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In the United States, the number of individuals who are 90 and older is expected to 

quadruple from 1.9 million in 2010 to 7.6 million individuals in 2050. Aging into the later years 

is often accompanied by time spent with mobility and cognitive impairments, multiple morbidity 
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and disability in activities of daily living. Impairments in either the physical or mental domains 

contribute to declines in one’s intrinsic capacity to maintain high functioning and wellbeing. 

The pace of biological aging differs across older adults of the same chronological age. 

Faster biological aging is linked to greater accumulation of multiple morbidities, lower physical 

and cognitive functioning, and earlier death. Epigenetic age, a biomarker of aging, is a composite 

measure of DNA methylation across specific cytosine-guanine dinucleotide sites (CpG sites) 

associated with chronologic or phenotypic age. Epigenetic age acceleration, as measured by 

epigenetic clocks, is postulated to identify whether individuals are aging faster or slower when 

compared to their chronologic age. There have been no prospective studies that have examined 

the relationships between genome wide DNA methylation or epigenetic age acceleration with 

multiple morbidity at a specified older age or survival to 90 years of age with intact mobility and 

cognitive functioning.  

The first chapter of this dissertation reviews the epidemiological evidence on DNA 

methylation and epigenetic clocks and their relationships with longevity, mobility, cognitive 

functioning and multiple morbidity. The second chapter assesses the associations between four 

DNA methylation clocks that measure epigenetic age acceleration and exceptional longevity, 

defined as survival to age 90 with intact mobility and cognitive function. The third chapter 

utilizes an epigenome wide association study to identify specific CpG sites and regions that are 

associated with exceptional longevity. The fourth chapter evaluates associations between the four 

DNA methylation clocks and multiple morbidity among women when they reach 90 years of 

age. The final chapter summarizes and integrates the key findings from this dissertation and 

highlights future directions for research on the potential of DNA methylation and epigenetic 
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clocks to expand knowledge of the etiology of healthy longevity and to identify targets for 

intervention to improve healthy aging.  

 



1 

1. Introduction 

1.1. Overview of Epigenetics and Epigenetic Clocks 

Aging is a multifactorial degenerative process defined by the accumulation of molecular 

changes, which eventually compromise cellular and organ functioning. Within individuals of the 

same chronological age, there is considerable heterogeneity in the physiological state of being.1 

Geroscience links age to chronic disease through targeting the biological aging process, which 

has the ability to delay or prevent multiple age-related outcomes such as cardiovascular disease, 

cancer, osteoporosis and Alzheimer’s among others.2,3 In order to develop interventions that can 

target mechanisms related to biological aging, we need to use measures that can classify 

individuals as biologically aged.  

  Epigenetic changes are a hallmark of aging and include the methylation of DNA, or 

acetylation and methylation of histones and chromatin-associated proteins.1 Low levels of de-

novo methylation of CpG islands occur in normal tissues and are shown to increase with age.4-6 

Changes in DNA methylation levels can change gene expression and recruitment of  

transcriptional factors. Alterations in the epigenome play an important role in aging and 

associated phenotypic changes.7,8 Epigenetic mechanisms are involved in several age-related 

diseases, cellular senescence and human tumorigenesis.9-14  

  Specific patterns of DNA methylation are well-replicated biomarkers of biological age.15 

Epigenetic age, a composite measure of DNA methylation level (DNAm) across certain CpG 

sites associated with chronologic or phenotypic age, provides the potential to study healthy 

aging, disease prevention and control. Examining the difference in epigenetic age across a group 

of individuals of similar age can help determine the impact of endogenous or exogenous factors 

that have on the rates of biological aging.16 Epigenetic age acceleration is an invaluable marker 
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of aging to identify those whose chronological and epigenetic ages diverge. Positive epigenetic 

age acceleration identifies those who have underlying tissue that is aging faster than what is 

expected based on an individual’s chronologic age, and negative epigenetic age acceleration, the 

inverse.  

Figure 1.1 serves as a general example of how epigenetic age is calculated across 

different clocks. This clock has an intercept and 8 unique CpG sites. The grey scale indicates the 

level of methylation, which is assigned a coefficient based on the methylation value. The 

epigenetic age is then the sum of the intercept and the methylation value for each CpG site. The 

CpGs included in the linear regression of each clock are largely built using elastic net regression, 

which is a form of a regularized regression. This algorithm calculates which CpG sites to use and 

the coefficient of each CpG site. Due to the number of potential CpG sites, this method is 

preferred due to its ability to minimize the cost function and thus scaling the least informative 

CpG with age or phenotypic outcome to 0. The coefficient estimate (B) associated with each 

CpG indicates the amount that age or the phenotypic outcome changes in response to a change in 

the methylation value. A negative coefficient indicates a decrease in the methylation level at the 

CpG site with age and a positive coefficient indicates the opposite. Finally, a sum of the 

methylation value and learned coefficient at each CpG site represents the estimated epigenetic 

age.17  
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Figure 1.1: General Example of Epigenetic Age Calculation; Field et. al; 201817 

 

Chronological Age or Phenotype of Interest ~ Intercept + B1CpG1 + B2CpG2 + … + BYCpGY 

There are a variety of clocks that have been created each using a unique training model 

with a different number of CpG sites. The clocks fall into two broad categories, the first-

generation chronological clocks that use algorithms to select CpGs based on their association 

with chronological age and the second-generation biological clocks which have algorithms to 

select CpGs based on their association18 with different aging phenotypes. Chronological clocks 

measure age-related changes in DNAm that are shared across individuals that occurs beyond the 

effect of disease. Biological clocks measure inter-individual variability in DNAm changes that 

contribute to declines and diseases seen in the aging process, a combination of the aging 

phenotypes and extrinsic drivers that influence age-related DNAm.18 More research is required 

to differentiate normal biological aging versus accelerated aging due to adverse health.1  

There are a few reasons for the selection and use of multiple epigenetic clock measures. 

The first reason is that genes covered by unique CpG sites within each clock have incredibly low 

overlap. There are only 173 genes that overlap in at least 2 DNAm clocks. More specifically, of 
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the four clocks (Horvath, Hannum, PhenoAge, GrimAge) being used in this study, the range in 

the proportion of genes that overlapped is as small as 1% (Horvath and GrimAge) up to 14% 

(Horvath and PhenoAge). In general, the hypermethylation of age-associated genes reduces their 

expression, but this is not always the case. Although the overlap can be low, there are genes that 

show strong relationships with certain outcomes across different clocks. As an example, there 

were 28 top-overlapping genes and 12 were associated with neurodegenerative disorders. This 

speaks to the strength of measuring epigenetic age using different clocks and the potential for 

DNAm clocks to be used as potential biomarkers in observational studies or clinical trials 

examining neurodegenerative diseases. The reason that these four clocks were chosen 

specifically were to have the ability to compare the results using chronological and biological 

clocks and to compare the results to prior literature. Prior studies that have examined aging 

phenotypes and longevity have used some combination of these four clocks to measure 

epigenetic age and epigenetic age acceleration. 

1.2. Review of Epidemiologic Studies on Longevity 

Exceptional longevity is an extreme phenotype, although not defined with incredibly 

specific constructs, possesses two major constructs. In order to experience successful aging, long 

lived individuals must have a biological age that is less than their chronological age and either 

maintain functional status or have a slowed or delayed decline in functional status. Biological 

age and functional status can be different ways. Evidence suggests that exceptional longevity is a 

combination of genetic, environmental, cultural and regional factors.19 Rather than assessing 

time to death among all women who were enrolled at baseline, these studies limit the sample to 

women who had an opportunity to experience exceptional longevity. Focusing on this phenotype 

may offer strategies and insight on increasing both the health span and life span. 
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  Studies examining the relationship of DNA methylation and human longevity are 

extremely limited. To the best of our knowledge, there have been only a few studies that have 

examined the association of epigenetic age acceleration with longevity. Horvath et. al compared 

the Horvath DNAmAge of 63 offspring of semi-supercentenarians (105-109 years) to 47 age-

matched controls (i.e. parents were not semi-supercentenarians). The offspring of the semi-

supercentenarians had a lower DNAmAge compared to controls (age difference=5.1 years, 

p<.001). In addition, the semi-supercentenarians were on average 8.6 years younger compared to 

their chronological age.20 The second study published in 2017 by McEwen et. al found that 

among 95 participants (min age=60 years, mean=84 years) in the Costa Rican Longevity and 

Healthy Aging Study, the average difference between their epigenetic and chronological age was 

-6.9 years.21 The final study used the Sydney Centenarian Study and found that among 23 

individuals above the age of 95, the Hannum DNAmAge was on average 3.5 years (sd=3.4 

years) younger than their chronological age.22 

1.3. Review of Epidemiologic Studies on Multimorbidity 

  To the best of our knowledge there has been one study that examined the association 

between epigenetic age acceleration and comorbidity count among older adults.23  A meta-

analysis was conducted to assess the relationship of a 1-year increase in epigenetic age 

acceleration and comorbidity count at the time of blood draw. This analysis was conducted for 

each of the four clock measures (AgeAccelHorvath, AgeAccelHannum, AgeAccelPheno and 

AgeAccelGrim) and each analysis included the WHI BAA23, WHI EMPC, Framingham Heart 

Study (FHS), InCHIANTI, Jackson Heart Study (JHS). The FHS comorbidity included 

dyslipidemia, hypertension, cardiovascular disease (CVD) including coronary heart disease 

(CHD) or congestive heart failure (CHF), type 2 diabetes, cancer and arthritis. The WHI 
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comorbidity count included Alzheimer’s disease, amyotrophic lateral sclerosis, arthritis, cancer, 

cataract, CVD, glaucoma, emphysema, hypertension and osteoporosis. The JHS comorbidity 

count included hypertension, type 2 diabetes, kidney dysfunction based on every dialysis and 

CVD. Finally, the InCHIANTI comorbidity count included cancer, hypertension, myocardial 

infarction, Parkinson’s disease, stroke and type 2 diabetes. The WHI ancillary studies were 

stratified by race/ethnicity in the meta-analysis. Overall, all epigenetic age acceleration measures 

showed a significant association with cross-sectional comorbidity counts: AgeAccelGrim 

(P=1.1E-16), AgeAccelPheno (P=8.5E-18), AgeAccelHannum (2.1E-07) and AgeAccelHorvath 

(P=1.4E-06).   

  This study was cross-sectional and limited the comorbidities that were included in the 

comorbidity count for each study included. There have been no prospective studies that 

examined the relationship between epigenetic age acceleration and comorbidity count among 

women who survive to older ages (85+ years).  

1.4. Review of Epigenome Wide Association Studies on Longevity 

  There have been two studies that have examined DNA methylation patterns associated 

with longevity overall. Gentilini et. al examined DNA methylation of 21 female centenarians, 21 

female offspring, 21 offspring of both non-long-lived parents and 21 young women from 

Northern Italy. The methylated fraction of DNA was quantified using an ELISA-like reaction. 

While an age-related decrease in global DNA methylation was observed across groups, this 

process was delayed in centenarians’ offspring. Genomic DNA methylation loss is associated 

with aging across several types of tissue in addition to age-related disease.9-12 Additionally, there 

were different methylation patterns in genes associated with human longevity when comparing 

centenarians’ offspring with age-matched control subjects born from both non-long-lived 
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parents. These included genes that play a role in metabolism, control of signal transmission and 

nucleotide biosynthesis.24 The second study compared Nicoyans and non-Nicoyans in Costa 

Rica, the former a population known to have high longevity. Nicoyans were found to have 

several signature differences associated with slower aging including a higher proportion of CD8+ 

naïve cells and a lower proportion of CD8+ memory T cells.21 Over the lifespan, naïve T cells 

are usually replaced by memory T cells, but this younger immune profile has been hypothesized 

to delay vulnerability due to infection and to increase the healthspan.25 In addition, there was 

lower total mean DNAm variation in Nicoyans compared to non-Nicoyans, another marker of 

delayed aging.9 Finally, the DNAm age was not significantly different between Nicoyans and 

non-Nicoyans. 

  To the best of our knowledge there have been no studies that conducted an epigenome 

wide association study (EWAS) on mobility and no EWAS specifically on cognitive functioning 

among women who were long lived. A recently published EWAS of blood DNA methylation 

found differentially methylated regions (DMRs) associated with hippocampal volume. The 

proximal genes were known to be involved in learning and memory.26 A review of 28 studies 

examining the relationship of DNA methylation to Alzheimer’s disease found a mix of 

hypermethylation, hypomethylation and inconclusive results.27 The potential role for both 

hypomethylation and hypermethylation at specific gene loci has been proposed as a mechanism 

for dementias overall.28  

  Additionally, to the best of our knowledge there have been no studies that have used 

machine learning methodology to identify CpGs or sets of CpGs that are related to exceptional 

longevity. The benefit to using machine learning in epigenetics is to reduce collinearity of the 

loci within the model and prioritize the minimization of prediction error. There are two studies 
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worth highlighting that used similar methodology to what is being proposed for this study. 

Although there are several computational methods available in the analysis of DNA methylation 

data,29 these studies utilized a combination of epigenome wide association and machine learning 

methods to identify the CpGs most predictive of the outcome of interest. The first study by Liu 

et. al used an EWAS and machine learning separately to identify CpG sites that were associated 

with alcohol intake using 13 population-based cohorts. First within each cohort, the EWAS was 

modeled using the DNA methylation beta value as the outcome variable with continuous alcohol 

measurement in grams per day and age, sex, BMI, batch effects and white blood cell counts. 

Alcohol consumption was also assessed categorically for both the EWAS and machine learning 

methods. There were then four major steps undertaken to assess if DNA methylation can be used 

as a biomarker in predicting alcohol consumption using machine learning. First, the whole-blood 

DNA samples from 10 cohorts were separated into 8 discovery and 2 replication cohorts. Then 

within the eight discovery cohorts, a discovery meta-analysis was performed using an inverse-

variance weighted random-effects model and selected CpGs. Next, in order to minimize 

overfitting a LASSO regression was completed in the Family Heart Study training set to select 

CpGs to be used as a biomarker. The LASSO model controlled for the same confounders as the 

EWAS. Four sets of CpGs were selected including the largest number of CpGs and the most 

parsimonious set of CpGs. Then a ROC analysis was used to calculate the expected probability 

of being ‘diseased’ using a logistic regression with age, sex, and BMI with or without a set of 

CpGs (residuals). The sensitivity, specificity and AUC for classifying “diseased” versus 

“controls” were calculated. In the whole-blood samples within individuals of European ancestry, 

there were 363 CpGs identified that were associated with alcohol intake. The meta-analysis of 

discovery sets identified 361 CpGs (p < 5x10-6). Within the FHS cohort training set, there were 5 
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(s=0.12), 23 (s=0.08), 78 (s=‘lambda.1se’) and 144 (s=‘lambda.min’). The addition of 144 CpGs 

to the null model yielded a high AUC (0.90-0.99) in the ability to discriminate heavy drinkers 

versus non-drinkers. It is also worth noting that the models with 5 and 23 CpGs also yielded 

good prediction (AUC > 0.80).  

  The second study by Shu et. al published in 2020 identified 393 CpGs for that predicted 

mortality risk among an HIV-positive population. First 858 CpG sites associated with high 

mortality risk (p<0.001) among persons living with HIV (PLWH) were chosen using an 

epigenome wide analysis of the VACS index score in the training set. The VACS index is a well-

established score to predict the risk of death among PLWH. The variable importance (0-100 

score) for each selected CpG site was ranked using an elasticnet regularized generalized linear 

model with 100 bootstraps each containing 70% of all samples. If CpG sites had zero variable 

importance for 80% of the bootstraps they were removed (178 CpG sites) and the remaining 678 

CpGs were ranked based on median importance ranking among 100 bootstraps and divided into 

20 groups that were then used to build machine learning models. There were then three major 

steps used to develop machine learning prediction models for mortality risk among PLWH. Four 

base models (random forest, GLMNET, support vector machines and k-nearest neighbors) were 

used to predict mortality risk among PLWH in the training set and then aggregated. Prediction 

performance of each ensemble model was evaluated using the area under the receiver operating 

characteristic (auROC) and area under the precision recall curves. The final CpG group was 

based on the highest auROC curve in the validation set and independent evaluation in the testing 

set was conducted using balanced accuracy. Using the final ensemble model of 393 CpG sites 

and adjusting for baseline age, sex, race, viral load, CD4 count and antiviral medication 

adherence, participants who have a high risk of mortality remained to have an elevated risk of 
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mortality compared to those who were predicted to have a low risk of mortality (HR=1.79; 95% 

CI: 1.35-2.37).30 

  There have been no studies that examined DNA methylation patterns and survival to 90 

years of age among women with intact mobility and cognitive functioning (absence of physician-

diagnosed mild cognitive impairment and dementia). Survival to the age of 90 was selected as 

the primary analysis for this manuscript, because approximately one-half of WHI women in the 

age-eligible subgroup for survival to age 90 actually have survived.  Our ability to examine 

survival to even older ages, is currently limited in the WHI data among women with available 

epigenetic data as described below. 

1.5. Biological Plausibility 

  The biological plausibility can be defined using genes that correspond to CpGs across 

different clocks that are implicated in aging mechanisms and different age-related phenotypes. 

Using Alzheimer’s disease as an example, the gene KLF14 was a hit across 6 of the 14 clocks 

that currently exist including Horvath, Hannum and PhenoAge, pointing towards its significance 

in aging mechanisms. Hypermethylation with age of KLF14 is associated with abnormal DNA 

repair and cell cycle control in familial early-onset Alzheimer’s disease.31 The identification of 

genes that are consistent across clocks in studies of the same outcome are necessary to 

understand the CpGs that are hypo or hypermethylated, which regions in the genome and genes 

the CpGs are associated with and what are the roles the genes play in disease onset and rate of 

progression. Additionally, BACE1 and PSEN1 which are incorporated within DNAm PhenoAge 

encode AB generating B- and y-secretase.32 Clocks such as Horvath and Hannum have also been 

with risk factors of Alzheimer’s disease including body mass index, cigarette smoking status, 

cholesterol and level of education.33 The CpGs that are included in each clock can serve as a 
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biomarker for the complex interaction of the environment and eventual genetic pathways that 

lead to aging and age related outcomes. 

1.6. Specific Aims 

In this dissertation, I examined the relationship between DNA methylation and epigenetic 

age acceleration with exceptional longevity and multimorbidity. The following aims are 

addressed: 

Aim 1.1: To determine the associations of epigenetic age acceleration (the residual 

variation in epigenetic age adjusting for chronologic age) and the odds of survival of to 

age 90 for women with intact mobility compared to women who survive without intact 

mobility and women who die before age 90. 

Aim 1.2: To determine the associations of epigenetic age acceleration (the residual 

variation in epigenetic age adjusting for chronologic age) and the odds of survival of to 

age 90 for women with intact mobility and cognitive functioning compared to women 

who survive without intact mobility or without intact cognitive functioning and women 

who do die before age 90. 

