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ABSTRACT OF THE THESIS 

Predictive Modeling for Insurance Pricing: 

A Comparative Analysis of Actuarial Techniques 

and Machine Learning Algorithms 

 

by 

Ting Lyu 

 

Master of Science in Statistics 

University of California, Los Angeles, 2024 

Professor Yingnian Wu, Chair 

 

This thesis examines insurance pricing with the goal of improving predictive accuracy through 

a comparative analysis of traditional actuarial techniques and modern machine learning 

algorithms. By utilizing real-world datasets from insurance companies, the research applies 

five distinct methodologies to analyze the key variables within the insurance dataset. The 

primary objective is to identify the most effective approaches in forecasting claim amounts. 

The findings of this study seek to advance predictive accuracy and provide substantial business 

value, thereby promoting innovation and excellence in risk management within the insurance 

industry. 
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1. Introduction 

In the era of big data, various industries have been at the forefront of digital transformation 

and big data integration, using these technologies to enhance business processes (Le, 2023). 

In the insurance industry, the accuracy of pricing models is critical for objective risk 

evaluation, which influences both the profitability of insurers and the affordability for 

policyholders.  Traditionally, insurance pricing has relied on actuarial techniques, utilizing 

statistical methods and historical data to estimate risk and to set premiums. While these 

methods are robust and well-established, they have their own limitations in capturing the 

dynamic nature of modern insurance data.  

 

As the evolution of Machine Learning (ML) algorithms, it gives ways in predictive modeling 

for enhancing accuracy and efficiency. However, the integration of ML into insurance pricing 

presents the challenges such as data interpretation complexities, high dimensionality, 

heterogeneity, and regulatory compliance as well. According to the Actuary Magazine, “the 

application of actuarial big data is limited to traditional actuarial model construction and 

includes various machine learning algorithms, mapping knowledge domains and other 

modeling methods” (Le, 2023). It is essential to select suitable modeling techniques based on 

the scenario’s objectives and to optimize these models through a series of test indicator and 

visual evaluations. In this study, five distinct methodologies have been selected to achieve 

models with the most accurate results. 

 

The objective of this study is to conduct a comparative analysis of actuarial techniques and 

machine learning algorithms to identify the most effective models for insurance pricing. This 
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analysis is important, not only for the accuracy of the predictions, but also for the 

interpretability of the models, computational efficiency. By examining these dimensions, the 

research aims to provide a comprehensive evaluation of how these methodologies preform in 

practical situations.  

 

The findings of this study hold significant implications for insurance companies seeking to 

optimize their pricing strategies in an increasingly competitive market. Enhanced predictive 

accuracy can lead to more precise premium setting, better risk management, and ultimately, 

improved profitability. Moreover, this research contributes to the existing body of knowledge 

by identifying gaps in the current literature and proposing potential directions for future 

research. Through rigorous analysis and evaluation, it aims to provide actionable insights that 

can help insurers adopt the most effective predictive modeling approaches, thereby enhancing 

their ability to manage risk and achieve financial stability. 
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2. Literature Review 

This chapter introduces the evolution of predictive modeling in insurance pricing, contrasting 

traditional actuarial techniques with contemporary machine learning (ML) approaches. By 

exploring the strengths and limitations of both methodologies, this review establishes a 

critical foundation for understanding their application and efficacy in modern insurance 

pricing strategies. 

2.1 Traditional Actuarial Techniques  

In the insurance pricing, the most commonly used traditional actuarial techniques are 

Generalized Linear Models (GLMs) and Credibility Theory. GLMs extend the capabilities of 

linear regression models to accommodate a continuous response variable given continuous 

and/or categorical predictors. The general form is  

𝑦𝑖 ~ 𝑁(𝑥𝑖
𝑇𝛽, 𝜎2), 

where 𝑥𝑖 contains known covariates and 𝛽 contains the coefficients to be estimated 

(PennState, 2024). To enhance the model’s flexibility, the response variable 𝑦𝑖 is assumed to 

follow an exponential family distribution, such as Poisson for count data and Gamma for 

continuous positive data. This framework enables the inclusion of multiple predictor 

variables and accounts for the inherent distribution of the response variable, making it robust 

for predicting insurance claims. The adaptability of GLMs is essential for handling the 

diverse and complex nature of insurance data. 

