map for each category, numerous approaches

based on the class activation map (CAM) model [65] have been developed. Essentially,

these methods train a classification network and use its learned weights in the classifier

as the cues to compute weighted sums of feature maps, which can be treated as the

response map. However, such response maps may only focus on a portion of the object,
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instead of localizing the entire object (see top of Figure 3.1). One explanation is that the

objective of the classifier does not need to “see” the entire object for optimizing the loss

function. This impairs the classifier’s ability to locate the objects.

At the core of our technique is to impose a more challenging task to the network

for learning better representations, while not jeopardizing the original objective. To this

end, we propose a simple yet effective method by introducing a self-supervised task

that discovers sub-categories in an unsupervised manner, as illustrated at the bottom of

Figure 3.1. Specifically, our task consists of two steps: 1) perform clustering on image

features extracted from the classification network for each annotated parent class (e.g.,

20 parent classes on the PASCAL VOC 2012 dataset [16]), and 2) use the clustering

assignment for each image as the pseudo label to optimize the sub-category objective.

On one hand, the parent classifier establishes a feature space through supervised

training as the guidance for unsupervised sub-category clustering. On the other hand, the

sub-category objective provides additional gradients to enhance feature representations

and leverage the sub-space of the original feature space to obtain better results. As such,

the classification model takes a more challenging task and is not limited to the easier

objective of learning only the parent classifier. Moreover, to ensure better convergence

in practice, we iteratively alter the two steps of feature clustering and pseudo training

the sub-category objective.

We conduct extensive experiments on the PASCAL VOC 2012 dataset [16] to demon-

strate the effectiveness of our method, with regard to generating better initial response

maps to localize objects. As a result, our approach leads to favorable performance for

the final semantic segmentation results against state-of-the-art weakly-supervised ap-

proaches. Furthermore, we provide extensive ablation studies and analysis to validate

the robustness of our method. Interestingly, we notice that the network is able to dif-

ferentiate sub-categories with respect to their object size/type, context, and coexistence

with other categories. The main contributions of this work are summarized as follows:

• We propose a simple yet effective method via a self-supervised task to enhance

feature representations in the classification network. This improves the initial

class activation maps for weakly-supervised semantic segmentation as well.

• We explore the idea of sub-category discovery via iteratively performing unsu-
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pervised clustering and pseudo training on the sub-category objective in a self-

supervised fashion.

• We present extensive study and analysis to show the efficacy of the proposed

method, which significantly improves the quality of initial response maps and

leads to better semantic segmentation results.

3.2 Related Work

Within the context of this work, we discuss methods for weakly-supervised seman-

tic segmentation (WSSS) using image-level labels, including approaches that focus on

initial prediction and refinement for generating pseudo ground truths. In addition, al-

gorithms that are relevant to unsupervised representation learning are discussed in this

section.

Initial Prediction for WSSS. Initial cues are essential for segmentation task since it

can provide reliable priors to generate segmentation maps. The class activation map

[65] is a widely used technique for localizing the object. It can highlight class-specific

regions that serve as the initial cues. However, since the CAM model is trained by

a classification task, it tends to activate to the small discriminative part of the object,

leading to incomplete initial masks.

Several methods have been developed to alleviate this problem. Numerous ap-

proaches [48, 56] deliberately hide or erase the region of an object, forcing models

to seek more diverse parts. However, those methods either hide fixed-size patches ran-

domly or require repetitive model training and response aggregation steps. A number

of variants [63, 34] have been proposed to extend the initial response via an adversar-

ial erasing strategy in an end-to-end training manner, yet such strategies may gradually

expand their attention to non-object regions, leading to inaccurate attention maps. Re-

cently, the SeeNet approach [25] applies self-erasing strategies to encourage networks

to use both object and background cues, which prevent the attention from including

more background regions. Instead of using the erasing scheme, the FickleNet method

[33] introduces stochastic feature selection to obtain diverse combinations of locations
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on feature maps. By aggregating the localization maps, they acquire the initial cue that

contains a larger region of the object.

Different from the methods that mitigate the problem by discovering complemen-

tary regions via iterative erasing steps or consolidating attention maps, our proposed

approach aims at forcing the network to learn on a more challenging task via self-

supervised sub-category exploration, thereby enhancing feature representations and im-

proving the response map.