Aim 2.1: To determine significant differences in DNA methylation patterns and identify 

predictive CpGs and sets of CpGs for women who survive to age 90 for women with 

intact mobility compared to women who survive without intact mobility and women who 

die before age 90. 

Aim 2.2: To determine significant differences in DNA methylation patterns and identify 

predictive CpGs and sets of CpGs for women who survive to age 90 for women with 
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intact mobility and cognitive functioning compared to women who survive without intact 

mobility or without intact cognitive functioning and women who die before age 90. 

Aim 3: To determine the associations of epigenetic age acceleration (the residual 

variation in epigenetic age adjusting for chronologic age) and comorbidity count at age 

90 years. 

This research studied a population of older women living in the United States. A 

prospective cohort study of White, Black and Hispanic/Latino who were eligible to survive to 

age 90 and had DNA methylation data available was used for Aims 1, 2 and 3.  

Findings from these aims provide valuable insight into the relationship between DNA 

methylation and epigenetic age acceleration with exceptional longevity by simultaneously 

assessing the relationship between lifespan and healthspan among older women in the United 

States. 
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2. The association of epigenetic age acceleration and exceptional aging in the Women’s 

Health Initiative 

Purva Jain, Alexandra Binder, Brian Chen, Humberto Parada, Linda Gallo, Steve Horvath,  

 

Parveen Bhatti, Eric A. Whitsel, Kristina Jordahl, Andrea Z. LaCroix 

 

2.1. Abstract 

Background: Faster biological aging is linked to lower cognitive functioning and physical 

capability, which are also strongly associated with chronic disease onset, morbidity and 

mortality. There have been no longitudinal studies examining the relationship between epigenetic 

age acceleration and exceptional longevity among older women. 

Methods: This study was restricted to the 1,813 women from three Women’s Health Initiative 

(WHI) ancillary studies with assays of genome-wide DNAm from WHI baseline who had an 

advanced enough age at baseline and remained an active WHI participant long enough to be 

eligible to survive to age 90 by the end of our observation period (September 30, 2020). 

Epigenetic age acceleration (EAA) was estimated using four established “clocks” (Horvath pan-

tissue, Hannum, PhenoAge and GrimAge). We examined EAA as estimated by each clock in 

relation to these three-category exceptional longevity outcomes: women who survived to age 90 

with intact physical functioning and women who survived to age 90 without intact physical 

functioning compared to women who did not survive to age 90. The second analysis compared 

women who survived to age 90 with intact physical and cognitive functioning and women who 

survived to age 90 without intact physical and/or cognitive functioning to women who did not 

survive to age 90. 
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Results: Compared to those that did not survive to age 90, the odds of surviving with intact 

physical function were reduced for every one standard deviation increase in AgeAccelHorvath 

(OR=0.82; 95% CI: 0.69-0.96; p=0.010), AgeAccelHannum (OR=0.67; 95% CI: 0.56-0.80; 

p<0.010), AgeAccelPheno (OR=0.60; 95% CI: 0.51-0.72; p<0.01) and AgeAccelGrim 

(OR=0.68; 95% CI: 0.55-0.84, p<0.01). The strength of these associations were similar when 

comparing to those that survived to age 90 with intact physical and cognitive function compared 

to women who did not survive to age 90. 

Conclusion: Overall, our study shows that EAA is a valid biological marker of exceptional 

longevity among older women. As women are aging, the goal is to promote and maintain high 

physical and cognitive functioning so they can thrive. 

2.2. Introduction 

As of 2020, approximately 3.8 million individuals were aged 85 years or older in the 

United States (US).34 This population is expected to quadruple over the next few decades and 

will comprise 10% of the US population by 2050. Traditionally, those aged 85 years or older 

have been considered the ‘oldest old’. However, due to increases in longevity, the 90 years or 

older group requires additional focus. Women comprise a significantly larger proportion of long-

lived individuals, and outnumber men 3 to 1 among those 90 or older.35  

Functional status, as defined by both physical and mental capabilities, is the foundation 

of wellbeing in older age. These capabilities include a person’s ability to meet their basic needs, 

learn, grow, and make decisions, and to be mobile, build and maintain relationships, and 

contribute to society.36 As more women age into their 10th decade of life, living with impaired 

function becomes more common, but does not affect all women.37 Impairments in either the 

physical or mental domains contribute to declines in one’s intrinsic capacity to remain high 
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functioning.38 A history of dementia or memory loss doubles the risk of disability directly 

through the inability to perform activities of daily living, or indirectly through decreased 

capability to maintain physical health.39 These effects may be further compounded by the 

presence of comorbidities.40 

Biological aging focuses on the underlying biological mechanisms of aging, such as 

epigenetics, that impact future health trajectories. Under the purview of geroscience, these 

biological mechanisms are central and fundamental to global increases in disease and disability 

as one ages.41  Individuals with exceptional longevity are thought to have a biological age that is 

less than their chronological age. That is, women who experience exceptional longevity appear 

to be aging more slowly, where aging is conceptualized as a multifactorial degenerative process 

defined by the accumulation of molecular changes, which eventually compromise cellular and 

organ functioning. Within individuals of the same chronological age, there is considerable 

heterogeneity in the physiological state of being and the rate of biological aging.1  Faster 

biological aging is linked to lower cognitive functioning and physical capability, which are also 

strongly associated with chronic disease onset, morbidity and mortality. Exceptional longevity 

may be accompanied by either maintained functional status or sufficient function to maintain 

independence. This concept is closely aligned with the idea of the healthspan, which is the 

prioritization of physiological function throughout the lifespan through effective strategies to 

promote primary and secondary prevention of impaired function 42.  

Epigenetic age is a biomarker of aging previously reported to be associated with age-

related diseases and all-cause mortality.23,32,43,44 It is a composite measure of DNA methylation 

(DNAm) levels across specific cytosine-guanine dinucleotide (CpG) sites that together form a 

single measure that is associated with either chronologic or phenotypic age. Epigenetic age 
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acceleration (EAA), the residual variation in epigenetic age independent of chronological age, is 

one measure of whether individuals are aging faster or slower than their chronological age. EAA 

signifies individuals who, due to a combination of endogenous and exogenous factors, are aging 

faster biologically when compared to their chronological age whereas inverse or slower age 

acceleration signifies the opposite.  Prior studies suggest reduced EAA among long-lived 

individuals.20 21,22 Among long-lived individuals, older epigenetic age was also reported to be 

associated with lower levels of physical functioning23,32 and declines in global cognitive 

functioning.45-47  

There have been no longitudinal studies examining the relationship between EAA and 

exceptional longevity among older women. The aims of this study, therefore, were to examine 

the relationships between EAA and both survival to age 90 with intact mobility and survival to 

age 90 with intact mobility and cognitive functioning. We hypothesized that women who 

experience decelerated biological aging, as measured by epigenetic age, will be more likely to 

survive to age 90 with intact mobility and survive to age 90 with intact mobility and cognitive 

functioning. 

2.3. Methods 

Study Population 

The Women’s Health Initiative (WHI) (n=161,808) was initiated in 1993 with the goal of 

identifying strategies to prevent heart disease, osteoporosis and breast and colorectal cancer 

among postmenopausal women.48,49 The current study included participants from three (two 

nested case-control and one prospective) WHI ancillary studies who had available data on 

DNAm. The Bladder Cancer and Leukocyte Methylation Ancillary Study (AS 311) included 468 

women with and 468 without bladder cancer to identify methylation profiles associated with 
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bladder cancer risk using specific DNA methylation loci.50 The Epigenetic Mechanisms of 

Particulate Matter-Mediated Cardiovascular Disease Ancillary Study (AS315) included a random 

sample of 2,200 WHI clinical trial participants to understand the pathophysiological mechanisms 

that underlie particulate matter-related cardiovascular disease in postmenopausal women.51 Last, 

the Integrative Genomics for Risk of Coronary Heart Disease and Related Phenotypes in the 

WHI Cohort Ancillary Study (BA23) included 1,070 women with and 1,070 women without 

coronary heart disease.52  

There were 443 women in AS311, 694 women in AS315 and 942 women in BAA23 who 

were eligible to survive to age 90 (total = 2,079). Of these, 395 women had information available 

on all longevity components in AS311, 579 in AS315 and 839 in BAA23 resulting in a final 

analytic sample of 1,813 women (Figure 2.1). Baseline age ranged from 63.4-81.4 years with an 

average of 70.5 years (i.e. follow-up ranged from 9-27 years with an average of 20 years). 
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Figure 2.1: STROBE Diagram 

 

This current study was restricted to the 1,813 women from the three WHI ancillary 

studies with assays of genome-wide DNAm from WHI baseline who had an advanced enough 

age at baseline and remained an active WHI participant long enough to be eligible to survive to 

age 90 by the end of our observation period (September 30, 2020).  

Measures 

      DNAm was measured using the Illumina Infinium 450K platform (San Diego, CA, 

Illumina). The minfi R package was used to read in IDAT files, check for failed samples and 

implement normalization and quality control steps. The normal-exponential convolution using 

out-of-band probes method was used to correct probe intensity levels and functional 

normalization was used to account for type I and type II probe differences and remove technical 

variation and batch effects. The minfi and wateRmelon R packages were used to remove low 
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quality probes that interrogate non-CpG sites, are located on the X or Y chromosome or have a 

detection p-value above 0.01 in any sample. 

Epigenetic age was estimated using four established “clocks”, including the Horvath pan-

tissue, Hannum, PhenoAge and GrimAge, which were then used to estimate specific EAA 

measures. A description of each clock analyzed is summarized in Table 2.1.23,32,43,44 Hannum’s 

clock used 71 CpG sites in the blood to predict age and Hannum’s used 353 CpG sites to predict 

age across several different tissues. DNAm PhenoAge was trained on a “phenotypic age” 

measure created using nine clinical biomarkers associated with time-to-death. DNAm GrimAge 

was developed by predicting time-to-death using age, sex, DNAm-based surrogate biomarkers of 

plasma protein levels and a DNAm-based estimator of smoking pack-years (Table 2.1).  

Table 2.1: Overview of epigenetic clocks being utilized in this study 

Clock CpGs Genes Age N Tissue Reported Associations 

Horvath43 353 344 0-101 8000 Various 

cell & 

tissues 

Chronological age, all-cause 

mortality, cancer, age-related 

disease and several 

neurodegenerative phenotypes 

Hannum44 71 94 19-101 656 Blood Chronological age, all-cause 

mortality 

PhenoAge32 513 505 >20 9926 Blood All-cause and cause-specific 

mortality, survival, count of 

comorbidities, physical 

functioning, smoking status and 

telomere length 

GrimAge23 1030 NA NA 

(mean=66) 

1731 Blood Morbidity and mortality, 

survival, cognitive decline, 

clinical biomarkers, lifestyle 

factors, blood cell composition 

and telomere length 

Table adapted from Bergsma & Rogaeva18 

Survival outcomes 
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 We defined three primary outcomes for this study as follows: 1) survival to age 90 with 

intact cognitive and physical function; 2) survival to age 90 with impairment in cognitive and/or 

physical function; and 3) death before age 90.  Classifications were based on follow-up data 

through September 30th, 2020. Survival to age 90 was calculated from day of enrollment in the 

WHI through September 30th, 2020. The WHI ascertained death using annual mailed outcome 

questionnaires, systematic searches of the National Death Index, hospital records, obituaries and 

proxy queries.53 Among women eligible to survive to age 90 (n=2,079), 128 (0.06%) were 

missing vital status at age 90. Intact physical functioning was defined using two questions from 

the Rand-36 Physical Function questionnaire54 as having no self-reported limitations for both 

walking one block and climbing one flight of stairs from baseline to age 90. The questionnaire 

was administered at baseline, at 1 and 3-year follow-up assessments, and then annually after 

2005. Intact cognitive functioning was defined as having no self-reported moderate or severe 

memory problems nor dementia or Alzheimer’s Disease from baseline to age 90 and was 

assessed annually by questionnaire. Among women enrolled in the WHI Extension Study 1 

(2005-2010) with at least 1 Form 33 collected after enrollment, the validation of Alzheimer’s 

disease against Medicare claims was as follows (sensitivity=40%; specificity=95%) and against 

WHIMS (sensitivity=41%; specificity=89%).  

Covariates  

 Covariates were measured at WHI baseline and selected due to their associations with 

both EAA and exceptional longevity. Covariates included age at blood draw, blood cell 

composition (CD8+ T Cells, CD4 T cells, Natural Killer cells, B lymphocyte cells, Monocytes, 

Granulocytes), race/ethnicity (White, Black, Hispanic, Other), education (high school/general 

education development or less, some college, college graduate or more), walking frequency 
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(rarely or never, 1-3 times/mo, 1 time/wk, 2-3 times/wk, 4-6 times/wk, 7+ times/wk), body mass 

index categories (underweight, normal, overweight, obese), alcohol consumption (non-drinker, 

past drinker, <1 drink/mo, <1 drink/wk, 1-<7 drinks/wk, 7+ drinks/wk), pack-years smoking 

(never smoker, <5, 5-20, 20+), number of chronic conditions at baseline (0, 1-2, 3+, including 

cancer, stroke, Alzheimer’s disease, cardiovascular disease, diabetes, history of frequent falls 

[2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory 

sensory impairment) and physical function score (RAND-36 10-item physical function 

subscale54,  range 0-100, higher score reflects higher function). Chronic conditions were chosen 

based on the high degree of impact these conditions play in the lifespan and healthspan of older 

women.55-57  

Statistical Analysis 

 

Baseline characteristics were reported by exceptional survival category. Differences by 

category were tested using Pearson’s chi-squared tests for categorical variables and F-tests for 

continuous variables. The correlations between chronological age and each DNAmAge measure 

are reported in-text and the correlations between DNAmAge measures are reported in 

supplemental material. Fully-adjusted multinomial logistic regression models with a random 

intercept for ancillary study were used to assess the relationships between each EAA measure per 

standard deviation increase and exceptional longevity. The adjusted model included all 

covariates as described above. The weighted analysis included inverse probability weights to 

account for the case-control sampling of AS311 and BA23. The weights were the inverse of the 

selection probability for each individual and cases were down weighted. The sample was 

reweighted so that the sum of the weights was similar to the original sample size. Inverse 

probability weights were also applied to AS315 to account for the oversampling of racial/ethnic 
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minorities.  

  We examined EAA as estimated by each clock in relation to these three-category 

exceptional longevity outcomes as follows:  1) The first analysis compared women who survived 

to age 90 with intact physical functioning and separately, women who survived to age 90 without 

intact physical functioning to women who did not survive to age 90. 2) The second analysis 

compared women who survived to age 90 with intact physical and cognitive functioning and 

separately, women who survived to age 90 without intact physical and/or cognitive functioning 

to women who did not survive to age 90. 3) The final sensitivity analysis replaced the self-

reported measure of intact cognitive function with the adjudicated measure of cognitive function 

(Table 2.2). 

Table 2.2: Overview of exceptional longevity outcome components and comparison groups 

Exceptional Longevity Outcome Groups 

 Group 1 Group 2 Group 3 (Ref) 

Outcome 1: 

Longevity + Physical 

Health 

Survival to age 90a 

with Intact Physical 

Function b 

Survival to age 90 and 

Loss of Physical 

Function 

Did not Survive to 

age 90 

Outcome 2: 

Longevity + Physical 

& Cognitive Health 

Survival to age 90 

with Intact Physical 

and Cognitive 

Function c 

Survival to age 90 and 

Loss of Physical 

and/or Cognitive 

Function 

Did not Survive to 

age 90 

Sensitivity Analysis: 

Longevity + Physical 

& Cognitive Health 

(WHIMS) 

Survival to age 90 

with Intact Physical 

and Cognitive 

Function d 

Survival to age 90 and 

Loss of Physical 

and/or Cognitive 

Function 

Did not Survive to 

age 90 

a Survival to age 90 is defined as survival to age 90 from WHI baseline to end of follow-up 

b Intact physical function is defined as no report of “Yes, limited a lot” to walk one block or climb one flight of stairs 

on annual questionnaires from WHI baseline to age 90  

c Intact cognitive function is defined as no report of “Moderate or severe memory problems” or “Dementia or 

Alzheimer’s” on annual questionnaires from WHI baseline to age 90  

d Intact cognitive function is defined as no report of adjudicated diagnosis of “Probable dementia” from baseline to 

age 90 in WHIMS 
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Subgroup analyses between DNAmAge and exceptional longevity by race/ethnicity 

(White, Black, Hispanic, Other) and baseline age (median split = 70.5 years) were completed in 

the fully-adjusted and weighted pooled multinomial logistic regression models and tested using 

interaction terms with a Wald test at an alpha of 0.05. Additionally, the results from the fully-

adjusted and weighted models stratified by ancillary study are included in supplemental material. 

All analyses were conducted using R Version 1.4.1106 (R Foundation for Statistical Computing, 

Vienna, Austria). 

A sensitivity analysis was conducted by replacing the WHI self-reported measure of 

cognitive impairment with an adjudicated diagnosis of probable dementia from the Women’s 

Health Initiative Memory Study (WHIMS) a nationally representative cohort study of women 65 

years and older who were participating in the hormone therapy trial in the WHI.58 The analysis 

was limited to women who participated in both WHI and WHIMS. WHIMS determined the 

incidence of all-cause dementia using cognitive functioning screening and neurologic and 

neuropsychological evaluations followed by surveillance for changes in cognitive functioning 

and use of a consensus panel to define probable dementia. The details of the design have been 

previously described.  