 

On the other hand, Credibility Theory offers a distinct approach by integrating individual risk 

experience with aggregate data to adjust premiums. According to “Credibility Methods for 

Individual Life Insurance”, the main idea can be formulated as follows:   
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Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) denote independent losses, which 𝑋𝑗 be the annual loss amount from 

policyholder j 

𝜁 = 𝐸(𝑋𝑗),  

 
𝜎

2
= 𝑣𝑎𝑟(𝑋𝑗) 

𝑆 = ∑ 𝑋𝑗

𝑛

𝑗=1
,  

�̅� =
𝑆

𝑛
 

Then,  

𝐸(𝑆) = 𝑛𝜁, 

𝐸(𝑋) = 𝜁, 

𝑣𝑎𝑟(𝑆) = 𝑛𝜎2, 

𝑣𝑎𝑟(𝑋) =
𝜎2

𝑛
 

Credibility Estimate is 𝑃 = 𝑍�̅� + (1 − 𝑍)𝑀, which M be the estimate of the mean for this 

group, Z be credibility factor (Maxwell Gong ,Zhuangdi Li). This technique balances the 

trade-off between stability and responsiveness in insurance pricing by assigning a credibility 

factor that quantifies the degree to which individual experience should influence the overall 

premium. Despite their proven effectiveness, both GLMs and Credibility Theory are 

constrained by their reliance on assumptions of linearity, independence, and 

homoscedasticity. These assumptions may limit their adaptability to more complex, non-

linear relationships in the data. 

 2.2 Evolution of Machine Learning in insurance 

Compared to traditional methods, the integration of machine learning (ML) has catalyzed 

significant advancements in insurance pricing methodologies. ML techniques such as 
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Decision Trees, Random Forests, Gradient Boosting Machines, and Neural Networks have 

significantly enhanced the ability to identify patterns, assess risk, and improve pricing 

accuracy. These methods excel in handling large, complex datasets and capturing non-linear 

relationships, which are often prevalent in insurance data. 

 

Decision Tree learning is a widely used machine learning technique known for its robustness 

to noisy data and its capability to learn disjunctive expressions. This method approximates 

discrete-valued functions by recursively partitioning the data into subsets based on feature 

values, thereby facilitating efficient algorithms to identify an optimal tree structure 

(M.Mirchell, 1997). A fundamental algorithm underpinning many contemporary decisions 

tree induction methods is Hunt’s algorithm, which constructs the tree in a recursive manner 

by partitioning the training records into increasingly homogeneous subsets (Kumar, 2006). 

Let 𝐷𝑡 be the set of training records associated with node t and 

Let 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑐} be the class labels. 

Hunt’s algorithm operates as follows: 

Step 1 (Homogeneous Node Condition):  

If all the records in 𝐷𝑡 belong to the same class 𝑦𝑡, then t is designed as a lead node 

and is labeled as 𝑦𝑡 . 

Step 2 (Heterogeneous Node Condition):  

If  𝐷𝑡 contains records from multiple classes, an attribute test condition is selected to 

partition the records into smaller, more homogeneous subsets. For each outcome of the 

test condition, a child node is created, and the records in 𝐷𝑡 are distributed among the 

children based on these outcomes. The algorithm is then recursively applied to each 

child node. 
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This approach, detailed by Kumar (2006), forms the foundational principle of Hunt’s 

algorithm in decision tree learning, and it will be employed in the subsequent case study to 

illustrate its application and effectiveness. 

Random Forests address the limitations of individual trees by building multiple decision trees 

and aggregating their predictions, thereby enhancing model stability and predictive accuracy. 

Leo Breiman and Adele Cutler extended the algorithm by integrating the "bagging" method 

with the random selection of features. Unlike single decision tree, Random Forests do not 

require cross-validation or a separate test to obtain an unbiased estimate of the test error. 

Each tree in the forest is trained on a bootstrap sample of the original data, with 

approximately one-third of the cases left out of the sample. These out-of-bag cases, which are 

not included in the bootstrap sample, provide an unbiased estimate of the classification error 

as more trees are added to the forest. Once each tree is built, all data are passed through the 

tree to compute proximities for each pair of cases. Proximities are increased by one for cases 

that occupy the same terminal node. At the end of the run, these proximities are normalized 

by dividing by the number of trees (Leo Breiman, Adele Cutler, 2002). This method enhances 

the robustness and accuracy of the model by leveraging multiple perspectives from various 

decision trees. The principal advantage of Random Forests over Decision Trees lies in their 

ability to reduce overfitting and improve predictive performance by averaging multiple trees 

trained on different subsets of the data. 

 

Gradient Boosting Machines (GBMs) advance the concept of ensemble learning by 

iteratively combining weak learners (e.g. Decision Trees) to construct a robust predictive 

model. The fundamental principle of boosting involves sequentially adding new models to 

the ensemble. During each iteration, a new weak learner is trained with a focus on the errors 

of the ensemble accumulated thus far. This iterative process allows GBMs to progressively 
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improve the model's accuracy by addressing the errors in previous iterations. The basic 

algorithm of GBMs was derived by Freidman (2001).  