Response Refinement for WSSS. Numerous approaches [1, 17, 18, 26, 31, 55, 57]

have been proposed to refine the initial cue via expanding the region of attention map.

The SEC method [31] proposes a loss function that constrains both global weighted rank

pooling and low-level boundary to expand the localization map. To improve the network

training, the MCOF scheme [55] uses a bottom-up and top-down framework which al-

ternatively expands object regions and optimizes the segmentation network, while the

MDC method [57] expands the seeds by employing multiple branches of convolutional

layers with different dilation rates. Moreover, the DSRG approach [26] refines initial lo-

calization maps by applying a seeded region growing method during the training of the

segmentation network. Other approaches have been developed via affinity learning. For

instance, the AffinityNet [1] considers pixel-wise affinity to propagate local responses to

nearby areas, while [17, 18] explore cross-image relationships to obtain complementary

information that can infer the predictions.

Nevertheless, initial seeds are still obtained from the CAM method. If these seeds

only come from the discriminative parts of objects, it is difficult to expand regions into

non-discriminative parts. Moreover, if the initial prediction produces wrong attention

regions, applying the refinement step would cover even more inaccurate regions. In this

thesis, we focus on improving the initial prediction, which leads to more accurate object

localization and benefits the refinement step.

Unsupervised Representation Learning. Unsupervised learning has been widely stud-

ied in the computer vision community. One advantage is to learn better representations

of images and apply learned features on any specific domain or dataset where annota-

tions are not always available. Self-supervised learning [13] utilizes a pretext task to
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replace the labels annotated by humans with “pseudo-labels” directly computed from

the raw input data. A number of methods [39, 42, 43] have been developed but require

expert knowledge to carefully design a pretext task that may lead to good transferable

features. To reduce the domain knowledge requirement, Coates and Ng [9] validate that

feature-learning systems with K-means can be a scalable unsupervised learning module

that can train a model of the unlabeled data for extracting meaningful features. Further-

more, a recent approach [4] employs a clustering framework to extract useful visual fea-

tures by alternating between clustering the image descriptors and updating the weights

of the CNN by predicting the cluster assignments, in order to learn deep representations

specific to domains where annotations are scarce. In this work, we propose to learn a

self-supervised method that explores the sub-category in the classification network, i.e.,

using unsupervised signals to enhance feature representations while improving initial

response maps for weakly-supervised semantic segmentation.

3.3 Proposed Algorithm

In this section, we describe our framework for weakly-supervised semantic segmen-

tation, including details of how we explore sub-categories to improve initial response

maps and generate final semantic segmentation results.

3.3.1 Algorithm Overview

To obtain the initial response, we follow the common practice of training a classi-

fication network and utilize the CAM method [65] to obtain our baseline model. The

CAM method typically only activates on discriminative object parts, which are not suf-

ficient for the image classification task. To address this issue, we propose to integrate

a more challenging task into the objective: self-supervised sub-category discovery, in

order to force the network to learn from more object parts.

Firstly, for each annotated parent class, we determine K sub-categories by applying

K-means clustering on image features. With the clustering results, we then assign each

image a pseudo label, which is identified as the index of the sub-category. Finally,

we construct a sub-category objective to jointly train the classification network. By
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Figure 3.2: Proposed framework for generating the class activation map. Given input

images I , we first feed them into a feature extractor E to obtain their features f . Then,

we adopt unsupervised clustering on f and obtain sub-category pseudo labels Ys for

each image. Next, we train the classification network to jointly optimize the parent clas-

sifier Hp with ground truth labels Yp for parent classes and the sub-category classifier

Hs using the sub-category pseudo labels obtained in the clustering stage. By iteratively

performing unsupervised clustering on image features and pseudo training the classifi-

cation module, we use the jointly optimized classification network to produce the final

activation map M .

iteratively updating the feature extractor, two classifiers, and sub-category pseudo labels,

the enhanced features representations lead to better classification, and thereby gradually

produce response maps that attain to more complete regions of the objects. The overall

process is illustrated in Figure 3.2. Then, we use the method in [1] to expand response

maps, which are used as pseudo ground truths to train the segmentation network. Also

note that, our method focuses on the initial prediction, so it is not limited to certain

region expansion or segmentation training methods.