2.4. Results 

Of the 1,813 women included in this study, 464 experienced exceptional longevity (i.e., 

survived to age 90 with intact physical and cognitive functioning), 420 women survived to age 

90 with loss of intact physical and/or cognitive functioning, and 929 women did not survive to 

age 90. Compared to women who survived to age 90 without intact function and women who did 

not survive to age 90, women who experienced exceptional longevity were more likely to be 

White, be college graduates, walk 2-3 times per week and 4-6 times per week, have a BMI in the 
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healthy weight range of 20-25 kg/m2 or overweight range of 35-30 kg/m2, have more than 1 but 

less than 7 alcoholic drinks per week, be never smokers, have none of the major chronic 

conditions examined, and have higher physical functioning (Table 2.3). Additionally, each of the 

four epigenetic age measures had low correlations with chronological age (Figure 2.2) and with 

each other (Supplementary Figure 2.1). 
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Table 2.3: Baseline Characteristics by Level of Outcome (n=1,813) 

 90 w/ Phys & 

Cog Health 

(n=464) 

90 w/o 

Phys/Cog 

Health 

(n=420) 

Did not 

Survive 

(n=929) 

p 

Race/Ethnicity, n (%)    0.013 

     Black or African American 66 (14.3) 73 (17.4) 179 (19.4)  

     Hispanic/Latino 27 (5.9) 36 (8.6) 78 (8.5)  

     White 348 (75.7) 305 (72.8) 637 (69.1)  

     Other 19 (4.1) 5 (1.2) 28 (3.0)  

Education, n (%)    0.003 

    HS/GED or Less 103 (22.3) 114 (27.3) 281 (30.5)  

    Some College 181 (39.2) 177 (42.3) 369 (40.0)  

    College Grad or More 178 (38.5) 127 (30.4) 272 (29.5)  

Walking Frequency, n (%)    <0.001 

    Rarely or Never 56 (12.1) 88 (21.2) 204 (22.2)  

    1-3 times/month 66 (14.2) 51 (12.3) 144 (15.7)  

    1 time/week 50 (10.8) 34 (8.2) 109 (11.9)  

    2-3 times/week 144 (31.0) 118 (28.4) 231 (25.2)  

    4-6 times/week 111 (23.9) 90 (21.7) 163 (17.8)  

    7+ times/week 37 (8.0) 34 (8.2) 67 (7.3)  

BMI Category, n (%)    <0.001 

    Underweight 6 (1.3) 3 (0.7) 9 (1.0)  

    Normal 167 (36.2) 101 (24.2) 251 (27.2)  

    Overweight 189 (41.0) 150 (35.9) 296 (32.0)  

    Obese 99 (21.5) 164 (39.2) 368 (39.8)  

Alcohol Consumption, n (%)    <0.001 

    Non-drinker 60 (13.1) 63 (15.1) 121 (13.2)  

    Past drinker 70 (15.3) 95 (22.7) 224 (24.5)  

    <1 drink/month 51 (11.1) 56 (13.4) 134 (14.6)  

    <1 drink/week 99 (21.6) 93 (22.2) 167 (18.3)  

    1-<7 drinks/week 120 (26.1) 71 (17.0) 173 (18.9)  

    7+ drinks/week 59 (12.9) 40 (9.6) 96 (10.5)  

Smoking Pack-Years, n (%)    <0.001 

    Never Smoker 277 (62.0) 248 (60.6) 425 (47.6)  

    <5 51 (11.4) 59 (14.4) 96 (10.8)  

    5-<20 64 (14.3) 41 (10.0) 114 (12.8)  

    20+ 55 (12.3) 61 (14.9) 258 (28.9)  

Number of Chronic Conditions, n (%)a    <0.001 

    0 143 (30.8) 101 (24.0) 202 (21.7)  

    1-2 291 (62.7) 271 (64.5) 615 (66.2)  

    3+ 30 (6.5) 48 (11.4) 112 (12.1)  

Age, mean (SD) 71.6 (3.5) 71.3 (3.2) 70.2 (3.4) <0.001 

Physical Function Score, mean (SD) 82.4 (20.2) 72.8 (22.7) 69.5 (24.6) <0.001 

AgeAccelHorvath -0.6 (5.3) 0.02 (5.4) 0.09 (5.3) 0.052 

AgeAccelHannum -1.2 (4.9) 0.1 (5.0) 0.4 (5.2) <0.001 

AgeAccelGrim -1.5 (6.8) 0.5 (6.8) 1.1 (7.0) <0.001 

AgeAccelPheno -1.3 (3.4) -0.6 (3.5) 0.8 (4.2) <0.001 
Note: GED=general educational development; BMI=body mass index; kg=kilograms; m=meters 

Note: AgeAccel measures are the residual between chronological age and epigenetic age as measured by each individual 

epigenetic clock. 
aConditions include cardiovascular disease, cancer, cognitive impairment, depression, osteoarthritis, history of falls, chronic 

obstructive pulmonary disease, hypertension, diabetes, hip fracture and cerebrovascular disease. 
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Figure 2.2: Correlation of Chronological Age and DNAmAge Measures 

 The results from the multinomial logistic regression models examining the association 

between EAA and exceptional longevity outcomes are reported in Table 2.4. Compared to those 

that did not survive to age 90, the odds of surviving with intact physical function were reduced 

for every one standard deviation increase in AgeAccelHorvath (OR=0.82; 95% CI: 0.69-0.96; 

p=0.010), AgeAccelHannum (OR=0.67; 95% CI: 0.56-0.80; p<0.010), AgeAccelPheno 

(OR=0.60; 95% CI: 0.51-0.72; p<0.01) and AgeAccelGrim (OR=0.68; 95% CI: 0.55-0.84, 

p<0.01).  There were 29 women who were reclassified from survival to age 90 with intact 

physical and cognitive functioning to survival to age 90 without intact physical and cognitive 

functioning. The strength of these associations were similar when comparing to those that 

survived to age 90 with intact physical and cognitive function for every standard deviation 

increase in AgeAccelHorvath (OR=0.83; 95% CI: 0.71-0.98; p=0.030), AgeAccelHannum 

(OR=0.68; 95% CI: 0.57-0.82; p<0.001), AgeAccelPheno (OR=0.60; 95% CI: 0.50-0.72; 

p<0.001) and AgeAccelGrim (OR=0.73; 95% CI: 0.59-0.90, p=0.003). The odds of surviving 

without intact physical function were reduced for every one standard deviation increase in 
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AgeAccelPheno (OR=0.75; 95% CI: 0.63-0.90; p=0.002) and AgeAccelGrim (OR=0.82; 95% 

CI: 0.65-1.02; p=0.071) (Table 2.4, Figure 2.3). These associations were slightly more precise 

when comparing to the odds of surviving to age 90 without intact physical function or cognitive 

function for every standard deviation increase in AgeAccelPheno (OR=0.74; 95% CI: 0.62-0.88; 

p=0.001) and AgeAccelGrim (OR=0.75; 95% CI: 0.60-0.92; p=0.007) (Table 2.4, Figure 2.3). 

The results were similar when the analyses were restricted to the subgroup of women who 

participated in the WHI Memory Study where the outcome of intact physical and cognitive 

functioning was defined using an adjudicated WHIMS measure of probable dementia or mild 

cognitive impairment. The only differences were a strengthening of the relationship of 

AgeAccelPheno and likelihood to experience exceptional longevity and an attenuation for 

AgeAccelHorvath (Supplementary Table 2.1). In secondary analyses, we examined the 

interaction of each EAA measure with both race/ethnicity and length of follow-up in relation to 

survival to age 90 with intact physical and cognitive function and survival to age 90 without 

intact physical or cognitive function. Race/ethnicity and length of follow-up did not modify the 

association between EAA and exceptional longevity (Supplementary Table 2.2). 



28 

Table 2.4: Association of Epigenetic Age Acceleration and Exceptional Longevity 

Outcomes (N=1,813) 

 90 with Intact Physical  

Function (n=493)a 

90 without Intact Physical 

Function (n=391) a 

 OR (95% CI)b p OR (95% CI)b p 

AgeAccelHorvath 0.82 (0.69-0.96) 0.014 0.96 (0.81-1.15) 0.681 

AgeAccelHannum 0.67 (0.56-0.80) <0.001 0.96 (0.81-1.15) 0.680 

AgeAccelPheno 0.60 (0.51-0.72) <0.001 0.75 (0.63-0.90) 0.002 

AgeAccelGrim 0.68 (0.55-0.84) <0.001 0.82 (0.65-1.02) 0.071 

 90 with Intact Physical & 

Cognitive Function (n=464) a 

90 without Intact Physical 

and/or Cognitive Function 

(n=420) a 

 OR (95% CI)b p OR (95% CI)b p 

AgeAccelHorvath 0.83 (0.71-0.98) 0.030 0.93 (0.78-1.10) 0.380 

AgeAccelHannum 0.68 (0.57-0.82) <0.001 0.91 (0.77-1.09) 0.309 

AgeAccelPheno 0.60 (0.50-0.72) <0.001 0.74 (0.62-0.88) 0.001 

AgeAccelGrim 0.73 (0.59-0.90) 0.003 0.75 (0.60-0.92) 0.007 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, number of chronic conditions (including cancer, stroke, Alzheimer’s, cardiovascular disease, diabetes, 

history of frequent falls [2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and 

visual/auditory sensory impairment) and RAND physical functioning score. 

aThe reference group for all comparisons is women who did not survive to age 90 (n=929). 

bResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=6.4), 

AgeAccelHannum (sd=6.2), AgeAccelPheno (sd=7.6) and AgeAccelGrim (sd=5.1). 
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Figure 2.2: Forest Plots of the Association of Epigenetic Age Acceleration and Exceptional 

Longevity 
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2.5. Discussion 

To our knowledge, this is first study examining the relationship between EAA and 

exceptional longevity among older women. In this racial/ethnically diverse cohort of older 

women, this longitudinal study showed that increased EAA as measured by the 

AgeAccelHorvath, AgeAccelHannum, AgeAccelPheno and AgeAccelGrim clocks resulted in 

decreased odds of survival to age 90 with intact physical functioning. The results were strongest 

in the AgeAccelHannum, AgeAccelPheno and AgeAccelGrim measures followed by 

AgeAccelHorvath. The newer generation PhenoAge and GrimAge clocks were also predictive of 

survival to age 90 without intact physical function, but not the older generation clocks. The 

results remained similar when the exceptional longevity outcome additionally included intact 

cognitive functioning, although there were only 29 number of women who were reclassified 

from survival to age 90 with intact physical and cognitive functioning to survival to age 90 

without intact physical and cognitive functioning. Additionally, the results remained similar 

when the analysis was limited to the WHI Memory study and utilized an adjudicated measure for 

probable dementia and mild cognitive impairment to define the outcome. The interaction of each 

clock with both race/ethnicity and baseline age/length of follow-up did not indicate potential 

differences in the primary findings by these groups of interest. 

To date, only two studies have examined epigenetic aging in association components of 

exceptional longevity (long-lived, physical and/or cognitive functioning) as separate outcomes. 

In the first study by McEwen et. al among 48 Nicoyans (mean age=83 years) and 47 non-

Nicoyans (mean age=85 years) (Nicoyans are long-lived individuals from the Nicoya peninsula 

of Costa Rica) using the Horvath pan-tissue and Hannum clocks there were no statistically 

significant differences between Nicoyans and non-Nicoyans for either AgeAccelHorvath or 
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AgeAccelHannum. The authors indicated that they only had power to examine very large 

differences between groups.21 Additionally, the authors discussed several known differences 

between Nicoyans and non-Nicoyans such as level of education, type of health insurance, longer 

knee height, lower BMI and waist circumference, which were not included as potential 

confounders in the analysis. In the second study by Horvath et al. EAA of 82 Italian semi-

supercentenarians, 63 offspring of semi-supercentenarians, and 47 age-matched controls, 

compared to age-matched controls, the offspring of semi-supercentenarians had a lower intrinsic 

epigenetic aging rate.20 A similar trend was reported in a smaller study that compared 21 

offspring of female centenarians to age-matched controls and among long-lived individuals in 

the Sydney Centenarian Study.22,24 This study, however, did not adjust for important covariates 

including blood cell counts and lifestyle factors in their analysis, did not examine the newer 

measures of EAA including AgeAccelPheno and AgeAccelGrim and had a small sample of long-

lived individuals with DNA methylation data available (n=23). 

 There have been some studies of physical and cognitive functioning among older adults 

and to the best of our knowledge none among long-lived individuals. One study included 791 

members of the Lothian Birth Cohort 1936, a cohort of 1,091 community-dwelling adults with 

mean age 70 years. The authors reported that a one year increase in extrinsic EAA was 

associated with a 6% increase in the risk of being physically frail (3+ of the following: weakness, 

self-reported exhaustion, slow gait speed, unintentional weight loss and low physical activity).59 

When converted to a 6 year increase, the estimated 42% increase in risk lies within the range of 

our estimates (5.1 to 7.6 year increases in epigenetic age). These findings were similar to a study 

that examined this association among 1,820 men and women aged 50-75 years.60 Another cross-

sectional study of 1,091 individuals by Marioni et. al using the Lothian Birth Cohort found a 
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statistically significant relationship between age acceleration and both grip strength and fluid 

cognitive ability.45 The women in our study were also 70 years on average at baseline, and also 

had repeated measures of physical functioning that were taken into account in the assessment of 

exceptional longevity as they continued to age. Levine et. al conducted a study of EAA and AD-

related cognitive decline and related neuropathological markers using 700 dorosolateral 

prefrontal cortex (DLPFC) samples from Caucasian subjects (mean age at enrollment=81.4; 

mean age at death=88.1) in the Religious Order Study and Rush Memory Aging Project. The 

authors found a statistically significant relationship between EAA of the DLPFC and a 

longitudinal decline in global cognitive functioning, episodic memory and working memory 

among individuals with AD, but not among individuals without AD.46  

 Epigenetic clocks are measures of biological aging that have been previously associated 

with mortality, physical functioning, and cognitive status in addition to other markers of health. 

These clocks measure the DNA methylation of cytosines at CpG nucleotides, which is one of the 

key epigenetic mechanisms involved in gene expression and splicing.18 The training method of 

the clocks differed including the age range, statistical methodology, sample characteristics and 

technical factors. The first-generation clocks were trained to predict chronological age and the 

second-generation clocks predict multisystem phenotypic age and time-to-death.18 The training 

of PhenoAge and Grim age to predict phenotypic age and time-to-death, respectively, versus 

chronological age in the first generation clocks most likely led to a stronger association using the 

newer clocks. Thus, there is a low overlap in the CpGs and associated genes that are included in 

each clock, suggesting complex and varied involvement of different biological processes during 

aging such as transcription, epigenomic instability, telomere biology and cellular differentiation 
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and senescence.61 The associations in this study may be capturing these underlying biological 

processes and the influence of environmental factors as captured by the epigenetic clocks.62  

  There were several strengths and limitations to this study that should be noted. This study 

benefitted from a large, racial/ethnically diverse sample of women who were followed to at least 

90 years of age. Women were followed for 20 years on average with low rates of loss to follow-

up. There was information available on important baseline characteristics and potential 

confounders due to the prior data collection in the WHI. There were several clocks utilized to 

measure EAA with a mix of chronological and phenotypic clocks. This is currently the best 

practice due to the low overlap of CpG sites and associated genes between the clocks.63 Finally, 

we had repeated measures of both physical and cognitive functioning from baseline to age 90 or 

time of death that were taken into account in the exceptional longevity classification although 

due to those who were unable to complete the annual survey due to their level of frailty there 

may the results may be attenuated. Among the limitations, the first is the nested case-control 

sampling of two of the ancillary studies from the larger WHI. If the sampling structure is ignored 

the disproportionate stratified subsamples of the study base can lead to biased estimates. Using 

inverse probability selection weights to account for differences in selection criteria is a 

recommended solution and was implemented in this study.64 This study was limited to women 

and replication in cohorts that include both men and women, diverse racial/ethnic groups and 

represent individuals from varied regions of the world is important. Notably, few prospective 

studies exist for replication where sufficient numbers of participants have been followed for 20 

or more years to the age of 90 or older so that healthspan related phenotypes can be defined. 

Additionally, epigenetic age is one measure of biological age within several spheres such as 

genomics, transcriptomics, proteomics, microbiomics and metabolomics to name a few. Since 
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there is currently no gold standard to measure biological age this research should be taken in 

from the systems biology purview, which attempts to understand the system as a whole rather 

including acknowledgement of the joint influences and interactions of several factors.65  

In this study, we reported that increased EAA measured by both chronological age and 

mortality predictor clocks was associated with a decreased likelihood of experiencing 

exceptional longevity among older women. EAA can be used as a potential predictor of 

exceptional longevity among older women as it captures the effects of endogenous processes that 

contribute to the aging process. While future intervention upon specific CpG sites may be 

possible, this requires additional studies to identify the most promising targets. Overall, our study 

shows that EAA is a valid biological marker of exceptional longevity among older women. As 

women experience increases in life expectancy, there will be even larger numbers of women who 

are long-lived. As women are aging, the goal is to promote and maintain high physical and 

cognitive functioning so that they can thrive. 

Supplementary Tables 

Table 2.5: Association of Epigenetic Age Acceleration and Exceptional Longevity using 

WHIMS measure for Cognitive Impairment 

 90 with Intact Physical & 

Cognitive Function  

(n=146) a 

90 without Intact Physical 

and/or Cognitive Function 

(n=195) a 

 OR (95% CI)b p OR (95% CI)b p 

AgeAccelHorvath 0.94 (0.63-1.37) 0.695 1.29 (0.88-1.74) 0.166 

AgeAccelHannum 0.60 (0.37-0.94) 0.023 0.94 (0.64-1.44) 0.844 

AgeAccelPheno 0.35 (0.15-0.73) 0.008 0.68 (0.35-1.25) 0.208 

AgeAccelGrim 0.69 (0.52-0.90) 0.011 0.86 (0.69-1.11) 0.218 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, number of chronic conditions (including cancer, stroke, Alzheimer’s, cardiovascular disease, diabetes, 

history of frequent falls [2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and 

visual/auditory sensory impairment) and RAND physical functioning score. 

Note: This sensitivity analysis replaced the annual self-reported WHI measure of moderate or severe memory 

problems or Alzheimer’s or dementia with the adjudicated WHIMS measure of probable dementia. 
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aThe reference group for all comparisons is women who did not survive to age 90 (n=325). 

Note: Results are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=6.4), 

AgeAccelHannum (sd=6.2), AgeAccelPheno (sd=7.6) and AgeAccelGrim (sd=5.1) 
bResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=6.4), 

AgeAccelHannum (sd=6.2), AgeAccelPheno (sd=7.6) and AgeAccelGrim (sd=5.1).  