Let the dataset  (𝑥, 𝑦)𝑖=1
𝑁 , where 𝑥 = (𝑥1, … , 𝑥𝑑) be the explanatory variables, 𝑦 be the 

response variable. The goal is to reconstruct the unknown functional dependence 𝑥
𝑓
→ 𝑦 with 

the estimate 𝑓(𝑥)̂ using a loss function 𝜓(𝑦, 𝑓) 

𝑓(𝑥)̂ = 𝑎𝑟𝑔 min
𝑓(𝑥)

𝜓(𝑦, 𝑓(𝑥)) 

Friedman’s Gradient Boost Algorithm is as follows: 

Step 1: Initialize 𝑓0̂ with a constant 

Step 2: for t=1 to number of iterations M: 

1. Compute the negative gradient 𝑔𝑡(𝑥) 

2. Fit a new base-learner function ℎ(𝑥, 𝜃𝑡) 

3. Find the best gradient descent step-size 𝜌𝑡 

𝜌𝑡 = 𝑎𝑟𝑔 min
𝜌

∑ 𝜓[𝑦𝑖 , 𝑓𝑡−1̂(𝑥𝑖) + 𝜌ℎ(𝑥𝑖 , 𝜃𝑡)]

𝑁

𝑖=1

 

4. Update the function estimate 

𝑓�̂� ← 𝑓𝑡−1̂ + 𝜌𝑡ℎ(𝑥𝑖 , 𝜃𝑡) 

Step 3: end for 

This algorithm (Alexey Natekin, Alois Knoll, 2013) optimizes the correlation between the 

overall error and the new base learner at each iteration. Its principal advantage is its iterative 

approach, which focuses on correcting errors immediately to enhance predictive accuracy. 
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This algorithm will be used in the subsequent case study to illustrate its efficacy in reducing 

discrepancies. 

 

 

 

2.3 Potential Limitations between Traditional and Modern Techniques 

While both traditional actuarial techniques and machine learning algorithms provide valuable 

tools for predictive modeling in insurance pricing, each has inherent strengths and 

limitations. Actuarial methods like GLMs and Credibility Theory are grounded in well-

established statistical principles, making them highly interpretable and relatively easy to 

implement. However, their reliance on predefined assumptions and linear relationships can 

constrain their ability to adapt to new and emerging patterns in data. These methods are also 

limited by their dependence on historical data, which may not fully capture the dynamic and 

evolving nature of risk factors in the insurance domain. 

 

In contrast, while ML algorithms are good at handling the complex and large dataset and 

capturing non-linear patterns, they have issues with its interpretability and transparency 

which posing challenges for regulatory compliance. Additionally, the implementation and 

maintenance of ML models demands substantial computational resources and expertise 

background, which can be a big challenge for some insurance companies. These potential 

shortcomings also show the necessity for further research that not only applies within 

different kinds of datasets but also addresses the practicalities of model deployment in the 

insurance industry, includes balancing accuracy, interpretability, and operational feasibility in 

selecting appropriate predictive modeling techniques for insurance pricing. By providing a 

comprehensive comparative analysis of traditional actuarial methods and contemporary 
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machine learning algorithms, this research aims to fill existing gaps and contribute to a more 

complete understanding of their respective strengths and weaknesses. 
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3. Data Description 

3.1 Description of Data Collection Process and Data Sources 

The dataset utilized in this study is sourced from an insurance company's comprehensive 

historical database. This dataset includes detailed records pertaining to insurance policies, 

encompassing a wide array of variables essential for predictive modeling. These records offer 

valuable insights into policyholder demographics, claims history, and financial aspects, 

which are crucial for accurate insurance pricing. The original dataset comprises 30 columns, 

providing general information such as age, gender, occupation, income, and location, as well 

as professional insurance information like coverage amount, premium amount, deductible, 

policy type, and customer preferences among 13,000 individuals. 

For a more focused comparative analysis, the dataset has been distilled into seven key 

variables, which will form the basis for subsequent analysis. The initial exploratory data 

analysis (EDA) involved data cleaning and preprocessing steps, such as checking for missing 

values and converting categorical variables to factors. This streamlined dataset will facilitate 

the evaluation and comparison of different predictive modeling techniques. 
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Figure 1: Data Mining and Data Processing 

3.2 Explanation of the Dataset Used for Analysis 

The dataset consists of historical insurance policy data, providing a robust foundation for 

predictive modeling. This curated dataset captures essential aspects of policyholder profiles 

and their claims history, offering valuable insights for analyzing and comparing the 

performance of traditional actuarial techniques and machine learning algorithms. The dataset 

includes the following seven key variables: 

1. Claim Amount: The claim amount is a critical variable for analyzing claims history 

and predicting future claims, serving as the primary response variable in the 

predictive models. 