Preliminaries: Initial Response via CAM. We adopt the CAM to generate the initial

response using a typical classification network, whose architecture consists of convo-

lutional layers as the feature extractor E, followed by global average pooling (GAP)

and one fully-connected layer Hp as the output classifier. Given an input image I , the

network is trained with image-level labels Yp using a multi-label classification loss Lp,
following [65]. After training, the activation mapM for each category c can be obtained
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via directly applying classifier Hp on the feature maps f = E(I):

M c(x, y) = θc>p f(x, y), (3.1)

where θcp is the classifier weight for the category c, and f(x, y) is the feature at pixel

(x, y). The response map is further normalized by the maximum value in M c.

3.3.2 Sub-category Exploration

The activation map for each image using (3.1) provides typically highlights only the

discriminative object parts. However, from the perspective of a classifier, discovering

the most discriminative part of the object is already sufficient for optimizing the loss

function Lp in classification. As the learning objective is based on the classification

scores, it is inevitable for the CAM model to generate incomplete attention maps. To

address this issue, we integrate a self-supervised scheme to enhance feature representa-

tions f while improving the response maps via exploring the sub-category information,

in which f appears to be an important cue to compute the activation map via (3.1).

Sub-Category Objective. To assign a more challenging problem to the classification

model, we introduce a task to discover sub-categories in an unsupervised manner. For

each parent class pc, we define K sub-categories skc , where k = {1, 2, , K}. For each

image I with the parent label Y c
p in {0, 1}c, the corresponding sub-category label for the

category c is denoted as Y c,k
s in {0, 1}k. We also note that, if the label of one parent

class does not exist (i.e., Y c
p = 0), the labels of all sub-categories would be also 0,

i.e., Y c,k
s = 0, k = {1, 2, ..., K}. Our objective is to learn a sub-category classifier Hs

parameterized with θs, while sharing the same feature extractor E with Hp. Similar to

the parent classification loss Lp, we adopt the standard multi-label classification loss Ls
with a larger and fine-grained label space Ys.

Sub-category Discovery. As there is no ground truth label for sub-category to directly

optimize the above sub-category objective Ls, we generate pseudo labels via unsuper-

vised clustering. Specifically, we perform clustering for each parent class on image

features extracted from the feature extractor E. The clustering objective for each class
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c can be written as:

min
D∈Rd×k

1

N c

Nc∑
i=1

min
Y c
s

||f − TY c
s ||22, s.t., Y c>

s 1k = 1, (3.2)

where T is a D×K centroid matrix, N c is the number of images containing the class c,

and f = E(I) ∈ RD is the extracted feature. We use the clustering assignment Y c
s for

each image as the sub-category pseudo label to optimize Ls.

Joint Training. After obtaining sub-category pseudo labels Ys from the above clus-

tering process, we jointly optimize the feature representations f = E(I) and two clas-

sifiers, i.e., Hp and Hs:

min
θp,θs

1

N

N∑
i=1

Lp(Hp(fi), Yp) + λLs(Hs(fi), Ys), (3.3)

where N is the total number of images and λ is weight to balance two loss functions.

With this method, the parent classification learns a feature space through supervised

training via Lp, while the sub-category objective Ls explores the feature sub-space and

provides additional gradients to enhance feature representations f , which is used to

compute CAM via (3.1).

Iterative Optimization. The proposed unsupervised clustering scheme in (3.2) relies

on the feature f to discover sub-category pseudo labels. As such, the learned features via

only the objective Lp could be less discriminative for the clustering purpose. To mitigate

this issue, we adopt an iterative training method by alternatively updating (3.2) and (3.3).

Therefore, features f are first enhanced through the sub-category objective, and in turn

facilitate the clustering process to generate better pseudo ground truths, which are then

used to learn better feature representations in network training. The overall optimization

for generating final class activation maps is summarized in Algorithm 1.

3.3.3 Implementation Details

In this section, we describe the implementation details of the proposed framework

and the following procedures to produce final semantic segmentation results.
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Algorithm 1 Learning Sub-category Discovery for CAM

Input: Image I; Parent Label Yp; Category Number C;

Sub-category Number K

Output: Class Activation Map M c

Model: Feature extractor E; Parent Classifier (Hp; θp);

Sub-category Classifier (Hs; θs)

Optimize {E,Hp} with Yp via Lp
while Training do

Extract features via f = E(I)

for c← 1 to C do

Generate pseudo labels Y c
s with f via (3.2)

Optimize {E,Hp, Hs} with {Yp, Ys} via (3.3)