Table 2.6: Interaction of Age Accel Measures with Race/Ethnicity in Primary Analysis 

Ref=White 90 with Intact Physical  

& Cognitive Function 

(n=483)a 

90 without Intact Physical 

and/or Cognitive Function 

(n=403)a 

 OR (95% CI)b p OR (95% CI)c p 

AgeAccelHorvath*Black or AAb 1.23 (0.87-1.73) 0.236 1.46 (1.03-2.06) 0.032 

AgeAccelHorvath*Hispanic/Latino 0.96 (0.93-1.85) 0.905 0.28 (0.14-0.54) <0.001 

AgeAccelHorvath*Other 2.33 (0.58-9.33) 0.237 4.04 (0.40-40.41) 0.235 

AgeAccelHannum*Black or AA 1.45 (1.01-2.10) 0.035 1.36 (0.94-1.86) 0.097 

AgeAccelHannum*Hispanic/Latino 2.70 (1.54-5.01) 0.001 0.73 (0.42-1.20) 0.214 

AgeAccelHannum*Other 2.24 (0.73-6.42) 0.152 3.91 (0.69-22.20) 0.124 

AgeAccelPheno*Black or AA 1.01 (0.68-1.46) 0.963 1.08 (0.80-1.58) 0.630 

AgeAccelPheno*Hispanic/Latino 0.80 (0.37-1.58) 0.472 0.30 (0.15-0.59) 0.001 

AgeAccelPheno*Other 1.16 (0.27-5.32) 0.816 1.70 (0.19-16.64) 0.626 

AgeAccelGrim*Black or AA 1.43 (0.95-2.15) 0.088 1.17 (0.77-1.75) 0.456 

AgeAccelGrim*Hispanic/Latino 1.43 (0.82-2.38) 0.218 0.77 (0.47-1.29) 0.323 

AgeAccelGrim*Other 2.15 (0.70-6.60) 0.185 2.64 (0.63-11.57) 0.175 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, number of chronic conditions (including cancer, stroke, Alzheimer’s, cardiovascular disease, diabetes, 

history of frequent falls [2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and 

visual/auditory sensory impairment) and RAND physical functioning score. 
aThe reference group for all comparisons is women who did not survive to age 90 (n=929) 
bThe reference group for this comparison was White women (n=1447), Black (n=377), Hispanic/Latino (n=169), 

Other (n=70). 
cResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=6.4), 

AgeAccelHannum (sd=6.2), AgeAccelPheno (sd=7.6) and AgeAccelGrim (sd=5.1). 
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Table 2.7: Interaction of AgeAccel Measures with Baseline Age/Length of Follow-up (>70.6 

years versus <=70.5 years) in Primary Analysis 

Ref=Lower than median age at 

baseline (median=70.6 years) 

90 with Intact Physical & 

Cognitive Function 

(n=483)a 

90 without Intact Physical 

and/or Cognitive Function 

(n=403)a 

 OR (95% CI)b p OR (95% CI)c p 

AgeAccelHorvath*median age a 1.14 (0.83-1.57) 0.376 1.29 (0.94-1.78) 0.131 

AgeAccelHannum*median age 1.20 (0.65-1.13) 0.303 1.13 (0.83-1.54) 0.485 

AgeAccelPheno*median age 0.93 (0.68-1.26) 0.654 1.16 (0.86-1.58) 0.374 

AgeAccelGrim*median age 1.11 (0.77-1.50) 0.601 1.01 (0.74-1.43) 0.905 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, number of chronic conditions (including cancer, stroke, Alzheimer’s, cardiovascular disease, diabetes, 

history of frequent falls [2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and 

visual/auditory sensory impairment) and RAND physical functioning score. 
aThe reference group for all comparisons is women who did not survive to age 90 (n=929). 
bThere were 1033 women with baseline median age <=70.5 years (reference) and 1045 women with baseline age 

>70.5 years. 
cResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=6.4), 

AgeAccelHannum (sd=6.2), AgeAccelPheno (sd=7.6) and AgeAccelGrim (sd=5.1). 

Supplementary Figures 

 

Figure 2.3: Primary Results by Ancillary Study 

AS311 
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Figure 2.3: Primary Results by Ancillary Study (continued) 

AS315 
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Figure 2.3: Primary Results by Ancillary Study (continued) 

BAA23 
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Chapter 2, in full, is currently being prepared for submission for publication of the 

material. Jain, Purva; Binder, Alex; Chen, Brian; Parada, Humberto; Gallo, Linda; Alcaraz, John; 

Horvath, Steve; Bhatti, Parveen; Whitsel, Eric; Baccarelli, Andrea; Hou, Lifang; Stewart, Jay; 

Li, Yun; Jordahl, Kristina; LaCroix, Andrea. The dissertation author was the primary investigator 

and author of this paper.  
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3. An epigenome wide association study of exceptional aging in the Women’s Health 

Initiative. 

Purva Jain, Alexandra Binder, Brian Chen, Humberto Parada, Linda Gallo, Steve Horvath, 

Parveen Bhatti, Eric Whitsel, Kristina Jordahl, Andrea LaCroix  

3.1. Abstract 

Background: The foundation of wellbeing in older age can be quantified using functional status, 

which is comprised of one’s physical and mental capabilities. To date, there have been no 

longitudinal studies examining the relationship between DNA methylation (DNAm) and 

exceptional longevity among older women.  

Methods: This study was restricted to the 1,813 women in the Women’s Health Initiative (WHI) 

who had DNAm profiling at baseline, had an advanced enough age at baseline, and remained an 

active WHI participant long enough to be eligible to survive to age 90 by the end of our 

observation period. We conducted differential methylation analysis at 481,047 CpG sites and a 

genome-wide analysis of differentially methylated regions on a three-category exceptional 

longevity outcome: women who survived to age 90 with intact physical functioning and women 

who survived to age 90 without intact physical functioning compared to women who did not 

survive to age 90. 

Results: We found 139 significantly differentially methylated positions and 210 differentially 

methylated regions in our analysis of which the top two are presented here.  A 1% increase in 

Beta-value at cg07071449 was associated with a 10% (OR=1.10; 95% CI:1.07-1.14; p=4.0 X 10-

12) increase in the odds of survival to age 90 with physical function. Cg07071449 is in the body 

of the RAMP1 gene, which has been associated with several chronic conditions and has been 

shown to be expressed at higher levels in women with knee osteoarthritis. A 1% increase in 
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Beta-value at cg16716449 was associated with a 5% (OR=0.95; 95% CI:0.94-0.96; p=3.6 X 10-

12) decrease in the odds of survival to age 90 without physical function. Cg16716449 is in the 

A2BP1/RBFOX1 gene, which has been implicated with several neurodevelopmental diseases in 

additional to Alzheimer’s disease. 

Conclusion: The 139 differentially methylated CpG sites and 210 differentially methylated 

regions across the genome identified in this study may elucidate biological mechanisms 

associated with exceptional longevity, serve as potential targets for intervention and be utilized 

in risk prediction models. These findings should be confirmed in additional studies that include 

both long-lived men and women and examined further using molecular studies to identify 

specific biological mechanisms that may be at play in these relationships. 

3.2. Introduction 

There were close to 4 million individuals aged 85 and older in the United States (US) as 

of 2020.34 Over the next few decades, this population is expected to quadruple and comprise 

10% of the US population by 2050. While those 85 and older have traditionally been considered 

to be the ‘oldest old’ taking into account the increases in longevity in the US those who are 90 

years and old require additional focus. Furthermore, women outnumber men 3 to 1 among those 

who are 90 and older and thus comprise a significantly larger proportion of long-lived 

individuals.35  

 The foundation of wellbeing in older age can be quantified using functional status, which 

is comprised of one’s physical and mental capabilities. These capabilities include a person’s 

ability to meet their basic needs, be mobile, build and maintain relationships, learn, grow, make 

decisions and contribute to society.36 Living with impaired function becomes more common as 

women age into their 10th decade of life although this does not affect all women.37 Declines in an 
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individual’s intrinsic capacity to remain high functioning can be attributed to impairments in the 

physical or mental domains.38  

 Epigenetic changes are a hallmark of aging and include the methylation of DNA, or 

acetylation and methylation of histones and chromatin-associated proteins.1 Low levels of de-

novo methylation of CpG islands occur in normal tissues and are shown to increase with age.4-6 

Prior studies examining the relationship between DNAm patterns and longevity have been 

limited.21,24 While these studies did find differential DNA methylation patterns among the groups 

that were long-lived, these studies utilized a cross-sectional design, had small sample sizes, did 

not include participants with diverse racial/ethnic backgrounds and were not restricted to long-

lived individuals. Without control of factors associated with mortality, cross-sectional studies of 

loci associated with mortality are unable to identify loci that are causally related to aging.66  

There have been no longitudinal studies that examined DNA methylation patterns and 

survival to 90 years of age among women with intact mobility and/or cognitive functioning 

(absence of physician-diagnosed mild cognitive impairment and dementia). Survival to the age 

of 90 was selected as the primary analysis for this manuscript, because approximately one-half of 

WHI women in the age-eligible subgroup for survival to age 90 have survived. Our ability to 

examine survival to even older ages, is currently limited in the WHI data among women with 

available epigenetic data as described below. 

3.3. Methods 

Discovery Study Population 

The Women’s Health Initiative (WHI) (n=161,808) was initiated in 1993 with the goal of 

identifying strategies to prevent heart disease, osteoporosis and breast and colorectal cancer 

among postmenopausal women.48,49 The current study included participants from three (two 
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nested case-control and one prospective) WHI ancillary studies who had available data on 

DNAm. The Bladder Cancer and Leukocyte Methylation Ancillary Study (AS 311) included 468 

women with and 468 without bladder cancer to identify methylation profiles associated with 

bladder cancer risk using specific DNA methylation loci.50 The Epigenetic Mechanisms of 

Particulate Matter-Mediated Cardiovascular Disease Ancillary Study (AS315) included a random 

sample of 2,200 WHI clinical trial participants to understand the pathophysiological mechanisms 

that underlie particulate matter-related cardiovascular disease in postmenopausal women.51 Last, 

the Integrative Genomics for Risk of Coronary Heart Disease and Related Phenotypes in the 

WHI Cohort Ancillary Study (BA23) included 1,070 women with and 1,070 women without 

coronary heart disease.52  

There were 443 women in AS311, 694 women in AS315 and 942 women in BAA23 who 

were eligible to survive to age 90 (total = 2,079). Of these, 395 women had information available 

on all longevity components in AS311, 579 in AS315 and 839 in BAA23 resulting in a final 

analytic sample of 1,813 women (Figure 3.1). Baseline age ranged from 63.4-81.4 years with an 

average of 70.5 years (i.e. follow-up ranged from 9-27 years with an average of 20 years). 
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Figure 3.1: STROBE Diagram 

This current study was restricted to the 1,813 women from the three WHI ancillary 

studies with assays of genome-wide DNAm from WHI baseline who had an advanced enough 

age at baseline and remained an active WHI participant long enough to be eligible to survive to 

age 90 by the end of our observation period (September 30, 2020).  

Data and biospecimen collection 

 

 Women provided demographic and risk factor information, physical measurements and 

blood specimens at their baseline visit. Detailed questionnaires to collect risk factor data were 

also completed at each study visit. Blood samples that provided DNA methylation values were 

collected 12 hours after fasting and stored at -70 degrees Celsius. The WHI ascertained death 

using annual mailed outcome questionnaires, systematic searches of the National Death Index, 

hospital records, obituaries and proxy queries.53 
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Covariates 

 

 Covariates were measured at WHI baseline and selected due to their associations with 

both EAA and exceptional longevity. Covariates included age at blood draw, blood cell 

composition (CD8+ T Cells, CD4 T cells, Natural Killer cells, B lymphocyte cells, Monocytes, 

Granulocytes), race/ethnicity (White, Black, Hispanic, Other), education (high school/general 

education development or less, some college, college graduate or more), walking frequency 

(rarely or never, 1-3 times/mo, 1 time/wk, 2-3 times/wk, 4-6 times/wk, 7+ times/wk), body mass 

index categories (underweight, normal, overweight, obese), alcohol consumption (non-drinker, 

past drinker, <1 drink/mo, <1 drink/wk, 1-<7 drinks/wk, 7+ drinks/wk), pack-years smoking 

(never smoker, <5, 5-20, 20+), number of chronic conditions at baseline (0, 1-2, 3+, including 

cancer, stroke, Alzheimer’s disease, cardiovascular disease, diabetes, history of frequent falls 

[2+/yr], broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory 

sensory impairment) and physical function score (RAND-36 10-item physical function 

subscale54,  range 0-100, higher score reflects higher function). Chronic conditions were chosen 

based on the high degree of impact these conditions play in the lifespan and healthspan of older 

women.55-57  

Survival outcomes 

 

 We defined three primary outcomes for this study as follows: 1) survival to age 90 with 

intact cognitive and physical function; 2) survival to age 90 with impairment in cognitive and/or 

physical function; and 3) death before age 90.  Classifications were based on follow-up data 

through September 30th, 2020. Survival to age 90 was calculated from day of enrollment in the 

WHI through September 30th, 2020. Among women eligible to survive to age 90 (n=2,079), 128 
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(0.06%) were missing vital status at age 90. Intact physical functioning was defined using two 

questions from the Rand-36 Physical Function questionnaire54 as having no self-reported 

limitations for both walking one block and climbing one flight of stairs from baseline to age 90. 

The questionnaire was administered at baseline, at 1 and 3-year follow-up assessments, and then 

annually after 2005. Intact cognitive functioning was defined as having no self-reported 

moderate or severe memory problems nor dementia or Alzheimer’s Disease from baseline to age 

90 and was assessed annually by questionnaire. Among women enrolled in the WHI Extension 

Study 1 (2005-2010) with at least 1 Form 33 collected after enrollment, the validation of 

Alzheimer’s disease against Medicare claims was as follows (sensitivity=40%; specificity=95%) 

and against WHIMS (sensitivity=41%; specificity=89%).  

DNA methylation array and methylation data processing 

 

 The Illumina Infinium HumanMethylation450 Bead Array was used to measure 

methylation status from peripheral blood leukocytes using fasting blood draws from study 

participants in all three ancillary studies (San Diego, CA, Illumina). This array includes 99% of 

RefSeq genes that cover regions including the first exon, 30 and 50 untranslated regions, gene 

body and close proximity to transcription start sites. Quality control included excluding probes 

targeting cytosine-guanine CG sites on the Y chromosome, probes with detection p-values less 

than 0.001 in greater than 1% of samples, probes with a bead count less than 3 in greater than 

10% of samples and probes that measure non-CpG methylation. Normalization was completed 

using beta-mixture quantile normalization using BMIQ and the Beta-value was calculated for the 

481,440 CpG sites that met quality standards. The Beta-value represents the ratio of the 

methylated intensity and the overall intensity (the sum of the methylated and unmethylated 

intensities).67 The details of the DNA processing have been previously described.52,68 
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Statistical analysis 

 The baseline characteristics were reported by exceptional survival category. The three 

categories were survival to age 90 with intact physical function, survival to age 90 without intact 

physical function and did not survive to age 90. Differences by category were tested using 

Pearson’s chi-square tests for categorical variables and F-tests for continuous variables. An 

epigenome-wide association study was conducted on the 481,047 CpG loci that had methylation 

information available across all three ancillary studies. To account for multiple testing, a 

Bonferroni-adjusted p-value of 10-7 was used for significance testing. Fully-adjusted multinomial 

logistic regression models with a random intercept for ancillary study were used to assess the 

relationships between a 1% increase in Beta-value at each CpG and exceptional longevity.  The 

reference group for both levels of comparison were women who did not survive to age 90. A 

secondary analysis was also conducted to assess the relationship of the top site-specific hits from 

the primary analysis with the second exceptional longevity outcome. Women who survived to 

age 90 with intact physical and cognitive function and women who survived to age 90 with intact 

physical or cognitive function were compared to women who did not survive to age 90. This 

outcome was also tested using a fully-adjusted multinomial logistic regression with the same 

covariates as the primary analysis.  

A QQ-plot with lambda for inflation and Manhattan plots to display the top hits by 

chromosome were generated for both levels of comparisons in the primary analysis using the 

qqman package in R. A scatter plot of the t-stat from the top site-specific hits of each comparison 

were plotted to examine the overlap of both levels of comparison. The same scatter plot 

including the t-stat for all sites with a density overlay was also included in the supplement. A 

Pearson’s correlation coefficient was calculated for both plots. The differentially methylated 
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regions were tested using the ipdmr package and a gene set enrichment analysis for biological 

function was completed using the methylRRA function in the methylGSA package. All analyses 

were completed using R Version 1.4.1106 (Vienna, Austria).  

3.4. Results 

This Of the 1,813 women included in this study, 464 experienced exceptional longevity 

(i.e., survived to age 90 with intact physical and cognitive functioning), 420 women survived to 

age 90 with loss of intact physical and/or cognitive functioning, and 929 women did not survive 

to age 90. Compared to women who survived to age 90 without intact function and women who 

did not survive to age 90, women who experienced exceptional longevity were more likely to be 

White, be college graduates, walk 2-3 times per week and 4-6 times per week, have a BMI in the 

healthy weight range of 20-25 kg/m2 or overweight range of 35-30 kg/m2, have more than 1 but 

less than 7 alcoholic drinks per week, be never smokers, have none of the major chronic 

conditions examined, and have higher physical functioning (Table 3.1). 
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Table 3.1: Baseline Characteristics by Level of Outcome (n=1,813) 

 90 w/ Phys 

& Cog 

Health 

(n=464) 

90 w/o 

Phys/Cog 

Health 

(n=420) 

Did not 

Survive to 

age 90 

(n=929) 

p 

Race/Ethnicity, n (%)    0.013 

     Black or African American 66 (14.3) 73 (17.4) 179 (19.4)  

     Hispanic/Latino 27 (5.9) 36 (8.6) 78 (8.5)  

     White 348 (75.7) 305 (72.8) 637 (69.1)  

     Other 19 (4.1) 5 (1.2) 28 (3.0)  

Education, n (%)    0.003 

    HS/GED or Less 103 (22.3) 114 (27.3) 281 (30.5)  

    Some College 181 (39.2) 177 (42.3) 369 (40.0)  

    College Grad or More 178 (38.5) 127 (30.4) 272 (29.5)  

Walking Frequency, n (%)    <0.001 

    Rarely or Never 56 (12.1) 88 (21.2) 204 (22.2)  

    1-3 times/month 66 (14.2) 51 (12.3) 144 (15.7)  

    1 time/week 50 (10.8) 34 (8.2) 109 (11.9)  

    2-3 times/week 144 (31.0) 118 (28.4) 231 (25.2)  

    4-6 times/week 111 (23.9) 90 (21.7) 163 (17.8)  

    7+ times/week 37 (8.0) 34 (8.2) 67 (7.3)  

BMI Category, n (%)    <0.001 

    Underweight 6 (1.3) 3 (0.7) 9 (1.0)  

    Normal 167 (36.2) 101 (24.2) 251 (27.2)  

    Overweight 189 (41.0) 150 (35.9) 296 (32.0)  

    Obese 99 (21.5) 164 (39.2) 368 (39.8)  

Alcohol Consumption, n (%)    <0.001 

    Non-drinker 60 (13.1) 63 (15.1) 121 (13.2)  

    Past drinker 70 (15.3) 95 (22.7) 224 (24.5)  

    <1 drink/month 51 (11.1) 56 (13.4) 134 (14.6)  

    <1 drink/week 99 (21.6) 93 (22.2) 167 (18.3)  

    1-<7 drinks/week 120 (26.1) 71 (17.0) 173 (18.9)  

    7+ drinks/week 59 (12.9) 40 (9.6) 96 (10.5)  

Smoking Pack-Years, n (%)    <0.001 

    Never Smoker 277 (62.0) 248 (60.6) 425 (47.6)  

    <5 51 (11.4) 59 (14.4) 96 (10.8)  

    5-<20 64 (14.3) 41 (10.0) 114 (12.8)  

    20+ 55 (12.3) 61 (14.9) 258 (28.9)  

Number of Chronic Conditions, n (%)a    <0.001 

    0 143 (30.8) 101 (24.0) 202 (21.7)  