2. Age:  The age of the policyholder is a critical factor in risk assessment and premium 

calculation, as different age groups exhibit varying risk profiles. 
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3. Income: The income level of the policyholder provides insights into their economic 

status and potential risk exposure, impacting their insurance needs and premium 

affordability. 

The following two figures present the histogram of these three numeric variables and their 

corresponding correlation matrix. In the correlation matrix, a value close to 1indicates a 

strong positive relationship, while a value close to -1 indicates a strong negative relationship. 

It concludes that the relationship of three numeric variables tend to be neutral. A value near 0 

signifies a neutral or weak relationship. The analysis of the correlation matrix reveals that the 

relationships among the three numeric variables tend to be neutral. 

 

Figure 2 the Histogram of Three Numeric Variables (Age, Income, Claim Amount) 
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Figure 3 Correlation Matrix for Three Numeric Variables 

4. Gender: Gender influences risk profiles and insurance pricing, with statistical 

differences observed in claims frequency and severity between male and female 

policyholders. 

5. Marital Status: Marital status affects risk assessment, as married individuals might 

exhibit different risk behaviors compared to single individuals, influencing their 

insurance requirements. 

6. Education: Education level correlates with risk behaviors and insurance requirements, 

as higher education levels often associate with lower risk profiles. 

7. Occupation: The policyholder's occupation affects risk assessment based on 

occupational hazards and income stability, playing a significant role in determining 

premium rates. 

The following two figures illustrate the histograms of four categorical variables and their 

corresponding correlation matrix. In the correlation matrix, dark blue boxes indicate strong 

negative relationships, while light blue boxes represent negative relationships between the 

variables. 
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Figure 4 the Histograms of Four Categorical Variables (Gender, Education, Occupation, Marital Status) 

 

Figure 5 Correlation Matrix for Four Categories Variables 

3.3 Evaluation Metrics 

In the comparative analysis of predictive modeling techniques for insurance pricing, the 

efficacy of both traditional actuarial methods and modern machine learning algorithms will 

be evaluated using a set of robust evaluation metrics. These metrics (Williams, 2019) serve as 

objective measures to assess the performance and predictive accuracy of each approach. 
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1. Deviance: Deviance measures the goodness-of-fit of GLMs by comparing the fitted 

model to a saturated model that perfectly predicts the response variable. Lower 

deviance values indicate better model fit, as they represent smaller discrepancies 

between observed and predicted values.  

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2 ∙ (𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

− 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙) 

2. Akaike Information Criterion (AIC): AIC provides a measure of the relative quality of 

statistical models for a given set of data. It balances the goodness-of-fit of the model 

with its complexity, penalizing models with excessive parameters.  

𝐴𝐼𝐶 = −2 ∙ 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2 ∙ (# 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙) 

3. Bayesian Information Criterion (BIC): Similar to AIC, BIC also assesses model fit 

and complexity, with a preference for simpler models. It penalizes model complexity 

more heavily than AIC, often resulting in the selection of a more conservative model.  

𝐵𝐼𝐶 =  −2 ∙ 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + (# 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙)

∙ log (# 𝑜𝑓 𝑅𝑒𝑐𝑜𝑒𝑑𝑠 𝑖𝑛 𝐷𝑎𝑡𝑎𝑠𝑒𝑡) 

4. Mean Absolute Error (MAE): MAE measures the average magnitude of errors in 

predictions, providing a straightforward assessment of predictive accuracy. It is 

calculated as the average absolute distance between predicted and actual values.  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑗 − 𝑦�̂�|

𝑁

𝑗=1
 

5. Root Mean Squared Error (RMSE): RMSE quantifies the average magnitude of 

prediction errors, placing greater emphasis on larger errors due to its quadratic nature. 

It is calculated as the square root of the average squared differences between 

predicted and actual values.  



 16 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1

𝑁
 

6. R-squared (the coefficient of determination): R-squared is used to evaluate the 

performance of linear regression model. It indicates the proportion of variance in the 

dependent variable that is predictable from the independent variables. It reflects the 

model's explanatory power, with higher values indicating better model fit.  