Compute M c via (3.1)

Classification Network. In this work, the ResNet-38 architecture [58] is used for the

CAM model, and the training procedure is similar to that in [1]. The network consists

of 38 convolution layers with wide channels, followed by a 3× 3 convolution layer with

512 channels for better adaptation to the classification task, a global average pooling

layer for feature aggregation, and two fully-connected layers for image and sub-category

classification, respectively. The model is pre-trained on the ImageNet [14] and is then

finetuned on the PASCAL VOC 2012 dataset. We use typical techniques such as hori-

zontal flip, random cropping, and color jittering operations to augment the training data

set. We also randomly scale the input images to impose scale invariance in the network.

We implement the proposed framework with PyTorch and train on a single Titan

X GPU with 12 GB memory. To train the classification network, we use the Adam

optimizer [30] with initial learning rate of 1e-3 and the weight decay of 5e-4. In practice,

we use λ = 5 andK = 10 in all the experiments unless specified otherwise. For iterative

training, we empirically find that the model converges after training for 3 rounds. In the

experimental section, we show studies for the choice of K and iterative training results.
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Semantic Segmentation Generation. Based on the response map generated by our

method as in Algorithm 1, we adopt the random walk method via affinity [1] to refine

the map as pixel-wise pseudo ground truths for semantic segmentation. In addition, as

a common practice, we use dense conditional random fields (CRF) [32] to further refine

the response to obtain better object boundaries. To train the segmentation network,

we utilize the Deeplab-v2 framework [6] with the ResNet-101 architecture [23] as the

backbone model.

3.4 Experimental Results

In this section, we first present the main results and analysis of the initial response

generated by our method. Second, we show the final semantic segmentation perfor-

mance on the PASCAL VOC dataset [16] against the state-of-the-art approaches.

3.4.1 Evaluated Dataset and Metric

We evaluate the proposed approach on the PASCAL VOC 2012 semantic segmen-

tation benchmark [16] which contains 21 categories, including one background class.

Each image contains one or multiple object classes. Following previous weakly-supervised

semantic segmentation methods, we use the augmented 10,528 training images present

in [21] along with their image-level labels to train the network. To evaluate the training

set, we use the set without augmentation which has 1,464 examples. We adopt 1,449

images in the validation set and 1,456 images in the test set to compare our results with

other methods. For all experiments, the mean Intersection-over-Union (mIoU) ratio is

used as the evaluation metric. The results for the test set are obtained from the official

PASCAL VOC evaluation website.

3.4.2 Improvement on Initial Response

In Table 3.1, we show the mean IoU of the segments computed using the CAM on

both the training and validation sets. We present results after applying the refinement

step to the activation map, i.e., CAM + random walk (CAM + RW). Table 3.1 shows



31

Table 3.1: Performance comparison in mIoU (%) for evaluating activation maps on the

PASCAL VOC training and validation sets.

Training Set Validation Set

Method CAM CAM+RW CAM CAM+RW

AffinityNet [1] 48.0 58.1 46.8 57.0

Ours 50.9 63.4 49.6 61.2

Figure 3.3: Sample results of initial responses. Our method often generates the response

map that covers larger region of the object (i.e., attention on the body of the animal),

while the response map produced by CAM [65] tends to highlight small discriminative

parts.

that our approach significantly improves the IoU over AffinityNet [1] by almost 3%

using CAM and more than 4% for CAM+RW. The improved initial response maps fa-

cilitate the downstream task in generating pixel-wise pseudo ground truths for training

the semantic segmentation model.

In Figure 3.3, we show comparisons of generated CAMs by the conventional classi-

fication loss Lp [65] and the proposed method via sub-category discovery summarized

in Algorithm 1. Visual results show that our method is able to localize more complete

object regions, while the original CAM only focuses on discriminative object parts. We

also note that this is essentially critical for the refinement stage that takes the response

map as the input.



32

Figure 3.4: Ablation study for K. We show that the proposed method performs robustly

with respect to K and is consistently better than the original CAM that did not apply

clustering to discover sub-categories. We mark the value of mIoU of the original CAM

at K = 1 and the improved mIoUs are presented.

3.4.3 Ablation Study and Analysis

To demonstrate how our method helps improve feature representations and allow

the network to pay more attention to other object parts via exploiting the sub-category

information, we present extensive analysis in this section. Here, all the experimental

results are based on the PASCAL VOC validation set.