    1-2 291 (62.7) 271 (64.5) 615 (66.2)  

    3+ 30 (6.5) 48 (11.4) 112 (12.1)  

Age, mean (SD) 71.6 (3.5) 71.3 (3.2) 70.2 (3.4) <0.001 

Physical Function Score, mean (SD) 82.4 (20.2) 72.8 (22.7) 69.5 (24.6) <0.001 

Note: GED=general educational development; BMI=body mass index; kg=kilograms; m=meters 
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 Table 3.2 includes the results for the 10 CpG sites with lowest p-value for each level of 

comparison and Supplementary Table 3.6 includes the results for all 481,047 CpGs tested in 

addition to the distribution of the Beta-values. There were 38 significant sites comparing women 

who survived to age 90 with physical function and 103 significant sites comparing women who 

survived to age 90 without physical function to women who did not survive to age 90. These 

results are also summarized in Manhattan plots in Figures 3.2 and 3.3 and the significant 

associations are labeled. The qq-plot for survival to age 90 with physical function (lambda=1.75) 

and survival to age 90 without physical function (lambda=2.13) are also presented in the 

supplement. A 1% increase in Beta-value at cg07071449 was associated with a 10% (OR=1.10; 

95% CI:1.07-1.14; p=4.0 X 10-12) increase in the odds of survival to age 90 with physical 

function and a 1% increase in Beta-value at cg01127300 was associated with a 8% (OR=1.10; 

95% CI:1.05-1.10; p=5.8 X 10-12) increase in the odds of survival to age 90 with physical 

function. Cg07071449 and cg01127300 have an average methylation of 0.84 (sd=0.06) and 0.53 

(sd=0.08) for women who survived to 90 with physical function and 0.83 (sd=0.07) and 0.51 

(sd=0.09) for women who did not survive to age 90, respectively. Additionally, a 1% increase in 

Beta-value at cg16716449 was associated with a 5% (OR=0.95; 95% CI:0.94-0.96; p=3.6 X 10-

12) decrease in the odds of survival to age 90 without physical function and a 1% increase in 

Beta-value at cg22311230 was associated with a 7% (OR=0.92; 95% CI:0.89-0.94; p=2.5 X 10-

11) decrease in the odds of survival to age 90 without physical function.  Cg16716449 and 

cg22311230 have an average methylation of 0.83 (sd=0.11) and 0.86 (sd=0.10) for women who 

survived to 90 without physical function and 0.57 (sd=0.07) and 0.57 (sd=0.07) for women who 

did not survive to age 90, respectively 
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Table 3.2: Top 10 CpG Sites in tests of association between DNA methylation level and 

survival to age 90 with and without physical function compared to women who did not 

survive to age 90 

Survived to age 90 with Physical Function vs. Did not Survive to Age 90 

Illumina 

ID 

Chr Position Gene Gene 

Group 

Relation 

to CpG 

Island 

OR (95% CI) p 

cg07071449 chr2 238777806 RAMP1 Body OpenSea 1.10 (1.07-1.14) 4.0 x 10-

12 

cg01127300 chr22 38614796 - - S_Shelf 1.08 (1.05-1.10) 5.8 x 10-

11 

cg17242596 chr11 132527296 OPCML Body OpenSea 1.12 (1.08-1.17) 9.0 x 10-

10 

cg11530213 chr8 42037966 PLAT Body OpenSea 1.05 (1.03-1.07) 1.3 x 10-9 

cg03448017 chr16 83980015 - - OpenSea 0.98 (0.97-0.99) 2.7 x 10-9 

cg23065768 chr11 17411712 KCNJ11 TSS1500 S_Shore 0.95 (0.94-0.97) 4.7 x 10-9 

cg11271430 chr4 187984718 - - Island 1.13 (1.08-1.17) 5.2 x 10-9 

cg13824991 chr18 76766250 - - Island 1.05 (1.03-1.07) 6.3 x 10-9 

cg13657981 chr7 134558080 CALD1 Body OpenSea 0.93 (0.91-0.96) 1.1 x 10-8 

cg13949713 chr10 130302534 - - S_Shelf 0.96 (0.95-0.97) 1.4 x 10-8 

Survived to age 90 without Physical Function vs. Did not Survive to Age 90 

Illumina 

ID 

Chr Position Gene Gene 

Group 

Relation 

to CpG 

Island 

OR (95% CI) p 

cg16716449 chr16 6976709 A2BP1 5’UTR OpenSea 0.95 (0.94-0.96) 3.6 x 10-

12 

cg22311230 chr11 3253769 MRGPRE TSS200 Island 0.92 (0.89-0.94) 2.5 x 10-

11 

cg03492641 chr15 34807679 - - S_Shore 0.92 (0.90-0.95) 2.8 x 10-

11 

cg18660329 chr3 8713512 - - OpenSea 1.08 (1.06-1.11) 6.0 x 10-

11 

cg10800483 chrX 114798337 PLS3 5’UTR S_Shelf 1.06 (1.04-1.08) 1.0 x 10-

10 

cg01281718 chr6 71376634 SMAP1 TSS1500 N_Shore 0.87 (0.84-0.91) 1.6 x 10-

10 

cg03623568 chr16 6915990 A2BP1 5’UTR OpenSea 1.03 (1.02-1.03) 2.3 x 10-

10 

cg23923934 chr6 31322914 HLA-B Body N_Shore 1.09 (1.06-1.11) 2.5 x 10-

10 

cg03161606 chr19 29218774 - - S_Shore 0.97 (0.96-0.98) 2.7 x 10-

10 

cg00754604 chr2 161230046 RBMS1 Body OpenSea 1.13 (1.09-1.17) 3.4 x 10-

10 
Note: Chr=Chromosome 

Note; The odds ratio represents a 1% increase in DNA methylation at each specific CpG site. 
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Figure 3.2: Manhattan plot displaying top CpG hits in the association between DNA 

methylation level and survival to age 90 with physical function compared to women who 

did not survive to age 90 

 

Figure 3.3: Manhattan plot displaying top CpG hits in the association between DNA 

methylation level and survival to age 90 without physical function compared to women who 

did not survive to age 90 
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 In the secondary analysis that tested the 139 significant CpG sites in the primary analysis, 

there were 17 significant hits when comparing women who survived to age 90 with intact 

physical and cognitive function and 64 significant hits when comparing women who survived to 

age 90 with intact physical or cognitive function to women who did not survive to age 90. The 

correlation of the t-stat between the two levels of correlation was moderate (r=0.670) and there 

were 2 significant CpGs that overlapped. The top 10 hits are displayed in Table 3.3 and the 

results of full 139 CpGs. A 1% increase in Beta-value at cg11530213 was associated with a 6% 

(OR=1.06; 95% CI:1.04-1.07; p=2.1 X 10-10) increase in the odds of survival to age 90 with 

physical and cognitive function. A 1% increase in Beta-value at cg11271430 was associated with 

a 14% (OR=1.14; 95% CI:1.10-1.19; p=2.7 X 10-10) increase in the odds of survival to age 90 

with physical and cognitive function. A 1% increase in Beta-value at cg22311230 was associated 

with a 9% (OR=0.91; 95% CI:0.88-0.93; p=7.4 X 10-14) decrease in the odds of survival to age 

90 without intact physical or cognitive function. A 1% increase in Beta-value at cg18660329 was 

associated with a 8% (OR=1.08; 95% CI:1.06-1.11; p=4.9 X 10-12) decrease in the odds of 

survival to age 90 without physical or intact function.  
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Table 3.3: Top 10 CpG Sites in tests of association between DNA methylation level and 

survival to age 90 with and without physical and cognitive function compared to women 

who did not survive to age 90 

Survived to age 90 with Physical and Cognitive Function vs. Did not Survive to Age 90 

Illumina ID Chr Position Gene Gene 

Group 

Relation 

to CpG 

Island 

OR (95% CI) p 

cg11530213 8 42037966 PLAT Body OpenSea 1.06 (1.04-1.07) 2.1 x 10-10 

cg11271430 4 187984718 - - Island 1.14 (1.10-1.19) 2.7 x 10-10 

cg07071449 2 238777806 RAMP1 Body OpenSea 1.09 (1.06-1.12) 4.0 x 10-10 

cg13824991 18 76766250 - - Island 1.06 (1.04-1.07) 7.6 x 10-10 

cg01127300 22 38614796 - - S_Shelf 1.07 (1.05-1.06) 2.4 x 10-9 

cg14014731 9 19378679 RP56 Body N_Shore 1.08 (1.05-1.11) 5.7 x 10-9 

cg05823029 13 114312758 ATP48 TSS1500 OpenSea 0.93 (0.91-0.96) 6.0 x 10-9 

cg23065768 11 17411712 KCNJ11 TSS1500 S_Shore 0.95 (0.94-0.97) 6.8 x 10-9 

cg03852045 1 120439870 ADAM30 TSS1500 S_Shore 0.63 (0.54-0.74) 8.5 x 10-9 

cg13295089 7 155492281 RBM33 TSS1500 OpenSea 1.02 (1.01-1.03) 9.6 x 10-9 

Survived to age 90 without Physical or Cognitive Function vs. Did not Survive to Age 90 

Illumina ID Chr Position Gene Gene 

Group 

Relation 

to CpG 

Island 

OR (95% CI) p 

cg22311230 11 3252769 MRGPRE TSS200 Island 0.91 (0.88-0.93) 7.4 x 10-14 

cg18660329 3 8713512 - - OpenSea 1.08 (1.06-1.11) 4.9 x 10-12 

cg16716449 16 6976709 A2BP1 5’UTR OpenSea 0.95 (0.94-0.97) 8.4 x 10-12 

cg03492641 15 34807679 - - S_Shore 0.92 (0.90-0.94) 1.0 x 10-11 

cg23923934 6 31322914 HLA-B Body N_Shore 1.09 (1.06-1.11) 3.5 x 10-11 

cg00754604 2 161230046 RBMS1 Body OpenSea 1.13 (1.09-1.17) 4.6 x 10-11 

cg22010317 X 45060544 CXorf36 TSS1500 OpenSea 1.05 (1.04-1.07) 1.1 x 10-10 

cg20962833 1 175891165 - - OpenSea 1.18 (1.12-1.24) 2.4 x 10-10 

cg02249490 17 42004878 - - OpenSea 0.85 (0.81-0.90) 5.2 x 10-10 

cg20018253 14 94346104 - - OpeanSea 0.95 (0.94-0.97) 7.8 x 10-10 
Note: Chr=Chromosome 

Note; The odds ratio represents a 1% increase in DNA methylation at each specific CpG site. 

 

 There were 83 DMRs comparing women who survived to age 90 with intact physical 

function and 127 DMRs comparing women who survived to age 90 without physical function 

compared to women that did not survive to age 90 that met the FDR threshold of 10-7. The top 10 

DMRs are in Table 3.4 and the complete table of DMRs is in Supplement Table 3.7. Women 

who survived to age 90 with intact physical function compared to women who did not survive to 

age 90 had significantly different DNA methylation at chr 10:530635-532358 (q=3.9 X 10-24) 

which includes the DIP2C gene and chr 5:1594021-1595049 (q=3.9 X 10-24) which includes the 

SDHAP3 gene. Women who survived to age 90 without intact physical function compared to 
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women who did not survive to age 90 had significantly different DNA methylation at chr 

11:2322050-2323929 (q=1.6 X 10-34) and chr 11:32449163-32452840 (q=4.8 X 10-34). 

Table 3.4: Top 10 DMRs in tests of association between DNA methylation level and 

survival to age 90 with and without physical function compared to women who did not 

survive to age 90 

Survived to age 90 with Physical Function vs. Did not Survive to Age 90 

Chr Start End N Probe q Gene Gene Group 

10 530635 532358 15 3.9 x 10-24 DIP2C Body 

5 1594021 1595049 12 9.3 x 10-21 SDHAP3 Body; TSS200 

20 36147340 36149195 39 8.4 x 10-18 BLCAP; 

NNAT 

5’UTR; TSS1500 

6 33871907 33873733 11 2.1 x 10-16 - - 

14 23623480 23624789 9 1.1 x 10-15 SLC7A8 Body; TSS200;TSS1500 

15 45027253 45028596 6 6.7 x 10-14 TRIM69 5’UTR; 1st Exon; TSS1500 

10 14051636 14052029 6 3.4 x 10-13 FRMD4A Body 

20 2729245 2731177 5 1.2 x 10-12 EBF4 Body 

11 312518 315752 18 1.4 x 10-12 IFITM1 Body; 3’UTR; 5’UTR; 1st 

Exon; TSS1500 

6 32847513 32847846 19 2.5 x 10-12 PPP1R2P1 Body 

Survived to age 90 without Physical Function vs. Did not Survive to Age 90 

Chr Start End N Probe q Gene Gene Group 

11 2322050 2323939 28 1.6 x 10-34 C11orf21; 

TSPAN23C 

Body; 1st Exon; 5’UTR; 

TSS200; TSS1500 

11 32449163 32452840 21 4.8 x 10-34 WT1 Body 

19 29217858 29218775 7 1.3 x 10-29 - - 

6 33084479 33085471 20 4.3 x 10-25 HLA-DPB2 Body 

11 3253581 3254325 12 1.7 x 10-21 MRGPRE 1st Exon; 5’UTR; TSS200; 

TSS1500 

19 54927291 54928186 6 1.8 x 10-19 TTYH1 Body 

10 94819989 94821658 11 7.9 x 10-19 CYP26C1 1st Exon; Body; TSS200; 

TSS1500 

11 13983009 13984068 12 8.1 x 10-18 SPON1 1st Exon; 5’UTR; TSS200; 

TSS1500 

6 31431100 31431903 6 6.8 x 10-17 HCP5 Body; 3’UTR 

15 101991512 10199188

7 

5 6.8 x 10-17 PCSK6 Body 

Note: DMR=Differentially methylated region; Chr=Chromosome 

Note: q-values are p-values adjusted using the false discovery rate method. 

 

 The top 10 biological processes identified using the gene ontology for the top site-

specific hits are included in Table 3.5 and the full table is in Supplemental Table 3.8. For women 

who survived to age 90 with physical function compared to women who did not survive to age 

90 these included regulation of the postsynaptic membrane potential and central nervous system 
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neuron differentiation and for women who survived to age 90 without physical function 

compared to women who did not survive to age 90 this included locomotory behavior, 

telencephalon development and endochrondal bone morphogenesis. 

Table 3.5: Gene set analysis for DNA methylation level and survival to age 90 with physical 

function compared to women who did not survive to age 90 

ID Description Count Size padj 

GO:0045211 postsynaptic membrane 106 329 1.3 x 10-5 

GO:0060078 regulation of postsynaptic membrane potential 58 153 2.7 x 10-5 

GO:0099055 integral component of postsynaptic membrane 47 125 4.3 x 10-5 

GO:0021953 central nervous system neuron differentiation 69 211 6.3 x 10-4 

GO:0098982 GABA-ergic synapse 34 83 6.3 x 10-5 

GO:0097060 synaptic membrane 131 470 6.3 x 10-4 

GO:0098936 intrinsic component of postsynaptic membrane 47 131 6.3 x 10-4 

GO:0099699 integral component of synaptic membrane 56 165 6.3 x 10-4 

GO:0030326 embryonic limb morphogenesis 48 135 6.3 x 10-4 

GO:0035113 embryonic appendage morphogenesis 48 135 6.3 x 10-4 

GO:0048706 embryonic skeletal system development 48 135 6.3 x 10-4 
Note: The minimum gene set size was set at 50 and the maximum gene set size was set at 500. 

ID Description Count Size padj0.022 

GO:0007626 locomotory behavior 100 202 0.022 

GO:0098889 intrinsic component of presynaptic membrane 48 48 0.022 

GO:0021537 telencephalon development 128 272 0.023 

GO:0060350 endochondral bone morphogenesis 34 56 0.025 

GO:0048168 regulation of neuronal synaptic plasticity 35 59 0.032 

GO:0150034 distal axon 150 334 0.041 

GO:0051966 regulation of synaptic transmission, glutamatergic 42 76 0.041 

GO:0048167 regulation of synaptic plasticity 105 224 0.041 

GO:0098685 schaffer collateral – CA1 synapse 46 85 0.041 

GO:0030900 forebrain development 187 429 0.041 

GO:0060541 respiratory system development 104 222 0.041 
Note: The minimum gene set size was set at 50 and the maximum gene set size was set at 500. 

 

3.5. Discussion 

 

For the primary analysis that used an epigenome-wide-association study across 481,047 

CpG sites comparing women who survived to age 90 with and without intact physical function to 

women who did not survive to age 90 there were 38 and 103 significantly differentially 
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methylated CpG sites identified, respectively, with 2 sites that overlapped. In the secondary 

analysis that tested these 139 sites comparing women who survived to age 90 with and without 

intact physical and/or cognitive function compared to women who did not survive to age 90 there 

were 17 and 64 significantly differentially methylated CpG sites, respectively. There were also 

83 DMRs comparing women who survived to age 90 with intact physical function and 127 

DMRs comparing women who survived to age 90 without physical function to women that did 

not survive to age 90.  