These evaluation metrics collectively provide a comprehensive framework for assessing the 

performance of predictive models. By employing these metrics, the study aims to identify the 

most effective techniques for insurance pricing, considering both accuracy and model 

complexity. The insights gained from this analysis will inform the selection and 

implementation of predictive modeling approaches in the insurance industry. 
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4. Methodology 

The predictive modeling approach in this study involves developing separate models using 

traditional actuarial techniques and modern machine learning algorithms. Actuarial 

techniques are well-established in the insurance industry due to their interpretability and 

robustness, whereas ML algorithms are recognized for their superior accuracy and the ability 

to handle complex and large datasets. This dual approach aims to provide a comprehensive 

analysis of the strengths and weaknesses of each methodology in the context of insurance 

pricing. 

4.1 Generalized Linear Models (GLMs) 

Generalized Linear Models (GLMs) are fundamental in actuarial science, particularly for 

predicting insurance claims and pricing. Their adaptability to various types of response 

distributions, especially those from the exponential family, makes GLMs highly valuable. In 

this study, a GLM is employed to model the relationship between several predictor variables 

(Age, Gender, Income, Education, Occupation, and Marital Status) and the insurance claim 

amounts. 

The analysis begins by splitting the dataset into training and test sets to facilitate model 

validation and performance evaluation. The training set is used to fit the GLM, while the test 

set is reserved for assessing the model's predictive performance. Then, the GLM is specified 

with a Gaussian distribution and a log-link function to address the positive skewness 

observed in the Claim Amounts. This transformation stabilizes the variance and makes the 

distribution more symmetric, thereby improving model performance. The model formula is 

expressed as:  



 18 

log(𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡)

=  𝛽0 + 𝛽1 ∙ 𝐴𝑔𝑒 + 𝛽2 ∙ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽3 ∙ 𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽4 ∙ 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽5

∙ 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 + 𝛽6 ∙ 𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 

 

Figure 6 the summary() Output of Generalized Linear Model 

Upon fitting the GLM to the training data, the summary output provides insights into the 

significance of each predictor variable. The summary results typically include coefficients, 

standard errors, z-values, and p-values for each predictor. The Significant variables (at the 

0.05 level) include Income, and specific Occupation (Doctor, Engineer, Teacher, and Waiter). 

These results suggest that Income and certain Occupations strongly influence the Claim 

Amount. Variables such as Age, Gender, Education, and Marital Status do not show 

significant effects at the conventional 0.05 level, although Education (Master's, PhD) is 

borderline significant. The intercept, representing the baseline log of the claim amount, 

shows a significant positive effect. This underscores the significance of Income and certain 

occupational categories as predictors of insurance claims. 
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The model's performance is summarized by the following metrics: the null deviance 

represents the fit of a model with only the intercept, while the residual deviance represents 

the fit of the specified model. In this case, the null deviance is 2.4064e+12 with 10399 

degrees of freedom and the residual deviance is the deviance of the current model which is 

1.9669e+12. Lower deviance values indicate better model fit, as the discrepancy between 

observed and predicted values is reduced. Additional performance metrics include the Root 

Mean Square Error (RMSE), Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC). The RMSE of 13104.4 on the test set indicates the magnitude of prediction 

errors, with lower values implying better predictive accuracy. AIC and BIC, with values of 

227740.3 and 227827.3 respectively, serve as the measures of model fit, penalizing for model 

complexity. Lower values of AIC and BIC indicate a more parsimonious model that balances 

fit and complexity. While the model exhibits reasonable fit, there is potential for 

improvement. Future work could explore alternative modeling approaches, including 

machine learning algorithms, to enhance predictive accuracy and compare their performance 

against traditional GLMs.  

4.2 Credibility Theory 

Credibility theory is another fundamental actuarial tool used to refine premium estimates by 

integrating individual risk data with aggregate data. This approach balances the specific 

experience of policyholders with the overall portfolio experience, thereby adjusting 

premiums based on the credibility assigned to individual risks. In this study, the Bühlmann-

Straub credibility model is applied to handle heterogeneous risk groups. 

Bühlmann’s method for updating the predicted loss measure is based on a linear predictor 

that uses past observations. The Bühlmann-Straub model calculates credibility-adjusted 
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premiums by incorporating both the group-specific and overall means and variances of claim 

amounts (Tse, 2009). Initially, the data is grouped by a categorical variable, such as 

Occupation, to identify different risk groups. For each group, the mean and variance of the 

claim amounts are calculated, as well as the overall mean and variance across all groups. The 

model’s primary objective is to derive a credibility factor (Z) for individual risks, effectively 

balancing specific data with collective data. The factor Z is derived as follows:  

𝑍 =
𝑛

𝑛 +
𝜎𝑏

2  

𝜎𝑤
2

 

where,  

• n is the number of claims for an individual policyholder 

• 𝜎𝑏
2  is the variance between different groups 

• 𝜎𝑤
2   is the variance within groups 

Using the formula, the credibility factor for each group is computed. subsequently, the 

credibility-adjusted premium for a policyholder is calculated as: 

�̂� = 𝑍 ∙ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑒𝑎𝑛 + (1 − 𝑍) ∙ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑀𝑒𝑎𝑛 

where the individual mean is the mean claim amount for the policyholder’s group, and the 

overall mean is the mean claim amount across all groups. 