Effect of Sub-Category Number K. We first study how the sub-category number K

affects the performance of the proposed method. In Figure 3.4, we useK = {5, 10, 20, 50},
and show that the proposed method performs robustly with respect to K (within a wide

range) and consistently better than the original CAM method (i.e., K = 1). The results

also validate the necessity and importance of using more sub-categories (i.e., K > 1) to

generate better response maps. Considering the efficiency and accuracy, we use K = 10

for each parent class in all the experiments. As a future work, it is of great interest to de-

velop an adaptive method to determine the sub-category number [46], which can reduce

the redundant sub-categories and make the approach more efficient.
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Table 3.2: Segmentation quality of the initial response at different rounds of training

on the PASCAL VOC 2012 validation set. We show there is a gradual improvement on

both mIoU and F-Score metrics.

Round mIoU (%) ↑ F-Score ↑

#0 (CAM) 46.8 65.1

#1 48.0 65.6

#2 48.7 66.6

#3 49.6 67.0

Iterative Improvement. To demonstrate the effectiveness of our iterative training pro-

cess, we show the gradual improvement on the segment quality in Table 3.2. We present

the results of mIoU and F-Score that accounts for both the recall and precision measure-

ments, in which they are important cues to validate whether the activation map is able

to cover object parts. Compared to the results in round #0, which is the original CAM,

our method gradually improves both metrics as training more rounds.

Clustering Results. Since the ground truth labels are not available for sub-categories,

we present visualizations of the clustering results in Figure 3.5 to measure the quality, in

which each parent class shows 3 example clusters. Our method is able to cluster objects

based on their size (Aeroplane, Bird, Cow), context (Aeroplane, Bird, Person), type

(Boat, Bird), pose (Cow), and interaction with other categories (Person). For instance,

persons with different categories, e.g., horse, motobike, and boat, are clustered into

different groups. This visually validates that our learned feature representations are

enhanced via the sub-category objective in an unsupervised manner.

Weight Visualization. In order to understand how our learning mechanism improves

the clustering quality, we visualize the distribution of the classifier weights, i.e., θp and

θs, via t-SNE [52]. As such, we are able to find the relationship between the parent

classifier Hp and the sub-category module Hs. Figure 3.6 shows the visualization of
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Figure 3.5: Clustering results of the last round model (#3). We show 3 clusters for each

parent class and demonstrate that our learned features are able to cluster objects based

on their size (Aeroplane, Bird, Cow), context (Aeroplane, Bird, Person), type (Boat,

Bird), pose (Cow), and interaction with other categories (Person).

Figure 3.6: Visualizations of weights based on the t-SNE method that illustrates the

relationships on semantic-level between parent classifier and the person sub-category

classifier. We show that one person sub-category is usually close to one parent class, as

they often co-appear in the same image, as shown in example images on two sides.

weights, in which we take the sub-categories of person (denoted as yellow cross sym-

bols) as the example, since the person category has more interactions with other parent

classes (denoted as solid circles). It illustrates that one person sub-category is often

close to one parent class, e.g., sub-category person and parent class bike, which makes

sense as those two categories usually co-appear in the same image (see example images

in Figure 3.6 on two sides).
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Figure 3.7: Qualitative results on the PASCAL VOC 2012 validation set. (a) Input

images. (b) Ground truth. (c) Our results.

Table 3.3: Semantic segmentation performance on the PASCAL VOC 2012 validation

set. Bottom group contains results with CRF refinement, while the top group is without

CRF. Note that 11/20 classes obtain improvements using our approach w/ CRF. The best

three results are in red, green and blue, respectively.
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AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

Ours (w/o CRF) 88.1 49.6 30.0 79.8 51.9 74.6 87.7 73.7 85.1 31.0 77.6 53.2 80.3 76.3 69.6 69.7 40.7 75.7 42.6 66.1 58.2 64.8

MCOF [55] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

Zeng et al. [61] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3

FickleNet [33] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9

Ours (w/ CRF) 88.8 51.6 30.3 82.9 53.0 75.8 88.6 74.8 86.6 32.4 79.9 53.8 82.3 78.5 70.4 71.2 40.2 78.3 42.9 66.8 58.8 66.1

3.4.4 Semantic Segmentation Performance

After generating the pseudo ground truths as the results in Table 3.1 (i.e., CAM +

RW), we use them to train the semantic segmentation network. We first compare our

method with recent work using the ResNet-101 backbone or other similarly powerful

ones in Table 3.4. On both validation and testing sets, the proposed algorithm performs

favorably against the state-of-the-art approaches. We also note that, most methods focus

on improving the refinement stage or network training, while ours improves the initial

step to generate better object response maps.
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Table 3.4: Comparison of weakly-supervised semantic segmentation methods on the

PASCAL VOC 2012 val and test sets. In addition, we present methods that aim to

improve the initial response with X in the “Init. Res.” column.