 In the site-specific analysis for both survival to age 90 with physical and survival to age 

90 with physical and cognitive function, the significant sites were close to the receptor activity-

modifying protein (RAMP) and plasminogen activator gene (PLAT) genes. The survival to age 

90 with intact physical function additionally included opioid-binding protein/cell adhesion 

molecule (OPCML) in the top 3 hits. Both survival to age 90 with intact physical and cognitive 

function and survival to age 90 with physical or cognitive function, had significant sites that 

were near ataxin-2-binding protein 1 (A2BP1) and Mas-related G-protein coupled receptor 

member E (MRGPRE) genes. The upregulation of RAMP is associated with several conditions: 

heart failure, cancer, sepsis, liver cirrhosis, glomerulonephritis, Type 1 diabetes, Parkinson’s.69 

RAMP-1 has also been shown to be expressed at higher levels in women compared to men with 

knee osteoarthritis and calcitonin gene-related peptide (CGRP) which binds to RAMP-1 was 

correlated with greater pain severity in women compared to men. The PLAT gene with the 

angiotensin converting enzyme (ACE) DD genotype have been previously associated with 

exceptional longevity among older women as well as centenarians.70,71 The OPCML tends to be 

hypermethylated in several different types of cancer due to its role in the early stages of tumor 

initiation.72 A2BP1 also known as FOX1 and RBFOX1 was identified in the secondary outcome 
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that included cognitive function and is a neuron-specific splicing factor that is required for 

proper exon usage. These splicing functions are considered important for brain development and 

neurodevelopmental disorders.73 A small study also showed that there were autosomal copy 

number variations in A2BP1 among families with early onset – familial Alzheimer’s disease.74 

  The DMRs for survival to age 90 with intact physical function included the disco-

interacting protein 2 homolog (DIP2C), succinate dehydrogenase complex flavoprotein subuit A 

pseudogene 3 (SDHAP3), bladder cancer-associated protein (BLCAP) and neuronatin (NNAT) 

genes and the DMRs for survival to age 90 without intact physical function compared to women 

who did not survive to age 90 included the chromosome 11 open reading frame 21 (C11orf21), 

tetraspanin 23-C (TSPAN23C), Wilm’s tumor 1 (WT1) and major histocompatibility complex, 

class II, DP beta 1 (HLA-DPB2) genes. DIP2C is known to play an important role in brain 

development and function and a gene ontology analysis indicated that differentially expressed 

genes in the rain are enriched in neurological functions such as memory, neuropeptide signaling 

pathway and response to amphetamine75-79 BLCAP is a tumor suppressor gene associated with 

Wilm’s tumor, bladder, cervical and breast cancer among other cancers80-83, NNAT is associated 

with metabolism coronary atherosclerotic heart disease, Wilm’s Tumor and several leukemias 

and solid tumor through control of cell growth and differentiation and HLA-DPB2 is also 

associated with several cancers including breast, cervical, ovarian and rectal along with hepatitis 

B and lupus84-88 and finally C11orf21 has been associated with leukemia and 

neurodevelopmental disorders.89,90 

The genes associated with the top individuals CpGs and DMRs with significantly 

differential methylation have been implicated in longevity and several diseases including many 

different types of cancer. Prior studies of DNA methylation and aging have also revealed 
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hypermethylation of CpG islands and global DNA hypomethylation although the magnitude of 

change was larger for cancer versus aging.91,92 In normal adult somatic cells, most CpG islands 

in promoters are unmethylated and CpG sequences in heterochromatin containing repeated DNA 

are methylated.93 There are two hypothesized mechanisms behind these changes. The first is 

epigenetic drift, the modification of epigenetic marks due to errors in epigenetic pathways, and 

the second is stress-induced changes.94,95 

 In McEwen’s study of 48 long-lived Nicoyans and 47 non-Nicoyans in Costa Rica, there 

were 4 single CpGs and 20 genomic regions that were significantly differentially methylated 

between Nicoyans and non-Nicoyans. One DMR had six CpGs in the promoter region of the 

NUDT12 gene which is known to play a role in NAD metabolism, a regulatory process 

associated with health span and aging. The genes that were associated with these findings did not 

overlap with our significant findings, but this may be due to differences in the characteristics of 

the sample and outcome definitions.21 Gentillini et. al tested methylation at 25,578 CpG sites 

comparing centenarians, centenarians’ offspring and offspring of non-long-lived parents to 

young controls and identified 709 loci associated with 607 genes responsible for the regulation of 

transcription and cell differentiation among other functions. The 330 CpG loci that were 

hypomethylated had genes that controlled signal transduction/signaling processing and the 

regulation of respiratory burst involved in acute inflammatory response among additional 

functions. 

 There were several strengths and limitations to this study that should be noted. This study 

benefitted from a large, racial/ethnically diverse sample of women who were followed to at least 

90 years of age. Women were followed for 20 years on average with low rates of loss to follow-

up. There was information available on important baseline characteristics and potential 
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confounders due to the prior data collection in the WHI. Finally, we had repeated measures of 

both physical and cognitive functioning from baseline to age 90 or time of death that were taken 

into account in the exceptional longevity classification although due to those who were unable to 

complete the annual survey due to their level of frailty there may the results may be attenuated. 

Among the limitations, the first is the nested case-control sampling of two of the ancillary studies 

from the larger WHI. If the sampling structure is ignored the disproportionate stratified 

subsamples of the study base can lead to biased estimates. Using inverse probability selection 

weights to account for differences in selection criteria is a recommended solution and was 

implemented in this study.64 This study was limited to women and replication in cohorts that 

include both men and women, diverse racial/ethnic groups and represent individuals from varied 

regions of the world is important. Notably, few prospective studies exist for replication where 

sufficient numbers of participants have been followed for 20 or more years to the age of 90 or 

older so that healthspan related phenotypes can be defined. 

To the best of our knowledge this is the first study to investigate the potential link 

between genome-wide DNA methylation in blood and exceptional longevity among older 

women. We identified several sites and regions that had differential methylation associated with 

exceptional longevity among older women. These findings should be confirmed in additional 

studies that include both long-lived men and women and examined further using molecular 

studies to identify specific biological mechanisms that may be at play in these relationships. The 

differentially methylated CpG sites across the genome identified in this study may elucidate 

biological mechanisms associated with exceptional longevity, serve as potential targets for 

intervention and be utilized in risk prediction models.  
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Supplementary Figures 

Figure 3.4: QQ plot of expected versus observed p-value comparing women who survived 
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to age 90 with physical function compared to women who did not survive 

 

Figure 3.5: QQ plot of expected versus observed p-value comparing women who survived 

to age 90 without physical function compared to women who did not survive 

Figure 3.6: Scatter plot with density overlay displaying t-stat of association between DNA 

methylation level and survival to age 90 with physical function compared to women who 

did not survive to age 90 and DNA methylation level and survival to age 90 without 

physical function compared to women who did not survive to age 90 
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Chapter 3, in full, is currently being prepared for submission for publication of the 

material. Jain, Purva; Binder, Alex; Chen, Brian; Parada, Humberto; Gallo, Linda; Alcaraz, John; 

Horvath, Steve; Bhatti, Parveen; Whitsel, Eric; Baccarelli, Andrea; Hou, Lifang; Stewart, Jay; 

Li, Yun; Jordahl, Kristina; LaCroix, Andrea. The dissertation author was the primary investigator 

and author of this paper.  
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4. The association of epigenetic age acceleration and multimorbidity at age 90 in the 

Women’s Health Initiative 

Purva Jain, Alexandra Binder, Brian Chen, Humberto Parada, Linda Gallo, Steve Horvath, 

Parveen Bhatti, Eric Whitsel, Kristina Jordahl, Andrea LaCroix 

4.1. Abstract 

Background:  Epigenetic age acceleration (EAA), a measure of accelerated biological aging, has 

been associated with increased risk of several age-related chronic conditions. This was the first 

study to measure the relationship between EAA and both multimorbidity count and a weighted 

multimorbidity score among postmenopausal women using a prospective design. 

Methods: This study included 1,951 women from three Women’s Health Initiative (WHI) 

ancillary studies with genome-wide DNA methylation (DNAm) data from baseline blood 

samples and who could have survived to age 90 during follow-up through September 30, 2020. 

EAA was estimated using the Horvath pan-tissue, Hannum, PhenoAge and GrimAge “clocks.” 

The multimorbidity score was weighted for each morbidity’s relationship with mortality in the 

study population and included 12 age-related chronic conditions. Using mixed-effects Poisson 

and linear regression models with a random intercept for each ancillary study, we estimated 

relative risks (RRs) and 95% confidence intervals (CIs) for the relationships between each clock 

measured at study baseline and both multimorbidity count and weighted multimorbidity score at 

age 90, respectively. All models included baseline covariates associated with both EAA and 

multimorbidity and inverse probability weights of ancillary study selection to create a study 

population that was representative of the WHI overall. 

Results: For every one-standard deviation increase in AgeAccelPheno, the rate of multimorbidity 

accumulation increased 6% (RR=1.06; 95% CI=1.01-1.12; p=0.025) and the multimorbidity 
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score by 7% (RR=1.07; 95% CI=1.01-1.13; p=0.014) for women who survived to age 90. The 

results for a one-standard deviation increase in AgeAccelHorvath, AgeAccelHannum and 

AgeAccelGrim with multimorbidity accumulation and score were weaker compared to 

AgeAccelPheno, and did not reach statistical significance. 

Conclusion: Epigenetic clock PhenoAgeAccel may predict multimorbidity count and score at age 

90 in older women and, thus, may be useful as a biomarker predictor of multimorbidity burden in 

the last decades of life. 

4.2. Introduction 

There are approximately 3.8 million individuals who are aged 85 and older in the United 

States (US) with this population expected to comprise 10% of the US population by 2050.34 

Women outnumber men 3 to 1 among those 90 or older.35 Among Medicare beneficiaries in 

2008, 82.3% of women ages 85 or older had multimorbidity. Multimorbidity as defined by US 

Department of Health and Human Services is the presence of 2 or more chronic conditions.96 

There is substantial evidence supporting the relationship between multimorbidity and mortality, 

functional status and quality of life.97-103 

Recently, the National Institutes of Health (NIH) developed a framework highlighting the 

influence of factors that may cause, increase the risk for, or exacerbate multiple conditions, and 

the potential for these factors to inform prevention strategies to achieve significant public health 

impact.104 Biological aging focuses on biological mechanisms that are fundamental and central to 

overall increases in disease and disability as one ages.38 Individuals with the same chronological 

age may experience different rates of biological aging, and faster biological aging is associated 

with chronic disease onset, morbidity and mortality.  Exceptional longevity can be characterized 

as having a biological age less than one’s chronological age and is closely linked with the 
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concept of healthspan. Healthspan prioritizes physical and cognitive functioning with advancing 

age, and preservation of healthspan targets both primary and secondary prevention of impaired 

function.1 Primary prevention is the prevention of disease, while secondary prevention aims for 

early detection and minimization of symptoms. 

For a biomarker to be a useful indicator or predictor of exceptional longevity and 

healthspan, it should move beyond prediction of all-cause mortality and be capable of predicting 

multimorbidity burden at an advanced age. Epigenetic age is a composite measure of DNA 

methylation (DNAm) levels across specific cytosine-guanine dinucleotides (CpG) sites that are 

associated with chronologic and phenotypic age. These DNAm signatures are associated with 

age-related diseases and all-cause mortality, independent of chronologic age.42-44 Epigenetic age 

acceleration (EAA) is then the difference between one’s chronological age and epigenetic age 

predicted by chronological age and is indicative of whether one is aging slower or faster than 

their chronological age.  

To the best of our knowledge previous studies that examined the association between 

EAA and multimorbidity count among older adults have been cross-sectional.23 A meta-analysis 

including 9 studies from 4 unique cohorts was conducted to assess the relationship of a 1-year 

increase in EAA and multimorbidity count at time of blood draw. Overall, all EAA measures 

showed a statistically significant association with cross-sectional multimorbidity counts. The 

previous study limited the multimorbidities that were included in the multimorbidity count to the 

age-related conditions available in each cohort, did not take into consideration the risk of 

mortality associated with each condition, was not restricted to older age groups, and did not 

examine associations with multimorbidity at a specific older age when all participants would 

have the same amount of chronological aging for diseases to occur.  
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The NIH report on multimorbidity additionally recommended the use of nested-

prospective, age-based, epidemiologic studies to examine potential mechanisms that may be 

intervened upon to target multimorbidity among older adults.104 There have been no nested-

prospective studies that have examined the relationship between EAA and multimorbidity count 

among women who survive to older ages (90+ years). The aims of this study, therefore, were to 

examine the relationships between EAA and both multimorbidity count and weighted 

multimorbidity score at age 90. We hypothesized that women who experienced accelerated 

biological aging, as measured by epigenetic age, would have higher multimorbidity counts and 

weighted multimorbidity scores. 

4.3. Methods 

Study Population 

 

In 1993, the Women’s Health Initiative (WHI) was created in order to identify strategies to  

prevent heart disease, osteoporosis and breast and colorectal cancers among postmenopausal 

women.47,48 This study included three WHI ancillary studies, two nested case-control studies and 

one nested cohort, that previously assayed genome-wide DNAm. The Bladder Cancer and 

Leukocyte Methylation Ancillary Study (Study A) identified methylation profiles associated with 

bladder cancer risk among 468 women with and 468 women without bladder cancer.50 The 

Integrative Genomics for Risk of Coronary Heart Disease and Related Phenotypes in the WHI 

Cohort Ancillary Study (Study B) included 1,070 women with and 1,070 women without 

coronary heart disease.52 The Epigenetic Mechanisms of Particulate Matter-Mediated 

Cardiovascular Disease Ancillary Study (Study C) identified the pathophysiological mechanisms 

that underlie particulate matter-related cardiovascular disease in postmenopausal women using a 

random sample of 2,200 WHI clinical trial participants.51  



68 

The current study included women with baseline assays of genome-wide DNAm that were 

eligible to survive to age 90 between baseline and the end of the most recent observation period 

(September 30, 2020). There were a total of 2,079 women who were eligible to survive to age 90 

(443 from AS311, 694 from AS315 and 942 from BAA23). Of these eligible women, survival 

status at age 90 was known for 1,951 women (94%); 1,022 women survived to age 90 while 929 

women died before reaching age 90. There were 128 women who had an unknown survival 

status and were excluded resulting in a final analytic sample of 1,951 women. Study protocols 

were approved by the WHI publications and presentations committee and all women provided 

consent in person or by phone. 

Measures 

Epigenetic Age 

DNAm was measured using the Illumina Infinium 450K platform (San Diego, CA, 

Ilumina). The minfi package in R was used to read in all DNAm data files, check for failed 

samples, conduct quality control and implement normalization steps. The normal-exponential 

convolution using out-of-band probes method was used to perform background correction. 

Functional normalization was used to account for type I and type II probe differences and to 

remove both batch effects and technical variation. The wateRmelon and minfi R packages were 

used to remove low quality probes that interrogate non-CpG sites, remove probes that have a 

detection p-value above 0.01 in any sample, and remove probes that are located on the X or Y 

chromosome. 

Epigenetic age was estimated based on four previously developed “clocks”,  including 

the Horvath pan-tissue, Hannum, PhenoAge and GrimAge clocks, as summarized in Table 

4.1.23,32,43,44 Horvath used 353 CpG sites to predict chronological age across several different 
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tissues. Hannum used 71 CpG sites and also was trained to predict chronological age. PhenoAge 

used 513 CpG sites and was trained using a “phenotypic age” measure that was created using 

nine clinical biomarkers that were associated with time-to-death. GrimAge used 1,030 CpG sites 

derived from analyses predicting time-to-death using age, sex, DNAm-based surrogate 

biomarkers of plasma protein levels and a DNAm-based estimator of smoking pack-years (Table 

1). 

Table 4.1: Overview of epigenetic clocks being utilized in this study 

Clock CpGs Genes Age N Tissue Reported Associations 

Horvath43 353 344 0-101 8000 Various 

cell & 

tissues 

Chronological age, all-cause 

mortality, cancer, age-related 

disease and several 

neurodegenerative phenotypes 

Hannum44 71 94 19-101 656 Blood Chronological age, all-cause 

mortality 

PhenoAge32 513 505 >20 9926 Blood All-cause and cause-specific 

mortality, survival, count of 

multimorbidities, physical 

functioning, smoking status and 

telomere length 

GrimAge23 1030 NA NA 

(mean=66) 

1731 Blood Morbidity and mortality, 

survival, cognitive decline, 

clinical biomarkers, lifestyle 

factors, blood cell composition 

and telomere length 

 

Multimorbidity outcomes 

  There were 12 chronic conditions included in our multimorbidity count and 

weighted multimorbidity score outcomes (Table 4.2). These conditions were selected due to the 

their prevalence among older women in the US, their strong influence on physical functioning 

and quality of life, as well as guidance from current literature. Although there is currently no 

standardized list of conditions to include in the definition of multimorbidity, the majority of 

conditions were included on a list of 20 chronic conditions that were selected by the Office of the 



70 

Assistant Secretary of Health within the Health and Human Services to work towards the 

standardization of multimorbidity.105 There were three conditions (sensory impairment, frequent 

faller, hip fracture and urinary incontinence) that were not on this list, but mirrored a previous 

study in the WHI that also examined multimorbidity among older women and due to their high 

prevalence among this population were included. 

Table 4.2: Definition of 12 Chronic Conditions and Assigned Weighted Score in 

Multimorbidity Count and Multimorbidity Score Outcomes 

Chronic Condition Definition Weighted 

Score 

Stroke One or more of the following: carotid artery disease, 

stroke, transient ischemic attack 

18.4 

Coronary disease One or more of the following: coronary heart disease, 

clinical myocardial infarction, congestive heart failure, 

coronary artery bypass graft or percutaneous 

transluminal coronary angioplasty 

16.5 

Cancer Any cancer (excluding nonmelanoma skin cancer) 15.8 

Chronic obstructive 

pulmonary disease 

Self-reported physician diagnosis 14.6 

Sensory impairment Self-reported moderate to severe trouble with vision or 

hearing loss 

13.0 

Diabetes Self-reported physician diagnosis of diabetes and 

treatment for diabetes (pills, insulin) 

11.7 

Frequent faller Self-reported  2 falls within one year 7.5 

Cognitive impairment Self-reported physician diagnosis with dementia or 

Alzheimer’s 

6.4 

Hip fracture Broken hip 4.5 

Osteoarthritis Self-reported physician diagnosis 4.0 

Depression Self-reported treatment for depression (pills or 

therapy) 

3.1 

Urinary incontinence Self-reported very of extremely bothersome urinary 

leakage  

1.0 

 

 These conditions were identified as part of the WHI follow-up protocol using both self-

report on annual or semi-annual outcome forms, followed by physician adjudication for selected 

outcomes of major interest within WHI. For self-reported items, the following question was used 
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for ascertainment, “Since the date on the front of this form, has a doctor told you that you have 

any of the following conditions or have you had any of the following procedures?” The 

following conditions were self-reported: Alzheimer’s disease, diabetes characterized by self-

reported use of diabetic medications, depression characterized by self-reported treatment of 

medication or therapy, sensory impairment self-reported as moderate to severe vision or hearing 

loss, urinary incontinence as self-reported ever leaking urine and feeling extremely bothered by it 

and frequent falling included a self-report of falling at least two times in the past 12 months. 

Participants who reported “yes” for any of the listed conditions from baseline to follow-up 

through reaching age 90 were classified as having the condition at age 90.  This approach was 

taken in recognition of the chronicity of the conditions under study.  The primary outcomes of 

the WHI study were adjudicated throughout the study by a physician using medical records 

including incident coronary heart disease (CHD), cerebrovascular disease, cancer and hip 

fracture. While conditions such as hypertension, hyperlipidemia, and obesity were considered, 

they were not included due their role as major risk factors for many conditions included and the 

focus on including conditions that were disease endpoints. 