The model’s performance is evaluated using mean squared error (MSE), which quantifies the 

discrepancy between predicted premiums and actual claim amounts. The high MSE has the 

value of 3.54 × 108 suggests significant discrepancies between the predicted premiums and 

the actual claim amounts. Several factors may contribute to this result. The Bühlmann-Straub 
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model assumes constant variance within each group and between groups. If this assumption 

does not hold, the model’s accuracy may be compromised. Additionally, this model may not 

fully capture the complexity and variability inherent in large insurance datasets. The linear 

adjustment method used in the Bühlmann-Straub model might oversimplify the relationships 

within the data. Non-linear relationships, common in insurance data, are not captured by this 

approach, leading to potential inaccuracies. Overall, these findings suggest a need for more 

sophisticated modeling approaches that can handle the complexity and non-linearity inherent 

in insurance data. 

 4.3 Decision Trees 

Decisions trees are a powerful non-parametric supervised learning method used for 

classification and regression. This model operates by recursively splitting the dataset into 

subsets based on feature values, creating a tree-like model of decisions. Each split aims to 

maximize the homogeneity of the resulting subsets, thereby improving the predictive power 

of the model. Decision trees derive simple decision rules from the data features, making them 

effective in predicting the target variable’s value. 

In this study, the decision tree model below is utilized to predict insurance claim amounts 

using various policyholder attributes such as Age, Gender, Income, Education, Occupation, 

and Marital Status. The root node of the decision tree represents the entire dataset, initially 

showing an overall claim frequency of 9.1% and an exposure proportion of 100%. This 

indicates that, on average, 9.1% of the policies result in claims, and all data points are 

considered at this level.  
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Figure 7 Decision Tree Model for Insurance data 

The first split occurs based on the feature "Occupation.CEO=1," dividing the dataset into two 

groups. The left Node (Occupation = CEO) captures 81% of the policies, with a claim 

frequency of 6.2%. The right Node (Occupation ≠ CEO) shows the remaining 19% of 

policies, which have a higher claim frequency and undergo further splits based on additional 

features. One such feature is "Income < 0.12," where the second split increases the claim 

frequency from 22% to 29% for the subset of policies with income below 0.12. This splitting 

process continues, dividing the data into increasingly homogeneous groups until a stopping 

criterion is met, such as a maximum tree depth, minimum number of samples per leaf, or a 

threshold on impurity reduction. 

The performance of the Decision Tree model is evaluated using three key metrics. The MAE 

of 5831.846 indicates, on average, the model's predictions deviate from the actual claim 

amounts by approximately $5831.85. Lower MAE values suggest better predictive accuracy, 

implying that the model's predictions are relatively close to the actual claim amounts. The 

MSE value of 1.60 × 108 reflects the average squared differences between the predicted and 
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actual claim amounts. Since MSE penalizes larger errors more heavily than MAE, the 

relatively high value suggests substantial discrepancies and variability in the model’s 

predictions. Lower MSE values indicate a better fit of the model to the data, highlighting the 

need for potential model improvements or adjustments. R-squared value of 0.2221111 

indicates that approximately 22.21% of the variance in the claim amounts is explained by the 

model. R-squared values range from 0 to 1, with higher values signifying a better fit of the 

model to the data. In this case, the R-squared value suggests that the model explains a 

relatively low proportion of the variance in the claim amounts.  While the model offers a 

clear and interpretable structure for understanding the decision-making process, the high 

MAE and MSE values indicate substantial deviations from the actual claim amounts. 

Additionally, the low R-squared value highlights the need for more sophisticated models or 

further tuning to better capture the complexity of the data. 

4.4 Random Forests 

Random Forest is an ensemble learning technique that enhances predictive accuracy by 

constructing multiple decision trees and aggregating their results. This method is particularly 

advantageous for handling high-dimensional data and capturing complex feature interactions. 

By averaging the predictions of individual trees, Random Forest mitigates the overfitting 

tendencies commonly observed in single decision trees, leading to more robust and stable 

predictions. 