Method Backbone Init. Res. Val Test

MCOF CVPR’18 [55] ResNet-101 60.3 61.2

DCSP BMVC’17 [5] ResNet-101 60.8 61.9

DSRG CVPR’18 [26] ResNet-101 61.4 63.2

AffinityNet CVPR’18 [1] Wide ResNet-38 61.7 63.7

SeeNet NIPS’18 [25] ResNet-101 X 63.1 62.8

Zeng et al ICCV’19 [61] DenseNet-169 63.3 64.3

BDSSW ECCV’18 [18] ResNet-101 63.6 64.5

OAA ICCV’19 [28] ResNet-101 X 63.9 65.6

CIAN CVPR’19 [17] ResNet-101 64.1 64.7

FickleNet CVPR’19 [33] ResNet-101 X 64.9 65.3

Ours ResNet101 X 66.1 65.9

In Table 3.3, we show detailed results for each category on the validation set. We

compare two groups of results with (bottom) or without (top) applying the CRF [32]

refinement to the final segmentation outputs. Compared to the recent FickleNet [33]

method that also focuses on improving the initial response map, the proposed algorithm

performs favorably for the segmentation task in terms of the mean IoU. We also note

that, our results without applying CRF (mIoU as 64.8%) already achieves similar per-

formance compared with the FickleNet (mIoU as 64.9%). In Figure 3.7, we present

some examples of the final semantic segmentation results, and show that our results are

close to the ground truth segmentation.
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3.4.5 Quality of Clustering

Figure 3.9 to Figure 3.11 present exemplar results of the clustering for 3 different

classes in the PASCAL VOC 2012 dataset [15] (i.e., class of bird, boat, and sheep). For

each class, we show the clustering result of the first round and the third round model,

which are the beginning and the final clustering result during the iterative training pro-

cess.

By observing the visual change between Round-1 and Round-3, we can find the

quality of clustering results is enhanced. For example, in Figure 3.9, images of the bird

flying in the sky are clustered into different clusters at Round-1, yet such images can be

gathered into the same cluster at Round-3. Note that in Figure 3.9 to Figure 3.11, we

use yellow boxes to mark the images that have a similar visual style but are clustered

into different clusters at Round-1. Whereas images with the coherent visual style are

clustered into one cluster at Round-3, which is marked by red boxes.

Results of the final round of clustering present the consistency within a cluster, in-

cluding size, type, context, and the interaction between objects. The visual change

between the first and the last round of clustering demonstrates the effectiveness of our

iterative training process, which validates that our learned feature representations are

enhanced via the sub-category objective in an unsupervised manner.

3.4.6 Qualitative Comparisons

In this section, we provide additional results for qualitative comparisons, including

the visual comparison of initial response prediction and segmentation result. Figure

3.12 presents both initial response maps and segmentation results of the AffinityNet [1]

method and ours. We illustrate intermediate results to demonstrate that a better initial

seed can benefit the quality of segmentation result, and a number of qualitative examples

of our final model are presented in Figure 3.13.

In addition, we also show some failure segmentation cases in Figure 3.8. There

are two main issues that would affect the quality of segments: 1) the incompleteness

on detailed parts and 2) the ambiguity on object boundaries, which are two challeng-

ing problems of the segmentation task. Although there are some failure examples, our
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Input Image Ground Truth Ours Input Image Ground Truth Ours

(a) (b)

Figure 3.8: Failure semantic segmentation results. (a) Failure cases of the incomplete-

ness on detailed parts. Legs of the animal are missing in the segment. (b) Failure case

of the ambiguity on object boundary. There are errors on the boundary region between

two objects.

approach can produce high quality semantic segmentation results.