 There were two outcomes for this study: multimorbidity count and weighted 

multimorbidity score. Multimorbidity count was defined as the total number of morbidities from 

baseline to follow-up to age 90, death or loss to follow-up and was used as a count. Weighted 

multimorbidity score was a derived score based on the association of each morbidity with 

survival status among women eligible to survive to age 90 who had DNA methylation data. Each 

morbidity was placed in an univariate model with survival status at age 90 and the weight was 

calculated as the beta of each condition over the beta of urinary incontinence, which had the 

lowest beta and served as a reference weight of 1 (Table 4.2). The final multimorbidity score was 
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the sum of the relative weights based on all of the conditions a woman had acquired from 

baseline to age 90 or her last study visit before date of death. The purpose of the weighted 

multimorbidity score was to capture the degree to which each disease was life threatening, and 

assign value accordingly using a weight as compared to a total count. This method has been 

previously utilized to convert the Elixhauser comorbidity measure into a single score.106 

Covariates 

 

 Covariates were measured at WHI baseline and selected due to their associations with 

both EAA and multimorbidity. Covariates included age at blood draw, DNAm-based estimated 

blood cell composition using the Houseman method107 (CD8+ T Cells, CD4 T cells, Natural 

Killer cells, B lymphocyte cells, Monocytes, Granulocytes), race/ethnicity (Black (African 

American), Hispanic (Latino), White, Unknown (not one of the above), education (high 

school/general education development or less, some college, college graduate or more), walking 

frequency >10 min (rarely or never, 1-3 times/mo, 1 time/wk, 2-3 times/wk, 4-6 times/wk, 7+ 

times/wk), body mass index categories (underweight, normal, overweight, obese), alcohol 

consumption (non-drinker, past drinker, <1 drink/mo, <1 drink/wk, 1-<7 drinks/wk, 7+ 

drinks/wk), pack-years smoking (never smoker, <5, 5-20, 20+) and physical function score 

(RAND-36 10-item physical function subscale54,  range 0-100, higher score reflects higher 

function). 

Statistical Analysis 

Baseline characteristics were reported by PhenoAgeAccel quartile. Differences across 

quartiles were tested using Pearson’s chi-squared tests for categorical variables and F-tests for 

continuous variables. Unadjusted and fully-adjusted Poisson and linear regression models with a 

random intercept for ancillary study were used to estimate relative risks (RRs) and 95% 
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confidence intervals (CIs) for the associations between each EAA measure (one standard 

deviation increase) with multimorbidity count and multimorbidity score, respectively. Adjusted 

models included all covariates as described above and inverse probability weights to account for 

the case-control sampling of two ancillary studies (AS311 and BAA23) to create an analytic 

study population more representative of the WHI overall. The weights were the inverse of the 

selection probability into either AS311 or BAA23 for each individual in order to downweight 

cases. The sample was re-weighted so the sum of the weights approximated the original sample 

size of the analytic sample for AS311 and BAA23. Inverse probability weights were also applied 

to AS315 to account for oversampling of racial/ethnic minorities.  

The primary analyses were conducted among women who survived to age 90. There were 

two sensitivity analyses. The first sensitivity analysis included all women eligible to survive to 

age 90 regardless of their survival to age 90. The purpose of this sensitivity analysis which 

includes women who died before reaching the age of 90 was to evaluate the robustness of the 

findings to selective mortality. The second sensitivity analysis repeated the primary analysis 

adding adjustment for baseline multimorbidity count. This analysis was done to account for the 

multiple morbidity count at time of blood draw that could influence the prediction of total 

morbidity count at age 90 and also evaluates prediction of incident multimorbidity. This second 

sensitivity analysis was done in both women who survived to age 90 and all women who were 

eligible to survive to age 90. All analyses were conducted using R Version 1.4.1106 (R 

Foundation for Statistical Computing, Vienna, Austria). 

4.4. Results 

The 1,022 women who survived to age 90 were followed for 20.7 years on average 

(range=10.4-25.4 years) from WHI baseline to age 90 and were. The 929 women who did not 
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survive to age 90 were followed for 12.8 years on average (range=0.1-24.7 years) from WHI 

baseline to time of death. Women who survived to age 90 had an average of 1.1 multimorbidities 

at baseline (range=0-5 multimorbidities) and 2.8 at age 90 (range=0-8 multimorbidities). Women 

who did not survive to age 90 had an average of 1.3 multimorbidities at baseline (range=0-5 

multimorbidities) and 3.2 by age 90 or last-follow up before death for those women who did not 

survive to age 90 (range=0-9 multimorbidities). The distributions of conditions by total 

multimorbidity among women eligible to survive to age 90 are shown in greater detail in Figure 

4.1. In brief, a large proportion of women who had 3 or fewer chronic conditions had arthritis, 

cancer, CVD, frequently falling or sensory impairment by age 90. Additionally, among women 

who had greater counts of morbidities, the conditions tended to distribute equally. 

 

Figure 4.1: Distribution of Multimorbidities Stratified by Multimorbidity Count (N=1,951) 

Note: The following is the distribution of women in each multimorbidity count group: 0 (n=60); 1 (n=264); 2 

(n=446); 3 (n=512); 4 (n=355); 5 (n=197); 6 (n=90); 7 (n=16); 8 (n=9); 9 (n=2) 

Note: The denominator is the distribution of the total number of conditions for all women in each comorbidity 

count group 
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 Women with higher epigenetic age acceleration (accelerated biological aging) as 

measured by the Pheno clock were more likely to be Black or Hispanic, have lower education, be 

obese, drink less alcohol, have a lower physical functioning score and accumulate a greater 

number of multimorbidities (Table 4.3). In addition, those with higher AgeAccelPheno measures 

were more likely to have severe conditions such as cardiovascular disease and diabetes (Table 

4.4). 
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Table 4.3: Baseline Characteristics by PhenoAgeAccel Quartile (N=1,951) 

 Decelerated Aging Accelerated Aging  
 -31 - -4.5 

(n=493) 

-4.4-0.0 

(n=516) 

0.1-4.0 

(n=411) 

4.1-29.4 

(n=529) 

p 

Race/Ethnicity, n (%)     0.005 

     Black or African American 77 (15.7) 73 (14.3) 70 (17.1) 123 (23.5)  

     Hispanic/Latino 32 (6.5) 41 (8.0) 34 (8.3) 47 (9.0)  

     White 365 (74.6) 378 (73.8) 289 (70.5) 342 (65.3)  

     Other 15 (3.1) 20 (3.9) 17 (4.1) 12 (2.3)  

Education, n (%)     0.027 

    HS/GED or Less 119 (24.3) 133 (25.9) 117 (28.6) 174 (33.1)  

    Some College 195 (39.8) 214 (41.7) 170 (41.6) 204 (38.8)  

    College Grad or More 176 (35.9) 166 (32.4) 122 (29.8) 148 (28.1)  

Walking Frequency, n (%)     0.062 

    Rarely or Never 81 (16.5) 87 (17.0) 75 (18.5) 131 (25.0)  

    1-3 times/month 74 (15.1) 74 (14.5) 55 (13.5) 77 (14.7)  

    1 time/week 53 (10.8) 59 (11.5) 40 (9.9) 53 (10.1)  

    2-3 times/week 133 (27.1) 131 (25.6) 123 (30.3) 145 (27.6)  

    4-6 times/week 104 (21.2) 113 (22.1) 84 (20.7) 84 (16.0)  

    7+ times/week 45 (9.2) 47 (9.2) 29 (7.1) 35 (6.7)  

BMI Category, n (%)     <0.001 

    Underweight 5 (1.0) 4 (0.8) 5 (1.2) 5 (1.0)  

    Normal 177 (36.1) 156 (30.3) 108 (26.4) 118 (22.5)  

    Overweight 182 (37.1) 184 (35.7) 148 (36.2) 170 (32.4)  

    Obese 126 (25.7) 171 (33.2) 148 (36.2) 231 (44.1)  

Alcohol Consumption, n (%)     0.014 

    Non-drinker 79 (16.1) 56 (11.1) 48 (11.8) 80 (15.3)  

    Past drinker 94 (19.1) 112 (22.1) 87 (21.4) 126 (24.1)  

    <1 drink/month 57 (11.6) 60 (11.9) 51 (12.6) 86 (16.4)  

    <1 drink/week 96 (19.6) 116 (22.9) 82 (20.2) 93 (17.8)  

    1-<7 drinks/week 112 (22.8) 114 (22.5) 89 (21.9) 81 (15.5)  

    7+ drinks/week 53 (10.8) 48 (9.5) 49 (12.1) 57 (10.9)  

Smoking Pack-Years, n (%)     0.961 

    Never Smoker 265 (55.4) 270 (54.3) 209 (52.9) 283 (55.6)  

    <5 58 (12.1) 66 (13.3) 45 (11.4) 57 (11.2)  
    5-<20 62 (13.0) 60 (12.1) 52 (13.2) 60 (11.8)  
    20+ 93 (19.5) 101 (20.3) 89 (22.5) 109 (21.4)  
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Table 4.4: Baseline Characteristics by PhenoAgeAccel Quartile (N=1,951) 

Age-Related Condition      
    Alzheimer’s 58 (11.8) 63 (12.2) 52 (12.7) 65 (12.3) 0.982 

    Arthritis 387 (78.5) 406 (78.7) 320 (77.9) 426 (80.5) 0.760 

    Broken Hip 43 (8.7) 36 (7.0) 42 (10.2) 25 (4.7) 0.009 

    Cancer 155 (31.4) 154 (29.8) 130 (31.6) 187 (35.3) 0.272 

    Cardiovascular Disease 149 (30.2) 168 (32.6) 154 (37.5) 198 (37.4)  0.037 

    Depression 36 (7.3) 30 (5.8) 36 (8.8) 48 (9.1) 0.191 

    Diabetes 87 (17.6) 100 (19.4) 103 (25.1) 143 (27.0) 0.001 

    Emphysema 25 (5.1) 33 (6.4) 25 (6.1) 34 (6.4) 0.784 

    Frequent Faller 198 (40.2) 218 (42.2) 173 (42.1) 222 (42.0) 0.901 

    Sensory Impairment 154 (31.2) 179 (34.7) 136 (33.1) 168 (31.8) 0.648 

    Stroke 42 (8.5) 66 (12.8) 34 (8.3) 52 (9.8) 0.070 

    Urinary Incontinence 66 (13.4) 63 (12.2) 63 (15.3) 80 (15.1) 0.442 

Age, mean (SD) 71.0 (3.5) 71.2 (3.4) 71.0 (3.6) 70.5 (3.3)  0.026 

Physical Function Score, 

mean (SD) 

76.7 (22.7) 75.0 (22.3) 72.5 (23.8) 70.0 (25.3) <0.001 

Baseline Multimorbidity 

Count 

1.1 (0.9) 1.2 (1.0) 1.3 (1.0) 1.4 (1.1) <0.001 

Follow-up Multimorbidity 

Count 

2.3 (1.5) 2.4 (1.5) 2.6 (1.5) 2.6 (1.5) 0.040 

Total Multimorbidity Count 2.8 (1.5) 2.9 (1.5) 3.1 (1.6) 3.1 (1.6) 0.015 

Multimorbidity Score 26.0 (15.9) 27.8 (17.0) 28.8 (16.9) 30.0 (1.6) 0.015 

AgeAccelHorvath -3.0 (4.8) -0.9 (4.4) 0.4 (4.8) 2.9 (5.4) <0.001 

AgeAccelHannum -3.2 (4.9) -1.1 (4.4) 0.9 (4.2) 2.9 (4.6) <0.001 

AgeAccelGrim -1.8 (3.3) -0.8 (3.7) 0.4 (3.5) 1.9 (4.1) <0.001 

Note: GED=general educational development; BMI=body mass index; kg=kilograms; m=meters 

Note: AgeAccel measures are the residual between chronological age and epigenetic age as measured by each 

individual epigenetic clock. 
aConditions include cardiovascular disease, cancer, cognitive impairment, depression, osteoarthritis, history of 

falls, chronic obstructive pulmonary disease, hypertension, diabetes, hip fracture and cerebrovascular disease. 

 

 The associations between baseline EAA and multimorbidity count and multimorbidity 

score at age 90 based on our adjusted models are reported in Table 4.5. For every one standard 

deviation increase in AgeAccelHorvath (5.1 years) the relative comorbidity count at age 90 was 

4% higher (RR=1.04; 95% CI=1.00-1.09, p=0.074) and the weighted multimorbidity score was 

3% higher (RR=1.03, 95%CI=0.98-1.07, p=0.174). For every one standard deviation increase in 

AgeAccelHannum (5.3 years), the relative comorbidity accumulation was 2% higher (RR=1.02; 

95% CI=0.97-1.07, p=0.441) and there was no observed association between AgeAccelHannum 
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and the weighted multimorbidity score. For every one standard deviation increase in 

AgeAccelPheno (7.0 years), the relative comorbidity accumulation was 6% higher (RR=1.06; 

95% CI=1.01-1.12; p=0.025) and the weighted multimorbidity score was 7% higher (RR=1.07; 

95% CI=1.01-1.13; p=0.014) for women at age 90. For every one standard deviation increase in 

AgeAccelGrim (3.9 years), the relative multimorbidity accumulation was 2% lower (RR=0.98; 

95% CI=0.93-1.03, p=0.436) and the weighted multimorbidity score was 4% lower (RR=0.96; 

95% CI=0.92-1.01, p=0.117). The results were slightly attenuated for the covariate unadjusted 

analysis and remained similar for the sensitivity analyses that additionally adjusted for baseline 

multimorbidity count (Supplementary Table 4.7).  

Table 4.5: Association of Epigenetic Age Acceleration with Multimorbidity Count and 

Multimorbidity Score Among Women Who Survived to Age 90 (N=1,022) 

 Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 1.04 (1.00-1.09) 0.074 1.03 (0.98-1.07) 0.174 

AgeAccelHannum 1.02 (0.97-1.07) 0.441 1.00 (0.95-1.05) 0.947 

AgeAccelPheno 1.06 (1.01-1.12) 0.025 1.07 (1.01-1.13) 0.014 

AgeAccelGrim 0.98 (0.93-1.03) 0.436 0.96 (0.92-1.01) 0.117 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory sensory 

impairment) and RAND physical functioning score. 

aResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=5.1), 

AgeAccelHannum (sd=5.3), AgeAccelPheno (sd=7.0) and AgeAccelGrim (sd=3.9).  

 

The results of the sensitivity analyses in which we examined the adjusted associations 

between baseline EAA and multimorbidity count and multimorbidity score among all women 

eligible to survived to age 90 (n=1,951 total) are reported in Table 4.6. For every one standard 

deviation increase in AgeAccelHorvath the rate of multimorbidity accumulation decreased 1% 

(RR=0.99; 95% CI=0.96-1.02; p=0.651) and the weighted multimorbidity score increased 1% 

(RR=1.01; 95% CI=0.98-1.04; p=0.448). For every standard deviation increase in 
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AgeAccelHannum, the rate of multimorbidity accumulation decreased 3% (RR=0.97; 95% 

CI=0.94-1.01, p=0.105) and the weighted multimoribity score decreased 2% (RR=0.98; 95% 

CI=0.95-1.02, p=0.360). For every standard deviation increase in AgeAccelPheno, the rate of 

multimorbidity accumulation increased 4% (RR=1.04; 95% CI=1.00-1.07; p=0.040) and the 

weighted multimorbidity score  7% (RR=1.07; 95% CI=1.04-1.10; p<0.001). One standard 

deviation increase in AgeAccelGrim was not associated with multimorbidity count, and a 

decrease in the weighted multimorbidity score by 2% (RR=0.98; 95% CI=0.95-1.01, p=0.252). 

The results were similar for the covariate unadjusted analysis and slightly attenuated for the 

sensitivity analysis that additionally adjusted for baseline multimorbidity count (Supplementary 

Table 4.8). 

Table 4.6: Association of Epigenetic Age Acceleration with Multimorbidity Count and 

Multimorbidity Score Among All Women Eligible to Survive to Age 90 (N=1,951) 

 Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 0.99 (0.96-1.02) 0.651 1.01 (0.98-1.04) 0.448 

AgeAccelHannum 0.97 (0.94-1.01) 0.105 0.98 (0.95-1.02) 0.360 

AgeAccelPheno 1.04 (1.00-1.07) 0.040 1.07 (1.04-1.10) <0.001 

AgeAccelGrim 1.00 (0.97-1.04) 0.917 0.98 (0.95-1.01) 0.252 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory sensory 

impairment) and RAND physical functioning score. 

Note: There were 1,022 women who survived to age 90 and 929 women who died before age 90. All models 

included an offset for age to account for differing lengths of follow-up.  

aResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=5.1), 

AgeAccelHannum (sd=5.3), AgeAccelPheno (sd=7.0) and AgeAccelGrim (sd=3.9). 

4.5. Discussion 

 

  To the best of our knowledge, this is the first study to examine the relationship between 

EAA and multimorbidity among older women at the time they reach age 90. In this racially and 

ethnically diverse group of older women, this prospective study showed that increased EAA as 
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measured by AgeAccelPheno predicted an increased risk of acquiring additional 

multimorbidities and more deadly multimorbidities among women who survived to age 90. A 

similar association was observed among all women eligible to survive to age 90. The results also 

remained similar in the covariate unadjusted models and the fully covariate adjusted models that 

additionally adjusted for baseline multimorbidity count. EAA measured by AgeAccelHorvath, 

AgeAccelHannum and AgeAccelGrim were not associated with either multimorbidity count or 

multimorbidity score over time. 

 To date, studies have only examined the relationship between EAA and multimorbidity 

count cross-sectionally. Lu et al. conducted a cross-sectional meta-analysis between each of the 

four EAA measures and multimorbidity count at time of blood draw. Participants were from the 

Framingham Heart Study (FHS), WHI, Invecchiare in Chianti (InChianti) and Jackson Heart 

Study (JHS). This study as well as Lu et. al’s benefitted from a large sample size and racial and 

ethnic diversity in the sample. While the age-related conditions included in each cohort included 

in the Lu et. al analysis differ, the conditions across cohorts that overlapped with this analysis 

include stroke, coronary disease, cancer, chronic obstructive pulmonary disease, visual 

impairment, diabetes and cognitive impairment. The following conditions were unique to this 

study: hearing impairment, frequently falling, hip fracture, osteoarthritis and depression. 

Although the meta-analysis estimated effect sizes were not provided to prevent 

comparison across EAA measures with different distributions, for each 1-year increase in EAA 

each of the four measures were statistically significantly associated with comorbidity count in 

this cross-sectional analysis. Specifically for every 1-year increase in AgeAccelPheno and its 

association with comorbidity count, the significant estimates within InChianti, JHS, FHS and 

WHI AS315 ranged from 0.01-0.03.  In our study, the betas for a 1-year increase from 
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AgeAccelPheno and both multimorbidity count and multimorbidity score were also close to 0.01 

for all analyses. It is unclear which covariates were included in each study population and if they 

differed across study populations in availability or measurement. Another major difference in the 

Lu et. al analysis was the inclusion of a broad age range of adult men and women ranging from 

ages 20-102. These differences in study design and populations may explain the difference in 

results found for AgeAccelHorvath, AgeAccelHannum and AgeAccelGrim in relation to 

multimorbidity count and score at age 90 in the present study. 