A variable importance Plot from a random forest model tells the features that contribute most 

significantly to the model’s predictive power. X-axis represents the important score, which 

can be measured by the mean decrease in accuracy or the mean decrease in impurity (Gini 

Importance). Y-axis lists the features in descending order of importance. Each point on the 
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plot represents the importance score of a feature. For instance, the highest points (Occupation 

and Income) indicate a higher importance for predicting claim amounts. 

 

 

Figure 8 Variance Importance Plot by Random Forests 

The evaluation metrics for the Random Forest model reveal an MAE of 5955.522, indicating 

the average absolute difference between predicted and actual claim amounts. The MSE of 

1.61 × 108 shows a similar level of variability as observed with the Decision Tree model. 

The R-squared of 0.214387 suggests that 21.44% of the variance in claim amounts is 

explained by the model, which is slightly lower than that of the Decision Tree Model. The 

Random Forest model demonstrates competitive performance in predicting insurance claim 

amounts. While it exhibits slightly higher MAE and MSE values compared to the Decision 

Tree model, it provides a marginally higher R-squared value, indicating a slightly better fit to 

the data. The Random Forest model offers several advantages over single decision trees. 

Specially, by averaging the predictions of multiple trees, Random Forest reduces the 

overfitting tendencies of individual decision trees, resulting in more stable and generalizable 
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predictions. Additionally, the algorithm is well-suited for datasets with many features, as the 

random feature selection at each split helps to capture complex interactions between 

variables. 

4.5 Gradient Boosting 

Gradient Boosting is an advanced ensemble learning technique that combines multiple weak 

learners (e.g. decision trees) to create a strong predictive model. Unlike traditional ensemble 

methods that build trees independently, Gradient Boosting constructs trees sequentially, 

where each new tree focuses on correcting the errors made by the previous ones (Natekin). 

This iterative process allows the model to progressively improve its performance, making it 

highly effective for complex, high-dimensional datasets. 

 

Figure 9 Out-of-Bag error Plot by Gradient Boosting Algorithm 

This graph above illustrates the evolution of performance metrics as the Gradient Boosting 

algorithm incorporates a progressively larger number of base learners. In this classification 

task, the black line is the training Bernoulli Deviance, while the green line is the testing 

Bernoulli Deviance. Smaller deviance values correspond to better performance. The 
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algorithm employs cross-validation ("Method=cv") to evaluate the performance of the 

ensemble of learners. The blue dashed line indicates the optimal number of iterations 

according to the chosen metric and validation procedure, which is informative for future 

modeling. 

In the context of insurance pricing, Gradient Boosting captures the nuanced interactions 

between policyholder characteristics (such as Age, Gender, Income, Education, Occupation, 

and Marital Status) and the resultant claim amounts. This allows insurance companies to set 

premiums more precisely and manage risk more effectively. Gradient Boosting model 

demonstrates an MAE value of 5851.337, indicating the average deviation of predictions 

from actual claim amounts. The MSE of 1.59 × 108 reflects the average squared differences. 

An R-squared value of 0.2231369 suggests that approximately 22.31% of the variance in 

claim amounts is explained by the model.  The Gradient Boosting model exhibits a robust 

capability for predicting insurance claim amounts by iteratively refining its predictions to 

minimize errors. Its ability to capture complex interactions among variables and improve 

accuracy through successive iterations makes it a powerful tool for enhancing predictive 

performance in insurance pricing. 
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5. Comparative Analysis 

When evaluating the five predictive methods based on their performance metrics, Gradient 

Boosting emerges as the most effective model for insurance pricing. Despite its relatively 

high MSE, Gradient Boosting’s MAE and R-squared values indicate a strong ability to 

capture the variance in claim amounts and minimize prediction errors. This model’s iterative 

refinement process, which focuses on poorly predicted instances, enables it to effectively 

capture complex relationships within the insurance data. 

GLMs provide a solid baseline with interpretable results and a reasonable fit. However, they 

fall short in predictive accuracy compared to ensemble methods. The high RMSE of 13104.4 

indicates substantial prediction errors, suggesting that while GLMs can identify significant 

predictors such as Income and specific Occupations, they struggle with the dataset's 

complexity. Credibility Theory, particularly through the application of the Bühlmann-Straub 

model, shows significant discrepancies between predicted and actual claim amounts, as 

evidenced by a high MSE of 3.54 × 108. The model has a very high MSE because some 

selected variables contain outliers in the large dataset, or important features that have a strong 

relationship with the target variable are missing. The model's assumptions of constant 

variance within and between groups do not hold well for the complex and variable nature of 

the insurance data used in this study. Consequently, both GLMs and Credibility Theory fall 

short in providing accurate predictive modeling for insurance pricing in this scenario. While 

valuable in certain contexts, these methods do not effectively capture the intricate patterns 

and relationships present in the insurance claims data analyzed here. 

