UCLA

Posters

Title

SCALE: A Tool for Connectivity Assessment in Lossy Environments

Permalink

https://escholarship.org/uc/item/0p44m1nb

Authors

Alberto Cerpa Naim Busek Deborah Estrin

Publication Date

2003

CAS Center for Embedded Networked Sensing

SCALE: A tool for Connectivity Assessment in Lossy Environments

Alberto Cerpa, Naim Busek, and Deborah Estrin

CENS System Lab - http://lecs.cs.ucla.edu - cerpa@cs.ucla.edu

Goal: understand qualitatively and quantitatively the factors affecting low-power radio propagation

Why is this important?

- Reality guides algorithm development and protocol parameter tuning
- Data for better propagation models used in simulations

Design Parameter	Data Collected	Utility	
Physical density	Delivery rate vs. distance	Expected mean topological density	
	Delivery rate vs. environment type and distance	Expected standard deviation in topological density	
Algorithmic selection		Expected performance of in-network processing, e.g. opportunistic (geographical) data aggregation	
Protocol selection		Expected performance of spatial correlation, e.g. geograpical and topological routing	
	Link asymmetry vs. distance	Expected performance of routing mechanisms that assume bidirectional links	
Protocol parameters (time constants)	Delivery rate vs. time	Find reasonable routing and application soft state refresh time; find neighbor discovery probe period as a function of the stddev.	
	Link asymmetry vs. delivery rate	Find neighbor discovery period as a function of mean and stddev.	
Packet size selection	Delivery rate vs. packet size	Find optimal packet size to maximize efficiency ^a	

Preliminary Results using SCALE

- Great variability over distance (50 to 80% of radio range)
 - Reception rate is not normally distributed around the mean and std. dev.
 - Real communication channel is not isotropic
- Found 5 to 30% of asymmetric links
 - Not correlated with distance or transmission power
 - Primary cause: differences in hardware calibration (rx sensitivity, energy levels)
- Time variability is correlated with mean reception rate and not correlated with distance from the transmitter

One tool fits all: use the same radio device in the same target environment intended for deployment

- Modular software design that leverages on EmStar features (job control, debugging, etc.)
- Runs in centralized or fully distributed way (no code change)
- Visualization tool to check the status in real time and postexperiment analysis
- Fully **configurable**: # and size of packets, data rate, TX gain
- Test 3 different environments:
 - Outdoor Habitat: Will Rogers Park; Outdoor Urban: Boelter Hall Court Yard; Indoor: LECS Lab Ceiling.

Mote

Mote

Mote

- Use 2 different hardware platforms:
 - Mica 1: RFM 916MHz, ASK, 13.3kbps; Mica 2: Chipcon 433MHz, FSK, 19.2kbps

Experimental Results: channel variability, the norm for low-power radios

Spatial Characteristics

- Low degree of correlation between distance and reception probability; lack of monotonicity and isotropy
- The region of highly variable reception rates is 50% or more of the radio range, and it is **not** confined to the **limit** of the radio range

Asymmetric Links

Node Type	Location Type	Asymmetric link-pairs before swapping	Inverted link-pairs <i>after</i> swapping
Mica 2	Outdoor Urban	11	10
Mica 2	Indoor Office	10	9
Mica 1	Indoor Office	24	22

- No simple correlation between asymmetric links and distance or TX output power
- When swapping the asymmetric links node pairs, the asymmetric links were inverted (91.1% \pm 8.32)
- Link asymmetries are primarily caused by differences in hardware calibration.

Temporal Characteristics

- Links with high and low mean reception rate tend to be stable over time
- Links with **medium** reception rate tend to be highly variable over time
- Time variability is **not** correlated with distance from the transmitter