 Epigenetic clocks are thought to be a promising measure of biological age and DNA 

methylation the a promising age-predictive biomarker.63 Having accelerated biological age as 

measured by these epigenetic clocks has been associated with increased risks of several age-

related phenotypes such as Alzheimer’s disease, cancer, coronary heart disease, cognitive 

performance, frailty, osteoarthritis, and Parkinson’s disease among others.23,32,43,44 The CpGs that 

were included in the clocks during the model building phase are thought to have a relationship 

with the epigenetic maintenance system especially at promoters and enhancers throughout the 

genome. More specifically for the PhenoAge clock, the CpG sites that were more prevalent 

among individuals with accelerated aging were associated with several pro-inflammatory 

signaling pathways, while those that were less prevalent among those with accelerated aging 

were involved in transcriptional and translational machinery and DNA damage recognition and 

repair.32  Although the specific mechanisms are still under examination, the change in DNAm 

with age is most likely linked to declines in tissue function related to both intracellular changes 

that lead to a loss of cellular identity and small changes in cell composition over time.16 Only 41 

of the 513 CpGs in the Horvath pan-tissue clock and only 5 CpGs in the Hannum clock are 

shared with the PhenoAge clock. DNAm PhenoAge was unique among the clocks examined 
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because it was developed to predict phenotypic age rather than chronological age using 

biomarkers and risk factors related to all-cause mortality. In addition, PhenoAge was trained 

using longitudinal data that may better account for changes in health status over time. These 

differences may explain the associations between EAA measured by PhenoAge and not the other 

epigenetic clocks.  

 This study had several strengths and limitations. The study population included a large 

number of women who survived to age 90 and was also racially and ethnically diverse. On 

average, women were followed for 2 decades with low rates of loss-to-follow-up. The WHI had 

information on relevant baseline characteristics and potential confounders. Epigenetic age was 

measured using several different clocks, which is currently considered best practice due to the 

low overlap in CpG sites and associated genes between the clocks that potentially capture 

different biologic pathways.63 Finally, there was also longitudinal measurement of several age-

related chronic conditions, some of which were also adjudicated by trained physicians. There 

were also some limitations to note in this study. This study population included two ancillary 

studies that utilized nested case-control sampling of the larger WHI cohort. This study used 

inverse probability selection weights to account for differences in the selection criteria, which is 

currently the recommended approach.64  Since this study was limited to women, it will be 

important to replicate the findings among both men and women with diverse race, ethnicity and 

geographical representation.  Presently, few studies have sufficient numbers of individuals with 

long follow-up to age 90 or beyond with DNA methylation measures available. Another 

limitation to note is that biological aging can be measured in several different ways (genomics, 

metabolomics, proteomics, microbiomics, transcriptomics, etc). Although EAA is the focus of 

this study, several biological processes are likely to simultaneously contribute to age-related 
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disease onset and progression.65 There is currently no gold standard to measure biological aging 

and thus this research should be interpreted within a larger systems biology framework, that 

acknowledges the influence and interaction of many underlying processes.  

 In this study, we report that increased EAA measured by DNAm PhenoAge was 

associated with an increased number and more life threatening multimorbidities at age 90 among 

older women.  These results suggest that PhenoAgeAccel is a promising biomarker of 

multimorbidity burden among older women that is capturing the biological age and functional 

state of several organ systems and tissues beyond one’s chronological age. As women continue 

to live to more advanced ages, it will be increasingly important to predict the overall burden of 

age-related diseases, to utilize that information to implement appropriate public health 

interventions, and to discover potential modifiable targets that can simultaneously decrease the 

risk of multiple morbidities. 
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Supplementary Tables 

Table 4.7: Baseline Characteristics by Survival to Age 90 Status (N=1,951) 

 Did not Survive to 

Age 90 

(n=929) 

Survived to  

Age 90 

(n=1,022) 

p 

Race/Ethnicity, n (%)   0.207 

     Black or African American 179 (19.4) 165 (16.3)  

     Hispanic/Latina 78 (8.5) 76 (7.5)  

     White 637 (69.1) 738 (72.7)  

     Other 28 (3.0) 36 (3.5)  

Education, n (%)   0.047 

    HS/GED or Less 281 (30.5) 263 (25.8)  

    Some College 369 (40.0) 415 (40.8)  

    College Grad or More 272 (29.5) 240 (33.4)  

Walking Frequency, n (%)   0.001 

    Rarely or Never 204 (22.2) 171 (16.8)  

    1-3 times/month 144 (15.7) 137 (13.5)  

    1 time/week 109 (11.9) 96 (9.4)  

    2-3 times/week 231 (25.2) 301 (29.6)  

    4-6 times/week 163 (17.8) 222 (21.9)  

    7+ times/week 67 (7.3) 89 (8.8)  

BMI Category, n (%)   <0.001 

    Underweight 9 (1.0) 10 (1.0)  

    Normal 251 (27.2) 308 (30.3)  

    Overweight 296 (32.0) 389 (38.3)  

    Obese 368 (39.8) 309 (30.4)  

Alcohol Consumption, n (%)   0.014 

    Non-drinker 121 (13.2) 142 (14.0)  

    Past drinker 224 (24.5) 196 (19.3)  

    <1 drink/month 134 (14.6) 120 (11.8)  

    <1 drink/week 167 (18.3) 221 (21.8)  

    1-<7 drinks/week 173 (18.9) 223 (22.0)  

    7+ drinks/week 96 (10.5) 111 (11.0)  

Smoking Pack-Years, n (%)   <0.001 

    Never Smoker 425 (47.6) 603 (61.0)  

    <5 96 (10.8) 130 (13.2)  

    5-<20 114 (12.8) 121 (12.2)  

    20+ 258 (28.9) 134 (13.6)  
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Table 4.8: Baseline Characteristics by Survival to Age 90 Status (N=1,951)  

 Age-Related Condition    

    Alzheimer’s 99 (10.7) 139 (13.6) 0.055 

    Arthritis 720 (77.5) 821 (80.3) 0.140 

    Broken Hip 63 (6.8) 83 (8.1) 0.300 

    Cancer 371 (39.9) 256 (25.0) <0.001 

    Cardiovascular Disease 397 (42.7) 273 (26.7) <0.001 

    Depression 76 (8.2) 74 (7.2) 0.488 

    Diabetes 249 (26.8) 185 (18.1) <0.001 

    Emphysema 73 (7.9) 44 (4.3) 0.001 

    Frequent Faller 425 (45.7) 387 (37.9) <0.001 

    Sensory Impairment 244 (26.3) 394 (38.6) <0.001 

    Stroke 127 (13.7) 67 (6.6) <0.001 

    Urinary Incontinence 127 (12.7) 67 (6.6) <0.001 

Age, mean (SD) 70.2 (3.4) 71.6 (3.4) <0.001 

Physical Function Score, mean (SD) 69.5 (24.6) 77.0 (22.2) <0.001 

Baseline Multimorbidity Count 1.3 (1.0) 1.1 (0.9) <0.001 

Follow-up Multimorbidity Count 2.6 (1.5) 2.4 (1.5) 0.001 

Total Multimorbidity Count 3.2 (1.5) 2.8 (1.5) <0.001 

Multimorbidity Score 31.5 (16.5) 24.9 (16.5) <0.001 

AgeAccelHorvath 0.1 (5.3) -0.4 (5.4) <0.001 

AgeAccelHannum 0.4 (5.1) -0.7 (5.1) <0.001 

AgeAccelPheno 1.1 (7.0) -1.0 (6.8) <0.001 

AgeAccelGrim 0.8 (4.3) -0.9 (3.5) <0.001 
Note: GED=general educational development; BMI=body mass index; kg=kilograms; m=meters 

Note: AgeAccel measures are the residual between chronological age and epigenetic age as measured by each 

individual epigenetic clock. 
aConditions include cardiovascular disease, cancer, cognitive impairment, depression, osteoarthritis, history of 

falls, chronic obstructive pulmonary disease, hypertension, diabetes, hip fracture and cerebrovascular disease. 
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Table 4.9: Unadjusted and Baseline Multimorbidity Adjusted Association of Epigenetic 

Age Acceleration with Multimorbidity Count and Multimorbidity Score Among Women 

Who Survived to Age 90 (N=1,022) 

Unadjusted Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 1.02 (0.98-1.05) 0.460 1.02 (0.98-1.06) 0.219 

AgeAccelHannum 1.00 (0.96-1.04) 0.916 0.99 (0.95-1.03) 0.773 

AgeAccelPheno 1.05 (1.01-1.10) 0.025 1.05 (1.01-1.10) 0.019 

AgeAccelGrim 1.03 (0.98-1.07) 0.201 1.02 (0.98-1.07) 0.217 

Baseline 

Multimorbidity 

Count Adjustedb 

Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 1.03 (0.99-1.08) 0.147 1.02 (0.97-1.05) 0.459 

AgeAccelHannum 1.01 (0.96-1.06) 0.691 0.99 (0.95-1.03) 0.599 

AgeAccelPheno 1.07 (1.01-1.12) 0.016 1.07 (1.02-1.13) 0.005 

AgeAccelGrim 1.04 (0.97-1.08) 0.500 0.99 (0.95-1.04) 0.673 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory sensory 

impairment) and RAND physical functioning score. 

aResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=5.1), 

AgeAccelHannum (sd=5.3), AgeAccelPheno (sd=7.0) and AgeAccelGrim (sd=3.9). 

bModel included all covariates from the fully adjusted model and additionally adjusted for baseline multimorbidity 

count. 
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Table 4.10: Unadjusted and Baseline Multimorbidity Adjusted Association of Epigenetic 

Age Acceleration with Multimorbidity Count and Multimorbidity Score Among All 

Women Eligible to Survive to Age 90 (N=1,951) 

Unadjusted Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 0.99 (0.96-1.02) 0.434 0.99 (0.97-1.02) 0.690 

AgeAccelHannum 0.98 (0.95-1.01) 0.191 0.99 (0.96-1.02) 0.483 

AgeAccelPheno 1.04 (1.01-1.07) 0.014 1.06 (1.03-1.09) <0.001 

AgeAccelGrim 1.04 (1.01-1.06) 0.012 1.04 (1.02-1.07) 0.002 

Baseline 

Multimorbidity 

Count Adjustedb 

Multimorbidity Count Multimorbidity Score 

 RR (95% CI)a p RR (95% CI)a p 

AgeAccelHorvath 0.99 (0.96-1.02) 0.450 1.00 (0.98-1.03) 0.818 

AgeAccelHannum 0.97 (0.94-1.00) 0.068 0.98 (0.96-1.01) 0.243 

AgeAccelPheno 1.02 (0.99-1.06) 0.204 1.05 (1.01-1.08) 0.002 

AgeAccelGrim 1.00 (0.97-1.04) 0.903 0.98 (0.95-1.00) 0.115 
Note: All models were adjusted for the following baseline covariates: blood cell composition (CD8T, CD4T, NK, 

Bcell, Mono, Gran), age, race/ethnicity, education, walking frequency, BMI, alcohol consumption, pack-years 

smoking, broken hip, emphysema, arthritis, depression, urinary incontinency and visual/auditory sensory 

impairment) and RAND physical functioning score. 

aResults are presented for one standard deviation increase in DNAmAge measure: AgeAccelHorvath (sd=5.1), 

AgeAccelHannum (sd=5.3), AgeAccelPheno (sd=7.0) and AgeAccelGrim (sd=3.9). 

bModel included all covariates from the fully adjusted model and additionally adjusted for baseline multimorbidity 

count. 
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Chapter 4, in full, is currently being prepared for submission for publication of the 

material. Jain, Purva; Binder, Alex; Chen, Brian; Parada, Humberto; Gallo, Linda; Alcaraz, John; 

Horvath, Steve; Bhatti, Parveen; Whitsel, Eric; Baccarelli, Andrea; Hou, Lifang; Stewart, Jay; 

Li, Yun; Jordahl, Kristina; LaCroix, Andrea. The dissertation author was the primary investigator 

and author of this paper.  
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5. Discussion 

5.1. Summary of dissertation research 

In the last decade there has been increased interest in the potential for DNA methylation 

to serve as a measure to define an individual’s biological age, with the goal of developing 

interventions to slow biological aging. Epigenetic clocks are not only able to predict 

chronological age, but more importantly they are able to predict aging outcomes more strongly 

than using just chronological age.63 Previous studies have shown first generation clocks 

(Hannum, Horvath) to be associated with chronological age and the second generation clocks 

(PhenoAge and GrimAge) to be associated with outcomes such as worse physical and cognitive 

functioning along with several chronic conditions.21,23,24,32,43,44,108 Previous studies that examined 

the relationship with DNA methylation and epigenetic age acceleration with physical and 

cognitive functioning as well as multimorbidity have primarily been cross-sectional and have not 

focused on the oldest-old.  

The purpose of this dissertation was to examine the role of DNA methylation on healthy 

longevity among older women. This research adds to the current body of literature by examining 

these relationships within an older, racially-ethnically diverse group of women using a 

prospective study design. The first aim of this dissertation assessed the associations between four 

DNA methylation clocks that measure epigenetic age acceleration and exceptional longevity, 

defined as survival to age 90 with intact mobility or survival to age 90 with intact mobility and 

and intact cognitive function. This study showed that increased EAA as measured by the 

AgeAccelHorvath, AgeAccelHannum, AgeAccelPheno and AgeAccelGrim clocks resulted in 

decreased odds of survival to age 90 with intact physical functioning. The results were strongest 

in the AgeAccelHannum, AgeAccelPheno and AgeAccelGrim measures followed by 
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AgeAccelHorvath. The newer generation PhenoAge and GrimAge clocks were also predictive of 

survival to age 90 without intact physical function, but not the older generation clocks. The 

results remained similar when the exceptional longevity outcome additionally included intact 

cognitive functioning. 

The second aim of this dissertation utilized an epigenome wide association study to 

identify specific CpG positions and regions that are associated with exceptional longevity. The 

primary analysis that used an epigenome-wide-association study across 481,047 CpG sites 

comparing women who survived to age 90 with and without intact physical function to women 

who did not survive to age 90 identified 38 and 103 significantly differentially methylated CpG 

sites, respectively. In the secondary analysis that tested these 139 sites comparing women who 

survived to age 90 with intact physical and cognitive functioning and women who survived to 

age 90 with at least either intact physical or cognitive functioning compared to women who did 

not survive to age 90 there were 17 and 64 significantly differentially methylated CpG sites, 

respectively. There were also 83 DMRs comparing women who survived to age 90 with intact 

physical function and 127 DMRs comparing women who survived to age 90 without physical 

function to women that did not survive to age 90.  

The final aim of this study evaluated the associations between the four DNA methylation 

clocks and multiple morbidity among women when they reach 90 years of age. This study 

showed that increased EAA as measured by AgeAccelPheno resulted in an increased risk of 

acquiring additional comorbidities and more lethal comorbidities among women who survived to 

age 90. A similar association was observed among all women eligible to survive to age 90. EAA 

measured by AgeAccelHorvath, AgeAccelHannum and AgeAccelGrim were not associated with 

either multimorbidity count or multimorbidity score over time. 
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This dissertation advances the field of the epigenetics of healthy aging. The findings in 

Chapter 2 provides additional evidence of the predictive capability of epigenetic clocks with 

physical and cognitive functioning over time and expand the findings to a racial and ethnically 

diverse group of older women. Chapter 3 identifies several CpG positions and regions across the 

genome that have significantly differential methylation when comparing women who are long-

lived with intact physical functioning and women who are long-lived without intact physical 

functioning to women who are not long-lived. Chapter 4 provided evidence of the predictive 

capability of epigenetic age acceleration, as measured by the Pheno clock, of both 

multimorbidity count and multimorbidity score, while expanding the findings to a racial and 

ethnically diverse group of older women. 

5.2. The importance of understanding the relationship between DNA methylation and healthy 

longevity 

Epigenetic factors such as DNA methylation influence the regulation of gene expression 

without modification of the DNA sequence. DNA methylation is the connection between the 

intrinsic and extrinsic environments and the decreases in DNA methylation as one ages have 

been implicated in the pathogenic process of age-related diseases.109 Identifying specific CpG 

sites and regions across the genome associated with specific age-related diseases may help to 

understand disease etiology. 

There have also been public health interventions with the goal of decreasing epigenetic 

age that have shown changes in DNA methylation status at specific CpG sites of interest, a 

potential area to decrease disease and increase longevity through overall decreases in epigenetic 

age. Studies have shown that caloric restriction can increase the DNA methylation level within 

the promotor of a tumor suppressor and aging-related gene, attenuate the expression of a 
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molecule associated with decreased brain function and increase the promotor methylation of a 

DNA mismatch repair gene.110,111 There are also additional interventions such as dietary 

supplementation and chemical drugs that have been associated with reversing age-associated 

changes in DNA methylation.109 

5.3. Recommendations for future work in studies of DNA methylation and healthy longevity 

First, there is a need for prospective studies in both the creation of epigenetic age 

acceleration measures as well as in studies examining their association with longevity and age-

related phenotypes. Those who age faster tend to have higher mortality rates and thus create a 

selection bias due to non-random sampling of the cohort within cross-sectional analyses that may 

lend to the inclusion of more non-causative loci.66 Although this is not a concern when the goal 

is to use epigenetic age acceleration to predict risk, conduct risk stratification or define an 

outcome of interest, this would be of concern if trying to pinpoint causal mechanisms associated 

with an outcome of interest. The use of longitudinal designs also allows for the exploration into 

how the rate of biological aging may differ between individuals and what risk factors are most 

strongly associated with changes in DNA methylation and the rate of biological aging. Also, 

when testing the relationship of specific DNA methylation and epigenetic clocks with outcomes 

of interest, without a prospective design it is not possible to rule out reverse causation.  

Second, it is important to develop and test epigenetic age acceleration measures that are 

assessed using the age and racial/ethnic groups of interest. The loci that are developed using a 

broad age range of adults tend to degrade in their predictive capability after mid-life and may not 

serve to be as useful when one is interested in examining relationships among the oldest-old.66 

Although the epigenetic clocks were developed using diverse, multiethnic samples, and may 

show less racial/ethnic bias when compared to genetic studies, it is vital to test relationships of 
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interest within racial and ethnically diverse populations and examine group-specific associations 

when possible. 

Finally, to develop a comprehensive understanding of epigenetic based biological 

markers in exceptional longevity it is important to consider the role of blood-based DNA 

methylation in the context of other factors. This may include measuring DNA methylation in 

other tissues to understand if the changes in DNA methylation associated with age-related 

phenotypes of interest are consistent in other sites in the body.  

5.4. Concluding remarks 

In conclusion, this dissertation offers an epidemiological examination of the relationship 

between DNA methylation and healthy longevity by utilizing a prospective design and a 

racial/ethnically diverse sample of long-lived women. This research advances the field by 

demonstrating the relationship between certain measures of epigenetic age acceleration and 

healthy longevity as well as multimorbidity, identifying specific DNA methylation positions and 

regions that differentiate women who experience healthy longevity and providing 

recommendations to guide future research.  
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