The comparative analysis of Decision Trees, Random Forests, and Gradient Boosting models 

reveals distinct strengths and weaknesses in their predictive capabilities for insurance pricing. 
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Decision Trees provide a straightforward approach with moderate accuracy, as evidenced by 

their MAE and MSE values. However, the model's relatively low R-squared value indicates a 

limited ability to explain the variance in claim amounts. 

Random Forests improve upon Decision Trees by reducing overfitting and offering more 

stable predictions. Despite slightly higher MAE and MSE values compared to Decision 

Trees, the Random Forest model's marginally higher R-squared value suggests a better fit to 

the data. This indicates that Random Forests can capture more complex interactions among 

variables, though not as effectively as Gradient Boosting. Gradient Boosting stands out as the 

most effective model among the three, exhibiting the lowest MSE and the highest R-squared 

value. This suggests superior accuracy and explanatory power. Gradient Boosting's iterative 

process, which focuses on correcting the errors of its predecessors, allows it to capture 

intricate relationships in the data, and to make it suitable for the complex nature of insurance 

pricing. 

In conclusion, while all three machine learning models demonstrate predictive capability, 

Gradient Boosting emerges as the most robust and accurate method for predicting insurance 

claim amounts in this case. This analysis underscores the potential of machine learning 

algorithms in enhancing insurance pricing strategies by leveraging the complex interactions 

inherent in policyholder data. The limitations of GLMs and Credibility Theory highlight the 

importance of exploring advanced machine learning techniques to achieve higher predictive 

accuracy in insurance pricing. 
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6. Discussion 

This study highlights the potential of machine learning algorithms, particularly Gradient 

Boosting, in enhancing the accuracy and reliability of insurance pricing models. By 

addressing the limitations of traditional methods and exploring advanced techniques, future 

research can further improve predictive capabilities, ultimately benefiting both insurers and 

policyholders through more precise and fair pricing strategies. The findings from this study 

open several ideas for future research in the field of insurance pricing: 

6.1 Exploring Advanced Ensemble Methods 

In this study, the superior predictive performance of machine learning (ML) techniques, 

particularly Gradient Boosting, has been established in the domain of insurance prediction. It 

is prudent to explore more advanced variants within the Gradient Boosting framework, such 

as Extreme Gradient Boosting (XGBoost). XGBoost is a decision tree ensemble method 

rooted in gradient boosting principles. It iteratively builds an additive model to minimize a 

loss function, similar to gradient boosting. Moreover, XGBoost integrates randomization 

techniques to reduce overfitting and enhance training speed. These techniques include 

random subsampling for training individual trees and column subsampling at tree and tree 

node levels (Bentéjac, 2019). By leveraging these advanced techniques, XGBoost could offer 

deeper insights into the intricate relationships within insurance data and potentially improve 

predictive accuracy. 

6.2 Hyperparameter Optimization of Machine Learning Algorithm 

While the present study provides an initial comparative analysis of various machine learning 

models, future research should prioritize fine-tuning hyperparameters for improved predictive 
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performance. With only seven variables considered here, constructing an effective machine 

learning model is a complex and time-consuming process. It entails selecting the appropriate 

algorithm and optimizing the model architecture through hyperparameter tuning. As more 

insurance variables are included, the complexity of this task increases. Techniques such as 

grid search or Bayesian optimization offer systematic approaches to identify optimal 

parameters for each model, potentially enhancing predictive accuracy (Li Yang, Abdallah 

Shami, 2020). These methods enable an exhaustive exploration of hyperparameter 

combinations, ensuring the selection of parameters that maximize model performance. By 

focusing on hyperparameter optimization, future studies can expedite model development and 

fully exploit predictive capabilities of machine learning algorithms in insurance prediction 

tasks. 

6.3 Ethical and Regulatory  

As certain aspects of Artificial Intelligence (AI) advances ahead of insurance practices, future 

research must address the ethical and regulatory implications of using advanced predictive 

models in insurance pricing. Adherence to the guidelines outlined in "Regulatory of Artificial 

Intelligence in Insurance: Balancing Consumer Protection and Innovation" by The Geneva 

Association is paramount. Ensuring fairness, transparency, and compliance with regulatory 

standards is essential for maintaining the integrity of the whole industry. This involves 

mitigating biases in predictive models, guaranteeing that AI-driven decisions are transparent, 

and upholding rigorous consumer protection standards (Noordhoek, 2023).   
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