3.5 Summary

In this chapter, we propose a simple yet effective approach to improve the class acti-

vation maps by introducing a self-supervised task to discover sub-categories in an unsu-

pervised manner. Without bells and whistles, our approach performs favorably against

existing weakly-supervised semantic segmentation methods. Specifically, we develop

an iterative learning scheme by running clustering on image features for each parent

class and train the classification network on sub-category objectives. Unlike other ex-

isting schemes that aggregate multiple response maps, our approach generates better

initial predictions without introducing extra complexity or inference time to the model.

We conduct extensive experimental analysis to demonstrate the effectiveness of our ap-

proach via exploiting the sub-category information. Finally, we show that our algorithm

produces better activation maps, thereby improving the final semantic segmentation per-

formance.



39

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Round-1 | Bird

Round-3 | Bird

Figure 3.9: Visual comparison of the different rounds of clustering of bird class. Red

boxes at later round demonstrate sets of image with visual consistency compared to

images marked by yellow boxes at the beginning round.
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Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Round-1 | Boat

Round-3 | Boat

Figure 3.10: Visual comparison of the different rounds of clustering of boat class. Im-

ages of sailboat are in different clusters at Round-1 while such image can be clustered

to one cluster (i.e., Cluster-10) at Round-3.
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Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 Cluster-7 Cluster-8 Cluster-9 Cluster-10

Round-1 | Sheep

Round-3 | Sheep

Figure 3.11: Visual comparison of the different rounds of clustering of sheep class.

Images of sheep in the meadow in distant view are in different clusters at Round-1

while such images can be clustered to one cluster (i.e., Cluster-5) at Round-3.
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Input Image Ground Truth
AffinityNet [1] Ours

Initial Response Initial ResponseSeg. Result Seg. Result

Figure 3.12: Qualitative comparison of the initial response map and semantic segmen-

tation map. We compare our intermediate and final results with the AffinityNet [1]

approach.
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Input Image Ground Truth Ours Input Image Ground Truth Ours

Figure 3.13: Semantic segmentation results on the PASCAL VOC 2012 val images.



Chapter 4

Conclusions and Future Work

In this thesis, we propose two self-regularization methods to improve the localiza-

tion of object response maps, as an initial step towards weakly-supervised semantic

segmentation task using image-level labels. We first present the Mixup-CAM method

in Chapter 2, which is an end-to-end trainable network with loss functions designed

to systematically control the generation of the response map. Specifically, we adopt

the entropy-based loss to regularize the uncertainty, coupled with the mixup data aug-

mentation for producing better response maps on objects. In Chapter 3, we introduce

a self-supervised task to discover sub-categories in an unsupervised manner. particu-

larly, we develop an iterative learning scheme by running clustering on image features

for each parent class and train the classification network on sub-category objectives.

By imposing a more challenging task, the model learns better representations thereby

improving the response map. We provide comprehensive analysis of each component

in the proposed method and show our approaches produce better activation maps and

achieve state-of-the-art performance against existing algorithms. We conclude the the-

sis by discussing the potential directions for future research.

Large-scale Datasets. To provide more insight and investigate weakly-supervised se-

mantic segmentation, we can first utilize other large-scale datasets such as MS COCO

[37] to validate whether our methods could have more advantages. In addition, other

scenarios such as outdoor [10] and indoor [66] datasets could be further exploited to

observe their different characteristics, and more advanced self-regularization algorithms

44
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can be developed accordingly to deal with various challenging cases.

Other Self-regularization Techniques. Second, we could incorporate other regular-

ization techniques like label smoothing [38], and observe whether it has complementary

properties compared to our methods. Moreover, recent advances of contrastive learning

[7] also shares a similar concept of learning effective visual representations, and such

technique could become meaningful training signals to regularize deep learning models,

in which potentially could improve our initial object responses.

Various Training Steps, Annotation Types, and Tasks. Finally, self-regularization

methods could be helpful for the other two steps (i.e., response refinement and segmen-

tation model training). In addition, how to integrate these three steps or different kinds

of weak supervision signals towards a unified framework is one interesting direction.

Beyond weakly-supervised semantic segmentation, improving initial predictions could

be helpful for other tasks, such as image retrieval, video analysis, and scene understand-

ing.

With the introduced self-regularization methods in this thesis, we provide a foun-

dation for such future directions towards learning better feature representations, while

we target at the weakly-supervised semantic segmentation setting that generates better

response maps for object localization as the demonstration task.
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